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FOREWORD

This report describes results of research performed under Contract No. F33615-86-C-3612
entitled "Nonlinear Flying Qualities," prepared for the Flying Qualities Group of the Control
Dynamics Branch (FIGCB) of the Air Force Wright Aeronautical Laboratories (AFWAL). The
general objective of the program was to develop and evaluate analytical methods which can be
used to calculate Nonlinear Flying Quality Parameters (NLFQP's). The specific objective was to
provide interactive computer-aided analysis tools (based on the nonlinear inversion concept) for
evaluating nonlinear flying qualities of current airplanes and guiding the development of future
airplanes with improved flying qualities.

The research was performed at the Honeywell Systems and Research Center between 30 June
1986 and 30 June 1987. At Honeywell, the research was conducted by Drs. C.A. Harvey and
B.G. Morton, Principal Investigators; Mr. M.R. Elgersma and Ms. G. Hines, Associate
Investigators; and Dr. M.F. Barrett, Program Manager. Dr. G.R. Sell, a professor in the School
of Mathematics of the University of Minnesota, served as a consultant. The AFWALIFIGCB
technical administration was performed by Mr. C.F. Suchomel, Project Engineer.
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SECTION 1: INTRODUCTION

The usefulness of current flying qualities parameters is limited by their almost complete
dependence on linear analysis. This dependence is based on mathematical tractability and

analysis of a class of small amplitude maneuvers about trim conditions. The limitations of
existing flying quality parameters leave expensive and extensive flight testing as the only

accurate means of assessing flying quality during highly dynamic maneuvers. Inadequacies

found during flight test can lead to extremely costly modifications and redesigns. This
motivated our program aimed at the development of flying quality parameters which take into

account the nonlinearities encountered during current and future combat maneuvers.

We took a novel approach to provide interactive and computer-aided analysis tools which
can be used in developing and evaluating nonlinear flying quality parameters (NLFQPs). This
approach is based on a technology called dynamic inversion which we used to generate

maneuvers and analyze flying qualities. To enhance our analytical developments and to
expose the issues concerning NLFQPs to the academic community, Professor George R. Sell

served as a consultant.

Our technical program consisted of: a review of existing techniques, problem formulation,
technical development, validation and illustration. In the problem formulation, the analytical

structure of models was defined along with preliminary definitions of sets of maneuvers and
potential NLFQPs to be examined. The technical approach consisted of analytic, algorithmic,

and software development. Maneuvers were flown in simulation during the validation and
illustration to demonstrate the utility of the technical development.

The concept of dynamic inversion is quite simple. Suppose the aircraft model is defined

by:

i f f(x) + 8

where f represents the uncontrolled aircraft dynamics and 8 is the commanded actuator signal.

For a desired aircraft response:

X = L(x) + (pilot command)

6N



dynamic inversion is a control structure which forces the aircraft to respond as desired.
Dynamic inversion is done as follows:

1) Measure the state x

2) Compute f(x) - L(x)

3) Generate the actuator command signal: 5-4Lx) - f(x) + (pilot command)

For details, see section 5.1 .



SECTION 2: OVERVIEW AND SUMMARY OF REPORT

This report documents the results of our efforts to develop tools that can be used for the

computation of nonlinear flying quality parameters. We have developed many new ideas for

approaching this problem. In the course of our activities, we have found a variety of candidate

nonlinear flying quality parameters and candidate specifications for them. These parameters

are genuinely different from expressions derived from linearized models: we work with the

nonlinear aerodynamic functions themselves and not their derivatives. We believe the candi-

date specifications we have outlined in this report could be applied to current and future Air

Force vehicles to improve their flying qualities. The parameters we have defined here can be

computed directly from preliminary nonlinear aircraft models.

First we give a brief outline of the sections to come, and then follow with a more

detailed outline. Section 3 shows the nonlinear aircraft models we used. Sections 4 and 5

present the theoretical techniques we used while working with the nonlinear models. Most of

these techniques were developed during the course of the program to help us identify and

compute the parameters discussed in section 6. Anyone interested in getting to the flying qual-

ities right away can go straight to section 6 and look through sections 3, 4, and 5 as needed.

Section 7 contains the simulation results. Section 7 is followed by the reference list, and by

the appendices treating trajectories and dynamical properties of maneuvers.

Section 3 is a complete description of these models in the form used. These are the stan-

dard equations of motion in a form which is not completely general, but general enough to

capture most of the important features of the models commonly in use. Our techniques will

apply to fully general models, but only at the expense of increased analytical complexity. A

description of the application of dynamic inversion to the general models can be found in sec-

tion 3.4 of the technical proposal for this contract (in response to PRDA 86-1 PMRN).

The one special assumption made is that the effect of the m control inputs to the aircraft

can be represented by a 6-by-m matrix function of the state that multiplies an m dimensional

vector function of the state and the control input signals. This is the situation that arises when,

for example, the controls are described by aerodynamic derivatives such as Cm, that are func-

tions of the state.

3
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Section 4 discusses a novel approach to the computation of trim conditions for the

models discussed in section 3. Here we exploit the special form of the equations to reduce the

computations to an algorithm that is simple enough to allow analytic computations. Sections

4.1 and 4.2 explain the basic ideas behind this approach and present the class of models to

which they can be applied. Section 4.3 makes the algorithm explicit for a family of systems

that includes those presented in section 3. Section 4.4 explains the two different ways that we

have implemented these ideas for the solution of aircraft equilibria. Section 4.5 gives the

details of the computations for the aircraft models, using both approaches discussed in section

4.4. Included in section 4.5 is a special treatment for aircraft exhibiting left/right symmetry

and other special features that are often assumed and which simplify the results.

Section 5 is our analysis of nonlinear aircraft dynamics using partial dynamic inversion.

Section 5.1 is a short summary of the method of partial dynamic inversion and five examples

of inversion approaches that we investigated on this program. Section 5.2 introduces the

theory of complementary dynamics in a general setting, then section 5.3 shows the algorithm

for computing the complementary dynamics for the nonlinear airplane models. The dimension-

less coordinates are introduced here to make it possible to fit the equations into a reasonable

amount of space and to reduce the number of independent parameters appearing in the equa-

tions of motion. Then, for the special cases mentioned before, the special form of the com-

plementary dynamic parameters is derived explicitly. It is shown then that for typical models
in this form, the a4,E3,e, complementary dynamic equations are stable and have unique

equilibria. Even if the uncontrolled aircraft is unstable, the nonlinear inverter stabilizes the air- "

craft. Section 5.4 then shows how to transform the general ca,3,EA complementary dynamic

equations into canonical forms, so that Liapunov functions can be applied. Section 5.5 then

demonstrates how the Liapunov functions are constructed, and explains the significance of the
result to aircraft stability.

The theory developed in sections 3, 4, and 5 is central to the discussion of nonlinear

flying qualities in section 6, but it is not a prerequisite. The reader is warned that the parame-

ters developed in section 6 are represented in terms of the dimensionless coordinates

developed in section 5.3, and that conversions to account for units in the final answers might

be necessary before meaningful comparisons can be made between different aircraft.

In section 6.1 we introduce the notion of commanded dynamics, then present a list of the

sections from the MIL-F-8785C document that we believe are specifications for commanded

4 .
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dynamics. Then we present some parameters that we call commanded dynamic parameters,

derived from the form of the nonlinear models. These include the basic Q command

effectiveness parameter, the dynamic pitch-control ratio, the minimum lateral-directional com-

mand effectiveness parameter, and the dynamic lateral-directional control ratio vector. In sec-

tion 6.2 we introduce the notion of complementary dynamics, then present a list of the sec-

tions from the MIL-F-8785C document that we believe are specifications for complementary

dynamics. Then we discuss our complementary parameters that were developed in complete

detail in section 5. Specific comparisons are indicated between our complementary dynamic

parameters and the specifications in sections 3.2.1.1 (longitudinal static stability), 3.4.1

(dangerous flight conditions) and 3.4.2 (flight at high angle of attack) of MIL-F-8785C. The

discussions at the end of cases 1 and 2 of section 5.5 should be read in conjunction with sec-

tion 6.2. Section 6.3 is a short but very interesting discussion of lift-to-drag ratios, what they

look like for the F-4, the F-14, and the F-15 aircraft for all angles of attack, and why that has

a bearing on flying quality. Section 6.4 contains some criteria for coordinated flight at high

angle of attack and for sustained high-angle-of-attack maneuvering. In section 6.5 we present

an approach towards defining dynamic flying quality metrics using the coordinated-flight

U,P,Q,R dynamic-inversion controller discussed in section 6.4 (A prototype of this controller

is demonstrated in the simulations of sections 7.2 and 7.3). In section 6.6, some parameters

for measuring the influence of the dynamic aerodynamic coefficients on flying qualities are

given.

Section 7 presents some maneuvers generated by the batch simulation using nonlinear,

partial dynamic inversion controllers. Section 7.1 contains some examples of a roll reversal,

section 7.2 is a barrel roll, and section 7.3 is a highly-dynamic diving turn. We list the main

developments that arose from analysis of the simulations in the summary section 7.4

There is a list of references, and then the two appendices. The first appendix discusses

the trajectories of vehicles at equilibrium. The second appendix was written by George Sell.

In it, he proves a fundamental lemma for the general theory of dynamic inversion.

I



SECTION 3: NONLINEAR MODELS

In this section we describe the aircraft equations of motion. For more details on the nota-

tion and derivation of the aircraft equations of motion, see (E31.

3.1 Notation

Coordinaes:

FV] I velocity vector of the c.g. in body-axis coordinates

[a] = velocity vector of the c.g. in wind-axis coordinates

- (speed, sideslip angle, angle of attack)

M = Mach number - speed
speed of sound

[QP = angular velocity vector in body-axis coordinates

TP,0,0 = Euler angles for heading, elevation, and bank angle (yaw, pitch, roll sequence)

T engine thrust
8, 1 total aileron angle
[8e I= Itotal elevator anglei

Pr [total rudder angle

6



Tabular aero data (from wind tunnel testing):

In general these arm nonlinear tabular functions of many variables, e.g. the aero force in the x
direction is given by Nx(M,V,a4, 34 PQRT,808, - . In this report, we have only

kept the MtV,cxtP,P,Q,RT,&,, 8 dependence. Furthermore, we have expanded the functions
in a Taylor series with respect to P,,.,6,4S and kept only the two lowest order terms in
the Taylor series. For example,

Nj(MqVq(a43,P.Q,R.T,SaSeSr)

hpV2S [C,(M,a43) + C,,(M,cz43) P + CxQ(M,a43) Q + CXR(M,aqP) R I +

C11r(M,a,3) T + 'ApV 2S [CX(M z,13 CX a + C.,(M~~a.P) S. + C~ ,(M,Ct4P) 8,r1 +

higher order terms.

When linear analysis is done, the above types of expressions are expanded further in a Taylor
series with respect to the velocity components too (e.g. M, a, 13 or, U, V9 W ) and only the
two lowest order terms kept. In this report, we will be working directly with the nonlinear
functions of M. a , and 13 instead of expanding them in a Taylor series in M, a ,13

CM,a43)

[Y(Ma.P) M~4)=static nonlinear aero force functions in body-axis coordinates.

[ (M,a43)1
C(M,cz,13) =static nonlinear acmo moment functions in body axes

CM(M9zf3)j

Note: the above nonlinear functions of M, (x , and 13 are the coefficients on the zeroeth order
terms in the Taylor expansion with respect to P,Q,R,T, 6a'6 eq6 r

[ (M,a43P) C10'(M'cx43) C, (M,a,13)1
CY(M,ccj3) CyQ(M,cL43) C~t(Mci43) dynamic nonlinear aero force functions in body

C,,,(M~aP)C,(M,OCj3) CzR(M,aO)



axes

[ r(Ma,P) CiQ(MCI) C,,(MKc4)1
C,(MCXP) C.,(MKc) C,,(MaI) j=dynamic nonlinear aero moment functions in body

axes [ MC x4 ,(M,a, ) C ,,(M,a 3)~a Cyg(Mxcz)1

[,(M,cx43) C*(MKaP) S,M,cx43) C,(Mx,a~3

nonlinear aero coefficients describing forces due to the controls in body axes

CiT(aP)Cu(M.aft) C16(M,aP4) Cl (M~cO4)

C(M,x) CMS(M OCA4) C M(M,a43) C,(M.a4p)F ,(M,x4) C.(M,z4) C.(M,a43) C,,.(M,a43)

nonlinear aero coefficients describing momnents due to the controls in body axes

Note: the above nonlinear functions of M, a I and A3 are the coefficients on the first order

terms in the Taylor expansion with respect to P,Q,R,T,&,8,S



Physical parameters:

p = air density

- gravity

Physical parameters for the aircraft

mc,b,S - mass, mean aerodynamic chord, wing span, wing area

_IX IY 1 = moment of inertia mnatrix in body axes

LIXz -Iyz lu]

9



3.2 Introduction to the Equations of Motion

Consider a 6DOF nonlinear aircraft model having four centrol inputs. The equations of
motion are often given in a mixed system of coordinates. There are eight states that the
forces and moments depend on. The rigid-body mechanics are most easily expressed in the

body-axis velocity (UV,W) and angular rate (P,Q,R) coordinates, and two of the Euler angles:
bank angle and elevation (0,0). The forces and moments do not depend on the heading
angle, WY, so it is not included as a state. The result of not including W as a state is that the
equilibria will generally consist of vertical helices instead of just straight lines in inertial space
(see appendix A). The aerodynamics are more easily expressed in terms of wind-axis velocity
(V,Bax) in place of (UV,W). In order to fit the aircraft model into the framework presented
earlier, a single system of eight states will be used, and the angular rates will be expressed as
derivatives of the Euler angles (0,O,'P) in place of (P,Q,R). In this mixed coordinate system,
the equations of motion of an aircraft are of the form shown in Figure 3.1.

1P A,/(UU-VV- WWi

- ton -

Mixed Coordinate r-

Aircrafta
Integrator Chains

0 C ,os* /0 -*In# c0 9 6 ,O --

Figure 3.1 Equations of Motion in Mixed Coordinate System

10



In the wind-axis and Euler angle coondinates the state vecor is x = (v,A~a.40,e,'P,0,). The
form of the equations of motion in this case ame shown in Figure 3.2

Wind-AXIS, Euler-Angle
Aircraft

Integrator Chains

T

ar

Figure 3.2 Equations of Motion in Wind-Axis and Euler Angle Coordinate System

OMEN RAN



3.3 Equations of Motion

The airaft equaions of motion (E3] may be written in the form

0 = f(i,x) + g(x) h(x,u) (3.3.1)

where

T

x i v, , , , ,e)T , u is S]

fis6xl gis6x4 and his4xI

All the tabular aero functions which are denoted by capital C's with subscripts, like C. , C,,P,

C1., etc. are nonlinear functions of (MCO). M is a function of V and air temperature.

The top three rows of (3.3.1) are the rigid-body force equations, while the bottom three rows

of (3.3.1) are the rigid-body moment equations. The quantity f(ix) + g(x) h(x,u) contains the

expressions and [V which are given in terms of the state x by

1n 0 -sin(e)
10 cos(D) cos(e)sin(O) (3.3.2)

L -sin(D) cos(8)cos(O)J

=V | sin([O) 1 (3.3.3)I cos(f3)sin(a) J

[T]

The four components of h(x,u) are the forces (divided by mg) produced by the controls Sa

12



T
ing

IpV 2 S Pb

h(x.u) - mg sin(8-iv) (3.3.4)

mg

IApV 2 S sin(8r-P)
mg

This form for h is an example of the way that h can depend on x and u in a nonlinear way.

The sin functions were chosen to account for the fact that surface deflections are bounded

even if the surfaces could rotate through a full 2t radians. The shift in the arguments of the

sin functions account for the change in airflow at the surfaces caused by the aircraft's rolling

motion and angle of attack. The h vector gets premultiplied by the 6 by 4 g(x) matrix, so

all four controls can influence all six degrees of freedom.

The derivative in the rotating accelerating frame of the aircraft (sometimes referred to as the

covariant derivative) of the linear momentum is

0 0 d 0_ R - -sin(@)01 0-T- -R 0 P-mg icos(e)sin(O>)/•
0 t1 -P 0 (Mos(e)cos(0) J

The aerodynamic forces with zero control input (divided by mg) are:

ih pV 2S CX 1x C 4 b ' Pmg C +2VCrCQC 0c 0L
C Z C, J 0 0

So the top three rows of f(i,x) are

1I[ 0 0 d 0_ R -Q~ mV] -sin(8) ]

-L 0 1 - -R-0P1 mg |cos(1)sin(1) +
'g" 0 0 1 ! IU - Lcos(O)cosM¢)

13
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~pV2S [[s] I [CX CX bOO [] 0
mg C Cyq CY c(3.3.5)

q. 0

Note that no p dynamics have been included. However, the controller (introduced in sec-

tion 5.1) can be assumed to be using a measured (so varying) value of p in these equations.

This corresponds to treating p as a slowly varying parameter, compared to the rapidly varying

state. A coasequence is that the equilibrium helices (see Appendix A) will vary slowly as

altitude is lost.

The forces (divided by mg) produced by the controls give the top three rows of g(x) multi-

plied by h(x,u)

_T
rr. mg

C1 ,, C-4 tAp'. 2 SP
sin(87- -)

mg 2V" °" c ' A.pV 2 s sin(8-a)

Cz C . c , mg
yApV 2 S sin(8--3)

mg

The resulting linear momentum equations give the top three rows of 0 = f(i,x) + g(x) h(x,u)

10 0r~ 0r1 [ R - sn(e)
= 1 0 -R 0 P ( s(E)s(J) +

IIvas'ApV2S C C Q C , 0 c ' 0 P
ms + -_- CY, C ,/, ¢ +

mg II2V C0• LCZP cZ Q

14



mg.

mg
C1  C C 4 C Ih'pV2 S . Pb

pV2%1. g si ( j- 2 (3.3.6)
[Cz C74  C,4 . C7 4] hpV2  S i( , a

XT mg

The derivative in the rotating accelerating frame of the aircraft (sometimes referred to as the

covariant derivative) of the angular momentum is

1[ 0 0 ' 0 R -_ [_ ][x. -IXY -I]]_-xI -y

0r100 [ 0 P -X 7 -
lo idt -I z LPIz

The aerodynamic moments with zero control inputs, multiplied by %

are: 1

thpV2S [,C11, C I CIR 1b 0 0' iri

+ C. 0c0mg CM 2Vj C11, C1f' ff 1 Ct

So the bottom three rows of f,x) are

b 0 -0 1 0 0 0 R -Q Ixx _I-Ix

0g dt-I I " 't - P 0 -Ixy I -ly z  + 3..) , ,

... .I$



A pV2S I 1 -C 0 I

mg C-n 2V" "naC 0 0_b

The moments produced by the controls, multiplied by up

[b 00
1 c 0

m g 0 0 b _

give the bottom three rows of g(x) multiplied by h(xu):

T

C4 C C8  CI tpV2 S sg Pb

ICm , mg "2V)

mg'3pV2 S sin(Sr_0)

mg

So the angular momentum equations, multiplied by
b -0 0

mg 00 bJ

are:

b 0 "- 1 0 0 R -Q I -I Ix

0"--0 cOxy yy yz +mg i0idt LQ Il
rooV2 II I

2s+ 2 y Cmp Cm Clo b ] 00 J

mg 2V m

16



_T
mg

CI C ACpV 2 S P-b

mg

f(,x) = Cxpression(3.3.7) J (3.3.9)

CT c. CCM. C%,.

xpress(3.3.10)5g x) ¢ C, u (3.3.90) K,

C17  C 4 . C .,. C'.4CmT Cm4. CZ% cm'r

Cn 2%C Cn ,

The 0 = f + g h equations represent the dynamics while the kinematic equations for the
relationship between the Euler angle rates and the body-axis rates are given by (3.3.2)

*'No,~d .P %-.

17
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SECTION 4: EQUILIBRIUM MANIFOLD

4.1 Introduction

Systems of ordinary differential equations (ODE) with no control inputs typically have a

set of isolated equilibrium points (so that the set of equilibrium points is zero-dimensional) .

If a single control parameter is added, then for each fixed value of the control parameter, there

will be a corrsponding set of isolated equilibrium points. The family of equilibrium points

generated in this way forms a one-dimensional set. Similarly, systems with m control parame-
ters will typically have m-dimensional equilibrium sets. When the ODE are not continuous

with respect to the controls or other parameters, the equilibrium set can also be discontinuous.
However, the equilibrium equations used in this report will still remain valid, they just change
value suddenly when the discontinuity is reached. Under fairly general conditions on the

ODEs, the equilibrium set will be a smooth mathematical set called an "m-dimensional mani-

fold." Although this m-dimensional manifold is often parameterized by the m control inputs
([R],[YSJ],[MKC],[CM], and [(G]) it is sometimes easier to choose a different set of coordi-

nates on this manifold. We could choose, for example, some of the state variables from the
ODE, or functions of the state variables. Instead of first fixing the m controls and calculating

the associated equilibrium values of the states, we can fix m of the state variables and solve
for the equilibrium values of the other states and the controls.

For a given set of state variables, the dependence of the ODE on one subset of the state
variables may be more complicated than on the others. For example, the ODE may be tran-

scendental, discontinuous, or even tabular in some of the variables, while only polynomial or

even linear in others. Analytic computations will be simplest if we choose as coordinates on

the equilibrium manifold the m states on which the ODE has the most complicated depen-

dence. This way, for each value of these coordinates, the equilibrium equations can be solved

by relatively simple means. If the equations are algebraic in the remaining variables, we can

solve them using standard techniques [BCLA],(PY],[vdW],[W] . In subsection 4.4, we expli-
citly compute the equilibrium manifold for a six-degree-of-freedom aircraft model.

18
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4.2 Class of Systens

The class of systems described in this section includes the aircraft example shown in Fig-

ure 3.2 which has 8 states, 4 controls, and 6 integrator chains of lengths 1, 1, 1, 2, 2, and 1.

Given a system of ordinary differential equations of the form P = F(x,u) , we can rewrite

it as F(xx,u) = 0 by setting F(i,x,u) = F(xu) - i . We will consider systems with n

states x, k integrator chains (degrees of freedom), and m controls u. The indexed set of ordi-

nary differential equations can be written as (see Figure 4.1)

Fi(il'Ct'i2CZ9 , " ,,Xu) = 0 i = 1, ..., k (4.2.1)

where cI +c 2 + --- +c k - n

(cl through Ck are the lengths of the k integrator chains.)

X ={xLj i=, ..., k j = 1, ... ci for each i

where xLj is the jth integrator output (state) in the ith chain.

u= ui } i=l ..... m

We assume that F has the necessary properties to ensure existence and uniqueness of solu-

tions.

Typically, F(x,x,u) may be written as F(x,u) - i, and in this case the system may be

represented schematically as shown in Figure 4.1.
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Integrator Chains

X1.41 J Xh.4 J .6 "1 ~ J , X1.

Figure 4.1 Schematic Representation of Typical System

By definition, equilibria are solutions of equation (4.2.1) for which x is constant. Conse-
quently the equilibrium set is the set of solutions of the following equations in the (x,u) space.

(4.2.2)

F,(O.O,",- -O~x~u) 0=1,..O

0 i = 1, k j =1,....C c-lI

This obviously reduces to k equations in the m entries of u and the k nonzero entries of x

(xi. 1 i = 1, .... k ). From the Implicit Function Theorem [M], at the regulair poiint',. the

20



equilibrium space is (locally) an m-dimensional manifold.

Sometimes, by changing the coordinates of the system, it is possible to simplify computa-

tions. If F is algebraic in k of the elements of (Rh), where (R(xij,u),h(xtl,u)) is any change

of coordinates on the (x,.1,u) space, then parameterize the equilibrium set by the other m

entries of (I(xipu),h(xi,,u)). For each value of these m parameters, the equilibrium computa-

tions reduce to solving k algebraic equations, F, in k unknowns. Solutions can be found by a

number of methods, e.g. repeated resultants, Grobner bases, etc. [BCLA],[PYI,[vdWI, and
[W. If F is algebraic in more than k of the elements of (1(xj 1,u),h(xj 1 ,u)), solve the alge-

braic system for the k algebraic elements of lowest degree. This reduces the number of calcu-

lations involved in solving the algebraic system. If the system is linear in some of these k
variables, then these can be eliminated by linear algebra, leaving a simpler algebraic system to

solve.

The change of coordinates to (-x(xiL,u),h(xj,u)) can be essential in getting the system into

algebraic form, and very helpful in reducing the order of the system of algebraic equations.

This will be demonstrated in subsection 4.3.

21
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4.3 Equations of the Form F(ix,u) = f(ix) + g(x) h(x,u)

Dynamics

In the previous section we were using state-space systems defined explicitly by

i = fP(x,u)

or, by letting

F(i,x,u) = F(x,u) - i

the same system was defined implicitly by

F(x,x,u) = 0. (4.3.1)

This is a system of k equations. We would like to analytically reduce this to a set of k-m

equations in m fewer unknowns. Whether or not we can do this depends on the algebraic

structure of the system of equations. In the rest of this subsection we will be considering a

case for which this reduction is possible. Note that for the aircraft equations of motion k = 6
and m = 4, so k-m = 2.

Consider the case where F(i,x,u) has the special form

F(i,x,u) = f(i,x) + g(x) h(x,u) (4.3.2)

Equation 4.3.1 now takes the form

0 = f(ix) + g(x)h(x,u) (4.3.3)

where

fis k x I (column vector)

gis kxm (matrix with k>m)
h is m x I (column vector )
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In this case, the only dependence of F on the in controls, u, enters through the m functions

h(x,x,u). F depends on h in a linear way, so we can eliminate h using linear algebra. To 7

eliminate hi, split the equations into two parts

10 P2 ff(xi,XX)] [ P2 g(x) Jh(X~U)(4.4
where

P1 is any mn rows of a k by k identity matrix.

P2 is the remaining k-in rows of the k by k identity matrix.

If the g(x) mnatrix is full rank. it has mn independent rows. In this case choose P1 to select

out these independent rows so that Plg(x) is invertible, then

h(i,x,u) =-(Plg(x))Y 1 Plf(i~x) .(4.3.5)

Plug this expression for h into the 0 =P 2f(ix) + P2g(x) h(i,x,u) equation to get -

0 =P~fi-X) - P2g(X) (Plg(X)Y-l P~fIOx) .(4.3.6)

Separatrng out f gives

0 =(P 2 -P 2g(X) (PWgX)Yr' PI) f(i,x) .(4.3.7)

or

0 = g-L(x) f(i,x) (4.3.8)

where eL(x) is the following k-rn by k matrix:

g-L(x) = rg2-i29X) (Prg(Xn)lP (4.3.9)

Note that (gL(x) g(x)J = 0 , this is the reason for chosing the "perpendicular" superscript on g,

ie ea. Equation 4.3.8 can be derived directly from equation 4.3.3 by premultiplying equation

4.3.3 with g-1 (x)

23
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Equilibrium

At equilibrium =0 and the only nonzero entries of x are (xi. i = 1, ...,k ). So at

equilibrium, equation 4.3.7 represents k-m equations in k unknowns. Therefore the solution

set is m-dimensional.

Consider the case where f is polynomial in k-m of the nonzero entries of x, and g does

not depend on these k-m variables. Split the nonzero entries of x in to two groups y and z.

Let y - (x. 1 } where i takes on k-m of the values that correspond to variables in which

f is polynomial.
Let z - ( xi } where i takes on the remaining m values.

The function f is polynomial in the entries of y. Let p be the number of monorials in

the entries of y on which f depends, e.g. if f = 1 + 3y, + Y2 + Yl7 Y2 then p = 4.

Let 9 be a column vector containing these p monomials.

In this case

f(O,x) = f(z) 5, (4.3.10)

where f(z) is a k by p matrix of coefficients. See (4.5.9) through (4.5.11) for an aircraft

example.

Since g only depends on z, g-L has the form

g'L(z) = [)2 - P2g(z) (PIg(z)) -' P,) (4.3.11)

and Equation 4.3.8 becomes
0 = 1g.L (Z) f'(z)], (4.3.12)

Equation 4.3.12 is a set of k-m polynomials in the k-m entries of y, with coefficients that

depend on z . For each value of z, this set of polynomials can be solved using repeated resul-

tants or various other methods [BCLA], [PY), [vdW], and [W). These techniques reduce the

system of k-m polynomials in k-m variables into a new system of k-m polynomials of the fol-

lowing form.
24



qk-.m(Yt.y2t ~Yk-m) = 0

qk-m-I(YI,Y2, .. Yk--m-1) = 0

q2 (YI-Y2 ) = 0

T7he qj(yj) polynomial in one variable can be solved numerically by placing its coefficients
into a companion matrix,, then finding the cigenvalues of this companion matrix using
EISPACK (SBDGIKM. If the q1(y1) polynomial is represented by

q1 (yj) = a0 + aly1 + + a'yd- l + adYj d (4.3.13)

then the companion matrix is of the form

0 1 0 . .. 0
o 0 1 . .. 0
0 0 0 ...

* (4.3.14)

o 0 0 . . .
_ 8 a, a2 d-

ad ad ad ad

The cigenvalues of this matrix will be the roots of the polynomial q, Each root, yj , of this
polynomial is then plugged back into the q2(Y15Y2) polynomial. Since yi is now known,
q2(Yl,Y2) is now a polynomial in only one unknown, Y2 .- Put the coefficients of the q2 poly-
nomial into a companion matrix and solve for Y2 - Continue this process of back substitution
until all the values Of (YI, Y2' 'yi-m) are solved for.

At this point. y has been determined for a given set of values of z. Since the nonzero
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components of x consist of the entries of y and z, we now have all the entries in x, so we can

solve for the inputs, u, by solving equation 4.3.5

h(x,u) = - (Pig(x)) - Pif(O,x)

for u.

All the points in the equilibrium space can be calculated by dividing the m-dimensional

set of coordinates, z, into a grid. For each point in this grid, calculate the corresponding y

and u. An (m-l)-dimensional family of one-dimensional slices of this equilibrium space can

be plotted to visualize the space.

The methods for solving systems of polynomial equations work in principle for any number of

polynomials, they are much simpler, however, when the number of polynomials is small. For

example, a system of two or three polynomials each of degree two or three can be solved
quickly, while a system of four or five polynomials each of degree two or three can take

several minutes of computer time to solve.

So far the methods described are quite general. In the next section, we will be consider-
ing a concrete example. For the aircraft example, k = 6 and m = 4, so we are left with 2
equations in 6 unknowns. The equations are polynomial in several of the unknowns. Choose

the two (k-m) entries of y from these polynomial type unknowns. Use the remaining four

unknowns ( z ) to parameterize the equilibrium manifold. For each set of values of these four

parameters, solve the two polynomial equations for the remaining two unknowns ( y).
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4.4 Introduction to Aircraft Equilibrium

The kind of equilibrium manifold that we get will depend on what we choose for the states
(outputs of integrators). We will not include I as a state since none of the forces or
moments depend on WI. At equilibrium, + can take on any constant value (including zero),
so the equilibrium trajectories will be vertical helices (see Appendix A). Note that itraight

line trajectories are just infinitely fat vertical helices with + = 0. "Steady" maneuvers such
as a 3 g pullup ae precluded since the component of gravity is varying greatly during such a
maneuver. It would still be possible to trim about a 3 g pull up if we considered time varying
ODE and trimmed about some nominal trajectory. When we refer to equilibrium in this
report, we will be referring to the vertical helix type of equilibrium.

Equilibrium is attained when the six outputs (V,Px,e,') all remain constant . If we
specify the constant values for four of the outputs then the equilibrium equations will deter-
mine the corresponding values for the four inputs and the remaining two outputs.

For several choices of sets of four constant outputs, the equations are algebraic in the
remaining variables. This allows us to solve the system of nonlinear equations for the
corresponding inputs and the remaining two outputs. Two cases will be considered.

Case 1: The simplest case occurs for low speed flight (say Mach < .6) where the aero-

dynamic functions are independent of Mach. For instance C(M,(af) becomes just Cx((x3)
In this case the equations are second-order polynomial in V and ', so it is easiest to specify
constant values for the four outputs (3,cx,0,,) then solve the system of two second-order

polynomials for the remaining two outputs (V,+) and then solve for the inputs [j

Case 2: For high-speed flight, when the aerodynamic functions depend on Mach number
(Mach is a function of V and air temperature) the equations are no longer polynomial in V .
However, the equations are still second-order polynomial in + and second-order polynomials
in trigonometric functions of 0 and 8. Since trig functions are rational functions of complex
exponentials, the equations are rational in ei4O and ei9. By multiplying the equations through
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by the common denoninator of these rational functions, the equations become fourth-order

polynomial in e'* and e'. In this case it is easiest to specify constant values for the four out-

puts (VD.,4b) then solve a system of two polynomials for the remaining two outputs

(e*,+) and then solve for the inputs 84 1

.

8rI
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4.5 C~alculation of Aircraft Equilibrium

At equilibrium. x =constant; Le. (,,c0ei0e)=constant. Since e,oD ar osat
e=0 and 0 , so (3.3.2) becomes

'1 0 -sin(@) l
0cos(O) cos(e)sin(0) ieI-(4-5.1)

0 -sin(e) ]0] -sin(O) 1
0o cos(O) cos()sin(O) 'V= cos(e)sin(o)

10 -sin(O) cos(8)cos(D). T osM~)cos((D)J

This says that LQP1 is constant so the -L. operator in the covariant derivative of the angular

momentum can be eliminated. Similarly, [1]is constant, which implies iscntats

the A L operator in the covariant derivative of the linear momentum can be eliminated. Also
dt

rul rcos(O)cos(a)1
note that in general (3.3.3) gives us I I=V sin(13)

LWJ Lcos(1)sin(a)J

Using the expressions for P, Q, and R from equation 4.5.1, the skew symmetric matrix in
the covariant derivative expression becomes:

0 R -Q 0 cos(8)cos(0D) -cos(e9)sin(0D) 1

Q -P 0 cos(8)sin(0D) sin(e) 0csecscD sne

We will use the following names to keep the notation more compact:
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'f,

0 cos(E))cos(0D) -cos(e)sin(4D)
Fe -cos(O)cos(0D) 0 -sin(G)

cos(E)sin(4D) sin(8)0 J

[cos(13)cos(a) 1[-sin(e) 1
IOUz= sin(13) 10 = cos((8)sin(O)

LCos(IP)sin(a) Jlos(e)cos(4D) I

CX~4y C nCm]

13 -IX -I 1
IMO xy y xIz,

V2.

nom I hpS 
t

Plugging all this into equations (3.3.1), (3.3.5), (3.3.7), (3.3.10), and (3.3.4) gives the
equilibrium expressions for f, g, and h in terms of (Vj,t,,',E) and the four controls.L

The top three rows of f(0,x) become

( CL~ + ,y,, CB 1 (4.5.2) '

while the bottom three rows of f(0,x) become
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mg
2V

-h2-C~ p BCB ((4.5.3)

g(x) is left unchanged since each entry only depends on (M(V),Pac):

CIT C. C ,. cx,.
CYT Cha. CySa CYSa

C-4 C24. C7 I 4  ,
g (x ) = C , c is C. C . ,

CM% C.C% CM,

and the h(0,x,u) vector becomes

T
mg

V2

v2  'Psin(IB)b)
V sini(s,+ 2

h(O~~u)V2 sin(S.-a)(45)

nomt

V2

T sin(8r-P)

The gL(x) matrix described in equation (4.3.9) requires the selection of P and P2 • The
choice given below is motivated by the desire to make [P g(x)] invertible for typical aircraft.

Let

1O01 0 0
0 0 0 100

0 0 0
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Let 55

P2 [0 0 1 0 0 0]

Using P 1 , P2 , and g(x) we can form

g'L(X) = P2 - P,,g(x)(Plg(X)Y-'P 1  (4.5.5)

Note: For aircraft with left/right symmetry, the elevator and thrust only affect the first, third,

and fifth rows of f(ix) + g(x) h(i,x,u) while the rudder and aileron only affect the second,

forth, and sixth rows of f(i,x) + g(x) h(i,x,u) . The result is that the g(x) matrix then has the

following simplified form:

Cxr 0 C,4. 0

0 C6 0 y
C OT0C Z%0(456

g~) 0 C4. 0 C (45.6

0 Cn4  0 Cn,

In this simpler situation, Plg(x) can be inverted explicitly so equation (4.5.5) gives g-L(x) as

CY,,C 14- CY,(iT4  cY. c1"_ CY1 C16.
0 1 0 0C

4 'CN, C 6,C 0 C C11  C16 Cn, 5'

C2- Cx- CMC. CXC- CXTC2Z
0 C.MTr in 1 0%C7 0

CXTCp- CXC Cmi..-CXCI

In the further simplifying situation where the thrust is aligned with the x axis (CT =0 cm';) 'p-

and the ailerons only produce a rolling moment (CY = 0 =Cn,), we get:

.04
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gl)=0 1 00 0 -f,(458

0 0 1 04.5.8)

if 4C, and C U.are also neglected, then g+. = P2 . In general the g(x) matrix can be a full

matrix, and g+(x) can be computed numerically for each value of x used. In the case where

g-(x) is computed numerically, it is better to use the singular value decomposition algorithm

(e.g. in UNPACK [DMBS] ) in place of equation (4.5.5) because the SVD algorithm is
numerically more stable and works even when Plg(x) is not invertible.

We now have two equations,

[I g-(x)f(0,x) (4.5.9)

in the six unknowns, x = (V, P3, a, +1, E), D).

Case 1 (same as in subsection 4.4) The case where the aero functions do not depend on

Mach.

Let y= (V,'P) Y= V. and z = (J,a,0,8) .

In this case 1(z) is the following 6 by 4 matrix, where 03 is a column of three zeros.

10 CXyZ Cxzo BCB 10+L-140

f(z) V2 no 2no

____ Cmnnp" BCB BCB-'
03 V 2 nom V2 nom 2 mg E~ml:e

so the equilibrium equations become
33



Choose valuecs for 0^,0~ and solve the above set of two equations for V,+V. These equa-
tions are second-order polynomials in V and ' ,of the following form:

0 =p(V,) =Pn+ p~V 2 +p, V + p M 2  (4.5.10)

0 =q(V) = C00+qC2 0 V2 + qjIV *+ q0 2  
2  (4.5.11)

where

[PLO ft0 P I P02 ,cz,0,e) f(acx.0,e
q20 q, I q02

The two polynomial equations, (4.5. 10) and (4.5.11), can be solved using direct elimination,
or by using resultants. Two polynomial equations (whose leading coefficients are nonzero)
have a solution if and only if their resultant is zero tvdW] . Given two polynomials polyl
and poly2 in several variables, of degree nI and n2 respectively in some particular variable
(say x), their resultant with respect to x is the determinant of the (nl+n2) by (nl+n2) matrix
formed as follows. Take the coefficients on powers of x from polyl and put them in the top
row of the matrix starting on the left side, repeat this row n2 times, shifting to the right by
one column for each row. Fill in row n2 + 1 with the coefficient on the powers of x from
poly2. Repeat this row nI times, shifting to the right by one column for each row.

The resultant of polynomials (4.5. 10) and (4.5.11) (with respect to +V with pO2qO2 * 0 )is
the determinant of the following matrix whose entries are shifted rows of the coefficients on

the'Pterms. nlI + n2 4 unless p02 or q02 is zero).
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POO+p20V2  PIN P02 0

0 =det 0qPOO+P2 1 V2 pl P0 k4 V4 + k2V2 + ko(4.5.1S)

o qw4s12OV 2 qj1V q02

k4 =(pzoqo2-qzopo2d2 - (pI1qO2 _qI1 pO2)(p2D3 q11~ 20 p11) (4.5.16)

k2 = 2 (pO~0 2 -q~p2)(p,2q 2 -q2yOp 2) - (p11q 11qjp 02)(pq 1 1-q~pjj) (4.5.17)

Ic0 = (pO~.2qopO) 2  (4.5.18)

The k's depend on the pjj's and qjs so they depend on 03,(),, . Since no odd order

terms in V appear in the polynomial on the right hand side of equation (4.5.15) , it is of

second-order in V2 so it can be solved using the quadratic formula:

V2- -k2 ± 4(k2k2 - 4k4k0 ) (4.5. 19)
2k4

From (4.5.19) we see that there are at most two positive real solutions for V. From

numerical evaluation of several aircraft models, we have seen that typically one solution of

(4.5.19) is large and positive while the other is so small that the aerodynamic control surfaces

would not have enough authority to hold the aircraft at that equ ilibrium. The equilibrium

associated with the large speed is typically associated with low +P values and corresponds to

reasonable flight regimes, while the low-speed equilibrium is often associated with large-P,

spin-type flight.

Use the real positive values of V to find 'P as follows. First, eliminate P2 from the two

polynomials by forming the expression

q02 P(V,'P) - p02 q(V,'')

The 'P2 terms cancel in this expression, leaving
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0 = o2(Poo+P 2oV2+piIV )i - po2(qooq2OV 2+qIIV+) (4.5.20)

so

S= (q02P-P 02qO) + (q0 -pOq2)V 2  (4.5.21)(po2q, ..qW pl )V

(Note: If q0 2 and p02 are both zero, then there is no + 2 term to start with.)

Use these values of V and + in f and g to solve for h :

h(O,x,u) = -- Pig(x)]- ' [Plf(Ox)]

Finally, use this value of h to solve the following equations for [j

T
mg

V2  s(+ 'Psin(e)b

om ' 2V
v2 s= h(O,x,u)

V sin(8e-cz)

V2 sin(Sr-"3)
V2

Case 2 (See subsection 4.4) When the aero functions depend on Mach number, let

z = (V, P. cc, 0), y = (e"9,+) , and $9 is the vector of 7 monomials in eiO and + on which f

depends: " .

9= transpose( (e-i",l,eie),(e-ie,e ie), 2 (e-i2, ,ei2@)

The two equations (4.5.9) are second-order polynomials in ' , sin(e) , and cos(e) . The
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only e9 dependence comes from the too and Eoe in f(Ox) (see equations 4.5.2 and 4.5.3).

Substitute for cos(e) and sin(e) using

eiO Ce os e O + =
sin(e) =o(O -___ 2~

where i = IF-.

This lets us write 108 and Fe. in terms of e'O and e

F.00 C"O 4 7'0 ee 1 ei + T Ci

where

0 cosQZb) 2 -1lb

E6_ _ __M -1 sin(O)

2 2
sin(ZD) 10cos(O)

2 2i L 2

and the over-bar signifies complex conjugation.

Plug these expressions for loe and Fe~ into (4.5.2) and (4.5.3) . The result is

Y123
f(0,X) = fZ) 9' = [ 12( , f45Wz f678(z) 'F945s

['2 9678

where

Cieie 967 =eO

ei c]ei28

37

1111 15,5,11110D Z C II,:'W H VS M



T V
2

f1 (z) = V203 v- 0

V- V BCB - V V BCB

g 01a+ xyw 2 ,0 9E*1Ip + 7 CyQ

145(z) v BCE- V BCB

[ 03 03 03 1
f67 (z) = Bi - BCB-U CO 1. + F- o].) BCB-', Io

Ig mg ng

Multiply both sides of the equations, 02 = g't'(z)f(z)g9, by ei2e to make 9 ei2@ polynomial in

e. The resulting two equations are second-order polynomial in ' and fourth-order polyno-

mial in eie of the form:

0 = P0(eiG) + P1(eiO)+ + p2(eiG)+ 2  (4.5.22)

0 = qo(eie) + ql(ei9)+ + q2(ei°)+2 (4.5.23)

where

[Po(e l@) 1 i@

[o(eie)] = g'(z) 123(z) [923 Ci2

qI(e'e) = ; L(z) 145(z) (9k4 e'20 b
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[2(e j = g'(Z) 1674) IN ea

Form the resultant (with respect to +) again

PO PI P2 0
0 Po PI P2

0 = det qO q, q2 0 =(pq2-p2q0)2 - (plq2-p 2q1)(pOqI-pIqo)

0 O q I q2

b

The right hand side will be a 14th-order polynomial in eiO of the form:

Ci  CkeiC (4.5.24)

where c-k =Ck (so we only need to calculate co through c6 ). The polynomial in (4.5.24) is of

the form (^) (12th-order polynomial in e ) . Put the coefficients of this 12th-order poly-

nomial into a companion matrix and find the roots using EISPACK [SBDGIKM]. Keep the

roots that have magnitude equal to 1 (8 is real in these cases). Use these roots to solve for

q2(eie ) p0(e'e ) - P2(eie') q(el'o)

p2(e ie ) q(e ie ) - q2(e i9) pl(e ie )

will be real since the extra factors of ei9 cancel in numerator and denominator.

Finally, solve for the inputs as in case 1.
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SECTION 5: ANALYSIS OF AIRCRAFT DYNAMICS

In this section we analyze the nonlinear aircraft equations using dynamic inversion. Our
goal is to show how dynamic inversion can be used to develop flying quality parameters.
Some candidate parameters arising from the analysis in this section are presented in section 6:
Nonlinear Flying Qualities.

5.1 Partial Dynamic Inversion

The 6 DOF nonlinear aircraft equations of motion are of the form:

i = f(x) + g(x) h(xu)(..)

with
* in an n dimensional state space (n-~8 for our aircraft model)
u in an m dimensional control space (m=4 for our aircraft model)
f: an n by 1 vector depending on x
g an n by m matrx depending on x
h :an m by 1 vector depending on xand u

Equation 5. 1.1 splits into the following form 5

X1 f1(x) g1Wx

f22(x) + 92 Wx h(x,u) (5.1.2)
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where the first k equations represent the dynamics (k=6 for a 6DOF aircraft):

i1 fi~x) g1(x)
- = - + - h(x,u) (5.1.3)

'2 f2(x 92W)

and the last n-k equations represent the kinematics (n-k=2 for our 6DOF aircraft model):

'3 = f3(x) (5.1.4)

We split the dynamic state in equation 5.1.3 into the x, and x2 parts to distinguish the

states x, we wish to control directly, from the states x2 we choose not to control directly.

When in = k we can control all k of the degrees of freedom. When n < k , we can only

control part of the dynamics, because there are fewer independent degrees of control authority
than degrees of freedom. In equation 5.1.2 we have:

x, in an m-dimensional space
x2 in a (k-m)-dimensional space (k > m)

x3 in an (n-k)-dimensional space (n > k)
f, an n by 1 vector depending on x

f2 a k-m by I vector depending on x

f3 an n-k by 1 vector depending on x

g: an i by m matrix depending on x

g2 :a k-m by m matrix depending on x
p

In cases where we cannot invert all of the dynamics, we can still do a partial inverse.

The x, dynamics can be inverted as follows. Let v be some function of the pilot's com-

mands, then given a set of desired dynamics it = FI(x,v), put

h(x,u) = [gl(x)]-I[ it - ft(x) I = [gl(x)]-'[ FI(xv) - fj(x) ] (5.1.5)

and then solve h(x,u) for u, the signal to the actuators, as a function of x (which we assume

can be measured) and the external input v . Equation 5.1.5 involves the inverse of gl(x)

which might only exist in some subset of the state space. In this sense, the analysis is not

global.
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To determine the uncontrolled X2 dynamics and the inematics, substitute the expression

for h(x,u) from 5.1.5 into 5.1.2 to obtain

it= Fi(x,v)

i2= f2 (x) + g2(x)[l(x)]1'( FI(x,v) - fl(x)]

i3= f3(X)

This partial inversion process involves several choices. The first choice made (choice of

xj) determines which dynamic states are controlled directly. The second choice made (

choice of FI(x,v) ) determines the dynamics for those states. Some examples we explored on

this program are shown below.

Example 1 :The U,P,Q,R Inverter

XU 00

01 02 0V XR3R~f

wher

X U 0 -mmd

Q Qn - ..d.

0 0 0 XR LR R.'

%a.
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Example 2 : The U,0,0,0 Inverter

uA

0 ~ X X30 0

00-(s 0 (0 U

0u0 0 0 Ue0(4 e

FI~~xru) 1P
0 0 0 00 L Ocd

eand

where

0~~ 0 0 0 Pcm

ox..~ 0 0 0 0 -cLcll

0 0 0 0 0 0() -e~a
a - o~c:

where)=

0 0 0 0
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Example 4 :An alternative Pcr,0,e controller

Given an external command

v-[e J i

find the associated equilibrium values of V.d

(Vcm).2 = -CNb a

2a

where a, b, and c are functions of cmd , acmd , cm, ecnd (see equation 4.5.19 in the equili-

brium section).

If there are two positive real equilibrium speeds to choose from, the larger one is chosen.

Next Uc d is computed ( Ucnd -" V, -:,.d COs(ctcmW)cos(Pcmd) ) . Finally, this U,, , along with
3,d, c, and , end are sent to the U,PD,8 inverter.

Example 5 A O,ayy, controller

Given an external command

a.P3cmd

Ycmd

where y is the velocity pitch angle (flight path angle) and g± is the velocity roll angle (rol- a'

ling around the velocity vector). The D3,a,ygi controller first performs a change of coordi- b

nates from Pcnd, acmd , Ycmd, 9crmna to OcA ~cmd ,d, , ,ecd , using the following
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transformations:

-sin(())1 cos(a)cos(p) -cos(a)sin(p3) -sin(a) -sin(y)

COS(e)sin((D) = sin(p) cos(P) 0 [cos(y)sin(jL)
(O)COs(M) sin(a)cos(P) -sin(a)sin(P) cos(C) . cos(Y)cos(L)

The top row of this equation gives us

e fi sin -1 (cos(a)cos(P)sin(y) + cos(a)sin()cos(j)sin(jL) + sin(a)cos(y)cos(±)]

while the ratio of the second and third rows gives us

= uif-sin(D)sin(h + cos(P)cos()sin(g) + 0

-sin(a)cos(P)sin(y) + sin(a)sin(P3)cos(y)sin(.) + cos(a)cos(¥)cos(g)

These values of Pc d , acc , .d , ec. are then used to find the associated equili-

brium values of V .

(VcnW)2 ac

where a, b, and c are functions of 1,d, cxcmd ., eW (see equation 4.5.19 in the equili-

brium section).

If there are two positive real equilibrium speeds to choose from, the larger one is chosen.

Next Uc.0 is computed ( Ud = Vc cos(p.n)cos(ac) ) Finally, this Uc along with '
Dcd, Ocd, and , 8cmd are sent to the U.,3,e inverter.

For an introduction to the partial inversion method, and its application to the 3DOF long-

itudinal axis of an aircraft, see [Eli . A related method of controlling nonlinear systems can

be found in [HSM].

When using dynamic inversion, the x, vector contains m states which can be controlled

exactly by the m control inputs. We have no direct control over x2 and x3 , so we have to b
check that they remain stable. This analysis is done in subsections 5.2 through 5.5.
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5.2 Theory of Complementary Dynamics

We will be considering systems with m controls and k chains of integrators (with k > m).

Note that for conventional 6DOF aircraft models, k--6 and m = 4 . When the m controls are
used to control m of the integrator chains, the dynamics of the remaining k-in chains will be

completely determined. We will derive the expression for the dynamics of these remaining

integrator chains.

We are working with state-space systems defined implicitly by equation 2.1 which con-

tamined the relation

F(i,x,u) = 0. (5.2.1)

This is a system of k equations. We would like to analytically reduce this to a set of k-m

equations in m fewer unknowns. Whether or not we can do this depends on the algebraic

structure of the system of equations. In the rest of this subsection we will be considering a
case for which this reduction is possible.

Consider the case where F(i,x,u) has the special form

F(Xt,x,u) = - e(x)i + f(x) + g(x) h(x,u) (5.2.2)

Equation 5.2.1 now takes the form

e(x)x = f(x) + g(x)h(x,u) (5.2.3)

where

e is k by k ( square matrix)

f is k by 1 ( column vector)

gis kbym ( matrix with k>m)

h is m by 1 (column vector)

In this case, the only dependence of F on the m controls, u, enters through the m functions
h(x,u). F depends on h in a linear way, so we can eliminate h using linear algebra. To elim-

inate h, split the equations into two parts
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-"e(x) 2 "x)] + p2 g(x)] h(xu) (5.2.4)P2 ex~iRX)g(x)

where

P, is any m rows of a k by k identity matrix.

P 2 is the remaining k-m rows of the k by k identity matrix.

If the g(x) matrix is full rank, it has m independent rows. In this case choose P so that

Plg(x) is invertible, then

h(x,u) = (Pjg(x))- ' P1(e(x)x - f(x)) (5.2.5)

Plug this expression for h into the P2e(x)x = P2f(x) + P2g(x) h(x,u) equation to get

P2e(x)x = P2f(x) + P2g(x) (Plg(x))- 1 PI(f(x) - e(x)i) (5.2.6)

Separating out e and f gives

- 2g(X) (Plg(X)y-l PI) e(x)x 2 - P2g(X) (Plg(X)) 1l P, ) f(X) .(5.2.7)

or

g-L(x) e(x)i = g.(x) f(x) (5.2.8)

where g1- is the following k-m by k matrix :

g'L(x) = (P2- P2g(x) (Plg(x))-' P,] (5.2.9)

Note that [g-L(x)g(x)l = 0 , so equation 5.2.8 can be derived directly from equation 5.2.3 by

premultiplying equation 5.2.3 with g-L(x).

is the column vector with elements (-.ci) i = 1, ..., k (see section 4.2) .

Splitx =( (xij i = 1, ... , k j = 1, ...,ci ) into two groups y and z.

Let y = (xLj) j = 1, ...,ci ) where i takes on the k-rn values

corresponding to the uncontrolled chains.

Let z = ( (xij) j = 1, ...,ci ) where i zakes on the m values

corresponding to the controlled chains.
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Using this split of x into y and z, e(x)i splits as follows.

e(x)i = e(y,z) + e2(y,z)i (5.2.10)

where

el (y,z) isa kby k-m matrix

e2(y,z) is an k by m matrix

Plugging equation 5.2.10 into equation 5.2.8 gives

g'(yz)et(YZ), = g-(y,z)(f(y,z) - e2(y,z)') (5.2.11)

If the k-m by k-m matrix gJ-(y,z)el(y,z) is invertible, then from equation 5.2.11 we get

S= g'(y,z)e(yz)]1 gj-(yz)(f(y,z) - e2(y,z)i) (5.2.12)

Note: when the k-m by k-m matrix ge-(y,z)el(y,z) is singular or nearly singular, the nonlinear
inverter will produce very large signals which will typically be unacceptable.

If any controller uses the m controls to control the m z-chains to constant values, then Z = 0
and equation 5.2.12 reduces to

= [g.(Y,Z)el(y,z)]1 g'L(Y,z)f(y,z) (5.2.13)

If f(y,z) is polynomial in the entries of y, then let 9, be the column vector containing the p
monomials in the entries of y on which f depends. In this case f can be rewritten as

f(yz) = f(z) 5, (5.2.14)

where 1(z) is a k-m by p matrix of coefficients. Equation 5.2.13 now becomes

= (y,z)e I(y,z) 1 gi.(y,zfi(z)]5, (5.2.15)

Now consider the special case where g'J(y,z) and e(y,z) do not depend on y. S.

Let R(z) (Z)(5.2.16)
[g1ze 91 [(zfiz] I
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Using R, equation 5.2.15 can be written as

R~z) (5.2.17)

Equation 5.2.17 is a polynomial ODE in y , for each fixed value of z . The equilibria of these
ODE an~ given by the solution of the polynomial equations:

*~ 0= [g.Lzffz)]s (5.2.18)

The entries of the k-rn by p matrix R(z) are referred to as the stability parameters since they
determine the stability of the uncontrolled chains of integrators.
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5.3 Aircraft Complementary Dynamics

Inroduction

The 6DOF aircraft equations of motion can be written in the form:

e(x)i = f(x) + g(x)h(x,u) (5.3.1)

where x - (Vc,,',0,e).

Equation 5.3.1 can then be put in the form

el(z), + e2(y,z)i = f(z) + g(z) h(yzu) (5.3.2)

1
V

where y = (V,i') , z = (O3,A,60e,) , and 9 = +

V+

Equation 5.3.2 is in the form required for the calculation of the complementary dynamics

discussed in subsection 5.2.

We will derive the expressions for ej(z) , e2(y,z) , f(z) , and g(z) . The equations of

motion of an aircraft are simplest in body-axis coordinates (U,V,W,P,Q,R,0,e) , so we will

start with them , then change coordinates to x = (V,,,,,,) . The reason for chang-

ing to these new coordinates is that the complementary dynamics are simpler then.
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Dimensionless equations of motion in (U.V,W,PQ,R,,O_) coordinates

In order to make the equations of motion easier to manipulate, we will take various

groups of expressions which appear together and give them a combined name. The most

natural way to do this is to form various dimensionless groups of expressions.

(N.B. : to distinguish dimensionless parameters from physical ones, we could have put tildas

over each dimensionless variable in the remaining part of the report. We decided not to for

notational ease.)

In the following pages, it will be shown how to make the equations of motion presented

in section 3.3 take on the following dimensionless form:

Dimensionless force equations (forces divided by mg):

] = [ 100 + V2CX + + VCxy[, + g.y. h(xu) (5.3.3)

Dimensionless moment equations (moments divided by f mg d.)):

'mo [ = QlI + V 2 Cmn + VC I + gtm h(x,u) (5.3.4)

Each term in the above equations is dimensionless. The terms in these two equations
will be described in the next page.

In equations 5.3.3 and 5.3.4 , all variables were made dimensionless using the following

constants:

Let

Then define . , d,m , and l.m in terms of Vmn , m, and g , the acceleration due to

gravity.

tnom V m dnom = Vnomtom , and [nom = m(dom) 2
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To make the notation more compact, we will combine the dimensionless chord and

wingspan ( b = wing span = mean aerodynamic chord w t assoiated
dnom , dnom

acro functions as follows:

C1 (x43) CXQx4) C1X(c40) C,'(O4) 1 b 0 01
CzYZ= I.(a.) , = 'h C  -X ) C-oJ(a) R(a,.) 0 C 0

1Cz(CX)] [Cq(ct4) C, (Ctp) C74R(a4) 10 0 b.J

[b 0 0 C1(ap3
c4 = 0c 0 Cm(P)0b-Cn(aP)

rb 0 0' ilk(a,P) Cm,( ,) CI(aI) b 0 01
= 'A 0o c 0 Cr(Cz.p) C%(a4p) C,,(a4p) 0 c 0

100 b C'a C'ap JC 0

Note that b and c are themselves dimensionless now, so the above expressions are still dimen-

sionless.

All seeds re diided y VaxialspeAll speeds are divided by Vnom ( eg U = X ) and the derivatives are taken

time
with respect to t = - . P, Q, and R are angular rates multiplied by trn.. Ixx, Iyy,

etc. are moments of inertia divided by '~m.

0 R -Q [ -sin(e) 1 I)' "X

Q -RO P = jcos(e)sin(Z) IM = -IX, ]yy , ,
.Q -P Lcos(e)cos(4) jXz-ly, Iy =

* = , Ic
Y C,.c c,,. c .] .and g " = c C.C. C.% Cn.
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Dimensionless equations of mto in (4,,0e'0e)coordinates

Change coordinates from (U,V,W) to (V4,ct) using the following formula:

cos(cLcos(J3)
* VI=V 10. where I sin(13) I(5.3.5)

LW] Isin(a)cos(3)I

* DifferentiaCng gives

where

[cos(cz)cos(13) -cos(a)sin(O) -sin(z)] [1 0 0 1
L, j sin(Ip) cos(13) 0 and 0 V 0

Lsin(c)cos(D) -sin(z)sin(3) cos(cz) P . 0 VCOS() J

Change coordinates from (P,Q,R0,e) to using the following formula:

[*]=L2[3](5.3.6) I

where

r1 0 -sin(8) 1V
L2 0 cos(4O) cos(E)sin(4D)

Lo-sin(4D) cos(e)cos(cD)]

Differentiating gives

where ]+
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[0 0 0 1 0r 0 -cos(E) 1
I= 0 -sin(O) cos(e)cos(4b) (i' + 0O 0 --sin(e)sin(D) le(S.3.7)

0-cos(O) -cos(e)sin(O).J 1 0 -sin(e3)cos(O) J

The expressions for P, Q, and R can also be put into Ql to give

~-10+"A + Q3+P
where

[o0 01 [0 -sin(0D) -cos(1D
l 0 011 Q2 f= sin(O) 0 0

0o-1o 0 1cos('1) 0 0 J
and

[ 0 cos(e)cos(Q?) -cos(e)sin((D)1
'3= j-COS(()COS((0) 0 -sin(8)

Icos(8)sin(4b) sin(e) 0 ]

Substituting all this into equations 5.3.3 and 5.3.4 gives the equations of motion in
(V4,a,,eI',,e)coordinates.

Force equations:

L, LO0 [ =3 CIV lpa + Ie +V 2Cyz + VCyz, L2  + g~y h(x,u) .(5.3.8)

Moment equations

;no L2 i'?2jifO2 +V2r cbnRL + gw. h(x,u) (5.3.9)
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Expressions for e1 (z) , e,(yz) , and f(z)

Equations 5.3.8 and 5.3.9 can be rewritten as

y3

1L3 Io i , =I.L., , .V,.e) + g(z)h(yzu) (5.3.10)

To fit !(z) into the space on the page, split it into its first three columns and its last three

columns.

Let !(Z) = f 123(Z) 1456(Z)]

In the expression for f?1 3(z), use the following notation

Let

[5 L2 L6 L2 [8 q L7  0]

!a ! ( 29 L2[

C' C4 + C3+, L, L = + 1,,.+ and L 2  6 L @ .+(5.3. 10b)

Substituting equation 5.3.10b into equations 5.3.8 and 5.3.9 gives

fl ( 4l +C.Xy1  L5  03

3) moL6+CQ4lmoLs CinwjgL5  f14imolbe+f' 3imoLvlmoL 7

and

C lyz 3plPa+Cyzol00al#, 03
f456(Z) = .3 (5.3.12)

f45 ) ~Ck M lnP 1 e fl3lmo 1
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In equation 5.3.10 , g(z) is given by

g(z) A

and an example of what h(y~z,u) can be is given by

Thrust
nig

V2 Sin(8 8 - Pb
h(y,z,u) V 2 sin(8-)

V2 sin(8r4)

Equation 5.3.10 can be rewritten as

1=10 + pr14  Im L4j4I 6 fz) V2+ g(z)h(yzxu) (5.3.13)

where

[-cos(a)sin(p) -sin(cz)cos(o) 1 1 0
L- cos(J3) 0 and L4 = 0o COS0)

L-sin(otcos([3) cos(ct)cos(p) J 0 -sin(C!)

so

l~a 3 IL 3  03,21
d 03]and 10312 ma rJ03z)l" 1 0042 x2y~) IML

This is now in the form of equation 5.3.2 so we can apply the results of subsection 5.2.

First multiply equation 5.3.2 by g1-(Z)
(where g-L(z) is a 2 by 6 matrix which satisfies g (z) g(z) = 0 , see section 4.3 )

g,~~jz + g7L(z)e-2(z)i =g-L(zf(z)9 (5.3.14)
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so *~

= [g.(z)e 1(z)]-'g'L(z)(f(Z)9, - e2(y,z)i) .(5.3.15)

Equation 5.3.15 holds in general. When i = 0 , equation 5.3.15 reduces to

and the second and third columns of ?(z) go to zero, leaving only columns 1, 4, 5, and 6 so
equation 5.3.16 reduces to

[]=[g.L(z)ei(z)]1 'gI(z) [T&() 14Wz f5(z 16Wz I]V (5.3.17)

Equation 5.3.17 represents the complemnentary dynamics. It is a system of 2 quadratic
O.D.E.'s with the following coefficients (where subscripts represent the powers of V andW
respectively) :

[ao a00 a 1 at .1 r 1i
b 0 b'o bl1 b02] =L(z)e&~)]-(z) [fl(z) 14(z f5(z f6(zW (5.3.18)

The inverse of g'-(z)el(z) needed in equation 5.3.18 can be computed as follows. Start by
partitioning the 2 by 6 g-L(z) matrix into four parts.

g-L(Z) I ] (5.3.19)

where g., gb and gd are each size I by 3 . Using this notation,

gl(zwe(z W = ag' .o0 (5.3.20)

Since g-(z)el(z) is a 2 by 2 matrix, it is trivial to invert.
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Explicit formulas for special cases

For aircraft whose controls have left/right symmetry, the elevator and thrust only affect

the first, third, and fifth rows of (5.3.1) while the rudder and aileron only affect the second,

forth, and sixth rows of (5.3.1) . The result is that the g(x) matrix then has the following

simplified form:

CX? 0 C . 0

0o 51 0 Co-

g(z) = 0 bC . 0 bC , (5.3.21)

CCm, 0 c . 0

o b O 0 bCr ..

In this simpler situation, the transpose of (4.5.8) becomes:0 cZ.cMT- CzTC Cf.

CxCp.- CX.CMT

0

transpose (g.-L(z)) = 0

I cyg 4  CYI.CPr 0 (5.3.22)

b C .%C%- CC
S P f a

0 1 CX,.Czr- CxTCz,
c CXTCI,,.- CX..C

C,,- C ,'..

0b C4 Cft- Cu4.4

or, in case the denominators in 5.3.22 are zero, use
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o C(C74 C- CZrC.)

b(C5. ,~- C4,C,.? 0

r0 C(CxCm,.- Cx,,Cn")
transpose 1.(Z)] CYSrC'flge CY.C 0

o Cx,.Cz- CXTCz,.

C ..c ,= Cy,C1 . 0

In the further simplifying situation where the thrust is along the x axis (Cr = 0 = C

and the ailerons only produce a rolling moment (Cy. = 0 = C), Equation 5.3.22 reduces to:

0100 0 -S

g-() = rl&, (5.3.23)

0 0 10- 0

Using this g-L(z) along with a symmetric aircraft,

( I , ) , = 0 = I , C y ( a O ) = C I ( a , O ) = C . ( ( x O ) 0 ) .

with no dynamic aero coefficients,

c, = 0 = cWV, .

and flying with no sideslip and wings level

.

1 4
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reduces equation 5.3.18 to the following simple form:

[boo a20 all a 0 2 -b b= )e(z)]-rg-L(z) ()f4(Z) 1(z) f6(z) ] (5.3.24)

bw b2D b, II~z b 4 Z)f(z2-

C?4.
Cz-Cml

cos(e) -C,,,_ ._ _. [cos(e) 0 si_(e)__I _
sin(a) sin(c) 0 ecu. sin(a)

bCnac o s ( ) C 4

00 0y,cos(e)Izi+sin(O)In 0

where 'y = 9 - a when ( = 0 " . The eight parameters in the above system typically
have the following signs.

a20 all ao
[oo b l, b = 0 -

which results in a globally stable phase pormait in the physical (V > 0) half of the (V, ' )

phase space.

.'V
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5.4 Canonical Forms for the Complementary Dynamic Equations

We have seen that the complementary dynamic equations are of the form:

E 00 + a 0 V2 + bllV + + a3M+ 2  (5.4.1)

boo + b2V2 + b,,V+I+ b 2 2

These equations describe the dynamical behavior of the aircraft when the control inputs

are used to keep the direction of the velocity vector (ca,[) and the attitude (0,0) constant.

Stable equilibrium solutions represent steady-state flight conditions - we are therefore

interested in determining when equations 5.4.1 admit stable equilibria. Furthermore, we would

like to characterize the dynamical behavior of the solutions away from equilibria to describe
the aircraft's transient behavior. The transient behavior of the model should reflect some of
the flying qualities of the aircraft during precision pointing or tracking tasks. We will show in

the next section how to compute parameters that quantify the transient behavior in terms suit-

able for flying quality evaluation. Specifically, we will construct Liapunov functions that

describe the stability of the equilibria and provide a bound on the settling time to equilibrium

from a non-equilibrium condition.

Before constructing the Liapunov functions, we will transform the physical (V,+V) coordi-

nates into a new set of coordinates (x,y) that describe the system more economically. The new
coordinates will be related to the original (V,+) coordinates by an invertible linear transfor-
mation. In the new coordinates, the Liapunov functions have an especially simple form that

renders the flow in the phase space easy to visualize.

The coordinate transformation is developed through a computational algorithm based on

manipulation of quadratic forms. Note that equations (5.4.1) can be written:

a00 0 0 bo0 0

]a 2 0  = V 0 b 20  b (5.4.2)
= I V 0 a2 "0 , b0 L+

0 all bll

2 a22

In this way the complementary dynamics are defined in terms of the quadratic forms A
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and B represented by the 3x3 matices above whose entries are simple functions of the
coefficients aj and bij. For convenience of notation, we write the above equations:

V=A(V,'V),' B(VY) . (5.4.2')

We need to know how the equations above transform when the coordinates of the phase
space undergo a linear transformation. Choose coordinates (xy) related to the (V,'+) coordi-
nates by an invertible transformation F:

rI I f12  
(5.4.3)I

[f12 f22 LYJ I 1[",

then

V= ti x 'P= x Y]a Lx] (5.4.4)

where

=(0' 0 )' (0' 0) TB (01 0)' (0' ;) (5.4.5)

In the convenient notation, V = (x,y) , 'V=b(x,y). To eliminate Vand 'Iuse G
F 1

L)' 12 922 12~ (5.4.6)

tofind
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12 2  (Y) .(S.4.7)

2gl g22  (x,y)

The formula in equation 5.4.7 describes the complementary dynamics in the new set of

coordinates (x,y). Any property of the system 5.4.7 that remains valid under linear transforma-

tions is also a property of the original system 5.4.1, and vice-versa. In particular, the stability

of either of these two systems implies the stability of the other. .

The reason for introducing new coordinates is to represent the dynamic equations using

quadratic forms that are as simple as possible. We think of the change of variables as a

transformation (A,B) --> (A,B) used to reduce the number of independent variables required
to represent the quadratic forms. There is another transformation useful for the same purpose;

we discuss it next.

Suppose a system is represented, as in 5.4.7, by equations of the form:

]= H (B(x:Y) (5.4.8)

for some constant 2x2 matrix H. Pick a nonsingular 2x2 matrix K, and define
A = k11A + k12B , B = k2 1A + k2B. The same equation can then be written

i =(xy) 

(5.4.9)

Transformations of this type, which do not involve a change of coordinates, may also be used.

We use both types of transformation in deriving canonical forms for the complementary

dynamic equations.

Theorem 5.4-1: Suppose the complementary dynamic equations 5.4.1 admit some real equili-

brium points and are nondegenerate (nondegenerate means that at least one of the two

matrices A and B is rank three, and that any nontrivial linear combination of them is rank at

least two - this is a generic condition). Then there is a set of coordinates (x,y), related to (V,

+) by a linear transformation, for which the complementary dynamic equations are in one of

the two forms:
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[4y 2 H+ - 2] (5.4.10)

-2xy2 (5.4.11)

Proof. Start with A and B represented as in 5.4.2, assume that A is rank three (if A is rank
two, interchange A and B). Consider the matrix S defined by

S = bODA-AMB = 0 l 12 (5.4.12)

The matrix S is symmetric and, because the equations are nonsingular, rank 2. We have
assumed that some real equilibria do exist, so the nonzero eigenvalues of S have opposite
signs. Therefore, for any real c, there is a 3x3 matrix F,

=, 0~ 1 fcll f2 (5.4.13)lo fC12 fc22]
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such that

FTSF = 0 j. (5.4.14)
0c 0

Call the matrix on the righthand side of 5.4.L4 .B. Because of the assumed nondegen-

eracy of the equations, Fc can be chosen so that

a'00  0 0
a' 1

A'= FTAF, = 0 a'20 (5.4.14')

0 - a 2

has the property that none of the diagonal entries are 0.

From the matrix A' defined in 5.4.14' subtract B, to obtain

[a '00 0 01
A, 0 t a'20  0j (5.4.15)

10 0 a'02]

Now by scaling x and y independently, and by proper choice of c, A1 and B1 can be

transformed simultaneously to

1= e0 0 = 0 -

0 0 f. 0 -1 0]

where e and f are either 1 or -1. Because we have assumed real equilibria, e=-I or f=-1. The

expression is symmetric in x and y, so only two distinct cases arise. These are realized by

choosing e=-l, and taking f=l or f=-l.
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In the first case, where f=l, the dynamic equations are reduced to the form of 5.4.10.

This is the case where there are two real equilibrium points: those corresponding to (1,0) and

(-1,0) in the (xy) coordinates. In the second case, where f=-1, the dynamic equations are

reduced to the form of 5.4.11. This is the case where there are four real equilibria: those

corresponding to (I,0),(0,1),(-1,0), and (0,-I) in the (x,y) coordinates. The proof is complete.

In the original (VW) coordinates the complementary dynamic equations were
parametrized by 8 independent variables aj , bij. By the transformations shown above, the

number of independent parameters in the equations can be reduced to the 4 entries of a con-

stant matrix H. The H matrix, and the matrix transformation from the (V,+Y) coordinates to the

(x,y) coordinates, are all that is required for a complete analysis of the complementary

dynamic equations. Expressions for these matrices can be computed from the construction

given in the proof of Theorem 5.4-1.

In the next section we construct Liapunov functions for the two canonical forms of

Theorem 5.4-1.
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5.5 The Liapunov Functions

In the last section we showed how the complementary dynamic equations could be
transformed to new coordinates in which fewer parameters are required to specify the system.
One advantage of these new coordinates is that they make it easy to write down Liapunov

functions for the stable equilibria (when stable equilibria exist). In this section we show how

these Liapunov functions are constructed and explain what they can tell us about flying quali-

ties. In one of the cases discussed below, a Liapunov function is used to show global stability

of the model in the V,+ phase plane. Some of the quantities associated with the construction

could be used to measure flying quality.

We have seen that the complementary dynamic equations in the coordinates (x,y) look

like ] h12  + ey2 -_y (5.5.1)

=[i 1hn] -2xy

where the components hj,h 12,h21,h22 of the matrix H are, for each set of values cx,P,E),D, a

set of constants determined by the nonlinear aircraft model. In the case where there are four

real equilibria in the V,+ plane the parameter e takes the value -1, while in the case of two
real equilibria e takes the value +1. This representation only applies when there do exist real

equilibria. We do not consider the case where there are no real equilibria.

The first step in constructing the Liapunov functions is to take the inner-product of the

above equation with the vector (I + ey 2 - x2 , -2xy) to find

[hi1 h12 ][+ ey2  x2

(I + ey2 - x2)i - 2xyy = [(I + ey2 - X2) , -2xy] [h2l h22  -2xy . (5.5.2)

The resulting expression on the righthand side of the equation will have a definite sign (except

at equilibria) whenever the symmetric matrix S = -(H + HT) is positive or negative definite.
2

Let us suppose for the moment that S is positive definite. The lefthand side of equation 5.5.2
is in each case an expression easy to represent by the derivative of a simple function. The

level sets of such a function are transverse to the flow and can be used to characterize the sta-

bility of the equilibria.
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Of course, there are matrices H for which the quadratic form above is indefinite. When S
is indefinite, it may be difficult to determine much of value from the functions constructed

below. Still, our experience in working with the F-14 model suggests that, for a wide variety

of flight conditions, the H matrix is definite, so that the analysis below is relevant.

CASE 1: e=+1

In this case there are two real equilibria: one at (1,0) and the other at (-1,0). For this

configuration there are three possibilities for the stability of the equilibria:

case 1 - (1,0) stable and (-1,0) unstable

case 2 - (1,0) unstable and (-1,0) stable

case 3 - (1,0) and (-1,0) saddles.

Our construction will provide a Liapunov function in the first two cases where one of the

equilibria is stable.

Define the complex number z = x + iy, and think of the transformed V,+ plane as the

complex z plane. The function

F(z) = 1 I (5.5.3)1(1 + z)

is the one we want to analyze. Except for the values 0,1,* the level sets of this function are

circles in the plane whoie centers lie on the real axis. The value - is realized only at the
point z = -1 and 0 is realized only at z = +1. The I-level set is the imaginary axis x = 0.

From the geometry of the level sets of the function F, it is clear that the point z = +1 is a

global attractor for the entire z-plane whenever it can be shown that the function F restricted
to the solution curves of the system is decreasing. Then F is a Liapunov function for the flow.

There is an easy condition on S to check that will tell us if F is decreasing:

Lemma 5.5-1: If the matrix S is positive definite, then the function F is a Liapunov function

for the system 5.5.1.

Proof: In terms of x and y,
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(1 - x)2 + y
F(x + iy) - (1 + x)2 + y2  (5.5.4)

and so
d ((1-4
d F(x + iy) - ((1+ x)2 + y2)2  

- x2)x - 2xy,). (5.5.5)

At every point other than z = -1 the sign of this expression is opposite to that of the quantities

in equation 5.5.2. But if S is positive definite, the sign of the quantities in 5.5.2 is positive

(except at z = +1 where the expressions vanish). It follows that at every point other than an

equilibrium value, the trajectories of the solutions to the differential equations are such that F

is decreasing along them. Then (1,0) is a globally stable equilibrium, while (-1,0) is a source.

The proof is complete.

Observe that the open half-plane x>O coincides with the set of values (x,y) for which
IFI<l. In the case where H is positive definite, we can compute a bound on the rate at which

the trajectories starting in this half-plane converge to the equilibrium.

Lemma 5.5-2: Suppose S is positive-definite, and that F0, the value of F at a state (xo,y 0 ) at

time t=0, is smaller than 1. Let X,,.(S) denote the smaller eigenvalue of S. Then for

(x(t),y(t)) along the solution trajectory:

F(t) < Foe "-4 X . (s )t  (5.5.6)

Proof: By the hypothesis on S

d 4min(S)(l + x2 + Y2 )2
- F <y225..)"

dt ((1 + x) 2 + y2)2  (5.5.7)

because, for all (x,y),
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F= X) + y(5.5.8)
(1 + X)2 +

< + +X2+y2)2

((+ x) 2 + y) 2

It follows that F is approaching 0, its value at the equilibrium point (1,0), at least as fast as

the solution to the bounding equation
-F = _4kX (S)F (5.5.9)

dt

But the solution for this equation in F satisfying the initial condition F(0) = F0 is exactly the

righthand side of 5.5.6. The proof is complete.

In the case where S is negative definite, the same function F is used to show that (-1,0)

is globally stable, while (1,0) is the source. In either case, the eigenvalue X,,,in of S having the

smaller magnitude gives some quantitative estimate of how stable the stable equilibrium is. If

I , Ia is close to zero, for example, the system will be slower to converge than if it is large.

Also, it is more likely when I Xi I is small that a small perturbation to one or more of the

aircraft model parameters could produce instability in a nominally-stable case. In general,

when that smallest magnitude eigenvalue of S is close to 0, the pilot will have to wait for a

while before the aircraft settles into a steady-state condition when he commands a constant

turn at a fixed - attitude. This parameter should also affect the quality of the ride during

more dynamic maneuvers.

When the unique physical (V > 0) equilibrium is stable, the analysis of this case has a

simple interpretation. To reach a desired trim condition, the pilot need only get the angles

cz ,e,0 to the correct values and wait. If his speed is too slow, his speed will increase to the

proper value. If too fast, it will slow down. Likewise, the heading rate '+ will find its equili-

brium value and stay there. The stability of the unique equilibrium insures that, if the angles

are right, the vehicle will naturally take care of the rest.

CASE 2: e=-1

In this case there are four real equilibria: (l,0),(O,l),(-1,O),(0,-l). By a general result of

Kukles and Casanova (see [KCJ or theorem 7 of (Cop]) two of these are saddles, one is a
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sink, and the last one is a source. The sink and source must be opposite each other (i.e. nega-

tives of each other) so there are four distinct possibilities: any one of these four points could

be the unique attractor. We consider only the case where (1,0) is the attractor, so that (-1,0) is

the source and the points (0,1) and (0,-i) are saddles. The other three cases can be converted

into this one by a suitable linear transformation, so there is no need to analyze the other cases

separately.

The function we consider for tnis situation is the polynomial

F(xy) = x(1 - - I x2). (5.5.10)
3

Lemma 5.5-2: If the matrix S is positive definite, then the function F is a Liapunov function

for the system 5.5.1.

Proof: It is easy to see that

dF(x,y) = (I- x 2 - y2)i - 2xyj'. (5.5.11)
dt

Comparing the righthand side of this expression with the quantities in equation 5.5.2, we find

that it is positive (except at the equilibria) whenever S is positive definite. So F is an increas-

ing function along the solution curves for 5.5.1. The proof is complete.

To see what this means, consider the 0-level set for the function F. The 0-level set is the

union of the y-axis (x=0) and the ellipse C defined by I - y2 - _.Lx2 = 0. The two saddles
3

(0,1) and (0,-I) lie in this set (they are in fact the points of intersection of the line and the

ellipse), while the two other equilibria are contained in the region bounded by the ellipse.

The point (1,0) is a local maximum for the function F, and the point (-1,0) is a local

minimum.

If the matrix S is positive definite, then the function F increases along the solution curves

of the differential equation. Therefore, any point inside the region bounded by the y-axis and

the right half of the ellipse C will be moved along a trajectory that stays inside that region

and approaches the point (1,0). The region bounded by the y-axis and the right half of C is a

domain of attraction for the point (1,0). The mirror image region in the left half-plane is a
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region of repulsion for unstable point (-1,0).

The saddles at (0,1) and (0,-) make the global properties of the flow unstable. If the air-

craft state gets into the unstable flow region of one of these saddles, however, the pilot will

have to change his aircraft's cr,e,CD values or fall into an unstable spin or speed condition.

The a0.,0 values that give rise to these saddles represent potentially hazardous conditions,

while the region bounded by the 0-level set in the right half-plane defines the region where it

is safe to fly.

There are two physical equilibria in this case, at most one of them is stable. Even if there is

a stable one, the simple strategy of setting the angles a,,A to the proper values and wait-

ing will not always work. If the pilot has just completed a maneuver that has left his V and

states in a bad spot (too near the unstable equilibrium) and then attempts to keep the angles

fixed at the correct values for the stable equilibrium, he could find himself in a divergent

speed condition or an unstable spin. If his initial V and + are in a good spot (near enough to

the stable equilibrium), on the other hand, he will be fine. Trying to end maneuvers at equili-

bria like these could be a hazardous undertaking.

K-
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SECTION 6: NONLINEAR FLYING QUALITIES

In previous sections we discussed nonlinear models of aircraft, the trim set, and the tech-
nique of dynamic inversion. These three topics are basic to our understanding of nonlinear

flying qualities, which we discuss in this section.

We begin with a discussion of two idealized types of parameters: commanded-dynamic

parameters and complementary-dynamic parameters. Both sets of functions are computed
directly from the nonlinear aircraft models and they quantify important physical properties of
the vehicle's behavior during flight. The commanded-dynamic parameters measure the maneu-
verability and controllability of the aircraft in the three angle-rate degrees of freedom (P,Q,R).
The commanded-dynamic parameters are discussed in subsection 6.1 below.

Subsection 6.2 covers the complementary-dynamic parameters. Complementary-dynamic
parameters can be used to construct Liapunov functions for stability analysis of dynamic
inversion controllers. The best results we have so far are for the o.,e.,,0 inversion, for which
we have derived explicit time and space bounds for the nonlinear dynamic trajectory of the
vehicle moving towards a trim condition.

Besides these two types of idealized parameters, we have found several criteria for super-
maneuverable vehicles flying along trajectories where aerodynamic forces and inertial terms
simultaneously play an important role. We have two main results here

1) a simple aerodynamic criterion for smoothness of the aerodynamic loading during rapid a:

variation

2) control design criteria for coordinated flight during highly-dynamic, simultaneous roll-
pitch-yaw maneuvers.

These two results are discussed in subsections 6.3 and 6.4

The last two topics of this section are two ideas that were under development at the end

of our program. The first is a flying-quality metric for nonlinear aircraft models that could be
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evaluated using the coordinated-flight U,P,Q,R dynamic-inversion controller discussed in sec-

tion 6.4. The second concerns the stability and controllability of the aircraft during maneuvers

involving extreme angular rates. The parameters defined in this section quantify the effect of

the dynamic derivatives on the rotational energy and angular momentum of the vehicle.

Many of the ideas below were inspired by analysis of maneuvers like those described in

section 7, which follows this one. The maneuvers we have looked at were generated by the

batch version of our flight simulation program using various dynamic inversion strategies.

6.1 Commanded Dynamic Parameters

Commanded dynamic parameters quantify the pilot's direct command authority over the

state of the aircraft by use of controls. Examples of parameters from the MIL-F-8785C

specifications of this sort are (by section number):

3.2.2.1 Short-period response

3.2.2.2 Control feel and stability in maneuvering flight at constant speed

3.2.3.3.1 Longitudinal control in catapult takeoff

3.2.3.4 Longitudinal control in landing

3.3.2.6 Turn coordination
3.3.4.(all) Roll control effectiveness

3.3.5 Directional control characteristics

3.3.7 Lateral-directional control in crosswinds

3.3.8 Lateral-directional control in dives

3.3.9 Lateral-directional control with asymmetric thrust
3.4.2.1.3 Stall prevention and recovery

All these criteria concern command response -- the response of the vehicle in degrees of free-

dom that the pilot is intentionally changing through direct control. In contrast, there are cri-

teria concerning the response of the aircraft in degrees of freedom that the pilot is not trying

to change during the course of a maneuver (e.g. 3.2.1.1.2 Pitch control force variations during

rapid speed changes).
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In an effort to identify useful new flying quality parameters, we defined some functions

of the aircraft state and the nonlinear aircraft model that quantify fundamental limitations on

dynamic-maneuver command responses. These functions quantify the command authority

available to the pilot to control vehicle dynamics during maneuvers. Below are some exam-

ples of these functions applied to the (P,Q,R) command-response. Dimensionless coordinates

are used throughout this section (see section 5.3 for the conventions).

Pitch-rate Control

The primary pitch-rate effector in a basic aircraft is the elevator. In dimensionless coordinates

(assuming symmetric aircraft, no dynamic derivatives, and a simplified elevator model):

l -(R2 - p2)Iz + RP(I,. - Ix) + V2 Cm + V2Cmsin(8e - t) (6.1.1)

The derivative of Q has an inertial term, an aerodynamic term, and a control term depending

on the elevator. A parameter which measures the basic Q command effectiveness is

V2Cm= " 
(6.1.2)

This parameter must be sufficiently large at low speed to assure adequate control of the pitch

axis for take-off, landing, and near-stall maneuvers.

Another potentially useful function is the dynamic pitch-control ratio, defined as:

(R2 - p2)iXz + RP(Izz - I") + V2Cm
V2C, I (6.1.3)

I I

This function measures the ratio of the uncommanded portion of Q to the magnitude of the

elevator authority. In a region of the state space where this ratio is too large, the pilot will

have trouble maintaining attitude control. For example, if the ratio is bigger than I, the pilot

cannot even control the sign of Q. Some degradation of pitch control during high-a or rolling
maneuvers is expected, v. quantifies the extent of degradation.

If R and P are 0, v(e reduces to the ratio of Cm to C,,,. In this case, the parameter is a
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function of a alone (assuming coordinated flight) -- it could be used to determine if the vehi-
cle has adequate elevator authority for a desired pullup maneuver.

Roll-rate and Yaw-rate Control

For a symmetric aircraft, the P and R degrees of freedom are most naturally analyzed
together. The basic nonlinear equations look like:

1 -L)
" 11a [ R _Q : 1X 0 -1L V2[ C' 4. 2Vo1

Q~ C14 0~in8 Pbn 0
LC _ IX. -Cr. C.. V2sin(S,-1) 1"

In coordinated flight (13 = 0), symmetry causes the aerodynamic functions C, and Cn to
vanish, resulting in a simplification of the righthand side. When the angular velocity v'ector
(P,Q,R) is small, roll/yaw command authority is approximated by the matrix:

IXZ , C4, C4T (6.1.5)

The size of the minimum singular value amin(rl0,) is a bound on the angular-rate authority

available in some direction in this two-degree-of-freedom subspace. The singular vectors
(input and output) associated with this singular value should be considered as well. The func-
tion ( depends on the speed, at and 13, and the vehicle model. The larger it is, the

better the pilot can control P and R independently. It can be thought of as a lateral-
directional version of the parameter r0(, defined earlier.

For more dynamic but still coordinated maneuvers, the ratio Vpk. is defined to be the

vector:
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0 1

[-I 0 IZZj

The two entries in this vector represent the size of the aileron and rudder settings required to
match the inertial I and n components of the torque. At states where these values are large,
the pilot must use large rudder and aileron commands to maintain or reduce the sizes of P and
R. Where these values are too large, the spin condition might be beyond the pilot's control.

The parameters ijoilr and vo r can be defined for uncoordinated flight as well. All that

is required is to include the aerodynamic terms in vo, .
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6.2 Complementary Dynamic Parameters

We define complementary dynamics to be those dynamics of the vehicle associated with

states which the pilot is not controlling directly. Depending on the pilot's task, the states

associated with the complementary dynamics may vary. We consider the following MIL-F-

8785C specifications (listed by their MIL-F-8785C section numbers) to be associated with

complementary dynamic phenomena:

3.2.1.(all) Longitudinal static stability

3.2.2.1.3 Residual oscillations

3.2.2.2 Control feel and stability in maneuvering flight at constant speed
3.3.1.(all) Lateral-directional mode characteristics

3.3.2.1 Lateral-directional response to atmospheric disturbances

3.3.5.1 Directional control with speed change

3.3.9.3 Transient effects

3.4.2.1.2 Stall characteristics

3.4.2.2 Post-stall gyrations and spins

3.4.2.2.1 Departure from controlled flight

3.4.3 Cross-axis coupling in roll maneuvers

3.4.4 Control harmony

3.4.5 Buffet

3.4.11 Direct force controls

3.5.5.1 Failure transients

3.6.3 Transients and trim changes

All these specifications concern the response of the aircraft to effects other than those directly

commanded by the pilot. Included are transient response (in degrees of freedom other than

those commanded), disturbance and failure response, dynamic cross-coupling, and stability

and damping of dynamical modes.

We have identified some parameters based on the nonlinear models that describe one

type of complementary dynamic behavior, we call them complementary dynamic parameters.
Our approach makes use of the nonlinear inversion method discussed in section 5.
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In the basic example where the pilot has four control inputs to work with, he will be able
to command independently only four degrees of freedom, leaving two degrees of freedom
constrained by their relation to the others. The motion of the aircraft in those two remaining

degrees of freedom is determined by the equations of motion and the pilot's command inputs,
but the control the pilot has in those two dimensions is indirect - a side-effect of the direct
control exerted in the other four dimensions. The dynamic behavior of the aircraft in the four
dimensions where the pilot has control is (within the limits of control effectiveness and

neglecting disturbances) determined by the control inputs, so the pilot can directly influence
dynamics there. Once the pilot's choice is made, the dynamics in the other two dimensions
are completely determined by the aerodynamic and physical properties of the aircraft. These
residual or indirectly controlled dynamics will vary from one aircraft to another in a way that
can be computed from the nonlinear models. From these dynamics, flying quality parameters

can be computed.

To compute these parameters, we make assumptions about the strategy chosen by the
pilot to control the aircraft. For illustratwion, suppose the pilot uses his four controls to keep
the direction of his velocity vector (a and 3) and the direction of the gravity vector (0 and 4)
fixed. This strategy might be used by the pilot to execute a steady turn. As was shown in
section 5.3, the complementary dynamics for V and + are given by the equations:

= a00 + a20V 2 + aIIV+ + a 2+ 2  (6.2.1)

' = boo + b20V2 + b1 1V' + b02+ 2

The stability of these complementary dynamic equations should be highly correlated with
the ride quality during the steady turn. If the system is very stable, the ride should feel very
steady (good flying qualities for tracking purposes, for example), but if it is only marginally

stable the ride quality may feel unsteady or even oscillatory. In the worst case, if the system
is unstable, the aircraft might experience a divergent speed condition (compare with MIL-F-

8785C section 3.2.1.1) or an unstable spin condition (compare with MIL-F-8785C sections
3.4.1 and 3.4.2). Analysis of the stability of this system was performed in subsection 5.5 of
the previous section. We derived Liapunov functions to describe the transient dynamics for
V and +, and we computed a bound on the settling time from a non-equilibrium condition.
In one of the two cases analyzed in that subsection (corresponding, perhaps, to a very extreme

turn or a turn at high o), we found that the stability of the turn might depend on the values of
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V and + as the turn is started. The functions and parameters of that section, and other param-
eters computed in a similar fashion, seem very important in assessing how well aircraft enter

and execute turns.

By fixing other combinations of states (or some four-dimensional subspace of the state
space), other sets of analytic equations can be obtained. From these equations, other comple-

mentary dynamic parameters can be computed.

8I
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6.3 : Lift to Drag Ratios of Aircraft with Smooth Lift Curves

Many books on aerodynamics give estimates for the lift and drag of a wing (or aircraft with
zero control deflection). These estimates are typically of the form

CL = fl(ARP.a) (6.3.1)

(CU2

CD - CD9 = (A) (6.3.2)
f2(AR)

where AR is the aspect ratio of the wing (or aircraft).

Taking the ratio of the equations 6.3.1 and 6.3.2 gives

CD - CD, - fl(ARa) (6.3.3)

CL f2(AR)

If the lift were linear in a , then we would get

CL = fl(AR,a) = CL.(a--) (6.3.4)

and equation 6.3.3 would be linear in ax

fl(AR,at) CL.(a'-ao)(635

f2(AR) f2(AR)

For lift curves that are not linear in a, we would still expect equation 6.3.3 to be fairly linear

in o for small o.

For several aircraft with smooth lift curves (no stall discontinuities) such as the F-4, F-14 and
F-15, we have examined the low speed lift and drag curves measured during wind tunnel tests

and found that the expression on the left-hand side of equation 6.3.3 was very nearly deter-

mined by the following simple and interesting form
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CD-C~s = tan(a - a0 ) (0 !5a :- radians)(.36

CL 2

This formpla appears in "USAF Datcomn Methods Handbook for Double Delta Wings"
The point of giving it hear is to show how well it fits the FA4 F-14, and F-15 data for angles
of attack ranging from 0 to beyond 90 degrees.

In (6.3.6), %0 is defined to be the angle of attack at which the drag is minimum. Note that

tan(az- ct) is nearly linear in cz- , over afairly large range of a - CEO
For the F-4 and F-15, AR is approximately 2.9 , while on the F-14 (which had wing sweep

set at 220 ) AR was approximately 7.3; yet equation 6.3.6 still holds. This indicates that
even though the numerator and denominator in equation 6.3.3 may each depend on AR , their
ratio does not depend on AR for these aircraft.

An interesting interpretation of equation 6.3.6 can be made when a change of coordinates is
made from wind axes to body axes.

Let &=ax-a ; then

cos(&) -sin(&) lc 637

r[zI - [ sin("t) Cos(&) ]CL (637

so

CX= -CoS(MCD + sin(&)CL =-COS(Mz(CD - C~) + sin(MzCL - COS(&x)CN (6.3.8)

Plugging 6.3.6 into 6.3.8 gives

=X -C% Cos(&) (6.3.9)

If equation 6.3.6 were exact then

I CX 1 CN (0 ; (x!5 -1. radians) (6.3.10)2
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For the F-4, F-14, and F-15 data shown in figures 6.1, 6.2, and 6.3 at the end of this subsec-

tion, CD. is around .02 and

ICx I< 3 CID (0 < a 5 .- raians) (6.3.11)
2

Since CD. Is so small, the error in the CD and CL data from which Cx was calculated

may account for much of the discrepancy between (6.3.10) and (6.3.11).

Equation 6.3.11 shows us that at low speed there is much less aerodynamic force in the x
direction than in the z direction ( V2 C. is small at any angle of attack ). Consequently, the

only significant force the pilot feels in the x direction is due to the throttle. This is true no

matter how rapidly at is varying. Therefore, it would seem that aircraft with small magnitude

CA have better flying qualities during rapid a maneuvers than those with C of large variation.
Note also from the plots that C decreases (it is negative) almost monotonically with a, for

0 <, a < - radians. This may be of some use in using n,. at the percussion point to "meas-
2

ure" a (using a lookup table for Cz ).

The F-15 data (at 0 sideslip) came from the tests conducted on a 13-percent scale model of

the F-15 S/MTD configuration in the NASA-Langley 30x60 ft low-speed wind tunnel, Test
No. 489 , run 216, no canard , configuration 85.000 , between 10 July and 27 July 1985.

The F-4 data (at 0 sideslip) and the F-14 data (at 220 wing sweep, sideslip = 00 and 200)
were taken from [MMTJ].

This report cited reference [Ang] for wind tunnel data for the F-4 and several references con-
taining selected data for the F-14 from wind tunnel tests conducted during 15 March - 16

April, 1971, in the NASA Ames Research Center 12 ft pressure tunnel and during August,

1971, in the NASA Langley Research Center 30x60 ft (full scale) tunnel.
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6.4 Highly Dynamic Phenomena

For a conventionally configured aircraft at medium to high speed, the largest forces that

can act are aerodynamic. Even the most powerful aircraft have thrust-to-weight ratios only

slightly greater than 1, while maneuvers reaching levels close to 10 g for short periods of time

are not uncommon. For coordinated flight, these high-g maneuvers are achieved by entering
high-angle-of-attack regions where the aerodynamic lift and drag forces are strongest. One

example of this type of maneuver is the diving-turn maneuver shown later in section 7.3.

The largest force during this diving-turn maneuver is the 8-g normal acceleration encoun-
tered during the start of the dive. In less than 3 seconds, alpha rises from close to zero to
nearly 1.1 radians. The vehicle decelerates rapidly, despite the fact that it is diving at full

throttle, because the drag term is so large. The elevator is saturated at 1 radian deflection (our

assumed saturation value) to maximize the pitch-rate during this period - the high pitch-rate
begins while the roll-rate is still large from the initial banking phase. The large pitch-rate

increases alpha rapidly while the airspeed is still near 500 ft/second, large lift and larger drag

forces are the result.

An important feature of this high-g diving maneuver is the dominance of the quadratic

inertial terms in the nonlinear state equations. That is, tht angular rates P, Q, and R become
so large in magnitude that the state derivatives are heavily influenced by the product terms

PQ, QR, PW, etc. A primary effect of these large angular rates can be seen in the basic

lateral velocity equation:

V = -RU + PW + cos(0)sin(o) + V2C,(c00) + direct rudder acceleration (6.4.1)

This simple model (no dynamic derivatives, only rudder direct forces) illustrates the point. If a

maneuver involves turn-coordination at high roll rate, the magnitudes of the terms -RU and

PW become comparable with the gravity term, and much greater than the direct rudder force.

In our sample maneuver, the roll rate P reaches a value greater than two radians/second and

the pitch rate exceeds 1 radian/second in the early part of the maneuver. The maneuver begins
at at a speed of roughly 500 ft/second (size 2 in the dimensionless units of equation 6.4.1) and

at an altitude of about 5000 ft (near sea level, but at least 2700 ft). The inertial acceleration

NY experienced by the pilot is the negative of the sum [V2Cy(a,3) + direct rudder force], and
this is a small term because the turn is coordinated. The gravity term never gets any larger
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than 1, while each of the terms -RU and PW get bigger than 1.

To keep 03 small, the yaw-rate R must vary in such a way as to keep V small. The con-

troller used to generate the diving turn allowed arbitrary commanded P, and chose R to

satisfy:

R = [PW + cos(0)sin(O) + V2Cy(ao) + direct rudder acceleration]/U (6.4.2)

The control strategy based on the dynamic inversion for UP,Q,R with R chosen to ke

small is called coordinated-flight U,P,Q,R inversion. This controller was used to execute the

diving-turn maneuver of section 7.3, it seems a very promising approach for supermaneuver-

able vehicle control. If the lateral-directional control authority is adequate to generate the

necessary P and R values independently, it should work for very extreme combined roll-

pitch-yaw maneuvers.

For this control approach to work in practice, the allowed bandwidth of the roll-rate com-

mands must be limited to a region where the rudder is able to generate enough R to track the

right-hand side of equation 6.4.2. As a part of this restriction, consideration must be giv.,. to

a because P is multiplied by - = tan(a). The factor tan(a) implies that at large angles of
U

(Op(a)
attack the ratio - of the bandwidths must be smaller than at low a for coordinated rolls.toR(a)

Equation 6.4.2 can be used to quantify that requirement: for acceptable high-alpha roll-rate

response, the bandwidths oR(a) and op(a) should be related by an inequality of the type:

WR(a) > Kcop(a)tan(a) (6.4.3)

for some constant K which is (presumably) larger than 1. This inequality can be viewed as a

design requirement for acceptable flying qualities at high a (better flying qualities being asso-

ciated with larger values of K), or it can be taken as a rule for determining the maximum

allowable bandwidth of P as a function of a and the bandwidth of R. Alternatively, it can be
viewed as a requirement on rudder size needed to provide coordinated flight at high a. The

parameter vk., defined in section 6.1 must also be considered to determine the achievable

performance for this control approach.
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Along the same lines, it is possible to derive criteria for dynamic control of a in terms of

Q controL During coordinated flight, P and R do not contribute directly to d, but Q does.

Assuming V - 0:

.= Q + [Ucos(e)cos() + Wsin(e) - UN z + WN']/V2  (6.4.4)

Consider a maneuver that requires keeping a large for an extended period of time. From

6.1. 1, it is clear that if P and R are kept small, the sign of Q is determined by the sign of C.

at values of a where I C. I > I C,.I . If C, is negative with a large magnitude in the desired

a range, then Q will be decreasing rapidly so long as a is kept large. Once Q becomes

sufficiently small, the sign of & in equation 6.4.4 becomes negative and the desired large a

condition is lost. From this analysis, we can see one of the advantages of a thrust-vectoring

capability. When the factor C. dominates Cm. for values of a in a desired range, thrust vec-

toring can maintain Q so long as V2 is small enough. In such a situation, it is possible to

maintain a large a condition for extended periods of time without generating P and R (i.e.,

turning) to keep Q in a compatible range.
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6.5 Dynamic Flying Quality Metrics

One approach to evaluating flying qualities, given a nonlinear aircraft model, is to use a

metric on the space of maneuvers. This idea has been proposed by others, we have chosen not

to develop such an approach during this contract. A metric approach could be carried out

based on ideas developed during this contract; one way to do this is described briefly below.

Begin by choosing a (small) number of equilibrium conditions for the aircraft model.

Dynamic maneuvers begin at various equilibrium conditions; the equilibrium points chosen

should be representative of flight conditions where dynamic maneuvers usually start. We

could describe the set of points chosen by their equilibrium values of ct,,, and 0 (these

coordinates are the easiest to use with our equilibrium computing program). For each point

we then compute the fixed values of V,+, and the actuator inputs. To reduce the number of

cases considered, we could start with coordinated conditions where 13 = 0.

Next, for each flight condition, pick a set of dynamic command profiles for U, P, and Q

as a function of time. Many different sets of profiles can be specified here - the idea is to

define a representative sampling of dynamic responses for as many different maneuvers as

possible. The aircraft model will be evaluated with respect to this set of candidate maneuvers,

so it would be a good idea to include profiles that are characteristic of maneuvers actually

used during flight.

Each U,P,Q profile chosen will then be used as input to the U,P,Q,R dynamic inverter.

The R command needed by the controller will be generated internally to provide coordinated

flight while the simulation tries to fly the trajectory defined by the specified U,P,Q functions.

For each maneuver, the model will be evaluated according to a collection of norms chosen to

reflect the quality of the response.

For example, for each command profile, we would find the average error in the com-

manded U, P, and Q responses along the trajectory; as well as the maximum error for each of

these variables. Also important is the determination of the extent of control saturation (both

position and rate limits) during the flight. These measures of U, P, and Q errors for each

maneuver would form a criterion for evaluation of the attitude-rate response, a quantity
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important in dynamic tracking or pursuit tasks. By taking the average value of these errors

over a representative sample of maneuvers, the evaluator finds an overall sense of the quality

of response.

The physical factors about the vehicle reflected by the attitude-rate response errors are

things like the mass and moment properties, span and chord, aerodynamic moment coefficients
Ci,CmC n, and the actuator position and rate limitations. The aerodynamic force terms

C4,C,CZ will probably not be very important for this criterion. It might work out better to fix
the throttle setting at a predetermined value for the entire maneuver so that power cycling

uncharacteristic of actual maneuvers will not occur. In that case, only the profiles for P and Q
need to be specified for each run. It is probably a good idea to classify the responses accord-
ing to whether or not some saturation occurred during the simulation, and to quantify the ten-
dency to saturate in an average sense. Some evaluation should also be made of the severity of

the effects of saturation (i.e. whether instability results).

Another factor to consider is the attitude response during the maneuver, as well as the

final equilibrium position and time to settle at the end of the maneuver. For simplicity, we
might suppose that the commanded values of P and Q go to 0 at the end. Some (presumably)
short time thereafter the vehicle should show some tendency to settle at a new equilibrium,
which can be considered the starting point of a subsequent maneuver not yet determined. The
length of the path through the attitude space, and the location of and time to settle at the final

equilibrium point are all quantities that can be measured and averaged over the maneuver
space. The time to settle at the end of a maneuver is a quantity similar in nature to our

complementary-dynamic parameters that we developed during this program.

Finally, we would look at the inertial accelerations during the maneuver to assess the
environmental stress experienced by the pilot during the maneuver. The values of Nx, Ny, Nz

would be computed along each trajectory and compared with acceptable ranges. In the basic

nonlinear model, the formulas for these inertial accelerations felt by the pilot are:

Nx -(V 2C,(a,3) + throttle acceleration) (6.5.1)

N = -(V 2Cy(oxO) + rudder acceleration)

NZ = -(V 2 C.(caO) + elevator acceleration)
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It would also be worthwhile to compute the acceleration time derivatives, or jerk components,
during each maneuver. The jerk components quantify the smoothness of the ride in a way that
allows comparison among various models. The jerk components can be computed using impli-
cit differentiation along the trajectory: for example, the x-component of the jerk J is:

-=V C,(ap) + V2 + aC, - . d(throtte acceleration))
dtC 1+dt ) (6.5.2)

dt = (VV 2 cz3 dt

with similar expressions for J. and J,- Some overall average of the expression J2 + j 2 + j2

for the different command profiles might provide a criterion for smoothness of ride during

dynamic maneuvers. Note that the jerk components depend explicitly on the partial derivatives
of the aerodynamic force functions - these derivatives could be estimated numerically from
interpolated table data.

92

.,.,



6.6 Stability and Controllability of Rotational Energy, Angular Momentum, Angular Rate

One idea that arose near the end of the program was to identify quantities based on non-

linear aircraft models that characterize the stability and controllability of the rotational energy,

angular momentum, and rotation rate of the vehicle during flight. In this section we show how

such quantities can be derived and show some examples. As a corollary of this analysis we

derive formulas, defined in terms of aerodynamic functions and the moment tensor, which

quantify the stability of the rotational dynamics for bounded speed.

Using the nonlinear equations that include dynamic derivatives, we have:

T= l[taj[e + V2C'yz+ VCxyzPQR Q + gxyzh(x,u)] (6.6.1)

= I{imo 1 + V2Cmnn + VCnPQR 1 + gtmh(xu) (6.6.2)

These analytic expressions for the derivatives of V, P, Q, and R involve coefficients that

depend in a complicated way on the states a,3,0,0; but their dependence on V, P, Q, and R is

only quadratic. There are V2 terms in the control input (g ... h(x,u)) expressions associated

with the surface effectors, if we identified this dependence explicitly in the equations the form

would remain quadratic. From physical considerations the V2 terms in equation 6.6.1 represent

drag effects that dominate V whenever V is large (relative to P, Q, and R). These equations

are similar to the ones we encountered in the analysis of the complementary dynamic parame-

ters, only in this case there are no assumptions made about any of the states being kept fixed.

We expect they can be analyzed thoroughly to obtain a global stability result, but for now we

do not attempt a complete analysis.

Let us suppose that the speed V is bounded, and consider equation 6.6.2. First, observe

that the dot product of the vector [2P,2Q,2R] with both sides of equation 6.6.2 provides an

expression for the time derivative of p2 + Q2+ R2, the square of the rate of the angular
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speed. The right-hand side is then a cubic function of the variables P, Q, and R with

coefficients depending on the speed V. the states c,, and the control inputs. We have not

worked much with this expression because the other functions below seemed more tractable.

Still, it might be worth looking at to determine the effectiveness of the control inputs to con-

trol the angular speed directly.

Simpler to analyze and (perhaps) more useful is control of the rotational energy about the

center of mass. The time derivative of the rotational energy is obtained by taking the dot pro-

duct of both sides of equation 6.6.2 with the vector [P,Q,R] after first multiplying by the iner-

tia matrix I. The resulting expression on the righthand side is now simply a quadratic

expression because [P,Q,R] 1 = 0. The equation becomes:

d dl
t (Rotational Energy]= l-[PQR]Inw (6.6.3)

dtdt2R

= [P,Q,RI[VCW.PQR + V2CW. + gih(xu)].

The expression we want to consider is the quadratic term [P,Q,R] CIIqR that appears

on the righthand side. For bounded V, this quadratic term will dominate the rotational energy

derivative when the angular rate vector (P,Q,R] is large. If the 3x3 matrix
1 

CT

SI'xPQR = -'(COWFR + CbIPQR) is negative definite for all values a and 03, the rotational

rate must stay bounded. Physically, this matrix represents an angular drag term - its dominant

effect on the rotational energy at high angular rate conditions suggests it may be highly corre-

lated with flying qualities for extremely dynamic maneuvers. The sizes of the eigenvalues and

the directions of the corresponding eigenvectors in the P,Q,R space are reasonable candidate

flying quality parameters.

The total angular momentum squared is another function of the angular velocity vector

that can be analyzed to quantify angular stability and control authority during flight. Proceed- :

ing as before, we compute
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d7 d (6.6.4)-[Angular Momentum] - [ R6.6.

= [P,Q,R][VI C=Q + V21lCj, + I.Skh(x,u).

In this case, the cubic P,Q,R term vanishes because the matrix I,.QIm is antisymmetric. Now

it is the matrix

1j(I=CkMMR CWMRIL) (6.6.5)

that must be negative-definite to insure stability. The eigenvalues of this matrix and the

corresponding eigenvectors, computed as a function of a and D3, might also be correlated with

flying qualities.

We do not know which function of the angular velocity, if any, is the most important to

a pilot during highly dynamic maneuvers. The relation between the sizes of the matrices

SkmPQR and AwnJPQR and the sizes of the different torque-generation control effectors could

have a large impact on the vehicle's flyability in terms of the angular rate controllability.

Parameters based on all three functions discussed above have a clear physical significance and

could be relevant to flying qualities. Also, there may be a correspondence between these

parameters and the onset of uncontrolled spin conditions that are sometimes associated with

high-angle-of-attack maneuvers.

We must use caution when interpreting the results of this subsection. We do not know

how large the rotational rates must be for the dynamic derivative terms to dominate. The

maximum rotational rates predicted by the bound on rotational energy from the above equa-

tions may exceed the realm where our basic nonlinear model is valid. We have assumed a flat

earth, constant air density, and very simple expressions for the aerodynamic functions. We do

know, however, that nonlinear models like these are used in practice, and that they give rea-

sonable results when applied to specific regions of flight. Within the realm where these equa-

tions accurately model the aircraft dynamics, we expect the parameters above will be worth

looking at. If we have a better model, the three angular velocity functions discussed here still

have a fundamental physical significance that might be correlated with flying qualities.
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SECTION 7: THE MANEUVERS

In this section we present some simulated maneuvers using a subset of the F-14 model

found in [MMTJ]. These simulations motivated some of the mathematical expressions that we

associated with candidate flying quality parameters in earlier sections. More importantly, they

provide a detailed account of the model behavior under carefully controlled conditions. We

can, in general, investigate and demonstrate dynamic flight characteristics associated with vai-

ous levels of flying quality through simulations like these.

Our approach has been based on analysis of the nonlinear aircraft equations, to character-

ize the dynamic behavior of aircraft during flight. At the start, we began with an idea

(dynamic inversion) about how aircraft could be made to fly; we tried out the idea by using it

to command simulated maneuvers. By analyzing the results of the simulations, we were able

to identify features of the nonlinear equations that could have a significant influence on an

aircraft's dynamic behavior during flight. Some of the things we learned are mentioned in the

presentation below, others we have already discussed in our earlier section on the candidate

parameters.

Our analysis of the maneuvers given here is not so complete as we would like - there
remain several questions about the results that should be investigated further. We will point

out the unsettled questions as we go.

The three different types of maneuvers discussed here were generated by our batch ver-

sion of the nonlinear simulation. The first type is a roll reversal - where the aircraft banks first

to the right, stabilizes bank angle, then banks back to the left. The second type is a barrel

roll. The third type is a highly-dynamic diving turn chosen because of its extreme dynamic

behavior.
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7.1 Roll Reversal

Three versions of the roll reversal maneuver are presented. All three were generated by a

dynamic inversion controller tracking open-loop command profiles for a,3,p. The structure
of this controller is described in example 5 of subsection 5.1. The primary goal was to fly the
maneuver while keeping the flight-path angle y fixed at zero. The three different versions

involved three different criteria for the normal acceleration N.

The easiest way to fly the maneuver is to pick a desired . trajectory and then command y
- 0, j3 = 0, and ct to be what it has to be in order to keep the speed nearly constant. The plots
in Figure 7.1 through Figure 7.8 show the results for this maneuver. We call this maneuver
UNLOADEDREVERSAL. To generate UNLOADEDREVERSAL, we chose a desired g. com-

mand profile:

For 0 < t < 5 seconds commanded g= 0.0

For 5 < t < 6 seconds commanded g= -- sin2(n(t - 5.0)12.0)
3

For 6< t <8 seconds commanded p.

For 8 < t < 10 seconds commanded g - - (1 - 2sin 2(n(t - 8.0)/4.0))
3

For 10 < t < 12 seconds commanded p. = -X

The commanded values for 0 and y were fixed at 0 throughout. To derive the command
profile for a, we used the approximation (good when y is constant at 0 and the direct control-

surface force terms are small):

y= V2CLCOS(pJ) - 1 (7.t.1)

Note that variables in the dimensionless units of section 5.3 are used here.

We wanted to keep y constant at 0, and we chose to keep V near a nominal dimension-

less speed of 2.2 (roughly 560 feet per second) throughout, so we needed to find an aE
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command profile (note that 0 is assumed 0) to solve:

CL(a) = 1/((2.2)2 cos(commanded g.)) (7.1.2)

For small a., the lift coefficient is closely approximated by the relation:

CL(a) = 5.9ax + 0.09 (7.1.3)

Therefore, we defined the commanded a according to:

commanded a = (-0.09 + 1/((2.2)2 cos(commanded g))/5.9 (7.1.4)

It was not essential that we could approximate the lift curve by a linear function of aX, any

invertible nonlinear function would have worked just as well. If a wider range of a were

involved in the maneuver, we would have used a more accurate, nonlinear approximation.

Plots of the commanded x and . profiles, with the simulated responses, can be found in Fig-

ure 7.3.

First consider the four plots in Figure 7.1. Each plot shows the graphs of three of the
states as functions of time during the maneuver. The name of the maneuver and the states
plotted appears at the top of each plot. The way to read these charts having more than one

state function plotted on a single graph is as follows: the first-named variable at the top of the
graph iz represented by the continuous line, the second-named variable is represented by the
short-dashed line, and the third-named variable is represented by the long-dashed line. In

some cases, one of the three variables plotted remains much smaller in magnitude than the
others, so that it appears that only two graphs have been drawn. For example, in the plot for

U, V, and W in Figure 7.1 the graph of V is so small that it is difficult to tell that it is there.
Some care is required to read these plots correctly. In some of these plots there are rapid tran-
sients during the first 2 seconds - they are associated with mismatches of initial conditions at

the start of the simulation and should be ignored.

There are few features worth noting in Figure 7.1. The components U and V remain

nearly constant during the maneuver while W, though small, increases by a factor of 2 or 3
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from beginning to end. The behavior of W is driven by the a response, which can be seen in

Figure 7.3. The PQ,R plot shows that a 2-radian/second peak in P and very little Q and R are

required to produce the 60 degree bank in one second. The stabilization into the banked-turn
1

requires roughly -- second. The 0 response is crisp, with little overshoot, and 8 stays nearly
2

fixed. T moves from 0 to roughly 15 degrees with the bank to the right, then back to 0 again

after the reverse back to the left. In inertial position coordinates, the path of the vehicle moves

to the right about 500 feet during the maneuver from t=5 seconds to t=12 seconds, and is

about to start heading back again when the simulation ends.

Figure 7.2 shows plots of the changes in the inertial position coordinates Y and Z, and of

the Euler-angle coordinates e and TV drawn to appropriate scale. Worth special note is the

CHANGE IN ALTITUDE plot, where it is shown that the altitude varies by lest than 2 feet

during the entire time. Keeping in mind that the maneuver did not begin until t=5 seconds

(the initial condition transient was a factor at the start), we can see that the altitude was held

very nearly constant while the maneuver was performed.

Figure 7.3 shows the comparisons between the open-loop command profiles for ,3,y,p.

and the values of these functions during the simulation. After the initial condition transients,

all four simulated responses stay within a milliradian of their commanded values. This was a

very successful maneuver.

Figure 7.4 shows the simulated values of the inertial accelerations, the aerodynamic force

functions, a and P, and the speed. NY remains very close to 0, N. changes by about I g, and

Nz follows a benign path between 1 and 2 g. The speed changes by less than 2 percent.

Figure 7.5 shows the control input behavior during the maneuver. Disregarding the initial

transients, these profiles seem fairly reasonable. The aileron does most of the work in a pair

of doublets (peak aileron deflection of 50 degrees) during the two rolling periods (we have

assumed 1-radian ranges for each of the surfaces - we would have assumed more effective

surfaces and performed the same maneuvers with smaller size commands if we had less sur-

face position range. We will deal with saturation phenomena soon, but not for the aileron).

The elevator and rudder commands move only slightly, about 5 degrees. The surface com-

mand rates look reasonable, there probably should be a plot of (approximate) surface rate

activity in a more detailed version of this simulation. The throttle moves up to a setting of
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0.5 g during the initial loading, then moves back to a slower setting when the banked turn is

established. During the reversal it moves down to 0.0, then back to 0.4 g during the loading in

the opposite direction. The variation of a during the maneuver changes the drag (see Figure

7.4), so some thrust activity is required if speed is to be kept nearly constant. Also, the thrust

command was varied by the controller to generate small corrections to the speed necessary

because of the direct force contributions of the surfaces, which we neglected when we gen-

erated the command profile for a. The controller also had to compensate for the fact that the
ot-command profile was generated by an approximation to the lift curve. The magnitude and
rate of the throttle activity during this maneuver might be considered too large - if so, a

different command profile for cP,'y, could be chosen or a different inverter used for control-
ling the aircraft. The throttle was simply doing what it had to do to allow tracking of the
aPyp command profiles in Figure 7.3.

Figures 7.6 and 7.7 depict the eight parameters a.j,bij associated with the complementary

dynamics. From them, we computed that at each time during the maneuver there was a unique
physical equilibrium value in the complementary V,+ phase-plane. Two of the plots in Figure
7.8 show the two eigenvalues at that equilibrium (both are always real for this maneuver -
note that the equilibrium is always stable), and the other two plots compare the simulated

values of + and V2 with the equilibrium values. The eigenvalues could be used, as discussed
in section 5.5, to compute a settling time for the V,+ functions to their equilibrium values

once the states a,PEO have stabilized. We have not performed this computation yet, but it
would not be difficult (we have not coded-up the algorithm on the computer yet). During the

transients + moves a ay from the equilibrium values by a significant factor (about 100 per-
cent error), but then moves back to equilibrium very quickly when rolling stops. V2 , on the
other hand, tracks the equilibrium value very closely (after the initial transient).

For this first maneuver, the ,,,yp dynamic inverter looks remarkably good.

The second maneuver differed from the first only in the goals for the normal acceleration

during the reversal. We called it LOADEDREVERSAL. The objective was to keep N, 2

after the first 60 degree bank. Again, we chose to use the a,3,yp. controller. The command
profiles for 03 and g. remained the same as in the unloaded case, we changed the command

profiles for a and y. Our new a command profile was the same as the old one until t=8
seconds, when the reversal began. To keep N, above 2 g during the reversal, we chose to
keep the aE command constant at (-0.09 + 2/((2.2)2 ))/5.9 (compare with Figure 7.4) after t=8
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until the end of the simulation. The y command was not easy to choose: we would have liked

to keep y = 0 throughout, but it is not physically possible to keep both 3 and Y at 0 while

requiring that N, be at least 2 g during the reversal. So, we decided to ask for a small amount

of y increase throughout the reversal, the plot for the command profile is shown in Figure

7.11.

The plots for U,V,W and P,Q,R for LOADEDREVERSAL are similar to those for

UNLOADEDREVERSAL, except for the value of W during the reversal (note: they are plot-

ted on different timescales). The Euler-angle plots and inertial position plots are notably

different, however. As is shown in Figure 7.10, the LOADEDREVERSAL involves an

increase in altitude at a rate of about 30 feet/second (as compared with 0 in Figure 7.2) and a

final value of 0 that is 4 times as large. Figure 7.11 shows that ox was the main problem for

this maneuver (all the other variables tracked their commands fairly well). The plots in Figure

7.12 show that N. did remain at least 2 g after the initial bank - the intersting plot is the

speed change.

The cause of the ramp deceleration can be seen in Figure 7.13, where it is shown that the

throttle turned off while the reversal was in progress. The reason for the throttle shut down is

revealed in Figure 7.16. Note the plot showing the actual speed squared as compared with the

equilibrium speed squared at the corresponding aP,0,0 points along the trajectory. The prob-

lem here is that the oa,P,,0 states are very difficult to control independently near ax = 0. The

throttle saturated trying to make the vehicle slow to its equilibrium speed, but there was not

nearly enough command authority to reduce the speed.

We conclude that the o,3c,Py controller was not a good choice for commanding

LOADEDREVERSAL -- the failure was not due to the vehicle or its flying qualities. It is

worth pointing out that the a,,0,4 controller was stable at every point along the maneuver, as

is shown by the plots of the eigenvalues (always negative) in Figure 7.16. This is a case

where there is a unique physical equilibrium at every time, but control saturation prevented

the inversion from working as it should.

One might wonder if we tried to bring y back down to 0 after the reversal was com-

pleted. The answer is that we did try -the results are shown in Figures 7.17 through 7.24.

Note the extreme droop in N, as soon as the command for y decreased. We did try to accom-

modate a decrease in y by increasing 0, as can be seen in the plot for pi and MUCMD in

12L
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Figure 7.19 but it did not work. The controller was simply not conditioned well enough for

this kind of maneuver. 1
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7.2 BARRELROLL

The maneuver BARRELROLL was the first trajectory generated by the coordinated-flight

U,P,Q,R inversion controller described in section 6. The simulation data for this maneuver are

shown in Figures 7.25 through 7.32. We chose the command profiles for U, P, and Q shown

in Figure 7.27. The strange shapes of the command profiles for P and Q after t=12 seconds is

a consequence of the strategy used to finish the maneuver, at that time the P and Q commands

were used to drive 0 to 360 degrees and e back to its equilibrium value at t=3 seconds. The

commanded R was computed using feedback, approximately by the formula in equation 6.4.2;

the term associated with the direct side force due to rudder was neglected. The bandwidth

chosen for R was only one-tenth the bandwidth chosen for P in this maneuver. In fact, this

was the maneuver which led to the bandwidth parameters discussed in section 6.4.

The simulated responses for U,V,W,P,Q,R,,0,O,,x,y,z are shown in Figure 7.25. Note

the visible V component that arises during the roll in the U,V,W plot. The other components

of the speed are as we would expect. Outside of the (small) overshoots in the angle-variables,

the other plots in Figure 7.25 are what a barrelroll should look like.

The plots in Figure 7.26 show the change in altitude, the change in crossrange, E, and T

as a function of time. The other relevant data in Figure 7.29 show that the speed remained

nearly constant (as it was supposed to do), and that the accelerations were all tolerable. The
rather large D that arose did cause a transient NY of about 0.1 g in magnitude. That could have

been avoided by asking for a higher bandwidth R control (relative to P).

For this type of maneuver, we would like to investigate the theoretical implications of ,
equation 6.4.2 more thoroughly in the future.
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7.3 DIVINGTURN

Figures 7.33 through 7.38 depict the maneuver DIVINGTURN, which we chose because

of its dynamic complexity. A groundtrace of the maneuver in inertial x-y coordinates is shown

in Figure 7.33; it is a right-turn (positive y is to the right) that starts at roughly x=2000 feet,

y=O; moves out along the positive x axis and then turns back and heads into the negative x

halfspace. The change in altitude is shown in Figure 7.34.

The plots of the vehicle states are shown in Figure 7.35. Note that U drops rapidly

between t-4 seconds and t=7 seconds -- a change of more than 300 feet per second in 3

seconds. At first, we might suspect that the pilot experiences some very unpleasant accelera-

tions in the longitudinal axis, but a glance at the N. plot in Figure 7.36 shows that N, is

almost ruler fiat at -1.2 g during the turn, except for a small bump between 6 and 8 seconds.

Our sign convention is chosen so that negative N1 represents a force pushing the pilot back,:

into his seat. That is much better than being pulled out of the seat at 3 g , the situation easiest

to imagine when the average value of U is -3 g. It was this maneuver that alerted us to the

result discussed in section 6.3, that the aerodynamic data for the F-14 has the property that the

aerodynamic force vector is almost exactly aligned with the z-direction of the aircraft at large

a. The value of NX shown on the plot is almost constant at -1.2 g because the throttle is

saturated at full power, +1.2 g, throughout the turn. In fact, the bump between t=6 seconds

and t=8 seconds arose because a exceeded the largest recorded datapoint at 50 degrees during

that time, and we were using the table values for cc = 50 degrees.

A description of the maneuver is as follows: the pilot begins by banking the aircraft a lit-

ie over 90 degrees, then (while still rolling) he pulls back hard on the stick. All the while the

throttle is set at full power. The elevator saturates at its maximum value for three seconds, but

Q quickly turns negative because the inertial terms dominate (see the software user's manual, ,
a separate document prepared under this contract). As Q drops, cc decreases as well (note: P

is 0 during the time when Q drops off, see equation 6.4.4, and the discussion after) until P

once again is commanded to be nonzero, generating (with R) some extra Q to make Q
increase again starting at t=8 seconds. The pitch angle, however, decreases steadily to

approximately -60 degrees until time t=12 seconds. Then the new Q command and the
reverse bank command at time t=12 seconds brings the nose of aircraft back up and the wings
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back to level. Finally, by about t=20 seconds, the aircraft is level again and moving at the

desired speed.

Conclusions

From the three types of maneuvers flown in simulation using the dynamic inversion

method, we were led to several of the candidate nonlinear flying quality parameters discussed

in section 6, and we were forced to a new and improved dynamic inversion concept. One

parameter provided an analytic relationship between the bandwidths of the dynamic P and R

responses with cc restrictions on coordinated flight, another allowed us to understand the effect

of the aerodynamic force vector on the accelerations experienced by the pilot. The first

maneuver told us little about the aircraft, but it did point out the need for the development of

the controller that we used to discover the two important relations just mentioned. Other ideas

discussed in section 6 for nonlinear flying qualities also came out of analysis of these simu-
lated maneuvers. We believe the dynamic inversion method and the simulated maneuvers are

a very useful tool for developing flying quality parameters.
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APPENDIX A

TRAJECTORIES IN INERTIAL SPACE

The equilibrium velocities will give trajectories in inertial space which are vertical helices.

One way to show this is as follows.
The state is x = .vpc,,,Y0e At equilibrium, the state is constant so two of the

Euler angles, 0 and e , are constant while the third Euler angle, IF is given by

'I'(t) = 'V(O) + +V t.

The transformation matrix between body axis coordinates and earth fixed coordinates is given

by the orthogonal matrix LTOO = L 1. 4 where.

[cos('V(t)) -sin(V(t)) 01
Lp= sinCPF(t)) cos('*(t)) 0

[ 0 0 1]

[cos(e)) 0 sin(e9)1
Le 0 1 0

I-sin(e) 0 cos(e))J

1 0 0
=~ cos(0D) -sin(0D)

si()cos(O)

The velocity vector is given by []in body axi: corints an lk

where lo, is the following unit vector

[cos(P)cos~a)

So in earth fixed coordinates, the equilibrium value of the velocity vector is given by
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[cosCP(t)) - b sin(l'(t))1
LA9 Vla I a sinCY(t)) + b cosCY(t)) (A. 1)

where

The right-hand side of equation A. 1 is usually written as

cC)OSM Cf'(t)-Yb)1
V co(binCP(t)-'Pvb)] (A.2)

where the flight path angle, y , is given by

Y = -sin N(c) = cos-, (-a2 + b 2)

and

'Tvb = Snfl

Note: "'b =aircraft heading - velocity vector heading.

Integrating (A.2) gives the trajectory in the earth reference frame.

Y:e(O = s (t)-'Yvb) - T~e'O-Pb A3

YXe(t) XVLus('Y) j-Isin('V(O)-fvb)
[Ze(t)] ZC(O) j -tan(yi'i t L 0 J

VThis defines a vertical helix of radius -r-cos(Y).
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APPENDIX B

DYNAMICAL PROPERTIES OF FLIGHT MANUEVERS

GEORGE t. SELL

0. Introduction. In this report we show that the study of the dynamical properties
at Right manuevers is governed by the theory af time-varying differential equations. The
stability properties of the solutions of these equations are determined by the corresponding
properties of the ,imitig eqrion, se Sell (1967b) and Sacker and Sell (1977). For most
Light manuevers these limiting equations ar either autonomous, or periodic in time. In
these cases, there is a rich literature for describing the stability properties. A brief outline
of the basic theory of limiting equations is included

One of the first objectives is to study the dynamical properties of flight manuevers in
the vicinity of the equilibrium manifold. The Stable Manuever Theorem, which we present
here, addresses this issue. This theorem states that if one begins a flight manuever near a
strongly stable equilibrium point, and if the manuever input is ciose to a nominal input,
then the aircraft remains near the equilibrium manifold.

The report contains six sections: 1. Dynamic Inversion, 2. The Equilibrium Manifold,
3. Flight Manuevers, 4. Limiting Equations, 5. Applications to Flight Manuevers, and 6.
Open Problems.

1. Dynamic Inversion. Many of the dynamical properties of flight manuevers can
be understood by studying a model of the dynamics in terms of an ordinary differential
equation with a control parameter. Typically one has a control-theoretic problem of the
form

(1) Wo = W(w'U)

where u E R" and w E R"+ '. We assume that u is restricted to lie in a fixed open
bounded set 0 in R'. Our objective is to describe a control strategy whereby (1) takes on
a desired form, say Wo = D(w),

where D(w) is a desired vector field on R" + '. In order to accomplish this we need to solve

(2) W(w U) = D(W)

far u. If the Jacobian matrix D.W(w,u) is nonsingular and if D(w) assumes values in the
range W(wu,f) = (W(w, u) : u E fl), then one can find a continuous solution u = u(w) of
(2).

Olnstitute for Matbhonatis sad its Applications, University of Mibaimota, Minneapolis, Minnesota
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Since the state variable w has higher dimension than the control parameter u, the above
strategy can only be successful if some restrictions are imposed on the desired function
D(w). This means that some of the variables of (1) are controllable while others are not.
In order to better understand this, let us look at a special, but rather important, case.

Let us write to = (z,V)T where z E R" and y E R -.n Then (1) takes on the form

(3) I V = '(, ,).

for some functions f and j. The strategy is to seek to control the x-variable according to
the de equaton =

In order to do this, we need to determine a control strategy u by solving f(z, y, u) = D(z, y)
for u. As before this leads to a continuous solution u - U(s, y) whenever the Jacobian
matrix Dj is nonsingular and D(z, y) C f(z, y, $I). The V-variables are not controllable
directly by this strategy. Instead y = y(t) must be a solution of the equation

V' - , Y, U(z, U)).

By combining this we see that (3) takes on the form

(4) z' - D(z,y), 'g (Z,, (Z,U)).

This process of solving for u is referred to as dynamic incrsio,.

The dynamical properties of uncontrollable variables y are determined by (4). It is
th e properties which will decide whether a given control strategy is desirable, and we
expect that the same properties will oftentimes determine the flying qualities of an aircraft
and a collection of flight manuevers. We will illustrate this in a moment, after we define
the Equilibrium Manifold for (1).

2. The Equilibrium Manifold. In order to simplify our treatment a bit, we will
assume a special form of (1) which is given by

(5) Wt W F(w) + G(w)H(w,u),

where the functions FG and H are unooth functions with

F :R"+ " -. R +

G :R"+" -M L(R'. R+M)
H :R*+" x R" - R

an generlly one could introduce local coodinates w = (,, W)T and restrict to be on some given
manifold M in R 4+". The function D is then a desired voctor Bold on M, and v denoe the normai
esordinatm to U.
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aud L("R")denotes the space of linear mappings from R" into R"+ M t. it other
words, for each w e R"+" and u eR", F(w) is a (n + rn) x I column vector, H(w, u) is
a a x 1 column vector, and G(w) is a (n + rn) x n matrix.2

Let il denote the subset of A"+' where the rank of the Jacobian matrix D,,G(w) is
n, and assume that f) is a fonempty open set R" This permzit. one to introduce local
coordinates wo~~) so that (3) takes on the equivalent form,

21 f,(z,y) + gj(z,V)H(z,y,u)
(6) V I = f2(z, V) + g2 (z, y)H(z. ,u).

where g I is an n xn matrix, and g3 in an 2 xn matix. We assume that the local coordinates
have been chosn so that #I is invertible." Here z dcnote. the controllable variables and V,
the uncontrollable variables. Next we define a manifold Mo for (6) as

-o =((z, y) E A*' : fj(z, y) +gzl(z.,y)H(s, y, u) = 0).

The manifold Mo is invariant for (6), and on M0 one has

(7) E(z, y, u) = -g'(z, s,)f, (z, yi).

By inserting (7) into (6) we obtain

(8) Y' K(z, y)

where
K(z, y) = f 2 (T, Y) -2 g(X, 091-(Z, YVl(Z, Y)

and z constant. On the invariant manifold Mfo equation (6) reduces to

Y K(z, y) = f 2 (z, y) - g2(z, y)g-(z, y)f1 (z, y).

By fixing H so that (7) holds, the controllable variable z is held constant. The function
H may change with time, but this only reflects the austment in H caused by the time
variation of the uncontrollable variable V, which is a solution of (8).

The Zr4~iubnv Set for (6) is definded as the set

E = ((z V) e A1 :fs(z, V) +#2(z, )H = 0),

2We wiU concenitrte our atteionee onthe special model equation (5). The general dynamical theory
we describe her..i not dependent on the fact that the control in (5) enters s a linear factor N.Th* only
role that the special form (5) plays in this report is tp simplify some of the algebraic considerations which
wins below.

IThis is possible because of the rank condition on the Jacobian matrix D.G.
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Figure 1. The Equilibrium Manifold near a point ze.

where H is given by (7). Notice that (z, y) e E if and only if (z, y') E Mo and

(10) K(z,y) = f2(:, y) - g2(z,y)gT'(z, Y)f1 (z, Y) = 0.

If the Jacobian matrix DIK is nonsingular, then one can solve (10) locally for y = e(z)
where e(z) is continuous in z.4 It is possible that for a given z, equation (10) may have
several solutions yv= e(z), see Figure 1.

The Equilibrium Manifold is a subset of the equilibrium set and is defined by

M = {(z, i) e E : D&K(sy) is nonsingular).

For each (zo,yo) C M there is a neighborhood U of z0 and a Cl-function e : U --- R"
such that (z, e(z)) • M for x • U and e(z0) = Io. This means that in the vicinity of
every point on the equilibrium manifold M, the equilibrium set E agrees with Al, and E is
locally a smooth manifold. The behavior of E near points (z, yi) E E where DK(z, y) is
singular, can be very complicated. These singular points, which can be bifurcation points,
will not be analyzed in this report.

Since the equilbrium points for (6) are generally not isolated, it is not possible for them

to be asymptotically stable in the full dynamics (6). However it is possible that equilibrium
points of the rt equation (8) are asymptotically stable. Because of the importance of this
fact, we introduce the following stability concept: We shall say that at point (zo, yo) is
strongly stable if (z@, ie) is an equilibrium point for (6), and y1o is asymptotically stable
for equation (8).

Assume for the moment that for each z e RO, equation (8) has an isolated equilibrium
point e(z) and that e(z) varies continuously in z. Assume further that over some interval of
time I the controller u(t) is chosen so an to maintain a given value for z and that V = e(z)
for t E I. (Since z and y are constant on I, it follows from (7) that H is constant as well.)

"Ai mrgumuet for sbowing the azistce of a solution (s) is given below as a part of the proof of the
Stable Manuever Theonm.
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Next we ask, what would happen if a small disturbance. is introduced into this system?
Ciparly this will be strongly influenced by the stability properties of the equilibrium point
e(z). If the linearization of the vector field at e(z) gives rise to an eigenvalue with positive
real part, then one can expect an abrupt chauge ian the response. Oue would like (0) to
have strong stability properties and to be free of destabilizing bifurcations. We shall look
into this further in Section 5.

For equation (6) it is convenient to separate the problem of controllability into two
parts. Since u enters this problem through the function H only, one can think of H itself
as a controller. Fbr example, the aircraft pilot may select a specific value HO for H at a
given time t, then the onboard computer would solve the equation

(11) H(z,uU) - HO

for u to drive the rudder, thrust, etc. The solvability of the last equation for u depends, of
course, on the Implicit Flnction Theorem, and usually requires the Jacobian matrix D.H
to be nonsingular. We emphasize that the dynamical properties we are studying here are
independent of whether or not (11) is solvable for u.

So far we have been tacitly assuming that any point in the (z, V-space is attainable
via a flight manuever. This is by no means the case. Furthermore, the coordinates for the
problem need not be Euclidean coordinates. Angular variables are natural in many cases.
What this means is that one should consider the original problem, either (1) ro (5), to be
given on a prescribed subset A of some manifold (. We shall refer to A as the attainable
set.5

In applications developed by others on this project, one has n = 4, m - 2, and conse-
quently (8) represents an ordinary differential equation in the plane R2. The equilibrium
manifold M in this case has dimension 4.

3. Flight Manuevers. We define a flight manuever to be the response of an
aircraft to a time-varying controller on some time interval 1. For the model equation

(f M h (Z'y) + 01(z,p)H(2= M f:(XV) + 9(Z.y)H

where H = H(t) - H(z,V,ut) is now a time-varying input, a flight manuever is a solution
(z(t), v(9)) of (12), for t E I - (a, b). The function H is referred to as the manuever
Input. We will assume that the inputs H(t) are piece-wise continuous functions of t on I.
Flrthermore, we restrict our attention to inputs H(t) for which the response (z(t), y(t))
remain in the attainable set A.

s]venthough we shaD owMi to write our equations in tersw of Eudlidean coordinates, this is reaily
et mantial for ow thory.
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There are two manuevers which are of special interest for flight control. The first of
them is a basic manuever on an interval I. This manuever occurs when there exists
:*, v. such that

H) = -g,(.y())f,(-.vQ)) E 1,

where l(t) is the solution of (8) with y(a) - y.. In a basic manuever the quantity z. is
referred to as the base state of the aircraft. For a basic manuever the system (12) reduces
to the system (9). Thes manuevers are quite common for aircraft motion. They occur,
for example, when the aircraft is ascending (or descending) with a fixed angle of attack,
or when the airraft is turning with the controls held fixed.

The second manuever, which we call an advanced manuever, occurs when H(t) is
continuous at t - a, b and one has

H(t) = -g7"(zQ), y(t))f (z), igt)) 9 = a,b,

where (z(t), i(t)) is a solution of (12) on I. Advanced manuevers occur, for example, during
a barrel roll, or when the pilot is changing the thrust vector. Any aircraft trip, from takeoff
to landing, is a sequence of basic manuevers interspersed with advanced manuevers.

There is a convenient way to distinguish between basic and (non-basic) manuevers.
Assume that the manuever input H satisfies

(13) H(t)-- yz~)l(t)l)f&(t), y(t)), t OE L.

It then follows that the z-equation reduces to z' = 0, or z(t) = ze, a constant, for t E I.
In other words a manuever is a basic manuever if and only if (13) is satisfied. The extent
to which H(t) deviates from satisfying (13) is a measure of the strength of a manuever.
We can quantify this by defining the norm, or strength, of a manuever N(H) by

N(H) = sup {IH(t) + g-'(x(t), y(t))fzt, Y(t)i :1 t I).

Notice that one has N(H) = 0 if and only if H is the input for a basic manuever. In the
Stable Manuever Theorem, which we give below, we show that if a manuever begins near
a strongly stable equilibrium point on the equilibrium manifold M and if N(H) is small,
then the aircraft remains near the strongly stable equilibrium points on M throughout the
entire manuever.

An advanced manuever can be viewed as trajectory which changes the baft state of an
aircraft from z. to a.. The point to emphasize is that the full equations (12) are needed
to describe the dynamical behavior of an aircraft during an advanced manuever. However
at time t - a, b thaw equations reduce to (9). Since an advanced manuever ends with (9)
being satisfied at t - b, it follows that the equations (12) are asymptotically autonomous.
We shall present next a brief review of limiting equations and asymptotically autonomous
equations in the next section.
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4. Limiting Equations. We begin with a nonlinear time-varying differential equa-

tion z' = f(z, t), where f E C(R N x RA N) and C(RN x R, AN) denotes the space of
continUOus functions from RN x R to RN. In order to simplify the discussion we will

assume that all functions f(s, t) cumadered in this uectiuu amr Lilxhitz cuutinuous in z,

and that every solution a( z' = f(,t) is defined for all t E R."

For f e C(RN x R, RN) we define the translation f, by f,(, t) = f(z, t + r). The

u(f, T) M f,

defines a Bow on C(RN x R RN). If we let (z, f, t) denote the solution of z' - f(z, t)

satiying (z, f 0) s x, then

is a (skew-product) flow on RN x C(RN x R, RN).

In the flow a on C(RN  x R, RN) we define the hull7 of f by

H(f) =Cl (f, : ER)

and the positive hull by
H*(f) C {f, 0:0).

The w-limit set of a function f e C(RN x R, RN) is given by

11(f) = n,>oH+(.).

The limiting equations for f _ C(RN x R, RN) is defined as the collection of all equations

'- g(z, t) with g E fl(f). The following theorem gives a useful suficent condition for the"
collection of limiting equations to be nonempty and compact. The proof of this theorem
is given in Sell (1967ab) and is based on the Ascoli-Arzela Theorem.

LIMrrING EQUATION TREOREM. Let f E C(RN x RRN) be such that for every

compact set K C RN theee in a constant k 2t 0 and a function S xx u(e) with the following
two properties:

(1) f(:, t) is Lipachts continuous in:z, uniformly in t, is. If(z, t) - f(y.9)i 1 : kI: -yI

for all z,VE K,t E A.
(2) f(s,t) i, uniformly continuous an K x R, i.e. f(:,a) - f(y,t)I 5 e for :,

K,a, t F_ with Ix - V1 !5 S(e) and It - I -5 S(e).

'The amumptiom m the LipcWct continuity of f and the globWi exigence of solutions of z' = f(r, 9)
cam be dropped. See Sell (IH/ab.173), Mille and Sell (iS0) and Sadk.r and Sell (197l) for details.

"The closum opesmtb CI red her is the cloue in the topelogy of uniform convqeance on compact
submts ofRt' x .
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Then l(f) is a nonempty, compact, connected subset of C(RN x R, RN). Furthermore
ovay g 4E 1(f) satisfies the Lipschitz condition (1) abome.

The naiu advautagc of L liuitinsg eijuutioIIa iN thtt (1 CRUI 11W: UteI NUMlItu'd t0-ry
of &.-limit sets to describe the behavior of solutions of the original differential equation

0 = fx(z,t) as t --* oo. In pariticular, let f E C(RN x R, RN) and let #(z,f,t) be a
solution of z' - f(z,t) that stay@ in a given compact set K C RN for t >: 0. Assume
further that f satisfies the hypotheses of the Limiting Equation Theorem. Then the
motiun r(z, f, r) remains in compact set in A N x C(R 'V x R, R). Furthermore for every
sequence r, -. o there is a subsequence, which we denote again by r., and a point

(y,g) 4E A x C(RN x ARA) such that

Ivr. --f
*(zf,t + T) -. O(y'g9.)

where the last limit is uniform on compact subsets of R.
There are two special situations concerning limiting equations, which arise in the theory

of flight manuevers. We say that a function f E C(RN x A, RN) is asymptotically
autonomous if f satisfies the hypotheses of the Limiting Equation Theorem and if the w-
limit set of f consists of one point, say f(f) - (g). Since the w-limit set is invariant under
the flow V on C(R" x R, RN), it follows that g, - p for all r E R, i.e. g is autonomous
(independent of time). Similarly a function f 6 C(RN x RRN) is asymptotically
periodic if f satisfies the hypotheses of the Limiting Equation Theorem and if fl(f)
consists of a single periodic orbit. In this case g E 11(f) is periodic in t.

Let z' - f(z, t) be an asymptotically autonomous differential equation with limiting
equation z' = g(z). Let z be an asymptotically stable equilibrium point for z' = g(z).
Then one can show that there is a neighborhood U of Z0 such that for all z1 E U the
solution O(z1,f,t) of z' = f(z,t) satisfies #(z ,f,t) -. so as t -- oo, see Markus (1956).
In other words, the solutions of z' = f(z,t) beginning in U are stable, as a matter of
fact, they awe asymptotically stable. The stablility properties of asymptotically periodic
equations are similar, see LaSalle (1962) and Sell (1966).

In this report we shall restrict our study to flight manuevers which are asymptotically
autonomous. Eventhough it may appear that all flight manuevers are asymptotically
autonomous, this need not be the case. For example, if one wishes to study the effects of
small random disturbances (i.e. noise) on the aircraft, then one may need the full theory
of limiting equations. The references cited below offer a good introduction to this theory.

For applications to the study of the dynamical properties of flight manuevers, one
should note that the limiting behavior of a function f may be assumed in finite time. In
particular if f E C(RN x A, AN) has the property that there is an autonomous function

E ( (RN x R,R N ) and a time T such that f(z, t) = g(s) for all t > T, then f is
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asymptotically autonomous and fl(f) = {g). Similarly if f E C(RN x R,RN) haa the
property that there is a time-periodic function g E C(R" x R, RN) and a time T such that
f(z,t) = g(z, t) for all 9 > T, then f is myunptotikuly periodic and

A() = { g,:0_<5,r5 P)

where P ias a time-period of g, see Sell (1067ab).

5. Applications to Flight Manuevers. During an advanced manuever on an in-
terval I = (a, 6) the equations of motion are given by{t = f, (z, y) + ga(.T, y)H
(12) 1' /= f2(Z, Y/) + g2(, y)H.

The motion begins at (ze,y.) at time t - a and ends at (z4, yi&) at time t = b. Equation

(12) is an asymptotically autonomous system with the limiting equation given by

(9) ' K(z, y) = f2(MZ, Y) - g2(Xb, Y)g'(, Y)fd(X, Y).

As a matter of fact (12) reduces to (9) for t > b. Clearly the location of y6j, the value of y
at time t = b, can play a significant role on the dynamics of the manuever. Let us look at
a few examples.

Example 1: Assume that Si lies in the basin of attraction of an asymptotically stable
equilibrium point e(z4) of Si' = K(zb, i'). In this case, i(t) is attracted towards e(zb) for
t > b. If li is close enough to e(z.), then the transient behavior will be short-lived, and for

all practical purposes, one would have Si(t) -.. e(z,) after some short time interval. (This
situation is quite common and very likely is the outcome of most flight manuevers.) On
the other hand, if Sib is far away from e(zi), then the transient behavior will persist for a
long time, and the aircraft could be under the influence of the transient part of y(t) when
the next advanced manuever commences. For example, if y6 is close to the boundary of the
basin of attraction, then one would expect that the dynamical behavior of the boundary
set will have greater influence on the aircraft than that of the equilibrium point c(zb).

Example 2: Assume that Si& does not lie in the basin of attraction of any asymptotically
stable equilibrium point. For instance, y& may lie on a periodic orbit, or in an unstable or
chaotic portion of the y-space. This could have very serious consequences for the aircraft.
One would not want to implement such a manuever without detailed knowledge of the
underlying dynamical properties of (9).

Because of the considerations raised in the last two paragraphs, one of the goals in
the study of the dynamics of flight maneuevers is to understand the dynamical properties

of i' = K(zb,y) in every fiber A(z&), where A(z) is defined to be those i for which
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(zy) E A. The set A(z) is simply the fiber of the attainable set A over the point z.
Because of our mumption that every input H(t) yield an attainable response, one must
have V(t) E A(z(t)), for all t E I. One would like to show that A(zb) ha additional
dynamical properties. For example, one may want to show that if an advanced manuever
ends in a position (zb, I&), then the trajectory y(t) of V' = K(z,, V) with st(b) = y6 remains
in A(zb) for alt 2t. b.

While the overall dynamical properties of flight manuevers can be very complicated,
there is one practical situation which is amenable to analysis. In this case we consider
an advanced manuever which begins at a point (z., y.) which is close to the equilibrium
manifold M. This means that y. is close to some equilibrium state e(z.) of V' - K(z, y).
We assume that e(z.) is asymptotically stable and that the manuever input H(t) is close
to the nominal value -gy'(z(t),y(t))fa(z(t), y(t)), i.e. the norm N(H) is small. We will
show that the terminal value (zb, y6) is close to the equilibrium manifold M and that y6 is
close to an asymptotically stable equilibrium point e(z,) of y' = K(z., y). More precisely
we will prove the following

STABLE MANUEVER THEOREM. Let (., e(z.)) be a strongly stable equilibrium point
on the equilibrium manifold M, i.e. e(z.) is an asymptotically stable equilibrium point for
Y' - K(z,,V). Then there exists positive constants x, c,c3,c3 and to such that for any
e,O < e < to, the following holds: Let H(t) be the input for any manuever on any interval
I = (a, b) where the following conditions are satisfied:

(1) The manuever begins at (z., y.) where ],. - e(z.)l _5 cle.

(2) One has jz(t) - z.1 c2e for a < t < b.

(3) One has IH(t) + g-'(z(t),y(t))fi(z(t),y(t))l 5 N(H) 5 C3e for a 5 t 5 b.

Then for each r E I there exists a strongly stable equilibrium point (z(r), e(:(r))) of (12)
such that ly(r) - e(z(r))j 1 5e for all r E I.

Before proving this result one should note that we do not assume anything concerning

the length of the time interval I = (a, b). The interval length can be large. The constants

xcl, c,c3 and to am independent of the interval I. As a result, this theorem does apply
to any sequences of basic and advanced manuevers which satisfy (2) and (3).

Proof of Stable Manuever Theorem. There is no loss in generality in assuming that
(z,e(z,)) = (0,0). (Indeed if this were not the case, then the change of variables

: - z + ze

V V + e(zo)

would result in a new system of differential equations with the desired property.) As a

result one has K(0,0) = 0 and the matrix A = DK(0,0) is stable. The latter means that

there exist K, > 0 and A > 0 such that

(14) le t< 1: - > 0
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Next define
A(t) = H(t) + g '(z(t),y(t))f,(Z(i),V(t)), t E .

Then (12) reduces to

Y'(9) - K(x(t), y(t)) + V,(), y(t))A(t).I
Furthemore, for t E one has IA()I <5 N(H), the norm of the manuever.

Our first step is to show that there exists a continuous solution V = e(z(t)) of the
equation

K(Qv) , 0 t E L. 0

This is, in fact, a consequence of the Implicit Function Theorem. Since we also need an
estimate of the size of e(z(t)) we will present the details here. Define B(z, y) by

B(z,yV) - v - A -'K(z, v).

Then DvB(O, 0) = 0. Next fix ao > 0 and ba > 0 so that

(15) ID,B(z,5)I < 2 Izi < ao, IVt 5 bo.

Let MI, M 2 , M 3 , Mj be constants so thatI IB(z,0) - B(O,0)I < ll, : 14
(18) IDK-'(zy)DK(zy)I - M2 ,

Ig,(z,Y)l5 M 3,

Ig2(zI)l 5 M4,

for JzI 5 ao, ]i/ 5 bo. By making ao smaller, if necessary, we can assume that 2Mao 5 bo.
Because of (15) the mapping y -- B(z, y) is a strict contraction, and consequently the
equation - B(z,V) has a fixed point y = e(z) for Iz 1_. ca. Furthermore y M e(z) is
also a solution of K(z,y) - 0, and e(z) is a CI-function of z which satisfies the following
estimates: With i- e(z) - B(zy) and 0 = B(0,0) one has

Ie(z)l = IB(z, v) - B(0,0) + B(z,0) - B(z,0)j

_5 IB(X, v) - B(:,O)I + IB(Z,0) - B(o, O)
Sile(z)l + Mjzj.

Hence Ie(z)l 5 2M, _xj 5 2MIao 5 b0. Consequently for z z(t) one has

le(z(t))l < 2Malz(t)l 5 2M, c e
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provided t 5 to:5" Furthermore one has

d

Uon differentiates e(z) = e(z) - A -IK(z, e(z)) with respect to z, one ob~ans

DK(x,e(x))De(x)=--D.K(s,e(z))

and consequently from (16)

Next we define x(t) = y(t) - e(z(t)), and for the remainder of the proof we let z

z(t), z = z-(t), y = 1,(t) and e =e(z(t)). Then

(17) -o As - L(z, z),

where L is given by

L(z, z) = K(z, V) - As + g 2(z, y)& - e' 46

= K(z, V) - Az + 9 2 (Z, Y)& - D,e(z(t))gj (zy)&.

Now fi lso that

2'A

where K, and A wegiven by (14). Next choose a,, b,0a,O e5 o,O0< b, 5bo sothL

(19) IDIK(s, V) - DrK(O, O)I i

for 11 :5 a,,Y jy : b,. Since K(z,e(z)) =K(0O0) = 0 we obtain the folowing f-rm the

Tayor epnin

K(z, v~) -As - KI(z, y) - K(x, e(z)) - As

=K(0,O0) + (Js D,K(z,e + Gz)d9) z - Az

-j[D,K(zie + z) -D 1 K(,0)IdG) Z.
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Assume that co satisfies to ,,
If I1l _5 o we have lel < 2Mie., and therefore if lz: < 5 we have le + OzI 5 bl. From (19)
we get

(20) IK(z,y) - AzI < uIzI

for Il ij -< , IyI. - b,. From (16) we obtain

(21) *•g2(zy)'I _ M3N(H) _ MOVE
IDe(z)g,(zy)A& 5 M2M4N(H) _ M2 M-cI3 .

Now (20) and (21) imply that

(22) IL(z.)I < qIzI + Mae

for IZ -5' 5O, IZI 5 ', where MA - M0c3 + MWMAc 3 . By the Variation of Constants
Formula, the solution of (17) is given by

z(f) =CA($-e)z, + eA('-')L(z(s), z(s))ds.

This means that z(t) is a fixed point of the operator

F(z)(t) = eA(,-.), + eA(,-)L(z(s),z())ds.

Assume that lz(a) 5 4L for s E I. Then by using (14) and (22) we have

IF(z)(t)l _< K,- ')IzdI + e-A(t -*)(Mse +,Iz(s)l)ds
<5 Kle-Al'-'lizl + KMsA-e(1 - e - ( - * ) + K- - )

Since Iz .= lye - e(z.) _ cle:5 cea we get

(23) IF(sXg)I < Me + K,,j -'')l,,l,

_< M. + K'.,j-'UI

where M. - Kiel + KM&A-' and 11,11 = sup (1(,)1 a F- 1). Since Ilzl 5 4 it follows
from (18) that IF(zXt)I 5 Mo, + 4. In order to mute that IF(zXt)I _ k we require to
to S@tidy ac(= bi bi bi%

tto a5imiy

Since z(t) = F(z)(t) it follows from (18) and (23) that Iz(t)I < 2Me whenever e 5 to,
which completes the prod.
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6. Open Problems. There are a number of unresolved mathematical questions which
dserve study in the future. These are the following:

(1) Describe the dynamical properties of flight manuevers in the vicinity of bifurcation
points on the equilibrium set E.

(2) Analyze the effect of small random disturbances on the dynamics of flight manuev-
era.

(3) Determine what effect control saturation has on the dynamics of aircraft motion.
(4) Describe the dynamical behavior of specific flight manuevers with inputs H with

large norm N(H).
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