

MICROCCPY RESOLUTION LEST CHART 1277-128-14-14-17 Tan, 445-124-13

.

AD-A192 150

OFFICE OF NAVAL RESEARCH

Contract N00014-84-G-0201

Task No. 0051-865

Technical Report #20

Electrochemistry and Spectroelectrochemistry of Polynuclear Zinc Phthalocyanines: Formation of Mixed Valence Cation Radical Species

Вy

V. Manivannan, W. Andrew Nevin, Clifford C. Leznoff, and A.B.P. Lever*

in

Journal of Coordination Chemistry

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of the Document Control Data-DD form 1473. Copies of the form available from cognizant contract administrator

88 3 21 044

SECURITY CLASSIFICATION OF THIS PAGE

.

	REPORT DOCUM	MENTATION	PAGE			
1a REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE	MARKINGS			
28 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT				
Unclassified 2b DÉCLASSIFICATION / DOWNGRADING SCHEDULE		As it appears on the report				
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING	ORGANIZATION	REPORT NUMB	ER(S)	
Report # 20						
6a NAME OF PERFORMING ORGANIZATION A.B.P. Lever, York University Chemistry Department	6b OFFICE SYMBOL (If applicable)	7a NAME OF MONITORING ORGANIZATION Office of Naval Research				
6c. ADDRESS (City. State, and ZIP Code) 4700 Keele St., North York, On Canada	tario M3J 1P3	76 ADDRESS (CH Chemistry 800 N. Qu Arlington	ty, State, and ZH v Division uincy Stree n, VA 2221	rCode) t 7 U.S.A.		
8a NAME OF FUNDING/SPONSORING ORGANIZATION	Bb. OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-84-G-0201				
BC ADDRESS (City, State, and ZIP Could)	A	10 SOURCE OF	FUNDING NUMB	ERS		
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO	
12 PERSONAL AUTHOR(S) V. Manivannan, W. Andrew Nevin, 13a TYPE OF REPORT 13a TYPE OF REPORT 13a TYPE OF REPORT 13b TIME CO FROM A *6 SUPPLEMENTARY NOTATION *7 COSATI CODES *ELD GROUP SUB-GROUP	Clifford C. Lea DVERED ug.87 TO <u>Aug.88</u> B SUBJECT FERMS Phthalocyaning Spectro-Elect	znoff, and A 14 DATE OF REPO Februar Continue on revers Systection has rochemistry	.B.P. Lever DRT (Year Month y 25, 1988 e of necessary and misstry- Mixe	h, Day) 15 Pi ng identify by id≓Valence	AGE COUNT 40 block number)	
The electrochemistry and spectr inc neopentoxy-substituted pht species show two oxidation wave mixed valence, half-oxidized sp species are presented and discu rings are oxidized simultaneous oxidation pathway.	one identity by block of oelectrochemist halocyanines are s to the radical ecies. The elec ssed. Nernstian ly in the tetra	CV of monon- e presented. l cation ind stronic spec n analysis s nuclear spec	elear, binu The binuc icating the tra of the hows that p ies, v a a	CALON	tetranuclear tetranuclear e of stable fully oxidized hthalocyanine ron	
MULINCIASSIFED UNLIMITED LUI SAME AS	PT DICUSERS	1'nclas 226 TELEPHONE	ssitied/unl (Include Area Co	imited de) 22c OFF (E SYMBOL	
Dr. Robert K. Grasselli					an of the area	
	A in their editions are c	(D2016+6	SECURIT	Y CLASSIFICAT	UN OF THIS PAGE	

~

.....

QL/1113/87/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Marvland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 1911	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232 Accession For NTIS GRA&I DTIC TAB Unannounced Justification	1
		By Distribution/	

۰.

Availability Codes Avail and/or Special

Dist

4

DL/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Manfred Breiter Institut fur Technische Elektrochemie Technischen Universitat Wien 9 Getreidemarkt, 1160 Wien AUSTRIA

Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 44106

Dr. R. Sutula The Electrochemistry Branch Naval Surface Weapons Center Silver Spring, Maryland 20910

Dr. R. A. Marcus Department of Chemistry California Institute of Technology Pasadena, California 91125

Dr. J. J. Auborn AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, New Jersey 07974

Dr. M. S. Wrighton Chemistry Department Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Dr. B. Stanley Pons Department of Chemistry University of Utah Salt Lake City, Utah 84112

Dr. Bernard Spielvogel U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709

Dr. Mel Miles Code 3852 Naval Weapons Center China Lake, California 93555

Dr. P. P. Schmidt Department of Chemistry Oakland University Rochester, Michigan 48063 Dr. Roger Beit Litton Industries Inc. Airtron Division Morris Plains, NJ 07950

Dr. Ulrich Stimming Department of Chemical Engineering Columbia University New York, NY 10027

Dr. Royce W. Murray Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514

Dr. Michael J. Weaver Department of Chemistry Purdue University West Lafayette, Indiana 47907

Dr. R. David Rauh EIC Laboratories, Inc. Norwood, Massachusetts 02062

Dr. Edward M. Eyring Department of Chemistry University of Utah Salt Lake City, UT 84112

Dr. M. M. Nicholson Electronics Research Center Rockwell International 3370 Miraloma Avenue Anaheim, Californía

Dr. Nathan Lewis Department of Chemistry Stanford University Stanford, California 94305

D^{*}. Hector D. Abruna Department of Chemistry Cornell University Ithaca, New York 14853

Dr. A. B. P. Lever Chemistry Department York University Downsview, Ontario M3J 1P3

QL/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton SO9 5H UNITED KINGDOM

Dr. John Wilkes Department of the Air Force United States Air Force Academy Colorado Springs, Colorado 80840-6528

Dr. R. A. Osteryoung Department of Chemistry State University of New York Buffalo, New York 14214

Dr. Janet Osteryoung Department of Chemistry State University of New York Buffalo, New York 14214

Dr. A. J. Bard Department of Chemistry University of Texas Austin, Texas 78712

Dr. Steven Greenbaum Department of Physics and Astronomy Hunter College 695 Park Avenue New York, New York 10021

Dr. Donald Sandstrom Boeing Aerospace Co. P.O. Box 3999 Seattle, Washington 98124

Mr. James R. Moden Naval Underwater Systems Center Code 3632 Newport, Rhode Island 02840

Dr. D. Rolison Naval Research Laboratory Code 6171 Washington, D.C. 20375-5000

Dr. D. F. Shriver Department of Chemistry Northwestern University Evanston, Illinois 60201 Dr. Alan Bewick Department of Chemistry The University of Southampton Southampton, SO9 5NH UNITED KINGDOM

Dr. Edward Fletcher Department of Mechanical Engineering University of Minnesota Minneapolis, Minnesota 55455

Dr. Bruce Dunn Department of Engineering & Applied Science University of California Los Angeles, California 90024

Dr. Elton Cairns Energy & Environment Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720

Dr. Richard Pollard Department of Chemical Engineering University of Houston Houston, Texas 77004

Dr. M. Philpott IBM Research Division Mail Stop K 33/801 San Jose, California 95130-6099

Dr. Martha Greenblatt Department of Chemistry, P.O. Box 939 Rutgers University Piscataway, New Jersey 08855-0939

Dr. Anthony Sammells Eltron Research Inc. 4260 Westbrook Drive, Suite III Aurora, Illinois 60505

Dr. C. A. Angell Department of Chemistry Purdue University West Lafayette, Indiana 47907

Dr. Thomas Davis Polymers Division National Bureau of Standards Gaithersburg, Maryland 20899

U/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Stanislaw Szpak Naval Ocean Systems Center Code 633, Bayside San Diego, California 95152

Dr. Gregory Farrington Department of Materials Science and Engineering University of Pennsylvania Philadelphia, Pennsylvania 19104

Dr. John Fontanella Department of Physics U.S. Naval Academy Annapolis, Maryland 21402-5062

Dr. Micha Tomkiewicz Department of Physics Brooklyn College Brooklyn, New York 11210

Dr. Lesser Blum Department of Physics University of Puerto Rico Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II IBM Corporation 5600 Cottle Road San Jose, California 95193

Dr. Joel Harris Department of Chemistry University of Utah Salt Lake City, Utah 84112

Dr. J. O. Thomas University of Uppsala Institute of Chemistry Box 531 S-751 21 Uppsala, Sweden

Dr. John Owen Department of Chemistry and Applied Chemistry University of Salford Salford M5 4WT UNITED KINGDOM Dr. O. Starsudd Department of Electrical Engineering University of California Los Angeles, California 90024

Dr. Boone Owens Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455

Dr. Johann A. Joebstl USA Mobility Equipment R&D Command DRDME-EC Fort Belvoir, Virginia 22060

Dr. Albert R. Landgrebe U.S. Department of Energy M.S. 6B025 Forrestal Building Washington, D.C. 20595

Dr. J. J. Brophy Department of Physics University of Utah Salt Lake City, Utah 84112

Dr. Charles Martin Department of Chemistry Texas A&M University College Station, Texas 77843

Dr. Milos Novotny Department of Chemistry Indiana University Bloomington, Indiana 47405

Dr. Mark A. McHugh Department of Chemical Engineering The Johns Hopkins University Baltimore, Maryland 21218

Dr. D. E. Irish Department of Chemistry University of Waterloo Waterloo, Ontario, Canada N21 3G1

DL/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Henry S. White Department of Chemical Engineering and Materials Science 151 Amundson Hall 421 Washington Avenue, S.E. Minneapolis, Minnesota 55455

Dr. Daniel A. Buttry Department of Chemistry University of Wyoming Laramie, Wyoming 82071

Dr. W. R. Fawcett Department of Chemistry University of California Davis, California 95615

Dr. Peter M. Blonsky Eveready Battery Company, Inc. 25225 Detroit Road, P.O. Box 45035 Westlake, Ohio 44145

ABSTRACTS DISTRIBUTION LIST, 051A

Dr. M. A. El-Sayed Department of Chemistry University of California Los Angeles, California 90024

Dr. E. R. Bernstein Department of Chemistry Colorado State University Fort Collins, Colorado 80521

Dr. J. R. MacDonald Chemistry Division Naval Research Laboratory Code 6110 Washington, D.C. 20375-5000

Dr. G. B. Schuster Chemistry Department University of Illinois Urbana, Illinois 61801

Dr. J. B. Halpern Department of Chemistry Howard University Washington, D.C. 20059

Dr. M. S. Wrighton Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Dr. W. E. Moerner 1.B.M. Corporation Almaden Research Center 650 Harry Rd. San Jose, California 95120-6099

Dr. A. B. P. Lever Department of Chemistry York University Downsview, Ontario CANADA M3J1P3

Dr. George E. Walrafen Department of Chemistry Howard University Washington, D.C. 20059

Jr. Joe Brandelik AFWAL/AADO-1 Wright Patterson AFB Fairborn, Ohio 45433 Dr. Carmen Ortiz Consejo Superior de Investigaciones Cientificas Serrano 121 Madrid 6, SPAIN

Dr. Kent R. Wilson Chemistry Department University of California La Jolla, California 92093

Dr. G. A. Crosby Chemistry Department Washington State University Pullman, Washington 99164

Dr. Theodore Pavlopoulos NOSC Code 521 San Diego, California 91232

Dr. John Cooper Code 6173 Naval Research Laboratory Washington, D.C. 20375-5000

Dr. Joseph H. Boyer Department of Chemistry University of New Orleans New Orleans, Louisiana 70148

Dr. Harry D. Gafney Department of Chemistry Queens College of CUNY Flushing, New York 11367-0904

DL/1113/87/2

Electrochemistry and Spectroelectrochemistry of Polynuclear Zinc Phthalocyanines: Formation of Mixed Valence Cation Radical Species.

V. Manivannan, W.Andrew Nevin, Clifford C. Leznoff, and A.B.P. Lever* Dept. of Chemistry, York University, North York, Ontario, Canada, M3J 1P3

Communication and Proofs to:

A.B.P. Lever
Dept. of Chemistry,
York University,
4700 Keele St.,
North York,
Ontario, Canada, M3J 1P3

-1-

Keywords: Phthalocyanine/electrochemistry/spectroelectrochemistry/mixed valence/cation radical

Abstract

The electrochemistry and spectroelectrochemistry of mononuclear, binuclear and tetranuclear zinc neopentoxy-substituted phthalocyanines are presented. The binuclear and tetranuclear species show two oxidation waves to the radical cation indicating the existence of stable mixed valence, half-oxidized species. The electronic spectra of the half- and fully oxidized species are presented and discussed. Nernstian analysis shows that pairs of phthalocyanine rings are oxidized simultaneously in the tetranuclear species, via a one-electron oxidation pathway.

-2-

INTRODUCTION

Certain binuclear porphyrins and phthalocyanines (Pc) containing two metal centers have recently been found to produce species with mixed metal valencies. For example electrochemical studies of binary cofacial dicobalt porphyrin complexes show that the cobalt centers are oxidized or reduced separately in two different monoelectronic steps to give mixed valence compounds containing $[Co^{III}Co^{II}]$ and $[Co^{I}Co^{II}]$ metal centers respectively¹. Binuclear cobalt phthalocyanines either linked by a common benzene ring² or a 1,8-naphthalene bridge,³ form mixed valence metal centers $[Co^{II}Co^{I}]$ upon electrochemical reduction. Collman <u>et al</u> have reported stable mixed valence ruthenium $[Ru^{III}Ru^{II}]$ and $[Os^{III}Os^{II}]$

Bis(phthalocyaninato)lanthanide(III) derivatives of the structure $\{Fc(-1)Ln(III)Pc(-2)\}, 6, 7$ in which a trivalent lanthanide cation is sandwiched between a phthalocyanine and a one-electron oxidized phthalocyanine. have been prepared.⁸⁻¹⁴ These complexes undergo reversible one-electron chemical and electrochemical oxidations to the doubly oxidized π -cation species $[(Pc(-1))_2 Ln(III)]^+$, or reduction to [(Pc(-2))2Ln(III)]. Similarly, binuclear mixed valence porphyrin species. in which one of the rings is oxidized to its π -cation radical have also been reported for some trivalent lanthanide sandwich-like bis-porphyrins; while a cerium(IV) bis(porphyrin) has been found to form a mixed valence ring oxidized species by chemical or electrochemical oxidation.¹⁵ A planar laterally bridged binuclear (metal-free or zinc) porphyrin has been observed to undergo four consecutive one-electron reductions, although no mixed valence species were reported.¹⁶ A [(OEP)Nb]2O3 binuclear complex has been reported to undergo stepwise one-electron oxidation to a mixed

-3-

valence ring-oxidized species by electrochemical oxidation.¹⁷ Oligomeric silicon phthalocyanines show stepwise oxidation or reduction of the phthalocyanine rings^{18,19}. Our interest in the generation of mixed valence phthalocyanine species prompted us to investigate the electrochemistry and spectroelectrochemistry of binuclear and tetranuclear zinc phthalocyanines.

Recently we reported the electrochemistry and spectroelectrochemistry of a series of binuclear dicobalt phthalocyanines linked by bridges of one, two, four or five atoms,²⁰ and of a tetranuclear phthalocyanine.²¹ No splitting of the redox couples was observed, the redox processes occurring via two one-electron transfers, at the same potential, at each phthalocyanine unit. In contrast, the analogous zinc derivatives of the five atom linked 'clamshell' (1) and the tetranuclear phthalocyanine (2) show splitting of the first oxidation couple, and permit the observation of mixed valence ring oxidized species. This is the first report of the spectroscopic characteristics of mixed valence ring oxidized species in binuclear dimetallic phthalocyanines.

Electrochemical data for mononuclear 3nPc species have been reported in the literature.²²⁻²⁶ ZnPc undergoes oxidation at the ring rather than at the metal center, resulting in the formation of a phthalocyanine π -cation radical. This has also been prepared by chemical oxidation using thionyl chloride, bromine⁷ or iron(III) perchlorate²⁷. Recently Nyokong <u>et al^{26,28}</u> have reported the optical and MCD spectra of the cation radical, [ZnPc(-1)]⁺. Octacyanosubstituted zinc phthalocyanine, (CN)&PcZn, exhibits four reversible, one-electron reduction steps which correspond to the formation of the mono-, di-, tri-, and tetra- anion.^{25,29}

-4-

EXPERIMENTAL

<u>Materials</u>:

Tetrabutylammonium perchlorate (TBAP, Kodak) was recrystallized from absolute ethanol and dried in a vacuum oven at 60°C for two days. 1,2-Dichlorobenzene (DCB, Aldrich, Gold Label), and N.N-dimethylformamide (DMF, Aldrich, anhydrous Gold Label) were used as supplied. <u>Methods</u>:

Electronic spectra were recorded with a Hitachi-Perkin Elmer Microprocessor model 340 spectrometer. Cyclic and differential pulse voltammetry were performed with a Princeton Applied Research (PARC) model 174A Polarographic Analyzer coupled to a PARC model 175 Universal programmer. Electrochemical data were recorded under an atmosphere of argon, or nitrogen, using a conventional three electrode cell. A platinum disk described by the cross-sectional area of a 27-gauge wire (area 10^{-3} cm^2), sealed in glass, was used as the working electrode, a platinum wire served as the counter electrode, and a Ag/AgCl reference electrode (-.045V)vs SCE)³⁰ (in sat.KCl separated by a frit) corrected for junction potentials by being referenced internally to the ferrocenium/ferrocene (Fc⁺/Fc) couple (0.31 V vs SCE) 30-32 All DMF solutions were prepared and measurements made, under an atmosphere of argon, within a Vacuum Atmospheres Drilab. The DCB solutions were prepared in air, degassed by purging with N2 gas and the measurements were carried out in a glove bag filled with an atmosphere of dry N2.

The stability of the Ag/AgCl/Cl⁻ electrode was checked using a solution of ferrocene in DCB; it was stable for at least two days. In various experiments involving DMF solutions, the Fc⁺/Fc couple was seen to lie in the range +0.35 - 0.45V vs Ag/AgCl/Cl⁻, due to variations in junction potentials. In DCB, the Fc⁺/Fc couple was observed at

~5-

approximately 0.6∇ vs Ag/AgCl/Cl⁻.

Spectroelectrochemical measurements were made with a 0.1 cm path length optically transparent electrode cell³³ utilizing a Pt minigrid, in conjunction with the Hitachi Perkin-Elmer spectrometer. A platinum-flag, used as the counter electrode, was separated from the working compartment by a medium glass frit. Controlled potential electrolysis was carried out using a PARC model 173/179 potentiostat. Solutions were continously purged with argon throughout the experiment. Solutions for electro- chemistry or spectroelectrochemistry contained 0.1-0.2M or 0.3M TBAP, respectively, as the supporting electrolyte.

Electron spin resonance data were obtained using a Varian model E4 spectrometer calibrated with diphenylpicrylhydrazide. Esr spectra of electrochemically generated [ZnTrNPc]4 species were obtained by bulk electrolysis of a solution (degassed by freeze-pump-thaw cycles) under an atmosphere of nitrogen in the dry box, and transferring the species to sealable esr tubes. The electronic spectra of these solutions were also recorded. The bulk electrolysis cell consisted of a platinum plate working electrode, a platinum flag counter electrode, and a silver wire quasi-reference electrode. Counter and reference electrodes were separated from the working compartment by medium glass frits.

Solutions for aggregation studies were prepared by dilution of a freshly prepared stock solution of phthalocyanine. Spectra were recorded immediately after each dilution and solutions were shielded from room light to minimise any photochemical decomposition of phthalocyanine. Synthesis:

The synthetic procedures give rise to mixtures of isomers in which the neopentoxy groups are randomly distributed about the phthalocyanine ring. For ease of description we describe the syntheses of specifically

-- 6 --

defined isomers. 2,9,16,23-Tetraneopentoxyphthalocyaninato- zinc (ZnTNPc) and the metal free phthalocyanines 1,3-bis-2'-(9.16,23-trineopentoxyphthalocyaninoxy) - 2 - ethyl - 2 - methyl propane (EtMeO(5)[H2 TrNPc]2)and tetrakis[((9,16,23-trineopentoxyphthalocyanin-2~yl)oxy)methyl]methane ([H2TrNPc]4) were prepared according to literature methods^{21,34}. 1, 3-bis-2'-(9,16,23-trineopentoxyphthalocyaninoxyzinc)-2-ethyl-2-methylpropane (EtMeO(5)[ZnTrNPc]2):- A mixture of EtMeO(5)[H2TrNPc]2 (32 mg, 0.019 mmole), zinc acetate (125 mg, 0.068 mmole), 2-methoxy-ethanol (5ml) and toluene (10ml) was heated at 120°C for 16 hours under an argon atmosphere. The solution was cooled and the product purified by flash chromatography using a column packed with silica gel following direct application of the mixture to the column. The column was eluted with toluene and the bluish green band collected. The solid isolated on evaporation of toluene was washed with methanol to give a bluish green product (26.9 mg; 79% yield). MS, m/e: 1786.7 M+ (100%).

Anal. Calcd. for C100H102N16O8Zn2: C, 67.22; H, 5.75; N, 12.54; Zn, 7.32. Found: C, 68.1; H, 6.2; N, 12.9; Zn, 7.4.

Tetrakis[((9,16,23-trineopentoxyphthalocyanin-2-yl)oxyzinc)methyl]-

methane ([ZnTrNPc]4):= A mixture of [H2TrNPc]4 (38 mg, 0.012 mmole), Zn(OAc)2 (94.3 mg, 0.51 mmole), 2-methoxyethanol (4ml), and toluene (8ml) was heated at 120°C for 18 hours under an argon atmosphere. The solution was cooled and the product purified by flash chromatography using a column packed with silica gel following direct application of the mixture to the column. The mixture was eluted with toluene and the bluish green band collected. The solvent was evaporated to yield a dark blue solid (33 mg, 80% yield). MS, m/e: 3473.2 M* (100%). Anal. Calcd for C1+3H188N32O16Zn4: C. 66.74; H, 5.46; N, 12.91; Zn, 7.53. Found: C, 67.6; H, 6.1; N, 12.0; Zn 7.0. Some analyses are not as close to theory as one would prefer;, there

- 7 -

are well known difficulties in analysing phthalocyanines. However the mass spectra provide additional confirmatory evidence for molecular formulae. RESULTS AND DISCUSSION

Aggregation Studies

Electrochemical studies of phthalocyanines are usually complicated by aggregation in solution to form dimers and higher aggregates. For example, in the cyclic voltammograms (CV) of metallooctacyanophthalocyanines the first one-electron reduction consists of overlapping waves due to monomeric and aggregated reactants, 25, 29 while aggregation of the tetranuclear [CoTrNPc]4 complex in solution causes poorly defined waves.21 When aggregation occurs a band at around 630 nm arises in the electronic spectrum, as a result of the intermolecular interaction (exciton coupling)³⁵ between the phthalocyanine units.^{36,37} In binuclear or tetranuclear metallophthalocyanines, intramolecular coupling between the rings also causes a band at around 630 nm.21,36 Both ZnTNPc and EtMeO(5)[ZnTrNPc]2 in DCB solution obey Beer's law up to concentrations of 2x10-4M and 9.4x10-5M respectively. Thus there is no significant aggregation in these systems at the concentrations employed in electrochemical studies. Aggregation studies on the corresponding Co systems³⁶ show deviation from Beer's law for the Q band at concentrations of an order of magnitude lower than for the zinc system.

The addition of TBAP to EtMeO(5)[ZnTrNPc]2 in DCB increases the relative intensity of the 680 nm to the 630 nm band. The ratio (A680/A630) increases by a constant percentage over an order of magnitude concentration range of the phthalocyanine in DCB (Table I), in the regime where intermolecular aggregation does not occur. Thus TBAP causes a decrease in the <u>intramolecular</u> coupling between the phthalocyanine rings. There is no significant change in the relative intensity of the 680 nm to

-8-

the vibrational 614 nm band (Asso/Asis) in mononuclear ZnTNPc in DCB, upon addition of TBAP at a concentration at which only monomeric ZnTNPc is present, and therefore no formation of aggregates which would have decreased the 680nm absorption while increasing absorption in the 614-630nm region. This is in contrast to the CoTNPc data, where the addition of electrolyte (TBAP) was found to greatly increase the aggregation of the molecules.^{21,36}

Electrochemistry:

The cyclic voltammetry of ZnTNPc in DCB or DMF gave two oxidation and two reduction couples within the potential limits of the solvent studied, corresponding to the first and second oxidations and reductions, the phthalocyanine ring. In respectively, of the case of EtMeO(5)[ZnTrNPc]2 and [ZnTrNPc]4 in DCB or DMF, three oxidation and two reduction couples were observed. A summary of the half-wave potentials and the peak to peak separation of each wave is given in Table II. In the case of 2nTNPc, the peak at ~0.0V (vs Fc⁺/Fc), corresponds to the oxidation of the phthalocyanine ligand, forming $[2n^{II} TNPc(-1)]^*$. Similarly in the binuclear and tetranuclear phthalocyanine cases the double peaks at ~0.0V (vs Fc'/Fc) also correspond to the oxidation of the phthalocyanine ligand. These narrowly separated waves are shown in Fig. 1 together with the CV of the mononuclear phthalocyaning for comparison Controlled potential electrochemistry (see below) confirms that these two waves arise from the stepwise oxidation of the two phthalocyanine rings, or two pairs of rings, of the same molecule. The separation between these waves increases in DMF solution (150 and 80mV in DMF and DCB respectively for EtMeO(5)[ZnTrNPc]2) and clearly resolved CV and differential pulse voltammetry (DPV) curves are obtained (Fig.1). Although the anodic to cathodic peak separation is difficult to determine accurately, the estimated values are close to 59 mV

- 9 -

and ip is proportional to $v^{1/2}$ confirming a diffusion controlled one electron transfer step.

No splitting was observed in the other redox peaks and the potentials of these redox couples are in close agreement for the mononuclear, binuclear and tetranuclear systems. Thus, there is no stabilization of mixed valence anion radical species. Although the half-wave potentials of 2nTNPc in DMF are different from those of 2nPc(Im) (Im = imidazole) and 2nPc(Py) (Py = Pyridine) complexes,²⁶ the separation between the oxidation and reduction couples is the same. The redox potentials of 2nPc(Im) are about 200 mV more positive than those of 2nTNPc in DMF, possibly a consequence of the difference in the coordinating abilities of the solvent and the axial ligands.

Spectroelectrochemistry:

Stepwise controlled potential oxidation of a solution of ZnTNPc in DCB results in the spectroscopic enanges shown in Fig.2a and a change in solution color from bluish green to pink. Isosbestic points are observed at 338, 388, 580 and 708 nm Spectroscopic data are given in Table III. The final spectrum has a similar appearance to other phthalogyanine π -cation radical species spectra², 9, 20, 21, 23, 38-45 and agrees fairly closely with the absorption spectrum of the [ZnPe(-1)]* species reported by Nyokong et al.²⁶.

The presence of a split electrochemical wave for the oxidation process in the bi- and tetranuclear systems, implies the existence of a mixed valence species (MVS),⁴⁶ whose spectrum may be obtained by oxidizing the species stepwise through this pair of electrochemical waves. Such data for a solution of [ZnTrNPc]4 in DCB are shown in Fig. 2b. Similar spectroscopic changes were observed following the stepwise oxidation of EtMeO(5)[ZnTrPc]2 along its first and second oxidation waves. For the

10 -

tetranuclear species, isosbestic points occur in the first stage of oxidation, to the MVS, at 328, 384, 580 and 720nm, shifting to 328, 380, 580 and 714nm in the second stage oxidation. The final spectra (1-electron/phthalocyanine ring oxidized) of both the binuclear and tetranuclear species are similar to that of the oxidized mononuclear zinc phthalocyanine except for the absence of a broad band around 400 nm (see Table III).

A graphical analysis can be used to determine the number of species in solution from the spectroscopic data⁴⁷. If the absorbance value of a particular solution, j, at a specific wave length i, is denoted by Aij, a plot of Aij-Aij' for a series of solutions, j', at wavelength i vs the corresponding difference $A_{i'j} - A_{i'j'}$ at another wavelength i' will give a straight line passing through the origin for each i' if only two species exist in solution. When the spectroelectrochemical data associated with ZnTNPc in DCB (Fig. 2a) are analyzed in this way an excellent straight line passing through the origin is obtained (Fig. 3a). In contrast, the spectroelectrochemical data for the binuclear and tetranuclear systems fail to give a good straight line with the above analysis β shown for (2) in Fig. 3b), even though the presence of isosbestic points implies that the data are good; this suggests that more than two species are present in solution. In these cases the test for three species in solution is positive since plots of $(A_{2j}-A_{2j'})/(A_{1j}-A_{1j'})$ vs $(A_{3j'}-A_{3j'})/(A_{1j}-A_{1j'})$ give a straight line ((2) in Fig.3c), where 1. 2 and 3 are different wave-lengths and j' is a specific solution.

A nernstian plot of the spectroelectrochemical data for ZnTNPe in DCB over the first oxidation wave gives a slope of $58(\pm 1)$ mV, and an intercept at E1/2, in concordance with a one-electron process.

Nernstian plots of the spectroelectrochemical data over the first and

-11-

second oxidation waves of EtMeO(5)[ZnTrNPc]2 and [ZnTrNPc]4 are obtained by considering the oxidation of initial phtbalocyanine (SS) to MVS and oxidation of MVS to the final product (OxOx) as two independent electrochemical steps. Assuming the potentials shown in Table II, the distribution of SS, MVS and OxOx is shown for (2) in DCB, in Fig.4. Below about 0.53V, and above about 0.6V there are essentially only two species in equilibrium. In these regions it is a reasonable approximation to plot log([MVS]/[SS]) and log([OxOx]/[MVS]), each, against potential,⁴⁸ to obtain conventional two species nernstian plots. The results are shown in Fig.5. The spectroscopically derived half-wave potentials are 0.50 and 0.62V vs Ag/AgCl/Cl⁻ compared with the electrochemically derived 0.52 and 0.63V respectively (Table II). The slope for the latter plot is in perfect agreement with expectation, while that of the former (with a lower regression coefficient) is slightly high. Nevertheless the data confirm mechanistically, these individual couples are one-electron that. processes. The nernstian slopes (data not shown) for the binuclear system (1) are 69 and 55 mV respectively

A coulometric study of the double exidation wave of the binuclear (1) species yields 2.08 electrons/molecule. Stopping the coulometry experiment in the centre of the double wave yielded approximately 1 electron/molecule though the two waves are too close together to obtain this number accurately.

Thus the reactions corresponding to the split oxidation waves in the voltammograms are one electron processes. The observation of two sets of well defined isosbestic points, the splitting of the oxidation wave into two components in the cyclic voltammograms, and the coulometric and nernstian analyzes clearly indicate that for the binuclear zine complex, oxidation of the phthalocyanine rings of each molecule occurs in two

-12-

one-electron steps, while in the case of the tetranuclear system, oxidation occurs in two steps, each involving the simultaneous one-electron oxidation of a pair of phthalocyanine rings. Therefore the final oxidized product is formed via an intermediate species which contains ligands of mixed valencies.

Chemical oxidation of ZnTNPc to its m-cation radical can be achieved using either silver perchlorate or bromine, though in the former case, it appears impossible to achieve complete oxidation even with a very large excess of silver(I). On the other hand, bromine (in CCl4) can completely oxidize ZnTNPc to its cation radical when a two fold excess is used. If a 2-fold equivalent excess of bromine is added to [ZnTrNPc]4, the MVS species is formed. The electronic spectrum of this solution does not show bands at 388 and 730 nm and only a weak band at 1080 nm, in agreement with the calculated spectrum of the MVS.

Electronic spectra:

The electronic spectra of the bi- and tetranuclear sinc (OxOx) cation radical species differ from that of the mononuclear radical cation (compare Figs. 2a and 2b), having a peak near 380nm rather than broad absorption in the 380-440nm range. Minor <u>et al.49</u> first rationalized the spectra of phthalocyanine radical cations, while, more recently, Nyokong <u>et al.28</u> assigned the various transitions of [2nPe(-1)]+ through analysis of its absorption and magnetic circular dichroism spectra. On these bases, the absorption band near 680-725nm in all the OxOx radical sation species here discussed is assigned as the π - π * Q band, and the 380 and 330nm absorption as the Soret (B band) π - π * and N π π transitions as discussed in depth elsewhere.²⁸ The bands near 520 and 860nm are assigned as π - π transitions to the Aiu HOMO, also in accordance with Nyokong <u>et al.28</u>

MVS electronic spectra: The absorption spectrum of the tetranuclear

-13--

(2) MVS was calculated by deconvolution of the spectro- electrochemical data, using the distribution shown in Fig.4. For maximum accuracy, the spectrum obtained at approximately the mid-point potential of the two waves, where the concentration of the MVS is at a maximum, was deconvoluted. The resulting MVS spectrum is shown in Fig. 6. When superimposed onto Fig.2b, the MVS spectrum (normalised to the same concentration) crosses through the isosbestic points, as is required. Similar data were obtained using the binuclear species.

The calculated spectrum of the MVS does not show bands at 388 and 730 nm whereas it exhibits all the other bands which appear in the fully oxidized cation (see Table III). In the near IR region the band at 1080 nm is very weak for the MVS but appears as a relatively strong (broad) band for the doubly oxidized species.

The existence of the MVS implies some degree of electronic coupling between the un-oxidised and oxidised rings. In the absence of such coupling, the electronic spectrum would be the simple mean of the oxidised and un-oxidised species. Thus the difference between the observed MVS electronic spectrum and the calculated mean spectrum of the oxidised and un-oxidised ring, is a measure of the spectroscopic consequences of this electronic coupling. This difference spectrum is shown for species (2) in Fig.6 There are small shifts observed in the Q and Soret regions and also a small shift in the characteristic radical cation band near 520nm. This provides further evidence of the unique character of the MVS species.

The band at 1080nm is a candidate for an inter-valence (IT) transition given its typical IT characteristics being broad and in the near infrared region. However it grows stronger after the mid-point of the spectroelectrochemical experiments where the concentration of the MVS species must be declining. It is also present in the mononuclear

-14-

 $[ZnTNPc(-1)]^+$. We conclude therefore that it is a hitherto previously unassigned $\pi - \pi$ transition of the radical cation. The anticipated IT band must be obscured by the strong and complex π -absorption of this MVS species. A band also appears in the near infrared region, at ~1000nm, upon the one-electron ring-oxidation of the mixed valence lanthanide diphthalocyanine compounds, i.e. when $[(Pc(-1))_2Ln]^+$ is formed.¹⁰ Bands at ~1000nm have been reported previously for LiPc(-1),^{44b} ClMgPc(-1), NO3CuPc(-1) and HPc(-1).^{44a}

The Soret region of the MVS is more symmetric than that of the fully oxidized species, presumably with both the B and N bands lying under the 340nm band envelope.

Electron Spin Resonance Data:

The EPR spectrum of a chemically oxidized solution of ZnTNPc in DCB recorded at 77 K gave an isotropic g value of 2.001(1) with a peak to peak separation of 4G, consistent with an unpaired electron delocalized over the organic fragment. No hyperfine structure was observed on this signal. In contrast, Myers et al⁷ found earlier that the oxidation of unsubstituted ZnPc gave a diamagnetic complex which was esr silent and therefore proposed a dimeric radical structure. In ZnTNPc the bulky substituents may prevent the π -clouds of the oxidized cation radical species from getting sufficiently close together. In addition, it was reported that Zn(tetra-4-t-buty)Pc)50, and LZnPc (L = Im or Py)26 on oxidation gave an esr signal characteristic of an organic free radical.

The absorption and esr spectra were recorded during stepwise oxidation of [ZnTrNPo]4 in DCB following the first and second oxidation waves. On oxidation across the first wave, there is observed a m-cation radical esr signal whose intensity increases in parallel with the increase in absorbance at 520nm. The signal intensity reaches a maximum when the

-15-

appearance of the 388nm band heralds the maximum formation of the MVS. Further oxidation to the fully oxidized species, resulted in a decrease in the ESR signal intensity to a final value of about 50% that of the maximum intensity. Re-reduction of the solution via the MVS, gave an initial increase in the ESR intensity, followed by a decrease to zero upon formation of the initial species.

The MVS of [2nTrNPc]4 is a biradical cation which evidently has small or negligible interaction between the two electrons, as for example observed with $Ru(2,2'-bipyridine)_3]^\circ$ obtained through two electron reduction of the $[Ru(2,2'-bipyridine)_3]^{2+}$ cation.⁵¹ On further oxidation the electrons in the other pair of ligands interact with the previously oxidized pair which causes the esr signal intensity to decrease. Thus in the fully oxidized species there is significant interaction between the four oxidized ligands, but it is not strong enough to relax the esr signal completely.

In contrast, oxidation of the binuclear porphyrin complex [(OEP)Nb]203, beyond the second oxidation wave resulted in the complete disappearance of the free radical ESR signal.¹⁷ One-electron ring-oxidation of the neutral MV lanthanide diphthalocyanine sandwich complexes also results in the loss of the free radical signals.^{8,10,11}

The g values for the MVS and OxOx [2nTrNPc]4 species are equal, at 2.001, and their peak to peak separations are similar, typical for a m-cation phthalocyanine radical species. The g values for the species [LZnPc(-1)]⁺, where L = Im, Py or CN⁻ lie between²⁶ 2.0055 and 2.0068, while g values close to 2.00 are reported for a wide range of phthalocyanine radical cations.4,7,8,11,40,50,52,53

-16-

Conclusions:

The electrochemical and spectroelectrochemical data show that the oxidation of phthalocyanine ligands in EtMeO(5)[ZnTrNPc]2 takes place stepwise by two one-electron processes. In [ZnTrNPc]4, oxidation of the phthalocyanine ligands occurs in two steps in which each step involves two simultaneous and independent one-electron processes. Initially all four phthalocyanine rings are stereochemically equivalent. In the first step two rings are oxidized to form the MVS. This is believed to assume a conformation in which half-oxidized pairs of rings (Pc(-2).Pc(-1)) associate, perhaps to generate a D24 conformation about the central (spiro) carbon atom.

The difference in the redox potentials observed for the SS/MVS and MVS/OxOx couples merits comment. Although splitting of redox peaks was seen for the Co(II)/Co(I) couple of "clamshell" cobalt porphyrins¹ : o such splitting has been observed for any of the corresponding binuclear Co phthalocyanines²⁰. The electronic coupling between the cobalt atoms is not sufficent to cause an observable splitting and the two onits of each molecule oxidize or reduce simultaneously However, this study shows that bis or tetranuclear InTrNPcs with 'clamshell' conformation in solution have significant interaction between the ZnTrNPc units which results in observable splitting of the first exidation wave. The processi that the MVS is partially delocalized over two phthalocyanine rings may explain why the MVS has special stability, but does not explain why the cobalt derivatives should not form a similar species. The explanation may lie in a balance between the relative free energies of axial bunding by solvent or supporting electrolyte ions and the MVS electronic coupling. An interposing axial group may prevent the two phthalocyanine halves from moving close enough to form a stable electronically coupled MVS in the

.

-17-

-18-

cobalt series, but not in the zinc series.

The existence of these compounds provides a new avenue of research into the study of mixed valence phthalocyanine species, hitherto undeveloped.^{2,3}

Acknowledgements

We are indebted to the Natural Sciences and Engineering Research Council (Ottawa), and the Office of Naval Research (Washington), for financial support. We also wish to acknowledge Prof.N.Kobayashi (Tohoku University) for making available his thin layer cell, Dr. M. Neal Golovin for the coulometric data and S.Greenberg for synthetic assistance.

2/2/88 JCC 428

Figure degends

- Fig 1 Cyclic voltammegrams of (a) the first oxidation and first and second reduction waves of ZnTNPe (scan speed = 100 mV/s). (b) first and second oxidation and first reduction waves of [ZnTrNPe]4 (scan speed 50mV/s). (c) Cyclic (200 mV,s) and differential pulse (2 mV/s) voltammograms of the first and second oxidation of EtMeO(5)[ZnTrNPe]2. All are in DMF solution containing 0 1-0.2M TBAP. The phthalocyanine concentrations are ~1 x 10-4M.
- Fig.2 Controlled potential spectroelectroehemistry a) ZnTNPc in DCB solution showing the development of the radical cation [ZnTNPc(-1)]* as the potential is stepped through the first oxidation wave, A OV, B o 56V, C 0.6.V. B o 56V, C 0.56V, S 0.56V, G 0.60V, B 0.62V, 1 0.70V vs AgrAgCl. [SnTNPc] = 1.1 x EC 34 = b) [ZnTrNPc]* in DCE solution showing the development of the MVS and fully oxidized species as the potential is stepped through the first two oxidation waves. A OV, B 0.45V, C 0.48V, E 0.51V, F 0.56C, F 0.52, G 0.62V, B 0.66V, 1 0.70V, J 0.75V vs AgrAgCl. [ZnTrNPc]*] = 3.2 x 10⁻⁵M. These lists are used for the analyses in Figs 5 and 6. Note that the initial spectrum is that of the unoxidised SS species, while the fight spectrum is that of the fully oxidised OxOx species.

The solutions contain ca 0.3M TEAP

-19-

- Fig.3 Graphs, as indicated on ordinates and abscissae, for a) monomeric ZnTNPc, for two species, using data at 360 and 680nm, b) for tetranuclear [ZnTrNPc]4, for two species, using data at 632 and 688nm, and c) as b) but for three species, using wavelengths at 623, 660 and 680nm. All data collected in DCB.
- Fig 4. The fractional distribution of (A) SS, (B) OxOx and (C) MVS in DCB, using the half-wave potentials for [MVS]/[SS] and [OxOx]/[MVS] at 0.52 and 0.63V vs Ag/AgC1/C1: respectively.
- Fig. 5 a) A nernstian plot of log([MVS]/[SS]) versus potential (vs Ag/AgCl/Cl) for the MVS and SS components of the tetranuclear [ZnTrNPc]4 species (2) in DCB. The straight line is a least square line corresponding to - E = 0.50 + 0.74log([MVS]/[SS]) (in volts) with a regression coefficient of 0.990.

b) A normatian plot of $\log([OxOx]/[MVS])$ versus potential (vs Ag/AgCl/2] = for the OxOx and MVS components of the tetranuclear $[ZnTrNFe]_4$ spected (2) in DCB. The straight line is a least square line corresponding to:= E = 0.62 + 0.59log([OxOx]/[MVS]) (in volts) with a regression coefficient of 0.999

Fig. 6. (Upper) The spectrum of the MVS of tetranuclear (2), in DCB, deconvoluted from data in Fig. 2b. (see text) (Lower) The difference spectrum is the spectrum of the MVS from which the mean normalised spectrum of one oxidised and one un-oxidised ring has been subtracted.

Table I Effect of Addition of TBAP upon Aggregation of EtMeO(5)[ZnTrNPc]2 in DCB, with Comparative Data for ZnTNPc.

EtMeO(5)[ZnTrNPc]2 M	[TBAP] M	A680/A630ª
4.72 x 10 5	0	1.43
	0.12	1.60
	0.29	1.74
5.67 x 10-6	0	1.46
	0.29	1.84
(CnTNPc)		A680/A614ª
1 0° x 10°5	0	4.35
	0 11	4.52

a) Absorbances at 614 and 680nm are proportional to the monomer concentration, while absorbance at 630nm is proportional to the degree of intramolecular (binuclear complex) or intermolecular (aggregation) coupling.

-21-

Table II Electrochemical Data for Mononuclear, Binuclear and Tetranuclear Zinc Neopentoxyphthalocyanine Complexes.a

		E1/2/V Ep	Ep/mV DMF Solution		
System/Couple	DCB Solut	ion			
2nTNPc					
Pc(0)/Pc(-1)	0.64				
Pc(-1)/Pc(-2)	-0.02	70	0.00	60	
Pc(-2)/Pc(-3)	-1.66	75	-1.43	95	
Pc(-3)/Pc(-4)	-2.04		-1.85	70	
EtMeO(5)[ZnTrNPc]2					
{Pc(0)]2/[Pc(-1)]2	0.51				
{Pc(-1)]2/[Pc(-1).Pc(-2)]	0.00	(50)	0.18	(50)	
{Pc(-1).Pc(-2)]/[Pc(-2)]2	-0.08	(55)	0.03	(50)	
$[Pc(-2)]_2/[Pc(-3)]_2$	-1.68	80	-1.44	60	
$[Pe(-3)]_2/[Pe(-4)]_2$	-2.12		-1.87	60	
ZnTrNPc]4					
{Pc(-1]4/[Pc(-1).Pc(-2)]2	0.04	(60)	0.18	(50)	
[Pc(-1).Pc(-2)]2/[Pc(-2)]4	-0.07	(50)	0.03	(40)	
{Pc(-2)}4/{Pc(-3)}4	-1.64	70	-1.44	50	
[Pc(-3)]4/[Pc(-4)]4	-2.13	80	-1.86	60	

a) Solutions contain 0.1 - 0.2M TBAP. Potentials are reported with respect to the ferrocenium/ferrocene couple. $E_{1/2}$ values measured by cyclic voltammetry at 100, 50 and 20mV/s [$E_{1/2} = (E_{Pa} + E_{Pc})/2$] or

-22-

differential pulse vóltammetry at 2 mV/s gave essentially identical potentials. Values of E_p (= E_{pa} - E_{pc}) are given for a potential sweep rate of 20mV/s. Data in parenthesis estimated from overlapping waves. Half-wave potentials in DCB versus Ag/AgCl/Cl- correspond approximately with the above DCB data plus 0.59V.

-23-

Table III Flectronic Absorption Maxima for Zinc Phthalocyanine Species in 2015 Solution

1080(0 3) 1080(0.5) 1080(0 1) 724(2-0) 860(1.3) 860(0 5) 730(3.0) 860(1.6) 860w 860w 726(1.7) 720 825 614(-1.0) 680(18.8) 630(7.7) 680(11.0) 660(2.9) 680(8.1) 616(2.5) 680(6.7) 520(1.5) 616(3.9) 680(8.5) 680(2) 680w 630(4,8) $\lambda_{max,a}$ nm(10⁻⁴ ϵ ,M⁻¹cm²) 520(0.9) 514(2.7) 511(1.9) 514(3 3) 1 500 384(3 7) 388(5.5) 420sh 340(5.7) 400hr 440EtMe0(5)[ZnTrNPc(-1)]2^{2+b} 332(6.4) 344(10.3) 336(8.3) 356(8.6) 342(7.2) 340(9.9)340(6.5) 321 [ZnTrNPc(-1)]2^{2-b} [ZnTrNPc(-1)] ⁺b EtMeO(5)[ZhTrNPc(-2)]2 FtMeO(5)[ZnTrNPc(-2)] [ZnTrNPc(-1)]4^{4+b} [ZnTrNPt(2)]2 { ZnTNPc(-1) } *b [ZnTrNPc(-2)]_{.1} [ZnPc (- 1)] ⁺ C ZnTNPC(2) Species 1

a) Key: br = broad. sh = shoulder, w = weak.

b) Solutions contain 0.3M TBAP.

c) Ref. 26 L = pyridine or imidazole.

-24-

REFERENCES

- 1. J. U. Collman, M. Marrecco, C. M. Elliot and M. L'Her, J.<u>Electroanal.Chem.</u> 124, 113 (1981); Y. Le Mest, M. D'Her J. Courtet-Coupez, J. F. Collman, E. R. Evitt and C. M. Bencosme, <u>J.</u> <u>Electroanal. Chem.</u>)84, 331 (1985).
- C. C. Leznoff, H. Lam, D. M. Marcuccio, W. A. Nevin, P. Jacia, M. Kobayashi and A. B. P. Lever, <u>J. Chem. Soc., Chem. Comput.</u>, 200 (1987).
- 3 C. J. Leznoff, H. Lam, W. A. Nevin, N. Kobayashi, P. Janda and A. B. 99 - 065 F. Lever, <u>Angew. Chem.</u>, (1987).
- 4. J. F. Collman, K. Kim and C. R. Leidner, <u>Inorg. Chem.</u> 26, 114 (1957)
- U C Collman, J W Probbliet and C. R. seither, <u>J.Am.Supp.co</u> 108, 1616 (1386)
- The standard exidation state of the dinegative phtnaiosyanise and a referred to as Forder and thus the radical feation of a referred to as Forder and thus the radical feation of a referred the radical anxea. Pers, as Forder 31, second one of comenciature introduced presentally.
- 7 J. F. Myers, J. W. Kayner and A. B. P. Lever, <u>Inorg.Cnem.</u> 14 461 (1975)
- B. T. A. Corker, B. Grant, N. S. Cleoak <u>(Electroohem,Sys</u>, 126) 1853 Chap
- 9. For Fapinus, 5 1 Emigralova and 1.1 Drivage <u>Dr.Net Mathews</u> attr (1930)
- ... A. T. Thang and J-C. Marchon, <u>Inorg.Chim.Acta</u> 53, LP41 (138)
- 11 L. G. Tomilova, E. V. Chernykh, V. I. Gavrilov, I. V. Shelegin, V. C. Derkacheva and E. A. Luk'yanets, <u>Zh.Qbshch.Khim</u>, 52, 2606 (1987) – E. G. Tomilova, E. V. Chernykh, N. T. Loffe and E.A. Luk'yanets.

-25-

Zh. Obshch. Khim. 53, 2594 (1983)

- 12. M. L'Her, Y. Cozien and J. Courtot-Coupez, <u>J.Electroanal.Chem.</u> 157, 183 (1983).
- 13. M. M'Sadak, J. Roncali and F. Garnier, J.Chim. Phys. 83, 211 (1986).
- K. Kasuga, M. Ando, H. Morimoto, <u>Inorg.Chim.Acta</u> 112, 99 (1986).; K. Kasuga, H. Morimoto, M. Ando, <u>Inorg.Chem.</u> 25, 2478 (1986).
- 15. J. W. Buchler and K. Elsasser, <u>Angew.Chem.Int.Ed.Engl.</u> 25, 286 (1986).
- 16. M. J. Crossley and P. L. Burn, J. Chem. Soc. Chem. Commun. 39 (1987).
- 17. J. E. Anderson, Y. H. Liu, R. Guilard, J-M. Barbe and K. M. Kadish, <u>Inorg.Chem.</u> 25, 2250 (1986).
- 18. D. W. De Wulf, J. K. Leland, B. L. Wheeler, A. J. Bard, D. A. Batzel, D. R. Dinning and M. E. Kenney, <u>Inorg.Chem.</u> 26, 266 (1987).
- 19. T. M. Mezza, N. R. Armstrong, G. W. Ritter, J. P. Iafalice and M. E. Kenney, J. <u>Electroanal</u>, Chem. 137, 027 (1982).
- 20 W. A. Nevin, M. R. Hempstead, W. Liu, C. C. Leznoff and A. B. P. Lever, Inorg.Chem. 26, 570 (1987).
- 21. W. A. Navin, W. Din, S. Greenberg, D. S. Bempstead, S. M. Marcuccio, M. Meinik, C. G. Lezneff and A. B. F. Lever, <u>Lourg.Chem.</u> 26, 891 (1987).
- 22 A Girandeau, Fa Rea Man and A. e. Band, J. <u>Am., Them. Soc.</u> 102, 5137 (1980)
- 23. V. I. Gavrilov, L. G. Fomiloza, J. 7. Shelepin, E. A. Luk'yanets, <u>Elektrokhimiya</u> 15, 1058 (1979).
- 24. A. B. P. Lever, S. Licocota: K Magnell, P. C. Minor and B. S. Ramaswamy, Electrochemical and Spectroelectrochemical Studies of Biological Redox Components, Advances in Chemistry 20; American Chemical Society, Washington, DC, 237 (1982), D. W. Clack, N. S. Hush,

lt −

and I. S. Woolsey, <u>Inorg. Chim. Acta.</u> 19, 129 (1976).; R. O. Loutty and Y. C. Cheng, <u>J.Chem.Phys.</u> 73, 2902 (1980).; T. Shen, Z. Yuan and H. Xu, <u>Acta Phys-Chim.Sinica</u> 1, 265 (1985).

- 25. A. Giraudeau, A. Louati, M. Gross, J.J. Andre, J. Simon, C. H. Su and K. M. Kadish, <u>J. Am. Chem. Soc.</u> 105, 2917 (1983).
- C6 T Nyokong, Z. Gasyna and M. J. Stillman, <u>Inorg.Chem.</u> 26, 548 (1987)
- 27. S. F. Vul'fson, O. L. Kaliya, O. L. Lebedev and E. A. Luk yanets. Zhur. Organ. Khim. 12, 123 (1976).
- 28. T. Nyokong, Z. Gasyna and M. J. Stillman, Inorg. Chem. 26, 1087 (1987).
- 29. A. Loutai, M. El Moray, J. Andre, J. Simon, K. M. Kadish, M. Gress and A. Giraudeau, <u>Inorg.Chem.</u> 24, 1175 (1985).
- 30. A. J. Bard and L. R. Faulkner, "Electrochemical Methods", John Wiley, New York, 1980.
- 31. R. R. Gagne, C. A. Koval and D. C. Lisensky, <u>Inorg.Chem.</u> 19, 2854 (1980).
- 32. G. Gritzner and J. Kuta, <u>Electrochim.Acta</u> 29, 869 (1984).
- 33 N. Kobayashi and N. Nishiyama, <u>J.Phys.Chem.</u> **89**, 1167 (1985)
- 34. C. C. Leznoff, S. M. Marcuccio; S. Greenberg, A. B. P. Lever and E. B. Tomer, <u>Can. J. Chem.</u> 63, 623 (1985).
- 35. E. S. Dodsworth, A. B. P. Lever, P. Seymour and C. C. Leznoff, J. Phys. Chem. 89, 5698 (1985).
- 36. W. A. Nevin, W. Liu and A. B. P. Lever, Can. J. Chem. 65, 855 (1987).
- 37. W. A Nevin, W. Liu, M. Melnik and A B. P. Lever, J.Electroanal.Chem. 213, 217 (1986) and references therein.
- 38. D. Dolphin, B. R. James, A. J. Murray and J. R. Thornback, <u>Can.J. Chem.</u> 58, 1125 (1980).
- 39. T. Nyokong, Z. Gasyna and M. J. Stillman, <u>Inorg.Chim.Acta</u> 112, 11, (1986).

- 40. G. Ferraudi, S. Oishi and S. Muraldiharan, <u>J.Phys.Chem.</u> 88. 5261 (1984).
- 41. N. B. Subbotin, L. G. Tomilova, N. A. Kostromina and E. A. Luk'yanets, <u>Zh. Obshch.Khim</u>, 56, 345 (1986)
- 42. H. Yamamoto, T. Sugiyama and M. Tanaka, <u>Jap.J.Appl.Phys.</u> 24, L305 (1985).
- 43. M. G. Gal'pern, T. D. Talismanova, L. G. Tomilova and W. A. Luk'yanets, <u>Zh.Obshch.Khim.</u> 55, 1099 (1985).
- 44. a) H. Homborg, <u>Z.anorg.allg.Chem.</u> 507, 35 (1983); b) H. Homborg and C. L. Teske, <u>Z.anorg.allg.Chem.</u> 527, 45 (1985).
- 45. N. B. Subbetin, L. G. Tomilova, N. A. Kostromina and E. A. Luk'yanets, <u>Zh.Obshch.Khim.</u> 56, 397 (1986).
- 46 We thank a referee for pointing out that even when there is no splitting of the multi-electron electrochemical wave, an MVS can exist for entropy reasons, i.e. $SS + OxOx \longrightarrow 2MVS$; Kcom = 4.
- 47. J. S. Coleman, L. P. Varga and S. H. Mastin, <u>Inorg.Chem.</u> 9, 1015 (1970).
- 48. The ratios [MVS]/[SS] and [OxOx]/[MVS] are obtained by equating them to the expressions [Ar - A]/[A - Ao] where A is the observed absorbance The data are shown in Fig.2b. The Ao and Ar terms correspond appropriately to the initial absorbance (data were used at 680nm) (SS) and final absorbance at 0.75V (OxOx). For MVS, the spectrum at 0.58V was assumed to represent 80% MVS (via fig.4) and the Ao and Ar absorbance values derived therefrom accordingly.
- 49 P. C. Minor, M. Gouterman and A. B. P. Lever, <u>Inorg. Chem.</u> 24, 1894 (1985).
- 50. V. I. Gavrilov, L. G. Tomilova, V. M. Derkacheva, E. V. Chernykh, N. T. Joffe, I. V. Shelepin and E. A. Luk'yanets, <u>Zh.Obshch. Khim.</u> 53,

-28-

-

1347 (1983).

- 51. D. E. Morris, K. W. Hanck and M. K. DeArmond, <u>J.Am.Chem.Soc.</u> 105, 3032 (1983).
- 52. H. Sugimoto, M. Mori, H. Masuda and T. Taga, <u>J.Chem.Soc. Chem.Commun.</u> 962 (1986).
- 53. J. R. Harbour and M. J. Walzak, Langmuir 2, 788 (1986).

• 🖵

C Fislin, E

. .

State Vanue

٠<u>.</u>

ì

(

(

i._

Second -

C ...

(

(

 $Log[(A_{2j} - A_{2j})/(A_{jj} - A_{jj})]$ Data at wavelengths 680 and 632 nm

·}C

(

4

(

Potential (Volts: 18 4a.14.j.)

- 17

í

-1

Waveler gitte rim

Fij 6

