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The existence of an additional s mmetry element allows one to reduce the size matrix
needed Lo calculate tihe vibrational normal modes. 1In tuis paper we detail how

tu reduce the matrix appronriate to an alternatin® DNA »nolymer which has a L

svimmetry about the x-axis.
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Vibrational Spectra of Double
Helical Molecules with

] C2 Symmetry

X.M. Hua and E.W. Prohofsky

Department of Physics
Purdue University
West Lafayette, IN 47907

\K Abstract

The existence of an additional symmetry element

allows one to reduce the size matrix uneeded to cal-

culate the vibrational normal modes. In this paper

we detail how to reduce the matrix appropriate to an

alternating DNA polymer which has a CF

) symmetry about
\

the x-axis.
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I. Introduction 0y

\
S~ , )
\'~“m{> A considerable number of observations both by infrared absorption !
he;f'-,y'.‘):)huk"' A / 'h'.

and Raman scattering have been made on samples of double helicalﬂDNA)

s

Many of these observations are on DNA polymers which have or come close :é

\)'
to having structural symmetries. We have carried out helix lattice normal :f

mode calculations for a number of repeating DNA polymers.r The agreement

d =

between the theoretical predictions and experimental observations has &
!
been quite good and a reasonably good set of force has been refined %s

for such calculations. Most such calculations have been on the simplest

o W

repeating homopolymers.F There are a considerable number of observations on
s

alternating homopolymers and we have also calculated the helix lattice modes 'fz
2 O

for a number of these cases. The alternating polymers have a unit cell | |
",

consisting of two base pairs which is twice as big as the simplest homo-

L T

=g ¥

polymers. A true helix can be generated by applying a screw axis operation

to the unit cell many times.

In applying the helix lattice formalism one gets the normal modes by

S

diagonalizing a matrix which has dimension of 3 times the number of atoms

3
in the unit cell. The matrix for alternating DNA is thus a square array “;
tvice as big in both columns and rows. The structure of the double helix é:
is such that the alternating DNA has an additional symmetry, a C2 operation ,o Ej
that is not an exact symmetry in the simpler homopolymers. The point of z - .“

N
this paper is to detail how one can make use of this additional symmetry to Eg ig
reduce the size matrix needed to be diagonalized for the alternating homo- TF—_~—-——-§E
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SR

The method has been used to reduce the calculation for z-form
poly (dG=dC) - poly (dG=dC) and 1t has led to a reduction in machine time
by about an order of magnitude in the calculation of the eutire normal
mode spectrum. In an attempt to describe the method for incorporating

the additional C, symmetry in as general a manner as possible, we do not use

2
specific details of the internal torce field of the alternating polymers.
Many details specific to DNA will be left to a later publication.

The paper is arranged as follows: 1in section Il we discuss the
pgeneral features of helical structure and establish the dynamical matrix;
Section 11l is devoted to a C2 symmetry discussion aud section LV develops

seattering scelection rules; conclusions are in section V,
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11. General Properties of Helical Structure

Let us coansider an infinite ¢ ain molecule with helical structure
such that each unit cell is transformed geometrically into the unext by
-
the operation (Rlp), where R is the rotation through an angle ¢ about the

helical axis 2:

{cosw -siny O
R = (siny cosy O R (2.1)
0 0 1
and 6 = pz is the translation along z. If the unit cell is the smallest
repeating unit of the molecule,{ is the pitch angle and p is the pitch.
The structure of the molecule is invariant under operation (R“In;), for

if i? is the equilibrium position of ith atom in mth unit ccll, then

+> o 2m nm - m+ .
R ap)X" = R'XT + upz = X000 . 2.2)
i i i
The choice of a unit cell is not unique, usually oue takes the unit
cell as the smallest repeating unit or as the primitive lattice cell of the

3 .
caorresponding space group. With the choice of a unit cell of § atoms oue

pets 3S vibrational bands. Each band has vibrational modes that differ by

having a phase shift from one unit cell to the next. The number of phase
shifts is equal to the number of unit cells in the macroscopic sample,
approaching 4 continuum of phase shifts as the number of cells in the sample
approaches infinity. The different phase shifts are equivalent to different
waves of varying wavelenpths. Any modes with varying phase are infrared

and Raman inactive. 4 In cases where the original symmetry of the system

is broken, inactlve nodes may become active.
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In our helix lattice calculations the unit cell is chosen as the ﬁ‘

A !
1,2,5,6 o . , )
smallest repeating unit as this gives rigse to the smallest matrix

for solution. In the harmonic approximation the potential energy of

the molecule is

U = o y jﬁﬂwg.»v . (2.3) o)
S S S S
mn ij -

where myn label the unit cells and i,j label the atoms in 4 unit cell; )

A
1

= Uy is mass weighted cartesian displacement where m = mass of o

mo R « b
atom i and uy is the displacement of atom i in m h cell from its equilibrium Ye

Lo >m Y mn
position X, . D,
i 1j

is the dynamical matrix containing the force constants

>m 3 . : .
between the atom at X{ and the atom at X The kinetic eunergy is

-

n

fa—e
- - -

AN

n‘.}-{‘

And the equs. of motion could be written as

3

N

v

3
AR

. . ~imt
where the harmonic behavior e is assumed.

o o

By using Born-ven Karman boundary condition and taking into account

the helical symmetry we impose a solution which is a mode of no phase

shift.:

=3
{_

?{"{ '{

where

A
LARS

G - R

’, S

(2.7)
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satisties the secular equ.

¥ D T (n) = 2 i)
; . )
| i qi W qi(

where

~i(m-n)0
R"e i(m-n) . 2.9 .

> =m-2mn
b [¢) = [
‘ Dij( ) R Dij

mn

v

W\

. -mmn i, . ¢
provided that R Din is only the function of m-n for a certain pair of I
-m “—m !

(i,1). In other words,R o D;;Rll is unchanged under operation (E[;) where E !
E L)

. ->m wl

is identity. The reality of 9 implies '

> *
qi(-n) = Zi(n) S (2.10) ‘.

and the reality of the potential energy implies B:j is hermitian:

b= 2.11
SIS TR (-

A -
' \
For the molecule possessing no symmetry operation which takes 0 to -0, :
‘l’
equ(2.10) is simply the statemeut of double degeneracy due to time reversal.

. 15,2,5,6 . 3

It has beeu pointed out that the free center of mass motion of the c

’

helical molecule will occur at © = 0, + Y. The eigenvectors of the free :

-

molion can be obtained from eqn.(2.7) and are listed in table {. Free X

3

, center of mass motion is independent of force constants and gives restrictions »
.- '

on dviamical matrix Di_: ﬁ
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-6
v o, D) =0, w0=0 (2.12a)
. ] wz
i
‘ L d _ pldydy _ .
2 /hj (ouyxx Daxxy) 0, =0 (2.12b)
SV (i 4 ptd = =
X m, (D +i Day) 0, 0 =+y (2.12¢)
]

3 ij = b j = X° { = M -
where Duﬁ (D ii)HB' Xq (Xj)a , and a,B x,¥,z; the factor /ﬁj comes

>
from the fact that qi(ﬂ) is mass weighted.
. . . 8 . . >
From a classical point of view the induced electrical dipole moment u
of the molecule is given by

H= Y oea™= eiﬁT/ﬂn_i_ , (2.13)
m, i m,i

. . . 9

where e, is the atomic partial charge” assigued to atom i. For the
. : . -»m -
free center of mass motion, for example the longitudinal translation ug =z,
there is no induced dipole and eqn.(2.13) implies I e, = 0, i.e., the

) . . 1 10
unit cell of the molecule must be neutral. 1t is well-known that the
dissolved DNA molecule is not neutral. To allow free motion of DNA

in selution the counter ions must be included in the DNA to make the unit

vell neutral. Otherwise the free motion of DNA in solution is not allowed.
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" I1I. The C2 Symmetry d
?
The standard z-form DNA poly(dG -~ dC)+(dG - dC) has a C2 symmetry axis
r
(‘ ~
? which is perpendicular to the helix axis and is usually taken to be the x :
K
) o , , 11 . : )
N axis in cartesion coordinates. In such a coordinate system an atom in the
] } ]
th P s . e s
m  cell on one strand has equilibrium position (x, y, z), then the corre-
4 . th . ]
sponding atom in -m cell on the antiparallel strand locates at (x, -y, -2z). y
For those DNA molecules without C2 symmetry the backbone atoms still have :
’ . . o . 12 .
approximate Lz symmetry and X is picked in the same way *. :
K ,
' . ; . . . .
iy For this C2 symmetry discussion we rewrite the secular eqn. (2.8) as
?
i‘
1 follows
‘w
e D - + 5 ¢6> _ 2 ‘
: i et G 709 o .
. ' (3.1) .
: 5 6} > + 3 > ES 2 > .
| °q. . = w
- ki 93 ke % Y o J
v .
v . Lo, &
b such that the dynamical matrix D is ¢
‘
v
46) 45» {
K, i i9
By ) .
4D> ‘])‘ ’ (3.‘-)
ki ke .
» »
N 5
j where i, 1 = 1,000,8  label the atoms on one strand; k = 0+ 8 [ ¥o= j + S“ '
) . ! * %
3 md k, ¢ label the atoms on the antiparallel stiand in such o wav that atoem k *
oy
is the same atom as atom i but on a different strand. S1 is the number of )
ol Atoms in one strand., 28 - S - pumber of atoms in ounit cell, 1t has been >
. «l ™
" pointed ont by Lax’ that the operations that do not leave o invariant provide e
' relationships between the corresponding matrix clements.  TIn our case the C, byl
. operation inverts the orientation of DNA and hence takes ¢ to =0, then the
' P
toltowing retations applve:
\) »
)
\
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<-» -] <> -] <= *
= -f =
Dij(”) R2x Dkﬂ( ') R2x R2x DkQ(U) R2x ’
(3.3)
€« > -1 <« ] <>
= - =3
Dig(0) = Ry Dy (0IRy = Ry Dy () Ry s
where
1 0 0
R, =R.L = 0o -1 o
2x 2x ’
0 0o -1
4-» “« -3 *
and Dii(-u) = Dii(o) follows immediately from (2.9).
Eqn. (3.3) implies that the solution of secular eqn., (3.1) takes the
form of
- > * 1¢
§] = [¢
q,(0) =R, qi(i) e ", (3.4)

where 4 is o common arbitrary phase angle, and could be chosen to be zero,

such that the real part of eigenvector is symmetric and the imaginarv part is
antisvmmetric under €, operation. By imposing the solution (3.4) with ¢ = 0
- -
and separating Re Ji and Im q; as independent variables the secular eqn. (3.1)
becomes
«-> ' e > 2,
D OO + TG, = '
ij q] BT q ® ql ’
i - 4
(3.9)
l‘v » . 4_» .J - 2»)
: (Yki.q"l + (.H q; = w q;( ,
[ ’
where
@ = ke[ + R3LD ]
i ij 2x i 2x 7
- -lnd“f - R—]‘ﬁ, R, |
i i 2x i) 2k
e m(D, 4R D R
Wi ™V Tax TkeTx !
‘W = Re(D, -RD D !
6 T | ki ) Dk‘] i
(}; = R¢ (Ii , a; = R (]i'
v ] >
Ay Im dk , qQ Im 9, -
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And the hermitian matrix D (eqn. (3.2)) becomes a real, symmetric matrix G:

< > -] «-» <> -1 «-
Re[h,. + R ). K - -
N ef i 2% Pig 2x] . Immig R, ni‘j sz]
G =
m® +R'D R 1 , R[D. -RIT. & ] .

kj 2x k& 2x k2 2x ki 2x

< -> “->
At 6 = 0, D is real and thus G is block diagonal. Egn. (3.5) becomes two
independent eqns,, one for the symmetric and one for the antisymmetric eipen~
vectors, By checking table T we find that at 6 = 0 the acoustic longitudinal

mode and torsional acoustic mode are both antisvmmetric under €, operation. The

2

+ >
restrictions on Ckv given by free center of mass motion are then

£
S ot -, 9 =0 (3.6a)
9 1z
i
[ g 7
U (L SR L S B 1= 0 (3.6b)
0 ¢ ax v ay X
>
At 4 = + i the cigenvector of the transverse acoustic mode is qi(t y) = VGQ (1, +i,0),

FERS
md srives the restrictions on G

i o Lif
Y N /m. =0, b =4+ y (3.8a)
. X R av v T
] '
ki kv .
Vw4 s 68 vm - o, = 4y (3.8b)
o} T ay ¢ -
] g
Thus we see that the C2 symmetry distinguishes the normal modes at # = 0
s svometric and antisvmmetric, at d # 0 the Cz operation mixes the normal modes
At and = teoapain form svmmetric and antisvmmetric modes,  (Secocoqn. (3,4)).

It is known that time reversal combined with an inversion element can often be

used to make the dvonamic matrix and its eigenvector real.
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IV. Selection Rules

The infrared and Raman selection rules for helicatl molecules have
been discussed by Ili);)u,sl)j and the results are the Tollowing:
infrared absorption can only occur at # = 0, + ¢, and Raman scattering,
at v =0, + ¢, + 2¢. In general these selection rules are applicable
to double helical molecules. For the molecule possessing C2 symmetry
these selectioa rules are affected by the C2 symmetry and the results
are listed in Tables II and III where x+ = x + iy, xO = z.

At + = 0 the symmetric modes produce no y and z components of
induced dipole and the antisymmetric modes produce no x component of

induced dipolte. At ¢ # 0, the normal mode at 9 and -1 are mixed by the

C, operation. The time reversal representations have been

) 7
classified by Lax as of 3 types: real, pseudoreal and complex. 1In
the vihratlonal mode problem a real representation meaas no double
. >
depgeneracy due to time reversal, the subspace spanned by q(f) and the
Y
subspace spanned by q(-#) are identical. Thus transitions that occur
at " can also occur at -+, These results are reflected in Table 11 and I1T.

Furthermore the €., axis provides a special direction, For Z-DNA at

Cy
the piteh angele 5 o=~ =607 there are 6 such special directions in space.
when incident Light is polarized along these directions additional
transition will occur at v = 0, These transitions are penerally oot found
for a helical molecule withont €, svmmetrv.  The last line of Tables Il .and

<

Pists these transitions.

™ M Y P o A w,  w” - " - e W e W et e e . o
“ A -_ AN DR LR n- ' N A 'l’ o .-f._ .\\l”\f.‘- .\f;._(.“-'_‘..“-f._- ._.ﬁ.- o ST e \.... T \r_: R _.-'\. .

g

. x

3 G P A AL

e Pl

P

| ST

okt

-,

LA e et

D R 20 e L o T T

v

[}
aAs A D

e
alels

17T

2

P

'Y,

b

(o

»
-

)

]." b 4

" ..

FRPRP I

-
’

'

-'.
/’

7



V. Conclusions

Alternating polymers of DNA have .y additional symmetry, 0
13 symmetrv aboul the x-axis. This is in addition to the screw axis or
helical symmetry found in all repeating DNA's. This additional symmetry can
be used along with the helical symmetry and the ubiquitus time reversal in-
variance to greatly simplify helix lattice calculations for these
alternating polymers. In this paper we have detailed the way to make use of
this simplification. We show how to reduce the dimension of the dynamical
matrix where possible, to greatly reduce the diagonalization time needed for
solution. In practice we have reduced the calculation time for the modes of
an alternating methylated Z-DNA by a factor of ton.j4

We have also examined the implications of the additional symmetry in
changing the infrared and Raman selection rules. We find that a new absorp-

tion mode is possible in these polymers with C, symmetry. The additional

2
absorption mode should cause greater total absorption for the alternat-
ing polymers than for simple homopolymers. The increase is strongest for
light polarized transverse to the helix axis., 1In crystalline DNA where the

b x—axis directions can be specified the selection rules may be verified

dircetly by increased absorption at these special dircections traverse to the

helix axis.
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TABLE I. Unnormalized eigenvectors of free motion.

m e | (o]
n =0, q; = v/mi 0o q. = o,
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ho= 0, Q" = zx/m, X°, q. = /m, {x° |,
i i1 i i ix
0
X + iy

X
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longitudinal
acoustic mode

acoustic
torsional mode

acoustic transverse
mode

X,y real and
arbitrary
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Polarization of

Table 1T.

incidoent

Infrared Selection Rules

Pavameter 9

Without C

With C2

vohe cirealar (x4) +y +
l.he circular (X_) -y +
fincar parallel (%) 0 0, antisymmetric
. - ,_,_--_-,V“_,-‘A_,‘--._a}._...._- Y .
special direction x No 0, symmetric
Table IIT. Raman Selection Rules
Polarization Parameter 0
ine idont seattered Without (12 With CZ
v, 0 0, symmetric
+ + N
_ —2|Jv :t 2VL
4 —Q; + 'Il
() —
X 24 + 2¢
) N ! + 2
“ 0 0, symmetric
. i + .
~a N Ty
,,,,, DN I U S ——
X Iy + il
. + b hs
* - + 4
0 0, symmetric
(8]
- - - = — - — - — _ﬁp-——-———«o——»———_-aﬁ— —1L_,’——__- — - = - ——
Spee il : 0, svmmetric
No 0, antisymmetric
; O, antisymmetric
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