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G
N,
GRAM-SCHMIDT IMPLEMENTATION OF A z::::,
LINEARLY CONSTRAINED ADAPTIVE ARRAY .'o'(
i '::::;
1. INTRODUCTION ;
Ly
SN
T Unconstrained adaptive antenna arrays for certain external noise interference scenarios can result :',-;»:
in the cancellation of a desired signal along with the cancellation of the interfering signals. Frost A
{1,2] introduced a constrained optimization procedure such that certain main beam antenna properties {00
are maintained during the adaptation process thus preserving the desired signal. S
e
Consider an N input adaptive antenna array as shown in Fig. 1. We define a vector of weights W
W as .“‘:'
e
w =(W‘, w2a...$WN)Tv :::!‘.,
where T denotes the vector transpose operation. Frost [1] shows that if the weights are constrained to :;,.;'-l
satisfy the following linear constraint equation }:&
x
C'w="f, 1 "
(1 i
where :
e
M is the number of constraint equations, i
C isthe N x M constraint matrix, !
f isthe M X 1 column constraint vector, l""l
"2
and ¢ denotes the conjugate transpose vector operation, then the average output noise power residue X
of z = w'x is minimized if e
s
1oy vl
w=RI'C(C'R;'O)'S, @) N
WA
where
o
X=(X|.X2."',XN)T, N
R,. = E{xx'} is the input covariance matrix, and E{-} denotes the expected value. \':_
AN
In this report we develop an open-loop Gram-Schmidt (GS) implementation of w'x where w is ." ‘
defined by Eq. (2) or equivalently an implementation such that R
e
z = fC'R;'C)'C'R S \x. 3) AW
N
“~
The GS implementation of a linearly constrained adaptive array oiffers many advantages. The =
GS open-loop technique has been shown to yield superior performance simultancously in arithmetic "%
Y
- T I\.
Manuscript approved June 18, 1987. - :
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P

Y Fig. 1 — Adaptive array

efficiency, stability, and convergence rate [3-7] over other adaptive algorithms. In particular, the sta-
bility of the GS algorithm is enhanced because it does not require the calculation of an inverse covari-
ance matrix as does the Sample Matrix Inversion (SMI) algorithm [8]. Also the GS canceller
algorithm is very suitable for a non-stationary noise environment because the adaptive weights can be
updated in a numerically efficient manner, using *‘sliding window’" or systolic techniques on the input
data instead of ‘‘batch’’ processing.

.

Jim, Griffiths, and Buckley [9,10,11] have shown that the constrained minimization problem can
be reduced to an unconstrained implementation called the generalized sidelobe canceller (GSC). In
o this report, we develop an equivalent implementation of this technique. It had been previously shown
that the steady state solution for the optimal weights is identical for both constrained and reduced
¢ unconstrained problems. In this report, it is shown that if the SMI or GS algorithms are employed,
" then the transient weighting vector solution for the constrained problem is identical to equivalent tran-

sient weighting vector solution for the reduced unconstrained implementation. In Sections Il through

V. we develop the basic building blocks for the GS implementation of the linearly constrained adap-

tive array. In Section VI, the implementation is presented. In Section VII, the special case when

there is only one constraint is discussed. In Section VIII the multiple constraint implementation is

significantly simplified. In Section IX, the Jim, Griffiths. and Buckley implementation is derived.

Finally, in Section X, analytical results are presented for the convergence rate of the constrained
' minimization implementation when the SMI algorithm is employed.

II. GS CANCELLERS

\ Consider the general N-input open-loop GS canceller structure as seen in Fig. 2(a). Let x|, x,.
' -, xy represent the complex data in the Ist, 2nd, Nth channels, respectively. We call the leftmost
input (x,). the main channel, and we call the remaining N — 1 inputs the auxiliary channels. The
d canceller operates so as to decorrelate the auxiliary inputs one at a time from the other inputs by
using the basic two-input GS processor shown in Fig. 2(b). For example, as seen in Fig. 2(a), in the
first level of decomposition, xy is decorrelated with x;, x5, -+~ . x5 _;. Next, the output channel that
results from decorrelating xy with xy | is decorrelated with the other outputs of the first level GSs.
The decomposition proceeds until a final output channel is generated. If the decorrelation weights in
each of the two input GSs are computed from an infinite number of input samples, then this output
: channel is totally decorrelated with the input: x,, x3. -, xy.

Let x,™ represent the outputs of the two input GSs on the m — Ith level. Then outputs of the
two-input GSs at the mth level are given by

(m+1) (m) (m) ) n=12-".N-m.
m+ — m , (m m
Xn = Xp - W x—m+l*m="2’...‘N_1. )
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MAIN
CHANNEL AUXILIARY CHANNELS
XN_3 XN-2 XN-1 xN—'
Level 1
Level 2
Level 3
Level N - 2
Level N - 1
Fig. 2(b) — Basic two-input GS canceller
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N . .
N Note that x = x,. The weight w,"™, seen in Eq. (1), is computed so as to decorrelate x,™ *! with
M x™.. For K input samples per channel, this weight is estimated as
%,
4
2
S (m)
: T 31 * 5™ )
[ (m) _ k=1
:.i Wn K ) ) ’ (5)
m
5 X 1m0 K)]
' k=1
where * denotes the complex conjugate and |- | is the complex magnitude. Here k indexes the
time-sampled data.
i
K We simplify the N-input GS canceller structure by the representation as seen in Fig. 3.
A )
1)
X1 X2 XN
0 L N
¥ )
)
L
W
o GS
D
v
K
8
A A
4
“9 Fig. 3 — GS representation
il
'y III. NORMALIZED GS CANCELLER
2 The GS canceller, as represented in Fig. 3, effectively weights the vector x with a vector
. wo=(w, ", wN)T such that y = w'x, where
1
k 0
% 0
w=uR " |- |, (6)
&
) 0
"
. w, = 1, and p is a scalar constant to be determined. Becausc w, = 1, the scalar constant yx has a
specific value. If
¥
L
. R:' = (rimmy, n.m=12 "N, ()
)
D)
)
' 4
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1 1
= y = w'x (10)
Efly |3 Etly |}
However,
Efly|% = E{|w'x|} (11
= wE[xx'}jw
= WR, w
rl/r‘“ﬂ
0
= (1/r'*, 0, -OR;' R, R,
L2 )
( l/’.(ll)w
0
= 1/r'M",0,0, - OR;!
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where r™™) are the elements of R,; !, then we can show

Ty ®)
Hence
177D 1
0
w = R;! ) . ©)
0

Consider a configuration where we normalize the output y by the average power of y as seen in
Fig. 4. Note that the average power after normalization is not one. Thus
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Fig. 4 — Normalized GS canceller

z = riwx, (13)
or substituting Eq. (9) into Eq. (13),

o z=(,0-,0R; " x. (14)

IV. NORMALIZED FAST ORTHOGONALIZATION NETWORK (FON)

A FON is a numerically efficient implementation of a complete GS network where each input is
orthogonalized with every other input [12]. In essence, the FON implements the network seen in Fig.
- 5. The ordering of the input channels for decorrelation as seen in Fig. 5 was arbitrary. Reference 12
. shows that the input channels can be ordered so as to greatly reduce the required number of arith-
4 metic operations. If there were no logic behind choosing the ordering of the input channels, it can be

- shown that the number of weights that are calculated by using this decorrelation procedure is 0.5N*
’ (N — 1). In Ref. 12 an algorithm was developed that requires approximatcly 1.SN (N — 1) weights
o for the same decorrelation process.

. We represent the FON implementation of Fig. 5 as seen in Fig. 6. Consider an implementation

where each output of the FON is normalized with respect to the power of that output as shown in Fig. .
7. We call this configuration a normalized FON. If we define z = (2. 25, ~ - . 2y)’ . then we can -
show that the normalized FON is equivalent to multiplying the vector x by an N x N matrix of
weights w such that -

s R

Z =Wwx, (15)
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w=R_!

XX

Note that we used the methodology of the previous section. Hence
z = R 'x.

We represent a normalized FON as shown in Fig. 8.

| |

POWER

Fig. 8 — Normalized FON representation NORMALIZER

V. NORMALIZED REDUCED FONS

A normalized reduced FON orthogonalizes only a fraction of the inputs with respect to one
another. For example if we desire only to orthogonalize x,, x,, ---. xy,, where M <N, then a
reduced FON would efficiently implement the configuration as seen in Fig. 9. If
Z = (2).22. -, 2y4)". then we can show that a normalized reduced FON is equivalent to multiply-
ing the vector x by an M x N matrix such that

(18)

= N X Mmatrix.
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GS GS
A Y2 M
POWER NORMALIZER
z, z, Zy l
Fig. 9 — Normalized reduced FON

Mo
For example, I,, = |0 1
00

Hence
z = Iy vRa'x.
We represent a normalized reduced FON as seen in Fig. 10.
X1 X2 X
[ I ]

REDUCED FON

N

NXM
Y1 Y2 YN
4 \ Y
POWER
NORMALIZER
Z1 Z2 ZN

Fig. 10 — Normalized reduced
FON representation

VI. GS IMPLEMENTATION

(20)

We now present the GS implementation of the linearly constrained adaptive array. First, we

define an N X N augmented matrix, C,,, . such that

Cuy = 1C 1 D]
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> iy M,
7Y

where D isan N X (N — M) matrix such that C,,, is nonsingular and hence invertible. We discuss
the choice of D in more detail in Section IX.

¥

The GS implementation of the linearly constrained adaptive array is shown in Fig. 11. Note
that

TRl JoRn

= T
(x]s x29 o !xN)

_ T
(uy, up, ", uy)

= (vlv V2, Tty vM)T
=y o)

= (pl’p29”'»pM)T

scalar.

REDUCED FON
NXM

i

o~
" %S

hThY
e

x
h)

| R

",

. 2
»
Vet

-

< ""l'l

Fig. 11 — GS implementation of a linearly
constrained adaptive array
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From our preceding discussion in FONs and reduced FONs, we know that

S &

MALERY
RIPAREY

o’

\)

u=Cgx, (23)

5

vV = IM,N R“;lu, (24)

ff,'

y=R;'v, (25)

A
1 3

4% %
&7 A
- )

A

z=f"y. (26)

»
NOW "n‘-'

Ru = E{Calx- (Calx)'} = Cil Ry Chre @7 o
or by
R.' = Chg R Cuy . (28) i

P
Hence e

V= IM,N Céug Rx;l Ca

ue " Cong X (29) .

oo

=~
b

= IMN C;ug R,_;lx.

7
' ®

-‘-.'.." o

.

We can show that

v
’ ;‘-'\I e 7,
AL,

- -
sy

C' = IM.N Ctlmg : (30

< o

¥

Thus

_1.;,:..- q‘,

s
2

v=CR;'x. (31

Now

Py

..
L1
v R

B
I3

R, = EWC'R;'x) (C'R;'x)")

s
\J
v

P

.«
AN I

s
»

= C'R;“EXXIRS'C
# =C'RL;1'R.U'R1:IC ]

=C'R;'C. -~
Thus

-1 _ ¢ -1 =1
va - (C Ru C) - (33) \\..
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be
"
)
A Hence )
¥ -
h ~y
S y=(C'R:'C)™"v (34) 2
. "(
P 'R -l -L.C'R '
~ =(C'R; C)-C'R o
Y "'
N Finally, by using Eq. (26), : :::
A
2 =f(C'R;'C)"'C'R; ' x. (35) e
A Note that this is the same weighting of x as given by Eq. (3). bty
- w0
~ VII. SINGLE CONSTRAINT IMPLEMENTATION EXAMPLE £
]
“ Note that when M = 1, we set z = p (see Fig. 11) and the function blocks after p are not ,
o used. This results because the M X M FON seen in Fig. 11 is not used, f = 1, and data passing i
' through successive power normalizations is unchanged. We can show that o
b ? ‘
) -
, _ _ 1 ¢ -1
¢=P = Gigoic SR eo %3:
b ]
" For this case C = (¢,, ¢, "+, cy)’ = ¢, a vector. Note that the reduced FON is just a single GS <
by canceller. Hence for a single constraint, the configuration is shown in Fig. 12. ..
'n i
-\::
'4 Xy X XN N
| [ [ ] ;
"~
N l\ 3

(@]
.7

«
_-":- :l‘;)‘.l’ll‘l ‘ap

Fig. 12 — GS implementation for a GS
b single linear constraint
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We arbitrarily set ¢, = 1 and augment C as shown below:

- -1 - ~

1 00 .. O 1 00 . .. 0
c; 10...0 -c; 10...0

Cag = | . . . ... = T 37)
v 00 -1 ~cy 00 -+ 1

Hence the single constraint processor of Fig. 12 can be implemented as shown in Fig. 13.

X, X, X3 Xn
X X —( X
- C2 - C3 ' - CN
+ + « o o +
GS

S
. o,
'..-:.r
v
o

z

Fig. 13 — Efficient GS implementation of a single
lincarly constrained adaptive array

Viil. SIMPLIFIED MULTIPLE CONSTRAINT IMPLEMENTATION

) The GS structure of the linearly constrained array given in Fig. 11 can be significantly simpli-
fied as follows. The N x M reduced FON structure can be functionally decomposed as shown in
Fig. 14. Here, we denote u |, u,, - . uy as the inputs associated with the outputs of the N x M
’ reduced FON. We call u|. u,, - -, uy the primary channels and write them as an M length vector,
u'. We also denote uy, ., tpr,>. -, uy as the auxiliary channels and write them as an N — M
length vector, u,,,. Note that embedded in the N x M reduced FON is an M x M FON. Hence

Fig. 11 can be redrawn as seen in Fig. 15,

Now it is easy to show that the operation of two successive M X M normalized FONs is
equivalent to multiplying the input data to these FONs by an M x M identity matrix. Hence, the
implementation seen in Fig. 15 reduces to that shown in Fig. 16. Morcover, this structure can be
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N x M FON.

(3) Reduced

(b) Functional decomposition of reduced ¥ x M FON

Fig. 14 — Equivalent N x M FON structures
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U

-1
Caug
U
y
I U1 aux U2 Uaux M jjaux I
GS GS GS
MXM FON
p
Y

POWER NORMALIZER

44
MXM FON
’ Fig. 15 — Functional equivalent of
lf canceller seen in Fig. 11

POWER NORMALIZER

Y

Gs

z

Fig. 16 Simphitied cquivalent of
canceller seen in Fig. 11
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further simplified to the structure shown in Fig.

celler, u;,, is given by

KARL GERLACH

M
*
Up = Y fom tm- (38)
m=1
I1 IQ PP JXN
R
Caug
Yy Us| * Ual  Ymar] Ymsoz Un

Fig. 17

GS

Simplitied GS implementation of
lincarly constrained adaptive array

IX. THE AUGMENTED CONSTRAINT MATRIX

Here we show that the generalized sidelobe canceller (GSC) implementation of a linearly con-

strained array presented in Refs.
tion VIII. We define

9. 10, and 11 ts equivalent to the implementation discussed in Sec-

where A isan M X N matrix and B is an (N — M) x N matrix. Thus

-1 —
Cﬁg(%u - -

1

[ A
Coue = ‘-b— (39)
ACIAD l / l 1
' M1 0
IC.D]= |--- ' 0 11 J (40)
BC | BD | g

where Iy, and Iy _p are M xM and (N — M) x (N — M) identify matrices, respectively. As a

result
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AC =1, C3))

AD =0, @2)

BC =0, (43)

BD =1Iy_,. 44)

The solutions for A and D using pseudoinverses are

A=CC)'C'+H 45)

D =B@BB)'+G (46)

where H is any M x N matrix satisfying the condition

HC =0 @7
and G is any (N — M) x N matrix satisfying the equation

BG = 0. (48)

Note from Eq. (43) that rows of B are orthogonal to C, the constraint matrix. In the literature
[10,11], B is called the blocking matrix. We can eliminate having to find C,,;g‘ by merely defining a

B that satisfies Eq. (42) and an A that is given by Eq. (45) where H satisfies (47).

The linearly constrained canceller now has the form as shown in Fig. 18. If we set H = 0 and
define w, to be the quiescent weighting (no external noise, R,, =1), then

w, =C(C"O)' f. (49)

Thus the linearly constrained processor can be implemented as shown in Fig. 19, which is identical to
the GSC presented in Refs. 9, 10, and 11.

X. CONVERGENCE RATE

One technique for estimating the optimal weighting vector for a linearly constrained adaptive
array is the Sampled Matrix Inversion (SMI) algorithm [8]. We will show in this section that this
technique has fast convergence properties when applied to an adaptive array with linear constraints.
This open loop algorithm is implemented by estimating the input covariance matrix, K, . using the
samples of data in the input channels. The estimated R, is then substituted into Eq. (2) and the con-
strained optimal weights, w, are then estimated. Call this estimate Wy, It 1s easy to show using an
analysis similar to that presented in Section VI that the multipie constraint GS implementation using
the same samples as the linearly constrained SMI algorithm yields an exact equivalent estimated linear
weighting vector, W;q. as the SMI algorithm; i.e., W,g = Wy, This is done by merely substituting
R, for Eix"x"} = R, in the equations given in Section IV. Hence the GS and SMI implementa-
tions of the linearly contrained adaptive array are identical in the transient state as well as the steady
state. The convergence rate propertics of GS implementation of a hinearly constrained array (and also
the SMI implementation) as shown in Fig. 18 can be easily analyzed. This is because the open-loop
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Fig. 18 — Special case of the linearly constrained
canceller implementation

GS

Fig. 19 — GSC configuration

GS canceller is the exact equivalent of the mainbeam gain constrained open-loop SMI algorithm (7]
whose convergence properties are well known [8,13]. The gain in the steering vector direction is
=" constrained to equal one, which is equivalent to setting the weight in the main channel equal to one
for the GS canceller. We quote these convergence results. Let there be L input channels and K zero

Lo mean Gaussian samples per channel, where the samples are independent from time sample to time
) sample across all channels. Let W be the estimate of the optimum weights w,,,, using the SMI algo-
e rithm, and let R be the input covariance matrix (including main and auxiliary channels). Define
» )

o =W R W, (50)
s‘

» 2
“' Omin = E'w{’)pl R wupl' . (5”
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02

z=—. (52)

Omin

We note that ¢ is a random variable and the output noise power residue caused by finite sampling
when the weights are applied to a data set independent of the data set used to calculate the weights.

Under the conditions stated, Brennan and Reed [13] showed that z has the following probability
i o density function (p.d.f.)
£
K! z — -2
€ -2l K-L+DI ko v 1=E<e®
pR) = 53
0, otherwise. (53)

The mean of z is given by

7 Elz}=-_——K_Iz+l. (54)

We can apply these results to the adaptive linearly constrained array implementation shown in
Fig. 18. If the input channels are zero mean, Gaussian, and independent from time sample to time
sample, then the output channels after transformation by the N X N matrix, C,,;g', are also zero mean
Gaussian and independent from time sample to time sample. Moreover, u,,, as given by Eq. (38), is
also a zero mean Gaussian random variable. Hence the inputs to the GS canceller satisfy the condi-

tions given by the Brennan and Reed analysis [13].

For the constrained implementation, L = N — M + 1. Thus if z is the normalized output
noise power of the linearly constrained array as defined by Eq. (52), then z has the following p.d.f.

and mean
K! @ ~ l)N-M—l |
p@)={N-M-1! (K -N + M) Ko S <o
5
0, otherwise. (55)
K
=y (56)

Let K45 be the number of samples needed so that averge output noise power is within 3 dB of the
optimum. Using Eq. (56), we can show that

K\"B:Z(N ”‘M) (57)

Now for an unconstrained adaptive array with NV inputs. it has been shown that Ky = 2N - 2
Hence, we sce from Eq. (57) that a constrained array converges faster for M = 2 than an uncon-
strained array under the assumptions previously stated.
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