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V Abstract
\

The existence of an additional symmetry element

allows oike to reduce the size matrix needed to cal-

cutate the vibrational normal modes. In this paper

we detail how to reduce the matrix appropriate to an

a lternatinig DNA polymer which has a C symmetry about r
2

the x-axis.
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I. Introduction

A considerable number of observations both by infrared absorption

and Raman scattering have been made on samples of double helicaDNA4

Many of these observations are on DNA polymers which have or come close

to having structural symmetries. We have carried out helix lattice normal

1
mode calculations for a number of repeating DNA polymers. The agreement

between the theoretical predictions and experimental observations has

been quite good and a reasonably good set of force has been refined

for such calculations. Most such calculations have been on the simplest

repeating homopolymers. There are a considerable number of observations on

alternating homopolymers and we have also calculated the helix lattice modes

2
for a number of these cases. The alternating polymers have a unit cell

consisting of two base pairs which is twice as big as the simplest homo-

polymers. A true helix can be generated by applying a screw axis operation

to the unit cell many times.

In applying the helix lattice formalism one gets the normal modes by

diagonalizing a matrix which has dimension of 3 times the number of atoms

in the unit cell. The matrix for alternating DNA is thus a square array

twice as big in both columns and rows. The structure of the double helix e.

is such that the alternating DNA has an additional symmetry, a C2 operation ,

or
that is not an exact symmetry in the simpler homopolymers. The point of

this paper is to detail how one can make use of this additional symmetry to o
reduce the size matrix needed to be diagonalized for the alternating homo-

polymers.__
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Thie method has been used to reduce the calculat ion for z-form

i~l (d-dc)poly (d-dc ijd it has I e( i n aredulictioll ini ma-clinie I ill

I)y ab~out ani order of magnit ude lit the calIculat ion of the ent ire normalI

mode spectrum. lit an attempt to describe the method for incorporating

the additional C 2synmmetry in as general a manner as possible, we do not use

specific details of the internal iorce field of the alternating polymers.

manty detais specific to DNA will be left to a later publication.

The paper is arranged as follows: in sectioitt 11 we discuss the

general features of helical structure and establish the dynamical matrix;

Sec I imn Ill is de(voted to a C 2 symmetry discussion anid section IV develops

,it t -r, in- fly' c I(t ion rul es; conc lusions are in sect ion V.

p..
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11. General Properties of Helical Structure ,
I

Let us consider an infinite c'lain molecule with helical structure

.. ic h that each uiiit cell Is transformed geometrically into the next by

the operation (Rfp), where R is the rotation through an angle J about the

helical axis 2:

tcosP -sin, 0

R - sinp cosp 0 (2.1)

0 0 1

an1d p = pz is the translation along z. If the unit cell Is the smallest

repeating unit of the molecule,,j, is the pitch angle and p is the pitch.

The structure of the molecule is invariant under operation (R[np), for

th th
if X . is the equilibrium position of i atom in m unit c(l, thenn (-T m1

( np)X = " + npz =x (2.2)

The choice of a unit cell Is not unique, usually one takes the unit

coll as the smallest repeating unit or as the primitive lattice cell of the

3
torre.;poiidiu space group. With the choice of a unit cell of S atoms one

gets 3S vibrational bands. Each band has vibrational modes that differ by

having a phase shift from one unit cell to the next. The number of phase

shifts is equal to the number of unit cells in the macroscopic sample,

apprcl hing a conti tuum of phase shifts as the number of cells in the sample

,jpproc'hes iiifiinitv. The different phase shifts are equivalent to different

wavus of varying w:iveletgths. Any modes with varying phase are infrared

alud Raman inactive. 4 In cases where the original symmetry of the system

is bri)keii, itactlve modes may become active.
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In our helix lattice calculations the unit cell is chosen as the

1 ,2,5,6
smallest repeating unit as this gives rise to the smallest matrix

tor solution. In the harmonic approximation the potential energy of

the molecule is

Sf11,'- mn -+I
U = 2 . . *D. q. . (2.3)

2 i I. i ii imu I]

wh re m. n lahel th uni t cells and ij label the atoms in i unit cell;

(i /m, u. is mIss weighted cartesian displacement where m.= mass of

atom i antd u is the displacement of atom i in mth cell from its equilibrium

poit iand u~ I frmIt qulbru

posit ioil D.. is the dynamical matrix containing the force constants

between the atom at XI and the atom at X.. The kinetic energy is

Ia

T q q (2,4)=2 ; qi i

mi

And the eqIns. of motion could be written as

i-*In ~i =2 -m
9D..'q. q , (2.5) ,

wh. it. i, hl:irmonki jtl h;ivior V is assumed.

Iv t sing Born-Von Ka rman boundary condition and taking into accoIiint

th e lI uI ,;ymmetry we impose a so utito, which is a mode of no phase

shift , :

md R q.i()e (2.6)

wi Im t

-m qni (2.7) .'

k/2 Iii mI
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sat if ies the secular ep.

D .1 "q. , ( 0 ) (28)

whe re

+-+-m,-mn in -i (m-n) 0
D ij() = Y R D ijnR e (2.9)

provided that R D..R is only the function of m-n for a certain pair of
Ij

(i,j). In other wnrds,R D Rtm is unchanged under operation (El) where E

is identity. The reality of q implies

q- q  () (2.10)

.liid the reality of the potential energy implies D. is hermitian:

D = Dj . (2.11)

For the molecule possessing no symmetry operation which takes 0 to -0,

7
eqn(2.10) is simply the statement of double degeneracy due to time reversal.

I t has been pointed out 1,2,5,6 that the f re, center of mi -,s mot ion o the

lie .iil molecule will occur at 0 - 0, + 4). The eigenvectors ot the fre

mol io, cn be ob, tained from ep. (2.7) and are listed in talle . Free

tn t r (1I mass mot ioil is i ndepe tidet r of force cons talt s anid gives rest r ic ti oiis

,,11 ~ ~ 11: ,tl~l i , I. m i x I)..:,

'1.

I,

S-S

*5%5
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X /m D" = O, 0=0 (2.12a)

) €/M. (DiYX j - DLXJ) - 0 2 2Cb)
zCy x cx y '="2

X A . +i D 1 ) = 0, 0 = + (2 .12c)
j c ix- ay --

where D 1,, (D ) x) and a, = x,y,z; the factor M comeswhere
(10)ismswegtdfrom the fact that qi is mass weighted.

8 -
From a classical point of view the induced electrical dipole moment W

of the molecule is given by

,= 2 e.u. = ): eiq.//m. , (2.j3)
m,i m i

9
where e. is the atomic partial charge assigned to atom i. For the

free ceniter of mass motion, for example the longitudinal translation u. z,

ther( is no induced dipole and eqn.(2.13) implies E e. = 0, i.e., the

unit welt of the molecule must be neutral. It is well-known that the

diw;olved DNA molecule is not neutral. To allow free motion of DNA

Ii, 1;,, iuio the rruiot or ions must be included in the DNA to make the unit . ,

elf .'u t rat. Otherwise the free motion of DNA in solution is not allowed. S

I a
-y3

,ad.

S

4,"
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III. The C2 Symmetry

The standard z-form DNA poly(dG - dC)-(dG - dC) has a C2 symmetry axis

which is perpendicular to the helix axis and is usually taken to be the x

11
axis in cartesion coordinates. In such a coordinate system an atom in the

t h
m cell on one strand has equilibrium position (x, y, z), then the corre-

th
sponding atom in -m cell on the antiparallel strand locates at (x, -y, -z).

For those DNA molecules without C2 symmetry the backbone atoms still have

21
;approximate C'2 symmetry and x is picked in the same way

For this C2 symmetry discussion we rewrite the secular eqn. (2.8) as

low.2 m

T qi + Y Di '.q, = q. ,

(3.1D D k j -q + D k 9.q 9 =  q k

such that the dynamical matrix D is

D i D .i9

(3.2)

wlarbe i I S Inihtl the ,1trm; n on o strnnd; k i + S S

II lt kl IliI th I , Ioms on t e :n t ip;i ra I I eI st i ind i1n suc h i w; i\ tI ii t -It ('m k

i. thi ;;im(- ;atom ass itom i hut on a different strnd. S is the number of

,atteim; ii ono stra|nd. S - S - number (f atoms in ,i .n it e I i . It has been

o ilit'I otit I'. lix tit the operaitions th;at do not leave invariant pro,'id"

' -I it i,,ilship.s between t ho corresponding mtrix clement-. In our (caise th C:)

op l it ion inverts the orientation of )NA and hence takes 0 to _. then the

I,,1 low i rig re i at ions ipp v:

U,.
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I I 2x k9, 2x 2x kz R2x

(3.3)
1)R-1 *+ =* R- 1 , *)*

i (0 ) R 2x D k.(()R 2  R2 x Dkj(0) R 2x

wIW reC

R- I  0 -1 0%

R2x 2x 1 0\0 0 -i

and D.(-I') =D (0) follows immediately from (2.9).

Eqn. (3.3) implies that the solution of secular eqn. (3.1) takes the

form of * , e(.
q k 2x qi) (3.4)

wherc t is a common arbitrary phase angle, and could be chosen to be zero,

:W I, tlat the rea] part of eigenvector is symmetric and the imajgint rv part is 

,nt isvmmetric under C, operation. By imposing the solution (3.4) with O = 0

and separat ing Re q and Im q. as independent variables the secular eqn. (3.1)

bccomets d

A- 7~ 4 w 2-+,
;G . q. + G (i q9 i

(3. ')

4 * -4 2-,• kj'i +  k;¢ q

iitlt '"•* 1 L iD-iC = Re D) + R 1) R,)Ii 2x i7 _

S Im R- I  R R
(',= Re lDkv -Rx 1)k R

4 ' 0 *xRe D R "R,)

qk I k ' = i

oS

4 Re q R c,(
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to

And the hermitian matrix D (eqn. (3.2)) becomes a real, symmet ric matrix' :

R [b + R2x'; Rx] ii -IX. - X - 1x -hi R2x]

I m (Dk + R - D- R- Re R- I-- D Rki 2x k 2x k 2x ki R2x

4-)-

At 0 = 0, 1) is real and thus C is block diagonal. Eqn. (3.5) becomes two

inde e'nltfnt e.qn(., one for the symmetric and one for the antisymmetric e i gen-

vctors. By checking table I we find that at 0 = 0 the acoustic longitudina l

modh and to rs ional acoustic mode are both antisvmmetric under C2 operation. The
- 2

restrictions on '(" given by free center of mass motion are then

/ C" k. 0, 0 - 0 (3.6a)

g v'm (Gk X - G k9 ) = .0 0 (3.6b)
V xp V (Iy X

-4

At + J: the eigenvector of the transverse acoustic mode is q.(+ ,) =  -. (l +iio),

.4

Ii t id'e the restrictions on G:

C*i i + c 1 /rn 0, h + (3.8a)

Gk M, + G, + , (0.. ,)
,ix I -a dy 5.

Thus we see that the C symmetry distinguishes the normal modes at 0

, svmm,,tric and antisvmmtric, at 0 s, tne operation mixe's tht normal modes

.at rd -f' t , gai t orm -,vmmet tric i nd inti,; 'vmne tris mod,,s. (Ste,- s n. (3.4)).

i .-; knowr, that time reversal combined with an intrsisn elosment can of it.n 1w

7
tied to maike the dynamic matrix and its eigenvecLor reil.

%.

5..
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IV. Selection Rules

The infrared and Raman selection rules for lieIic,a-i molecules have

Ihv .i di cllssed by lli 3s 3and the resutlts are the Following:

i rirred absorption can only occur at 0 0, + q, and Raman scattering,

.it t) = 0, + q, + 21P. In general these selection rules are applicable

to double helical molecules. For the molecule possessing C2 symmetry

these selection rules are affected by the C2 symmetry and the results

are Listed in Tables II and III where x+= x + iy, x z.

At = 0 the symmetric modes produce no y and z components of

induced dipote and the antisymmetric modes produce no x component of

iniduced dipole. At 0 0, the normal mode at 0 and -11 are mixed by the

C, op.rat ion. The time reversal representations have been

7
clas,;i fied by Lax ;is of 3 types: real, pseudoreal and complex. In

the vibrattonal mode problem a real representation means no double

dcegeneracy due to time reversal, the subspace spanned by q(O) and the

subspace spanned by q(-P) are identical. Thus transitions that occur

at , call also occur at -'. These results are reflected in Table II and 1I.

Furthermore the C2 axis provides a special direction. For Z-DNA at

tlh, pit, 1 'I -. O.()" there are 0 such special directions in space.

nll iid(int ii ght is polarized ilong, these directions idditional

r n; t i ,ii will olaur at - ). Theso transit ions ;r, l generally not found

a,,r I ho liiI m l:( le withI Jt C' f-;vm et rv. Tie last lin ( of Tablo,; II nid I I

I i, I I hevs , I r;llis iIi ols.

-.
-C

is..

"p%



V. Conclusions

Altcrna)ting polymers of DNA have. ;,n ;iddi ion;il symmorry, :.

N syimetrv obout t he x-axis. Thi.s is in addition to the screw axis or

helical symmetry found in all repeating DNA's. This additional symmetry can

be used along with the helical symmetry and the ubiquitus time reversal in-
%-

variance to greatly simplify helix lattice calculations for these

.1lternating polymers. In this paper we have detailed the way to make use of

this simplification. We show how to reduce the dimension of the dynamical

matrix where possible, to greatly reduce the diagonalization time needed for

-flution. In practice we have reduced the calculation time for the modes of

14
n ,,Iternmit nogmethviated Z-DNA by a factor of ten.

We hive also examined the implications of the additional symmetry in

changinp the infrared and Raman selection rules. We find that a new absorp-

tion mode is possible in these polymers with C symmetry. The additional
2

absorption mode should cause greater total absorption for the alternat-

ing polymers than for simple homopolymers. The increase is strongest for

light polarized tr.nsverse to the helix axis. In crystalline DNA where the

f x-,ix i'(I irtwt ions can be specified the select ion rules may h verified

d i r.it I by increased absorption at these specia[ di rections t riiverse to t he

1 .l ix .Ixis.
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TABLE 1. Unnormalized eigenvectors of free motion.

p

0 m /m. 0 li 0 longitudinal

LMJ- acoustic mode

0
x y 

acousLic

, q. = zx/mv. f., q. = /m_ torsional mode1 , q 1 1. 1 1 i

iY io

-~m r- Ii-* ~ iy~ acoustic transverse
(xj + mode

j q = ' qi = q in. + ix

0o0 x,y real and
arbitrary

'

'f-.

w. -v- F .r "r 'r w

& Vp
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Table I. Infrared Selection Rules

Par,,me t.e r 0

ltI.,ri /it ion of inc id ent Without C2  With C 2

I~, ' r'l~ r ( +) + +

1.11. CirCU1lih r (x-) +

I intcrt piril lel (:0) 0 0, ,nt isvmmetric

* ,'.' d:! mlir(t't:ion x No 0, symmetric

Table III. Raman Selection Rules

P() I. r i .t imt Parameter (}

ill, iid tt ttr , d Without (;2 With C2

v 0 0, symmetric

'a.' + 2,1,

-p + 2q)

+x 2¢ +, 2ymeri

x+
+

) O, \svmmetril,

No 0, + m . m tL i

% -

a. No O, .,nt Ii-ovrmtr it

/ (0, t]nl i Symnl. r i,

II; ..... ................ .............. .I
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