
-A9U2NHE-DNNINLSEE NLSSUIG TRLAE /IMAGING(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH SCHOOL OF ENGINEERING R E ROBERTS 89 DEC 87

UCSSIFIED AFIT/GE,'ENG/87D-54 F/G 17/7 N

Eh0hhhhiEhhEmhhmhmhhhE

-WI'I

ra

It-

if:

ll iUO? n,

I
m,, 'Ill ____

I

'I

V

w

-a

V.

USING STEREO BASED IMAGING

"' 'Richard E. Roberts
" Captain, USAF

, , AFIT/GE/ENG/87D-54 DTIC

II

!iLECTE

THREE-TMENSIONA SCE ANALYRCESISR28 98I~I USNGERBSEDY IMAIN

1i I AIR FORCE INSTITUTE OF TECHNOLOGYT ..

., L Wright-Patterson Air Force Base, Ohio

.%a'88 324 08 3
L 7'=faf a o

Z 5,r...

AFIT/GE/ENG/87D-54

I.,

f.

THREE-DIMENSIONAL SCENE ANALYSIS

USING STEREO BASED IMAGING

THESIS

Richard E. Roberts
Captain, USAF

AFIT/GE/ENG/87D-54

DTICELECTIEII

Approved for public release; distribution unlimited

V " .

AFIT/GE/ENG/87D-54

THREE-DIMENSIONAL SCENE ANALYSIS

USING STEREO BASED IMAGING,V..

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fufillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

N13i GRAI
DTIC TAB
Unannounced C
Justifloati-

Richard E. Roberts, B.S. Distribution/

Captain, USAF Availability Codes
Cvail -nd/or

Dist Special

December 1987 41
Approved for public release; distribution unlimited

V..

I,',',I. ""',"r :,- 7 V,.".., , ., .. ,W. . , .: ,.. r

Preface

The purpose of this thesis was to investigate the

ability of computer vision systems to emulate some of the

capabilities of human vision.

.-. A special thanks is due to Dr. Matthew Kabrisky, my

thesis advisor, for his guidance and motivation throughout

, ~.the months of this research. He always took the time to

. answer my questions. Thanks also to Capt Steven K. Rogers

and Maj Phil Amburn for their support in organizing my

research and keeping me on track, and especially for their

patience during the preparation of this report. Thanks are

-.also due to Capt Larry Lambert for his invaluable aid in

.1 debugging my programs, and for his many suggestions on

i better methods to implement my algorithms.

UUM

V

01,

w P *~~U'~P * .~$p. y *~. i

Table of Contents

Page

Preface....................

List of Figures. v

List of Tables vii

Abstract........................viii

I. Introduction. 1

Background..
The Robot Vision Problem*. 2
Scope. .. *.*.....*.*..*...*.*.*....*...........3
Research Objectives. 4
Approach to the Problem 6
Standards. 7
Material and Equipment Required 8

organization of the Thesis 9

Ii. Literature Search. 11

Justification 11
Discussion of the Literature 12

III. Queen Victoria Algorithm 16

QVA Background..................16
Purpose 17
QVA Pixel Smoothing Technique. 17

IV. Stereo Vision Distance Algorithm. 31

Introduction...................31
*Description of the Algebra 31

Actual Implementation Description. 35
Description of the Distance Results Obtained* 37

V. Region Matching Technique. 39

Description of the Initial Region Selection
Process 39

%Heuristic Search Constraints*...........42
Features of QVA the Supported Region Matching 44
Summary of the Implementation Details 44

i Page

VI. Results 47

QVA Production Rules on an Image 47
Region Distance Calculations 51
Image Preprocessing 56

Edge Enhancing 57
Low Pass Filtering 57
Brightness Value Normalization 58
Brightness Value Averaging 58

VII. Conclusions and Recommendations 59

Conclusions 59
Recommendations for Further Study 60

" Appendix A: Example Images Used in Thesis 63

. Appendix B: Program Listing for Code Used in
Implementing Stereo Vision 93

Bibliography 115

Vita 116

j i

.. ' o

:d'. • J%

o.

L.

List of Figures

Figure Page

3.1 Example of QVA Edge Placement 21

3.2 Example of Raw Data and Processed QVA data

(a) Raw Video Pixel Brightness Data

(b) Processed QVA Pixel Brightness Data 24

3.3 Results of Applying Laplaician Edge Detector
.- (a) Raw Data Prior to QVA

(b) QVA Processed Image Data 25

3.4 Example Image for Comparing Threshold Size to
Region Size Created by QVA 26

3.5 Region Size Versus Threshold Selected 27

3.6 Natural Environment Example Image 29

3.7 Results of Applying QVA to a Natural Environment 30

4.1 Graphical Representation of the Camera Seperation
Distances to a Unique Position 32

4.2 Example of Pixel Displacement From Centerline13 (a) Left Camera Image
(b) Right Camera Image 33

4.3 Target Point Location Lies to the Left of the
Left Camera Centerline Position 34

p 4.4 Target Point Location Lies to the Right of the
Right Camera Centerline Position 34

4.5 Relationship Between Pixel Displacement and

.. Camera Viewing Angle 35

4.6 Example of Camera Viewing Angles 37

4.7 Example of final Distance Results 38F 6.1 Results of Applying QVA to an Image 12 Times With
a Threshold of 6 53

6.2 Results of Applying QVA to an Image 12 Times With
a Threshold of 12 55

A-I Raw Data Image used for Processing with Different
, Thresholds and Iterations 64

A-2 Threshold = 4 and QVA Iteration = 2 65

V

a

: A-3 Threshold - 4 and QVA Iteration = 4 66

A-4 Threshold - 4 and QVA Iteration = 6 67

A-5 Threshold = 4 and QVA Iteration = 8 68

A-6 Threshold = 4 and QVA Iteration = 10 69

A-7 Threshold = 4 and QVA Iteration = 12 70

A-8 Threshold = 4 and QVA Iteration = 14 71

A-9 Threshold = 8 and QVA Iteration = 2 72

a- A-10 Threshold = 8 and QVA Iteration = 4 73

A-I Threshold = 8 and QVA Iteration = 6 74

A-12 Threshold = 8 and QVA Iteration = 8 75

A-13 Threshold = 8 and QVA Iteration = 10 76
A-14 Threshold - 8 and QVA Iteration = 12 77

A-15 Threshold = 8 and QVA Iteration = 14 78

A-16 Threshold = 16 and QVA Iteration = 2 79
A-17 Threshold - 16 and QVA Iteration = 4 s7

.4 A-18 Threshold = 16 and QVA Iteration = 6 81

A-19 Threshold - 16 and QVA Iteration = 8 82
A-20 Threshold = 16 and QVA Iteration = 80 83

A-21 Threshold = 16 and QVA Iteration = 12 84

A-22 Threshold - 16 and QVA Iteration = 14 85

SA-23 Threshold - 32 and QVA Iteration - 2 86

A-24 Threshold = 32 and QVA Iteration = 4 87

A-25 Threshold - 32 and QVA Iteration - 6 88

A-26 Threshold = 32 and QVA Iteration = 8 89

A-27 Threshold - 32 and QVA Iteration - 10 90

A-28 Threshold - 32 and QVA Iteration - 12 91

A-29 Threshold - 32 and QVA Iteration - 14 92

vi

List of Tables

Table Page

3.1 Criteria for Selecting Feature Vectors 18

6.1 Comparison of Threshold Value and Iterations . 48

6.2 Comparison of Measured to Computed Distances
QVA Threshold=6 and Iteration=12 52

6.3 Comparison of Measured to Computed Distances
QVA Threshold=12 and Iteration=12 54

%%

I

" vii

' L

qb. AFIT/GE/ENG/87D-54

Abstract

This thesis presents a new method for using passive

binocular vision to create a map of the top-view of a

_ . robot's environment. While numerous autonomous robot

navigation systems exist, most attempt to match objects in

' .2each image by following edges or locating significant groups

of edge pixels. The method described in this paper uses two

cameras (aligned in parallel) to generate stereo images. Low

level image features are extracted using a new non-linear

production rule system, rather than a conventional filter

design. The features are registered by matching

correspondingly shaped regions of constant brightness levels

in both images and the offsets are then computed. The use

of heuristics to relieve the computational burden associated'-. .-.

."a with low level image processing is unique; both in

processing the images and in locating matching regions in

the images. The feature extraction algorithm, the

intermediate symbolic representations, and the application

of these results to hierarchical structures common to

context queuing systems are presented.I'
€,. '""viii

V-S."

-4S

THREE-DIMENSIONAL SCENE ANALYSIS

USING STEREO BASED IMAGING

I. Introduction

Backaround

The ability to emulate the capabilities of human vision

is a major requirement for the autonomous operation of

mobile robots. While a simple video data chain may be

sufficient to enable manual remote control of certain

classes of robots, autonomous operation clearly requires

that the robot have the capability to make decisions based

upon information obtained visually. A major problem faced

by current robotic vision systems is the inability of the

robot to recognize and avoid objects in its path. This

problem is complicated by the following factors:

! a. The inherent size limitation of a robot which

constrains the size, type, and number of optical sensors

that can be used.

b. Constraints on the size of the computing element the

robot can contain, and the amount of power available for the

computing element.

c. The "real time" speed at which analyzed data is

.1 required for determining the environment of the robot.

.. I .. P*--

The Robot Vision Problem

The major problems encountered with current robotic

vision systems lie not in obtaining the images from the

-, .optical sensor; rather, the problems lie in understanding

and interpreting the information in the image. The optical

" ~capabilities of robots exceed their computational ability.

This thesis will study one method of increasing the

computational capabilities of autonomous robot vision. The

problem this thesis will address is whether the binocular

distance measuring capabilities of the human vision system

* can be emulated using a computer and two video cameras. The

goal is to use stereo vision to solve the problem of object

" p avoidance, without having to solve the more difficult

problem of object identification.

- The purpose of this research effort is threefold. The

first part is to study the feasibility of segmenting an

image into "useful" regions of constant brightness values

using the discrete edge representations of the objects in

- the image. The second part is to develop algorithms capable

.. "" of matching corresponding regions in both images that were

created in the first part. The third part is to calculate

2 the distances to the regions matched in the second part and

generate a partial three-dimensional representation of the

scene based upon the distance measurements. Accomplishing

these three steps should provide enough information for

~% %.

autonomous motion of the robot by enabling it to effectively

compute a path through its environment.

Scope

Calculating distances using stereo vision techniques

requires two views of the same scene. Acquiring these views

can be accomplished using either two cameras, or a single

camera which is moved between snapshots. This research will

use two cameras, like the human vision system, except that

both cameras will be locked into an approximately parallel

alignment and will be manually focused for each image.

Because distances can be accurately measured with either

method, there is no advantage in using independent movement

or automatic focusing of the cameras; but there are many

disadvantages resulting from the complicated control

algorithms that coordinated camera movement and automatic

camera focusing require.

The two common methods of computing distances from

stereo vision are passive and active ranging. Passive

stereo ranging is similar to human vision in that all

information in the scene is obtained from the natural

reflected light from each object. Active stereo ranging on

the other hand scans the scene with a bright spot of light

identifying each object exactly [Pou86]. While active

stereo ranging is capable of providing more accurate

distance measurements, this thesis will concentrate on

3

-. 7-. LNOwxz. -

passive stereo ranging because it better suits the specific

application considered.

Research will also be limited to methods of locating

. objects and calculating distances to those objects. Actual

recognition of what the objects in the scene are will not be

. discussed. Details of the commercial software programs

which obtain and store images of the scene will also not be

presented in this thesis; these programs are part of the

Imaging Technology series 100 image processing library and

are being treated as incidental equipment which will not be

modified in this study.

- :K Research Objectives

Neither edge detection nor stereo vision is a new

research area of robotic vision. This research effort will

study methods of combining useful features from each of

these areas into a system that can accurately compute the

distances from the optical sensors to each unknown object.

The algorithms this research develops could be an important
J building block in constructing an object avoidance

i! capability in autonomous robots.

The first part of this thesis will describe a new class

" of edging algorithms. Before the vision system can computeU

distances it must be able to identify the same point on an

"- object in two images. The feasibility of segmenting the

image using edging techniques to assist in identifying

4

S

"P J

unique points on each object will be studied. The boundary

between two objects will normally result in an edge because

of the discontinuity in brightness values of the objects.

Edges will not only separate different objects, but will

separate each object into regions of constant brightness

values. Identifying parts of objects that. have the same

brightness values should be easier than identifying the

Sentire object.

The second part of this research will focus on

developing methods of matching corresponding regions in the

iimages and computing distances. It will attempt to create a

matrix of numbers that represent absolute distances from

*" unknown objects to the optical sensors on the robot. These

distance measurements will represent only the sides of the

bobjects that are within the field of view of the robot.
Distances are computed to regions of constant brightness

which might be composed of pixels from an isolated object,

or a grouping of objects that are indistinguishable because

they have the same brightness value in the image.

The final part of this research will focus on creating

a top-down viewpoint image from the distance matrix computed

in the previous step. This image will represent a re-

creation of the original scene, where the robot's position

and the position of the edges of known objects will be shown

in a top-down view. Each edge in the scene will not

necessarily represent a single object in the original

5

.

images. Objects that visually overlap and have similar

brightness values in the original images may be grouped into

a single region, and will therefore be represented with a

single distance line. Objects that lie directly behind

F. another object in the original images, and cannot be seen by

I; I,. the cameras, obviously can not be shown at all in the top-

down viewpoint image.

Approach to the Problem

The distance measurement problem can be broken down

into sub-problems that can be solved separately. The steps

this research will follow in solving each of these sub-

problems are as follows:

1. Develop image processing software using a C compiler

and the MicroVAX computer. This will entail writing C

language programs capable of exercising the image processing

programs already present on the MicroVAX. These programs

are capable of obtaining multiple images from the camera and

-. storing them as a 512 x 512 bit array.

2. Reconstruct and simplify the QVA edging algorithm

developed previously by Holten [Hol85b].

3. Verify that the QVA results obtained on the

MicroVAX are equivalent to the results Holten obtained

previously on the Data-General [Ho185a Hol85b].

S"4. Study the feasibility of using portions of objects

: with contiguous brightness values to locate and match in the

6

4 A

two images. To calculate distances the location of a point

in each region in both images must be accurately measured.

This step must be able to verify that there is enough

.* information contained in the regions shape and pixel

" brightness values to uniquely identify and locate it.

q5. Once it is possible to identify the location of the

regions in both images, expand the system to calculate the

distances from the optical sensors to each region.

- 6. The final step is to create an image that

represents a top-down viewpoint of the area within the field

of view of the robot. This top-down view will accurately

depict distances, but will not represent actual sizes of the

'" objects. This is because distance calculations will only be

possible to the edges, representing the sides of objects

facing the robots cameras. The reverse sides of the objects

are not visible to the cameras and therefore can not be

shown in this top-down viewpoint.

Standards

" '' Exact object identification is not required because the

purpose of this thesis is to develop a method to allow an

object avoidance path to be computed. The system does not

need to know what an object is to avoid it.

A partial three-dimensional or top-down representation

of the scene should be good enough to perform initial path

planning. Subsequent updates can be performed after motion

7

2 " "begins. Distance measurements to objects close to the robot

are more critical than distance measurements to objects far

away; distant objects are not immediate obstacles and can be

more accurately processed or updated as the traveling robot

approaches them more closely.

Because this is a prototype system, the speed with

which the top-down viewpoint is generated is not as critical

as the distance measurement precision. For this study real-

time results are not required. It is more important for the

system to compute the distances correctly.

Material and Eguipment Required

The hardware and software requirements of this thesis

effort are as follows:

Hardware

- Two - GE TN2505A video cameras

- Tektronix 4632 video hard copy unit

- Digital MicroVAX computer system

- DeAnza systems color image display system

- Imaging Technology series 100 image processor

- Camera mounting bracket

- Tripod support for camera bracket
Software

- Imaging Technology image processing library

- C language compiler

N8

% 2

r " : This thesis required the construction of special

brackets to hold both cameras. These brackets are capable

of maintaining parallel alignment of the cameras. The

- tripod allows leveling and allow rotation of the cameras.

All of the other hardware and software requirements of this

thesis are standard signal processing laboratory equipment.

el "-Organization of the Thesis

This chapter provided a brief discussion of the

problems associated with developing an object avoidance

capability for autonomous vehicles. The objectives of this

research were presented along with the scope, standards, and

- the specific approach that will be followed to meet these

objectives. The remainder of this thesis will provide

details of how each sub-problem identified in the approach

S.-was accomplished and how the results of each step were

attained.

. Chapter 2 will provide a literature review of some of

the well known edging techniques, current applications of

stereo vision, and a brief description of the capabilities

- of two autonomous vehicle systems which incorporate vision

systems for determining their motion. Chapter 3 will

outline the capabilities of the QVA edging algorithm, and

I. discuss why the QVA algorithm produces the cleanest and

sharpest edges of all the edging algorithms available today.

Chapter 4 will present the method used to calculate

' .J 9

'pK

, ', distances, and will outline the algebra involved in these

* calculations. Chapter 5 will present the method developed

for comparing, identifying, and locating unique objects in

' both images. This chapter will also show the results

a. obtained when the distance algorithm is incorporated and the

top-down distance measurements are calculated. Chapter 6

presents the results obtained during this thesis.

Results of applying the QVA production rules to an image are

presented along with the results of calculating distances to

objects trigonometrically. Also included in Chapter 6 are

* ?results obtained from four image processing techniques that

were studied to improve the smoothing capabilities of the

. -QVA production rules. Chapter 7 will present the

conclusions reached during this study on the capabilities of

the distance measuring algorithm developed. Chapter 7 will

also discuss recommendations for further study and

enhancements that can to be incorporated to make the system

more robust.

,'

I

10

,..N .

.4

,' II. Literature Search

Justification

.* Edge detection of objects in a scene has been one of

the most active fields in machine vision. One of the first

paper describing edge detection was by Roberts in 1965. It

showed how to extract edges of polyhedral objects from a

digitized photograph stored on a memory drum (Hor86].

Blicher though, points out that the paramount obstacle to

image understanding is that there still doesn't exist a

reliable and practical segmentation method which divides an

image into meaningful parts based on edges [Bli85].

One of the first steps in image processing is finding

an object in a scene. The location and size of the object

must uniquely identify it from any other object in the

scene. Often the interesting events in a scene, such as the

boundary between two objects, lead to discontinuities in

image brightness values, which are usually referred to as as

edges. Looking for edges of objects rather than entire

objects is usually better because edges are not affected as

I much by noise in the scene.

Edge-finding techniques are useful in locating the

boundaries of objects, but many factors can corrupt the
bresults such as shadows on the objects in the original

scene, or two objects with almost the same brightness values

located next to each other (Hor86J. Edges don't just

AW 11

I

k ;v-~ ~'~'-p~~pp;a4~~. t''~~~

separate one object from another object, they also separate

each object into regions with the same brightness levels.

Determining the position of these regions should be easier

than locating the position of each entire object.

A projected path can be determined even if only partial

*recognition of each object is accomplished. The robot can

determine the distance to the object even if it doesn't know

what the object is. An obstacle avoidance path around

objects in the scene can be calculated because the complete

description of the object is not required.

Discussion of the Literature

James Holten developed an elegant algorithm for

analyzing a scene and generating a new representation of the

scene identifying the edges of objects. This algorithm,

called the Queen Victoria Algorithm (QVA), uses only

additions and subtractions in its production rules to

generate the edges [Hol85b]. This allows fast computations

without using an array processor. The QVA also smooths the

edges in the scene. This smoothing gives a more defined edge

to compute distances from and thus enables more accurate

distance measurements (Kab87].

The sharpest edges in a scene are easy enough to find,

but Blicher points out that the global picture may require

knowledge of how all the local qualitative features of the

image fit together. Using information on where the bumps,

N 12

.1 f . --. r-IV P * . W W k P ag

- ----- - --- --- - - ---------

. rifts, ridges, dips, etc. are and how they interlock may be

required to completely analyze the scene [Bli85].

The current prototype of the autonomous land vehicle

the Army is developing utilizes only one camera. It uses a

simple edging algorithm to find edges of roads because of

the data processing speeds required. It can easily become

confused if shadows cover the road. All distance

; *~:calculations are accomplished using either sonar or a laser

%ranging system, rather than visually. Extensions to the

vision system to incorporate 3-dimensional viewing is still

in the prototype development stage [Aut85].

Two of the most advanced autonomous robots are at

Stanford and CMU. The Stanford Cart and the CMU Rover both

use vision algorithms developed by Hans Moravec. They plan

movement through a scene using only information obtained

- .. from on-board TV systems. The CMU Rover was developed after

the Stanford Cart and has more capabilities [Mor83].

U Both of these autonomous robots perform local

statistical correlation between "high interest" areas in the

scene. These data are then used to construct a 2-dimensional

model with circular regions surrounding each obstacle. The

algorithms then determine the next direction of motion from

an obstacle-avoiding path. The path selected needs only to

prevent the vehicle from intersecting an object's circle
F.

while it is traversing towards some goal position [Mor83].

But these algorithms suffer because of the extensive
L

13

% %%

computer time required to generate the circular regions.

The scene must be analyzed to determine where the obstacles

are, then the robot is moved a small distance and a new view

of the scene is then analyzed. Documentation published in

1985 stated that the Stanford Cart required about 15 min for

each 0.75 meter movement and the CMU Rover required about 1

min for each 1.0 meter moved [Hol85b]. Information on the

specific type and computational speed (flops) of the

computers used on these two autonomous robots was not

included in the article.

One common way to compute range distances is using the

technique of binocular stereo vision. Poulos describes this

technique and discusses the algebraic computations necessary

to determine distances using two cameras [Pou86]. This

technique requires measuring only two angles because the

distance to the point is a function of the different angles

and the separation distance between the two cameras. The

angles can be directly calculated by the offset position of

the point from the vertical centerline of the image [Pou86].

The distance between two objects is easier to calculate

4 than the distance from the cameras to one particular object.

The range calculations become more accurate the farther

apart the cameras are placed, but this poses two problems.

The first is the size limitations of the robot. The second

is that excessively wide camera separation adversely affects

14

4W-rP

m.

correlating objects in the two images because of the small

size of the video image used [Pou86].

The key to binocular stereo vision, and the largest

problem, is determining which point on an object in one

image is the same point on that object in the other image

[Hor86). Errors in selecting corresponding points in the

images will result in errors in the angles and thus errors

in the distance calculations. By placing the two cameras

S-. close together variations in ambient lighting between images

can be minimized thereby reducing error [Pou86J.

Using the technique of binocular stereo vision is

computationally intensive but represents an alternative

method for determining the relative positions of objects

without precise knowledge of what the objects are. This

technique is somewhat error prone, but because of the large

quantity of data points used in the calculations the

cumulative errors in the range results should be small.

Correct placement of the cameras, along with using QVA

-, production rules to provide clean edges, should enable

- accurate distance calculations. Some error is expected

because all distances are computed for static scenes. No

information is retained from previous sets of images. The
-primary advantage of the static technique is that no apriori

knowledge of the object's size or color is required to

calculate the distances. Another advantages is that it

doesn't require large or complex equipment to implement.

15

p"

III. Queen Victoria Algorithm

The first step in the distance calculating procedure is

preparing the images for region matching. The image must be

processed to emphasize brightness differences or edges. The

QVA (Queen Victoria Algorithm) was selected to accomplish

this for this thesis. This chapter describes the background

of the QVA, and provides a detailed description of how

feature vectors were created for an image, as well as how

i "the pixel brightness values in the image were smoothed using

QVA production rules which created crisp well defined edges.

OVA Background

The QVA algorithm was developed in 1985 by Capt James

Holten to smooth the pixel brightness values in an image and

provide clean crisp edges for image processing [Hol85b,

Ho185b]. The major differences between QVA and current edge

F [enhancing algorithms are outlined as follows:

1. The QVA algorithm is spatially non causal. The QVA

algorithm is not a real time application, rather it is

applied to an image stored in memory. This allows the

QVA algorithm to look ahead and use "future" pixel

values (pixels with higher indexes) to smooth present

pixel values.

2. The QVA algorithm is constructed from production

rules instead of a transfer function or an impulse

16

response. The algorithm has none of the realization

limitations of a system that can be modeled with

differential equations.

, .3. The QVA algorithm is heuristically modifiable and

can change as a function of the data. The number of

times the QVA algorithm is applied to an image can be a

variable depending on the smoothing results required.

- Purpose

The purpose of using the QVA algorithm in this thesis

was to process input video to create smooth regions of

constant brightness separated by sharp edges. The QVA

algorithm was necessary to prepare the images for region

identification because the shape of each region was

ci determined from the inside out, and represented groups of

pixels with the same brightness values. Edges in the image

represent the boundaries of the regions and constrain the

pixel flooding that occurs during the region identification

procedure.

OVA Pixel Smoothing Technigue

The QVA production rules were applied prior to

initiating a comparison algorithm which matched the regions

created by QVA in the images obtained from each camera. The

QVA algorithm uses two processes to accomplish this

smoothing. First, feature vectors are derived from linear

17

*~~ %.- . 1. SIM

'-

sequences of individual pixel brightness values in the

image. Second, a set of heuristically derived formal

production rules are applied to those feature vectors to

determine where and how much smoothing is to be performed on

the image. When applied to a single slice of video

*brightness pixels across a picture it derives the location

of putative edge intervals and smooth intervals, as well as

the grey level characterizations of the intervals. [Hol85a]

A feature vector is created for each row and column of

the image from the differences between individual pixel

brightness values in the image. Each pixel location is

assigned one feature from a set of five types of features

possible. Each entry in the feature vector is determined

from the grey level brightness differences between

successive pixels. Table 3.1 shows the five possible types

of features and the difference criteria for determining each

type, where dif = pixel[i]brightness - pixel[i-1]brightness.

Table 3.1 Criteria for Selecting Feature Vectors

CRITERIA MEANING

dif -thresh negative edge

-thresh < dif < 0 negative gradient, possible edge

dif = 0 smooth

O< dif < thresh positive gradient, possible edge

thresh.:! dif positive edge

18

I

The difference measure used in this thesis was the

brightness difference between successive pixels in the

6 image. This is not the only difference that could have been

S- used, only the easiest to implement. The five types of

features listed in Table 3.1 represent the minimum set of

features. The threshold value controls how much brightness

-.' smoothing will be accomplished during each iteration of the

.-N QVA algorithm. While it is possible to vary the threshold

,. ivalue while the algorithm is running, the threshold was held

constant during this thesis study to reduce complexity.

Production rules are then applied to the feature

vectors to remove all brightness gradients between edges and

sharpen all edges in the image. The production rules modify

the actual pixel brightness values in the image based on the

feature vectors created from that image. (I.e., given a

* video system with 256 brightness levels and a threshold = 0,

then the QVA algorithm will not change any of the pixel

* brightness values; while using threshold = 125 the QVA

"-' results would be an image containing pixels with brightness

values of 0 or 126 only). Smoothing all gradients will
I
*% . result in the image containing large areas of constant

brightness separated by well defined edges. The width of

each edge will be minimized because of this smoothing
I

process, which results in clean sharp edges. The number of

p -"features evaluated by the production rules at any one time

is variable depending on the type of features encountered.

19

Ij

I

The QVA algorithm keeps track of all pixels from the last

edge position until a new edge location is indicated by the

feature vector. All pixels are saved in an evaluation

window while the features are examined.

The window used in the QVA algorithm will expand until

an edge feature is encountered or until the brightness of a

gradient feature exceeds the brightness of the first feature

in the window by the threshold. If the feature that closed

the window is a gradient then the gradient is changed into

an edge of the same sign. Then the algorithm will determine

the actual edge location by examining the features in the

window from the right edge of the window to the left, with

the following production rules:

1. If the feature is a pos Ave gradient with a
positive edge to its right then the gradient is changed
into a positive edge.

2. If the feature is a negative gradient with a
negative edge to its right then the gradient is changed
into a negative edge.

m3. If the feature is a positive gradient with a
negative edge to its right then the gradient is changed

into a smooth feature.

4. If the feature is a negative gradient with a
positive edge to its right then the gradient is changed
into a smooth feature.

5. If the feature is a smooth then stop.

When a smooth feature is encountered or created then

the algorithm will smooth all features from that position to

the left edge of the window. Next the starting point of the

window is reset to the next feature following the right edge

20

s

of the current window and the process is repeated. The QVA

algorithm will continue this process until all entries in

I every feature vector has been evaluated, and only smooth

features and edge features remain. [Hol87a] To specifically

". "illustrate how the QVA production rules would select the

placement of an edge and which pixels would be smoothed, an

example is shown in Figure 3.1, which is representative of a

' .-single row of typical pixel brightness levels in an image.

.

valu es

vm,
100

C

0 48

I Figure 3.1 Example of QVA Edge Placement

The pixel brightness level at point "A" established the

starting brightness level of a smooth section. The pixel

brightness level at point "B" was the first pixel to exceed

the threshold (TH). The starting position of the edge was

located at point "C" though, because the pixels between

points "B" and "C" were all positive gradients and point "B"

was a positive edge (the pixel brightness value at point "B"

was greater than point "A"). The smooth sections of the

21

%p-.''. - L ' , ' L \ ' ,,,b,% I ~ , " % ' . % % .A % 2 '

graph represent the average brightness levels of all the

pixels contained in each section.

The QVA algorithm allows the image to be processed

iteratively until pixel brightness values stabilize to a

relatively constant value between iterations. Each

.q iteration of the QVA algorithm actually performs two passes

over the image.

S"1. The image is processed from left to right. Feature

vectors are created for each row and the production rules
".

are applied to find all the edges and smooth all the pixel

brightness values between the edges.

2. The image is processed from top to bottom. Feature

vectors are created for each column and the production rules

are applied to find all the edges and smooth all the pixel

brightness values between the edges.

These two steps are repeated until the image brightness

levels of the pixels are smoothed into large contiguous

n areas. The current criterion for smoothness is a subjective

evaluation of the process. The QVA algorithm is repeated

until the results shown on the monitor show very small

changes between iterations. It is possible to define an

objective criterion for smoothness and have the algorithm

automatically check current image smoothne3s versus the

criterion during iteration, but during this thesis effort

all images were visually examined for their smoothness.

22

The actual implementation of the QVA smooths the pixel

brightness values to the average brightness level of the

t object. When a threshold - 16 is selected it does not

necessarily mean that only colors 0, 16, 32, 48, ... , 240,

256 will be displayed. It is possible that the average

color of one area might be smoothed to, say, 12 during one

QVA iteration. This allows QVA to provide more accurate

information to the object comparison algorithm. If the

brightness values were smoothed to a preselected level then

. information on the object would be lost and would probably

. -result in additional errors in object identification.

[0 Smoothing pixel brightness to an average level might promote

-11 "bleeding" from one region into another, and require more

iterations to settle into stable brightness regions.

I A typical QVA iteration result on one row of raw video

image data is shown below to illustrate the effects of this

process. The threshold was set at 16 and four iterations

L[were performed (i.e. the image was processed left to right

and top to bottom four times). Figure 3.2 (a) shows the

< "original image and Figure 3.2 (b) shows the results after

-v qapplying QVA. The pixel smoothing capability of QVA is

demonstrated by displaying the actual pixel brightness

V -.) values obtained from row 50 of both images below each image.

The units of the graphs are pixel brightness values, with 0

S. -at the bottom and brightness value 255 at the top.

23

, 1 , .,

*++ . +. .. . ~. - .+

- J

J-4.

(a) (b)

Figure 3.2 Example of Raw Data and Processed QVA Data.
(a) Raw Video Pixel Brightness Data,

- (b) Processed QVA Pixel Brightness Data.

To further emphasize the smoothing capability of the QVA

S - algorithm, a Laplaician edge detector was used against the

unprocessed data of the original image and against a QVA

processed image. Figure 3.3 shows the results. The

A.. .

Laplaician edge detector used was a 3X3 convolution with -1

-~ at each kernel position except the center which was +8.

... ,.

J*. - +j ". : +-. +: . .

; p•. .. ._ ++. +++ :+ -
',.' " " ' + -- + " ++/+ 24

S,+-

4%

%, .

(a) (b)

Figure 3.3 Results of Applying Laplaician Edge Detector.
(a) Raw Data Prior to QVA,
(b) QVA Processed Image Data.

The criterion for determining which threshold to apply

was based upon the types and sizes of the objects in the

*. images. In general the larger the threshold selected, the

*.'0 ~;larger the regions that QVA created. When the image

contained man-made objects, thresholds above 32 tended to
. blend pixels from multiple objects into the same regions.

- 'J. Thresholds below 4 tended to eliminate video noise but

* didn't create regions of sufficient size to allow matching.

Figure 3.5 demonstrates how the size of the regions created

.~ by the QVA process is dependent on the threshold selected.

6 Figure 3.5 shows the results of using thresholds of 4, 16,

32, and 64 on the image shown in Figure 3.4.

25

0'? .
Op

- -. d - PV U U T Y J.--

Iof

dwN

KW

4MC

26-

ada

THRESHOLD 34 ITERATION -10 THRESHOLD 164 ITERATION m10

Fiue35ReinSz eru hehodSlce

V27

SIt was expected that QVA would work better in a man-made

environment than in a natural environment. Man-made

environments usually have sharp brightness edges between

objects, and most of the objects have nearly constant pixel

brightness values with brightness gradients caused primarily

-|by lighting gradations. Whereas, natural environments which

,. consist of trees, shrubs, and terrain details contain almost

no sharp brightness edges and a plethora of pixel brightness

values in many small regions.

To demonstrate how ineffective QVA production rules can

be at creating regions of constant brightness in natural

environment images, the QVA algorithm was applied with

different thresholds to the image shown in Figure 3.6. The

- * brightness edges of the four images shown in Figure 3.7

clearly demonstrate the inability of QVA create regions

composed of pixels from single objects. When a small

threshold was selected the image contains too many regions

L to be useful, and when larger thresholds are selected the

pixels from multiple objects are combined into the same

•;-- ", regions. Natural images tend to become confused or

gratuitously complex when subjected to QVA. The only type

of "feature" that QVA identifies seems to be texture.

.r -' QVA works best on images composed from man-made objects

6 also because the colors (or brightness values) of most of

these objects is grouped into large contiguous areas. The

processing format of QVA also fits man-made objects which

0.

:. . ,?:28

A -..

have many linear edges separating their colors. QVA takes

advantage of long brightness gradients when smoothing. For

S this same reason QVA is inappropriate for most natural

* ,environment images, where very few of the objects have large

contiguous brightness areas. A 3X3 convolution that

performs local brightness smoothing would in most cases

smooth a natural image into regions better.

Md6o..

IkM,

-el

b . -. ,.

p..

p..

Figure 3.6 Natural Environment Example Image

Pt.

29

I

-

THRESHOLD =4THRESHOLD =8

THRESHOLD I: THRESHOLD u16

Figure 3.7 Results of Applying QVA to a Natural Environment
QVA threshold =10 for all images

30

Il

IV. Stereo Vision Distance Algorithm

This chapter will describe how distances were calculated

from objects in a scene to the cameras. The trigonometric

* -relationship between the position of the objects in the

scene and the camera separation distance are presented along

with examples detailing the actual implementation.

Introduction

"The principles of stereo vision for three-dimensional

7data acquisition are well-known and can be applied to the

problem of an autonomous robot vehicle. Coincidental points

in the two images are located and then the location of that
point in a three-dimensional space can be calculated using

the offset of the points and knowledge of the camera

positions and geometry." (Hol paper]

I Description of the Alaebra

This technique requires two cameras viewing the same

scene and mounted parallel to each other on the same

horizontal plane. The distance Z from the cameras to an

object P can then be calculated in terms of the angles el

and e2, and the camera separation distance b [Pou86].

!, Using Figure 4.1 the law of sines gives

R1 R2 b

sin el sin e2 sin(180 - 8l - e2)

31

40
V. - 0

- where

Z - Rlsin(el) = R2sin(e2)

then substituting and solving for the distance Z gives

b sin(el) sin(e2)4R Z = E1)
sin(180 - el - e2)

Cl~ltm P C flrhrnm
OI OPI

R IIRI"" €:R1 R2

°'-

I 0, 0

left right
Ca"M caers

- Figure 4.1 Graphical representation of the camera
separation distances to a unique position.

The angles el and e2 in Figure 4.1 can be calculatedE

from the pixel displacement from the image centerline

position to the point P. Each image is 250 pixels wide,

*i therefore, the centerline for each is at position 125.

S.-Figure 4.2 shows a graphical representation of this

displacement from centerline.

* -32

I

.......... -..-.- ,,; . . . ,, g,,,,,

IP I I

--- ---- P --- p

I I

q left camera image ngt camera image

(a) (b)

Figure 4.2 Example of Pixel Displacement from Centerline
(a) Left camera image (b) Right camera image

. .- To convert from pixel displacement to degrees use the

S•'conversion factor 1.592deg = 22 pixels (see section Actual

Implementation Details). Combining these factors, then el

and e2 in Figure 4.1 can be determined as follows:

el = 90 - (xleft - 125) * (1.592 / 22) (Eq 2)

e2 = 90 - (125 - x_right) * (1.592 / 22) (Eq 3)

Eq 2 and Eq 3 are only correct when the point lies

* Ibetween the cameras as shown in Figure 4.1. If the point

lies to the left of the left camera, as shown in Figure 4.3,

* -then e2 in Eq 3 is correct but el in Eq 2 needs to be

changed as follows:

el = 90 + (125 - x left) * (1.592 / 22) (Eq 4)

If the point lies to the right of the right camera, asI

shown in Figure 4.4 , then el in Eq 2 is correct but e2 in

Eq 3 needs to be changed as follows:

e2 90 + (xright - 125) * (1.592 / 22) (Eq 5)

.. 33

%.

x xleft-b

WV

P

R1 'P'1

i z II

-: ,... ...__ _

Figure 4.3 Target Point Location Lies to the Left
of

the Left Camera Optical Centerline

x-left

r*,--- x_- o---4

I I'

RI z
R2

b

Wft nrn
carwlea carnha

Figure 4.4 Target Point Location Lies to the Right of

the Right Camera Optical Centerline

34

,i.

| .. ,, 0

,., : . .' e

Srb', ~ ~ ~ ~ ~ ~ ~ ~ W -AF- - -t~. ~ ~'.7 -7-y Fr r r derj.r-..-

V 2"
Actual Implementation Description

To determine the ratio between pixel displacement on

the video monitor and number of inches in the actual image a

simple procedure was used. The following steps essentially

outline this procedure:

1. A target was placed 6 feet from the camera. The
target was a piece of paper with a 2 inch grid on it.

. 2. The target was digitized and displayed on the video
monitor.

3. Another grid was drawn on the monitor superimposed
on the target grid pattern. Different size grids were
drawn until one exactly matched the target grid.

- [It required a grid 22 pixels wide to cover the 2 inch target

grid on the monitor. Using Figure 4.5 the ratio between

pixel displacement on the monitor and the angle e can easily

be determined as follows:

Given x - 2 inches = 22 pixels

Then e = 90 deg - arcsin(2in/72in)

Yielding e = 1.59 deg

2 in-

f. 6 ft

II

Figure 4.5 Relationship Between Pixel Displacement
and Camera Viewing angle.

35

.NN

* 4-;

The conversion factor of 22 pixels for every 1.59 degrees is

assumed to be constant for the width of the scene. Every

object that lies on the same camera viewing angle will lie

on the same vertical line in the video display. If vertical

lines were drawn on the monitor every 138 pixels they would

represent vertical slices of data from the scene taken every

10 degrees. Because the actual images used were only 250

MA pixels wide, they represent the area plus or minus 9 degrees

. ~from the optical centerline. This narrow image width allows

us to ignore the non-linearity caused when the far edges of

the image are digitized onto the video monitor.

o. ,Figure 4.6 shows an example with two points P1 and P2

that lie on the same viewing angle from the left camera, but

lie on two different viewing angles from the right camera.

The separation distance of the cameras (b) and the viewing

angles of each camera from horizontal (el, and erl or er2)

represent unique triangles, and the distance to each point

1. (P1 or P2) is simply the height of each respective triangle.

Because the ratio between the number of pixels a point lies

from the optical centerline and the camera viewing angle was

tV determined empirically, the algorithm probably contains a

small error which will slightly effect the final distance

calculations. Additionally, a small error in the distance

measurements can be attributed to the internal alignment ofS.,.

the camera optics. The camera frames were mounted parallel,

but the actual optical alignment was not verified.

36

S%

4'

LEFT RIGHT

Figure 4.6 Example of Camera Viewing Angles

Description of the Distance Results Produced

The final distance results are displayed on the monitor

with each distance to a region represented as a single line.

An example of left and right image region matching is shown

in Figure 4.7. Rectangles encompass the smooth pixel areas

occupied by each region. For simplicity the actual image

pixel data are not shown. In this example regions 1, 2, and

4 were matched and region 3 was unmatched. The distances to

regions 1, 2, and 4 are depicted directly below the regions

to which they correspond in the right image. The actual

distance to each region in inches corresponds to vertical

" .37

4kS

pixel displacement on the monitor from the bottom of the

screen up to each region distance line. The numbers to the

left of the distance lines allows the user to obtainwV

approximate distances quickly.

The area of each region matched is assumed to be

perpendicular to the viewpoint of the camera. To be able to

V determine actual distances for every pixel, the program

would need to be able to recognize a complete object not

just a portion of it that is the same color. This thesis

does not attempt a perspective measurement, which would

- require augmenting the current programs to perform complete

0 pattern recognition.

left image right image

200 -

-A A.150

. -'. -38

VA,

"-" "'.$ V. Reaion Matchina Techniaue

Accurate region matching is the most critical step in

calculating the distance. A combination of image processing

"- techniques was required to allow the algorithm to accurately

match the regions of constant brightness in both images.

Each of the image processing procedures used and the region

matching techniques are separately described as follows:

Description of the Recion Selection Process

The initial region selection process incorporated the

following procedures to control how and where each region

was identified and selected. Most of these procedures were

empirically derived. These procedures were applied to the

left image in this thesis to select the initial region.

1. The left image was used for initial region

selection only because it was physically obtained first from

the two cameras. The same results could be obtained using

the right image to initially find the regions and the left

image to find correlating region matches.

0 2. To limit the number of possible regions considered

for matching a minimum size criterion was used. As will be

seen, the minimum size was only used to eliminate regions

too small to be significant and wasn't used to establish the

' actual size of the region. The software written to implement

this part of the algorithm used four different minimum

region sizes, 41x41, 31x31, 21x21, and llxll. Each minimum

'3

?- ""39
" ' ..

.-. aw~ r a .V
9

W I.r - r r . r rr . Mv - -7'~t - 7 .P5-- 7.--1- 3':-'Y - -Y -Jim ,

..

region size represented the smallest contiguous pixel area

contained in the region. The first iteration examined the

image searching for any region with at least 41x41 pixels

with the same brightness value. If any pixel brightness

values differ from the other pixels in the first area then

the region search area is incremented over 1 column in the

image and all the pixel brightness values are rechecked.

After exhaustively searching for all the 41x41 size regions,

the size of the minimum contiguous area of the region was

- reduced to 31x31 and the image was exhaustively searched

again. This was repeated for 21x21 and finally llxil. By

constraining the size of the regions, small regions can be

restricted from matching consideration which would slow down

the operating speed. Regions smaller than llxll were

considered too small to accurately match and likely to

produce redundant results.~ .

3. Once a candidate region meets a minimum size

U,. criterion, a graphics region flooding subroutine is

instantiated to identify the entire region (i.e., a region

S. is a group of contiguous pixels having the same brightness

,C value). The starting coordinate of the flooding routine was

N, set to the top left corner of the minimum size region

N ~identified in step 2. The region flood command used was

from a ITEX100 graphics subroutine, and acts like a virus

that expands from the inside out. Given a seed coordinate

it will change all pixels of one brightness level into

another brightness level without modifying any other pixels.

40

t%. A.i

a

If the right threshold is selected the image will have large

regions of constant brightness level pixels. The flood

command results in regions of irregular shape. This is

helpful in matching regions because it was expected that the

S--constant brightness regions that QVA would create would have

approximately the same shape in both images.

4. A rectangle was constructed around each flooded

region identified in the left image to provide a region

search size for comparison in the right image. The

rectangular area was treated as a window which controlled

how many pixels were evaluated during each iteration.

5. The search area of the left image is constrained to

the right portion of the image (from x=60 through x=250).

This is because most regions left of column x=60 are not

visible in right image. X=60 in not an absolute limit, but

rather a compromise. Regions on objects closer than 4 feet

might not be fully visible after restricting the image

search area, but fewer overall region mismatches were

obtained for the entire image.

6. The search algorithm starts with large regions

6 r(minimum size = 41 x 41 pixels) and reduces the minimum size

of the regions after each search iteration. (i.e. the entire

left image is searched for regions of minimum contiguous

6- pixel area size = 41 x 41 then searches the entire left

image again for regions with a minimum size = 31 x 31 and so

. " . on). This was implemented because large regions are assumed

to be generally closer than smaller regions and thus may

41

6

visually cover or obscure regions farther away from the

camera. Once the location of a region was established it

t restricted other region from occupying the same location.

7. After a region is selected from the left image the

. area that region occupied in the image is masked off so that

the same region will not be selected again for matching.

. Heuristic Search Constraints.

Accurately matching the region selected from the left

- i- image in the right image required constraints on where in

the image possible matching regions could reside. These

heuristic constraints were derived during the development of

. the matching algorithm, and are described as follows:

1. The search area of the right image was constrained

.ito x=O thru x=200. Regions beyond x=200 in the right image

i-.- . are not visible in the left image.

2. The search area of the right image was constrained

to +/- 10 pixels up or down from the position of the region

in the left image. This is because the cameras were mounted

. at roughly the same distance from the floor and the images
0
9, .they recorded were therefore roughly the same in the y

direction.

3. When looking for large regions the algorithm will

- search from from left to right side of the right image. This

is because large regions are usually close the the cameras

and their position will vary greatly from the left image to

-v. the right image.

* 42

0% .

4. When looking for small regions the algorithm will

search a relatively small horizontal area determined by the

* .5 position of the region in the left image. This is because

" smaller regions are usually far away from the cameras and

. "their position will not vary greatly from the left to the

right image.

5. To speed up the search algorithm the program varied

the size of the loop increment based upon the size of the

region it was searching for. For small regions the search

loop incremented by one. for medium sized regions the search

loop incremented by two, and for large regions the search

. loop incremented by three. This speeded up the loop but

.' didn't decrease the accuracy of the distance measurement

noticeable.

6. Once a region is matched, the area it occupies in

!, -[. the right image in masked off and other regions are not

permitted to occupy the same area. Because regions that are

close to the camera (usually large regions) are displaced

farther between left and right images than regions that are

a greater distance away, it is possible for small regions to

* :be visually obscured from one camera behind a larger region.

This results in some of the smaller regions not being

matched, but because the larger regions are considered more

, important (i.e. they are visually closer to the cameras);

this was not considered an error.

" 7. Additional matching errors are sometimes caused

because the location of the matched regions are not allowed

"p .43
-p

" to overlap. The matching algorithm selects the best

matching position it can, but because it is prevented from

overlapping regions it will place the matching region next

to the previously selected region. This sometimes results

in a matching offset error which propagates into the

distance calculations and results in range errors.

-Features of OVA that Supported Region Matching.

1. QVA results were consistent. The pixel brightness

smoothing performed by QVA on both images created regions

"- similar in shape and pixel brightness values.

02. QVA created large regions of constant brightness

levels surrounded by crisp edges. When the flood command was

initiated it would grow until all pixels within the region

were modified (i.e. all the pixels within the edges). The
range of pixel brightness values in the original images was

from 0 to 254. The flood command changed pixel brightness

values to 255. The images could then be searched to locate

the rectangular boundaries of the flooded region. Without

QVA the area flood technique is worthless.

Summary of the Implementation Details

1. Both the left and right images are 250 x 250 pixels

in size. This size was chosen because it allowed separation

of the images on the monitor. The program can be rewritten

to use larger sizes (i.e. 256x256 or 512x512), but they

would require more time to execute.

[44

lap

-IWp, -

2. The ITEX 100 pixel flooding subroutine requires

* *exclusive access to the ITEX 100 image processing board

during execution. Using images of 250 x 250 size allowed a

duplicate left image to be shown on the monitor during the

calculations. One image was used to store the original

pixel data and the other was used to record the results of

the pixel flooding. When the calculations were complete the

pixel flooded image can be deleted from the monitor leaving

only the left and right images and the distance results.

3. Each pixel is represented by a brightness value

between 0 and 255 (8 bits).

* 4. Rectangles were drawn around each region identified

-. -in the left image and each region matched in the right

image. Each rectangle in the left image is labeled with a

unique number and corresponding matches in the right image

' are assigned the same number as in the left image.

5. Distance calculations are measured from vertically

from the bottom of the monitor up to each line, rather than

from a single point. Each pixel on the monitor corresponds

to one inch in actual distance to that region.

6. The region matching algorithm uses two steps. The

first attempts to match regions using only the shape of the

region in the left image. If the algorithm cannot determine

a "best match" region, (i.e. summation of pixel brightness
I , .

values from one region are at least 50 lower than all the

rest of the possible region matches), then all the pixel

information in the rectangular region is used. This second

45

0%

, .,". ""- "" .'" ,""- "'2',-"". ' " " z ,.. .,...- -L . ,.. .' .. . -. ".-'"*-*.v".. ',,-.-, - ,V , L% ,.
"

"

method adds error to the distance measurements because

sometimes the extra information in the rectangular area

.r prejudices the match to the wrong area in the right image.

~46

0%

.!'. -.

- .~ .

rS .i .

VI. Results

The accuracy of the distance calculations is dependent

on the ability of QVA to properly prepare the images and the

accuracy of the algorithm in matching regions of constant

brightness in both images. This chapter will present the

- results that can be obtained by applying the QVA production

rules to an image with different thresholds and different

numbers of QVA iterations. The accuracy of the distance

*. calculations will also be presented along with an example of

* the entire distance calculating process applied to the same

S scene from multiple distances. This chapter concludes by

outlining results obtained after applying various image

processing techniques that were initiated prior to applying

QVA in an effort improve the region matching accuracy.

OVA Production Rules on an Image

To demonstrate the strengths and weaknesses of the QVA

algorithm, the image shown in Figure A-I was processed using

- QVA with seven different iteration values and four different

thresholds. (see Appendix A for the figures used to compile

Table 6.1). Table 6.1 summarizes the results of all 28

tests, where each test evaluated the ability of the region

matching algorithm to correctly find and match regions in

both images. The results represent the number of regions

located in the left image, the number of regions correctly

- matched in the right image, and the number of regions

incorrectly matched in the right image.

"47

,,

Table 6.1 Comparison of Threshold Value and Iteration

of QVA Iterations

,, 4 68 1 10 12 14

4 10 19 18 19 20 20 21
" .. 4 5 16 18 17 16 18 19

T 0 0 1 0 0
h 17 21 21 22 22 19 20

r 8 14 19 19 19 18 13 14
e
s 2 2 1 1 0 0
h 20 21 29 21 18 19 17
0 16 14 17 17 13 12 16 14

d " 4 6 4 4 10
s 28 23 23 27 24 28 25

4 32 16 15 13 16 14 14 14

9 5 6 6 5 5 1

Each entry in Table 6.1 was determined using the following

* icriteria:

of regions # of regions # of regions
identified / correctly matched / incorrectly matched

p in left image in fight image in fight image

The difference between correct and incorrect object

" .matches was a subjective evaluation. A region matched

, ,within 10 or 12 pixels of its correct position was

considered a correct match because distance measurements

were usually within 10% of the actual measured distance to

4 the object. Fewer objects were usually matched in the right

image than were identified in the left image because the

matching algorithm restricts regions from overlapping in the

4 right image. If one region is slightly misaligned it may

48

,7".

.. prevent the matching of an adjacent region. This is not

considered a matching error, provided that at least one part

of each object viewed in the images is correctly matched.

Restricting the placement of regions was incorporated into

the algorithm because it reduced the number of matching

', errors due to close regions obscuring far away regions from

the cameras view.

The results shown in Table 6.1 are the first step in

incorporating an automatic method that can select the right

sized threshold to process a given image. Combining an

automatic threshold size evaluator with an image smoothness

test would eliminate the need for the user to monitor the

process. Due to time constraints this enhancement was not

implemented.

When the QVA algorithm was being tested, for threshold

and iteration effects on the accuracy of the region

matching, the following results were observed:

1. Smaller thresholds tended to produce fewer errors at any

given number of iterations when compared to large

thresholds. The size of the objects identified for

matching was usually smaller than obtained with larger
thresholds. All the matching objects were composed only

of parts of complete objects in the image. The flooded

5" shapes of the objects used in matching were very

irregular in shape and this irregularity probablyJ.

contributed to the small matching errors obtained.

49

N N JI
-p.

-" 2. Large thresholds tended to select more objects in the

left image for matching because of the size criterion,

but there were more errors and many more iterations were

- required by QVA to smooth the image and reduce the

number of errors. When the threshold was set to 32 many

of the objects identified for matching in the left image

were not matched at all in the right image; even though

more objects were initially identified the actual number

:matched was roughly equivalent to the number attained

with smaller thresholds.

3. Selecting thresholds of 2 proved too small to allow

matching any objects. This threshold was too close to

the video noise and QVA couldn't smooth the image

sufficiently for matching.

1' 4. Using a threshold of 64 distorted the brightness levels

so severely that matching objects were usually composed

of parts of many objects in the image. Brightness

U levels from one object were propagated across large

areas of neighboring objects resulting in mutilated

images and attempts to match objects was futile. If a

match was attained it contained objects from many

different distances, thus, the distance calculated to

It .that region was not meaningful.

It was noted that after approximately 4 or 5 iterations

the results of applying QVA to the image didn't produce aI difference that could be visually discerned on the video

1 50

Z.

-: monitor; yet, as shown in Table 6.1, the results continued

to change with additional QVA iterations.

Reaion Distance Calculations

To show how well the distances were trigonometrically

K calculated to each region matched in the images, the

calculated results were compared to the actual measured

distances to the same regions. These comparisons were

performed twice; once using a threshold of 6, and the second

time using a threshold of 12. The results obtained using a

threshold equal to 6 are shown in Tables 6.2 and Figure 6.1,

and the results obtained using a threshold equal to 12 are

' shown in Table 6.3 and Figure 6.2 Measured distances were

measured from the center point between the cameras to each

region. The computed distance results were obtained by

applying the QVA production rules 12 times to both images.

In Figure 6.1 the distance to region 15 was considered

invalid due to a matching error in locating the correct

position of region 15 in both images. In Figure 6.2 the

distances to regions 3 and 15 are considered gross errors.

6 The small error percentages for the other regions shown in

Tables 6.2 and 6.3 clearly demonstrate that the distance

algorithm developed in this thesis is an acceptable starting

point for a vision system for autonomous robots. When the

QVA algorithm is applied to two parallel images with

sufficient number of iterations, it produces images with

large regions of constant pixel brightness values that can

' ' 51

. 1W

j I'

be identified and accurately matched in both images by their

shape and brightness values, thus allowing distances to be

computed to each region pair matched.

Table 6.2 Comparison of Measured to Computed Distances
QVA Threshold=6 and Iteration=12

oe measured calculated difference errorobject # distance distance inches percentage
inches inches

1 99 94 5 5.0

2 119 114 5 4.2

3 114 113 1 0.9

'-" , ,4 122 116 6 4.9

5 128 116 12 9.3

6 113 121 8 7.1
%

7 101 111 10 9.9

10 133 141 8 8.0

11 113 113 0 0.0

13 113 127 14 12.4

14 98 90 8 8.2

15 133 48 85 63.9

16 98 90 8 8.2

17 97 89 8 8.2

52
,-,d

-,~-

-.01 Riv

~j

-IR

r -

53

A1. %

inches inchs

%- .

Table 6.3 Comparison of Measured to Computed Distances

., .J.

""measured calculated difference error
object #distance distanceinhspretg

.. inches inches

1 99 94 5 5.0

4 2 119 114 5 4.2

3 114 172 58 50.8

4 130 118 12 9.2

5 122 116 6 4.9

6 128 126 2 1.6

8 101 104 3 2.9

9 97 91 6 6.2

10 113 121 8 7.1

15 105 1017 912 868.6

18 98 90 8 8.2

54

!,

.V C

Pis I a

,.JAm -

AAM

Figure 6.2 Results of Applying QVA to an Image 12 Times
With a Threshold of 12

-. .. 55

Imaae Preprocessing

Many of the errors resulting from inaccurate region

matching were the result of the QVA production rules

blending brightness values from multiple objects into a

single region. This is sometimes referred to in this thesis

as bleeding. This caused problems for the matching

algorithm because it caused errors in the placement of the

matching regions. Adding an image preprocessing step to

usefully enhance the input images before initiating the QVA

production rules would appear to be a logical addition;

preprocessing would improve the results produced by QVA if

" the amount of bleeding could be reduced. Four types of

preprocessing were tested for this purpose; they are listed

below:

1. Edge enhancer
2. Low pass filtering
3. Normalizing the image brightness values
4. Averaging the image brightness values

Paradoxically the results of all four proved to be

detrimental to the results generated by the QVA production

rules. Fewer regions were matched and more of the matches

were incorrect. A complete description of each process is

presented below. It is not obvious why all of these methods

:- failed. QVA is, of course, a highly non-linear procedure
and this can easily result in failure of intuitively derived

treatments.

56

0 01 , 'N- I
V%

-V-W~ i -6; V- -L- V- K:-'i -. 7 IU -. ~7 7 lr- -M .- V .-r- -V- ~

1. Edge Enhancing

This process attempted to accentuate the brightness

levels of pixels that formed the edge boundaries between

objects in the image. It was proposed that this would

reducing the bleeding or blending between regions with

similar brightness values. (i.e. if the pixel brightness

value of two objects are almost equal to the threshold then

QVA will smooth some of the pixel brightness values of both

objects into the same region). This causes confusion during

region matching and usually results in matching errors. If

the bleeding were reduced then matching errors would also be

reduced.

- -. The edge enhancer used in this thesis used a 12 by 12

convolution to modify the center 4 by 4 pixels. The average

brightness values of all 144 pixels is subtracted off from

- .each of the four center pixels. Then their resultant

brightness values are multiplied by 5 and added back to the

Saverage. This should emphasize pixels whose brightness

levels vary significantly from their neighboring pixels

"" (i.e. possible edge pixels). (Fre87]

2. Low Pass Filtering

This process was initiated after applying the edge

I enhancing step. It was proposed that this would reduce the

video input noise in the image and also reduce the effects

of the edge enhancing which enhanced isolated pixels

brightness values even though they were not part of an edge.

4
57

6.

A 3 by 3 convolution was used to blur the image which tends

to eliminate localized noise. The kernel used was:

121
242

." 121

The results of applying this convolution to the image were

then scaled by 16 to normalize the pixel brightness values

back to a value between 0 and 255. [Ite86)

3. Brightness Value Normalization

This process attempted to normalize the pixel

brightness values of the objects. It was proposed that this

4J would stop or reduce the bleeding of brightness values by

spreading out the pixel brightness values to use the full

scale from 0 to 255 available. Two objects whose original

brightness levels were different by the threshold, would now

be enough different so that bleeding would not occur and the

number of matching errors would decrease. Because both

cameras have the same focal length and apperature the images

produced by them should contain pixels with almost exactly

the same brightness levels.

4. Brightness Value Averaging

This process attempted to average the brightness values

of each object in the image. The median value of a variable

size convolution was obtained. The median was then

* .subtracted from each of the pixels in the convolution area.

Finally the results are normalized to values between 0 and

255. This process was attempted twice, using 10 by 10 and

16 by 16 sized convolutions.

58

.'V

VII. Conclusion and Recommendations

Conclusions

This thesis demonstrated the feasibility of using a

computer and two video cameras to perform automatic range

finding through binocular disparity. Applying QVA

production rules and a graphical region flooding technique

enable the segmentation of the images obtained by the

cameras into regions containing pixels with the same

brightness values and the matching of those regions in both

images. Once the regions were matched it was then possible

to calculate trigonometrically the distance from the

cameras to each region and then display the results on a

video monitor.

The shortcomings of this ranging system lie in the

*i computationally intensive algorithms used to fully process

each pair of images and in the user interaction required to

I control the number of iterations of the QVA algorithm

applied to each image.

-' The horizontal position of the cameras was constrained

0 such that each pair of images obtained were in the same

horizontal reference plane (i.e., objects in both images

were located at approximately the same vertical position and

only the horizontal position was different). This allowed

the area searched for each region to be vertically

constrained; thereby accelerating the region matching

o .portion of the algorithm. If the horizontal alignment of

59

0O

the cameras is not constrained then the search area must be

expanded vertically and the time required to match regions

will grow accordingly.

Recommendations for Further Study

~ '1. Modify the algorithm to allow the cameras to be

independently aligned toward a particular object rather than

* '- being always aligned parallel to each other. This would

require accurately measuring the alignment of each camera.

Distances would be based upon the object the cameras were

. aligned toward rather than on the location of the cameras.

0 2. Modify the QVA iteration process to incorporate an

internal pixel smoothness test. This could be based upon

the relative pixel brightness value change between

consecutive iterations or perhaps a histogram of the

original pixel brightness values. This would enable the QVA

algorithm to generate an acceptable smoothed image

autonomously and without performing excessive and

unproductive smoothing.

3. Develop an image processing algorithm that can be

6J applied before QVA to reduce the pixel brightness bleeding

encountered during the brightness smoothing. If every region

*: z? is totally composed of parts of the original objects in the

scene and not part of multiple objects, then fewer incorrect

matches should result.

4. Develop a better region matching technique. The method

used in this thesis performed an exhaustive cnd time

60

.2.~~~ ..' . . .C. .~ . % .i. .

consuming pixel brightness value comparison over the entire

area of every potential matching region, and then selected

the region with the lowest difference in pixel brightness

* values over the regions entire area as the match.

4a. Enhance the matching algorithm by expanding the

P brightness input from a monochromatic greyscale to

incorporate color. This could be accomplished by using a

color camera or adding colored filter lenses to the existing

black and white cameras and taking sequential views.

. -4b. Enhance the matching algorithm by using the texture of

the regions in addition to their color or brightness values

in the calculations. Texture is indicated by gratuitous

patterns in the image that correlate with the boundaries of

* -objects.

5. Develop a more effective difference criterion for

-.- creating the feature vectors before applying QVA production

rules. Rather than using only successive pixels the

I difference could be an average of many pixels, both

preceding and following a given pixel.

6. Expand the number of feature types associated with each

pixel. The five types used in this thesis represent only

the minimum set. Using multiple types of gradients could

allow more accurate placement of edges in the image.

7. Adjust adaptively the minimum sizes of the regions used.

It may be possible to assign the minimum size based upon the

type of image to be processed. The speed of the distance

algorithm might be significantly improved if fewer sizes

61

-I-;-- - I I P lN n n mu m mm

were used because each different size requires a complete

pass over the image. Masking of previously matched regions

S provides only moderate speed up.

8. Transfer the QVA algorithm to a parallel processing

machine (i.e. iPSC hypercube). The QVA algorithm lends

itself well to a parallel processing format. The creation

of feature vectors and the application of the production

%*. rules on each row or column of pixels in the image can be

performed independently. Incorporating the algorithm on a

parallel processing machine would eliminate the double loops

V currently used and allow "near real-time" image processing

* with mini-sized computers.

9. Incorporate an algorithm to determine the optimum size

of the regions and number of iterations necessary to prepare

the images for region matching. This would require

duplicating Table 6.1 for many different images and

developing heuristic rules for each type of image.

662

%

-K

U, .

- 62

APPENDIX A

Example Images Used In The Thesis

This appendix containes copies of the images used to

produce Table 3.2. The origional image in a raw data state

in shown on page 64, and all other images in this appendix

were created by applying the QVA production rules to this

image.

4'.

63

N N N

- d- - %'

ri
; r

u-i

oCo
-rL

'A64

* 'U

* - - - -. - zrrSrTr~7 ~ t'JrXZ - -

I

V.-

a

4 S

I I:

'I * L
O

- .I~i 1

M ______

h p

w ~IJ I
II
z
0

I-

Ii
II I-

*
-

It

* 0-J

-
0zC,.,
uJ

iw~ - I-.-.
- zI' - IgiliR . CNJ

.. u.J
* ~ .J .. ,

.' .4.

.7
U-

65
I

Pt

6
.1

i-I - d

ILI

I OIL

*

ii
* U:I,

66

-. g'V~~~V ~ **~* ~ - ~ ~ -~

I
S.

.........

~ '*r

a 3~2~

~

--

U - LU

a,

,,a~

6, _____ 1
- S p,.

- K
LU

"S .. __

I
-, 4

LU

* r -

_____________ U-

67
V.

0

~.j.
--- a ~. -- *-~ *-* ..- -- 5~. a5~*,~*. ? - P '-- J~ ***d~ V~

IlaI

LLU

-~ 68

4--

4-.r

~6

7'7

!Q Z

lot

9.-

'Iw4

- -C1

p
uJ

* - -. * -~ =- -. ~ u)

70

% x. N. V,

.-

-- r

00

~71

A-W ~ ~~Ii ~i-1

-. 4.-

________72

MINI

73r

IF

LL

tw II

LL.

74

-~ ~ ~~~~~ . .~ .- .-.- .;~ .

4R

-JI

0u

~~II

"I.. -

175


~~~~~~I J .& . - ~- . . .- . i

II

I-L

3 _________________

SQ __ K ___________

-- -. 76



IL

p.- K____________4
cr

________________________________________________ I

4N..

wj

AM c

Inor



*I A..
ru

~C
S<

L?, U

z

00
1-

LU

.

" --Ar- 
-

S..S.j

",,,"78

r -'S
,
€

"J



'I~

r.9



N AN

VL

VA

VL
.7L

* ~ =74

Is. ~ :F4

80i



II r

M -f" II

* 81

V % N,



00

OF U-

.J82

r..w Pit



- ~-.I-I.~-~-.-~-

0
* 1

~ I I

______________________ I-_ _ _ 'I'

V
-a

0

-I

z
0

-a

L
-S

*
F -

u-J

~-~- 'I

L~ ;i-.-~
l~

0
s.,~

-a 83
5,

d

0

'a :..P.././~-t-~.V .- ~; -. - - - S



IIn

4-L

,d84



IF.

M,1

- - = = ;

zC

elf,

LJ

-- 85



II

-a-Mad

86z



-A193 120 THREE-DIMENSIONAL SCENE ANALYSIS USING STERO BASED 22
IMAGINGCU) AIR FORCE INST OF TECH WRIGHT-PATTERSON AF8
OH SCHOOL OF ENGINEERING R E ROBERTS 09 DEC 87

UNCLASSIFIED AFIT/GE/ENG/87D-54 F/G 17/7 N

EEEE-Eoonh



,-4

i

,,- *N

.r. I

,-,V..,,

111113i

I.VI

-V%,



, ,..

ppp

-~U I

-p.7

I L

am -u ----

87I



r~~ , -- - a'-- . - , - - ~ , -- ~ '. ~ - - -. - -- ~-~~ ~ ~ ~- -~ -M Mw"I-

aIMF

: 17 -

WIIt

a- I-

* - LLI

-~. -a' 88



r~rrr.'rr~r~~n." p

w'* N

q". D.

- LZ

- ~ ___ ____89

~...*,%7



-s-o

=u -4 -

F5

- 9-

Lr, <

* ((

.5. 90



CN

I

91

%,%



II..' _-_I_ _ _ __ .,I
F TI

Ln Ln

-1

i :, , .. . . . .. . ..,.,..... ........ ,,,-.. . ,,--....-,. ....
ON - -"_'"-""- _" ___ ;__., ". .

K ~. -

~.J .92

mo



APPENDIX B

Program Listing Lor Code Used in
Implementina Stereo Vision

- 1. All programs were written in C programming language.

These programs were executed using VAX C version 2.0 on a

digital MicroVAX II running VMS operating language.

2. All ITEX100 programs are written in C. These programs

are part of Imaging Technology Series 100 family of single-

-' board image processors.

3. A brief outline of the programs used in this thesis is

included below. Page numbers are included for quick

'reference.

3.1 IMAGE-TEST ............ 94
This program performed hardware initialization,
image acquisition, and image disk access.

3.3 LR_QVA ....... .................... 97
This program applied QVA production rules to
both left and right images.

3.4 DISTCOMPARE .... ................ 104
This program performed object matching between

vleft and right images, and computed the
distance to all objects matched in the images.

77

.. 9

K-K 9

£ ,C



,1 * */

" /* Program Name IMAGETEST.C */
S1" */

1 /* Author : Richard E. Roberts Jun 1987 */
1 /* Special thanks to Larry Lambert for assisstance */1. */

1 * Test program for edging algorithms.
,1' I* This program provides a menu for the users that will enable */
/* them to perform the following tasks: */
/* 1. Initialize the ITEX100 hardware and monitor */

' /* 2. Aim and ficus both left and right cameras */
/* 3. Acquire two images - left and right */
.1, 4. Save images on the monitor to disk memory *I
/* 5. Recal images from disk memory and write to the monitor */
l * *l

#include "sys$library:stdio.h"
#include "duaO:[itilOO.itexJstdtyp.h"
#include "duaO:[itilOO.itexjitexlOO.h"

static int option;

main() /**** START OF MAIN PROGRAM ****/

int x, y, dx, dy, color;
int comment[255J, name[256];
char test[10];

/* initialize ITEXI00 board and monitor *I
unsigned base = 0x1600;
long mem = Ox2OOOOOL;
int flag = 1, block = 8;
int errnum;
sethdw(base, mem, flag, block);

while (1)
I
cls();
printf("\n **** EDGE ALGORITHM TEST PROGRAM ****\n");
printf("\n O:Ouit to VMS\n");

printf("\n 2:Initialize hardware\n");
printf("\n 3:Aim and focus left and right cameras");
printf("\n 4:Acquire left and right images");
printf("\n 5:Save images to disk");

printf("\n 6:Recall images from disk\n");
printf("\n\n\n\n\n Select an option by its number\n>");

"" scanf ("%d"1,&opt ion) ;

,:, -switch (option) {

p. 94IA

I.
I



case 0:
setcamera(0);

cs2:return;

initializeo;
sclear(100);
break;

case 3:
setcamera(2); /* select left camera image *
grab(0);
CIS();
printf("\nPress RETURN when satisfied with left image.");

getcharo;

setcarnera(l); /* select right camera image *
grab(0);
printf("\nPress RETURN when satisfied with right image.");
getcharo;
break;

- case 4:
cis();
printf("\nPress RETURN to initiate image acquisition.");
getcharo;
getcharo;

setcarnera(2); /* select left camera image *
printf("\n Camera in use % d",getcamerao);

print("\nres RETURN to take left camera picture.\n");
getcharo;
stopgrab(l);
CIs();
printf("'saving temporary left image...."1);
saveim(131,131,250,250,O,"temp-left.pic", "no corn");

i .:,setcamera(l); /* select right camera image *
% printf("\n Camera in use - Zd",getcamerao);

grab(0);
printf("\nPress RETURN to take right camera picture.\n");
getchar();
stopgrab(l);
printf("\n\nsaving temporary right image....");
saveim(131, 136,250,250,0,"temp_right.pic","no cam");

* sclear(100); 1* put both images on monitor *
readim(l,1,250,250,"temp left-pic","no corn");
readim(260,l,250,250,"tenp right.pic","no corn");

* delete("temp_left.pic;l");
delete("temp right.plc;1");
break;

95

B.L



- .. . ... . ., - | , . . , ..-.. -
:v  

.
:  

-, rrr
-

'r rw " ' -r9.,,l t ''C C 't' -fl ." T

case 5:
cls();
printf("\n\nEnter image filename (including EXT)\n>");
scanf("Zs" ,name);
printf("\nSaving both images. under single filename");
errnum = saveim(0,0,512,252,0,name,"none");
if (errnum < 0)

printf("\nUnable to open file or write to the disk.");
printf("\nPress RETURN to continue.");
getcharo;
getcharo;

}
*, waitvb();

break;

case 6:
cls();
printf("\n\nEnter image filename (including EXT)\n>");
scanf( "%s",name);
errnum = readim(0,O,512,252,name,"none");
if (errnum < 0)

printf("\nFile not found. Press RETURN to continue.");
getcharo;

" . getcharo;
}

default:break;
cls();
printf("\n You did not select a valid option number.");
printf("\n\n Press RETURN to continue.");
getcharo;
getchar();
break;

S.,.' I /***** END OF MAIN PROGRAM ****/

/* Subroutine cls used as clear screen during interactive opertaion */

cls()

printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
return;

/*********************** END OF IMAGETEST.C ********************

96



-, - .. - - mrs-s -t-.i ,.p ,. V~ W~ r W -r 'WS W r - r rt WV

,)

* *"

* Program Name : LR QVA.C *
* Author : Richard E. Roberts Jul 19,7 *

* Special thanks to Larry Lambert for his invaluable *
[ * assistance during the writting and debugging of this code. *

#include "sysSlibrary:stdio.h"
#include "duaO:[itilOO.itex]stdtyp.h"
#include "duaO:|itilOO.itex]itexlOO.h"

GLOBAL VARIABLES USED IN THE PROGRAM

static int option; /* used menu option selection variable */
int thrsh; /* noise threshold variable */

'I-

START MAIN PROGRAM */
/* Raw pixel data is input from the monitor for processing */
/* Left image in coordinates x=O y=O thru x=250 y=250 */

& - /* Right image in coordinates x=260 y=O thru x=510 y=250 */

main()

int lpic[250][250]; /* origional left image pixel data */
int rpic[250][250]; /* origional right image pixel data */
int name[256]; /* filename entered to store OVA results */

/* Initialize ITEX100 board and monitor */

unsigned base = Ox1600;
long mem = Ox2OOOOOL;
int flag = 1, block = 8;
int errnum;
int i, j, i, m, n;
sethdw(base, mem, flag, block);

cls();
printf("\n ****** LEFT AND RIGHT OVA RESULTS ******");
printf("\n\n\n\n\n\n\nPlease wait while left and right images");
printf(" are separated and stored .... ");
for(j=O; j<250; j++) /* obtain left and right images from */
? ( /* video RAM memory */

for(i=O; i<250; i++)
{

m=i+261;
n=j+l;

97



Ipicri][j] = rpixel(l,n); /* left image pixel color array
rpic[i][j] = rpixel(m,n); /* right image pixel color array */

qvamenu(lpic,rpic); /* enter tet loop for matching algorithms */

I /**** END OF MAIN PROGRAM ****/

.-.

~~/* Subroutine qva_menu is a recursive menu which allows interactive *

o/* running of the OVA algorithm and allows the user to run OVA with */
* /* different thresholds and number of iterations against the .ame *1/* scene without reading the monitor. lpic contains the raw pixel data*/

/* from the left image and rpic contains the data from the right image*/

L qva menu(lpic, rpic)
~int lpic1250][250], rpic1250][250];

int left,right,color;

char qva loop -flag[3],print-flag[3];
int i,j,k,l,m,n,fl;

Sint feature|250; /* OVA feature vector */

int picture[2501; /* vector containing pixel color data */
int lrqvapic[250][2501; /* image after left-right QVA smoothing */
int tdqvapic[250][250]; /* image after top-down OVA smoothing */
int qvaleft[250][250]; /* results of applying QVA to left image */
int qvaright[250][250]; /* results of applying OVA to right image */

for(;;)

cls();
printf("\n ******** LEFT RIGHT COMPARISON TESTS ********");
printf("\n\n\n 0: Quit the test loop to VMS");
printf("\n 1: Display results of applying OVA");
printf("\n\n\n\n\n Select an option by its number\n>");
scanf("%d",&option);

switch (option)
(
case 0: return;

case 1: clso;
printf("\n Enter noise threshold\n>");
scanf( "Zd",&thrsh);

for(j=O; j<250; j++) /* set up left image for OVA */

for(i=0; i<250; i++) tdqvapicli][j] = lpicliJij];

text(40,390,0,2,0,"Left image");
qva loop flag[O] = 'y'; /* set loop flag on */
while(qva_loop_flag[O]=='Y' II qva_loop_flag[0]=='y')

98

%X

4. ~



left right(picture, feature, lrqvapic, tdqvapic);
top aown(picture,feature,lrqvapic,tdqvapic);
printf("\n\n\n Run OVA against left image again? (y/n) )

scanf("X~s",qva-loop-flag);

for(j=O; j<250; j++) /* save left image qva results *

for(i=O; i<250; i++) qva-leftliJ[j] = tdqvapic[iJ[jJ;

aclear(O,O,511,5l1,1OO);
print f("\n\n\n\n\n\n'");
printf("Please wait. Right image set up in progress .... 9)

for(j=O; j<250; j++) /* set up right image for OVA *

- for(i=O; i<250; i++)

tdqvapicii)j] = rpiclillj];
wpixel(i+l,j+l,rpic[i] [ji);

text(40,390,O,2,O,"Right image");
qva loop flag[O] = 'y'; i* set loop flag on *
while(qva loop flag[OJ=='Y' 1 qva loop flag[O]=='y')

letrgtpcuefaurIrvpctqai)
ltigh(picture,feature,lrqvapic,tdqvapic);

printf("\n\n\n Run OVA against right image again? (yin)")
scanf("Zs",qva-loop-flag);

for(j=O; j<250; j++) 1* save right image qva results *

for(i=O; i<250; i++) qva_right[i)[j] = tdqvapic[i][jj;

aclear(O,O,511,5l1,lOO); /* print OVA results to monitor *
for(j=O; J<250; j++)

for(i=O; i<250; i++,)

wpixel(i+l,j+l,qva left[iI[j I);
wpixel(i+261,j+l,qva-right[iI[j]);

printf("\n\nEnter name of file\n>");
scanf("%s",&test);
saveim(1,l,510,250,O, test,"none");
break;

return;

99

1~W



/* Subroutine left-right processes the image data by columns from */
/* left to right. Each column is assigned to a picture vector and */
/* input to the QVA feature processing subroutines. rhe feature *1

,1 /* vectore control the amount of brightness smoothing performed. */
/* Data resulting from the top down subroutine (tdqvapic) is */
/* transformed into lrqvapic. Pixel brightness averaging is used */

left right(picture, feature, lrqvapic, tdqvapic)
int picture[], featurell, lrqvapic[250][2501, tdqvapic[250112501;

int i,j,left,right,color,coloravg,smoothlength;

printf("\n\nprocessing left-right OVA feature vectors ....
for(j=O; j<250; j++){

for(i=O; i<250; i++) pictureli] = tdqvapic[il[j];
create feature(picture,feature);
qva rules(picture,feature);

* color = left = right = 0;
while (right<249)

S " right = right + 1;
S"if (feature[right]==1 11 feature[right]==2 II right==249)

color = 0;
St smooth length = right - left;

for(i=Ieft; i<right; i++) color = color + tdqvapic[i][j];
color avg = color / smooth length;
for(i=left; i<right; i++) Irqvapic[i][j] = color avg;

* - left = right;

for(j=1; j<251; j++) /* print left-right results to the monitor */

ft for(i=261; i<511; i++) wpixel(i,j,lrqvapic[i-2611[j-11);

'f return;

.5.

100

% %
17. Joo



/* Subroutine topdown processes the image data by'rows from */
/* left to right. Each row is assigned to a picture vector and */
/* input to the OVA feature processing subroutines. The feature */
/* vectore control the amount of brightness smoothing performed. */
/* Data resulting from the left right subroutine (lrqvapic) is
/* transformed into tdqvapic. Pixel brightness averaging is used */

top down(picture, feature, lrqvapic, tdqvapic)
5int picture[], feature[], lrqvapic[250][250, tdqvapic[250][250];

int i,j,left,right,color,color_avg,smooth_length;

printf("\nprocessing top-down OVA feature vectors ....
for(i=O; i<250; i++){

for(j=O; j<250; j++) picture[j] lrqvapic[i][j];
create feature(picture,feature);
qva rules(picture,feature);

color = left = right = 0;
while (right<249)
{

right = right + 1;
if (feature[right]==l II feature[right]==2 11 right==249)I

color = 0;
smooth length = right - left;
for(j=Ieft; j<right; j++) color = color + lrqvapic[i][j];
color_avg = color / smooth length;
for(j=left; j<right; j++) tdqvapic[i][j] = color_avg;
left = right;

}

for(j=261; j<511; j++) /* print top-down results to the monitor */

for(i=261; i<511; i++) wpixel(i,j,tdqvapicli-261]lj-2611);}

return;

101



/* Subroutine create feature uses the video data in the picture */
/* vector and creates a feature vector corresponding to those */
/* pixels. The threshold entered by the user is a global variable */
/* used to determine the type of feature assigned to each pixel. */
/* Processes vector of length 250. Either row or column data

create feature(picture, feature)
int picture[], feature[];

int dif,i;

for(i=l; i<250; i++) /* difference between succesive pixels */
4 7 f

dif = pictureli-l] - picture[i];
if (dif < -thrsh) feature[il = 2; /* pos edge */
else if(-thrsh <= dif && dif < 0) feature[i] = 4; /* pos grad */
else if(dif == 0) featureliJ = 5; /* smooth */
else if(O < dif && dif <= thrsh) feature[il = 3; /* neg grad */
else featureti] = 1; /* neg edge */
}I

return;)

/* Subroutine qvarules applies QVA production rules to the feature */
/* vectors. Input feature are analyzed and all gradients are removed */
/* leaving only edges and smooth pixel brightness features. *
/* picture data and threshold used to control the amount of smoothing*/
/* Processes vector of length 250. Either row or column data */

qvarules(picture,feature)
int picture[], feature[];
(

int left, right, temp, length;

right = left = 0;
while (right < 250)

right = right + 1;
if(abs(picturelright] - picturelleft]) > thrsh

i feature[right]==l 1I feature[right]==2)

length = right - left; /* how far from last edge */
if (length = 1)

if (featurelrightJ=f3) feature[right) = 1;
else featureiright] = 2;
left = right;

else if (length = 2 && featurelleft]==l && feature[right]==l)

102

t -... ""-. ....- 
. . ' , .-

.. . ? " , . 2 a- _ ' "", $ e e 22 ee,.e¢



featurel lef t+1 1=1;
left = right;

eleif (luengt == && featureeftl=2&&fetueligtJ=2

whl featurel tm ==e ur tmp1 &&t+ te=2;ft

lte = rgtm-1

else if(etrlep=2& etrlepl=4

temp = right
if i (feature[temp l=featuretemp-J==3) m~lft

tep=ten -1
temp = temp + 1;

whiet(fete tempJ=featuretempi = & tep;et

em =etrlep temp-i

temp = temp + 1; *satsotig fer de

el f (eatet mj= =& 5e;retm-l
temp = temp + 1;

while= t eate;l=eauete l && rs tleftpoieft

cls()

eleeeaurutrn;=2

ILA



* Program Name DISTCOMPARE.C *

• Author Richard E. Roberts Aug 1987 *

Special thanks to Larry Lambert for his assistance in developing *
* and debugging the image comparison and distance algorithms used. *

* This program identifies regions in the left image, matches those *
.* regions in the right image, and computes the distance to them. *
• The images are input to the program from the video monitor. *
* The left image must be located in position x=O y=O to x=249 y=249. *
• while the right image must be located at x=260 y=O to x=511 y=249. *

#include "sys$library:stdio.h"
#include "sysSlibrary:math.h"
#include "duaO:[itilOO.itexJstdtyp.h"
#include "duaO:[itilOO.itexiitexlOO.h"

GLOBAL VARIABLES */

static int option;
int qva loop;
int qva left[250][250], qva right[250][250J;
int maskarray[250[250, pattern_array[250][2501;
int dist result[lO0] = 0;

START MAIN PROGRAM */
/* OVA processed image data is input from the video monitor */

main()
{

/ * Initialize ITEX100 board and monitor *l
A unsigned base = Ox1600;

long mem = Ox20O00L;
int flag = 1, block = 8;
int errnum;

int i,j,k,l,m,n, fl;
int xlft, xrgt, ytop, ybot, color;
int a size;
int pixarray[512l;
int total = 0;
sethdv(base, mem, flag, block);

104

% ,jw
-'-ZAl4



OisO
( , " cls()

printf("\n * LEFT RIGHT IMAGE MATCH TEST ******");
iprintf("\n\n\n\n\n\n\n\n Please wait while left and right");

printf(" images are separated and stored .... \n\n\n ");,
for(j-0; j<250; j++) /* obtain left and right images from */
(. /* monitor video RAM memory */

rhline(0,j,512,pixarray);
for(i=O; i<250; i++)

•"- - f
qva left[i][j] = pixarray[i]; /* read left image into array */
qva-right~i][j] = pixarrayli+260]; /* read right image */

mask array[i][j] = 0; /* initialize all mask pixels off */

carea(l,l,250,250,1,261,250,250);
line(60,0,60,250,0); /* left limit of left image search area */
line(450,0,450,250,0); /* right limit of right image search area */
line(0,0,O,512,0);

/* Now find "good" objects in left image. Start with large objects *

. -'i 1* of size 41 X 41 and decrease the size of the minimum object each */
/* time until object size is 11 X 11. Search area constrained to */
/* x=80 thru x=250 because left image contains information not */
/* contained in right image. Similiarily the right 50 pixels of the */
• * right image contain information not visible in left image. *1

for(a size=20; a size>=5; a size=a size-5)
printf("\n\n\nPattern area search size is");

printf(" %2d by %2d",2*a size+1,2*a sizedl);
printf("\n\n\n\nLooking for good object in left image...");

U-. for(j=a size; j<240-a size; j+=(a size/2)) 1* large objects first */

K.for(i=60; i<250; i+=2) /* limit search start area in left image */

fl = 0; /* initialize flag off */
[ I,' %for(l=j-a size; l<=j+a size; 1++)
N'- for(k=i-a size; k<i+a size; k++)

if(qvaIeft[k][l] != qvaleft[k+lJ[l]) fl = 1;

for(l=j-a size; l<=j+a size; 1++)
if (qva-left[kl[ll!=qva left[k][l+1 11 rpixel(k,l)==0) fl = 1;

if (fl == 0) /* if flag off -> object found with minimum size */

-total += 1;
flood(k,1,255);

U- xrgt = ybot = 0;
xlft - ytop = 250;

. .105

SS



%for(n=O; n<250; n++) /* find the size of the object *

for(m=O; m<250; m++)

color = rpixel(m,n);
if(color==255 && m>xrgt) xrgt=m;
if(color==255 && n>ybot) ybot=n;
if(color==255 && m<xlft) xlft=m;
if(color==255 && n<ytop) ytop=n;

if(xlft < 60) xlft = 60; /* truncate area with over flood *

digit(xlft,ytop+261,xrgt-xlft,ybot-ytop,total);
for(n=ytop; n<=yhot; n++)

for(m=xlft; m<=xrgt; m++)

F color = rpixel(m,n);
if (color==255) pattern array[mJ[nJ qva left[mJ In];
else pattern arraylmilni = 0;

flood(k,l,0); /* indicate identified objects with black color *

find-match(xlft, xrgt, ytop, ybot, a-size, total);

printf("\n\n\n\nLooking for good object in left image...");

I /**** END OF LOOP TO SELECT REGIONS IN THE LEFT IMAGE**/

/*FORMAT RESULTS ON THE VIDEO MONITOR FOR READABILITY

aclear(0,0,252,252,lO0);
carea(1,261,250,250,1, 1,250,250);
aclear(l,260,252,252,1OO);

line(255,255,255,480,O);
line(251,430,255,430,O);
number(230,425,50);
line(251, 380,255, 380,0);

* - number(230, 375,100);
line(251, 330, 255, 330,0);
number(230,325,150);
line(251 ,280, 255,280,0);
number(230,275,200);
line(251 ,480,255,480,O);
number(230,475,O);

printf("\n\n\n\nOBJECT DISTANCE");
for(l.l; i<=total; i++) printf("\n %d %d",i,dist-resultlil);

/**~i~* END OF MAIN PROGRAM LOOP ***

106

(IJ. 1-C'I III



-

/* Find corresponding object in right image to match object *I
i* selected in left image */

/* Search rectangular areas of right image for matching object *I
/* Size of search area supplied by main program */

find match(xlft, xrgt, ytop, ybot, a size, total)
int xlft, xrgt, ytop, ybot, a-size, total;

int i, j, k, 1, m, n, color;
int mask flag, x index;
int small x, small y, x start, y start, x size, y size, x_stop;
int middle x, middle y,-tst val,-n offset, m offset;
double dif[250][2501, value, testptl, testpt2;

:.: ': double huge num;

printf("\nLooking for matching object in right image...");
x size = xrgt - xlft;
y-size = ybot - ytop;

4 middle x = x size / 2;
middle y = y size / 2;
hugenum = (double) (256.0 * 250.0 * 250.0);

if (ytop > 5) ystart = ytop-2; /* limit size of search area */
else y start = 0;
for(l=ystart; l<ytop+13; 1++) /* manually measured offsets */
{

for(k=O; k<200; k++) /* manually measured offsets */

mask flag = 0; /* initialize mask flag off */
tst val = 0;
difTk][l] = 0;
for(n=O; n<=ysize; n++)

color = pattern array(middle x+xlftl(n+ytopl;
if(color != 0)

tst val=tst val+abs(color-qva_right[middle x+kIln+lJ);
if(maskarrayJnmiddlex+kIn+l == 100) maskflag = 1;

for(m=O; m<=x size; m++)

color = patternarray[m+xlftJ[middley+ytop];
if(color != 0)

tst val=tst val+abs(color-qva rightlm+kjlmiddle y+lJ);
if(mas1_array[m+k][middle y+l]==IooII(m+k)>200) maskflag=1;

)
if(tst val>(x size+y size)*10 II mask flagf=1)

difik]ll] = huge_num;
else

for(n=0; n<=y_size; n++)

107

f.'
ri



-, - . - - ,-n--u-- , r-r-r-.r ,rw- u-s-: r-r-rwrrvr=, -rzw-w rr ' V _ =. r - - .p -s - . .rr ' r . -' . .....

for(m=O; m<=x size; m++)(
color = pattern_array[m+xlft][n+ytop;
if (color 1= 0) value=abs(color-qvarighQm+kJ[n~l);

16 else value=O;
dif[k][1] = dif[k][11 + value;
if(maskarray[m+kJ[n+lJ == 100) mask_flag = 1;

if(maskflag == 1) dif[k][l] = huge num;

PI

small x = 0; /* initialize variables */
small-y = y start;
testptl = dif[O][y start];
testpt2 = 0;
for(l=ystart; l<ytop+13; 1++)

for(k=O; k<200; k++)
{
if(dif[k][l] < testptl)

testpt2 = testptl;
testptl = dif[k][1];
small x = k;
small-y = 1;

ico
printf("\n\nLowest correlation difference = f",testptl);~printf("\nNext lowest correlation difference = Zf",testpt2);

/* If the top two correlation differences are withen 50 of each other */
/* then the distances are too close to acurately select a matching */
/* region in the image. By increasing the size of the window, extra */
/* information is available to match the regions. *1

if (testpt2 <= testptl + 40)

printf("\n\nUsing larger window to find right image object...");
if (ytop > 5) ystart = ytop-2;
else ystart = 0;

switch (a size) { /* accelerate matching by constraining area */
case 5: if(xlft >= 60) x start = xlft - 60;

else x start = 0;
x_stop = xrgt-20;
x index = 1;
break;

108

w-n



case 10: if(xlft >= 100) x start = xlft -100;

else x-start = 0;
x stop =xrgt;
x index =1;

b-reak;
case 15: if(xlft >= 150) x start = xlft -150;

else x start = 0;
x stop =200;
x index = 2;
break;

default: x start = 0;
x stop =200;
x index = 2;
break;

for(l=y-start; 1<ytop+13; 1++) /* manually measured offsets *

for(k=x-start; k<x stop; k+=x index)
/* manually measured offsets *

mask-flag = 0; 1* initialize mask flag off *
W^I tst val = 0;

difrk]Il] = 0;
for(n=3; n<=y size-3; n++) /* allow small overlap *

tst-val = tst-val + abs(qva-leftimiddle x+xlft][n+ytop]
-qva rightimiddle x+kJ[n+lI);

if(mask arraylmiddle x+kJin+lT == 100) mtask_flag = 1;

for(m=3; m<=x-size-3; m++) /* allow small overlap *

tst val = tst val + abs(qva_left[m+xlft][middle y+ytopl
qva rightlm+k][middle y+lJ);

if(mask array[m+kJ(middle y+lT==100II(m+k)>200) mask flag=1;

if(tst-val>(x size+y size-12)*20 11 mask flag==1)
dif[kI~lI = Euge nun;

else

if(ytop > 4) n offset =4; /* keep array withen x,y bounds *
else n-offset = 4 -ytop;

if(xlft > 4) m offset = 4;
else m offset = 4 -xlft;

for(n=0; n<=y-size+8; n++) /* increase height by 8 pixels *

for(m=0; m<=x size+8; m++) /* increase length by 8 pixels *

value =abs(qva_leftim+xlft-m offsetjln+ytop-n offset]
4, - qva rightlm+k-m offsetlln+l-n ofiseti);

difiklf 11 =difikif 11 + value;

109

A% %



.4

" ". small x = x start; /* initialize boundary variables */
small-y = y start;
testptl = difx_start]ly start];
testpt2 = 0;
for(l=ystart; l<ytop+13; 1++)

, for(k=x _start; k<x_stop; k=k+x index)

" if(dif[k][ ] < testptl)

p testpt2 = testptl;
* -. testptl = difik][l ;

small x = k;
small-y = 1;

• cr t d
printf("\nLowest correlation difference = Zf",testptl);
printf("\nNext lowest correlation difference = %f",testpt2);

/* First draw a rectangle around matching region in right image */
/* Then compute the distance using the matching regions. */
/* If no regions are matched then distances are not calculated. */

if(testptl!=O && testptl!=huge_num) /* is position valid */

.-_ digit(small x+260,small y,x size,y size,total);
distance(xllt, small x, x size, total);/* find distance to object */
for(l=O; l<=ysize; I++) -

for(k=O; k<=x size; k++)

if (pattern arrayfk+xlft][l+ytop] != 0)
maskarraylk+small_xJ[l+small_y] 100;

return;
* ) 1"*** END OF FIND MATCH SUBROUTINE ****/

110

f"'
. ii0



I I-XV 51S- -1 4t-s W "AW

* 1* Calculate the distances to the objects identified in both images *

/* Left image object x=xlft y=ytop dx=x size dy=y-size *p/* Right image object x=x small y=y small dx=x size dy=y size *
/* xl = left image objects top left corner position measured from 0 *

-. 1* xr = right image objects top left corner position measured from 0*

/* Angle conversion factor from # of pixels to # of degrees *
/* l.592deg = 22 pixels at 72 in camera seperation from object *

/* Seperation distance between cameras cam sep = 9.0 inches *

#define pi 3.14159
* #define cam sep 9.0 /* camera seperation distance in inches *

distance(xl, xr, xsize, count)
mnt xl, xr, xsize, count;

int i, color;
float templ, temp2, tl, t2;
double thetal, theta2, theta3, resltl, reslt2, reslt3;
double z distance;
double sino;

for(i=0; i<=xsize; i++)

tl = i + xl; 1* left image object displacement *
if (t1 < 125.0) templ = 90.0 + ((125.0 - t1) * (1.592/22.0));

-else tempi = 90.0 - ((tl - 125.0) * (1.592/22.0));

t2 = i + xr; /* right image object displacement *
if (t2 > 125.0) temp2 = 90.0 + ((t2 - 125.0) * (1.592/22.0));
else temp2 = 90.0 - ((125.0 - t2) * (1.592/22.0));

thetal = templ * (pi/180.0); /* convert angle to radians *

* retl = stheta*l);1800)
reslt2 = sin(theta2);

theta3 = (180.0 - (tempi + temp2)) * (pi/180.0);
reslt3 = sin(theta3);
if (reslt3 < 0.0) reslt3 = reslt3 * -1.0; /* absolute value *
if(reslt3==0.0) printf("\n\n\nreslt3 = 0. cannot divide by 0.");
z -distance = (cam-sep * resltl * reslt2) / reslt3;
color = (int) z distance; /* convert to integer for output *

W vwpixel(i.xr+260, 480-color, 0);

dist resulticounti = color; /* save the distance calculation result *
num(xr+(xsize/2)+260,480-color-4,count);/*number each distance line *

* return;
) /**** END OF DISTANCE SUBROUTINE**/

%4~



* Subroutine name DIGIT*

*Author Larry Lambert Sept 1987*
*Modified by: Richard Roberts
*Printd numbers between 0 and 99 inside region rectangles *

* static mnt data[lOII28I

(0:00,00,1,1,0,1,10,1,1,0,00,1110,0,1,1,0,0,0,0,0I,
[0,0,0,,0,1,1,0,,,,0,0,0,0,,0,1,1,1,0,1,1,1,0,,
(0,0,0,0,1, 1,01, 1,0,,1,1,0,0,0,0, 1,1, 1,0, 1, 1,1,0,0,0,0,0),

* {0,0,0,0,0,l,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0),

(0,0,0,0,0, 1, 1,0,1, 1,1,0, 1, 1,1,0, 1, 1,1,0, 1, 1,1,0, 1, 1,1,0),
[0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,l,1,0,0,1,1,0,0,0,0,0),
(0,0,0,0,0,l,l,0,0,1,l,0,0,0,0,0,l,1,l,0,l,l,1,0,l,l,l,0)

digit(xlft, ytop, x size, y-size, value)
mnt xlft, ytop, value;

mnt i, j, numl, num2, color;

numi = value /10; /* first digit *
num2 = value -(10*numl); /* second digit *
color =rpixel(xlft+3, ytop+3); /* sample color test *
if(color < 80) rectangle(xlft,ytop,x_size,y size,200);
else rectangle(xlft,ytop,x_size,y-size,0);
xlft +=-1 1* starting point to print first digit *

ytop +=l;
for(i=0; i<=3; i++) /* print first digit *

-~ for(j=0; j<=6; j++)

- if(datalnumlli+(j*4)1 = 0)

if(color < 80) vpixel(xlft+i, ytop+j, 200);
else wpixel(xlft+i, ytop+j, 0);

for(i=0; i<=3; i++) /* print second digit *

for(j=0; j<=6; j++)

if(datajnum2lji+(j*4)I = 0)

-p if(color < 80) wpixel(xlft+5+i, ytop+j, 200);
else wpixel(xlft+5+i, ytop+j, 0);

V return;
A } /**** END OF DIGIT SUBROUTINE **/

S 112



K * Subroutine Name NUMBER*

*Author Larry Lambert Sept 1987
*Modified by: Richard Roberts*
*Prints numbers between 0 and 250 on distance line scale*

number(xlft, ytop, value)
int xlft, ytop, value;

mnt i, j, nmm, num2, num3;

numi = value /100; /* first digit *
num2 = (value -(100*numl)) /10; /* second digit *
num3 = value -((100*numl) + (10*num2)); /* third digit *

xlft +=1; 1* starting point for digits *
ytop +=1;
for(i=0; i<=3; i++.) /* print first digit *

for(j=0; j<=6; j++)
*if(datalnumllli+(j*4)I = 0) wpixel(xlft+i, ytop~j, 0);

for(i=0; i<=3; i++) 1* print second digit *
for(j=0; j<=6; j++)
if(data[num2l[i+(j*4)] ==0) wpixel(xlft+s5+i, ytop+j, 0);

for(i=0; i< 3; i++) /* print third digit *
for(j=0; j<=6; j++)

if(datajnum3jli+(j*4)J = 0) wpixel(xlft+1O+i, ytop+j, 0);

return;

/* SUBROUTINE: NUM FUNCTION: prints numbers on distance lines *

* num(xlft, ytop, value)
int xlft, ytop, value;

mnt i, j, numi, num2;

numi = value /10; /* first digit *
- num2 = value -(1O*numl); /* second digit *

xlft +=1; 1* starting point for digits *
* ytop +-1;

for(i=O; i<=3; i++) /* print first digit *
for(J=0; j<=6; j++)

* -if(datalnumljli+(j*4)I = 0) wpixel(xlft+i, ytop+j, 200);

113



for(i=0; i<=3; i++) /* print second digit *
for(j=0; j<=6; j++)

if(datalnurn2jli+(j*4)] = 0) wpixel(xlft+5+i, ytop+j, 200);

return;

/* Subroutine used as a clear screen during interactive opperation *

cls()

printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");

return;

VI

11



Biblioaraphy

[Aut85] Automation Technology Corporation. Final Report of
Phase I SBIR Contract DAAE07-85-C-R083, 3-D
Viewin System Enhancements For The Control of
Robotic Vehicles, Technical Report, No. ARD-5463B,
Columbia MD, Aug 1985 (AD-B107 207).

[Bli85I Blicher, Peter A. Edge Detection and Geometric
Methods in Computer Vision, Technical Report, No.
STAN-CS-85-1041, February 1985.

(Ho185a] Holten, James R., Rogers Steven K., Kabrisky
Matthew, and Cross Steven, "Stereo Image Ranging
for an Aoutonomous Robot Vision System",
Proceedings of the SPIE International Conference
on Intelligent Robots and Computer Vision,
Cambridge MA, September 1985.

(Hol85b] Holten, James R. A Robot Vision System, PhD
dissertation AFIT/DS/ENG/85D-1. School of
Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1985

* (AD-A164 202).

[Hol87] Holten, James R. Personal communication, 15 July
1987.

[Hor86] Horn, Berthold Klaus Paul. Robot Vision. The MIT
Electrical Engineering and Computer Science
Series, McGraw-Hill Book Company, New York, 1986.

[Ite86) Imaging Technology Incorporated, ITEX 100
IProarammer's Manual, Technical Publications

Department, 600 West Cummings Park, Woburn MA,
May 1986.

(Kab87] Kabrisky, Matthew, Professor Electrical
Engineering. Personal interview, Air Force

7Institute of Technology, Wright-Patterson AFB, OH,
April 1987.

(Mor83] Moravec, Hans P. "The Stanford Cart and the CMU
Rover," Proceedings Of The IEEE, Vol 71, No. 7:
872 - 884, July 1983.

(Pou86] Poulos, Dennis D. Ranae Imaae Processing For Local
Navigation Of An Autonomous Land Vehicle, MS
Thesis, Naval Postgraduate School, Monterey, CA,
Sept 1986 (AD-AI71 053).

-S 115

I %



L %

VITA

Richard E. Roberts was born on 3 May 1957 in Miami Beach,

Florida. He graduated from Pace High School in Opa-Locka,

Florida in 1975 and attended the University of Florida in

Gainesville, Florida from which he received the degree

Bachelor of Science in Computer and Information Sciences in

June 1980. He entered the United States Air Force on active

duty in May 1981 and received his commission from Officer

Training School in August 1981. From August 1981 until June

1983 he attended the University of South Florida in Tampa,

Florida where he received the degree Bachelor of Science in

Electrical Engineering. After graduation he was assigned to

the Shuttle Activation Task Force at Vandenberg AFB,

California as a instrumentation systems engineer. He

"" entered the Masters Program in the School of Engineering,

Air Force Institute of Technology, in June 1986.

" : Permanent Address: 1235 N.W. 128 Street
N.Miami, Florida 33167

'. 116

Se



. UNCLASSIFIED
ECURITY CLASSIFICATION OF THIS PAGE

I Frm Approved
REPORT DOCUMENTATION PAGE OM No. 0704-0188

, .1a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release:

. 2b DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution Unlimited

. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

* AFIT / GE / ENIG / 8Vb-54

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

' School of Engineering AFIT/ENG

"6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, ard ZIP Code)

- Air Force Institute of Technology
/__Wright-Patterson AFB, OH. 45433

k 8a NAME OF FUNDING 'SPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK IWORK UNIT
ELEMENT NO NO NO ACCESSION NO

.11 TITLE (Include Security Classification)

" Three-Dixrensional Scene Analysis Using Stereo Based Imaging1!12 PERSONAL AUTHOR(S)

1Roberts, Richard E., Captain, USAF
W~a TYE O RIOT1 3b TOM COERDi4 DATE OF REPORT (erot, 127AE ON

IMasters tesis FROM TO 87/12/09 127

.1,16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Pattern Recognition Artificial Intelligence

* 209 CaImputer Vision Robotics
-I, Image Processing
.19 ABSTRACT (Continue on reverse if necessary and identify by block number)

I) Thesis Chairman: Matthew Kabrisky, PhD

Professor of Electrical Engineering

-~A AdovedI

,%

A. i .

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATIONI 0 UNCLASSIFIED/UNLIMITED K! SAME AS RPT C DTIC USERS UNCLASSI eIAe
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22 OFFICE SYMBOL

Dr. Matthew Kabrisky, AD-24 I 513? 255-5276 I AFIT/E

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



continued from block 19 - ABSTRT:

T'his thesis presents a new method for using passive binocular vision to create

a map of the top-view of a robot's environment. Mhile numerous autonomous robot

navigaticn systems exist, most attempt to match objects in each image by following

edges or locating significant groups of edge pixels. The method described in this

paper uses two cameras (alligned in parallel) to generate stereo images. Low level

features are extracted using a new non-linear production rule system, rather than a

conventional filter design. The features are registered by matching correspondingly

shaped regions of constant brightness levels in both images and the offsets are then

ccrputed. The use of heuristics to relieve the coputational burden associated with

*low level image processing is unique; both in processing the images and in locating

matching regions in the images. The feature extraction algorithm, the intermediate

- sym-bolic representations, and the application of these results to hierarchical

structures conmon to context queuing systems are presented.

*.I%. L - J6 . - -6 %



NN

% %


