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Normal Mode Calculation

for Methylated Z-DNA poly(dG-deC)-(dG—mst)

X.M, Hua and E.W. Prohofsky

Physics Department, Purdue University
West Lafayette, IN 47907

Abstract _
; De - PR A T PR
- Normal modes of methylated»Z—DNA poly(dG—mudC) (dG—mldC)
are computed by helix lattice dynamics. Good agreement with
Raman spectral data is obtained. We discuss improvements
in the formulation of the problem which allow us to greatly

reduce the size of the matrix used. This leads to greatly

reduced calculation times. The improvements come from using
e
0} ~

knowledge of the CE and time reversal symmetries. —> cif “wg iy,

/ ~ , =z . PP
83 4 w03

AL L G N CHETA R L OL G e




rﬂmﬂm' K

“9.4” -‘l “ ,A ‘.'l‘ !"""'"-J *,

I. Introduction

Currently DNA methylation is an interesting topic in biopolymer
research. Behe and Felsenfeldldiscovered that the B-Z transition of
poly(dG—deC)'(dG—deC) occurs at low salt concentration, close to usual
physiological conditions. Mdller et 81.2 methylated poly(dG-dC)-(dG~-dC)
at the N-7 position of guanine. They confirmed that at 1007 methylation
of the guanine residues, poly(m7dG—dC).(m7dG—dC) is fully converted to
Z form in a physiological salt solution. Thus methylation could efficiently
affect genetic activities of DNA. 1In particular, the sequence deC-dG is
associated with systems which have decreased transcription levels.3’a

Crystal structure of (mst—dG)3 Z—DNA5 and (GCm5 CCGGCC) A-DNA6 have
been solved by x-ray diffraction, Slight structural differences between-
methylated and unmethylated DNA have been observed5-6 and have been used
5,7

to explain the electrostatic stability of methylated Z-DNA. Structural

information of the poly(dG—deC) molecule in solution have been obtained
in both B- and Z-conformations from electric dichroism measurements.
Ramaun spectroscopy has been employed to investigate the temperature dependence
of the B~Z transition in poly(dG-deC).9 Vaccuum UV CD spectrum were also
obtained experimentally. The results are consistent with the suggestion
that the low- and high-salt Z-forms are comprised of different proportions
. 10

of Z_~ and Z_.-conformations.

1 11

Lattice dynamics has been used to quantitatively explore the far-

infrared absorption spectrum and Raman scattering spectrum of A-, B- and

11
Z-form DNA. 1In this calculation we use lattice dynamics to compute the
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2

normal modes of methylated Z-DNA poly(dG—dec)°(dG-m5dC). The internal

CIOR" T

force constant formalism is rearranged and Coulomb potential energy is

reformulated in a precise fashion. The Cz symmetry of Z-form

- A

poly(dG—mst)'(dG-mst) is emphasized. A brief discussion about C2

symmetry is given. This rearrangement helps us to greatly reduce the
computer run time. The results of a normal mode analysis and assignments

are compared with experimental data.9 A reasonably good agreement between

PR ] o

them is obtained.

\‘
II. Theoretical Formalism

- -

Let us consider an infinite double~helical molecule. The helical

symmetry axis 1s taken as Z axis in cartesian coordinates. Helical

- -

symmet}y implies that each unit cell is transformed geometrically into

-
'

the next by the operationH(p, ﬂ where p is the pitch along Z-axis and
fe P‘
W 18 the pitch angle about Z-axis. Vﬁ@ is thus a translation through P

L

-

plus rotation through .

LA
-

In helix lattice dynamics all interactions between atoms are
characterized by effective force constants which are appropriate second

derivatives of the true potential with respect to pairs of degrees of

o = "
- 4.._—".»._-J by

freedom of the system. These are most concisely expressed as functions of
the difference in positions of pairs of a:oms and we call this difference
of positions the internal coordinate system. These internal coordinate force E
constants can be further broken down into valence force constants, hydrogen .F
bond force constants, and non-bonded force constants which are due to _”—_iif“‘

Van der Wall and electrostatic interactions. The electrostatic forces dominate Eg )

our non-bonded 1nceraction3.11 The potential energy in internal coordinates is .

By._
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m.m.m
mt t t

i
where S: is the internal coordinate, m labels what we will call the
unit set of internal coordinates and t labels the individual internal
coordinate in the unit set. Since atoms in one unit cell of the repeating
helix interact directly with atoms in other unit cells the unit set of
internal coordinates involves atoms in more than one unit cell and the
unit set is distinct from the coordinate of a unit cell. 1In particular
one needs to pay attention to the force constanuts of atoms that cross
the boundaries of the unit cells.

The internal coordinates are then expanded in mass weighted Cartesian (MWC)

coordinates as

k, +k
3:1 q , (2.2)

where E: = /EI :§ > Wy is the mass of ith atom and G: is the displacement of

ith atom in Kth unit cell. 3?? is a vector whose form depends on the

character of the internal coordinate12 (stretch,..etc.). The double super

and subscripts of ﬁ?: emphasize that 3:: is assigned to 1th atom in kth
unit cell and tth internal coordinate in mth unit set.
It has been proved13 that
+mk k-m
i ”ﬁg oo (2.3)
where R is the rotation through helical angle ¥,
cosy -siny 0
R = |siny cosy 0 . (2.4)
0] 0 1
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Using the Born-Von Karman boundary condition one could write
nw
3: _1 J 46RE 31(9) o 1ko (2.5)
Jam )
and
> B
q,(~8) = q,(6) (2.6)
Substituting (2.3) and (2.5) into (2.1) and noting that
0-9"'
—2-1 (-0 | siempry (2.7)
n
m
one can formulate Ui as
n
(
u, =—§~z L zJ de{uTi+ (e)-Rk—l'B"; 2 foﬁg L1
ke g e ) Ja, t e o

(2.8)
With the condition k,% = 0, + 1 and k-2 = 0, + 1 which results from the
local properties of internal forces.
In previous work the electrostatic forces were treated as simple
stretch forces. It is possible to treat them more exactly without this
implicit simplification as follows. In the harmonic approximation the

Coulomb potential energy could be written as

e. e
v =%z z {(3‘1‘-3;')'vv ii—;kl o~ -(3‘1‘-3;)} (2.9)
c ke 13 Ve e, |r, - r
i7) b h) o
where ;: = ﬁ: - E: is the position of ith atom in kth unit cell provided i:

is the equilibrium position and Et is the displacement. e is atomic partial

charge assigned to atom i1 and € is local dielectric function in the neighbor-

hood of atom 1.
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Eq. (2.8) could be expressed in MWC coordinate as

- L L
y =Ll g %% T+ 33‘1(h Bin 2k
c 2 i 2.3 i
ki Lh mifcieh |§§h|
L e g
>k Lk £
1 - ak ) €8y -1 + 331%811 ) al
2 i k2 i
k2 1j /mimjeiej |R1j|
where
L >4
kL _ i:'ﬁj_aﬁt'ffi
1j sk o8 kL
Using (2.3)-(2.6) leads to
>
A eje, -1+ 3B B
U =3I | d8ay (0)-2 302 3 °ij
17 £h mi/cieh IRth
20l L L
e e, -1 ¥ By ﬁ:j R
SRR
L3 mimjeiej | 1j|
The kinetic energy T is .
T = % ) J 46 E’: (6)-3, (0
i
m
The Lagrangian
=T - +
L=T (Ui UC)
leads to the secular equation:
5.0 =i

(2.10)

(2.11)

(2.13)

(2.14)
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where the harmonic behavior e is assumed and the dynamical matrix Dij
is given by
-k -
BI - ¢ R 1 gt: ft§:§ 1 R!.ei(k 2)e
bk Vg N
> J0l208
e, -1 +3ERE0
+ I §P£ 3 61j
2h mileieh I ihl
202,42
eiéj -+ 3 ﬁszin 128
+ I oL .3 e . (2.15)
L Vmimjeiej IRijI
Since potential energy is a real quantity, Dij should be hermitian:
D, =D . (2.16)
13 41

II1. Solution of Secular Equation

We are dealing with a double helical molecule with C2 symmetry. Once
we pick the 0th unit cell by convention the x-axis is chosen as the C2
symmetry axis. Even for those double helical molecules without CZ symmetry
the backbone atoms still have Czsymmetry and the x-~axis is the same.

In such a cartesian coordinate system the 02 symmetry implies that if the
equilibrium position of ith atom on one strand in Nth unit cell is (x,y,z),
then the corresponding atom on the antiparallel strand in —Nth unit cell

is at (x,-y,-2).

5

For the molecule (dG-m dC)-(dG—deC) the number of atoms on one strand

in a unit cell is 42 (without counting the Hydrogen atoms). The dynamical

matrix Dij in (2.14) is a 252x252 matrix. 1In the following we show how

to use C2 symmetry to simplify the calculation. Only the main procedures will

9 v
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be mentioned here. The mathematical circumstances are referred to in

a later manuscript}a
It is convenient for C2 symmetry discussion to rewrite the

secular equation as the following:

«> > 2
z by -a 00 + R HOREACRE (3.1a)
“~— > “+—> > 2+
kaj qj(e) + i Dy 79, (8) = wiq (0) (3.1b)
where 1,j =1, n; k = i+n, 2 = j+n and n is the number of atoms on one

strand in a unit cell, For methylated Z-DNA (dG-mst)'(dG-mst) n= 42,

for unmethylated Z-DNA (dG-dC):(dG-dC) n = 41.

The invariance of the potential energy under a C_, operation implies

2
that the dynamical matrix should have the following property

* * *
X X X X -x -X
* * *
if D, = |x x x|, then D, = |% X x | (3.2a)
1j 2 * * *
X X x -x x X
and
[ % * *)
X X X x -x ~x
* * *
if D,, = {x x x| , then D, = [~x X x (3.2b)
ig kj * % %
X X X ~-X x x J

“— -+
At Brillouin zone center (6 = 0) both D and q are real.

Two independent

tvpes of eigenvector exist, they are either symmetric or antisymmetric under

The symmetric eigenvector has the same structure

the C2

operation.
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as the system:
1f q, = ( ), then q, =
qi = qix’ qiy! qiz ’ then qk = (qix9 —qiy! -qiz)' (3'38)
And the antisymmetric eigenvector has the opposite structure:

> >
1£ 9y = (94,0 dgy5 9y,)»  then q = (-q;., 9., a5, ). (3.3v)

That (3.3a) and (3.3b) are solutions of (3.1) can be seen by inserting
(3.3) into (3.1), and confirming that (3.1a) and (3.1b) are the same equations.
Thus at 6 = 0 the -C2 symmetry allows us to break a (252x252) matrix

into two (126x126) matrices, one for the symmetric eigenvectors

2>

-
z ai:]-qj =wq (3.4a)
b
And one for antisymmetric eigenvectors
— > g
)Zbij-qj 9 > (3.4b)
h|
where
a,. =D, + D, (3.5a)
M3 T 13T P o s
and
- +—> - o
bij = Dij Dil (3.5b)

- \- -..-|..~ \--~w"(,-rl »q \."-'H' \q ._q _'-\-_ g\v ‘.'\-.’- \-_.-“-4 _‘.-\-\- ‘-1-\._- \ -r,..t .‘- -f..-r~. -’~r_‘f.- \f\d‘\' ~¥‘\-'\-
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The symbol + 1is defined as follows

Dij + Dil Dij _ Dil Dij _ Dil.
XX XX Xy xy Xz Xz
. - 1j ie ij 12 ij 12
= -+ -— - .

by * Dy, D * Dy Dy = Dy Dy ~ D, , (3.6)
Dij + Dil Dij - Dil Dij - Dil
\ zZX zX zy zy 2z zz

and + = - + .

One could show that aij and bij are still symmetric matrices.
At 6 # 0 we are no longer able to separate the eigenvectors into
symmetric or antisymmetric types, for if a is an eigenvector then, after
¢

multiplying by a common arbitrary phase factor Eei is still an eigenvector

corresponding to same eigenvalue. Optionally one can show that

> g * %* *
if qi = (qix, qiy‘ qiz)) then qk (qix’ 'qiy- -qiz)‘

(3.7a)

or
if g, = hen 3, = (-4, a4 'y q..)
a; = (a4, Ay q;,)» then QG = F9y00 G4y 9y,
(3.7b)
And it is not difficult to prove that (3.7a) or (3.7b) is the solution of
(3.1), but (3.7a) and (3.7b) are no longer independent. We can also choose
either (3.7a) or (3.7b) as the optional solution of (3.1). C; symmetry

“+—> “—
allow us to transfer a hermitian matrix D o a real, symmetric matrix G

and (3.1) becomes

O AL A

s

. ,/'}l"-‘.&

& o

AN
.

L 45

.
|

..“
Il" . 'l B

:Q.

7

»

Y
)
P

S e
[ OB

Il’;;g}

AAr
#4;%:




?::r S gt ot Ja & bt o4, J g $:8 o U ~
-
"
Q
K 10
‘
A
e w0 2+, .
:; ;? EIj qj + i 3ig7dy = wiay (3.8za)
L
O
& DEG T &A= Wi
" 3 aj ke 9 = wiap (3.8b)
k
‘ where
3
* ? > <
= +
, 1 Re[Dij + Diﬂ,] (3.9a)
M G, =-In[D,, + D.) 3.9
b 1o = "ImlDy, Dyj (3.9b)
. “«—> b
h, ey = Imiby + Bl (3.9¢)
B & =Re[D ¥ D) (3.9d
N rg = Re [Dy, kj -94)
N q' = Re(q;) (3.9e)
’ >y -+
. 9 Im(qk) (3.9f)
N
* here the optional solution (3.7a) has been used.
[,* The result of the reduction in size of the matrix allows a reduction
b, in computing time by a factor of ten in normal mode calculations.
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IV. Results and Discussion

&« We have taken atomic coordinates for our model of an infinite
o,

*Q helix from the x-ray crystal structure analyses for the system

(deC—dG)3 5. We have ignored the slight difference in pitch angles

[~

:ﬁ- 8o as to impose helical symmetry on the system. The force constants
_; used have been those refined in our previous models of DNA,13 with

the addition of force constants for the methyl group which were not

present in the earlier models. The values for the force constants used

for the methyl group are listed in Table I. These are the same as that

used for the cytosine group in our earlier wodels. After an initial
calculation of the resulting frequencies we did a minimal refinement of

our force constants so as to get a better fit to the experimentally observed

Raman lines.9 The refinement required only a one percent change in force

S 2 PR WO

constant values. The calculated frequencies displayed are the zero center

L

(" = 0) modes.

To compare the theoretical modes with those observed and assigned
;. experimentally we calculated the kinetic energy distribution (KED) of our modes.
It Is traditional to use potential energy distributions (PED) for assignment.
" It is far easier to calculate KED's and they are useful in assigning modes.
The kinetic energy is associated with atom motion, not with energy stored in

a bond between atoms. The total kinetic energy of the system is
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at 6 = 0, the kinetic energy of a group of atoms, say the guanine base
is the kinetic energy per atom summed over the atoms in the guanine

group i.e.

>
.

éz‘j 94
Thus the percentage of kinetic energy stored in guanine atoms is TG/T.
If this percentage is high, the normal mode is assigned to guanine.

The results of this calculation and its comparison with experimental
data9 is displayed in Table II, where backbone 1 groups those backbone
atoms that are covalently connected to guanine, and backbone 2, to mSC

The overall agreement with experiment is fairly good and can of course
be made much better by further refinement. The point to be made here is
that good agreement can be found for problems in which new entities are
added to the basic helix without starting from scratch and doing massive
refinement of force constants to achieve a good fit. The helix lattice

method is predictive of the frequencies of modified DNA on the basis of the

theoretical calculations.
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Internal force constants for the

Unit

5. stretch vy C5 - M 5.4

bending o C6 =C5-M 0.7779

bending a C4-¢C5-M 1.484

nonbonded cC6 ... M 0.8

nonbonded C4 ... M 0.65

-]
md/A
° 2
md/A rad
° 2
md/A rad
-]
md/A

md/;

A Y,

L

N .
By Tt 0 I

VRN

BN AR LA )

N e R I N




16

R

Ty

e ey KA FrCIACIN g LS L PR 2 A AR @ SANNSAINEINONOOOO A ST Fah Jag AL A A NG

A
-
%
xt
\I
’
.--f
Y
\
umE AL A umE %°86 9°1 0°0 0°0 6SET >
hY
> 8621 > 9°68 6°6 z°0 €°0 gzt >
'y
Z.4
unE 09¢1 uvmﬁ LTS 1°8% 0°0 0 01zt .
?
9 L8TT op 0'0 S0 L°%Yy L €S 7811 ’,
o 91T op 0°0 0°0 0°9¢ 0°vy G911 .W
Id
umﬁ THTT/ 9911 umB [AR Y4 9°9¢7 1°0 1°0 SH11 &.
I PiLas se8 suoqyoeq 0°01 6°€9 L9t v°6 vz8
‘auoqyoeq adfl g R
P it S08 suoqyoeq 8°12 2 €1 L8 €96 8LL :
‘auoqyoeq adkl v )
auoqyoeq 11.Y4 um& 1°0% 9°2Y% 9°7 L9t oLL ”w
>.u TSL/9SL > u v°St gL z°¢ 6'¢ T€L
opua ,Zd ‘jIue-9p 89 o 0°0 1°0 9°¢L £°92 L9 .
o
@ LS9 > m $*96 T'€ 0°0 70 929 N
> m 9€9 > u 79 692 L€ 6" 96 i
S s Y
opus ,£9 ‘uks-op 129 9 6" p1 8°L9 652 06§ o
N
) 9L§ op €0 6°T 8°1¢ 0°9% €S ¥
8es auoqQoeq 6°S 0T ey AN 6°9% 6€S W.
4 2
°.m 01¢ o> u M v 6L 12 8°0 8°C T8 4
S S p ),
9 L6y 0 CN 9°¢ w9 T€€ 867 3
juamuldysse .TEu ¢£ouanbaay juduu8isse __ o w ¢ suoqyoeq 9 ﬂ T aveqydeq - _ mwd ‘Aduanbaij s.”
Tejuawtaadxy Te3juamyaadxy TeoS13Iaroay] S ~ — « 1- TEOTI2a09Yl
___ ¥ UO1INQJIISTP ABadua d1I3uTy |

II 219®el

3¢ ' SIS P Ve 'S




a0 8*

Sy

(Y o et _fieh
gyl ey

.'« \nv LA NN

)

¥ Sf ¥y

TR UG




