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Normal modes of methylated Z-DNA poly(dG-m dC) "(dG-m dC) are computed by helix lattice
dynamics. Good ag-reement with Raman spectral data is obtained. We discuss improve-
ments in Lhe formulation of the problem which allow us to greatly reduce the size of
the matrix used. This leads to greatly reduced calculation times. The improvements
come from tusing knowledge of the C? and time reversal symmetries.
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Normal Mode Calculation

for Methylated Z-DNA poly(dG-m5 dC)-(dG-m5dC)

X.M. Hua and E.W. Prohofsky

Physics Department, Purdue University
West Lafayette, IN 47907

Abstract

.1. e- ,.-, ', I, / ) 5 5
Normal modes of methyiated/Z-DNA poly(dG-m%1dC).(dG-mCAC)

are computed by helix lattice dynamics. Good agreement with

Raman spectral data is obtained. We discuss improvements

in the formulation of the problem which allow us to greatly

reduce the size of the matrix used. This leads to greatly

reduced calculation times. The improvements come from using
/

knowledge of the C- and time reversal symmetries. s' ' '
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I. Introduction

Currently DNA methylation is an interesting topic in biopolymer

research. Behe and Felsenfeldldiscovered that the B-Z transition of

poly(dG-m 5dC)'(dG-m 5dC) occurs at low salt concentration, close to usual

2
physiological conditions. M6ller et al. methylated poly(dG-dC).(dG-dC)

at the N-7 position of guanine. They confirmed that at 100% methylation

of the guanine residues, poly(m dG-dC).(m 7dG-dC) is fully converted to

Z form in a physiological salt solution. Thus methylation could efficiently

affect genetic activities of DNA. In particular, the sequence m dC-dG is

associated with systems which have decreased transcription 
levels,3 '

4

Crystal structure of (m dC-dG) 3 Z-DNA
5 and (GCm5 CCGGCC) A-DNA have

been solved by x-ray diffraction, Slight structural differences between-

methylated and unmethylated DNA have teen observed5 -6 and have been used

to explain the electrostatic stability of methylated Z-DNA.5 ,7 Structural

information of the poly(dG-m 5dC) molecule in solution have been obtained

in both B- and Z-conformations from electric dichroism measurements.
8

Raman spectroscopy has been employed to investigate the temperature dependence

of the B-Z transition in poly(dG-m 5dC). 9 Vaccuum UV CD spectrum were also V

obtained experimentally. The results are consistent with the suggestion \I.

that the low- and high-salt Z-forms are comprised of different proportions

of Z - and Z -conformations. I

Lattice dynamics has been used to quantitatively explore the far-

infrared absorption spectrum and Raman scattering spectrum of A-, B- and

11
Z-form DNA. In this calculation we use lattice dynamics to compute the

irq~
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normal modes of methylated Z-DNA poly(dG-m dC) •(dG-m dC). The internal

force constant formalism is rearranged and Coulomb potential energy is

reformulated in a precise fashion. The C2 symmetry of Z-form

poly(dG-m5dC)•(dG-m5dC) is emphasized. A brief discussion about C2

symmetry is given. This rearrangement helps us to greatly reduce the

computer run time. The results of a normal mode analysis and assignments
9

are compared with experimental data. A reasonably good agreement between

them is obtained.

II. Theoretical Formalism

Let us consider an infinite double-helical molecule. The helical

symmetry axis is taken as Z axis in cartesian coordinates. Helical

symmetry implies that each unit cell is transformed geometrically into

the next by the operationH(p,$ where p is the pitch along Z-axis and

is the pitch angle about Z-axis. 7(p,#) is thus a translation through p

plus rotation through *.

In helix lattice dynamics all interactions between atoms are

characterized by effective force constants which are appropriate second

derivatives of the true potential with respect to pairs of degrees of

freedom of the system. These are most concisely expressed as functions of

the difference in positions of pairs of atoms and we call this difference

of positions the internal coordinate system. These internal coordinate force

constants can be further broken down into valence force constants, hydrogen ,

bond force constants, and non-bonded force constants which are due to

Vani der Wall and electrostatic interactions. The electrostaLic forces dominate

our ioni-bonded interactions. The potential energy in internal coordinates is -

Distribution/
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U Z SmfmSm a (2.1)S2 mt t t t

where S is the internal coordinate, m labels what we will call the

unit set of internal coordinates and t labels the individual internal

coordinate in the unit set. Since atoms in one unit cell of the repeating

helix interact directly with atoms in other unit cells the unit set of

internal coordinates involves atoms in more than one unit cell and the

unit set is distinct from the coordinate of a unit cell. In particular

one needs to pay attention to the force constants of atoms that cross

the boundaries of the unit cells.

The internal coordinates are then expanded in mass weighted Cartesian (MWC)

coordinates as

t Ki AM- tiqi (2.2) "

Ak -K tk -k

where q. u mi is the mass of ith atom and u is the displacement of

it" atom in Kth unit cell. l is a vector whose form depends on the

character of the internal coordinate 12 (stretch...etc.). The double super

-"krkt th thand subscripts of Bti emphasize that ti is assigned to i atom in k

unit cell and t th internal coordinate in mth unit set. N

13
It has been proved that

rk - R O k- (2.3)ti t •

where R is the rotation through helical angle p,

cos, -sinp 0

R -sin*, cos 0 (2.4)

0 0 1J

NN



4

Using the Born-Von Karman boundary condition one could write

1 d -ikO (2.5)-qk =2 f dOR k q 1(O) e

and I
q -) = qi(O) (2.6)

Substituting (2.3) and (2.5) into (2.1) and noting that

Seim(6-') = 6(-0') (2.7)
21T

m

one can formulate UI as
IF

Ui =21 ZX Z d0{t + ()'Rk _1 -k 0 f0 -)O t _ £ (~tk£O

(2.8)

With the condition k,t - 0, + 1 and k-t - 0, + I which results from the

local properties of internal forces.

In previous work the electrostatic forces were treated as simple

stretch forces. It is possible to treat them more exactly without this

implicit simplification as follows. In the harmonic approximation the

Coulomb potential energy could be written as

1 k A 9, ee Ak +
U = z E {(uI - u ).V -' I.(u - uj)} (2.9)
c k kJ It o

_- k _-k A-tkuth

where r = Rk - k is the position of ith atom in kth unit cell provided
Ak %,

is the equilibrium position and u is the displacement. e is atomic partial %

charge assigned to atom I and Et is local dielectric function in the neighbor-

hood of atom I.

N0

M %wx%. -le
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Eq.(2.8) could be expressed in MWC coordinate as

ek e e+ 3 +
1 *k eieh ih ih A
E q E -- " qJ "C ki I h m /C.C

i i~t h ihI

+-*ktI

2 k 1 I/m m.C I-ki 3 q#t
kt ij j IR Ij

(2.10)

where

=kt -L (2.11)

R R.I IRiji

Using (2.3)-(2.6) leads to

" ee -I + 3Bih Bih
Uc 2 E dO q ()-{E - _o1 3 i

Tr ih ih-

-+ ot 'RE-I 3ij J -i"
ee ee }.()

-E £[ 3 j }-qtJ lj i C [ i 3

(2.12)

The kinetic energy T is

T E dO q (6).q(O) (2.13)
2 1 i i

The Lagrangian

L T (Ui + U )
i c

leads to the secular equation:

+- 2-}
E D2jqj q q (2.14)

J wq 1

jr
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where the harmonic behavior e is assumed and the dynamical matrix Dij

is given by

_k I t-ko f j, 1 Rei(k-1)GD ij =E R7 /- tit t r- R
kit M. t-

Seie h  -I + 3 ih ih 6

i1-01 i
+£.

eie -+ +3 ij ijR -iie
+ E01 i3 e . (2.15)

Vmi m i IR 1I

Since potential energy is a real quantity, Dij should be hermitian:

ij ii
Di ffi . (2.16)

III. Solution of Secular Equation

We are dealing with a double helical molecule with C symmetry. Once
2

we pick the 0th unit cell by convention the x-axis is chosen as the C2

symmetry axis. Even for those double helical molecules without C2 symmetry

the backbone atoms still have C2 symmetry and the x-axis is the same.

In such a cartesian coordinate system the C2 symmetry implies that if the

equilibrium position of ith atom on one strand in Nth unit cell is (x,y,z),

then the corresponding atom on the antiparallel strand in -Nth unit cell

is at (x,-y,-z).

For the molecule (dG-m 5dC).(dG-m5 dC) the number of atoms on one strand

In a unit cell is 42 (without counting the Hydrogen atoms). The dynamical

matrix D in (2.14) is a 252x252 matrix. In the following we show how
io

to use C2 symmetry to simplify the calculation. Only the main procedures will

~ *~~*~ * %*%**~~*.p* * ~ ~~ l.~p S S2
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be mentioned here. The mathematical circumstances are referred to in

14a later manuscript.

It is convenient for CZ symmetry discussion to rewrite the

secular equation as the following:

J + E D 'q (0) = q qi(6) , (3.1a)
I t

k j (0) + E D- , (3.1b)

where i,j 1 , n; k = i+n, X = J+n and n is the number of atoms on one

strand in a unit cell. For methylated Z-DNA (dG-m5 dC)'(dG-m 5dC) n = 42,

for unmethylated Z-DNA (dG-dC)"(dG-dC) n = 41.

The invariance of the potential energy under a C2 operation implies

that the dynamical matrix should have the following property

x xx x -x -xlX *1 *5

if Dij = x x , then D - x x (3.2a)

x X -X X Xj

and

X x x -X -x
if D = x , then = -x x x (3.2b)

r x x~ k -x x

At Brillouin zone center (0 = 0) both D and q are real. Two independent

types of eigenvector exist, they are either symmetric or antisymmetric under

the C2 operation. The symmetric eigenvector has the same structure
2F
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as the system:

if qi = (qix, q iy q iz then qk = (qix, -qiys -qiz ). (3.3a)

And the antisymmetric eigenvector has the opposite structure:

if = x y qiz) then qk = (-q ix qiy9 q1 ). (3.3b)

That (3.3a) and (3.3b) are solutions of (3.1) can be seen by inserting

(3.3) into (3.1), and confirming that (3.1a) and (3.1b) are the same equations.

Thus at 6 = 0 the C2 symmetry allows us to break a (252x252) matrix

into two (126x126) matrices, one for the symmetric eigenvectors

+2-)E aij'q i = w ' (3.4a)

And one for antisymmetric eigenvectors

Ei b jq q (.b

where

a ij = Dii + DI it (3.5a)

and

b = D it (3.5b)ti



-a

The symbol + is defined as follows

D ii + D it Dii D Dit Dii D Dit,
xx xx xy xy xz xz

-4--it ij it ij it
D *. + D = Dii + Dii Di _ D D-J _ D , (3.6)i Di yx yx yy yy yz yz 

Dij + Dil Di Dii Dii Diizx zx zy zy zz zz

and +=- +.

One could show that a ij and bij are still symmetric matrices.

At 0 1 0 we are no longer able to separate the eigenvectors into

symmetric or antisymmetric types, for if q is an eigenvector then, after

-omultiplying by a common arbitrary phase factor qe is still an eigenvector

corresponding to same eigenvalue. Optionally one can show that

* *
if qi = (qix, qiy' qiz ) '  then qk" (qix, -qiy, -qiz ) ;

(3.7a)

or

if q = ix' qiy' q iz )  then q= (-q ix' qly q z)

(3.7b)

And it is not difficult to prove that (3.7a) or (3.7b) is the solution of

(3.1), but (3.7a) and (3.7b) are no longer independent. We can also choose

either (3.7a) or (3.7b) as the optional solution of (3.1). C2 symmetry

allow us to transfer a hermitian matrix D to a real, symmetric matrix G-+

and (3.1) becomes

"we
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, j -t (2.+

E G ' + Z Gk (3.8b)
k£ Z t kZ Z q

k

where

~ Re[D-* + +D_ (3.9a)ij Zi- i

C = _Im[Diz + D ij] (3.9b)

1.9. t.. + ij

4..

Ck =LIf + ]I (3.9c)

*Gk = ReI[Dk + Dj (3.9d)

q= Re(qi) (3.9e)

qk Im(q) (3.9f)

here the optional solution (3.7a) has been used.

The result of the reduction in size of the matrix allows a reduction

in computing time by a factor of ten in normal mode calculations.

J.p

A.AE.
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IV. Results and Discussion

We have taken atomic coordinates for our model of an infinite

helix from the x-ray crystal structure analyses for the system

(m dCdG) 3 5 We have ignored the slight difference in pitch angles

so as to impose helical symmetry on the system. The force constants

13
used have been those refined in our Previous models of DNA, with

the addition of force constants for the methyl group which were not

present in the earlier models. The values for the force constants used

for the methyl group are listed in Table I. These are the same as that

used for the cytosine group in our earlier wodels. After an initial

calculation of the resulting frequencies we did a minimal refinement of

our force constants so as to get a better fit to the experimentally observed

Rnman lines.9 The refinement required only a one percent change in force

constant values. The calculated frequencies displayed are the zero center

0= ) modes.

To compare the theoretical modes with those observed and assigned

experimentally we calculated the kinetic energy distribution (KED) of our modes.

It Is traditional to use potential energy distributions (PED) for assignment.

It i; far easier to calculate KED's and they are useful in assigning modes.

The kinetic energy is associated with atom motion, not with energy stored in

a bond between atoms. The total kinetic energy of the system is

1 2 -Pt-
T= -2 w E qiq

%"% 2
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12 %.

at 6 = 0, the kinetic energy of a group of atoms, say the guanine base

is the kinetic energy per atom summed over the atoms in the guanine

group i.e.

1 2 44-..

G qq

Thus the percentage of kinetic energy stored in guanine atoms is TG/T.

If this percentage is high, the normal mode is assigned to guanine.

The results of this calculation and its comparison with experimental

data 9 is displayed in Table II, where backbone 1 groups those backbone

atoms that are covalently connected to guanine, and backbone 2, to m5C

The overall agreement with experiment is fairly good and can of course

be made much better by further refinement. The point to be made here is

that good agreement can be found for problems in which new entities are

added to the basic helix without starting from scratch and doing massive

refinement of force constants to achieve a good fit. The helix lattice .4

method is predictive of the frequencies of modified DNA on the basis of the

theoretical calculations.
4'-
.4
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Table I. Internal force constants for the

methyl group.

Description Force Constant Unit

o

stretch y C5 - M 5.4 md/A

bending a C6 = C5 - M 0.7779 md/A rad

bending a C4 - C5 - M 1.484 md/A rad 2

nonbonded C6 ... M 0.8 md/A

nonbonded C4 ... M 0.65 md/A
.1 .

.5

'p-A
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