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GRAM-SCHMIDT IMPLEMENTATION OF A
LINEARLY CONSTRAINED ADAPTIVE ARRAY

I. INTRODUCTION

Unconstrained adaptive antenna arrays for certain external noise interference scenarios can result
in the cancellation of a desired signal along with the cancellation of the interfering signals. Frost
(1,21 introduced a constrained optimization procedure such that certain main beam antenna properties
are maintained during the adaptation process thus preserving the desired signal.

Consider an N input adaptive antenna array as shown in Fig. 1. We define a vector of weights
w as

W = (W 1 , W 2 , , WN)

where T denotes the vector transpose operation. Frost [1] shows that if the weights are constrained to %
satisfy the following linear constraint equation YJ.-

C'w = f,(1)

where

M is the number of constraint equations,
C is the N x M constraint matrix,
f is the M x I column constraint vector,

and t denotes the conjugate transpose vector operation, then the average output noise power residue
of z = w'x is minimized if

W R, = C R-ICCt C)-'f. (2)

where

X = (x.x 2, 2 . XN)T "

Rx = EIxx' is the input covariance matrix, and EII denotes the expected value.

In this report we develop an open-loop Gram-Schmidt (GS) implementation of w'x where w is 0
defined by Eq. (2) or equivalently an implementation such that

z = f'(C'R 1 'C)-nC'R 1 'x. (3)

The GS implementation of a linearly constrained adaptive array offers many advantages. The
GS open-loop technique has been shown to yield superior performance simultaneously in arithmetic

Manuscript approved June N8, 1987.
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X1  X2  XN

W; xi w;-- W

Z

Fig. 1 - Adaptive array

efficiency, stability, and convergence rate [3-7] over other adaptive algorithms. In particular, the sta-
bility of the GS algorithm is enhanced because it does not require the calculation of an inverse covari-
ance matrix as does the Sample Matrix Inversion (SMI) algorithm [8]. Also the GS canceller
algorithm is very suitable for a non-stationary noise environment because the adaptive weights can be
updated in a numerically efficient manner, using "sliding window" or systolic techniques on the input
data instead of "batch" processing.

Jim, Griffiths, and Buckley [9,10,111 have shown that the constrained minimization problem can
be reduced to an unconstrained implementation called the generalized sidelobe canceller (GSC). In
this report, we develop an equivalent implementation of this technique. It had been previously shown
that the steady state solution for the optimal weights is identical for both constrained and reduced
unconstrained problems. In this report, it is shown that if the SMI or GS algorithms are employed,
then the transient weighting vector solution for the constrained problem is identical to equivalent tran-
sient weighting vector solution for the reduced unconstrained implementation. In Sections II through
V, we develop the basic building blocks for the GS implementation of the linearly constrained adap-
tive array. In Section VI, the implementation is presented. In Section VII, the special case when
there is only one constraint is discussed. In Section VIII the multiple constraint implementation is
significantly simplified. In Section IX, the Jim, Griffiths, and Buckley implementation is derived.
Finally, in Section X, analytical results are presented for the convergence rate of the constrained
minimization implementation when the SMI algorithm is employed.

II. GS CANCELLERS

Consider the general N-input open-loop GS canceller structure as seen in Fig. 2(a). Let x1, x2,
xN represent the complex data in the Ist, 2nd, Nth channels, respectively. We call the leftmost

input (x1). the main channel, and we call the remaining N - I inputs the auxiliary channels. The,

canceller operates so as to decorrelate the auxiliary inputs one at a time from the other inputs by
using the basic two-input GS processor shown in Fig. 2(b). For example, as seen in Fig. 2(a), in the
first level of decomposition, xN is decorrelated with x 1, x , XN - 1. Next, the output channel that
results from decorrelating XN with .xN - is decorrelated with the other outputs of the first level GSs.
The decomposition proceeds until a final output channel is generated. If the decorrelation weights in
each of the two input GSs are computed from an infinite number of input samples, then this output
channel is totally decorrelated with the input: x-, x3,  . xN.

Let xm) represent the outputs of the two input GSs on the m - I th level. Then outputs of the
two-input GSs at the m th level are given by

(m) =(in) - (m n =1, 2 ".N -m.
nn n -N-,+1, m = 1,2,. .,N - 1. (4)

2
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MAIN
CHANNEL AUXILIARY CHANNELS

XI X2  ICN-3  XN- 2  XN- XN -

Levell I S GS GS GS GS

x 2 xN-3 XN-2 N-i

Level 2 OS O S O

X 2 

XN-3 
XN-2

Level 3 GS GS GS

I 4) X
4 

(4')

-3N

10p
LevelN - 2OS G

S),(N)

Fig. 2(a) - GS structure

IGS I%

W Xi2 IX

I 
-

2 '0

Fig. 2(b) - Basic two-input GS canceller
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Note that x41) = x,~ The weight w (M), seen in Eq. (1), is computed so as to decorrelate x M + 1) with
xrj2,. -For K input samples per channel, this weight is estimated as

K

w(M) =1 5

k=1

where * denotes the complex conjugate and I -I is the complex magnitude. Here k indexes the
time-sampled data.

We simplify the N-input GS canceller structure by the representation as seen in Fig. 3.

X1  X2  X
2. N

G S

Fig. 3 - GS representation

III. NORMALIZED GS CANCELLER

The GS canceller, as represented in Fig. 3, effectively weights the vector x with a vector
* W (W, I, WN)T such that y* = x, where

0

* 0
w tikv(6)

0

w I, and pi is a scalar constant to be determined. Because vi, 1,I the scalar constant p has a
specific value. If

RU (r"n)). n, m 1. 2, .N, (7)

4
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where r("") are the elements of R, then we can show

~~' (8) -

Hence

l~r*15

0

w R;(9)

Consider a configuration where we normalize the output y by the average power of y as seen in
Fig. 4. Note that the average power after normalization is not one. Thus

I 1
Z tl W1 X.I (10)

However,

Ej y~ =El I~wX 2j (1

- wElxx'lwA

S-04

l/rO 1)

0

(I (1r")*, 0,~ 0 )RL;R~R

0

mc- (1rr- ~ -I,~ ..0).Rj.'
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1  2  XN

GS

Fig. 4 - Normalized GS canceller
5-x
Y

4 1,? El I y12
a

Now since R., is hermitian, then R.,; is hermitian and r I1 is real. Thus

E Ily2 1 1 (12)

Hence

z = r( )w/x, (13)

or substituting Eq. (9) into Eq. (13),

Z =(1, 0, " ,0) R l"x. (14) '

IV. NORMALIZED FAST ORTHOGONALIZATION NETWORK (FON)

A FON is a numerically efficient implementation of a complete GS network where each input is
orthogonalized with every other input [121. In essence, the FON implements the network seen in Fig.
5. The ordering of the input channels for decorrelation as seen in Fig. 5 was arbitrary. Reference 12
shows that the input channels can be ordered so as to greatly reduce the required number of arith-
metic operations. If there were no logic behind choosing the ordering of the input channels, it can be
shown that the number of weights that are calculated by using this decorrelation procedure is 0.5N2

(N - 1). In Ref. 12 an algorithm was developed that requires approximately i.5N (N - 1) weights %
for the same decorrelation process.

We represent the FON implementation of Fig. 5 as seen in Fig. 6. Consider an implementation
where each output of the FON is normalized with respect to the power of that output as shown in Fig.

7. We call this configuration a normalized FON. If we define z = (z 1, z, , z, )7. then we can
show that the normalized FON is equivalent to multiplying the vector x by an N x N matrix of
weights w such that

Z = w X. (15)

-4%

'-"%

't J
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x X2 XN X2 X3 X X1  XN Xl XNl I

GS GS .. GS

Y1 
Y2 

YN

Fig. 5 - Orthogonalization network ..-

FON
NXN 7-." ?:

121 Y
Fig. 6 - FON representation

:"%-P

Xi X2  X N %

FON
NXN

1 2 N. 
-

x x xY 1 2 N'"

y . , , y %"
• **° I 0

2 ZN ZN

Fig. 7 -- Normalized FON 
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where

w = Rx;'. (16)

Note that we used the methodology of the previous section. Hence

z = R tx. (i)

We represent a normalized FON as shown in Fig. 8.

X X X2 N*

FON
NXN

r rr

POWER ,
Fig. 8 - Normalized FON representation NORMALIZER

Z1I Z2  ZN

V. NORMALIZED REDUCED FONS

A normalized reduced FON orthogonalizes only a fraction of the inputs with respect to one
another. For example if we desire only to orthogonalize x1, x 2 , *. XM, where M <N, then a
reduced FON would efficiently implement the configuration as seen in Fig. 9. If
z = (z1 , -2, ". ZM) r . then we can show that a normalized reduced FON is equivalent to multiply-
ing the vector x by an M x N matrix such that

Z wx (18)

and

w = R 'IN M , (19)

where

1 0 0

0 1 0
100

IN. = - I N x Mmatrix.

0 0 0

8.
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X1 X2  XN X2 X3  XN X1  XM XM+1XN XMI1

GS GS GS

U.

POWER NORMALIZER

ZZ 2
1  

M

Fig. 9 -Normalized reduced FON

For example. 13.2 0 =

Hence 1
Z =ImNARXV'X. (20)

We represent a normalized reduced FON -as seen in Fig. 10.

X1  X2  XN '

EDUCED O

NXM

21 N%

POWER
NORMALIZER

ZI ZI1 Zj
Fig. 10- Normalized reduced 5

I-ON represeflaton 5

VI. GS IMPLEMENTATION 5

We now present the GS implementation of the linearly constrained adaptive array. First. we
define an N x N augmented matrix, C,,,, such that -

=tu IC I1)1 (21)

C) 0

-. S S.S -... .... ... ... ... .- .~ .S~5 ~9
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where D is an N x (N - M) matrix such that Caug is nonsingular and hence invertible. We discuss
the choice of D in more detail in Section IX.

The GS implementation of the linearly constrained adaptive array is shown in Fig. 11. Note
that

x = (xI, x 2 , , XN)T

U = (U, U2 , UN 

.)

v = (V1 , v 2 ,., VM) r  (22)

Y = (YI, Y2,' YM) r

P = (Pl, P2, ,PM)
T

z = scalar.

* 11

c-iaug

U 4

REDUCED FON
NXM ',

P

POWER
NORMALIZER

V

FON

Fig. I1 - GS implementation of a linearly MXM
constrained adaptive array

POWER

NORMALIZER

Y

X ft'

A
10 01

,,,..j
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From our preceding discussion in FONs and reduced FONs, we know that

u g x, (23) -*

V = M ,N R.;'u, (24)

y = R 1 v, (25)

z = ft y. (26) ,,.

Now

R.u =E[Ca -x (C -x)t  CaRu Ctau'g (27)
aug CagX aug aug '(7

or

R'- Cag RxI Caug (28)

Hence
V = IM,N Caug R xx aug aug-I

R' CugX (29)

IM.N Caug R,'x.

We can show that

Ct = 'MN Ct1,g. (30)

Thus

v Ct RJ- 1x. (31)

Now

R,.,.= EI(C' R u i x) (C R x) ] I

= C'R Elxx'l R-' C

= C' R, "RP R' C 0

Ct, R -- C.
X.1.

= c' Tic. ' Z

Thus

R = (C' Rj; C) -  (33)

II •

_ .r , • t " ,m'.e" /.' i?:' :• t z' ' " . .. ' .. , M?.:* € . - a.€. WW ort- -v r
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Hence
4,

y = (Ct Rj' l C)-1 -v (34)

= (C'R1C)-' C'RJ' x.

Finally, by using Eq. (26),

z =f (C R--' C)- I C' R x. (35)

- Note that this is the same weighting of x as given by Eq. (3).

VII. SINGLE CONSTRAINT IMPLEMENTATION EXAMPLE

Note that when M = i, we set z = p (see Fig. 11) and the function blocks after p are not
used. This results because the M x M FON seen in Fig. 11 is not used, f = 1, and data passing
through successive power normalizations is unchanged. We can show that

z - C' R' lx. (36)

For this case C = (cI, C2 , " CN) = c, a vector. Note that the reduced FON is just a single GS
canceller. Hence for a single constraint, the configuration is shown in Fig. 12. t..I

I-

x -4

1 2 N

~C" 1

aug

12 I

'.Fig. 12 - GS implementation for a GSi"

,-' ~single linear consraint'.,,

',' .4 !

• 12

%*4 . •4% . 4. . . .. . . . . . .,
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We arbitrarily set c1 = I and augment C as shown below:

1 0 0 . 0 - 0 0...0

C2 1 0 ... 0 -c 2 1 0 ... 0

Ca- = . (37) 'A
aug %

CN 0 0 .. 1 --CN 0 0 ... I

Hence the single constraint processor of Fig. 12 can be implemented as shown in Fig. 13.

1.4-

Xi X 2  X 3  X N  €X Xl

Fig. 13 - Efickient GS implementation of asingle
linearly constrained adaptiv.e array.

.5%

VIII. SIMPLIFIED MULTIPLE CONSTRAINT IMPLEMENTATION ..

The GS structure of the linearly constrained array given in Fig. I11 can be significantly simipli-
fied as follows. The N X M reduced FON structure can be functionally decomposed as shown in
Fig. 14. Here, we denote u 1, 142. * m as the inputs associated with the outputs of the N x M
reduced FON. We call u 1, u,, umS the primary channels and write them as an M length vector.
u'. We also denote um, 1, UM + 2- u,% as the auxiliary channels and write them as an N - M
length vector, uaux. Note that embedded in the N x M reduced FON is an M x M FON. Hence
Fig. I I can be redrawn as seen in Fig. 15.

Now it is easy to show that the operation of two successive M x M normalized FONs is
equivalent to multiplying the input data to these FONs by an M x M identity matrix. Hence, the
implementation seen in Fig. 15 reduces to that shown in Fig. 16. Moreover, this structure can be

13

VI7&. SIMPLIFIED MULTIPLE CONSTRAINT IMPLEMENTATION ... ,,
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U1  U Ua U2  U U UM U Ua
... au 2 M ax dau

GS GS GS

PIP 2  P" -

(a) 
P.

U1  Ua U Ua UM Ua
I a au12 aa jjau

GS GS GS

MXM FON

tP *1e

Fig. 14 -Equivalent N x M FON structure% (a) Reduced Iv x M FON.
(h) Functional decon .wsmn ol reduced N x M VON

14p
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1 ~ux 2Uaux M aux "~

POWER NORMALIZER

MXM EON

Fig. 15 - Functional equivalent of
canceller seen in Fig. I I

POWER NORMALIZER

y%

ft

j "l IX 2  

XIN

-%1
Caug .

U1  U3,. U 2 UaLA LJM

Fig. 16 Simplified equivalent ot
canceller seen in Fig. I I

% %5
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further simplified to the structure shown in Fig. 17, where the main channel input to the GS can-
celler, urn, is given by

M

ui= fm Um, (38)
m=1

X X2.. XN Ic-i V
U I U 2  U M U M+1 U M+ 2  U N

Uin

U.

Fig 17 Sinpliied GS niplementalion of a
lineark constrained adaptnie arra

IX. THE AUGMENTED CONSTRAINT MATRIX

Here we show that the generalized sidelobe canceller (GSC) implementation of a linearly con-
strained array presented in Refs. 9, 10, and II is equivalent to the implementation discussed in Sec- .
tion VIII. We define

SB 39)

where A is an M x N matrix and B is an (N- M) x N matrix. Thus

AC IAD II0

C=R, C.,, - C D ] 0 .. . (40)
BC IBD

where IM and IN M are M xM and (N - M) x (N - M) identify matrices, respectively. As a
result

16
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AC = lM, (41) r

AD = 0, (42)

BC = 0, (43)

BD= N-M (44)

The solutions for A and D using pseudoinverses are

A = (C tC) - ' C' + H (45)

D = B'(BBt) - ' + G (46)

where H is any M x N matrix satisfying the condition

HC = 0 (47)

and G is any (N - M) x N matrix satisfying the equation

BG = 0. (48)

Note from Eq. (43) that rows of B are orthogonal to C, the constraint matrix. In the literature
110,11], B is called the blocking matrix. We can eliminate having to find -a- by merely defining a
B that satisfies Eq. (42) and an A that is given by Eq. (45) where H satisfies (47).

The linearly constrained canceller now has the form as shown in Fig. 18. If we set H = 0 and
define wq to be the quiescent weighting (no external noise, R, = I), then

wq =C (C C) f. (49)

Thus the linearly constrained processor can be implemented as shown in Fig. 19, which is identical to
the GSC presented in Refs. 9, 10, and I I.

X. CONVERGENCE RATE P;

One technique for estimating the optimal weighting vector for a linearly constrained adaptive '-

array is the Sampled Matrix Inversion (SMI) algorithm 181. We will show in this section that this
technique has fast convergence properties when applied to an adaptive array with linear constraints.
This open loop algorithm is implemented by estimating the input covariance matrix, R,,. using the
samples of data in the input channels. The estimated R, is then substituted into Eq. (2) and the con-
strained optimal weights, w, are then estimated. Call this estimate *sm1, It is easy to show using an
analysis similar to that presented in Section VI that the multiple constraint GS implementation using
the same samples as the linearly constrained SMI algorithm yields an exact equivalent estimated linear ,-
weighting vector, W(;s, as the SMI algorithm, i.e., w(iS = wSMi. This is done by merely substituting -

R, for EIx 'x1l = R,, in the equations given in Section IV. Hence the GS and SMI implementa-
tions of the linearly contrained adaptive array are identical in the transient state as well as the steady
state. The convergence rate properties of GS implementation of a linearly constrained array (and also
the SMI implementation) as shown in Fig. 18 can be easily analyzed. This is because the open-loop

17
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VX

F-
(C C)

"' 
C + H /B

GS

NTE: BC = 0

HC = 0

z

Fig. 18 - Special case of the linearly constrained
canceller implementation

,5.

BX

q

GSRG

'4

Fig 19 GSC configuration

GS canceller is the exact equivalent of the mainbeam gain constrained open-loop SMI algorithm (71
whose convergence properties are well known 18,13). The gain in the steering vector direction is
constrained to equal one, which is equivalent to setting the weight in the main channel equal to one
for the GS canceller. We quote these convergence results. Let there be L input channels and K zero
mean Gaussian samples per channel, where the samples are independent from time sample to time
sample across all channels. Let * be the estimate of the optimum weights w,,P, using the SMI algo-
rithm, and let R be the input covariance matrix (including main and auxiliary channels). Define

& = *' R *. (50)

02,= EIw,(,m R w, I, (5)I

*B. % , 4 *-*-'4'''I-- ... %4'o . % '.4.d-. '. - " t .B * " ."-.' -.
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and
2a

z = -2 n  (52)

We note that a is a random variable and the output noise power residue caused by finite sampling
when the weights are applied to a data set independent of the data set used to calculate the weights.

Under the conditions stated, Brennan and Reed [13] showed that z has the following probability
density function (p.d.f.)

'p.,-.

({o K! (Z - )L - 2  -?

p~z) (L -2)' (K'- L + 1)! z+ ,1<z< .--

(53) aotherwise. (t,

The mean of z is given by

K
EWe a K aL + (54)

We can apply these results to the adaptive linearly constrained array implementation shown in
Fig. 18. If the input channels are zero mean, Gaussian, and independent from time sample to time p,"

sample, then the output channels after transformation by the N x N matrix, Ca , are also zero mean
Gaussian and independent from time sample to time sample. Moreover, uj,, as given by Eq. (38), is
also a zero mean Gaussian random variable. Hence the inputs to the GS canceller satisfy the condi-
tions given by the Brennan and Reed analysis [13].

For the constrained implementation, L = N - M + 1. Thus if z is the normalized output
noise power of the linearly constrained array as defined by Eq. (52), then z has the following p.d.f.
and mean

K! (z - 1)N - M-  ",

p(z) = (N- M -l)! (K - N + M)! +1 Z < 00 %

, otherwise. (55)

E jzl = K( 56)

Let K3dB be the number of samples needed so that averge output noise power is within 3 dB of the
optimum. Using Eq. (56). we can show that

K ,B = 2 (N - M). (57) -'.

Now for an unconstrained adaptive array with N inputs. it has been shown that KIM = 2N - 2.
Hence, we see from Eq. (57) that a constrained array converges faster for M _ 2 than an uncon-
strained array under the assumptions previously stated.
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