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1 Introduction

This is the final report for the "Investigation of Classifier Algorithms" project of
the DARPA/NVEOL Characterization of Algorithms for Passive Infrared (CAPIR)
program. This report covers all activity performed by the Northrop Research and

0 Technology Center during the period from 17 October 1985 to 17 October 1986.

The overall objective of this effort is to develop and study an optimal classifier
so that future ATR designers can concentrate on feature extraction. The bpecific
tasks of this project are:

A. Perform feature extraction and analysis on ERIM-supplied segmentor outputs.

B. Develop probability density estimates and figure-of-merit computations for
kernel-based :lassifier.

C. Develop estimates for confidence in the probability density estimates.

D. Evaluate and demonstrate classifier using above items.

This report is divided into nine sections. Section 2 details the feature extraction
task and includes information about the exchange of data with ERIM. Section 3
describes the classifiers used in this study as well as the window-width optimiza-
tion problem in producing density estimates with the kernel-based classifier. Sec-
tion 4 describes the confidence measures used to attack task C. Section 5 presents
the results of our study on the development set of images, while Section 6 reports
results for the characterization set of images and comparisons of these results
to the development set results. Section 7 gives the results of our window-width
optimization study while Section 8 presents our confidence measure experiments.
Finally, Section 9 gives the conclusions of this study.

2 Feature Extraction

In our original contract statement, this feature extraction task was not included.
After some discussion with NVEOL personnel, it was decided to perform the
extraction of nine simple shape-based features on the ERIM-supplied database. -
Such a simple set of features should be adequate for the job of evaluating various
classifiers.
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2.1 Data Exchange

Software was developed to read the ATRWG-style tape formats. The ERIM de-
velopment set was read from tape and placed on disk. The total number of
development set images read onto disk was 136.

For each image file on the three magnetic tapes received from ERIM, three disk
files were created. One file consists of the grey-level image, the second contains
the binary mask image, and the last contains the ATRWG headerl and header2 Nwh
information.

Software was written to decode the header2 portion of the ATRWG information. 1

Currently, this software supports "list-format" header2. Included with this is the
ability to decode both the ground-truth list and the target-metric list. Other list
types, e.g. image-truth, have not been decoded.

The results of classifier output for the development set were sent to ERIM.

The characterization set of images was received from ERIM. It included a set of .'
five (5) image tapes and one experiment definition tape. There was no classifier
experiment defined on the tapes. NVEOL suggested using all of the image files
present in the development set in a single experiment. The initial characterization
set included no segmentor output. This problem was resolved.

The results of using the classifiers trained on the development set to classify object
in the characterization set were sent to ERIM.

2.2 Feature Definitions

The nine features suggested for use by ERIM are shape-based features. Their
definitions are as follows. For any object in any image, let R be the set of (x, y)
coordinate pairs in the bounding rectangle defined in the ERIM supplied ground-
truth data. Let P(i,j) be the (i,j)th pixel in the segmented binary (0 or 1) mask
image. The nine features are defined as follows: "-.

* Feature(I) = area = Z(i)ER P(i,j) -F

* Feature(2) = perimeter where the perimeter is estimated by the following
procedure. First, let perimeter := 0. Then for every (i,j) E R, first let
s= = P(i-1,j)+P(i,j)+P(i+1,j) and s. - P(i,j-1)+P(i,j)+P(i,j+1),
then if s =1 and s. =0, set perimeter := perimeter + 1 or if s =0 and

5
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sy=1, set perimeter perimeter+1 or ifs. - 1 and s. = 1 and P(ij) 0, -,
set perimeter := perimeter + V12-

* Feature(3) = ratio of the eigenvalues = Al/A 2. To define this, and the
following features, let

avg2 = EZP(i,i) i/ P (i,ji)

avg. = E P(i,j)j/- P(i,j)

ull = E P(i,j)(i - avgz)(j - avg,)

U2o = (Pi, j)(i - avg,)2

U0 2 = i P(i,j)(j - avg,)2

b = U 2 0 + U 0 2

c = U2 0 UO2 - u 2

a-
A = (b - Nb 2 4c)/2

where each sum is over (i,j) E R. "f

" Feature(4) = Feature(2)2 /Feature(1).

" Feature(5) = Iuu/bI.

" Feature(6) = -c/b.

" Feature(7) = (U2 0o - U 2)/b.

" Feature(8) = (V/- + Vu/i2 - 1)Feature(1)/Feature(2).

" Feature(9) = Feature(1)/(AlA2 - Feature(l)).

Throughout the rest of this report, we will refer to features by the above numbers.

It is important to note here that the segmentor output provided by ERIM is the
result of segmentation by hand rather than by any particular segmentor algorithm.
Thus, the segmented objects on which the above features are computed are ideal.

6
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2.3 Development Set Pattern Matrix -

A pattern matrix consisting of the nine features for each segmented object in the

set of images was computed. A total of 378 segmented objects were found and
processed. Class information contained in the header2 target metric field "Target
Type Observed" (T-18) is also retained.

A number of inconsistencies between the ground-truth data and the target-metricdata on the number of objects in the field-of-view were found. In all cases, the -

target-metric data was used. Also, one file (2029075z) had a target-metric spec-
ification for two targets. However, only the first appeared valid, therefore, the
second target was ignored. No additional problems were encountered.

2.3.1 Fourteen-Cla.' Problem

We have been tasked with two classification task: the "detection problem", which _

refers to classifying the patterns into one of two classes, and the "target identifi-
cation problem", which refers to classifying the patterns into one of the a priori
target types, e.g. M-60 tank, M-133 tank, etc.

For the multi-class target identification problem, we use the original class labelsS.
fi, Le AT '71.'O hvader. in the dtvelupmcnt set, t*hcre were fourteen such
classes. Table 1 shows the breakdown of the class labels on the patterns that are
present in the fourteen-class pattern matrix. .'.4

In the remainder of this report, we will refer to classes by their class number.

2.3.2 Two-Class Problem

The "detection" problem is set up as the problem of classifying tracked vehicles
versus non-tracked vehicles. A pattern matrix was built with all of the original 0

378 patterns partitioned into these two pattern classes. Tracked vehicles consist of
initial target types in the ranges (10-25) and (200-219) while non-tracked vehicles

consist of target types of (100-108) and (300-316). This resulted in a split of 182
patterns in class 1 (tracked) versus 196 patterns in class 2 (wheeled).

I . .e17%
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Class Number Object Label Number of Patterns
1 1 1 1 9,. _

2 17 30
3 24 27
4 100 24
5 104 21
6 200 14
7 204 46
8 208 9
9 218 37
10 300 34
11 302 23
12 306 31 , '

13 315 26
14 316 37

Table 1: Breakdown of class labels in the development set

2.3.3 Feature Analysis

Simple feature analysis was done on the development set data using standard -,

techniques. The mean and covariance matrix of the original nine features are -

shown in Table 2.

The same analysis was done for each of the pattern cla-zes in both thp, two-
and fourteen-class problems. That analysis is too lengthy to present here. It is
sufficient to report that the classes appear highly intermingled.

To show this data, we resort to the principle components projections of the data
down to two dimensions. Figures 1 through 4 show the scatter plot of the data on .,
the first two eigenvectors. The first two plots show the two-class breakup of the
data, while the second two show the same data, but for the fourteen-class problem.
The two plots for each problem show the data at two different resolutions. The
scales are given on the plots. Very little separation between the classes can be _
seen. Numerous outliers occur in the data. .

The next four plots (Figures 5 through 8) are scatter plots of the data in feature
space with features 1 and 6 taken as basis vectors. This space yielded the best.
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Global Meanl Vector :

0.39E-03 0.44E+02 0.23E*01 0.75E01 0.38E-01 -. 1E+00 0.68E+00 0.28E+04 0.42E+00

Global Correlation Matrix:

1.00 0.9 -0.16 0 51 0.43 -0.11 -0.15 0.97 -0.06
0.95 1.00 -0.17 0.68 0.48 -0.11 -0.13 0.AS -0.08 i .%%

0.61 0.68 0.03 1.00 0.42 0.09 0.11 0.40 -0.01 '?
0.43 0.48 -0.38 0.42 1.00 -0.37 -0.41 0.37 0.02

-0.11 -0.11 0.96 0.09 -0.37 1.00 0.91 -0.08 0.,'" -i; a
-0.15 -0.13 0.84 0.11 -0.41 0.91 1.00 -0.12 OG N'.,/
0.97 0.85 -0.10 0.40 0.37 -0.08 -0.12 1.00 -0.04""

-0.06 -0.08 0.09 -0.01 0.02 0.05 0.04 -0.04 1.00 " %01'' '
Global Covariance matrix:

0.56E060 0.3E05 -. 8E02 0.1E04 0.E02 -0.46E+01 -0.28E+02 0.57E+07 -0.15E03

0.33E105 0.21E+04 -0.61E01 0.99E402 -0.1E-01 -0.29E00 -. JSE+01 0.31E+06 -0.12E02
-0.87E402 -0.61E01 0.63E000 0.83E-01 -0.14E-013 0.85 0.16E+00 -0.66E03 0.25E-00

0.12E+04 0.99E02 0.83E-01 0.10E-02 0.60E-.8 0.16E-01 0.6E-01 0.10E+06 -0.10E+O0 ..0.15E+02 0.30E+O4 -0.14E- 0.60E-01 0.21E-02 -0.370. 2-0 2 . 3 5
-0.46E+01 -0.29E00 0.42E-01 0.16E-01 -0.95E-03 0.31E-02 0.13E-01 -0.34E+02 0.10E-01

-0.28E-02 -0.15E01 0.18E+0 0,86E-01 -0.46E-02 0.13E-01 .IE-01 -0.24E+03 0.34E-010.67E+07 0.31E08 -0.66E+03 0.0E+05 0.14E03 -0.34E+02 -0.24E+03 0.63E+09 -O.llE*04
-0.15E+03 -0.12E02 0.25E00 -0.10E20 0.35E-02 -0.01011E+04 0.12E02

Eigen Values of Global Covariince Matrix
0.735E-04 0.121E-02 0.116E-01 0.589 2.26 12.3 6406 10.06205 0.636E+08

Table 2: Analysis of 378 patterns with nine features
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Gaussian classifier for the two-class problem with number of correct classifica- -6
tions of 218. The classes estimated had mean vectors and covariance matrices
of mean(I)=(432.3 -. 2), cov(1)=((5.4X10 5 9.0) (9.0 0.0)] mean(2)=(354.1 -. 2),
cov(2)=[(5.6X105 -. 5) (-.5 0.0)]. The confusion matrix showed that 52 patterns
in class 1 were classified as class 2 and 88 patterns in class 2 were classified in class
1. The first three plots show the data at various resolutions with two class labels,
while the final graph shows the data with fourteen class labels. A number of in-
stances of two samples from the same class lying very close together in the space
can be seen. This may mean that the training data contains non-independent
samples, e.g. two images taken close together in time.

Additional analysis of this data appears in Section 5 of this report.

2.4 Characterization Set Data

We attempted to build a pattern matrix consisting of all the objects in the char- o
acterization set with each of our nine features. A few problems were found in
building this matrix. These were:

" The truth file for image 2007064c had errors reading from tape. We have
deleted this image set from subsequent processing.

* The second target in image 2003016c had only a few target pixels 'n its
bounding rectangle. This caused a feature (lambda2) for this target to be
computed as zero. Since this fiature is used as a denominator in a subsequent -
feature, we arbitrarily set the lambda2 feature value for this target to 0.001.

" The larger images (1280x240 versus 496x320) on the last two tapes (3041,
3042) caused some problems in our tape reading software. We have corrected
these reading problems. However, we found when computing the features
for the targets in these images that many of the bounding rectangles of the
targets did not contain any target pixels. We decided to ignore these images.

In total, a set of 373 targets have been processed and our set of nine features
computed for each of them. This is approximately the same number of targets as
the development set.

18



3 Classifier Algorithms -I

Three basic classification techniques are to be studied in this project. These ,t.
are a classifier based on the kernel density estimation technique, the K-Nearest

Neighbor (KNN) classifier, and a parametric Gaussian classifier. Further, for the
kernel-based technique, various methods of choosing the window-width parameter
are to be studied. We now report the details of these classifiers.

3.1 Kernel-Based Classifier .%-.'.

The kernel-based classification technique is based on the Parzen nonparametric
probability density estimator. This density estimation technique consists of defin-
ing a -..-riable kernel with unit volume in feature space and convolving this kernel
over a data set. To make this clearer, the mathematical form for the kernel es-
timate of a density of each point X in a feature space is given in Equation 1,
where the kernel is a Gaussian form (though any other kernel could be used) with

covariance matrix estimated from the samples from each class. This is the form
used in the rest of this study.

P(XICJ] -- M {(2ir)d/2 hdIO~,I Exp (X - Zi) t '- '(X- Zs) (1)

where

X = random variable in feature space

C, = Class j

Zi = ith sample from class C.

Mi = cardinality of class C.

d = dimensionality of feature space

l. = covariance matrix for class C,

h = window - width parameter 4% %

Once the class conditional densities are estimated, classification proceeds by a
standard minimum risk criterion, where risk can be based on class prior proba-
bilities and cost of misclassification. In our work, we assume that these are equal

for each class, and thus we use a maximum probability classifier. The covariance %
matrices for each class are estimated from the training data for that class. '..'-

",,4 ,
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3.2 Window-Width Selection

A sub-part of this project is the investigation of various methods to choose the
window-width parameter, h, in kernel-based density estimation. Three techniques
are to be studied. The final result will be a graph showing the resultant criterion
function against the classification performance by the leave-one-out technique.

The comparison of these techniques on the ERIM-supplied ATR data is given in
Section 8 of this report.

3.2.1 Lenve-One-Out

The leave-one-out technique for window-width selection is intuitively simple. It
involves searching the window-width parameter, h, for that value which maximizes
the final classification performance, where performance is measured using the
leave-one-out technique of error estimation. This technique will be used as the
baseline with which to compare the other techniques.

3.2.2 Density Overlap

In this method, the overlap between two class-conditional densities is computed 0
by numerical integration for a given value of h. The criterion function is the value
of the overlap. For a multi-class problem, various combinations of the two-class
overlap can be used, including min-max and average.

The implementation of the numerical integration is done as follows. Due to the
large dimensionality of the feature space, the standard grid method was not cho-
sen. Rather, the midpoint between every pair of points from unequal classes was
chosen as an evaluation point. At each of these midpoints, the class conditional wl'
densities were estimated and the overlap (which for two classes is just the mini-
mum of the two probabilities) is summed. The final criterion value is normalized
by the total probability mass (of all classes) seen.

3.2.3 Bhattacharya Metric .

This is similar to the density overlap technique, but here the criterion function is
the well-known Bhattacharya metric B defined as

20
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B =-In f V'P[XIClass1IP[XC~ass2]

where the integration is over all of the feature space.

As for the overlap method, the numerical integration is actually computed over
all midpoints of between class vectors. Again, the final statistic is normalized by
the total sum of the probabilities of all classes. .

3.2.4 MEISER Method

Let x 1, X2 , ... , x, be a random sample from an 10-valued random variable having

unknown density function f. The kernel estimate of the density is then

A in
- Kh(X - (2)

where Kh(x) = VK(x/h); h is the window-wicth parameter, h E R, h > 0;
Vh = hd is the window's volume; and K is a functional on Rd having integral one .

(along with other mild restrictions).

The integral square error of the estimate is f (f - fh) . It can be shown that this
leads to an expected square error measure of 0

n n 25:. .
nh -EE'-(- - x) n IZZE 'KA(xi- X) (3)

where K is the convolution of the kernel at window-width h. The MEISER is

then to select the window-width h such that LA is minimized. .

In our case, where the kernel is a Gaussian form, the convolution of the kernel z.
reduces to another Gaussian whose covariance matrix is twice the original kernel's :'

mat rix. *'¢

3.3 K-Nearest Neighbor

a sample, X, whose class in unknown into the class with majority vote among the

classes of the K closest training samples to X. If there is no majority vote, we.,
assume a random assignment into one of the classes of the set of classes having :
tied votes. :::

2 21
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3.4 Parametric Gaussian Classifier

The parametric Gaussian classifier used in our study is defined by assuming that 't

each of the pattern classes has a Gaussian form with unknown mean vector and
covariance matrix. The mean and covariance matrix are estimated from the class'
training data and these parameters are "plugged into" the parametric form of the
classifier.

4 Confidence Measures

Although the probability of correct classification is, by itself, a very useful in-
dicator of the quality of a decision, there are other higher-level considerations
concerning the degree of certainty in the probability estimates. In standard sta-
tistical parameter estimation, it is considered good practice to report a confidence %
interval on any estimated parameter. One of our tasks is to look at confidence 1

measures estimates for probability density estimators. In the rest of this section,
we give a brief overview of the techniques used for confidence measure estimation.

4.1 Non-linear Scaling

Since confidence estimates are formed based on the number of samples used to
make the parameter estimate, a direct approach to determining the confidence in '.,
a probability estimate for every point in feature space is based on the non-linear
scaling on the number of points which contributed to the density estimate. We
choose to base our scaling on the Mahalanobis distance to points in the training
set.

Morc formally, the non-linear confidence measure at each pattern in a data set is
defined as the minimurn, over all of the classes, of the number of other patterns
which contributed to the density estimate divided by the total number of possible
patterns which might have contributed. A pattern contributes to the density
estimate of the pattern of interest if it is within some threshold in Mahalanobis
distance from that pattern. In our experiments, the threshold distance is set at
1.0. 0

While this method has intuitive appeal, its statistical properties are unknown.

22
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4.2 Bootstrap

Of course, the "best" approach to confidence measure estimation is to go to the %
field and gather hundreds of sets of data and use each to estimate the probability
density functions (pdfs). The resultant pdfs could then be used to form confidences %.
in the pdfs at every point in feature space. Unfortunately, this procedure is
unworkable due to the high cost in obtaining even a limited set of ATR training
data.

A new statistical technique called bootstrapping has been used with some success
to form confidence intervals for a single real-valued parameter without taking
more data. One of our tasks is to apply the bootstrapping paradigm to the more
difficult problem of a confidence interval about a functional estimate, in this case
a probability density function for the ERIM ATR data.

The bootstrap technique can be described generically as follows. It is a resam-
pling technique for nonparametric estimation of bias, variance and more gen-
eral measures of error. First, we are given a statistic O(X, F) of interest, where
X = (x,...x,) indicates the entire n point independent, identically distributed
(i.i.d.) F sample, where F is some distribution function. On the basis of observ-
ing X = x, we wish to estimate some aspect of O's distribution, for example E(8).
The bootstrap procedure is then:

(1) Fit the nonparametric Maximum Likelihood Estimator (MLE) of F,

F : mass 1/n at xi, i 1, 2,..., n (4) 'a

(2) Draw a bootstrap sample from F,

xz, x*,..., xn distributed i.i.d. F, (5)

and calculate 0" = O(x*,,..., x,,, F).

(3) Independently repeat step 2 - a large number, M, times obtaining bootstrap a.--

replicants 0*, 0;, ..., & - and calculate whatever aspect of theta's distribution
in which we are interested. For instance, if we wish to estimate E(O), we
calculate,

E(O) = - e (6)

In all cases, we are calculating a Monte-Carlo approximation to the non-
parametric MLE for the quantity of interest; the approximation being that
M is finite rather than infinite. a-
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Bootstrapping is applied to pdf estimation in the following manner. For each
pattern, X,, in the dataset, M bootstrap replicants of the dataset, minus the
given pattern X,, are computed. The deletion of the pattern of interest (Xi)
from the bootstrap samples ensures that leave-one-out type classifiers are used
in subsequent processing. For each of these M bootstrap samples, the estimated
probability that Xi belongs to each of the two classes in a two-class problem
(Pm[Xi E CL],I = 1,2, m=1,...,M) is computed using the kernel-based density
estimation method. The bootstrap confidence measure at X is then defined to be

M M
cboot(X,) = E> I(Pm[X, E C)/Pn[X E C2 )

m=1 n=l

where

I(X) 1/M 2  if x > 1
-1/M 2 otherwise

This is nothing more than computing the value of (the number of times the prob-
ability ratio would decide class 1) minus (the number of times the probability
ratio would decide class 2) normalized by the number of possible probability ra-
tios. Note that if every computed probability for class 1 (class 2) at Xi was greater
than all the computed probabilities for class 2 (class 1) then cboot(X) = 1(= -1).
This full process is then repeated for each Xi in the dataset. The number of boot-
strap replicants, M, used in our experiment is 100.

5 Evaluation- Development Set

This section describes the results of our study of the development set of images.

5.1 KNN Results - Development Set

The two-class pattern matrix was analyzed for class separability by a leave-one-
out KNN classifier. This was performed by searching over all feature subsets of
a given size made up of nine original features and, for each subset, recording the
number of correct classifications (out of 378). The value of K in the KNN classifier
was varied from 1 to 10. All ties between the classes when classifying a pattern
are resolved randomly.
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Subset Size Number Correct Feature Subset K
1 232 7 7
2 248 5,9 7
3 253 5,6,9 1
4 246 3,5,7,9 1
5 246 3,5,6,7,9 1
6 218 1,2,4,5,6,8 8
7 218 1,2,3,4,5,6,8 8
8 217 1,2,3,4,5,6,7,8 8
9 215 all 8

Table 3: KNN results for the two-class problem

5.1.1 Two-Class Problem

The best feature subsets, along with their performance in terms of the number of -
correctly classified patterns, are shown in Table 3.

5.1.2 Fourteen-Class Problem

We performed the same classification analysis on this fourteen-class matrix as for a"-

the two-class matrix. In Table 4, for feature subsets of size 1 through 9, we show
the best subset found, for all K from 1 to 10, and the number of correctly classified
samples out of 378.

5.2 Gaussian Results - Development Set

As for the KNN classifier, a search was performed for a standard Gaussian classifier
over all possible feature subsets for both the two-class and fourteen-class problems.
Here each class is assumed to have a class-conditional Gaussian distribution with
an unknown mean vector and covariance matrix. These are estimated for each
class' data using the maximum likelihood technique and then these estimates are
"plug[ -in" to the standard Gaussian decision rule.
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Subset Size Number Correct Feature Subset K -6

1 80 1 9
2 93 1,7 1
3 92 1,5,6 1
4 98 1,5,6,9 1
5 99 1,5,6,89 1
6 97 1,2,5,6,8,9 1
7 95 1,2,3,5,6,8,9 1
8 93 1,2,3,5,6,7,8,9 1
9 84 all 3

Table 4: KNN results for the fourteen-class problem

5.2.1 Two-Class Problem

For the two-class problem, the best feature subsets, along with their performance
in terms of the number of patterns correctly classified are shown in Table 5.

5.2.2 Fourteen-Class Problem

We did the same procedure as the previous item using the fourteen-class problem.
The results are shown in Table 6.

Note that in the subset of size 9, a singular covariance matrix could not be inverted
to form the Gaussian classifier.

5.3 Kernel Results - Development Set

Both the two-class and fourteen-class problems were analyzed using the kernel- 0
based classifier. Unlike the analysis for the KNN and Gaussian classifiers, the
analysis of the kernel-based classifier was made only in the full nine-dimensional
feature space. In this space, the pdf for all the classes was estimated at various
values of h and the error rate was computed.

In the next two sections, we show the values of h (sampled at values 0.1 through
2.0 in steps of 0.1) versus the number of correctly classified samples out of 378.
Undecided samples are those samples that had the same probability for each class.
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Subset Size Number Correct Feature Subset
101 202 2 and 5

2 218 1,6
3 228 2,5,6
4 234 2,4,5,6
5 234 2,3,4,5,7
6 230 1,2,3,4,5,6
7 214 1,2,3,4,5,6,7
8 205 1,2,4,5,6,7,8,9
9 205 all

Table 5: Gaussian results for two.class problem

<w

Subset Size Number Correct Feature Subset

1 44 1
2 68 3,5
3 75 3,4,5
4 79 2,3,4,5
5 82 2,3,4,6,7
6 93 3,4,5,6,7,9
7 100 1,2,4,5,6,7,8
8 105 1,2,3,4,5,7,8,9 .- ]9 * *

Table 6: Gaussian results for the fourteen-class problem
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Value of h Correct Classifications Undecided 61. I

0.1 209 69
0.2 234 22
0.3 244 12
0.4 234 8
0.5 233 4
0.6 233 3
0.7 223 2
0.8 226 1
0.9 217 1
1.0 214 1
1.1 217 1
1.2 215 1
1.3 215 1
1.4 218 0
1.5 217 0
1.6 213 0
1.7 208 0
1.8 207 0
1.9 202 0 7_
2.0 198 0 1.01

"0

Table 7: Kernel results for the two-class problem vA

For small h values, these are usually points that are "outliers", which had no point
from either class close enough to contribute to the convolutional density estimate.

Section 7 reports the evaluation of more useful (as will be shown) methods of
setting the window-width than this brute force search for the value of h which
maximizes the leave-one-out estimate of the number of correctly classified samples.

5.3.1 Two-Class Problem

Table 7 presents the kernel-based classification performances in the nine-dimensional
feature space for the two-class problem.
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Class (Undecided) 1 2

1 5 119 58
2 7 64 125

Table 8: Confusion matrix for kernel-based classifier with h = 0.3

The confusion matrix for the best (h = .3) kernel-based classifier in nine-dimensional
feature space for the two-class problem is shown in Table 8.

5.3.2 Fourteen-Class Problem

Table 9 presents the kernel-based classification performances for the nine-dimensional
feature space for the fourteen-class problem.

The best kernel-based classifier (h = .2) for the problem had the confusion matrix -
shown in Table 10.

5.4 Analysis of Classifiers on the Development Set

A number conclusions can be drawn from the above. First, we address the two-
class problem then the fourteen-class problem.

* 5.4.1 Two-Class Problem

For this problem, feature subsets of size from 3 to 5 appear best, in terms of
classification performance, given the limited number of training samples available.
Second, the features do not do well in discriminating the two classes. It appears
that the nine features used in this study are not designed to separate tracked from 0

non-tracked targets without the use of additional a priori information.

For this problem, the "best" feature subsets are relatively unstable, though both
Feature(5) and Feature(6) appear quite often in the best subsets.

It is interesting to compare the best results for the kernel-based classifier on all 0
nine features to those of the Gaussian and KNN classifiers. For h=0.3, the kernel-
based classifier yields 244 correct classifications with 12 undecided patterns. The
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Value of h Correct Classifications Undecided
0.1 84 50
0.2 89 15
0.3 85 11
0.4 87 6
0.5 80 3
0.6 76 3
0.7 78 3
0.8 79 2
0.9 76 1
1.0 79 1
1.1 75 1
1.2 72 1 .
1.3 65 1

1.4 58 1
1.5 - 55 1

1.6 58 1
1.7 56 1
1.8 55 0
1.9 56 0
2.0 52 0

O

Table 9: Kernel results for the fourteen-class problem
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Class (U) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 5 1 3 0 1 0 2 1 1 0 0 1 0 2
2 2 1 10 2 2 0 0 3 1 2 1 3 0 3 0
3 0 3 2 2 3 0 2 0 0 9 1 0 1 4 0
4 1 0 1 1 7 1 0 1 0 1 1 1 0 8 1
5 4 2 0 1 1 1 1 1 0 0 1 2 3 1 3
6 0 0 0 2 0 1 3 2 0 0 2 2 0 0 2
7 0 2 0 1 1 2 4 10 5 8 1 4 2 2 4
8 0 1 1 0 0 0 0 0 4 0 2 0 1 0 0
9 1 1 4 5 2 0 2 6 0 10 1 2 0 3 1
10 1 0 0 0 0 2 2 2 2 2 11 3 3 1 6
11 0 0 0 0 1 1 2 1 2 2 2 6 1 1 4
12 2 1 0 2 1 0 0 3 2 2 4 1 6 1 6
13 1 1 0 1 10 1 1 0 0 2 1 1 2 4 1
14 1 3 1 0 2 2 1 5 0 2 3 2 6 0 10

Table 10: Confusion matrix for the kernel-based classifier for the fourteen-class
problem with h = 0.2

Feature KNN Kernel
Subset K Number Correct h Number Correct Undecided

7 7 232 0.8 228 0
5,9 7 245 0.1 197 9

5,6,9 1 253 0.2 214 4
3,5,7,9 1 246 0.1 225 14

Table 11: Comparison of KNN and kernel results

best KNN classifier with K = 8 had only 215 correct classifications. The best
Gaussian classifier had 205 correct classifications.

We also compared the kernel-based classifier's performance on the best feature
subsets found using the KNN classifier. A few of the best KNN feature sub- 0
sets, along with their performance in terms of the number of correctly classified
patterns, are shown in Table 11.

Thus, on the best KNN subsets, the kernel-based classifier was not able to achieve
the same level of performance as the KNN classifier. 0

Similarly, we compare the error rates for the best Gaussian classifier subsets to
the error rates for these same subsets under the kernel-based classifier.
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Feature Gaussian Kernel
Subset Number Correct hI Number Correct

2 202 1.0 188
5 202 0.6 231

1,6 218 0.5 221
2,5,6 228 0.5 254

2,4,5,6 234 0.2 246

Table 12: Comparison of gaussian and kernel results

A few of the Gaussian classifier's best feature subsets, along with their perfor-
mance in terms of the number of patterns correctly classified are shown in Ta-
ble 12.

Note that the best performance we have achieved on any subsets of features has
been for subset 2, 5, and 6 with the kernel-based classifier and h=0.5.

As an additional aid in understajiLI 6ag the structure of the features in this data,
we computed the best (in terms of most correctly classified samples) kernel-based
classifier in separating the two classes when using only one of the original nine
features. This was done by searching over h parameter values for each of the
nine original features in isolation. Shown in Figures 9 through 17 plots are the
density functions fit to each of the two classes. Each figure shows one of the
original features and each of the two class density functions. Since we are using a
maximum probability criteria to classify the samples, given the density functions,
decision regions axe easily determined from the plots by looking for regions where
one density function is greater than the other. .'.w

In these figures, little separation between the classes can be seen. Also, the ability -

of the kernel-based classifier to range from Gaussian classifier-like decision regions,
e.g. Feature 9, to KNN-type decision regions, e.g. Feature 5, is shown. -.

5.4.2 Fourteen-Class Problem

For the fourteen-class problem, results similar to the two-class problem are seen.
Li this case, Feature 4 does not appear to contain much class separability infor-
mation when evaluated by KNN classifier, but the Gaussian classifier adds it to
its best feature subset at subset size of three. Likewise the KNN classifier includes
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Figure 9: Best kernel-based density functions for Feature 1
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Feature 1 in all subsets and while the Gaussian method likes it as the best sin- -I
gle feature, it chooses not to include it in the smaller size subsets with multiple
features.

It is interesting that the best performance occurs with the Gaussian classifier with
eight features. This is fairly unusual.

Note that for the kernel-based classifier, with h = 0.2, we had 89 correctly classi-
fled patterns with 15 undecided. The KNN classifier on all the nine features had a
performance of 84 correct classifications with K = 3, while the Gaussian classifier
could not be run on all nine features due to a non-singular matrix for one of the
classes.

6 Evaluation-Characterization Set

This section details the results of applying the classifiers trained on the develop-
ment set to the characterization set. Here we use the actual class information
present in the characterization set and examine the actual error rates obtained by
using the trained classifiers to the predicted error rates when using the leave-one-
out method of error estimation on the training set.

:0
The characterization set pattern matrix consisting of nine features for each of the
373 test target objects was classified using the classifiers built for the development
set. The results of these comparisons follow. For each, we report a table of the
leave-one-out error estimate for the development (training) set and the error rate
found for the characterization (test) set. Each table presents the best (in terms of
the minimum error rate) classifier type and its parameters for the given problem.

6.1 Two-Class Problem

The first set of classifiers was built for the problem of determining two classes
in the data (tracked versus non-tracked) when using all nine features. Table 13
shows, for each of our three types of classifiers, the best error rate estimated by
the leave-one-out technique for the development set and compares this rate to
that over the characterization set. 0

The next set of classifiers were trained for the two-class problem using the three
features 2, 5, and 6 - these yielded the best feature subset of size 3 for the %
Gaussian classifier. Table 14 shows, for each of our three types of classifiers, the 'V"
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Classifier Parameters Error Rates -

Training Testing Percent Change
Kernel h = 0.3 35.5 53.4 +17.4 N.
KNN K =8 42.6 48.8 +06.2

Gaussian N/A 37.3 38.3 +01.0

Table 13: Error rates for two-class problem using all nine features

Classifier Parameters Error Rates
I Training Testing Percent Change

Kernel h = 0.5 32.8 44.0 +11.2
KNN K = 6 47.9 49.3 +01.4

Gaussian N/A 39.7 42.1 +02.4

Table 14: Error rates for two-class problem using features 2, 5, and 6

best error rate estimated by the leave-one-out technique for the development set
and compares this rate to that over the characterization set. t

Another set of classifier was trained on the feature subset of size three consisting
of features 5, 6, 9; this subset had the best performance for any subset of size 3
for the KNN classifier. Table 15 shows, for each of our three types of classifiers,
the best error rate estimated by the leave-one-out technique for the development
set and compares this rate to that over the characterization set.

,V.

Classifier Parameters Error Rates
Training Testing Percent Change

Kernel h = 0.2 43.4 45.3 +01.9
KNN K = 1 33.6 41.3 +07.7

Gaussian N/A 48.1 52.3 +04.2

Table 15: Error rates for two-class problem using features 5, 6, and 9
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Classifier Parameters Error Rates
Training Testing Percent Change

Kernel h = 0.2 76.5 90.1 +13.6
KNN K = 3 77.8 86.9 +09.1

Gaussian Not Run - - -
...

Table 16: Error rates for fourteen-class problem using all features .> "

6.2 Fourteen-Class Problem

The final set of classifiers were trained on all nine features for the fourteen-class
problem. Table 16 shows, for each of our three types of classifiers, the best
error rate estimated by the leave-one-out technique for the development set and
compares this rate to that over the characterization set. 0

6.3 Analysis

A number of conclusions can be drawn from the above data.

* First, as expected, the error rates for each of the classifiers increase when
the testing data is used to estimate the error rate.

* Among the three classifiers, the kernel-based classifier appears the most
susceptible to training-set overfitting while the Gaussian classifier appears
the least susceptible.

" To further quantify this overfitting, for the kernel classifier, plots were pro-
duced of the values of h versus classifier performance for both the training
and the test sets.

" Figure 18 shows such a plot for the two-class data with all nine features. .

The curve with filled-in circles shows the training set results and the curve
with hollow triangles shows the training set results. Note the overfitting of
the data for h < 0.5. A surprising aspect shown in Figure 18 is the higher
performance of the trained classifier on the testing data when 1.0 < h < 4.0.
Figure 19 shows the same data plotted out further in values of h showing 4,-
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that the performance predicted by the leave-one-out classifier matches the
actual pertormance seen for the testing data when h > 4.0. 'S

* Figure 20 show the same curves for the two-class problem using only features
2) 5, and 6. Similar results are seen.

9 Figure 21 shows the same curves as above for all nine features in the fourteen-
class problem. Here more "normal" behavior is shown: the test set per-
formance is always below the training set performance. Again, data-set
overfitting can be seen for h < 0.25.

7 Window-Width Optimization Study

The window-width optimization study is now described.

7.1 Development Set

For the development set, we evaluated the window-width optimization techniques
on the two-class problem using all nine of the original features. ft

Figure 22 shows a graph of the results of the number of correctly classified samples
for t1,P development set using the kernel-based classifier versus the h window-width
parameter. The best result occurs at h = 0.3 with 244 correctly classified samples.

Figure 23 shows the graph of the Bhattacharya metric over the development set
for the same values of h as the previous figure. The maximum value of the V-
metric is achieved at h = 0.9. This yields a classification performance of 217
correctly classified samples, in other words a percentage of 89 of the best achievable
classification performance.

Figure 24 shows the graph of the overlap metric over the development set for S

the same values of h as the previous graphs. The minimum value of the metric
is achieved at h = 1.1 which yields a classification performance of 217 correctly
classified samples.

Figures 23 and 24 show, respectively, that the Bhattacharya metric and the overlap
metric perform reasonably on this data set. They achieve their optimal value of
h close to the best value of h found by the leave-one-out error estimator. As
functions of h, they have a unique global optimal and are well-behaved.
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Figure 25 shows a different behavior. This graph plots the values of the MEISER hA
-6criterion over over reasonable values of h. In this figure, it is easy to see that

the MEISER criterion is not achieving its minimum in a sensible range of h.
Additional runs have confirmed that, for this data, the MEISER criterion goes to
- o as h -+ 0. While the MEISER criterion has performed sensibly on other data,
here the leave-one-out term dominates the convolution term, sending the result
to -co. Thus some care must be taken in depending on the MEISER results.

7.2 Characterization Set

To get the true value of the window-width metrics, we now look at the results of 6
setting h using the value predicted by these metrics and then testing this classifier
on the characterization set. We do this for the two-class problem using all nine
features and using the feature subset with features 2, 5, and 6.

For the two-class problem with all nine features, the leave-one-out classifier had
the best performance with h = 0.3. As we have shown in a previous section, this
setting resulted in overfitting the classifier to the development set. Examination of .4
Figures 18 along with Figures 24 and 23 shows that using the setting of h predicted P

by either the overlap metric or the Bhattacharya metric results in better results
on the characterization set.

The Bhattacharya window-width optimization method predicted an h value of 0.9,
while the overlap window-width technique predicted a value of 1.1. The error rate
estimated by the leave-one-out technique for h = 1.1 was 42.6, while the actual 22
error rate on the characterization set was 36.2 for this value of h. This produced a
-6.' percent change. Similarly, at h = 0.9, the leave-one-out technique predicted
an error rate of 42.6 while the actual error rate on the characterization set was -,:-

38.1, resulting in a -4.5 percent change. Thus, the use of these window-width
optimization metrics does tend to avoid overfitting of the training data.

For this same classification problem, but using the feature subset with features 2, 0
5, and 6, Figure 20 shows the development set (filled-in circles) and the charac-
terization set (hollow triangles) percent correct classifications as a function of h tt
for the kernel classifier. Note that values of h below 0.9 result in overfitting the
classifier to the development data. However, the best leave-one-out performance

6Son the development set is at h = 0.5, indicating that the leave-one-out selection
of h tends to overfit the data.
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featnres 2, 5, and 6
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Classifier Parameters Error Rates
Training Testing I Percent Change

Kernel h -- .1 42.6 36.2 -06.4

KNN K = 8 42.6 48.8 +06.2
Gaussian N/A 37.3 38.3 +01.0

Table 17/: Error rates for two-class problem using all nine features' :

Classifier Parameters Error Rates

Training Testing IPercent Change

Kernel h = 1.1 36.8 37.8 +01.0

KNN K =6 47.9 49.3 +01.4

Gaussian N/A 39.7 -. I+02.4

Table 18: Error rates for two-class problem using features 2, 5, and 6

Figures 26 and 27 show, for the same data, h versus the overlap metric and [

the Bhattacharya metric, respectively. While neither achieves their minimum

(maximum) over the graphed range of h, it is clear that both suggest that values -

of h below 1.0 will result in data set overfitting. Again, these two window-width

optimization methods are useful for determining a good value of h. Though not. '

plotted, the MEISER criterion on this data was again not useful as it suggested _

choosing as small an h as possible. 
%.

We can now repeat Tables 13 and 14 but with the values of h selected by the -.-

overlap window-width estimation technique. These repeated tables are shown in .

4; Tables 17 and 18, respectively. As can be seen, the kernel-based classifier now

avoids overfitting the training data and gives the best performance among the ::

classifiers on the characterization set of data. "5

4 A.

p.',

°"

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
Cl sii r Pa a e e sEro7a e

I'."
Tabl 17 Errr rtes or wo-cassprobem singallninefeaure



8 Confidence Measure Experiment

In this experiment, the best classifier found for the development set for the two-
class problem (the kernel-based classifier with h, = 0.5 and feature subset consist-
ing of features 2, 5, and 6) was used to study our proposed confidence measures.

Figure 28 shows the results of the experiment. Each pattern in the development
set is plotted using its non-linear confidence estimate (x-axis) and its bootstrap
confidence estimate (y-axis). The plotted symbol of a pattern is a filled-in circle
if it was correctly classified (by the kernel-based classifier mentioned above) and
a hollow triangle symbol if the pattern was incorrectly classified. Any pattern
which was "undecided", i.e. had equal probabilities for the two classes, is shown
in the graph as an asterisk.

Figure 28 shows a slight trend in the relationship between confidence measure
values and classifier performance. Correctly classified patterns do tend to group
around the +1 and -1 values of the bootstrap confidence measure. However,
unclassified patterns appear randomly spread in confidence measure values.

To further quantify this trend, we performed a Mann-Whitney non-parametric
test on the confidence measure values. Let G be a randomly chosen correctly
classified sample and let E be a randomly chosen incorrectly classified sample.
Let nls(G) and nls(E) be the non-linear scaling confidence measures for G and E,
respectively, and let cboot(.) be the corresponding bootstrap confidence measure.
For the non-linear scaling confidence measure, the small (close to zero) values seem
to be more highly probable for correctly classified samples so the null hypotheses
is set to be P[nls(G) _ nls(E)l < 1/2 with alternative hypothesis P[nis(G) <
nls(E)] > 1/2. For the bootstrap confidence measure, values close to 1 and -1 J"
appear to be more likely for correctly classified samples. The null hypothesis for
the bootstrap confidence measure is then P[abs(cboot(G)) abs(cboot(E))] _ 1/2
with alternative hypothesis P[abs(cboot(G)) < abs(cboot(E))] < 1/2.

The Mann-Whitney statistic for the non-linear scaling confidence measure is 0
13, 109 which, for thiz size data set, implies that small values of the non-linear
scaling measure are more likely for correctly classified samples than for incorrectly
classified samples, but only with a confidence of approximately 0.95.

The Mann-Whitney statistic for the bootstrap confidence measure is 17,505 which,
for the size of this data set, implies that absolute values of the statistic are very
likely (with confidence > 0.99) to be higher (nearer one) for correctly classified
samples than for incorrectly classified samples.
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Thus, while neither confidence measure perfectly predicts the goodness of classifi-
cation, both do capture important confidence information. It remains to be seen
how to use this information correctly, however.

9 Conclusions

9.1 Summary

This study has evaluated three types of classifiers on a particular set of ATR data.

The ATR data consisted of two sets of images: one used to train the classifiers
and one used to test the classifiers. For each target object in the ATR data,
nine simple shaped-based features were computed and this full nine-dimensional
feature space (along with a few sub-spaces of smaller dimension) was used as the -:

basis for classifier evaluation.

The three classifiers chosen for evaluation were: a kernel-based classifier, the K-
Nearest Neighbor (KNN) classifier, and a simple parametric Gaussian classifier.
The error rate of each classifier was reported using the leave-one-out approach -P
to error estimation over the training set and this error rate was compared to the
actual error rate obtained on the test set.

In addition, two further evaluations were performed. The first involved the selec-
tion of the window-width parameter needed in kernel-based density estimation.
As well as the baseline leave-one-out method of setting this parameter, three
additional selection procedures were evaluated: the MEISER technique, a Bhat-
tacharya technique, and an density overlap technique. The second study involved
the definition and evaluation of confidence measures for estimated densities. Two
measures were evaluated: a bootstrap measure and a non-linear scaling measure.

4 N.

9.2 Features

We can state a very definite conclusion about the feature set we have chosen
to study: it is not very useful in determining classes in this ATR data. Much
evidence is available to support this conclusion, including the poor performance
of all the classifiers over the perfect silhouettes used, as well as the simple feature
analysis performed.
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7. 7

Since the binary mask images used in this study were "perfect" segmentations, it is -6
clear that other-different or modified-features must be employed to achieve re-
liable classification performance. Any future evaluations of this ATR data should
undertake the task of searching for other features, as well as looking more closely
at the current feature set after it has been normalized by target metric informa- K
tion, such as target distance.

9.3 Classifiers

Is The conclusions one can draw from reviewing the classifier performance results of
this study are not as sharp as those drawn for the feature set. One problem is the
relatively poor performance of all the classifiers; the classifiability of the data with
this feature set is low and this places a strong upper bound on the performance
of any possible classifier.

Tables 17 and 18 present the heavily distilled results of our evaluation. These two
tables show that the kernel-based classifier performs better on the test set than
either of the other two classifiers.

The Gaussian classifier showed remarkably good performance on this data. Its
advantages are that it has no a priori parameters and that it is quick and cheap
(computationally) to invoke. For these reasons, we recommend its use for initial
determination of data set classifiability. "N

The KNN classifier is non-parametric and is between the Gaussian classifier and
the kernel-based classifier in computational complexity. Given the results of Ta-
bles 17 and 18 (and the fact that the kernel-based classifier is able to approximate ..-

the KNN classifier's decision regions when K is small by setting h small-see
Figure 15), there is little reason to recommend use of the KNN classifier.

Among the three classifiers evaluated, the kernel-based classifier is the most corn-
plex in software coding and lengthy in execution time. The results of Table 17
and 18 show that it does perform the best, however.

The KNN classifier has one a priori parameter of importance, the value of K.
In our evaluation, we have chosen the best value of K by a brute-force search
for the value which minimizes the leave-one-out error estiamte over the training
set. The kernel-based classifier also has one a priori parameter, the value of h,
the window-width. One advantage of dealing with the kernel-based classifier is
the existance of techniques for choosing this window-width-techniques which are

61

-1 J • • ' " ° " " " ".," " . . . . . ' " "t" ' ,,/' ' "" ".,',,',,'' ,'- ', ',,',.



-- -~ . . - '--. .:.. - - - - - - -7 .. - - J

p..

_m •.

more reliable than using the value which minimizes the leave-one-out error on the
training set.

9.4 Window-Width Selection I,.

From our window-width selection evaluation, it is clear that both the Bhat-
tacharya and the overlap techniques should be applied for determining an appro- -

priate window-width. The kernel-based classifier was shown to be robust when
using either of these window-width selectors. If the window-width is set by using
the usual technique based on minimizing the leave-one-out error over the training
set, we have shown that the resultant classifier can overfit the training data.

The MEISER technique, though theoretically interesting, fails to provide useful
window-width selection on this data. While it has proven useful on artificial data V
sets, it is clear that more careful studies are needed on distributions similar to
the feature distribution of this ATR data to determine how and why the MEISER
technique fails.

9.5 Confidence Estimators

The confidence estimators evaluated in this study appear interesting, as they do
yield some additional information-though not predicative power-about classi-
fier performance. Their evaluation is difficult, as they were initially proposed to
combine the output of a few subservient classifiers at a higher level. However, the
Mann-Whitney test performed shows precise evidence for the conclusion that the
bootstrap technique shows more promise than the non-linear scaling technique.
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