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This year has been an active and productive period for the group

at Clarkson involved with nonlinear wave propagaton. We have continued

to make progress in the study of nonlinear evolution equations, thei.

properties and their solutions for both one plus one and multidimensional -

nonlinear evolution equations. We are continuing our studies of 4"

PainlevC equations and nonlinear partial difference equations which

can be used as numerical approximations to various soliton equations.

We have recently considered a singular integral version of the

sine-Gordon equation:

Hu = sin u (1)
t

where

Hu(x) uEd

is the Hilbert transform of u. An interesting feature of (1) is the

fact that all solutions arise from bound states of an associated

isospectral problem. This is in contrast to say the KdV equation where

only the soliton sector arises from bound states.
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Areas of study include:

Exact solutions of nonlinear equations of physical significance.

Inverse scattering, DBAR mpthod.

Solutions to nonlinear singular integro-differential equations.

Applications of solitons to nonlinear optics, fluid dynamics,

theoretical physics etc.

Recent publications of M.J. Ablowitz supported by this research grant

include the following:

Multidimensional Nonlinear Evolution Equations and Inverse Scattering,
M.J. Ablowitz and A.I. Nachman, Physica 18D, p. 223-241, 1986.

On the solution of the generalized wave and generalized sine-Gordon
equations, M.J. Ablowitz, R. Beals and K. Tenenblat, Stud. Appl. Math.,
74, pp. 177-203 1986.

Solutions of Multidimensional Extensions of the Anti-Self Dual Yang-Mills
Equations, M.J. Ablowitz, D.J. Costa and K. Tenenblat, Stud. Appl. Math.
77:37-46 1987.

An Example of a Problem Arising in a Finite Difference Context:
Direct and Inverse Problem for the Discrete Analogue of the Equation
0. Ragnisco, P.M. Santini, S. Chitlaru-Briggs and 1.J. Ablowitz,
J. Math. Phys. 28, 777 1987.

Note on Solutions to a Class of Nonlinear Singular Integro-Differential
equations, M.J. Ablowitz, A.S. Fokas and M.D. Kruskal, Phys. Lett. A.
Vol. 120, 5 pp. 215-218 1987.

A Method of Solution for Painleve' Equations: Painleve IV, V,
A.S. Fokas, U. Mugan and M.J. Ablowitz, INS#73 preprint 1987.

Exactly Solvable Multidimensional Nonlinear Equations and Inverse
Scattering, M.J. Ablowitz, Proceedings of Nonlinear Evolution Equations,
Solitons and the IST, Oberwolfach, Germany 1986, Ed. by M.J. Ablowitz,
M.D. Kruskal and B. Fuchssteiner, World Scientific Publ. Co.

Topics Associated with Nonlinear Evolution iquations and Inverse
Scatteing in Multidimensions, M.J. Ablowitz, Ed. by M. Lakshmanan,
Proceedings of "Solitons", Winter School, Tiruchirapalli, India,
January, 1987, INS#76 preprint.



Publications (continued)

Numerical Simulation of the Modified Korteweg-deVries Equation, "
Thiab R. Taha and M.J. Ablowitz, INS#77 preprint, February 1987. h

Hodograph Transformations on Linearizable Partial Differential Equations, N

P.A. Clarkson, A.S. Fokas and M.J. Ablowitz, INS#78 preprint, April 1987.

Davey-Stuartson I-A Quantum 2+1 Dimensional Itegrable System,
C.L. Schultz, M.J. Ablowitz and D. Bar Yaacov, INS#82 preprint
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Solutions of Multidimensional Extensions of
the Anti-Self-Dual Yang-Mills Equation

By Mark J. Ablowitz, David G. Costa, * and Keti Tenenblat

Motivated by recent work on the generalized wave and Sine-Gordon equatons,
various multidimensional extensions of the classical self-dual Yang-Mils equa-
tion are developed. A method to obtain a broad class of solutions is given.

The advent of the inverse scattering transform (IST) has allowed mathemati-
cians and physicists to linearize and solve certain classes of nonlinear partial
differential equations. A review of much of this work can be found in texts on the
subject (see for example 11D. One such equation of physical interest is the
sine-Gordon equation (SGE). The SGE arises naturally in the study of surfaces
of constant negative curvature in differential geometry. Classical work by
Bicklund [2) and Bianchi [3) developed special solutions as well as transforma-
tions between solutions. The IST encompasses the classical approach in a natural
way and allows one to find a far broader class of solutions to the SGE

Natural geometric generalizations of the classical results were obtained in
[4,51, in which a multidimensional version of the sine-Gordon equation, called
the generalized sine-Gordon equation (GSGE), and related transformations were
found. Similar results were obtained for nonlinear generalizations of the wave
equation (GWE) [6]. In [7) the associated linear equation and the IST for the
GWE and GSGE were developed. It was found in [7) that the linear problems for
the GWE and GSGE are given by systems of ordinary differential equations
which can be transformed to a nearly standard form. The solutions of the

Address for correspondence: Mask I. Ablowitz, Department of Mathematics. Clarkson Uruversity.
Potsdam, N.Y. 13676.
*Partiafly supported by CNPq, BrasiL
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31 M. J. AbkwiD. 0.G. CoOKa &Id K. Temnbiat

generalized equations are obtained via factorization of a certain Riemann-Hilbert
boundary value problem.

Motivated by this, one can look for solutions to multidimensional extensions
of other well-known nonlinear systems. In this paper we consider extensions [see %
Equations (12)-(14)] of the anti-self-dual Yang-Mills equation given by Pohlmeyer b
181. The point of view we take is to develop multidimensional analogues of the
associated linear problem. Solutions of Equations (13), (14) below are associated
to local frames on vector bundles over C4. The solutions are obtained via the
so-called j method (which itself generalizes the notion of a Riemann-Hilbert
factorization problem). Recently there has been considerable development of the

approach, and here we mention the reviews in 19-13].
A version of the anti-self-dual Yang-Mills equation is given by

ail x + T X_ 0 , .'!

where 0 is a positive matrix valued function of (xI , x 2 ) e C 2; see [81. We obtain

extensions of this equation for a matrix valued function U(x), x - (xl,..., x.) e
C., as follows:

Consider linear problems of the form

Drm(x, z) - A,(x)m(x, z), I n j <., (2)

x -(xI..._ x.) eCn, zEC, where D/--*'1+z_1o"i are commuting derivations
acting on m, and .', 2yj are first-order differential operators in the variables
x.,, 1., Commutativity implies

D:A -DAj + [A,,AI -0 . (3) "

As examples choose three distinct sets of derivations:

D+j- _ + ,~
.1zSj ail(,

where we denote x,+, = xl and S -(-I):

a a :,
D - -+Z ESk T. (5)

I k,

where

I if j>k,
Slk -1 if <k;

% •
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The Anti-Self-Oual Yang-Mills Equation 39

and
a a

D, Tx + z§ r(6)

where n is an even integer and

-I if j n/2, 
%

r. (1 if j>n/2.

Applying DJ as given above into (3) in each case, we have

8A, dA 
"

+ [A, A (7) '
:-N.

and respectively

8A, OAj

Si S, _ 0, (8)
Rj+1 +

dAI 8AS - S k O , (9 )

dA, 8A
• d - r , - ---- 0 . ( 1 0 )

, -Xj - (/2 )  49 t-r,(n/2) ,.
~,4

If we introduce SI by

A (11)dxi,

we obtain respectively the equations

Si 0. 1_2
85F., S,ax, R, dx 1j- (12)

, d ., '~, 70- .. d -  0, (13)

r j _ ,,- ,,/ l ) - ,_~ , ,r ( ,/2 ) d x = ) . ( 1 4 )

Whenever n = 2, each of these equations reduces to (1).

l i
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40 M. J. Abowt0z. G. Costa. and K. Tnenbiat

In order to obtain solutions for these equations we use a general result,
Proposition 4. Our approach is similar to the one used in [12 for Equation (1).

Let x denote the space of N x N matrix-valued functions m(x, z) L01,0-
x e U, U an open domain of C", z e C. such that m is a locally bounded
function of x with values in Ll*. Let * denote the space of N x N matrix-valued p
functions v(x, z) 6 L, x e U, such that v is a locally bounded function of x
with values in L, r) L0. We introduce the following notation:

- (f(z):zrC;f(z)zf(z)sLP), I . p . o..,

We will denote by _'(t) [respectively *()I the space of functions m(x, z) 4 I
[v(x, z) Cz r'] such that om/ax, and am/a5, [av/x, and av/aijI are locally "'
bounded functions of x with values in L-). [Lt ( L ).]. We observe that the.

domain U of the variable x can eventually be all of C ". Introduce the operator

Cl / () A dt.

LEmxA 1. Let f(z) C L' n L-. Then Cf G L' and

ICf IL < IIIL- + TIfIL' < If IL'rL.

Proof.- Write Cf(z) as a sum of integrals over the ball I - -z,- and its
complement. The estimate follows readily.

LEMMA 2. Let f( ,) L' , kCk. e C, such that af/ 1,q exists in the
distribution sense. If f and af/a1, E L', then we have

in the distribution sense. I

Proof. The proof follows from the definition of the weak derivative df/d 1b by
using convenient test functions 8( ), 8( ') and applying Fubini's theorem. 0

From here on, we assume V(x, z) ( Y fixed, and we introduce the operator

Tm -mV. j
LEMIA 3. Let V(x, z) E I(,). Then CT: I -. 7 and CT: T()" -T(,) are well

defined.

Proof.- We show that T: . #) and C: r - I,) are well defined. It
will be clear that the proof also shows that T: Tr and C: X - - are well
defined. .

o.-|

.,./,iP
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The Anti-Self-Dual Yang-Mill EQuation 41

(i) For m C- -,) we have that Tm - mV V L', since V and m e L' . And,
since m and V (or am/axj, am/al, and aV/ax,, dV/cl,, respectively) are r

locally bounded functions in x with values in L' and L' f LO (or LI)., and
Lm(' . n L,0),), it follows that Tm is a locally bounded function in x with values
in L; r)LT.

Moreover, for m r th(1)' were exist the distributional derivatives d (Tm)/dx, ,'I
a(Tm)1,, locally bounded in x with values in L,. n L').,, given by

d(Tm) m dV

Similarly for a(Tm)/ai,. Therefore, Tm 4 Y(1 and T: () -) is well
defined.

(ii) Given v r'( 1 ), Lemma I implies for a.a. x

ICv(x,z)lLr lU(XZ)L'r.L.

Since v is locally bounded in x, it follows that Cv is locally bounded in x with
values in LT'. From Lemma 2, we have the existence of a(Cv)/ax r a(cv)/ai,
and 

..

d(Cv) a v '
dx, : C j . (15)

Now, Lemma I yields

C -J- T~ (16)

and

z(-) Ll I_ L + CHZI-

(dviax (17)b
8V .r) L.?

.  + 1Z .

Similar estimates hold for dCv/i,. Since dv/dx,, dv/dli are locally bounded
in x with values in L1)., n L, it follows from (15), (16), (17) that d(Cv)/dx,
and d(Cv)/dR are locally bounded in x with values in L'),,. Therefore,
Cv ,e A() and C: #^1) -- X(j) is well defined. 0

Let D, - "L + z..i 2 be a derivation acting on functions m, where £, and Y2
are first order differential operators in the variables x,, i, with constant coeffi- .

cients. We note that if m E T) then Dm is a locally bounded function in x
with values in LT. Moreover, for v E #). D~v is a locally bounded function in x
with values in L" A L'. Therefore, [D, TI: --, is well defined. Similarly
[D,,CI: 1:7) -* j is well defined.

V)
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42 M. J. Ablowitz, D. G. Costa, and K. Tenenblat

PROPOSITION 4. Let V(x, z) c- 1 ), x G0 c C ", z E C, such that

(i) DV- 0,
(ii) I- CT: - - T is 1-1.

If m(x, z) e X() satisfies (I - CT)m 1, then m is a solution of the equation

Dzm Q(x)m,

where

Q(x) = - -f .(TM(x, ))dr^df.

Proof: Since D is a derivation, it follows that

D,(1) = 0. (18)

From now on, in view of the above remark, we shall use the fact that the
commutators [Di, T] and (D.,CI are well defined on X',) and 1$) respectively.

Now (i) clearly implies that

[D,T]m = 0 (19)

for all m C X. On the other hand, using Lemma 2, we obtain that, for any
V E

D.(Cv) C C(D)- f (-Y2v)dr A df;

hence

[D,,C]v f - j d A df. (20)

Applying D, to the equation (I - CT)m =I and using (18) it follows that

D m - (D2C)Tm = 0.

hence

D M - [D,,C]Tm + CD2 Tm

- Q(x) + CTDm,

where we have used (20) with v - Tin, m r= EI 1 ), and (19) in the last equality.
Therefore,

(I-CT)Dm - Q(x). (21)

pAf! 1



The Anti-Selt-Oual Yang-Mills Equation 43

Now, we have

Q(x) =Q(x)1 Q(x)( - CT)m =(I -CT)Q(x)m, %

which together with (21) and (ii) yields D~m =Q(x)m. o

For future use, we suppose that the given V(x. z) E sl, is such that
V

SUP IV(X,.)Iur-uLr - < 1-.22

LiiomA 5. If (22) holds, then

(i) I -CT:fX- X* is I1-I and onto,

(iii) m(x, z) is of class C in x provided V(x, z) is of class Ck in x.

Proof: (i): For each fixed x E=U the linear operator m(x, I ~CTm(x.) is
bounded from Lf to LT, with norm less than or equal to 8 < 1. Therefore
I - CT is 1-1 and onto with an inverse given by the Neumann series

(Il-CT)-' = (CT)'. (23)
1-0

(ii): We must show that inere exist Omldx,, dm/di, as locally bounded
functions of x with values in L")... In view of (23), it suffices to prove that the
partial sums

1-0 1x

form a Cauchy sequence. For that we use the following straightforward estimates,
which hold for each fixed x E- U and integer 1 t0:

IC91LTO 1 IL!"~+ gL~,~ g E (26)

(CT)'f IL!' 1 V1 L:1L-1IlL" = 3ILT, f E=- . (27)

I(O9 L', L! 8 1,IgIL! L, g E (28) 2

Observing the identities

q q d~ ~(CT)'1 (CT) _'C! F_ [(CT)'_1jT-K (30)
'-p9' 1  

1-

q q P

z yax(CT)'1 :C(TCI ' j [( C T)'1]- (31)J-P P 0"1



44i M. J. Abkowtz. 0. G. Co" and K. Tenenbiat

we use (25) and (27) repeatedly to estimate (30) as

and, similarly, we use (26)-(29) to estimate (31) as

B dvv av aJTCT' LCJL~LLI-

These last two estimates show that the partial sums (24) form a Cauchy (hence
convergent) sequence of locally bounded functions of x with values in L ).Therefore, there exist dm/dx 1 in L (U, L<),). Similarly, there exist 3/2)s.

The proof of (ii) is complete.
(iii): If V(x, z) is of class C' in x, then, for fixed ze C and an arbitrary

compact set K C U, we obtain from (32) that

which goes to zero as q >p -,O. This implies that re(x, z) is also of class C'
mnx. 0

Now we will use Proposition 4 with the derivations Ds given by (4)-(6) for
Equations (12)-(14) respectively. In each case we must choose V(x. z) G # x) in
such a way that the hypotheses (i) and (ii) are satisfied.

We consider the change of variables

us " zxs/, ts for DJ given by (4), (33)

u-z SJkX& + for D/given by (5), (34)

uJ zrxJ_,,/ 2) +~ ( or Df given by (6). (35)

*.I- ....

These ast two6 esie showea that paria slm (-20, form eaa Cach (hencerVi ahlmr

convrget) equece f lcaly bonde fuctios o x ithvalus i LO(1)



The Anti-Self-Oual YgMills Equation 45

phic function on u,. Therefore, we consider V(ul,..., u,, z) holomorphic on the
variables u, given respectively by (33)-(35). In fact, we shall take V(u 1,..., u, z)
as a polynomial in the u,'s:

V , C(z)u, (36)

,',4

where multiindex notation is being used.
Now, we take U c C' to be a bounded domain and consider K - U.Then, we

choose the C.(z)'s, alIp, in such a way that the linear operator m(x,.)*
CTm(x,.) is bounded from L' to LO with norm <8<1 for all xEK. The
corresponding V in (36) satisfies the hypothesis of Proposition 4 in view of
Lemma 5. Therefore, for such a V fixed, we obtain m(x,z)-(I-CT)-1.
which satisfies the equation

D/m(x,z) - A,(X)m(x,z)

with

A,(x) = Y_(rm(x,t))dr A df,

where DJ - .YJ + z.Y/ is given respectively by (4)-(6). It follows that A. satisfy
(7) and respectively (8)-(10). Therefore 9 given by (11) satisfies (12)-(14) V
respectively.

The matrices m(x, z) can be interpreted as local frames on vector bundles
over C" for Equations (13) and (14). These bundles when compactified may be
viewed as fibre bundles of a complex projective space PD+' over S2 ". The
coordinates u. defined in (34) and (35) arise from the following fibration.
Considering (ul,.... u., z, 1) as coordinates in P (", we take .

%p.

x' - - B(1_-Iz12B2)- u' + (I- z12 2 )'W,

where x =(xl,..., x,), u (ul,..., u.), and
,4

o -1 ... \
1 0

for (34),

B 0iB- f (..) 0

I./ [ 0for (35).



46 M. J. Ablowlz, 0. 0. Cost. and K. Teonnblat

Conversely, the fibre above x is given by (u .. u., z, 1), where

Ut - zBx' + V,

as i4 (34) and (35) respectively. We observe that since B + B' =0, it follows that

I - IzI2B2 - (I-IzB)(I+ IzB)

is invertible.
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On the Solution of the Generalized Wave

and Generalized Sine-Gordon Equations

By Mark J. Ablowitz, Richard Beals, and Keti Tenenblat

The generalized wave equation and generalized sine-Gordon equations are known
to be natural multidimensional differential geometric generalizations of the
classical two-dimensional versions. In this paper we associate a system of linear
differential equations with these equations and show how the direct and inverse
problems can be solved for appropriately decaying data on suitable lines. An
initial-boundary-value problem is solved for these equations.

1. Intlroduction

In 1967 Gardner, Greene, Iruskal, and Miura [11 discovered that the Cauchy
problem, with suitably decaying initial data on the line, associated with the
Korteweg-deVries (KdV) equation could be solved by making use of ideas from
the theory of scattering and inverse scattering. Subsequently a number of
nonlinear equations of physical interest have been solved by variants of this
method. often referred to as the inverse-scattering transform (I.S.T.). Accounts of
these techniques, associated algebraic structure, and amenable nonlinear equa-
tions can be found in texts on this subject (see for example [21).

An equation which fits into this framework is the sine-Gordon equation:

U,, - u - K sin u = 0. (1.1)

The sine-Gordon equation is of interest to physicists and mathematicians. It was%
first solved by I.S.T. in [3]. In physics it arises in the study of Josephson
junctions. particle physics, stability of fluid motions, etc. In mathematics it has
arisen classically in the study of differential geometry. In this paper we shall
describe a method which enables us to carry out the I.S.T. for certain nonlinear

Address,. for correspondence: Professor M. J Ablowitz. Department o f Mathematic.s. Clarkson
University. Potsdam. N.Y. 13676.
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n-dimensional generalizations of the sine-Gordon and wave equations (K = 0)
which arise in the study of differential geometry.

Originally, the sine-Gordon equation was derived in the study of surfaces of
constant negative curvature contained in Euclidean space R'. There is an
intimate connection between such surfaces and solutions of the equation. Indeed,
in 1875 Blcklund 141 considered the following. Let M and M be surfaces in R'
and I: M - M be a diffeomorphism such that for any point p in M and
corresponding point P - I( p) one has the following:

(a) the line determined by p and is tangent to M and R at p and
respectively;

(b) the distance d(p, r) - >0 is a constant independent of p;
(c) the angle between the normal vectors N(p) and N(p) to the surfaces is a

constant 0 independent of p.

Bicklund proved that under these conditions the surfaces M and M have
constant Gaussian curvature K - i = -(sin 2 0 )/r 2 which can be normalized to be
- 1. Moreover he showed that given any surface M C R 3 with curvature K= - 1
there exists a two-parameter family of surfaces M with curvature i - - 1 related
to M by diffeomorphisms which satisfy (a)-(c).

The analytic interpretation of these results originated in what is now called a
Bicklund transformation, which provides new solutions to the sine-Gordon
equation from a given one. Later Bianchi [51 obtained a permutability theorem
for surfaces which provides superposition formulae for the sine-Gordon equation.

Motivated in part by the work of [6], the natural geometric generalizations of
these results were obtained in [7.81 by considering hyperbolic (constant sectional
curvature equal to - 1] n-dimensional submanifolds M" of the Euclidean space
R i"-. The geometric results for hyperbolic manifolds M" contained in R 2,- 1

were extended [91 to manifolds. M" of constant sectional curvature K < 1 (K < - 1)
contained in the unit spheres S2"- (hyperbolic space H2" '). In particular, the
zero-curvature submanifolds of the unit sphere correspond to solutions of a
generalized wave equation (GWE) which is a homogeneous version of the
generalized sine-Gordon equation (GSGE) associated with embeddings in
Euclidean space.

The higher-dimensional version of BAcklund's results takes the following form:

dX + XA'X= A - XB, (1.2)

where

"ax

S- Idx ,

A, = 0,(z)a, dx.

B" da, _ da,
B, , " d , dx 1<i 1< n, (1.3)

.',

*
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and a-- (a,) c R"'". Equations (1.2)-(1.3) reduce to the BAcklund transforma-
tion for the generalized sine-Gordon equation (GSGE) when

fl,(z) = (z-+(28, 1 -1))/2z. (1.4)

and for the generalized wave equation (GWE) when

(z) 0 (1-Z2)/2: - X(z). (1.5)

The compatibility condition required for the existence of solutions to these
B~icklund transformations results in a system of second-order partial differential
equations for an orthogonal n x n matrix a = {a,,)} in (1.2) which is a function
of n independent variables a - a(xl. x,..., x,). The equation has the form

d 1 aI, ( i d a,, )
dx, a,, dx, dx, a,, dx,

+ , da, da,, a ,

~ 2 dX, dX,= h4( 8 al, 1 8 ,O

dal, d , a da l, " dk distinct,
d X' a,, drT a,,a,, ax, ax, .I itnt

da,, a,, da1 ,
d, aX," i * k, (1.6)

where E = 1 for the GSGE and e = 0 for the GWE.
We observe that when n = 2 and E = I (GSGE), the orthogonal matrix a =

{a,,} given by

I cos u sin u(
-sin u cos u(

for the function u=u(x,t) reduces the GSGE to the classical sine-Gordon
equation (1.1). We note also that if the parameter : in (1.2) is given by. = tan 1.
then e is the constant in BAcklund's statement (c) above. On the other hand when
n = 2 and E = 0. then with (1.7) the GWE reduces to the wave equation (1.1) with
K = 0. When n >__ 3 the generalization of the wave equation discussed here is
nonlinear. A BAcklund transformation and a superposition formula for the GWE
were obtained in 19].

The Bicklund transformations (1.2) described above are in fact matrix Riccati
equations. Linearizations of such a system can be performed in a straightforward
manner (see for example [101). Introducing the transformation

X=Ltv-. (1.8)
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where U. V are n X n matrix functions of x. x., the following linear system is %
deduced:

(dUI (0 A\
dV) 1, ,A )( 8/ (1.9)

with the components of A. B given in (1.3). Compatibility ensures that the
orthogonal matrix a - {a,,} satisfies the GSGE with (1.4) and GWE with (1.5).
Alternatively, if we call

V)""

the following linear system of 2n o.d.e.'s are obtained:

T +(.

where 4,, C, are 2n X 2n matrices with the block structure0 a ° 0 t 0).
Here d,. , are n X n matrices having the following structure:

-, ..(-l~e,a, + a,.

a, = ae, (1.12)

where e, = { e. ),, is the unit matrix

fl i=k=j (1.13)
(e, = , otherwise, (.3

and in component form -t, takes the form

a--kJ -a- ,- - (1.14)( kI al
I

X,

In (1.12) a is the orthogonal matrix R" -. SO(n) associated with the GWE when
8= -Aand with the GSGE when 8- t(z + 1/:), A = 1(: - 1/:), and -, is the
matrix (1.14): R, -. M(R). y, + y,= 0. Although y, is determined by a, it will be
convenient to treat (a.y , . y ) as the data. Then both (1.6) and (1.14) arise as
the compatibility conditions for the scattering problem (1.10).

.N
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Since we shall separately examine the two cases GSW and GSGE, we write
down the explicit scattering problems which are compatible with each of these
equations.

For the GWE the scattering problem takes the form , = 4(x, X)]

dip XA + C (1.15)dX/

with

As=a; 0

and e, is given in (1.14) and C given by (1.11), (1.14).
For the GSGE the scattering problem for 4 = 4(x, z) is

4_ =S 0 ela,

ax, (z a;e, 0

/( o (I'-e1 )a\

+ X(Z) a(1( -e) + C4 (1.17a)

8( z ), ( z), C, given above, or equivalently

ox 2 2 )o + CiC (1.17b)

where

(0 uas  .,

BIa u 0 ' u = diag(+1,- . -1).

In this paper we show how the direct and inverse scattering problems
associated with the GWE (1.15) and the GSGE (1.17) can be solved for matrix
potentials tending to the identity sufficiently fast in certain "generic" directions
(to be discussed later). It is along such directions (lines) that suitable initial
values for the entries of a (x) and the matrices y,(x) can be specified. In Sections
2-4 the analysis for the GWE is given, and in Sections 5-8 the analogous
problems are discussed for the GSGE.

Finally, we remark that solving the n-dimensional GWE and GSGE reduces to
the study of the scattering and inverse scattering associated with a coupled
system of n one-dimensional o.d.e.'s. This is in marked contrast to other attempts
to isolate solvable (local) multidimensional nonlinear evolution equations which
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are the compatibility condition of two Lax-type operators

L = N. (1.18)

0=- MO. (1.19)

where L is a partial differential operator with the variable t entering only
parametrically. Although nonlinear evolution equations in three independent
variables can be associated with suitable Lax pairs (e.g. the Kadomtsev-
Petviashvili. Davey-Stewartson, and three-wave interaction equations-see for
example the review [11]). little progress has been made in more than three
independent variables. In this context one has to overcome a serious constraint
inherent in the scattering theory for higher-dimensional partial differential oper-
ators in order to be able to find associated solvable nonlinear equations: namely.
the scattering data generally satisfy a nonlinear equation (see [12-14]). The
analysis discussed herein completely avoids such problems, since the linear
system is simply a compatible set of n linear one-dimensional scattering prob-
lems. On the other hand, these results demonstrate that the initial-value problem
is posed with given data along lines and not on (n - 1)-dimensional manifolds.

2. The forward problem for the GWE

We consider here the spectral problem (1.15), assuming the associated compati-
bility conditions, i.e. the GWE. The strategy is to transform (1.15) to a standard
form and to associate to it a Riemann-Hilbert factorization problem as in [15].
The transformation uses the 2n x 2n orthogonal matrices

U _ (a 0 U U = u0v,. (2.1)

If 4, is a fundamental matrix solution of (1.15), then the function

i(x,X) = U(x)'0(x.X) (2.2)

satisfies

=x + Q,;. (2.3)

where

J, = U-AU = U-' 0 ' 2 _ e / (2.4)

and I
S-- U U, (2.5)dX 0

,I

.AJ. -. ~ . - . . . - - 5 . -
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Ja

where '

a
a, at a-. (2.6)

Converselyv, (2.2)-(2.6) imply that 4~is a solution of (1.15). We look for a
solution 4, in the form

i~xA) - m(x, X)eAAJ x-J = x1,.(2.7)
/-I

Then (2.3) is equivalent to

am
\[Jj~mj+ Qjm.(2.8)%

These equations imply that det m is constant. We look for mn such that "

m( X )is bounded, det m(x,.A) =-1. (2.9)

PROPOSITION 2. 1. Suppose that for some A (e C, m , and m , are two solutions of
(2.8). (2.9). Then there is a matrix W(X) G SL (2n, C) such that '

M 2(X, A) = m,(x, )e'x jw(x)e-,XJ- (2.10)

Moreover, if X e iR then W is diagonal.

Proof: One checks that

e-"' e m 1(X, X) Y'm 2 (X. X)eA' j 0. (2.11)xi.

so the matrix in brackets, W(A), i independent of x. Now (2.9) implies
exp(AxJ)W(X)exp(-\x-J) is bounded with respect to x. which is only
possible if X E=R or W(X) is diagonal.

We study the problem (2.8), (2.9) by restricting to lines in R ". Let w be a unit
vector in R, and y a vector orthogonal to w. Along the line

L(w,y) = (y+sw:sE=R) (2.1i2)

we consider the restriction of m:

I'

%.

% %p
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Then (2.8) gives

dn . X[ J. , A I + O A ;
as-

J.. w-j. Ew-j,

Q(s) a Q(sw, y) a Ew,,(y+sw). (2.14)

DEFINITION 2.1. The data (a,, -y,) are small in the direction w if the operator
norm of the associated matrix function Q satisfies

f W
11 IQ(s, w, y) llds s k < 1 (2.15)

for some constant k and all y orthogonal to w.

DEFINITION 2.2. The data (a,, y, ) are asymptotically flat in the direction w if
each derivative of each entry of the matrices a,, -y, is rapidly decreasing at infinity
on each line L(w, y), uniformly with respect to y. Thus, for each such matrix
entry f, each integer N > 0, and each multiindex 0,

(-:)f(Y+sw) : C(1+Is)-' (2.16)

for every y.L w and s C R.

DEFINITION 2.3. The direction w is oblique if the 2n numbers (± w}, are
distinct.

THEOREM 2.2. Suppose the data (a,, y, ) are small and asymptotically flat in
some oblique direction w. Then for each X e C\iR there is a unique m(., A)
which solves the problem (2.8) and (2.9) and satisfies the asymptotic condition

lim m(y+sw, ) . I, ally, Lw. (2.17)

Moreover m is bounded, m(s,. ) is holomorphic on C\iR, and the limits

m (x, A) - lim m(x. A ±e) (2.18)
f-0.

exist and are smooth functions on R" x iR. Also

lir m(xA) = 1, (2.19)

uniformly with respect to x.

%
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Before discussing the proof of this theorem, let us consider the implications.
For X e i the limits m t give two solutions of (2.8), (2.9). Therefore Proposition
2.1 implies the following.

COROLLARY 2.3. There is a matrix-valued function V: iR - SL (2n,C) such
that

m, (x,X) = m_ (x,X)ex JV(X )e - x J (2.20)

for all x E R", A eiM.

DEFINITION 2.4. The function V is the scattering data associated to (a, y.) and
the direction w.

We now sketch the proof of Theorem 2.2. Note that

e1 + a' = - -.(a'a) a 0, (2.21)

Q, + Q1 = 0, (2.22)

In particular, the diagonal entries of Q. are zero. The problem (2.14) with the
conditions

A(t.X) is bounded and lim in (s, X) = 1 (2.23)

is exactly of the kind considered in [15]. Indeed Q. = 0 and J. is diagonal with
distinct entries (since w is oblique). It follows from the results of [15] and the
assumption (2.15) that (2.14),(2.23) has a unique solution in which is bounded
and holomorphic for X E C\iR and has a continuous limit on R" x R. More-
over, in is smooth with respect to s; hence our assumptions imply also that it is S .

smooth with respect to y. These considerations give us many of the properties of
m, which is defined by

m(y+swX) =m(s.A: wY), y ± w. (2.24)

To show that m satisfies the full set of equations (2.8), we use the compatibil-
ity conditions (GWE). It is most convenient to choose new variables i =
(I .... .,) by an orthogonal change of coordinates in R" chosen such that
d/di-- d/ds. The desired equations (2.8) take the form

dm :~~ ~ R +e l,, (2.25).:..
Tl_ X 1j. ml.+.Q

for > 1. and "-

dm dm
=, w =X[J..m + Qm Rm.

R



M8 J Abo= A *SU. bid K Tenertti

The compaubtbty conditons (CGWE) impl

J . J - I . Q > ' (2 .2 7 ) .

The solution to (2.14) satisfies the ntegral equations (see 15])

h"1,A -I ((r- ,)A)[Q(i)Ai(t, A) dt. (2.28)

where the imit ± oo depends on the matrix entry and on the sign of ReX. while .

* operates on matrices by

*(u)[BJ - ew.IBe-"J. (2.29)

We utilize (2.27) (employing shorthand notation) to compute

am \[,,. 'Q. am-,\ ,Qml)dt
(aQ~, amI

-A\[J.Q']m-XQ[J',m1 di

Js -(Q'm) di + f-o{Q( im-AJ,,m1-Q'm)) di

= Q'm+ f.(( \[XJ',m] -Qm) dt. (2.30)

Thus

am R'm =J,[( -Rm) di. (2.31)

which implies (2.25). [Note that the asymptotic conditions were used in the
calculation (2.30). to eliminate a boundary term in the integration.] This comn-
pletes the proof of Theorem 2.2.

We turn now to the properties of the scattering data V. We introduce an
automorphism of 2n x 2n matrices:

J
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THEOREm 2.3. Thje scattering data V have the following properties:

each entry of V -I belongs to the Schwartz space Y R); (2.33)

V(7X)- = V(A) = [V(X)0J-i (2.34)

Proof (2.33) follows from results in (151. To obtain the syrmmetries (2.34),

observe first that J, and Q, are real and

It follows m7n(x. ) satisfies the same equation as m(s, X) and that both m(x, A)0

and [m(x, A)-']' satisfy the same equation as m(x, - X). The boundedness and
asymptotic conditions are also satisfied, so

m(xA = X m X.) , (2.36)

m(x,X) =[m(xXY'J-] ?n(x,X)a. (2.37)

Therefore

=M+(O.A)'Imi(O.'J' =1 V(X)'. (2.38)

and similarly for the remaining symmetries.

Let us remark here that the construction of m by a Neumann series implies
the estimates

(Imi -( k), Irn ll11 k( - k) -

1m' 11 (1 -k) 1m - Ills k (I1-k) (2.39)

where k <1I is the constant of (2.15). It follows that

11 V -J Il 2k(I -k).

In particular,

We conclude this section with a brief discussion of normalizations and the
relationship of this treatment of the forward problem to that in 1151. The
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normalization (2.17) depends on the choice of a direction w; therefore the
solution m and the associated scattering data V depend on w. In [151, with n = 1,
the normalization was made at -oo and the resulting scattering data V had
certain principal minors identically equal to 1. Here, the same considerations
show that for a given direction w certain principal minors of the associated
scattering data V are - 1. In the absence of a single natural oblique direction,
we have chosen to consider all possible scattering data and have not
imposed conditions on principal minors. We return to this question at the end of
Section 3.

3. The inverse pro e. for the GWE

Suppose V: iR - SL(2n,C) is a matrix-valued function which satisfies the condi-
tions (2.33) and (2.34). Suppose also that

IV(X)- Ill < 1. A E iR. (3.1)

THEOREM 3.1. For each x e Rl" there is a unique matrix-valued function m (x, • )
which is bounded and holomorphic on C \ iR, with continuous limits m , on i R. and
which satisfies

m+(x, A) = m_(x,\)eK JV(A\)e -  
, A e M,

lim m(x, A) . I. (3.2)
1 0

The function m is smooth on R" X (C\iA) and satisfies a system of equations

am
=m X[J,,m] + Q,(x)m, (3.3)

where Q, + Q l m and Qis real,

O/(x) = u'-, rl ( x )"  0 /0 )U {, 3.4)

Moreover, the data { a,, y, } are asymptotically flat in ever' oblique direction in R".

This theorem essentially follows from results in [15]. One way to obtain the
equations (3.3) is to note that the function n I= dm/ax] - X J,. m] also satisfies
the Riemann-Hilbert condition (3.2). from which it follows that Q,= n~m- I is

continuous across iR. Therefore Q, is entire: it is bounded, hence independent of
XA. which gives (3.3). The symmetry conditions (2.34) imply that m(x. X).
[m(x,- A)- 11', and m(x,- A)) also solve the Riemann-Hilbert problem (3.2).
By uniqueness, m has the symmetries (2.36) and (2.37). Therefore Q, is real and

•%
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has the symmetries (2.35), which in turn give (3.4). Finally, an oblique direction wcorresponds to a diagc aal matrix J, - E'wJj having distinct entries, and the
results of [151 give rapid decrease of the data Q. along lines in the direction w, as
desired.

Remark: The data Q, generally do not decrease rapidly in directions which are
not oblique.

To connect this result to the GWE, we need one more step.

LEMMA 3.2. There is a function a: R -. SO(n) such that

a1 =, -at cOa
a(3.5)

Proof: The compatibility relations for the system (3.3) imply
da, aak

S jx--- & ) + aa,. (3.6)

These in turn are the compatibility relations for (3.5). If a solves (3.5) thend(a'a)/dx, 0. so we can guarantee that a -SO(n) by choosing it to belong to
SO(n) at a specified point or asymptotically in some oblique direction.

A solution of (3.5) is unique up to left multiplication by a fixed element ofSO(n). If a is any such solution, we refer to (a, -y,) as inverse data for the
function V.

THEOREM 3.3. If { a, y) are inverse data for V, they satisfy the GWE.
Proof: We simply reverse the procedure at the beginning of the preceding

section. The function
a 0

O,X~) = 0 1 U L n(x,)e " J (3.7)

satisfies the system (1.14), so (a., Y,) satisfy the GWE.
Let us connect the inverse data explicitly to the asymptotics of m in A. By

[151. m has an asymptotic expansion

m(x,X) - T M(x),-', A -. X. (3.8)
'0

This expansion can be differentiated term by term. giving

, [J (3.9)
dx, Q Pm, -*
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In particular, mo m I and so we obtain

Q(XX) - -kmi(x)]

- - r Jj.m(x,). (3.10)

This gives another method for deriving the symmetries (2.35) of Q from symme-
tries (2.36) and (2.37) of m.

As we noted at the end of Section 2, different functions V may occur as
scattering data for the same inverse data unless some further normalization is
imposed. Therefore to complete the analysis of the relationship between solutions
of the GWE and scattering data, we need to know when two functions V1, V2 as
above give rise to the same inverse data. Let m, M 2 be the associated solutions
of (3.2). If the inverse data are the same, then by Proposition 2.1,

m 2(x,A) - m,(x,A)A(X), A e C\iR, (3.11)

where A is diagonal and holomorphic and has boundary values A ; moreover
A(X) - I as Al - oo. NowA has the same symmetry properties as m, soA is the
solution of a Riemann-Hilbert problem (2.3) for a diagonal V. Clearly V, and V2
are related by

V2 , (A-)'VA4 . (3.12)

In particular. V gives trivial inverse data if and only if V is diagonal. Conversely,
if V2 and V, are related by (3.12), where A. are the boundary values of the
solution to (2.3) for a diagonal V, then V, and V2 have the same inverse data.

4. A well-posed Initial-value problem for the GWE

The result of the preceding two sections both suggest and solve an
initial-boundary-value problem for the GWE. Let us say that a solution (a, 7y}
of the GWE is small if there is some oblique direction such that the associated
data { a. , )' } are both small and asymptotically flat in that direction. As before, if
w is a direction (unit vector) in R" and y is orthogonal to w, we parametrize the
line L(w, y) by s -. y + sw. Without loss of generality we may translate the
coordinates and take y - 0.

THEOREm 4.1. Suppose w is an oblique direction in R". Suppose a: L(w,O)
SO(n) and : L(w,O)-- M.(R) are smooth mappings such that a= (Fda/ds
and . are Schwartz functions of s, ' + 0 0, and

a- IIa(s) ld < 3-V2-.

3 -S
'Sff

I,

~'S S~s 'S~*?.,. *j ~ .~ ~'S* %*~~ ~ *V'%~ , %%'* V%'p*~ '%
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Then there is a unique small solution {a, y, of the G WE such that

i(s) *a(sw),

i(S) U-W'-Y'(sW). 41

Proof: Let in be the solution of

is s A [ J.,iu, + QP;,, lim A~(sXA) =1. (4.2)

where

J. F J.and =- ~-Ia 0 \U2

There is a mapping V: iR -~ SL (n,.C) such that for X E iR,

in+ (s, A) = ~(.XesVXei.(4.3)

Note the term e,\sJ.V(X)e-'$J. is the specialization to the line L(w.0) of
e\X.JV(X)e-xj. Thus factorization of this latter function gives us an extension
to R" of A~. V satisfies the hypotheses of Theorem 3.1, so there is an associated
solution m of the Riemann-Hilbert problem (3.2) and

AsX =-m(sw,N). (4.4)P

Let {a,y1} be inverse data for V, normalized so that a(s,w,y =0) = (s). p

Because of (4.4) we obtain

a(s) w (s)

The first identity implies

onL dd)
asa at o L(,)

so we obtain a sE on L(w,0). This completes the proof of existence. Uniqueness
follows from the fact that the scattering data associated to a small solution
(a. y.) and to the direction w are uniquely determined by m on L( w,0) and
therefore are uniquely determined by the functions &i and defined by (4.5).
Therefore the scattering data are uniquely determined by the functions (4.1). The
scattering data, in turn, determine -Y. and determine a up to left multiplication
by a constant matrix. Since a(s, w, 0) =a(s) is prescribed, the proof is complete.

--- -- or'%**.*
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Remark: One can think of V( A) as the initial values for the function

V(A,) - e'- JV(X,O)e-\-1'J. (4.6)

Replacing V(A) in (4.3) by V(A. y) gives the evolution of t to all values of R"
which in turn corresponds to m. This is in analogy to the standard situation in
IST problems.

S. The foqwd problem for the GSGE

Here we assume the GSGE and consider the associated spectral problem (1.17).
Unlike the GWE, this problem cannot easily be transformed to a single standard
form. Nevertheless we shall still associate a factorization problem of Riemann-
Hilbert type with (1.17).

Once again we denote

U2 " I 0 -e,

and we let * denote the automorphism

ES WU~t u  0 IU2 E Uj tiU 0)U2,1 (5.2)

where

u - diag(+1,-1,-1 . -1) e M. (5.3)

In particular,

J0 - J1, I" -- I < j n. (5.4)

We set

4(x,Z) = U4i(x,Z). (5.5)

so that the spectral problem (1.17) becomes

O z-- 1
- X A + + c:,1 +(5.6)

with

,4, = "AIU2 b, U" U2, ex , C = -IU2 (5.7)
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The trivial (unperturbed) solution a a 1, yj n0 of the GSGE has the associated
equation

TX ~,+i') J'(zb (5.8)Nb

which has a solution exp(x.J(z). We view (5.6) as a perturbation of (5.8) and
look for a solution in the form

S(x, z) = m(x, z)ezJ(, (5.9)

The equations for m are then -

elmm

am iz ....- ., + 12-rhm -Mj'*1 + e'm. (5.10)

As before, we normalize by

m(, z) is bounded. (5.11)
?.

DEFINITION 5.1. The direction w in R" is principal if Iwil > 1wI for 1 < j< n. 4,

Anticipating the argument below, let us consider

J.(z) " Ew.J,(z) - w8(z)Ji + E wJz)J,. (5.12)
j- 2

This matrix is diagonal with entries + w1 (z), ± w,8(z), ± wX(z), I < j < n. The
set of z in C such that two distinct diagonal entries have the same real part
always contains the set N

I= iR {z Iz = , (5.13)

i.e. the union of the imaginary axis and the unit circle. It is equal to this set S
precisely when the direction w is oblique and principal

d~a
DEFINITION 5.2. The data (a, a,, Y }. where again a - a' are small in

the direction w if for every y L w,

JIQ(sw, y) 11ds + f; Ia(y+sw)- Ids k < I. (5.14) .-

,'4-

Here again

~a 0)(°0 ,J

'.



194 MA. Ablowft. R. BOM1. and K. Tmentiat

We say that the data (a, a,, y,) are asymptotically flat in the direction w if ( aj, Y,)
are asymptotically flat in the direction w.

THEoREM 5.1.. Suppose the data (a, a, y,) are small and asymptotically fiat in
some principal oblique direction w. Then for each z E= C\X there is a unique m(.:)
which satisfies the system (5.10), (5.11) and such that for each y -L w

urn m(y+sw. z) 1.(15

Moreover, m is boundied, m(x, -) is holomorphic on C\X, and m(xc) has
continuous imsits on I from each of the five components of C\1.

To be specific, let us denote by m +the limit on I from the components
(izl >1, Rez > 0) and (IzI <1, Rez < 0), and denote by m- the limits from the
other two components.

Coao..&RY 5.2. There is a matrix valued function V:\ ±i} -SL (2 nC)
such thatr

m (X, z) = m (x, Z)ex.J(z)V(z)e-I+J':. (5.16)

As before. we define V to be the scattering data associated to (a, -y,) and the
direction w. To prove Theorem 5.1, we make two transformations. First, let

m(z)- U- )U~m~x'z) (517

Then the system (5.10) becomes

where

Q,(x. z) =Uii' )U2 + -!4U B U -,-u (5.19)

Along a line L(w. y), (5.18) leads to

T- [J.(z + QiwI

A(.,)bounded, lim in (s.:)=1 (5.20)

3CI
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where

0' Z) -Q(,Z; w. y) - .w1 Q(y + SW, Z). (5.21)

Although this problem is not identical to that considered in [15], nevertheless the
methods of (151 apply to give the existence of a unique solution AF(., z)=

zw(.. z;wy) for all z r C\E such that

00 11 '(s, z) 11& < . (5.22)

The integral in (5.22) is majorized by that in (5.14) when IzI > 1. Changing to

m'(y+sw' z) ($, Z; W, y) (5.23)

and arguing in Section 2, we see that n, - U ' Urn' has the desired properties for ,

all IzI > 1. To obtain results for Izl s I we can either use a second transformation
or take advantage of a symmetry. Note that

J,(I/Z) = J(z),-

b,- 41 , ,= . =b e , (5.24)

Therefore m(x.1/z)* satisfies the conditions for Izl <1. This completes our
sketch of the proof of Theorem 6.1.

As for the GWE, one has symmetry properties in addition to (5.24), namely
that J,, J B, , are real and

J,(Z) = J,(z)' - _J=(z)

e ell, Ie (5.25)

Thus one has

M(X,Z) [m(x.z)11Y1m(x.z)O.

m(x, ) = m(x.Z) . m(x,I/:) = m(x.:) . (5.26)

The symmetries of V are an immediate consequence.

-I
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THEOREM 5.3. The scattering data V have the symmetry properties

V(-z) - V(Z)' - [V(z)-'].,

V(I)- V(I) - IV(zy'1. (5.27)

The analytical properties of V can also be deduced from the results of [15). As
given above, V is defined on each of the five components of I\( ± i}. We join
the two unbounded components by compactifying at oo and set

11 l-lz , Re z> 0), .-

p.
12 - {z + i- 0.Zl >l}),

13- (IzJ - 1, Rez < 0), ,

, - (z+i-0, IzI<1). (5.28)

For convenience, we denote restrictions by

, M V 1 ,, j -1,3,

V, V- 1121, j = 2,4. (5.29)
.4,

THEOEmu 5.4. Each V has a smooth extension to the closure of -. Each
derivative of V- I is O(z) as z -0 and O(z - ) as z - oo, for each integer
n a O. At ± i the V satsfy consistency conditions

V1VyV3v,(±i) - I. (5.30)

More generally, for each integer N 0 there are matrix-valued polynomials p, of
degree N such that

V,(:-i) - [p,(z-i)J-'p,+(z-i)+O(z-,iJ ) as -. , (5.31)

with similar conditions at - i, where we take Ps - PI.

As motivation for the next section we note that the function m' in (5.18)
extends to C\X and is the solution of the Riemann-Hilbert factorization prob-
lem (5.16) which is characterized by

lim m'(x. z) - 1. (5.32)

" ,-"' . . , " . . .. - '. '.'. ",..'.. * . .'. *' ', .. ," ' . ,' -
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6. The inverse problem for the GSGE

Let V: 5 - SL(2n,C) be a matrix-valued function satisfying the symmetry condi-
tions in Theorem 5.3 and the smoothness, decay, and consistency conditions of
Theorem 5.4. Suppose also that

IIV(X)-Il 5 k'. X E 1. (6.1)

where k' is a sufficiently small positive constant. Then by the methods of [15],
for x E R there is a unique function m'(x,. ), holomorphic on C\X with limits

on Z, such that

m" (x, z) - M" (x, z)e4 i(.)V(z)e - x J(),

lim m'(x, z) = I. (6.2)

a-'

The function m' is smooth up to the boundary on R" x(C\1). and

m'(x.z) = I + O(z-') Izi - 0, (6.3) 5-

m'(x,z) - m:(x)z', - 0. (6.4) %,
P-0

Moreover, in any principal oblique direction w, for yl w and A c C\I ,

lim m'(y + sw,A) A, (6.5) '5

where A ± is diagonal. The convergence in (6.5) is O(Is IN) for every N, and the
same is true for derivatives of m'. Also, m' and its inverse are bounded functions.

In view of these properties the functions

aOm' - ( m'l)m')-' (6.6)

are holomorphic on C\7, continuous across X except at - 0. bounded at oc,
and O(1/z) as z - 0. For any fixed x such a function is affine in z-. Therefore
m' satisfies a system of equations which we can write in the form P

amn'Ore . [ j(:). M] + 1(B,- J*) m + Cm', (6.7)

where B;- B;(x) and C,'- CU).
The asymptotic expansion (6.4) can be differentiated, and (6.7) implies in

particular that
P.

B,' m'oJ. (6.8)

p

'S ' . . o . .- ° O ,d .. . -5.f *" . d* - -. . o . o .r .r S S.. . . . . . -. I °

. ... - =:l+ . - : a : : - :: a : -: - ,' - -, 'S','' '. .
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Now m' is asymptotically, and rapidly, diagonal in principal oblique directions.
so in such directions

s;- " .o (6.9)

Because of the symmetries of V and the uniqueness of m' we obtain the

symmetries

m'(x, - z) - [ m'(x J Z) m'(x, Z)6  (6.10)

m'(x,i ) - m'(x, z).

These in turn imply that B' and C' are real, while

B; = ( B;)' B)

(6.11)
*C'1 = (C'I)' = CI

Thus these matrices have the form

.0

B;I = '( ~'U21
(6.12)

",S, , o '2.
a.

where f,. a,, -, are real and

+ = Y '. (6.13)

We can extract more information from (6.8) by exploiting the symmetries
(6.10). These symmetries imply

m = i-' = (m-t))' = mo, (6.14)

so

fg U (6.15)

where f and g take values in 0(n). Let

MIX, = M( x, 6.16)

"-".
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Then (m' - ) m" satisfies (6.2), so

m'(xz) = (mo')'m"(x.). (6.17)

Thus

M;= (to) (6.18)

so that

g = g'. (6.19)

Since also g 2 = g'g 1, g has eigenvalues ± 1. Now g depends continuously on V
and g a I when V = 1. Thus g is symmetric with all eigenvalues + 1; hence

-4,

g I, (6.20)

Combining (6.8), (6.12), (6.15). and (6.20), we obtain

/, = fue, (6.21)

Now (6.21) implies that for j * k.

J, B, =U ' 0 *U2
(6.22)

B,J, =U'( °  °)u 2.

The compatibility relations for (6.7) include

_a c ,  a
~, + +C,'C, + 4 (JBk+B, JA) = , ' + CC,'+ (JAB,'+BJ,). (6.23)

In view of (6.22) and (6.12), (6.23) implies

Oad, daA
T + ala4 = - + aca,. (6.24)

These are precisely the conditions for solving for a with

d a
a, = - -. (6.25)

dx, 6.5

We can require that a I as - x along a family of principal oblique lines.

-e %.

I'X

~ ~ b* -
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Then since a, is skew symmetric (and real),

a:RR -" SO(n). (6.26)

DEFINmON 6.1. (a, -, I is inverse data for the function ".

THEOREM 6.1. The inverse data (a. y, } satisfy GSGE.

Proof.. Let

U(x) ,(x) O)U2. (6.27)

and set

,t(x, z) = U(x)m'(x, z)ex-J(. (6.28)

Then the equations (6.6) become

= .zAP + I D + CO, (6.29)

where

A u10 ae,J, UU-= (6.30)e,a 0

0o be,
B, - UBU' =, (6.31)

e_ 0 0

= UCU---U U- 0 " (6.32)

and

b = afu. (6.33)

To complete the proof we only need to prove

b - ua. (6.34)

Let us write

E '(u 0\lu 0).(.5E= k0 1  0  1 (

'.."

g, jj..,i.'J, ._,' .t' a'.'_
,

.# j .'. . ...- ,.,. . .- ,r.!. . ,- .#.. . . . - ..:; " .. v, .' .' 4" €' .' . ¢ .. • .' '% , ', .. • .' '- U. ..
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Then we want to prove

A, BT. (6.36)

To prove (6.36) we write the compatibility conditions for (6.29) in the notation of
matrix-valued differential forms. Let

A = YAdx, B B, E dx:, C C, E dx,. (6.37)

The compatibility conditions are

A A A=0= BA B,

dA = A A C + CA A, dB = A A B + B A A,

dC =C A C + A AB+ B A A. (6.38)

Since C = C' EC dx,, we have

d(A-B') = (A-B')A C +C A(A-B'). (6.39)

Now

A, - B1' = U(J) -( B;)')U-'

=U(J,7 - B;) U' (6.40)

and we know that J/ - B, vanishes asymptotically in certain directions. It

follows from this fact and (6.39) that A - B' a 0.

Remarks:

(1) As for the GWE, the data (a, -y)} can be recovered from the asymptotics
of m' as z - oc as in (3.10). Thus the orthogonal matrix-valued function a is also
determined implicitly by these asymptotics.

(2) The data (a. a,, y} are small in every principal oblique direction if the
constant k' of (6.1) is small enough, and are asymptotically flat in every principal
oblique direction.

(3) As for the GWE, two functions V, and V, give rise to the same inverse
data if and only if IV = (A_-VIA. (6.41)

where A is the solution of the Riemann-Hilbert factorization problem (6.2) for a
diagonal matrix-valued function on Y. In particular, V gives the trivial solution
of the GSGE if and only if V is diagonal.

%

. . .. . . -' ' " : " : ".:_ .,t . - " ." ,% , ,, ',. 't,, . ." , ,.-, .,, : "e..,,.,.". .
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7. A weil-posed initial-value problem for the GSGE

With the same conventions as in section 4, one has the same conclusion:

THEORMm 7.1. Suppose w is a principal oblique direction in R". Suppose
a=-L(x,O) - SO(n) and -L(WO) - M,(R) are smooth mappings such that
Ft - il'di/ds and are Schwartz functions + '= 0, and

f,_ 1iia(s)Ijds < ko.

where ko is a sufficiently small positive constant. Then there is a unique small -

solution (a, y, ) of the GSGE such that

ii(s) = a(sw), ..

V )= 2w,-Y'(sw). (7.1)

The proof is the same as the proof of the analogous result for the GWE in
section 4, hence is omitted.
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MULTIDIMENSIONAL NONLINEAR EVOLUTION EQUATIONS
AND INVERSE SCATTERING

Mark J. ABLOWITZ
Department of Mathematics and Computer Science, Clarkson Unicerstt v, Potsdamz New York 36 76, L SA

and

Adrian I. NACHMAN
Department of Mathematics. Unverstty of Rochester, Rochester, New York 14627. USA

In this paper we will review some recent work done in the field of integrable nonlinear evolution equations and inverse
scattering. We will concentrate on the basic underlying areas and refer interested readers to suitable references for complete
details: specifically background material can be found in various texts on this subject (e.g. [11 by Ablowitz and Segur). More
recent references will be given as necessary. The outline of the paper is as follows.

1) Introductory remarks.
2) A discussion of two separate but related issues. Namely, (a) solving certain nonlinear evolution equations in infinite space,

and (b) inverse scattering. These are important problems having many physical applications. Moreover. they are related to each
other by what we refer to as the Inverse Scattering Transform ([ST).

3) At the end of the paper we will make some remarks on the possibility of solving nonlinear evolution equations in high
dimensions (i.e. equations with more than two spatial and one time variable) by using the [ST method as we now understand it.

I. Introduction

The prototype nonlinear evolution equations for our purposes will be the Korteweg-deVries (KdV)
equation

u, - 6uu., + u, =0 ( )

in one spatial dimension, and the Kadomtsev-Petviashvili (KP) equation

(u, - 6uu, + uX) = - 3a 2 uV (2)

2I
in two spatial dimensions. (It turns out that the sign of a2 is critical: there being two cases labeled by KP:
0 2  - 1; KP 1 -=o2 = 1.)

Historically speaking, the KdV equation was the first equation solved (on the infinite line) by use of
inverse scattering. Subsequently numerous other equations of physical interest in one spatial dimension
were solved e.g. nonlinear Schrodinger, sine-Gordon, three-wave interaction, modified KdV, Boussinesq,....
These equations are all partial differential equations. In fact, there are other equations which are discrete in
space and continuous in time (differential-difference) and equations discrete in both space and time which
also may be solved by IST. One other class of equations in one spatial and one time dimension fit into this
scheme, namely nonlinear singular integro-differential equations; with the prototype being the so-called

0167-2789/86/$03.50 - Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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Intermediate Long Wave equation [2a],

1u,+~t (3)
u9+Tju,+2uu,+(Tu),,nO, Tu -T ct (-~(~ 3

As 8 -- 0, (3) tends to the KdV equation (with appropriate coefficients) and as 8 -- it tends to the
so-called Benjamin-Ono equation

u,+2uu,+(Hu)..-0, H.-I u (4)

The method to solve (4) was recently found and it has certain features in common with some two-dimen-
sional problems - specifically KPI (see [2b]).

It should also be remarked that some ode's can also be solved by similar methods; specifically the
classical equations of Painlevi (see for example [31). We will not dwell on this aspect any further in this
lecture.

In two spatial one time dimension the KP equation is only one of the equations that can be solved in
infinite space. However, an effective method was not realized until a short time ago. The important new
idea of treating inverse scattering as a "8 problem" (see [9a]) was used in (4] to solve KP1 and paved the
way for the development of the IST for a wide class of equations in 2 + I dimensions (a review of this and

related work can be found in [5a, b]). It should be mentioned that earlier work on KP, had been done by
Manakov [6a] and more recently by Fokas and Ablowitz [6b] and on the multidimensional three-wave
equation by Cornille (7a] and Kaup (7b]. KP1 and others like it depart significantly from previous work
and its study has led us to develop a general method to do inverse scattering in n spatial dimensions as we
will indicate in this review (see [Sa, b,cl).

The concept of treating inverse scattering as a "9 problem" was originally discussed by Beals and
Coifman in their study of first order systems of differential equations [9a]. Beals and Coifman have also
recently considered multidimensional inverse scattering via 3 methods [9b].

It should be noted that important contributions in the study of multidimensional inverse scattering ,*
associated with the time-independent Schridinger problem have been made by Faddeev 1101 and Newton
[11]. In one dimension we also note the important contributions of Shabat [12a], Mikhailov [12b] and
Caudrey [12c). Some of the work in this review is related to these studies although the methodology is
different.

2. Inverse scattering and ther inverse scattering trnsform ,

The method of solution by IST begins with the study of two compatible linear operators (Lax pairs) -',
(L depends on one or more "potentials" or functions which we call u)

Lv - Xv, (5)

v, = Mv, (6) 0

connected by the compatibility condition ,.-,

t-,+[,, I=0, -, "U:'

L, +[L, ) 0.(7)

V .V

-0-
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when the flow is isospectral, A, = 0. (7) is the nonlinear evolution equation to be solved. A is a spectral

parameter, which as it turns out loses significance in spatial dimensions greater than one. L is a spatial
operator only; with time acting as a parameter. The parametric dependence in time is what allows us to
study the question of inverse scattering separately and then after this task is completed allows us to solve
the relevant nonlinear equation (7). For KdV the operators are

a2
L=-"-±-u, M=(4X+2u) - u.. (8)

The reader can now verify that (7) yields (1). It should be noted that there are generalizations of (5)-(7),
but we shall not be concerned with that here.

The direct (or forward) scattering problem associated with L means given a potential, in a desired
function class, and solve for eigenfunctions corresponding to suitable initial or boundary conditions.
Usually, appropriate eigenfunctions are defined in terms of an integral equation (e.g. via Green's I
functions). From the eigenfunctions scattering coefficients, eigenvalues, etc. can be calculated. Call the set
of all such data obtainable from the solution of (5) S.

The inverse problem is as follows. Given some subset S of S (i) reconstruct the eigenfunctions and the
potential; (ii) characterize the analytical, algebraic, and/or topological constraints on the data in order to
find a potential in the desired function class.

In recent years significant strides forward have been made in regard to the solution of those inverse
problems motivated by the study of nonlinear evolution equations. Examples in one dimension are(i) dIL n 1

S u(j)(x) d"-v =Av, u(J)(.x),v(x,A) scalar [see9c];
dxx1j - 2 " "d x - J

(ii) dv
-dx -iXJv+qv, v(x,X),q(x)C '", J=diag(J' ..... J'),(J'*JJ,i*j) [see9d].

In nwltidimensions examples are

(iii) a- +Av-u(xy)v-o, a=aR+ia,, xER", yE-. i= dx/dx [see8a. 8c, 9b]

/-I.

(iv) -Av+u(x)v=v [seelO, 11,8a, 8c, 9c];

av " dv(v) F-+ XJ-=qv, o=OR+iUo, xER", yEAR; L.qeCvQ J,=diag(J,'..... J,

(J,'*J/,ij) [see 8b].

The inverse problem for (i) and (ii) may be written in a compact form. Namcly solve

(p.- ,u_)(x, k) = IA -(x, a(k))V(x, k)

on Z (Z is an appropriate contour in the complex k-plane and V is a function depending explicitly on the
scattering data and a(k) is problem dependent) with

At-, --- " I,a(k),V(x.k)givenonX,

I-..i.I-3-

% %
%N
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and

A ±(x, k) meromorphic in kE C/2. (9)

a 5(x, k) has a finite number of poles with locations specified: k,..., k,; and Res.,,A l(x. k) specified
appropriately.

In (9), IA(x, k) is associated with an eigenfunction of the given operator. It is related to c(x. k) by

v(x, k) = Ai(x, k)e'Lo(Xk),

where O.(x, k) is a concrete phase factor which depends on the unperturbed (potential zero) operator. The
parametric dependence X - X(k) is explicitly given (chosen for convenience).

(9) is a variant of the usual Riemann-Hilbert factorization problem. The standard situation involves
finding j ± analytic off .2 without any extra parameter such as x.

Corresponding to (i) and (ii) above, the second order case is classical and has been studied by numerous
authors (a review of this appears in [11). Although some work had been done for third order scalar
operators nevertheless it has only been within the past few years that the solution to the general nth order
case has been found. It should be noted that the matrix system (ii) above has also been studied in [12a-c].
A thorough analysis of the problems. including the case of complex diagonal elements of J appears in [9d].

To be concrete we shall given the results for the inverse problem associated with the one-dimensional
time-independent Schri~dinger equation: i.e. (i) above with n = 2, u(x) = -u 2 (x). Let X(k) = -k 2 , then
the scattering equation is

v.,+(k 2 -u)v-O, -oo <x< o, v=pe- A e (10)

p.., - 2 ik s. - ujt - 0. (11)
(11

The relevant function class for u(x) is f,(I + IxI)Iu dx < c. c(x. k) has solutions (Jost functions)
which we denote by

4(xk) e
ox, k) = e-' , , (12a)

X--= @(x, k) C e' .

Functions with "nice" analytical properties are obtained by multiplying by a suitable exponential factor:

Nlx, k)¢e' k

M(x.k)=e ' k  - 1, .-,2ik (12b)X -0 N(x, k)=e '  e"' e .

The relationship

p(x, k)=#(x, -k) (120)

implies

N(x, k) V (x. -k) )e'  ( 1d I

'
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Completeness of these eigenfunctions requires

M~,k) -= )WX k) + k~k ).x 0,

or, using (12d),

M(x, k) - ,(a(k) _ N(x,k)+r(k) ekxW(x,-k). (12e)
a~k-

where r(k) - b(k)/a(k). The analyticity of M(x, k), N(x, k) is deduced by studying the following a-

integral equations:

M(xk)= I + G.(x-x',k)u(x')M(x',k)dx', (12f)

N(x, k) I +J G-(x -x', k)u(x')N(x', k)dx'. (12g)

where
1 I

c, _2k )  (12h)

C± being the contour below (+)/above (-) the singularities =0. j= 2k inside the integral (12h).
-aG ,±(x, k) is analytic for lik 4S0 and vanishes as Ikl -"o. M(x k ), N(x. k) are therefore analytic for,.

link > 0, link <0 respectively and tend to unity as Ik - oo.
The scattering coefficient a(k) is also analytic for Im k > 0 and tends to unity as Iki - oc (this can be "

deduced from the fact that a(k) is a Wronskian of M, N). a(k) can vanish at a finite number of locations -
in the upper half plane: k = k l ,.... kn. Im k > 0. Calling

M(x, k )
p.Ax,k) - , jA_(xk)=N(x,k), (12i)

'a.
we see that (9e) is a special case of (9) where a(k)= -k, V(x. k)= r(k)e2Aa. The appropriate residue ,-,

statement is

Res (A,(x, k))- c, e2"k,'i-(x, k,), (12j)
A -k,

C, being called the normalization constants.
It is worthwhile noting that when no poles (i.e. no eigenvalues or boundstates) appear, then the

solvability of (12e) follows from the work of Gohberg and Krein [13] in which they prove the existence of
uniqueness of the solution of the corresponding Riemann-Hilbert factonzation problem (in a generic
sense).

10-- -. -
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For completeness we list the integral equations for the eigenfunction and potential reconstruction:

C N(x) I r___N_____
N( x. k),A ' ,. I- _ 't' + t +k .i (12k)

- ' + -k'fii J + k,

ItcN(x) I r(e)N(x. n daa (12)

(9) also -ee 2imply +n dim (e(121k)t -Vx ) " " wenV r caas.Shmaial.w

k, + ki rif J+

havet

j-I

The solution of the initial value problem for suitably decaying functions u(x, k) of KdV is obtained by

u(x,O)-l .(x, k. t 0)" V(x. k,0) V(x. k, t) ;L I (x. k.t)--u(x. t)

The method of solution is what is usually referred to as the Inverse Scattering Transform: ST. This
program has been carried out for a surprisingly large number of physically interesting equations in one
spatial dimension. In fact, the only equation in one spatial dimension mentioned above that does not have

an associated inverse problem of the form (9) is the Benjamin-Ono equation (4). It shares with the KP,
equation an inverse problem of the nonocal R-H form:

(,,.-k, )(x, k)= 1A (x, k')v(x, k', k)dk'. (13)

Next. we shall discuss the KP equation and its associated scattering operator L.

av, + U, - (x..yvt = 0. (14)

Note in (14) we have taken the eigenvalue for 0 without loss of generality the scaling property of ).
Since the analysis for the generalization

or, +IV - u(x. y)v =0, (15)

where 0 OR + ilt 11 d T '. d/Xl', x r= R" Y c- R. is a natural extension of that in two dimensions.
we shall discuss this case. Scattering parameters atse in (15a b looking for a function = s (xh , k) where

v =/,e ' ' ':  " (16)

o/t, + 1A, + 2 ik. - 'p- uA 0. (17

and k kr + ik e C". We hall consder oa 0. fr < :

'-p

.
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We look for a solution 1A(x. y. k ) bounded for all x. v and A - I as I k - c. The latter condition is a
convenient normalization. If we should consider (17) for a = ± I in analogy to the KP 1 scattering problem.
we immediately notice that the dominant operator is the heat operator which is illposed as an initial value b
problem. Even though we pose a boundary problem, immediately we are led to believe that in this case

there will be some type of unusual behavior. In fact in refs. [4, 8al it is shown that the bounded function "

for OR * 0 may be analytic nowhere as a function of k. Specifically p = A(x. y, k R , k ). In particular A is

constructed from the following equation. Given u(x, y) -- 0 sufficiently rapidly at o¢, the direct problem is

I 1 + d(UP). (18)

where

Gfm G f f G(x- x', v-v', kR, k)f(x' y')dx'dv'. (19)

The Green's function G is obtained from

G(x. y, kR, kj) =C i-j- didi. C ( 120a) %= C, ff i01 - J- 2k(21r)"

=sign (y) CI /e' 2,k ).-e I '( + 2 kR + .~ (2.b

where 8(x) ( (1 for x > 0, 0 for x < 0). In constructing (20) we have looked for a bounded Green's
function, and have taken the Fourier transform in both x and v.

Taking the 5 derivative of (18) with respect to k, we find (d/dk,= (dI/AR, + id/dkl,)):

ap _ ddG(u) -dA P
_= - + Gu-(21)I

dk) - dk J  +dku , (21)

The first term in (21) is calculated directly using the definition of the Green's function (20).

dG(up)
f e J e'#x/ A IT(kk )(1 , -kR )8(s( ))d,. (22a)"'"

where

T(k R, k ti )=-f e-1iX .... IJ ',' u( x, y )p(x. v. kR,, kt) dx d v. (22b) '

P(x,y,kR,kli')- x+2 (-k). (22c)

s(fC)=s( ,kr.k1 )- + k -tkR +k k (22d)

and 8 (x) is the usual Dirac delta function. One can derive (22) either by taking the d derivatixe directl, on

'is

z.
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(20b) or on (20a) using the well-known fact

- -w(k - k0 ). (22e)

From (22) one can readily calculate ap//k (assuming (18) has no homogeneous solutions),

.- fei0x.ykg.k.)T(kR. ki,C)(C kp,)8(s(C))A(x ., . k1 )df. (23) a-ak j IOR1

(23) is found by noting that al~a/k is a suitable superposition over a fundamental solution
W(x, y. kR, kI, J) satisfying

W(x, y, kR, k1 , ") -e ( ' kRkj- + G (uW). (24)

Using the symmetry condition on the Green's function,

e- P(' k-kI)G(x, y, kR. k1 ) G(x. y, i, ki), on s() =0. (25)

allows us to find

W(x, y, kR, ki, J) =e 'ID .'kk)'(x, y, ,kj), ons(f)=O, (26)

and then (23) follows.
A special case of (23) is n - 1 whereupon dildk depends locally on IA. For n - 1, let k, - k; then (23)

reduces to

SP sgnlf - k e'P(x.yk-kL"o)T(kR, k1 , o)j(x, .v, C. k1). (27)
OR 

0 R

where to - -kR - (2ao/OR)k 1. (27) is relevant to the solution of KP: KP 1 : a, = 0, 0 R = -I (see [4]) and
KP o = 1, OR-0 (OR < 0) with the scaling k, = kI/R (also see the discussion of the limit to the
time-dependent Schrtdinger equation later in this paper).

The above discussion is entirely within the context of the direct scattering problem. However, it suggests
what the natural data might be for this problem. We shall call T(kR, k 1. C) the inverse data.

The inverse problem is: given T(kR, kj, C) construct u(x, y). However, it is immediately transparent
that there is a serious redundancy question. Namely T(k R, k1, C) is a function of 3n parameters with one
restriction (the restriction is due to 8(s(C)) in (23): i.e. T will be given as a function of 3n - I variables and
we wish to construct a function u(x, y) depending on n + I variables. But for n = I, namely for the
problem in two spatial dimensions the difficulty disappears. As (27) shows T = T(kR. k1, Jo(kR, k1)), hence
T is a function of two parameters as is u.

Using (23) there are numerous reconstruction formulae for u available, However, serious restrictions on
T must be imposed in order to obtain a function u depending only on x, y and vanishing at oc. This is
part of the characterization question, i.e. which inverse data T(kR, k1, C) are "admissible".

One set of inversion formulae for 1 is obtained from the generalized Cauchy formula

ji(k ) - 2id/k dI+ f d I dl (28)

"- 
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10 'ZS

bgmziz~p ;S$*



"S

MJ. Ablowitz and Al. Nachman / Mulidimensional nonlinear evolution equations and inverse scattering 231 %

(Another, more symmetric inversion uses the Bochner-Martinelli formula but this is outside the scope of
the present review.) Applying this to our problem where I -- 1, Ik! --1 k (the first term is unity) we have

fl (x, y, k , kC)

1 ak1 k(x y k k 1 + k-k dk' dkV, (29)

where we use the simplified notation k'-(k ...... k ... kR) and similarly for k,. (29) is a linear
integral equation for (using 23)) the potential is constructed from

u(x " A f 2 J , y, k , kl) dk, dk',. (30)
V dk

(30) is obtained by taking k, --. oo in (18) and (29) and comparing the results.
It is clear that in general the right-hand side of (30) will be a function of kR,,k 1 := 1.2. - 1,

j + 1..., n. One possible way of characterizing admissible data would be to require T(k R, k ,) to be such
that the RHS of (30) be independent of these parameters, for all j. Such a requirement is analogous to
what Newton refers to as the "miracle" in the time-independent problem (see [11]). However. in this

formulation we can go further and give conditions directly on T(kR, kI, J). The importance of characteriz-
ing T(kR, k1 , J) directly not only has to do with understanding on which manifolds of kR, k1. j can one
hope to reconstruct the potential, but also may indicate how one could in principle measure data so as to
produce local potentials in a stable manner.

For n > I the compatibility condition a2
l/dk, k1 -8 = 2 p/dk1 Bk, (i *j) leads to a nontrivial restriction

on T; one which is nonlinear;

,J(T)= N,(T), (31a)

where le
211 k,,) +a, ,k + (31b)

N, [T](k, J) =f[('; - kj,,)(j, - J,) - (j,- k, )( - ' )8(s(j'))T(k., k, t ')T(4'. k. J ) d j'.

(31c)

In fact there is a change of variables which allows (31) to be put in a simplified form. Without loss of
generality we may consider the equations (31) with i = 1, (i * 1, is obtained from i = I by straightforward
manipulation) then introduce new variables (x, w, wo) E C"- x R" x R which parameterize the sphere
S( M, (X (X 2x .... IX-)

W1  01W0 W 1  11 WI _______

k E= 2WE , . - 2 2w2  k2= -wXj 2 2w-
1-2

2j 2w:. k, = wt + (32)
k. 2RO~ 1' i'

2 = w~xI + 2w2  + 2w

2

i E X 2 2w2  (.2
2 2 2w~ iI

% ,
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Thus for w, * 0 there is a I-I map: (ki, k1, () - W (x , w) such that

wu.-kR, w- 2 k1'(J-kR)/aR, (33a)

a p (33b)-P'

which for i - i, j - 2,..., n yields

8TJ-T Ni(r)(X,W,Wo), j=2,..n. (34)

Again using the generalized Cauchy formula we have

J-TX ,w)-ww) dx X , o (35)
11-,= ~ ~ ~ X r-w w0-gX,x

where if(w, wo) ,-=(u(x, y)) is the Fourier Transform of u(x, y) with respect to w, w0. The term fi(w, w0 )
is the boundary value of T(X, w, wo) as X -" oo. This can be seen from the definition of T(X, w, wo) (22b)
and the fact that from (32) X, -" oo implies k, -. c and hence A -. 1. (35) leads both to admissibility
criteria as well as reconstruction of u(x, y). Given T(kR, kI, J) one computes - by quadratures. We also
reiterate the fact that the formula (35) assumes no homogeneous solutions to (18). We conjecture [8a] that if
-0 is independent of X and j and has suitable decay properties for large w, w0, then T is admissible. The
potential is recovered from

u(x, yA =. ' wo)), (36)

'.

where 0 1 denotes the inverse Fourier transform. Moreover, we see that reconstruction follows purely by
quadratures given T(kft, k1, J) on s(J) = 0.

It turns out that the physically interesting cases of the time-dependent and time-independent
Schrddinger equation in n dimensions fall out as special cases of the above result. In what follows we
discuss these cases both as limits (reductions) of the above results and then briefly indicate how the
formulae can be derived without recourse to any limit.

First consider the case a - i, i.e. a, = 1. vR - 0 - (eia < 0); k R, kI = kI/ aR. Then G(x, Y, kR, k1) .

GL(X, y, kR, kR) (in what follows we drop the symbol ), .

G Xy. kR, ki)- -iC, spn(y)fe'" J-' ("22,' (y(W+ 2( kR+k)Jdt (37)GL(X, y)fk) i s * 9

(37) can be directly verified, i.e.

.- )GL(X~y, kR,k1)-S(x)S(y), =Y=i +.1+ 2ikR' 7 (38) .-

and hence ,U - L where PL satisfies I..

"PALi -UML and AL(X,. k.ki)l +G[L(UL). (39ab)

OF
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Certain classes of nonlinear singular integro-differential equations are considered. These equations are mapped. via explicit
transformations, to either ordinary differential equations or to linearizable partial differential equations.

In recent years considerable interest has focused respectively. In the above, Hu is the Hilbert trans-
on certain physically important nonlinear evolution form of u.
equations which can be linearized. Many of these 1 u(c)

equations fall into the category of linearization via (Hu)(x) - 3- , (7)
A soliton theory and the inverse scattering transform

(IST) (for a review of much of this work, see for
'N .example ref. [ 1]). Well-known equations are the where j:_ denotes the Cauchy principal value inte-

Korteweg--de Vries equation (KdV) gral. Although eqs. (4)-(6) are related in a certain
sense to (1 )-( 3) respectively (for the relationship of

u,+2uu,+u,.=0, (1) (1) to (4) see ref. [ 12 ], the IST method for (4)-(6)
the sine-Gordon equation has novel features. With respect to the IST mezhod

BO [3] has more similarities with KP [4] than with

u, =sin u, (2) KdV (the IST for (5) has been recently considered

and the Kadomtsev-Petviashvili (KP) equation in ref. [ 5 ]).
In this paper we consider other singular integro-(u,+2uux+u,,) =-3a2 uy. (3) differential analogs of (1)-(3). These analogs are

Each of these equations has certain singular inte- more closely associated with (I )-( 3): it is shown that
via a direct transformation they can be mapped to

gro-differential analogs, the best known being the so-

called Benjamin-Ono equation (1 )-(3). For example, the equations

u,+2uu,+(Hu),,=O. (4) u,+u,.+2(uHu),=0, (8)

Analogues of the sine-Gordon and of the KP equa- [ut,+u,+2(uHu),]= -3a2u ,. (9)
tions include the sine-Hilbert equation, are mapped to KdV and KP (for the variable w). via
(Hu), =sin u, (5) the transformation

and w=u+iv, ,=Hu. (10)

(u, + Hu_, + 2uuJ = (Hu,, + 2uuJ)r' (6) where u is real and vanishes at infinity.

Various generalizations are possible:
Permanent address: Program for Applied Mathematics, (A) The transformation (10) can be used to map
Princeton University, Pnnceton, NJ 08540, USA. certain singular integro-differential equations to

0375-9601/87/$ 03.50 © Elsevier Science Publishers B.V. 215
(North-Holland Physics Publishing Division)
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ODES. w,=- iw2 , u,=uHu, (L Iah)
(B) Given a linearizable PDE, there exists an

algorithmic procedure for obtaining a singular inte-
gro-differential analog similar to the above. w - w3  u, = 3u(tu)2 , (I.2a,b)

(C) The above results can be extended to allow
complex valued functions u. w =e - , u, =e sin u. (I.3a,b)

(D) The Hilbert operator can be replaced by other (B) The extension of the above results to PDEs is
suitable operators, for example it can be replaced by straightforward once it is noted that the above con-
the T operator siderations go through even if a linear operator is

(Tu)(x) substituted for the time derivative in the above
equations. For example, the following iist is easily

coth[(x/26)( -x)]u( )dQ, (11) obtained [(a) PDEs; (b) singular integro-differen-
2 c 2tial equations]:

6 constant. W,=Wx-i(w
2 )X, u,=u.+2(uHu),, (II.la,b)

This work was motivated by some recent results of
Constantin, Lax, and Majda [61; in particular these w, +wx -ia(W 2 )x+f(w 3 ) -0, (II.2a)
authors proposed the following equation as a model u
for the motion of vorticity for an inviscid incompres- u, + u + 2a (uHu)
sible fluid flow, +flf u I - 3u (Hu)2 ] x = 0, (I.2b)

u, = unU. ( 12 ) w,(=ie- i2) ux,=en usinu, (ll.3a,b)

They introduced the transformation (10) and showed
that w satisfies the ODE, , + i [ w + (w 2 )] = 0, (11.4a)

W= i2(1) u, = (Hu),, + 2 (uHu).,. (II.4b)

We first consider (A). It should be noted that the
above result can be obtained as follows. Operate on Eq. (11.1 a) is essentially the Burgers equation and

(12) with (1 + iHf) and use can be linearized via the Cole-Hopf transformation

H(uHu)= [(Hu) 2 -u 2
1, (14) w= -i(lnf).. (18)

Eq. (II.1b) arises in various population ecological
which is a special case of the known formula models and to our knowledge, was first considered

H(J1g) + H(gHj) = (H~f)(Hg) -fg. (15) and solved via a dependent variable transformation
and splitting into upper and lower functions by Sat-

The above result can easily be extended. Since as suma [7]. In eqs. (11.2) a, fl are real constants, and
is known H 2 - I we have that Hw= - iw. Now w is (II.2b) is an analog of the Gardner equation (a corn-

the boundary value of a function analytic in the lower bination of KdV and modified KdV). Eq. (l1.3b) is
half plane (a "lower function"), vanishing at infin- related to the Liouville equation (11.3a) and is known
ity. Hence, Hw= -iw, and more generally, to be linearizable.

Let us consider the initial value problem for each

w-u+iHu=,Hw =-iw1 (n >0,integer), (16) of the above equations with u real. Given u(x, 0),
initial values for w(x, t) are obtained from

He'= - iew ,  (17) w(x,O)=u(x,O)+iHu(x,O), and the solution
u(x, t) is recovered from u(x, i) =Re w(x, t).

etc. This enables us to construct arbitrarily many Generalizations to systems of equations as well as
reducible equations such as [(a) ODEs; (b) singular discrete analogs are immediate using these ideas,
integro-differential equations]: hence we shall not incorporate them into this discus-
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sion. Multidimensional analogs can also be readily (A), (B).

constructed. For example, an analog to the KP equa- (D) As discussed above we deal with Hu by

tion (3) is extending the function u to its upper and lower func-

a tions. Similarly we can deal with Tu by extending u

T [u, + u, + (2uHu)]=- 3 2u, (19) to a function sectionally holomorphic in horizontal
8x strips of thickness 6 [ 12 ]. Operators associated with

(r2= const and is linearized via the KP equation certain other geometries can also be considered (see
ref. [ 13 ]). Actually one may replace, eqs. (12), and

a[w, + w.,-i(w 2 ),] = -3a2w, (20) (10) say, by the more general system

U, = UV, U= V" U=- V., y < O. (28)

which is formally a rescaled version of (3). Eq. (19)

is (2+1)-dimensional. A (3+1)-dimensional equa- Eqs. (12), (10) are special cases of the above, Ile

tion can also be linearized via (20). Namely let Hu u(x, t) = U(x, 0, t), v(x, t) = V(x, 0, t). We note that

denote the Hilbert transform of u(x, y, z, t) with these equations are mutually consistent. However, it

respect to the variable z, i.e., should be stressed that eqs. (28) are not a (2 + 1 )-
dimensional system since the latter two equations in

H~u=l f u(x, , ) . (21) (28) are the Cauchy-Riemann equations and so

i-t -z W= U+iV= W(z, t), z=x+iy. The transformation
W=U+iVmaps (28) to

Then instead of KP we may consider a multi-dimen-
sional analog of (19): W,

a Iu,+u.+2(uHu)x]= (22 This is derived as follows:
__ a

v,, = Lt., = - (UIV),

and it is also mapped to the KP equation (20), via ax

w=u+iHu. Rational soliton solutions and nonde-
caying soliton solutions of KP are given in ref. [ 8 ]. V9,= - U1 ,= -- (UV). (30)

The initial value problem for KP, with decaying ini-av
tial data, is considered in refs. [ 4,9, 10 ] (for a review Using the formula g(x, y) =fgx dx + g d.y, from eqs.
see ref. [ 11 ]).(28) and (30) we obtain

(C) Let us now consider complex u. For example, (0

iu,=u.+2(uHu),. (23) V, = fy v (U-V) dx+ W( ) dv

In association with (23) define ["("
= (Vl', - L'U, ) dx(V, V'- LV',) dY] .

w. =u±iHu. (24)

Then Then = (r-, - L'2) - iC( t)..'"

i(w±), (W.) ,-:i(w'±)., (25)
(25) -Hence

which is linearized via K"',= i 94'2 + 00t .. '
wV. = -i(Inf"t (26)

= i(I!2) From the above discussion it follows that the results

The initial values are obtained as before but the com- of (A)-( C) are also valid if one replaces H by Tor

plex solution u(x, t) is now recovered from by another suitable operator (see ref. [ 13]).

u(x, t) = ( w. + w_. ( 27 ) This work was partially supported by the Air Force

The above approach can also be used for dealing with Office of Scientific Research under Grant Number

complex initial values of the equations considered in 78-3674-D, the Office of Naval Research under Grant

21'
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ABSTRACT

S

In this paper we develop an algorithrnic method for transfor-I'in

quasilinear partial differential equations of the form u g(u)u

m mf(uu x...,nl u u/x m , where dg/du 1 0, into semilinearunlx mx

equations (i.e., equations of the above form with g(u) 1 1). This

crucially involves the use of hodograph transformations (i.e., trans-

formations which involve the interchange of dependent and independent

variables). Furthermore, we find the most general quasilinear equation

of the above form which can be mapped via a hodograph transformation

to a semilinear form.

This algorithm provides a method for establishing whether a given

quasilinear equation is linearizable; i.e., is solvable in terms of

either a linear partial differential equation or of a linear integral

equation. In particular, we use this method to show how the Painleve

tests may be applied to quasilinear equations. This appears to resolve

the problem that solutions of linearizable quasilinear partial differ-

ential equations, such as the Harry-Dym equation ut = (u- 12)
t ~xxx'

typically have movable fractional powers and so do not directly pass

the Painlev6 tests.

.I



I. INTROU[ JCTION "

RL(!ent y there has been considerable interest in the solution o0

certain physically significant, nonlinear partial differential equations.

It turns out that the solutions of these equations may be expressed in

terms of the solution of linear equations (either linear integral equations Z?

or linear partial diffe;-ential equations). In 1967, Gardner, Greene,

Kruskal and Miura [1] associated the solution of the Korteweg-de Vries

(KdV) equation with the time independent Schrodinger equation and showed,

using ideas from the theory of direct and inverse scattering, that

the Cauchy problem for the KdV equation (for initial data on the line

which decays sufficiently rapidly), could be solved in terms of the .

solution of a linear integral equation. Subsequently, this novelty

was developed into a new method of mathematical physics, often referred "

to as the inverse scattering transform (I.S.T.), which has led to the

solution of numerous evolution equations (see, for example, [2] for

details). These nonlinear evolution equations have arisen in many S.;

branches of physics including water waves, stratified fluids, plasma

physics, statistical mechanics and quantum field theory. Previous

to the KdV equation, the first physically interesting nonlinear partial

differential equation which was solved in terms of a linear partial

differential equation was surger' equation i

u + 2uu (1.1)u Ux x X

which was mapped into the linear heat equation via the Cole-Hopf trans-

formation [3].

D -~s. C% 7. -Y- I.% ~ -7,j
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Partiai I (III terenitidil P~jdt ions which can either be s lved by

an dpp~ropjr i a t0 T .5nT" J y d t rangs loria t i on to a3 1 1 in(a r iirt, 1

differential equation are said to be linearizable. The most well known

linearizable partial differential equations are of the form

Ut un + f(uu I. ..lu( n > 2, u (u1 .2)

Definition 1.1 A partial differential equation is said to be semilinear

if it is of the form (1.2).

There also exiA, linearizable equations of the form

u (u)unx + f(u'ux"**.Lu(n- x)) n > 2, (1 .3)

where dg/du 0. 
.

Definition 1.2 A partial differential equation is said to be quasilinear

if it is of the form (1.3).

Well known examples of quasilinear linearizable equations

include an equation studied in []

Ut (u u U U ~ 14
t X

where i is an arbi trary rnunstant and the Harry-Dyr equation (Kruskal [5])

1%~
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4 t . 2 ( u - I. , q . .

which is known to be linearizable [6] (see also [2b]).

Fokas and Yortsos [4] considered second order quasilinear

partial differential equations using the symmetry approach of

Fokas [7]. They showed that the most general equation of the form

ut  =g(U)Uxx + f(UUx), (1.6)

which is linearizable is the equivalent to the equation (1.4), which

via an extended hodograph transformation is mapped to the Burgers' equation."

Similarly, it is known that the Harry-Dym equation (1.5) can be trans-

formed either into the KdV equation (see, for example, [2b] or [8]), or [

the MKdV equation (see, for example, Kawamoto [9]). The ".

notions of equivalence and hodograph transformations are defined below:

Definition 1.3 Two partial differential equations are equivalent if one

can be obtained from the other by a transformation involving the dependent

variables u =  (v) and/or the introduction of a potential variable -.

(u = v xor ux :V).

For example, the Burgers' equation is equivalent to the heat equation.

Definition 1.4 A pure hodofrah transformation is a transformation

of the form



4

t, u(x,t). (I.7)

Definition 1.5 An extended hodograph transformation is a transformation

of the form

x
T t, f (u(x',t))dx. (1.8)

The above discussion naturally motivates the following questions:

Equation (1.4) is a quasilinear analogue, via an extended hodograph

transformation, of Burgers' equation. Similarly, the Harry-Dym equation

(1.5) is a quasilinear analogue of the MKdV equation. .

i) Is there an algorithmic method of finding a quasilinear

analogue of any semilinear equation?

ii) Is the associated quasilinear equation unique?

iii) Conversely, given a quasilinear equation, is there an

algorithmic method of finding whether it can be mapped

to a semilinear equation as well as finding this semi-

linear equation?

In this paper we consider the above questions for semilinear and

quasilinear equations (1.2) and (1.3) respectively. The answer to

question i) is affirmative. Also, the associated quasilinear equation

is unique, since extended and pure hodograph transformations yield

equivalent quasilinear equations. Furthermore, we find the most general

equation of the form (1.3) which can be mapped via an extended hodograph

transformation to a semilinear form.

"S,



The above results are of some interest in establishing whetne

an equation is a candidate for linearization. Suppose thdt Or l i"

interested in investigating whether a given quasilinear equation is

linearizable. We propose the following algorithmic procedure (see .II1);

1. Put the equation into its potential canonical form

-n1/nv.. , )A19
vt V Vx- V nx + H vx IV xx ..I (n-1)x)'

by using the transformation vX = g 1/n(u).

2. Apply a pure hodograph transformation to equation (1.9). If equation

(1.9) is transformable to a semilinear equation, it will become

9nt  :nn + H n ,n ,  .. , (n-l) x .  (1.10) ,,

3. Investigate whether equation (1.10) is linearizable. This is

easier than investigating whether (1.2) is linearizable directly. ,

The reason for this is twofold. First, for at least third order

equations there is a complete classification of all linearizable

equations. Within equivalence, there exist only six such equations

(see below). Hence one needs to study if there exists an equi-

valence transformation to map equation (1.10) with n = 3, to one 0

of these six canonical equations. Second, for equations with

n > 4 one may investigate the question of linearization via the

Painlev6 test. The Painlev6 approach is reviewed below. Here we

only point out that quasilinear partial differential equations do

not appear suitable for applying the Painleve test. Ramani, %

"Sw
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Dorizzi and Grafimdticos 10] (see a I [11] and the references

therein) i troduced the nOt Ion of 'weak-Pa i nleve in order to de,3 1

with equations such as the Harry-Dym equation which are linearizable

after a change of variables. However, the higher KdV equation

3
ut = uxx x + u ux, although nibt thought to be linearizable (since it

has only three independent polynomial conservation laws of a certain

type [12]),is also "weak-Painleve" [13]. Therefore the "weak-Painleve"

concept does not distinguish between a linearizable and a non

linearizable equation.

We point out that one often finds in the literature claims of "new"

third order linearizable equations. These equations, using the notion of

equivalence can be mapped via a pure hodograph transformation to one of

the six canonical equations mentioned above.

The above algorithmic approach is useful provided that a given

linearizable quasilinear equation can be mapped to a semilinear form.

The above approach will fail if there exist linearizable quasilinear

equations which can not be mapped to a semilinear from. It is shown

in [4] that such equations do not exist for at least n 2. The

question of whether such equatiors exist for n > 3 remains open.

IA. Classification of third order equations

Svinolupov, Sokolov and Yamilov [14] have claimed that the

only third order semilinear partial differential equations which are

linearizable are equivalent to the following six equations:

V

e4y-01 1%M J*4* 4 . S * ,.*4
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u t  : + u ,I I )

U=U + 2u +*U u 1 13)

t xxx x

ut = Uxxx + UU + (1. x )U12) U

3 t -I +x +u- 3puu + xu +l 13)

u =u 4 up + e , (1.13)

3 u - 3
Ut Ar e - +uat io)u Y mu (1.14)

xxx 8Uxxx x x

32 1 3 6p(.7

Utd a 6 andu ar arirr cosans Eq Pu)u +1 uatio (1.1) "

KdV equation, which was the first equation to be solved by l.S.T.[l];

equation (1.13) is the Modified KdV (MKdV) equation, also solvable by

I.S.T. [15]; equation (1.14) is the Calogero-Degasperis-Fokas (CDF)

equation [7],'16] equat1,)ns (1 15) and (16) are as yet unnamed and

involve the Weierstrass elliptic function P(u). We note that the CDF

eu/2equation can be put into rational formb let v



8%

32/ 2 -
vt = Vxx v ~ v + .' ,) (.18~

Alternatively, provided that c =  = -2Y (if u L 0, then one

can rescale and translate the variables in (1.14) so that this holds),

letq = sinh(u/2) to obtain

3 2 2 2
qt = xxx - 2[qqx/(I + q )Ix + 4 a qx (19)

(Equation (1.19) is sometimes referred to as the 'deformed MKdV equation [17]

or the modified MKdV [18], thougb itis equivalent to the CDF equation.)

We also note that both equations (1.15) and (1.16) can be put into

rational form by the substitution v = P(u).

IB. The Painlev6 Tests

The Painleve ODE test, as formulated by Ablowitz, Ramani and

Segur [19] and Hastings and McLeod [20] asserts that every ordinary

differential equation which arises as a similarity reduction of a

partial differential equation solvable by inverse scattering is of

Painlev6 type; that is,it has no movable singularities except poles,

perhaps after a transformation of variables. Ablowitz, Ramani and

Segur [19b] and McLeod and Olver [21] have given proofs of the Painleve

ODE test under certain restrictions. Subsequently, Weiss, Tabor and

Carnevale [22] developed the Painlev6 PDE test as a method of applying

the Painleve ODE test directly to a given partial differential equation,

without having to study any similarity reductions (which may not exist

%.
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b

anyway). A partial differential equation is said to possess the

Painleve property if its solutions are "single-valued" in the

neighborhood of noncharacteristic movable singularity manifolds. -'

These Painlev6 tests have proved to be a useful criterion for the

identification of linearizable partial differential equations. The

method introduced by Weiss, Tabor and Carnevale (with simplifications

due to Kruskal [23]), involves seeking solutions of a given partial

differential equation in the form ,

u(x,t) = ' P(x't)j__o 4( x't), (1.20a)

with

(x,t) = x + f(t), (1.20b)

where f(t) is an arbitrary, analytic function of t and u.(t), j = 0,1,2,...,

are analytic functions of t, in the neighborhood of a noncharacteristic

movable singularity manifold defined by 0 - 0. Essentially, if a

given partial differential equation possesses solutions of the form

(1.20) where p is an integer and with the requisite number of arbitrary

functions as required by the Cauchy-Kowalevski theorem, then the partial

differential equation is said to pass the Painlev POE test.

However, the application of the Painleve tests to quasilinear

partial differential equations is not as straightforward. For example,

consider the Harry-Dym equation (Kruskal [5])

6&v%
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1 0

u t  = ( " xl. I -
'V~

which is known to be linearizable [6] (see also [2b]). Then (1.21)

does not directly (i.e., without a transformation of variables) pass

the Painlev6 PDE test since it has an expansion of the form

U(x,t) 4/3 (x,t) u u (t ' 1 3 (x,t), ( .2
0j0

with O(x,t) =x + f(t), in the neighborhood of a noncharacteristic

movable singularity manifold defined by 1 = 0 and so has movable cube

roots (see Weiss [24] for details). If an equation has an expansion

of the form

00.

P/r(x,t) : u.(t)¢J/r(x,t), (1.2)
u ( x , t ) t ) E u ( 0( . 3j=O j

.

where p and r are integers determined from the leading order analysis,

then the equation is said to be "weak-Painleve" However, as was cub

pointed out earlier, the non l inearizable equation ut Uxx x xaun x

is also weak-Painleve.

II. SECOND AND THIRD ORDER QUASILINEAR PARTIAL_ DIFFERENTIAL EQUATIONS

An ex tended hodogra ph tra ns form[a ti o
n 

compr-i es o f the c ha nge i

of variables u - vx = ,(u(x,t)) followed by a pure hodograph trans-

-p

formation, and there these transformations are simply related.s,

We first consider the pure hodograph transf ormamton in more detate c

osulph

formtio, and . .""•"""" ""'.-."- ',-' therefore.thesetra-'fo -'tion are ".pl related-,"."-,-"" ".,"," "-



Let

t , x : , ( , )(2. 1

Then using (1.7),

x x + xT X = u (2.2a)

t t + TtaT u t + T* (2.2b)

Therefore the Jacobian of this transformation is ux. Similarly for

the inverse transformation (2.1) we have

= x a + t t = n , (2.3a)I( Xqx Ft x

3T = xn + t* (2.3b)

Under a pure hodograph transformation, derivatives transform as follows

u n ut T 1  (2.4a)

42-5

-uxx= n~ , = r - + 3' i (2.4b)xx ' xxx

or inversely

T)- xu3 _U U-4 3- 2 U-5 (2.5b)
r. = -U U3 , > = -U U + 3U U~ ,F x ~ rf, xx x Xx x

'IV','**.%
= ~ ~~~~~~~) J
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Therefore the linear partial differential equation

ut Uxx X ,  (2.6)

under a pure hodograph transforms to

-3 2 -4 (
n= q - q~ . (2.7)

Note that if one applies a pure hodograph transformation to a partial

differential equation in potential form (that is an equation which does

not depend explicitly on the dependent variable) which also does not -

depend explicitly on the independent variables, then the resulting

equation is also in potential form with no explicit dependence on the

independent variables. Therefore, before applying a pure hodograph

transformation to a given partial differential equation, we shall

put the equation into canonical potential form.

We now consider second order quasilinear partial differential

equations.

IIA. SECOND ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

The most general second order, quasilinear partial differential

equation of the form

= g(u)U + t(uu') (2.8)

with dg/du 0, which may be transformed via an extended hodograph
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transformation to a semiIinear partial differential equation of the

form

S S + G(SS ), (2.9)
T

is given by

Ut = g(u)u I + 2 x + b'(u)u , (2.10)

where d/du, and g(u) and b(u) are arbitrary functions which are

twice and once differentiable, respectively. Furthermore, equation

(2.9) is equivalent to the equation

vt v 2 v + H(vx), (2.11)

which is transformed via a pure hodograph transformation to

-1

n nrH(n ) (2.12)

Proof

In equation (2.8) we make the transformation

te 2t, )F( xt u(,t

then (2.8) becomes



}41

J..l.r. = .g'~.u ).'F

14

OW . + (gF - t). f(' ,

Now choose F such that

gg (2.13a)

Ft  =A(UU (2.13b)

where A(u,u) is such that the compatibility of (2.13) (i.e., F Ft)

xxt tx
implies (2.8). Therefore

1 -3/2 +A u (2.14)
3 t Auux+AUu XX' (.4

where Au : aA/au, Au = 3A//au x; using (2.8)

1 -112g9 + gf(U,Ux A Au x + Au Ux (2.15)
P Uxx x

x

Equating coefficients of u to zero in (2.15), it is seen that

A(uux) = 1/2g, + a(u) (2.16)

where a(u) is an arbitrary function. Also from (2.15)

Au 1 -3/2 (2.1pAu ~ 9 - gf(u,u )I N
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Therefore, from equations (2.16) and (2.]7) we find that

f(u'ux) ( g - - I')u 2 + b'(u)u (2.18)x g' 2 x x

where b(u) is an arbitrary function. Hence, it follows that the most

general equation of the form (2.17) which is transformed via the

extended hodograph transformation

"'

T = t, =(u(x',t))dx
'

p

into a semilinear partial differential equation has the form

J"

(qg" _t b(u . 2.9

ut g(u)uxx - 2 x + biu)ux. (2.19)

We now wish to transform (2.19) into semilinear form. Our algorithm

is to put (2.19) into a canonical (potential form) partial differential

equation and then apply a pure hodograph transformation to convert the

canonical equation into a semilinear equation. In (2.19) we make the

transformation g(u) = v-2 and obtain
x

v 2 v + H(v ) (2.20)

where H is expressible in terms of b. Equation (2.20) is the

canonical equation (since all equations of the form (2.19) are equivalent

to (2.20)). It is essential that the ratio of the coefficients of

and in (2.20) is v 2 in order that the quasilinear equation isVxx an t i(20)sv x

transformed into a semilinear one via a pure hodograph transformation.
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Finally, applying a pure hodograph transformation to (2.20), we obtain

= n -nH(n-), (2.21)

as required.

Therefore in summary, in order to determine which equations

of the form

ut = g(u)u + f(u,u), (2.22)

where € 0 and f(u,u ) is a rational function of u and u ,
du x x

are linearizable, it is sufficient to consider the canonical equation

=t -2v + H(v) (2.23)

where H(v x) is a rational function of vx. Applying a pure hodograph

transformation to (2.23) yields

n :n K- nH(r.)

This can be put into non-potential form by making the transformation

w nr ,hence

w 7 w , + h(w)w, , (2.2-

W.



17

where

h(w) - w ( /w)].

It is shown in Appendix A that equation (2.24) can pass the Painleve

tests if and only if

h(w) = 2' w + n,

,%

where a and 8 are constants. Hence from (2.25),

-:l
H(w) :cw + (2.26) %

Therefore, this suggests that the most general partial differential

equation of the form (2.22) which is linearizable is equivalent to

the equation

u- -2ut ( u ) + a u u .(2.27)

We use the word "suggests" because we are aware that the Painleve tests

have not yet been proven, though there is considerable evidence suggesting

their validity. This completes the "proof" of the result first obtained

by Fokas and Yortsos [4]. However, the method in the present paper is _

somewhat simpler than that used in [4] and is easily generalizable to

higher order quasilintar partial differential equations.
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IIB. THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

Proposition 2.?-

The most general third order, quasilinear partial differential

equation of the form

=t g(u)u + f(u'u 'u~) du (2.28)

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

.
ST S + G(S,SrS ),(2.29)

is given by

Ut =g(u)u~~ + B (u'u )u + Bu (u,u )u

+ (r-- -L)B(u ,u )u ~ -u (2.30)
g 39 9 3 x VX

where B = B/3u, Bu = B/u ,prime denotes derivative with
U x

respect to u, and g(u) and B(u,u) are arbitrary functions. Furthermore,

equation (2.29) is equivalent to the equation

v t v x v x + H(v Xv ) (.1

which is transformed via a pure hudograph transformation to

0%

Je*
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-3.

H 5%n n ~ r n . H,, - 1 - 3 ) "
= -r , ' !. • (2.32)

Proof.

In equation (2.28) we make the transformation

T = t, . = F(x,t) , i. u u(x t),

then (2.28) becomes

3V

1= g(u)F nr,+ 3gF n + (g F) ."

xxxx -

+ f(n,n F F +F n). -.
~ 'x xx

Now choose F such that

3 , i- F 1/3
gF• 1, i.e., F, g (2.33a)

Ft = A(u,uxUx), (2.33b)
t x xx

where A(u,u ,u ) is such that the compatibility of (2.33) (i.e.,x xx.1

Fxt = Ftx) implies (2.28). Therefore p

.

1 -413g,. Au + A u + A u
x x x A..

or using (2.28)

LS
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1 -1/3 1 -4/3 e-- g 'u 9 g 'f(u u,u ),.
Y ' X uX X ,

=A u u A uxuxx + A u (2.34)

By collecting terms and equating the coefficient of uxx x to zero in

(2.34), it is seen that I-U-

- 1/3A(uu =u _g g'u + a(u,ux), (2.35)

where a(u,ux) is an arbitrary function. Also

1-4/3g ,"-

Au +Au - g Uf(UU (2.36)Au x ux xx x Xxx "!<

'

Therefore, from equations (2.35) and (2.36) we find that ',

4/3 ~ +u +q Lu

f(uUuxx) = g-3(9//g )[auu x + auuxx + 3 x xx

:B (uu )u + B (u,u )u + (g-1_ _ -)B(u,u)uBu(U xUx u x  x 9 3 g )x x

u (2.37)
g 3 xx'

where B(u,u): -3(q4 3 /g')a(u,u). Hence, it follows that the

most general equation of the form (2.36) which is transformed via the

extended hodograph transformation

x /
: t, f g 1/3 (u(x',t))dx'

... -.. U- . . . . . . . ... ,.,", / .m" " , w - ."•""","•"~,)
'



into a semilinear partial differential equation has the form

ut g(u)u xxx + Bu (u,ux)U x  Bu (u,u x)Uxx
X

3g + -qq _ xx L "
,)B(uu )u + (2.38)

9 3g g 3 x x

In (2.38), make the transformation g(u) =v then we obtain

V -3v + H(vx  ) (2.39)Vt =X XXX 'x '

where H(v xVx ) is expressible in terms of B(u,u) and g(u). Therefore,

(2.39) is the canonical equation (again, since all equations of the

form (2.38) are equivalent to (2.39)). Finally, applying a pure

hodograph transformation to (2.39), we obtain

1 -3
) THri , -n n , (2.40)

as required.

Thus proposition 2.2 provides an algorithmic method of transforming

the quasilinear partial differential equation

t k Uf(u,u , 'u.: ,'
ut g()x~x x Uxx

where
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f ,u u ) g(u)u (uu )u + (u,u )uf( ' X XU U X
x

+g(II - 3g lB(u,u )u + (2gU' - _)UxU (2.41b)
9i ggx 3 x x

into a semilinear partial differential equation; i.e.

1. Put equation (2.41) into the potential canonical form by making the

transformation v = g-1/3 (u); hence we obtain

-3V = Vv + H(v, (2.42)vt Vx xxx V xx)

2. Apply a pure hodograph transformation to equation (2.42); hence we

obtain

r n 'FH(n (2.43)

3. The resulting partial differential equation will be in potential

form and usually one first puts the equation into nonpotential

form by making the transformation w = . Furthermore, if the

resulting semilinear partial differential equation is linearizable,

then it can be expected to be equivalent to one of the six partial

differential equations given by Svinolupov, Sokolov and Yamilov

[14], which are l isted in :-I (equations (1.11)-(1.16)).

Therefore it mdy be necessary to seek a change of dependent variables

w :(Q) and write the resulting equaition in non-potential form.

An alternative approach is to apply thef Painleve tests directly

V V.%" N.
x , . - " -" - .. *%,. ,,' ., " ,. ." ' -, , , , " • " - " - .... " - -e" - " " ,
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on the semilinear equation, provided that the nonlinear evolution

equation is in rational form (i.e. H in (2.43) is a rational

function of its arguments).

There are two remarks we wish to make about the above procedure.

1. It is important to first put equation (2.41) into canonical form

by making the transformation vx = g /3(u) before applying the pure=

hodograph transformation (otherwise the partial differential equation

will remain quasilinear). To demonstrate this, consider the Harry-

Dym equation

ut = (u /2)××. (2.44)

First put (2.44) into potential form by letting v= u, then

v= (v1 12). (2.45)

Applying a pure hodograph transformation to (2.45) gives

-1/21'

which is just the same equation (i.e., the potential Harry-Dym

equation is invariant under a pure hodograph transformation).

2. If the quasilinear partial differential equation is not in the special
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form (2.41) then the transformation v g (u) yields either a

higher order or nonlocal pdrtial dilfernt d I uquaithr. For

example, consider the partial differential equation

t xxx (2.46)

Then after making the transformation v : u we obtain

xA

-3 vV x  V V ,
xt x xxxx

or

-3 +~ -4
Vt =VV +3 v v v .

By considering several examples, we shall now demonstrate how the procedure

developed above can be applied to determining whether a given third

order quasilinear partial differential equation might be linearizable.

In tnese examples, we apply the Painlev6 tests to the semilinear equaticn

to determine necessary conditions for the equation to be possibly

linearizable. Furthermore, we show that when these condition are

satisfied, then the equation is equivalent to a linearizable Equation

by exhibiting the requisite transformation. Since we are using the

Painlev6 tests in these examples to exclude seve-a possibilit es,

when we conclude below that an equation is "nonlinearizable" ([ecause

the above conditions are not satisfied), we mean "nonlinearizab e,

subject to the validity of the Painlev6 tests", i.e., in these cses

the equation is "probably nonlinearizable."
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Example 2.3

I n this example we determine for which valut- of the conttsta t

is the equation

_- 2h

3= u u +(Iu u u , (2.47)

linearizable. Equation (2.47) was considered by Kawamoto [9], where

we note that if u = 0, then (2.47) is equivalent to the Harry-Dym

equation vt + 2(v- 1/2)xxx = 0 (set u = v-1 /2). In order to set (2.47)

in canonical form we make the transformation v = I/u, hence

-3v  1( 4 2vt Vx vxxx - (x + 3)v v  (2.48)

Applying a pure hodograph transformation to (2.48) gives

r 2 -I

n, + o(re - 3)n r (5 2.49)

We now apply a sequence of transformations to (2.49). First we put

(2.49) into non-potential form by letting w = F1r hence

w1= w~t + ( -3) (w 2/w). (2.50) O

Then, in order to determine whether (2.50) is equivalent to one of the '

six linearizable equations given by Svinolupov, Sokolov and Yamilov

[14] (equations (1.l1)-(1.16)), we lot Q In w, hence *1
|f~j f~** f,.,J/.~*~..'//. ~S C:-%v%
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T + , .  + -1) .  (2.51)

Finally, putting (2.51) into non-potential form

q = q +r'(qC + q2) + 3(a .])q2q,. (2.52)

(additionally it is simpler to apply Painlev6 analysis on equation

(2.52) rather than on (2.50)). It is shown in Appendix B that equation

(2.52) can pass the Painleve tests only if either a = 0, a = 3/2 or

a = 3. If a = 0, then (2.52) is the MKdV equation, which is known to

be linearizable [22]. If a = 3/2 or c = 3 (after rescaling q), then

*, (2.52) is the second equation in the Burgers' hierarchy

q= q + (qq +q + q a (2.53)

(Olver [25]), which is reduced by the Cole-Hopf transformation

q = 2(;n u) = 2u /u,

to the linear partial differential equation

u =U

(i.e., equation (2.53) is equivalent to (1.l1)). Therefore we conclude

that equation (2.47) is linearizable only for these three values of
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Example 2.4

Consider the equation

ut = [ux (1 + u2 -312]x x  2iU x(l + u2 312, (2.54)

where c is a constant. Note that if ct = 0, then (2.54) is an equation

which was shown to be linearizable by Wadati, Konno and Ichikawa [6a].

To put (2.54) into canonical form we make the transformation

vx= (1 + u2 )11 2 , hence we obtain

v -3v - 4v 2x[(l - 2v )/(I - v2 )] 2 t-2 (2.55)Vt = VX XXX Xx xX

Applying a pure hodograph transformation to (2.55) gives

M3 + 3
nT n r 2 2

which has the noni-potential form (w r

w + 3-,w 2 w + :L[w 2 /(l %w2)]_ (2.56)
T 27 '

Equation (2.56) is cquivalent to eqiation (1.19) (after rescalirng the

variables), which i s known as the 'deformed MKdV' equation [17] or

modified MKdV' equation [18] and as shown in -.1, is equivalent to the

OCF equation (1.14) via th. transformation w = cosh(q/2). Hence

we obtain
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1 3 "

q, : qrTT q', i + 3,sinhL(q/2)q '

(0 "

1 3 3 eq e-qqT =qE -8qE + 4( - 2 + e )q (2.57) _

If ( 0 then (2.57) is the potential MKdV equation, while if ', 0,

then (2.57) is the COF equation. Therefore equation (2.54) is

linearizable for all values of a.

Example 2.5

Consider the equation

ut + 2(u -1/2 + f'(u1/2)Ux : (2.58)

where f is a rational function and prime denotes differentiation with

respect to the argument. The objective is to determine for which

choices of f is (2.58) linearizable (note that if f'E 0, then (2.58)

is the Harry-Dym equation). First we put (2.58) into canonical form by

making the transformation v = u'112; hence we obtain

vt v-3 v  3 -4 2 f (Vx (9.59)

Vt Vx xxx 2Vx Vxx

Applying a pure hodograph transformation to (2.59) gives

3 2 -1 -l

which has the non-potential form (w n= )

r.Sj%.% %;e. %-. -. - -
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(W 2~v - ./W). - g'(w)w, (2.609)
wT = w . , T"

where g(w): = w f(l/w). It can be shown that (2.60) can pass the

Painleve tests if and only if

-1

g(w) =cw 3  + w + -w , (2.61)

hence

f(w) = aw- 2 + a + yw2 , (2.62)

where oL, 6 and y are arbitrary constants (see Appendix C for details).

Note that equation (2.60) with g(w) as given by (2.61) is just

equation (1.18), which is equivalent to the CDF equation (1.14) if

either at 0 or y A 0 (let w = e u/2); if o = y = 0 and q = w,/w, then

q satisfies the MKdV equation, hence equation (2.60) with g(w) as

given by (2.61) is linearizable. Therefore, we conclude that the most

general equation of the form (2.58) which is linearizable is

J u2 I/2 2u-3,2u = 0. (2.63)

III. HIGHER ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS.

The method developed for second and third order quasilinear partial

differential equations can easily be extended to higher order equations.

Proposition 3.1

The most gereral quasilinear partial differential equation of

the form
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U dl

ut g(u)Unx + f(u,u ,..... U(n-l)X) U / 0 (3.1)
,X

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

ST = S n + G(S,S ,... s(n-l).), (3.2)

is given by

: + (g-I n l g )B(u,u x , ' ' ' 'u (  )u
ut g(u)Unx + n g (n-2)x Ux -

n-,

gu x + Z Bu(r-l)x urx+  g n xU(n-1)x ,  (3.3)

r=2

where prime denotes derivative with respect to u, and g(u) and

B(u,u×,... ,u(n_2)x) are arbitrary functions. Furthermore, equation

(3.2) is equivalent to the equation

v =vnvn +Hv .. v(n ) ,  (3.4) 1vt = x nx (x Vxx'**"' n-l)x

which is transformed via a pure hodograph transformation to

N
t F F, . . (.n- ) . (3.5)

.0,s,
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Proof

The proof is analogous to those for Propj tions~ 2. 1 and 2.2Z

above and so we shall only sketch an~ outline. In equation (3.1) we

make the transformation

-= t, F = F(x, t) , n2 ,T u =(x, t) ,

and choose F such that

g Fn x 1, i.e., Fx 9 u (3.6) '

Ft =A(u,u '... ULInx) (3.7)

where A(u,u x ...' U(nI)x) is such that the compatibility of (3.6)

F = F tx) implies (3.1). Therefore

-1 -1/n I -(n~l

n

ZA 1u x+ E A ' rIxu . (3.8)

Hencer2 r)xr ..

A~u~u ...,u1 9 (n+1 /

+ B(u,uI ... lu(~)) (3.9)

x (n-2)x
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b

where B(u'ux .... u(n 2)x) is an arbitrary function. Thoriincr , trom

equation (3.9) wu find that ''
' AJ

f(uux,...U(n.l)x)  = (g n )Bu,u , ) U
Unlx 9 n g x'*** 2) x

n-I
+ B u x+z B u r ( + " - -) u .O

lux U(r-l)x Urx x (n-l)x' (3.10)

Hence, it follows that the most general equation of the form (3.10)

which is transformed via an extended hodograph transformation

into a semilinear partial differential equation has the form (3.3)

as required. Equation (3.4) is obtained from (3.3) by making

the transformation vx = g (u), where H(vx  , ) is
x (n-ljx

expressible in terms of B(u,u,...,u(n2)x) and g(u) and therefore is

the canonical equation. Finally, equation (3.5) is obtained by applying 6

a pure hodograph transformation to (3.12).

Proposition 3.1 provides an algorithmic method of transformlng

the general quasilinear partial differential equatior

= g(u)u + f(uu ....u(nl)x) (3.11a)

where I
f ~ u ) (Y " nl g-)B(u u ,.. ,u )u-"f~u U u ) : ; . l. .. U

' (n n g x (n-2)x x

n- I -1

+ x + B u(-)rx 9 () - ')u Xu (1),' (3.1lb) D
r / -I x

into a semilinear partial differential equation as follows:

N-_,
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1. Put equation (3.11) into the potential canonical form by making

the transformation v /n (u); hence we obtain
x

=t - nx + H(Vx, 'vx '* ,v n l~ ). (3.12)

2. Apply a pure hodograph transformation to equation (3.12); hence we

obtain

n = + H 1(3.13)

3. The resulting partial differential equation will be in potential

form and usually one first puts the equation into nonpotential form

by making the transformation w = n . It may also be convenient to

seek a change of dependent variables w = 0 (Q) (and then write the

resulting equation in non-potential form if necessary) and then apply

the Painlev6 tests to the semilinear equation to determine if it

is possibly linearizable. (For fourth and higher order semilinear

partial differential equations, there is, at present, no equivalent

theorem to the one given by Svinolupov, Sokolov and Yamilov [14]

for third crder equations.)

'°

. -
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a.

Example 3.1

In this example wo, cons ider the equ<ition

5/2U U 5x' (3.14)

which was shown by Konopelchenko and Dubrovsky [26] to be the

compatibility condition of the linear operators

L = u3
12 3

x

M 9u5/2 5 + 45 u3/2u a4 + 15u3/2 + -+

x 2 x x xxx t'

where x -  x -  /t (i.e., LM - ML 0 if and only if u satisfies

(3.13)).

We first put (3.14) into canonical form by making the trans-

formation v = u hence we obtain

55 - lOv-6 (v + v 2) + 6 7 45v -8 4
x: V232x 3x x x

Applying a pure hodograph transformation to the above equation we obtain

' = "t 5 ' 1 + 2-2
- : 2 , + 2 35, , -r (3.15)

2 ' 3 .

which has the nonpotential form

w w -Sw W +WW- 2 w2

5 + w2 .,w3 . + l1Ow2 (ww 3, . ww )

lw-3 3S-low wr w . (3.16)
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We now let Q = In w, hence

2= 55 2 5
Q,= Qr + 50Q3 QQ  5Q Q2, + 0

which has the nonpotential form

q, = qs + 5qSq + 5q2 5q3 - 20qq 2 q - q q3 + 5q 4q (3.17)

Equation (3.17) can be transformed into two linearizable fifth order

equations. Fordy and Gibbons [27] show that if q satisfies (3.17)

and u and v are defined by the Miura transformations

2 1 2
u = -q - q , v = q 2q 3.18

then u and v respectively satisfy the Sawada-Kotera equation [28]

(sometimes referred to as the Caudrey-Dodd-Gibbon equation [29])

uT = u5  + 5uu 3r 
+ 5u u 2 + 5u2 u( 3.19)

ard the Kaup equation [30] (sometimes referred to as thE Kuperschmidt

equation, cf. [27])

2l!;*IIvv,. * ?5v~v2;. * .O,,,

Both equations (3.19) and (3.20) are knowr to be linearizable, see [31]

and [30] respectively. This shows that equation (3.14) is the quasi-
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linear analogue of equation (3.17), which is liriearizable and so (3.14

should not be regarded as a "new" I ineari zable f i tn order equat ion.

Example 3.2

The second equation in the Harry-Dym hierarchy is given by

3 1 2

u= u3 [u(uu I U )]ut  u3u(Uxx - Ux)]xx x

= u5USx + 5u4(U U4x + UxU 3x) + 5U3U 3.2
5x + x 4x xx 3 2U xU~x(3.21)

(see [2b] or [323). We first put (3.21) into canonical form by making

the transformation v = u- , hence we obtain

v = - 5  - 5 -6 (4v - 3v3  )t  x V5x - Vx6(42xV4x 3

+ 105 -7 2 315 -8 4 (3.22)
2 'Vx V2xV3x 8 Vx xx"

Applying a pure hodograph transformaticn to (3.22) gives

-1 5 2 -1S2 "4r, ' 2 F F

25 2 -2 45 4 -3
22 3 8
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which has the nonpotential Iormi

.

we  W5 - 5w- I(w w4F + 2w w. + L5 w -2 2

55 2 -2 95 -3 3 135 5 -4 (3.24)WWW - w W W +2 8 W W

As in Example 3.1 above, we now let Q = In w, hence

Q (QQ 2  + Q2Q )+ 3Q5
5r 2',2 2 8 '

which has the nonpotential form

= 53 5~q~2 52 +15 4
q q- 1qq 2 q - 5q --q q. (3.25)

Equation (3.25) is the second equation in the MKdV hierarchy (see[25]).

This provides further evidence of the close relationship between

the Harry-Dym equation and the MKdV equation. It is well known that

the inverse scattering schemes for the MKdV equation and the Harry-Dym

equation are related through a sequence of gauge transformations which

also involve an interchange of independent and dependent variables

[34] (see also [35]). Since the recursion operator for the Harry-Dym a,

equation is well known (cf. [2b], [32]), then using a theorem due to

Fokas and Fuchssteiner [36], it can be shown that these recursion

operators (or hereditary symmetries in the terminology of [36])

are related by a Backlund transformation.

.- "--- W , F - '
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IV. DISCUSSION

In this paper wu have discussed the relitiorlship between quasi-

linear and semilinear partial differential equations. In particular,

an algorithmic procedure was developed for finding the quasilinear

(semilinear) analogue of a given semilinear (quasilinear) equation

(if it exists). Furthermore, the associated quasilinear (semilinear)

equation is unique up to equivalence. This procedure provides a simple

algorithmic method for determining whether a given quasilinear partial

differential equation might be linearizable. Consequently, several

quasilinear partial differential equations which might appear initially

to be "new" linearizable equations are actually equivalent to the

quasilinear analogue of a semilinear equation which is known to be

integrable.

For example, Abellanas and Galindo [37] showed that the quasi- ,-"

linear equation

= (ctu2 + 2fu + )3/2U (4.1)

where a, g , B are constants, possesses a bihamiltonian structure and

hence an infinite number of nontrivial conservation laws. Note that

equation (4.1) contains as special cases both the Harry-Dym equation

3u (4. 2)
U t : Uxxx

and an equation considered by Bruschi and Ragnisco [38]

, W. 4 ., - . .... -. ,- . . . - --*._,-. % ".'. "*., ". . '. '
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ut u3 2 Uxxx  (4.3) e

Applying the method developed in the present paper shows that (4.1)

is transformed into either the MKdV equation (if cL 0) or the

linear equation nT = ng (if c z 0 and 0). (Bruschi and Ragnisco

[38] showed that (4.3) can be transformed via an extended hodograph

transformation to the linear equation.)

In two recent papers, Mikhailov and Shabat [39] have determined

necessary conditions for the existence of nontrivial conservation

laws for systems of equations of the form

ut = A(u)u xx + f(u'u x), (4.4)

where
!4

(uu (a(u,v) b(uv)
S,) A(u) c(u,v) d(u,v)}

f(u,u ) (f(Uv~uxv))

(This is analogous to the work of Svinolupov, Sokolov and Yamilov [14]

who also used the existence of nontrivial conservation laws as the

criterion in their determination of which third order semili near

equations are linearizable.) In order to determine their necessary

conditions, Mikhailov and Shabat [39] first transformed the quasilinear

equation (4.4) into the semilinear canonical form

R. le
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p

= + H(,L. ) (4.5)

where

/ 0)
n ='':3 :0 1 -

H=r ,hrl n) , 6 ,)) . (4.6)

This transformation was achieved by first transforming (4.4) into the

form

Ut  2(U)O3Uxx + F(U,Ux), (4.7) 1"

C..

where

_(U,V,Ux,Vx)'

(U) F(91 ) =G UVU ,V
(so 

1 2

(so equations (4.4) and (4.7) are equivalent), and then applying an

extended hodograph transformation to (4.7).

We note that it would be useful to extend the method outlined in

earlier sections to uuasilinpar nonlinear evolution equations in two

spatial and one temporal dimensions. Due to the presence of more inde-

pendent variables, there is more flexibility in the hodograph trans-

formation.

.- "
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Finally, we make a remark regarding the application of the Painleve

tests. These tests have proved to be a useful criterion for the indentification

of linearizable (semilinear) partial differential equations; however, there

is one major restriction in their application. Since the Painlev' tests

require that a linearizable partial differential equation possesses the

Painlev' property possibly after a change of variables, then one may first

have to make a change of variables before applying the tests. An open

question is: Which transformations are allowable in the application of

the Painleve tests? (i.e., which transformations does one have to check?).

We believe that by using pure hodograph transformations and the notion

of equivalence, the answer to this question might be found.

r
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APPENDIX A

In this appendix we show that the partial differential equation L

Ut = u + h(u)u x  (A.1)

where h(u) is a rational function of u can pass the Painlev6 tests if

and only if h(u) is a linear function of u. In (A.1) consider the

traveling wave solution u(x,t) = u(z), z : x-ct, where c is a constant.

Then u(z) satisfies

.,

u' + h(u)u' + cu' 0. (A.2)

Integrating yields

u' + H(u) + cu -A, (A.3)

dH

where d- = h(u) and A is a constant. It is known that the only equation

of the form

u' R(u),

where R(u) is a rational function of u, which is of Painleve type

is the Riccati equation

U' X 2u + 1 1u * + 109
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where d 2 , " and 0 are constants (see Hille 0 ] PO ,- Ince [41 ] for a

proof). 7herefore (A.3) is of Painleve type il ind only ii H(u) is d

quadratic function of u, so necessarily

h(u) = ,u + j (A.4)

where ci and 6 are constants. If h(u) has the special form (A.4), then

equation (A.1) is either (i) equivalent to Burgers' equation if C x 0, or (ii)

a linear equation if t = 0. Hence (A.1) can pass the Painlev6 tests

if and only if h(u) is a linear function of u, as required.

APPENDIX B

In this appendix we show that the partial differential equation

qt qxxx + (qq + q 2 + 2)

where u is a constant, can pass the Painlev6 tests if and only if .x takes

one of the three values 0, 3/2, 3. We first note that if rx = 0 then

(B.1) is the MKdV equation, which is known to be linearizable [15] and

pass the Painlevj PDE test [22]. Now we shall assume that a 0 and

we consider the time-indepenoent solution q(x,t) y(x) of (B.1), then

y(x) satisfies

.

U,

--.tt. * . . ."" - -- -- -- ~V
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y 1 1  + [yy (y () 2  V - l )y y 0. ("1)4

which can be integrated once, yielding

It1 3
y' + (i -l )y A, (B.3)

where A is an arbitrary constant. Now make the transformation y =3w/aL,

giving

wt+ 3ww 9 (C 1)t2 3 =B, (8.4)

where B := QA/3. Ince [43, p332] shows that the equation

w + 3ww' +-y w 3=8, (B.5)

where -y and B( 0) are constants, is of Painlev6 type if and only if

Y = 1 (the case 8 = 0 is discussed below). Hence (8.4) (and hence also

(8.3)) is of Painlev6 type if and only if

9 2.

-x 3)( 1 3 0) . (B.6)

If t= 3/2 or x~ = 3 (after rescaling (q by a factor of 2) then (B.1)

is the second equation in the Burger', hierarchyIl

qt q = + q) + I (B.7)

~~~pxx 2s x xs *44x 4 44

.b~~~N %4 % %w'~4S' S
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(Olver [25]), which is reduced by the Cole-Hopf transformation
4"

q = 2(n u)x = 2u x/u,

to the linear partial differential equation

Ut = UXXX"

If B = 0 in (B.5), then there exist two choices of *y such that

the equation is of Painleve type, y = 1 ory -9. If y = -9, then
.1m

,I

; i.e.,

(ci + l)(a - 1 : 0. (B.8)

If a = -1 or a 1/2 (after rescaling q by a factor of 1/2), then (B.1)

is

qt= q - (qq + q2) 3q q "  (B.9)

If we seek a solution of (B.9) in the form

q(x,t) P : qj t).. ,t

with 1, = x + f(t), in the neighborhood of the nonhara(,ttPristic singularity

manifold defined by 0 0, then leading order analysis shows that

* I*jl --.- S,%'%' % ,V% % . '9
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p -1 and there are two choices for qo, qo -1 and q 2. Equating

coefficients of powers of : deterini fes the r(ur-, ion re at i ons def n i ng

q (t), for j 1. For to the choice qo = -1, the resonances are -1, L.

3, 3 (the resonances are the values of j at which arbitrary functions

arise in the expansion (B.1O) and for each positive resonance there is

a compatibility condition which must be identically satisfied). A

double resonance indicates that the expansion (B.1O) does not represent

the general solution (logarithmic terms must be introduced into the

expansion (B.10) so that it represents the general solution). For the 0

choice q0 = 2, the resonances are -1, 3, 6; the compatibility condition

corresponding to the resonance j = 6 is not identically satisfied which .

indicates that logarithmic terms again must be introduced into the p

expansion (B.10). Therefore (B.9) does not pass the Painlev4 PDE test.

We therefore conclude that equation (B.l) can pass the Painlev6

tests if and only if ot takes one of the three values 0, 3/2, 3, as

requi red.

APPENDIX C
- 1

In this appendix we show that the partial differential equation

3 2wt wxxx 2(wx/w) + g(w)w, (C-),

where g(w) is a rational tunction, can pass the 'ai nlv tests if and

only if

g~w ' 3  + -I
g(w) w + w , (C.2)

... ...
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where a, and are constants First, consider the time-independe:nt

solution w(xt) - y(x), then y satisfies
,.,

y ol 3[(y,) 2 /y , g(y)y'' (C.3)

where = d/dx. Integrating (C.3) gives

3 21y = y') y - G(y) + A, (C.4)

dG -3

where d = g(y) and A is a constant. Multiplying y y and integrating

dy

again yields

1 -3 2 y'5 3A -2

Wy (yv - v-G(v)dv -2y + B (C.5)
'-.

2y f' -.
where B is another constant. It is well known that the equation

2
(y') R(y), (C.6)

where R(y) is a rational function, is of Painleve type if and only if ,4

R(y) is a polynomial of degree not exceeding 4 (see HiIle [40] or Ince [41]

for a proof). Hence equation_(C.5) is of Painleve type if and only if

yv-3 -3
f v v)dv - Y flt y

IY

I U]

',4[
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where ( 4 ' (t3' '12' "1 and 0 are constants. Solving (C.7) for g(y)

yields

g(y) -3,- 2 3coy 2 (C.8)

If g(y) has the special form (C.8), then equation (CM) is equation

(1.18) which is equivalent to the CDF equation and which is known to pass

the Painlev POE test [42]. Hence we have the required result.
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Davey-Stuartson I A Quantum 2+1 Dimensional Integrable System

'
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We introduce a quantum version of the Davey-Stuartson I system, an exactly

integrable, non-local, non-relativistic field theory in 2+1 dimensions. Quantum

commutation relations between elements of the scattering matrix of the under-

lying linear problem are calculated and are consistent with the classical result

of zero phase shift for the lump type solitons. These commutation relations can

be used to demonstrate the existence of an infinite set of commuting operators, ,

and to exactly diagonalize the Hamiltonian. V
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The field of exactly integrable systems, once largely confined to ,

the study of phenomena in two dimensions (or equivalently, I space + 1

time dimension) has recently seen exciting progress in the understanding

of problems in higher numbers of dimensions. The classical inverse scat-

tering transform (CIST) has been extended 2 and used to solve exactly a

number of non-linear evolution equations in 2+1d, including the Kadomtsev-

Petviashvili (KP) equation and the Davey-Stuartson (DS) equation, both of

which admit localized lump-type as well as extended string-type soliton

solutions. Indeed, more recently, recursion operators have been found for
3

a general class of equations, including KP and DS. There now also exists

an integrable quantum system in three dimensions, obtained by A.B. Zamolodchikov
4

and R. Baxter by solving the tetrahedron equations, a 3d analogue of the

Yang-Baxter equations. The Zamolodchikov-Baxter solution can be interpreted

as a model for the scattering of straight strings in 2+ld, or as a model of

interacting random surfaces on a lattice in 3d.
4.

Here we use an alternative approach to search for new quantum integrable

systems in higher dimensions. Instead of attempting to find another solution V

of the tetrahedron equations, we exploit our knowledge of existing classical

systems and investigate a quantum analogue of the DS system. Davey-Stuartson

is an obvious choice because it reduces in the 1+1d limit to the well-known

nonlinear Schr6dinger (NLS) equation, whose quantum version, the 6-function

6 7Bose gas model , or quantum NLS model is one of the best understood inte-

grable quantum systems.

In this letter we calculate Poisson bracket relations between elements
of the scattering matrix of the underlying linear problem for-DS. These

relations allow one to identify the action-angle variables of the classical

problem. We then formally repeat the calculation by replacing the conjugate

--
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variables by operators and Poisson brackets by commutators and find the

commutation relations between elements of the scattering matrix of the

corresponding quantum problem. We thus obtain an algebra which is a higher

dimensional analog of the Yang-Baxter algebra (in its infinite line version.)

As is the case in 1+1 dimensions , from this algebra we can demonstrate

that the Hamiltonian associated with DS is a member of an infinite set of

commuting operators, and can be exactly diagonalized.

5-
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We first discuss the classical case. We will be concerned with the

hyperbolic version of the DS equation, a non-linear partial differential

equation for a complex-valued function q q(x,y,t),

i i2 2

at + " +- )q + iAlq - iqA2'(

where (- )A = -- (-L + -)(qr),
ax ay 2ax ay

+ -)A 2 =(- - -)(rq), (2) '-

k

with r - -q* (q* denoting the complex conjugate of q).

This time evolution equation for q can be generated by a non-local p

Hamiltonian (which will depend on the choice made for A1 and A2) via the .5

Hamiltonian formulation of classical mechanics, where q and r are the S..-

conjugate variables.

As is the case for all nonlinear PDE's solvable by the CIST, (1) appears .

as the compatibility condition for two underlying linear equations,

Ta = J -L0+ Q, (3a)

=At ad (3b)i + iQ ,,'+ iJ --. (3b

ay

where Q = ( r  ) , J= (1 _) (4)

A- A= (1r~y) 2 5) ,.

(rA 2  .

and *= *(xy,t) is a 2x2 solution matrix.

The first of these equations, (3a), can be viewed simply as a linear

scattering problem in which q plays the role of the potential. (3a)

for suitable choice of boundary conditions, can be rewritten as a system



4'
.

of linear integral equations,

2i(, GL .rr
ij( , ) )= 6ijej 1i 1( '

where ( = (x+y) and E2 = (x-y) with E denoting the coordinate pair (Ei. (2),

= KR + icI is a complex parameter, A is a real parameter, the indices i, j

can each take on values 1 or 2 (where we use the notation 1 -2 and 2 - 1,)

and all integrations are over infinite space. Also, for convenience of

notation we use ij (t, K, X, t) = i, A, t)ei(KR+X) 2Jt and we shall

suppress the argument, t.

We choose the Greens function

LG. .(E, K)= Gi(, Kj.)

d i i J 1 1

2w. e21K.tJ (o(E1+ 2) e(-Ji) eOW~~ (Jit) (7a)

-Rd . 2i(Oc ..+X)Ji~i

= 6(ti) e(Ei) _J' e(Jit)e 1J (7b) .

= -6(Ei) 0(-E) + 2j(E (-J ie *+t (7c) 2.

with - :R .I -R
.ij + iijj . ij : I + Jidj(cR-K)l -

and iij : I"

GL (, K) is obtained by taking the appropriate limit of the Greens function

of the more general D-bar problem.8

We also will find it useful to define a solution, r, of an adjoint linear

problem,
-R +2X

Cik (t' kj' ') : 6ike + + dt' E Ci(W, tj')Qtk(')Gk(Cd;'

(8)
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Of fundamental interest in both the classical and the quantum problem is

the "scattering matrix" or the "scattering data of (6), which we define to be

R
II -~~2i( i + A )Ji )

Tij(K, A, A') : d~e M0 Jk, A)) j (9)

For certain choices of the parameters K, A and A', T can be shown to have

a very simple time dependence, and is thus used in the CIST to "reconstruct"

the potential q(x,y,t) at arbitrary times, for appropriately given initial

conditions.

We can calculate Poisson bracket relations between elements of T, where

we define canonical Poisson brackets

_ 6q 6f 6If, g} i d 6f (10)
f 6q(F 6r 6r(7 -

We find, by use of the linear integral equations, (6) and (8), that

{T (K, A, A'), Ty(t, T , ')1

2

aJJ df caa : as' yiE *886 P )~~') ' a6('t,(1

2

The solution j and its adjoint satisfy E - ik' '
k=1 akk 

kj'

ikj , ( , T ) = 0.

Na

lee

%r'



This identity can be used to rewrite the integrand appearing in (11)

as follows:

{T (,A, A') T (,

2

-a f a a a a i)) aa(a ' E;' a a8 aB a, a5 )

a
"¢Cia ;a 6' a6 Ei '

2-
+ E a J da aB' '  a6( ' ( T, )

a=1a

* j dq ( 6' u') aB({ ( ' )  (12)

In order to evaluate (12) it is necessary to find asymptotic expressions

for * and 4. However, these can be found easily by using (6) and (8) and

noting that it is possible to write GL in the two alternative forms (7b) or

(7c). Then

lim (E.kj( , X, ) 6k e (iR+X)Jk~ k

0(" _ 2  O( J )e kj k k Tkj(K, , L.) (13)

and

_iR + X,)jk~

1im ik( ',kj, ' 6ike ( e kR

T e(-i Oe ~~2i (K R +1)j k(4

2w Tik kj' )

-- ... .
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Inserting (13) and (14) into (12), we arrive at an expression for

I T T~ ,A) 16i u w' )) purely in terms of T's.

ciB J

Instead of writing down the a lengthy expression, which contains terms up to

quartic in T, we instead give results in two interesting limiting cases.

First, letting A =A' = '=0 and T(ic, 0, 0) E TL,) we recover the

scattering data of the hyperbolic limit of the 0-bar problem, and making

use of an identity easily derived from (6), find Poisson bracket relations

(T T(K), TL (T)} IT LT (K), TL (.1)J j {TL (Kc). 4T) C- (15a)

L L 2R

.5.

ITL (K:), T (T))__ + 2w 6( 0 T,(15c)

.d

as well as a number of other similar relations.

-- '

Alternatively, we can take the limit K t + K ,orR.+m,

RI

T(K:, A, A') T(e, e'), where = Kr e K ' are kept finite.

In this way, we recover the scattering data associated with a solution to

(3a).~~~~ ~ ~ v~~t 0)= i(.oe ie ti+i analytic in the upper-half

u plane, which is used in the Riemann-Hilbert approach to CIST. We find

Fi+,ltig; '=u = u =  n T(< O, ) -=T() ercvrte..

(TS (0' o'), S ( (f 2 T+ ( 0)+ (T S(),(

+ 6 1 do S + (0 o' e +(0')'0
6 8 f 2ri (2) a6 6a

-T6( 6 T ( i2a J(- ) T ), (16c) 

(R- 2-i 12) ((l- I 2(
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8

where we've defined S+ (o, 0') 2- ,(C - T')6 + (0, 0).

Similarly, the limit * - ' R * give us the scattering data associated

with a solution analytic in the lower-half 0 plane.

The calculation of commutation relations for the quantum DS problem

is formally similar to the Poisson bracket calculation, with Poisson

brackets {q( ), r(E')} = i6(f-l ) 6( 2- ) replaced by commutators

[q({), r(&')] = i6(&i- j)6({ 2-2), etc. Now elements of the solution

matrix, *, and of the scattering matrix, T, are treated as operators,

and care must be taken throughout the calculation to maintain proper

ordering. For the quantum problem defined by the ordering appearing

in (1), (2), (3) and (6), the quantum results are given by (15) and (16)

with { , } replaced by [ , ]. Note that we do not treat the normal

ordered problem.

The classical results, (15), can be used to demonstrate that the

coefficients appearing in a (11KR) expansion of TL (K) form an infinite

set of constants of the motion, and to identify, by suitable rescaling, the

canonical action-angle variables of the problem. The corresponding quantum

results show that T1L(K) generates an infinite set of commuting operators,

including as a member, the Hamiltonian of the DS system. Furthermore, these

operators can be exactly diagonalized by normalized eigenstates formed by

R TL2( i) acting on an appropriate reference state. This quantum theory

appears to have a trivial S-matrix, consistent with the fact that the class-

ical lump-type soliton solutions of DS experience no phase shift asymptotically

when they interact.

The results, (16) for the Riemann-Hilbert formulatioi, of the problem,

have a very different form, and do not immediately allow one to identify

the action-angle variables. Never-the-less, T+ and T- are related to T



and TL through nonlinear integral equations. In the classical problem,

T12 and T2 1 are known to evolve simply in time to have angle variable

structure. The quantum results corresponding to (16) reduce to the well-

known Yang-Baxter algebra (in its infinite line version) in the 1+1d limit

U (x. y, e) * u-(x, 0) and S-(e, 0') * 6(0 - 0') S (o).
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Abstrat

froposed schemtes; for the numerical simulatin of the Modified 2. The Renesentataon of the WIdV E~iaS11on (U) MORE Numerica Methods
Kogteweg-de Vriea (?AdV) equation are implemented and compared to
other known nmerical methods. These schemes are constructed by methods 0i) Thec proposed global scm which a bind an the 1ST is (Taha god
relate to the inverse scattering transform (IST). In this paper a summary of AblowiMr (31).
their performance using both solitons and nonsoliton initial values as they!4

weeapplied to the M~dV equation will be presensted. Results Wo AR' R:-',AS 16~ -. 1 D!4) + S., S+,
snmoliton initial vaies are quite novel.

1. Introduction -R::t+1 P. [Ru AN' - R.-- -u-20 )'

The Modified Korteweg-de Vries (Mi~dV) equation describes a wide + R~ ,2-+ R:(0) T) a-
clnof physical phnmna(g acoustic waves in certain anlsarmonic Rm1 m. f R.G

Latices 11] and Alids waes in a collzszonlecss plasma (21).

In (1964) we derived nonlinear partial difference equations which have as (2.1)
limiting forms the Kouteweg-de Vries (KdV) and the MKdV equations 13). AOTI
Thus difflicrece equations have a number of special properties 141 and are J

ontwdb ehisrlt to the inverse scattering transform (1ST). .
We have also implemented similar schemes for the nonlinear Schr6dinge Wher
(NLS) equation (Ablowitz-Ladik) and the KdV equation and compared them !4 =1~i~+ S) !4~-,2 5) + R '5.
with known numerical schemes 15,61. Experiments hafe shown that the 1ST
schemes for the NLS and KdV equations compare wary favorably with the
other known numerical methods. Recently we have implemented and (-
comapared the proposed schemes which were developed in [31 with certain ! 1  iI~iA 4) !4)nI

I I~g2 +.2 41
other known numerical methods for the MKdV equation (1.1a) 1101. I P. -R- A Ri+ - 1D

ut ±6u 2 u + u =O0 (1.1ab) '
+ Rip+ Si,+ I Rj P4 .

The following numerical methods were applied to the MKdV equation:
(1) a proposed global scheme, (ii) a proposed local scheme, (iii) an implicit
scheme, (iv) a split step Fourier method (Tappert). and (v) a pseudospectral S, =AP() + A!54) F., + D!') r, Hi,
method (Fornberg and Whitham).

Our approach for comparison was to (a) fix the accuracy (L.,) for
computations beginning at t- 0 and ending at t - T; (b) leave other p = [D(2) + r(4)E, +D G
Parameters free (e.g.. bit. or Air), and compare the omsputing time rcquired__ r
to attain such accuracy for various choices of the parameters.

In the above equation (1.1a) one and two soliton solutions with various , = %
values of amplitudes were used as initial conditions, and periiodic Noundary TT, (6.~~ 6n
conditions were umposed. The numerical Solution is compared to the exact
solution, and in addition. two of the conserved quantities are computed.
namelyfsi'dx, andJf(u' -(u.)2)4sL = n/'l,=;R '~t t ~ ~ 1 ~~ %a

= ~ ~ ~ R + ,wio~ A" (R'mR".3

no n+Jf

G, ± (Rnm 1Rn~::s R',- -1)

N N N %



'p

..

E. = - l R.. .. , . - .. ,R I ,, ,J ,

A!)= *A () + 1 sD(2) - -- A!') W ~ '3 2 3 2 + ( uu'.t - (2.3)

A{)= gA° -.D' = £A{° ) + 0,..,
6 4 6 4 This scheme is also implemented using the s wecpm/eraii technique 'p

Several values of 0 arc employed and experimentally we find that 0 -
a= (

A  , A ') = arbitrary constant, gives the best results.
(iv) Split step Fourier method (rappert 18) ","

R Ax u, and i, < p (half the length of the interval of interest and For convenience the spatial period was normalized to 0,21., then Eq.
m 0 ). This scheme is implemented with the value of A!* ) 

- -1 0, and (1.1) becomes

using the sweeping/iteration technique presented by the authors 15,6]. W.3

(f) The froposed local scheme which is derived from equation (2.1) with p p (2.4)
A! o }  ,s"03 IA 2 where p is half the length of the interval of interest, and X - (x + p) r/p.

u: +L 5 -1 + + 3 um + 1 42 l In order to apply the split step Fourier method for Eq. (2.4) wm (a)" 2(A9 advance the solution using only the nonlinear pan

u'.- 3u.. 1 + 3u - U u 2 U. 5 0. (2.5)
2(A~x)9 This can be approimated by uain an impiit method such as

3" 3 + u . , At 3)r '+3 , - -(8t ,, - 8(u )..-t "
2 l.., U12Ax p + -1b

3):+ 1 3)," +11+ [8(U3)',~
r.2(Un.I+)2 + (U"17+)}-(t)~t+

- 8( ).')=, - (U3):'.,2 + (U
3 ).,J) (2-6) X

++, [U Ii. + U ,,1 %+ +. 2u'+ 2 n R + , ., n-

where i is a solution of Eq. (2.5); (b) advance the solution according to c-
r~ ~. R-1 . .t0{I"

" 2 ,. + u1 5 t + -AAA (2.7)

Unto5+1 +~ 14 '1  j bymeansofthediaeteFouriertransorm+ 2T " ft n+ ,u' .u(Xjt + At) = F'(e(athP)a*F(2(Xt))), (2.8)

31.1 . 1 1 +,. U',,u (V) Psudopectral Method by Fonberg and Whitham (9).
2 1 tfl~j U,, The peudospectral method for Eq. (2-4) is'

3'[u.- '  J U1- (2.2) U(Xt + A0 ) (Xt - At) t 12i -At t 2(XIt)F- (kfa))

This scheme is implemented using the sweeping/iteration technique. - 2iF (Sin[ 2*--3 At]F(u)) = 0. (2.9)

(ii) An implicit scheme (Kruskal, 1981) 171:

1 . 3.1 .3M. + . Our numerical experiments indicate (for the range of amplitudes wc,, U,, Utconsidered) that
2(.1) 3  

(1) The proposed global scheme, based on IST, proved to be faster than all
of the methods we considered. It is worth no(tng that this proposed global

u, 2 3u. + 3
u, - u7+ I scheme behaves much better than the oth utihed schcmcs either %hen

2(,x )3 bettcr accuracy is rcqutred or for large amplitudes.
(2) The pseudospeciral method becomes competitive with the IST global %

_ f3)m* scheme when both high accuracy and large amplitudes are invol'ed.
2(. I) 3  nJ I [ 1. (3) The implicit scheme behaves better than the proposed local scheme and

the pscudosl-cctral mchod for low amplitudes and it is much bcetr than the
Siplit step (Tappr) method.

+ t " (4) The proposed local schemes behaves better than the pseudospectral

method for small amplitudes for the I-sohton case, and becomes competitive
with the tmplicit scheme for large amplitudes.

%...-.



(5) The split step Fourier method! behaves much slower than all of thc
methods we considered. We note that the proposed local schemse did ntREFERENCES

Perform as wcil as its global version. We intend to study tbis situation II N.J buv'Awckt apohtorbitsfNrhia %ac

Propjgataon and Interactiocn in Nonlincar Parial. Diflerenitial
Very recently we implemented the proposed globl ischecme for the Equations". (W F. Ames. Ed ). pp 223-258. Ncsv Ywi~k. IM, (b) N

NIKSV equatioin (11b) and compared it to the pscudospcoril mcthod. since Zahusly, Comrputational Svnti~gC11CS And mihcmaiics innosAlion, J

our earlier experiments indicate that the pseud,.pcctraI mrithod i% the most (imp. l'hvs 41 (IVSt), p. 195.

competitive scheme for the MKdV equation (1.1d). In Eq. (1.1h) the [21 A. Scott, F. Chu, and D. Mcl-auahin. -The solaton: A new concept in i

following initial conditions is considcred. applied sciences', Proceedings of the IEEE, Vol. 01, No. 10, (1973), p.
1443.

u(X, 0) 2 (2.10) 131 T. R. Taha and M. J. Ablowitz. 'Analytical sad Numerical Aspects of
(1+x 2 )2  

Certain Nonlinear Evolution Equations. 1. AnalyticsP, J. Comp. Phys.
55. No. 2(1984), p. 192.

Periodic boundary cooditions on the interval 1-20,201 are imposed. Our
approach for comparisoin is to (a) compute two of the conserved quantities at 141 M. Ablowitz and H. Segur. *Solitons and the inverse scaut-ing
each time step, namely cl - fu'dr. and C2 -j(u' + (u.) 2 )dr fortrnfr,(SA.Plaehi.18)
computations beginning a(t - 0 and ending at t T; (b) leave other (51 T. R. Taha and M. 1. Ablowit, *Analytical and Numerical Aspects of
parameters free (ecg. At or Ax), and compare the computing time required to Certain Nonlinear Evolution Equations. 11. Numerical, Notilmaw
attain a relative error in the conserved quantities cl and c2 smaller than Sclsrbdinger Equation%. J. Comp. Phs. 55. No. 2(1984), p.203.
some tolerance. From the exiperiments we conducted we have found that (a)
the stability ondition of the pseudospectral method applied to Eq. (1.1b) is [61 T. R. Tabs and M. J. Ablowitz. *Analyical and Numerical Aspecus of

arCertain Nonliea Evolution Equations. m1. NumericaL, lKnasewtgde I
sme~ restricted than for Eq. (1.1a):- AC3< 0.045. comlpared to Vries Equation', J. Comp. Phys. Vol 55. No,2 (1964), p. 23L

e0.1n2 Hence at must be taken smaller. (b) the proposed global (7) M. D. Kruskal, private communication. (1961).

scheme as uc faster than the pseudospeetra metbqd to attin relative [8J F. Tappert, Leca. Appl. Matk Amn. Math. Soc. 15 (1974)N p. 215.

-fcwE lc 0.1% and E2 - 3< 1 - 0.2%, where (91 B. Fornberg and G. B. Whitham, Phil Tram Roy. Soec. 239 (1973) p.
c5  C 373.

c1 is the ect value ofluuldr and c ithe calculated one, and c., is the exeact
value ofJ(u' + (a;.))dkandc. sthcalculaedooc [101 T. R. Tabs and M. J. Ablowitz, 'Analytical and numerical aspects of

certain nonlinear evolution equations. TV. Numerical MKdV
3. Conclusion equation, preprnt

The proposed schemes which are constructed by methods related to the
l[ST can be used to ind numerical solutions of nontilinear evolution equations
with initial conditions other than solitons. it is worth noting that this work
can be extended to cove other so-called solison equations.

This research wis partially supported by the Research Foundation of the
University of Georgia (by way of a Faculty Research Grant and a Michael
Award), and by AFSOR grant 984-000, NSF gran #DMS-301325.
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TOPICS ASSOCIATED WITH NONLINEAR EVOLUTION EQUATIONS

AND INVERSE SCATTERING IN MULTIDIMENSIONS
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Abstract

In recent years the basic structure required to implement the

inverse scattering transform in 1+1 and 2+1 dimensions has been

clarified and extended. Aspects involved with fully multidimensional

problems have also been treated. In particular the inverse scattering

associated with various multidimensional operators and generalizations

of the Sine-Gordon and self-dual Yang-Mills equations have been studied.

A review of some of this work will be discussed in this review.

"i



h - t : W . : w ,= i, - . -- . . - s. . . _ - 4 . . . -.. =. .4" , :. . . - . ,

b

The Inverse Scattering Transform (I.S.T.) is a method to solve b

certain nonlinear evolution equations. There has been wide ranging

interest in this method for many reasons. A review of earlier work can

be found in [1]. A surprisingly large number of physically interesting

nonlinear equations can be solved via IST; there are many applications in

physics including: surface waves, internal waves, lattice dynamics, plasma

physics, nonlinear optics, particle physics and relativity. Mathematically D

speaking the field is also quite rich, with nontrivial results in the

areas of analysis, group theory, algebra, differential and algebraic "-

geometry being used by various researchers. From our point of vieV IST -

allows us to solve the Cauchy problem for these nonlinear systems. We

shall concentrate on questions in infinite space. All of the nonlinear

equations discussed below arise as the compatibility condition of certain

linear equations, one of which is identified as a scattering (direct and

inverse scattering is required) problem and the other(s) serves to fix

the "time evolution" of the scattering data.

In one spatial dimension the prototype problem is the (KdV)

equation

ut 6uu +u =0.()
ut + Ux xxx ?-

The KdV equation is compatible with

v + u(x,t)v X v (2)

vt  (T+u )v - (4A+2u)v (3)X X . .

i.e. v t implies (1). Equation (2) is the time independentxxt txx

Schrodinger scattering problem, X the eigenvalue ( * const. in (3)). The

solution of (1) on the line: - ..x- for initial values u(x,t=O)

vanishing sufficiently rapidly at infinity is obtained by studying the
WI.

vS



associated direct and inverse scattering problem of (2) and using (3)

to fix the tin e evolution of the scdttering data. It turns out tht.t

the inverse problem amounts to solving a matrix Riemann-Hilbert

boundary value problem (RHBVP) whose jump discontinuity depends

explicitly on the scattering data. Calling A=-k 2 ,v(x,k)=u(x,k)eikX

the RHBVP takes the following form,

(t+-w_)(xt,k) : &_(x,t,(k)) V(xt,k) on Z

wi-1, Ikl+-- (4)

where

V(x,t,k) = r(k,t) e 2 ik x
, c(k) = -k, Z=(k:kzg}, and u are the

limiting boundary values,as Imk.O±,of meromorphic functions in the

upper (+) lower (-) half plane. (4) may be converted into a linear

integral equation by taking a minus projection and the potential is

reconstructed via

u(x,t) f ~. u(k.x,t,-k) V(x,t,k)dk (5)
i ax C

where the contour is taken above all poles of r(kt)" of which there

is at most a finite nuimt)r, k is , € '0 j I 1 N.... The
3 3 3

scattering data. the reflection coefficient, r(kt) evolves simply
Sin time2

r(k,t) = r(k,O) e8 k 2 (6)

The above scheme may be extended so as to solve a surprisingly

large number of interesting nonlinear evolution equations. There are

two scattering problems of particular interest in one dimension:

(i) Scaldr scattering problems:

(nv + • u (x) dn-j

~dX J

* (i) vr, t- 1-1 ge1nerali~vd A ,D

,4v - ~ J v + q v

v N , J J diag (Jl , _jn)

J YJJi1sj

a0.

j *l C * )y C -,' * *.%
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-3-

Via an appropriate transformation the inverse problem associated with

(i), (ii) can be expressed as a matrix RHBVP of the form (4). The

potentials uj,q can be shown to satisfy nonlinear evolution equations

by appending to (i) and (ii), suitable linear time evolution equations.

One then finds that the scattering data V(x,t,k) evolves simply in

time. Well known solvable nonlinear equations include the Boussinesq,

modified KdV, sine-Gordon, nonlinear Schrodinger, and three wave in-

teraction equations. The reader may wish to consult for example [2a-e]

for a detailed discussion of some of this material.

It is most signif icant that these concepts can be generalized to

2 spatial plus one time dimension. Here the prototype equation is

the Kadomtsev-Petviashvili (K-P) equation:

(U + 6uu x u xxx x - Uyy (7)

which is the compatibility equation between the following linear prob-

lems"
ov y V 4 u(x,y,t)v 0 (8)

y XX

vt 4v * 6uv + 3(u x- y dx')V + v 0 (9)

(y const.). We shall consider the question of solving (7) for

u(xy,O) decaying sufficiently rapidly in the plane r
2 = x 2 y .

Physically speaking, both cases 2 = - (KPI) o2 = 1 (KPII) are of

interest. Whereas KPI can be related to a PHBVP of a certain type

(nonlocal; see ref. 3 ) KPIJ turns out to require new ideas. Letting

v= :(x,y,k)e ikx + k 2 y/0 -

a =R * 1.71. "P 0 Then there exist functions , bounded for all

x,y satisfyin: is 1 - However such a function turns out

to be nowhere analytit in k, rather it depends nontrivially on both

the real and imaginery parts of k(k kR * ik ). . , (xy k ,k). ",

In fact 1; satisfies a generalization of a PHBVP namely a

3 (DBAR) problem where o satisfies,

0 *0w,# S, .. , ,, 5. ,,* .. ,..5.. , ,.. ... .... , ... ... . . . .,,.



-4-

aku = (x,Y,olk) V(x,y,kR,kI) (10)1 aR

where - -(- * k) and V has the structure
Rak ie(x,y,kR,ki,0),

V(xykRk sgn(k 0 )e ,,.#R I 2-oR T(kRkl)

kk
B(x,y,kR kIO) (x + 2y -R)(C - k) -2(x + 2y R)k

Rs 0G00 R
R a2o I  0 I

_ k~ 2a1-ik =k+ l0 R k0  kR a R (11)

(10-11) may be converted into a linear integral equation by employing

the generalized Cauchy formula.T(kR 1 kI) is viewed as the "nonphysi-

cal" data, (i.e. inverse scattering data or inverse data) and the

potential is reconstructed via

u(x,y) - 2 1 J i (x ,y-E0 k )V(xy k R k )dk dk l "  (12)

The basic ideas used in order to derive these equations is

as follows. We convert the equation for P = P(x,y,k)-

Oay + xx + 2ikwx - u(x,y)P = 0 (13)

into an integral equation

ij(x,y,k) 1 + G(u,w) (14)

where

G(f) G*f = G(x-x',y-y',k) f(x',y)dxdy, (15)

the Green's function kernel being givenby (k=kR+iki)-

I e i ( rx+yy)
G(x ykR 1kl) (2 )2  l_-_ 2k )2 2 d~dy

a'-sgn(,y) dre + r+ 2yl

- )

*.(i (-Y JR( + 2 ko))d (16)

.r ? ? d . - .. a . . ' . . .



where k k and u (x) ilx0, Ox-O! (116)
O RR I

The 17 derivative of the Green's function is especially simple,

3G(,y, k~I -sgf(k n eiB(x,y,k RP k1) (17)

when
___ + i and
R I

k.
B(x,y,kR k) -2(x+2y -)k.

Rq

Taking the a derivative of (14)

+ Gxx,y-y '~,rIUk .)x',y /--(x,y ,kR k )dx'dy' (18)

and using (17) shows that
sn(k (kk)

0-(ykRw(xykR k (19)

R1 I R I

where T(kR1kI) fe-iB(xykR1kI)u(xyhz(xykRIkI)dxdy and

w(xykxkk k satisfies.

-u(xykRk) : GB(xxyk k + G(x-x'yy',k k

u(x'y')w(x',y',kRskI)dx'dy'. (20)

Multiplying (20) by es iowxs y R9 k1) and employing the following

symmetry condition on the Green's function 9

RG(xy,,k,) (11)
C I

where T~kR -k) - yields0 0  R

u (x ,y' )w' k y R d  ' (220

w~~~ sk) e R9I1( y ~j



-6-

whereupon (10-11) follow. The eigenfunction w is recovered with the

generalized Cauchy formula
X' ' k i 

_k#'d 
k

A(x,y,kR,kI) TT 1 (23)ff __y_ '=k-k' ' dkR~dk i  (23) .R ' k -k '

noting that using (10-il), (23) becomes a linear integral equation

for p The potential u(x,y) is recovered by taking k-,o in (13) or

(14) and (23).

For the K-P the evolution of the data obeys (i = 4ik 3 in (9)

DTk 2 
-3

2 )
a = (8ik 0 )(6kk 0  - 4k -3k2)T (24)

ok
where k0  kR + k kR + ik. -

Special cases include a = OR+ioi:

(a) KPII; a = -1: aR = -1,01 = 0

Tt 8i R(3kl-kR )T (25)

(b) KPI; o = i: OR O- oI = 1, kI = kI/oR

3T : _8i(kR+-ki)(k2+ 2kRki+ 4k 2)T 26)t R..RR.

These formulae allow usin principle to solve the Cauchy problem

for K-P and in particular the limit (ii) discussed above allows

us to give an alternative solution for KPI via 5 and not via a

nonlocal RHBVP.

Similar ideas apply to higher order scalar problems

a nv n n-j
(0i) o- - + I uj(x) n-j 0

a xn j=2 -

where: v, u. C ( and to first order systems
v j v"

(iv) J- q(xy)v r 0
d y dX

NxN g1j ,N i ji
where: v,qcN J=diag(J ... . .N ji Y Ji j with q 0.

.J



k - K- , :i . c' , 
'

L
i - . - - -

-7-

Interested readers may consult refernce 4a, and review 4b for

more details. N

The notion of , extends to higher dimensional scattering and in-

verse scattering problems. However as we shall mention, despite the

fact that the inverse scattering problem is essentially tractable

there does not appear to be any local nonlnear evolution equations in

dimensions greater than 2 + 1 associated with multidimensional gener-

alizations of (iii) or (iv).

Our prototype scattering problem will be

o Vy + AV + u(xy)v = 0

n 2 X n  .,,
A-, xE I, y2c . (27)

Letting,,
V (xy,k)eik 'x + k2y/o

k kR  + ikl, k c In
n I"

k-x E k.x., o: + io
i j , R

Then there exist functions u bounded for all x, y satisfying w-l, as

Ik3 I- -. j = 1,...,n. When oR 0 w turns out to be nonanalytic in

each of the variables k, i.e. u(xy,kR .... kR , k1  ...$kI )and
n n

satisfies a 5 problem linear in w, in each of the variables k., . .
...

i.e. we shall show that u satisfies an equation of the form,

- (j); j = 1.... n (28)

where T. is an appropriate linear integral operator.

The basic idea in order to derive (28) follows a similar

format to the two dimensional case described earlier. From the

definition of u(x,y,k) below (27) we see that it satisfies

1 + + 2ik.vw - ,(x,y) (0. (29) 5,Uy

S--A,^

I ~ 5 % . . C . % % ' S C C .5
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p,

p.

'I"

We convert to an integral equation

I + G(u ) (30) '.

where the Green's function kernel is given by

i II i(X'E+Yn)

yxy~ 2I (3 1)2 -dd-ix 2d d

sgn(y) 1 x (+ o +2k.E). (31)

0 (2)

2 + ,kj ~(-YOR(& +2 ( kR+ o-T ),)d&. (32)

Taking the a derivative of (30)

uN +G(u G (u 'u--) (33) .k. - a
a I

A?

and using

a(G~ k~I 1 i-B;.yY1-IoRI&eR%

• (j- k j)6(p(C))d (34)

whe rekI
B(x,y,kR,kIE) = (x+2y .R).( 'kR)

RI)2 °I 2 i

O ( + iRk 2 
- (k + 0) 2 (35)

R R

shows that

1 lJ---I  T(kR'k &) ( j-kj)(( ) '

I Is Rj"QE(2,) "cRI  ,.

w(x,y,k I 2,k1, )d (36) N

%: %
p-



.9

where ,ix k

T(kR1 ki,&) e fe-ib(XlykR' kI u(x,y)o1x,y,kR9 kl)dXdy 37)

and w satisfies

iB(x,y,kR,kI) (38) |.
w(x,y,kR,kili e +G(uw).

Multiplying (37) by e-ia and using the symmetry condition

e-iB(xyk R kld G(x,ykR,kI) 
G(x,y,c,k 1 ) (39) 0

yields -i(x,y, kkI) (40)
w(x,y,kR,k, ': e 'R'I w(x,y,E, kI)

and hence (36) gives

_ T.(1 ) : 1 __ I { T(k -& k
j (2 Tr)n TGR I )( jkRj)

iB( xykk9
6(p( )) ei R k ,) (x,yE,k )dE" (41)

We see that T. is an integral operator which depends on a p

scalar scattering function T = T(kR,kI,&) being effectively

(n-1) integration parameters (due to the delta function in (41)

in the nonlocal operator T.). .

One can use a generalized Cauchy formula such as (23)

in order to obtain a linear integral equation to reconstruct u.

However due to the redundancy of the data discussed below, we find
that an alternative method is more useful. The inverse problem is

redundant, i.e. we are given T(kR,ki,) (3n-1 parameters) and we -

must reconstruct a local potential u(x,y) (n+1 parameters). A

serious issue is how to characterize admissible inverse data T,

i.e. data that really arises from a local potential (small generic

changes in T(kR k,,&) cannot be expected to arise from a local

potential u(x,y)). Insight into this question is obtained by

noting that T must satisfy a nonlinear constraint, one which is

obtained by requiring a Pd / k;k i (i j i). the form

% .
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of this constraint is given by

N..j(T) N ij[T] (42)

where ij is a linear operator and Nij a nonlinear (quadratic)

nonlocal operator. These operators are given by

+ k + I ( kR(- + 1 (43)

J jR 1 1 iR
N ij(T) f [(& i-k jR)(ti- &i) - (-k iR)( j- C)]

•(p ') T (k R9kilt) T(&',ki ,&)d&'. (44)

There is, in fact, an explicit transformation of variables

(k ROkilt) - (XWoW) n-l XE n

which simplifies (42). Namely,

n wI  oiWOWl
kl = w2 WX - - - 90
R1 = 2 WjRj 2 2w2

k w a I 0w (J>i2)
kRj -WlXRj 2 2w 2

n Rwow 1

i j=2 jI +  2w2

kij 1 I-Xlj + 2w (j >-2)

w1  C4w5W
1 - WlXR + 2 - 2w

W. -Iw 0w
= + 2-- w2  (j ,2) (45)

* I Rj 2 2 2
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transforms (42) into:

:4 Tax - N i(T)(X w0  w) j=2,---n (46)

using the generalized Cauchy formula (23) we have

lj[T](x,wo)= T(x,W,Wo) - 0 dJ dxdxI

u(w,wo) (47)

where

x (X2, x3 ---x ,---Xn)

U(Wow) = 0~e(YWo+XW)u(x,y)dxdy (48)
ff4

We have used the fact that when w0 = 2ki.( -kR)/oR and w = c-kR

are kept fixed, T(x,w,wo) 0 u(W,wo) (The Fourier Transform of u(x,y))

for large xj(wl1O); this is the analogue of the Born approximation. "

We expect that for suitably "small" u (i.e. no homogeneous

solutions to the relevant integral quations) if I is independent

of x,j and decays sufficiently fast for WI 1wol Q-, then
T(kR,kI,) is admissable. Moreover (47) gives a formula to

reconstruct the potential by quadratures. Limits to case

o = i and reductions to stationary potentials u(x,y) = u(x)

can be carried out. Details can be found in Ref. [5a,b]. It ,

should also be noted that in recent work Nachman and Lavine [5c]

have extended theaw ideas to situations where there are

homogeneous solutions to the relevant integral equations.

(42) also suggests why simple local

'.

'.
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nonlinear evolution equations have not been associated with equation

(27). Namely in th previous lower dimensional (2+1 and 1+1) problems

the time evolution of the scattering data obeyed a particularly simpltHe

equation, (e.g. -- a (k k )T). However in this case such a simple fihwequation, ( g. :t R1' I "

will not be maintained - due to the nonlinear constraint (42).

These ideas can be generalized to first order systems:
n

(v) v + o j :q
Y j ax j

(NxN, 1~ N..
v, q U N J. = diag(J. )...,J.

k
.3 Jk

with many similar results obtained 6a,b,c; though there are some

important differences as well: see ref. [6c]. Again the scattering

data satisfies a nonlinear constraint. In general, there is no

compatible local nonlinear evolution equation associated with (v).

However when certain restrictions are put on J. then the constraint

equation becomes linear and the so-called N wave interaction equations

are compatible with the system (v). Nachman and Ablowitz [6a]

showed that at most, the system would be 3+1 dimensional, and Fokas[6b]

showed that indeed the system is reducible to 2+1 dimensions by a

transformation of independent variables (characteristic variables).

In [6c] Fokas studies the inverse scattering of (v).For o = i he

finds an equation similar to (42). However its integrated

form shows that in order for the potential to be reconstructed

one must solve a reduced system of equations of the form (v):

i.e. for N = 2. This is in contrast to the scala, problem where

reconstruction is via quadratures.

Beals and Coifman haven an alternative but similar formula-

tion [7a,b] for multidimensional scalar problems.

There is an n-dimensional problem which also fits within

the framework of IST: The so-called generalized wave and generalized

sine-Gordon equation (GWE and GSGE). These equations arise in the

context of differential geometry and serve to extend the classical re-

sults of Backlund for the sine-Gordon equation to n-dimensions [8].

The n-dimensional B5cklund transformation is given by:
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wX e XAtX A - XB, (49)where 
"

n

dV .. J.-- d ,21 . J .,

Aij 8 i(z)a ijdxj,

B. dx. - ix, 1 < i, j < n, (50)ij a x j a ;j ( 50

and a a *ij c nx. Equations (49-50) reduce to the Backlund trans-

formation for the generalized sine-Gordon equation (GSGE) when

8 i(z) = (z 2 + (2 6ii - 1))/2z, (51)

and for the generalized wave equation (GWE) when

2Bi(z) = -(1-z )/2z -A). (52)
The compatibility condition required for the eKistence of solu- a,

tions to these Backlund transformations results in a system of second-

order partial differential equations for an orthogonal n x n matrix
a = (ai in (49) which is a function of n independent variables

13
a : a(xl,x 2, .. n). The equation has the form

i ax F1xj a k "a.
S 1 aa ali . :,i j -lx l x a ial,3

k i,j a2 k k k

I xali a j, k distinct,
; x lj x a l ka l x k  3X .'

.alk

S 1 (53)

where I for the GSGE and 1 0 for tha b'i .

'a~ ~ ~ - ~ ~ p *p - V ? S S ~ ~ P *, *~ * 5  ~ . ~ S S> .'m_" ,' #; ' . "' o ,# "" ". "W ', '. ".-' ' **W' " %. " %'-R w ",W S'. . v - Sw" ,- - -. ,- -.- -.- -.- -,- ..
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We observe that when n 2 and I (GSGE), the orthogonal

matrix a f aij given by

C J , U Sin u

-S i n ( 54) 

for the function u = u(x,t) reduces the GSGE to the classical sine-

Gordon equation (K = -1),

- u {-sin u 0. (55)

On the other hand when n = 2 and K = 0, then with (54 ) the GWE reduces

to the wave equation (55). When n > 3 the generalization of the

wave equations discussed here is nonlinear.

The Sicklund transformations (49) described above are in fact

matrix Riccati equations. Linearizations of such a system can be

performed in a striaghtforward manner. Introducing the trans-

formation

x = uv , (56)

where U, V and n x n matrix functions of xl,.. n the folowing linear

system is deduced:

(57)
dV At"

with the components of A, B given by (50). Compatibility ensures that

the orthogonal matrix a = ia. i satisfies the GSGE with (51) and GWE

with (52). Alternatively, if we call

(58)

(V)|

the following linear system of 2n o.d.e.s are obtained: I

--- A *4 C* , (59)

II
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where A., C. are 2n x 2n matrices with the block structure

0l
(0 a . ) '. (60)

Here a., y. are n x n matrices having the following structure:

-- )ela3  + aj,

(61)
a. ae.3 3

where e. = (e ik is the unit matrix

i = k j
{e ik = 1 (62)

0 iotherwise,

and in component form yj takes the form

1" 1 Ba 6 kj. 63 )

i = kj ak axk 6-j ( 6 j a axL

In (61) a is the orthogonal matrix Jin -- SO(n) associated with the GWE

when 6 = A and with the GSGE when 6 = 1(z + 1iz), X= 1(z - 1iz), and2t 2

j(is the matrix (63)1: R M(P) + = 0. Equations (53) ariseyj s hemarix(6), I n  n 'Y

as the compatibility condition associated with (58). More explicitly, '

for the GWE the scattering problem takes the form [o = i(xx)]

X A * C.W (64) i

with

A. (65)
a 0

and C, given by (60,63).

For the GSGF the scattering problem for Q ( ,z) takes the
f 0 rill-€ ,(/ 0  

l j

, ({ .e, 0ia

0a(1-ee)a

I.-.--.
( . .- 0. .)
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,5(z), (z), C3 given above, or equivalently

4- C, (67)3 ' -

= ( , u : diag(+l, -1 ... , -1). (68)
atu 0

In [8] it is shown how these linear problems may be viewed as a direct
and inverse scattering problem for the GWE and GSGE. Namely the

direct and inverse problem may be solved for matrix potentials, de-

pending on the orthogonal matrix a, tending to the identity sufficient-

ly fast in certain "generic" directions. It should be noted that

solving the n-dimensional GWE and GSGE reduces to the study of the

scattering and inverse scattering associated with a coupled system of

n one-dimensional o.d.e.'s. This is in marked contrast to other

attempts described earlier to isolate solvable (local) multidimensional

nonlinear evolution equation which are compatibility conditions of two

Lax-type operators, e.g.,

L 1 = j (69)
t M t (70)

where L is a partial differential operator with the variable t enter-
ing only parametrically. Although as we have seen nonlinear evolution

equations in three independent variables can be associated with such

Lax pairs (e.g. the K-P, Davey-Stewartson, three wave interaction

equations, etc.) little progress via this route has been made in
more than three dimensions. As discussed earlier one has to overcome a

serious constraint inherent in the scattering/inverse scattering

theory for higher dimensional partial differential operators in

order to be able to isolate associated solvable nonlinear equations,

i.e. the scattering data generally satisfies a nonlinear equation

(eq. (42)). The analysis associated with the GWE and GSGE avoids

these difficulties since the GWE and GSGE problems are simply a

compatible set of nonlinear one-dimensional o.d.e.'s.

- % ..
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The results in ref. [8] demonstrate that the initial value problem

is posed with given data along lines and not on (n-i) dimensional

manifolds.

Similar ideas apply to certain n-dimensional extensions

of the so-called anti-self-dual Yang-Mills equations (SDYM)

[9]. In two complex variables the self-dual Yang Mills equations

take the form (see [10])

-= ( -1 k__) + 0( -) (,
ax ax 3R ax21 1

where a is a positive matrix valued function of (x1,x2)Ee2.

Alternatively SDYM takes the form

+ -0 (72)

axj ax2

+aA a2+[A ,A2] =0O (73)
ax 2  ax 1 2

where

A. Ia (74)
ax.

The SDYM may be obtained via the compatibility condition

of the following linear system

am am
z mx 2 (75)

am am
x Za- A2
2 i'

multidimensional extensions may be obtained. For example,

consider the linear system

DJm(x,z) = A.(x)m(xz), j 1,.' n 76

SDJ x zs. (77)z x j l

and
xn+ 1 = xI s (-i).
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'a

Compatibility (commutativity) implies:

DA. - DA. + [A. ] : 0 (78)

ir

aA. aA.
1i- J + [AiAj] 0 (79)
x. x 1 .1

;A. aA.
3 1

s. S. 0. (80)
xj+ 1  xi+ 1

A potential 0 may be introduced as before: (81)

3 .-
A3X

to obtain
.5

sj j - si a-i+ I ( j) 3 0. (82) %

Clearly when n=2 this system reduces to the classical

SOYM equation.

Solutions to these equations may be constructed via

the 5 method. Define

DJ LJ + zLJ (83) -

z 1 2
with

L L = s ,x '

1 ax . ' 2 _ _ _

We shall show that the , integral equation

(xz) + z(mV Xt d -dr (4) .

A -

A
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,I

satisfies (76). Operating on (r4) with D y' ,I"

(Ljmr)V + m(L' V)
Dm - 2n i d -d + J (85)

where
zLj(mV)

J 2 i -z d4-d,

.-..
f L(mV)d -d

2-ai 2 .

r Lj(mV)
+ 2 L(y

+,-z d -dc. (86)

2

Putting (85), (86) together gives ?

i (Dm)V + m(DJV)
Djm Aj + i ( -z (87)z j 27 J

where

A x Lj(mV)d-^d4 - I sj j(mV)d -d- (88)27T = 2 i 22ni j l "

x+1

We shall require V(x,z) to satisfy

DJv 0 (9 ,

z

in which case using (84) in (87) by writing

A. A (m - -dd-, 9C) ',

I

.



-20-

we find

I A (~ m A (X),,,)V

(D1,)- Am,,,) 2j 4 , (91) .
-"

For V suitably chosen (84) has a unique solution in which case

Dm - Ajm = 0. (92)
z= A-.

Thus A A and solutions of the extended SDYM are obtained.

The condition (89) is satisfied if we take V(x,z) = V(u(x),Z),

with u.(x) =zx. + S jx and V holomorphic in the uj. Thenwihu~) zj j+i j+l

DJV = ( + zs 9 V(ui ... u z)
Sax n

= £ V'(u ,z)(z6. + s : 0 (93)

£=1 +. 'j+1 ii

by virtue of s. (-)J. In ref. [9] other examples of

multidimensional extensions of SDYM and a rigorous derivation

of the foregoing is given.
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the motivation tar much of this work has come via what is conmonly

referred to as the Inverse Scattering Transform (I.S.T.; as a -

reference see, for example, ]). ST is a method to solve certain

nonlinear equations by associating thtem with appropriate compatible

linear equations, one of which is identified as a scattering problem |

and the others(s) serves to fix the "time evolution" of the scattering

data.

In one spatial dimension the prototype problem is the (KdV)

equation

ut + 6uu x + u O. (1)

The KdV equation is compatible with

v + U(Xt)v = Xv (2)

v = (Y+U )v - (4A+2u)v (3)

i.e. vx vtxx implies (1). Equation (2) is the Schrodinger

scattering problem, A the eigenvalue ( y= const. in (3)). The

solution of (1) on the line: --<x- for initial values u(x,tO)

vanishing sufficiently rapidly at infinity is obtained by studying the %

associated direct and inverse scattering problem of (2) and using (3)

to fix the time evolution of the scattering data. It turns out that 'C

the inverse problem amounts to solving a matrix Riemann-Hilbert

boundary value problem (RHBVP) whose jump discontinuity depends

explicitly on the scattering data. Calling A=-k 2,v(x,k)=u(x,k)eikx

the RHBVP takes the following form,
(W w )(xtk) = w(xt,(k)) V(x,t,k) on

LJ±1, IkI (4)

where

V(x,t,k) - r(k,t) e2 ikx , c(k) =-k, 1={k:kf|}, and u. are the

limiting boundary values as ImkxO - of meromorphic functions in the

upper (+) lower (-) half plane. (4) may be converted into a linear

integral equation by taking a minus projection and the potential is

7,,,
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where the contour is taken above all poles of r(kt); of which there

is at most a finite number, k i > 0 ],---N. The

SCdtteririg ddI i th,, reflection coefficient. r(kt) evolves sirmply

in time-2
,' t) : r(k,O) e t(6)

The above scheme may be extended so as to solve a surprisingly

large number of interesting nonlinear evolution equations. There are

two scattering problems of particular interest in one dimension:

(i) Scalar scattering problems:
Fn

dnv + ;m u (x) dnJv

d x j : 2 J X: v ,.

v(x,k), u. C
(ii) First order systems - generalized AKNS

dv: i k J v + q v

v(x,k),q(x) NxN, 3 diag (Jl,..Jn)

ii .-"
q -0.

-5

Via an appropriate transformation the inverse problem associate with -.

(i),.(ii) can be expressed as a matrix RHBVP of the form (4). The

potentials uj,q can be shown to satisfy nonlinear evlution equations

by appending to (i), (ii) suitable linear time evolution equations.

One then finds that the scattering data V(x,t,k) evolves simply in '

time. Well known solvable nonlinear equations include the Boussinesq,

modified KdV, sine-Gordon, nonlinear Schrodinger, and three wave in-

teraction equations. The reader may wish to consult for example

for a detailed discussion of some of this material.

It is most sionificant that these concepts can be generalized to

2 spatial plus one time dimension. Here the prototype euqation is

the Kadomtsev-Petviashvili (K-P) equation:

i . . ,:. :.......-..... - ,A55 .
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which is the compatibility equation between the following linear prob-

lems:

v 4 v * 4 (x,y,t)v 0 ()

V t 4 4 6uv + 3( -,; J dx')v * v = 0 (9)

(y const.). We shall consider the question of solving (7) for

u(x,y,0) decaying sufficiently rapidly in the plane r
2 = x 2 + y2 .

Physically speaking, both cases 02 = -1 (KPI) 02 = +1 (KPII) are of

interest. Whereas KPI can be related to a RHBVP of a certain type

(nonlocal; see ref. 3 ]) KPII turns out to require new ideas. Letting

v : i(x,y,k)e ikx + k 
2 y/o

R + i1 I 'R 0 0. Then there exist functions i bounded for all

x,y satisfying i, I as Ik I °
' However such a function turns out

to be nowhere analytic in k, rather it depends nontrivially on both

the real and imaginery parts of k = (kR + ikI). w = w(x,y,kR,kI).

In fact w satisfies a generalization of a RHBVP - namely a

(DBAR) problem where w satisfies,

= j(x,Y',o,k I) V(x,y,kR,k I) (10)

where + i -- ) and V has the structure
2 R ;kI iB(x,y,kR,k I l0 )

=sgn(ko)e

V(x,y,k R"kI) = g: k0) T(kR% kl)iTIoRI

k k
B(x,y,kR,k1 ,kO) (x + 2y -)( 0 - kR) -2(x + 2y -R)kOo R R

0 = -kR - kI k 0 kR + -k (1)
'R ' 0 P R

(11) may be converted into a linear integral equation by employing

the generalized Cauchy formula. T(kRkI ) is viewed as the ("nonphysi-

cal" data, i.e. inverse scatterinq data: .e. inverse data) and the

potential is reconstructed via

¢' ,



'

u(x,y) l(? : - ,:i--xM x~''o k V x'y'k kl )dk dk "

II

For K-P the evolution of the data obeys (y = 4ik in (9))

- = (8iko)(6k - 4 2  
- 3k 2)T (13)

.4t 0 0 0 '

where k = k 4 , k k *ik.
0 R R R

Similar ideas apply to higher order scalar problems

3V an v n
(iii) 0o~ +- 

n v + E u.(x) - ov = 0
ay axn j=2 axn 'j

where: v, u. C ( and to first order systems

(iv) v +3v + q(x,y)v = 0(iv)ao o x
,j1N) ji j i

where: v,qcLQ Nx N , J=diag(J ,...,J ), Ji/ J , i / j with qii 0.

Interested readers many consult reference 4 a b] for associated details.

The notion of ; extends to higher dimensional scattering and in-

verse scattering problems. However as we shall mention, despite the

fact that the inverse scattering problem is essentially tractable

there does not appear to be any local nonlnear evolution equations in

dimensions greater than 2 + 1 associated with multidimensional gener-

alizations of (iii) or (iv).

Our prototype scattering problem will be

o v + tAv + u(x,y)v = 0Y

n a2 n

E 2% x C n y F . (14)
i=1 ax~

Lettlng2
v = u(x.y,k)eik 'x + k 2y/

k = kR + ik I1 k : n

k x 7 k x a =  R  4 i I
I 1

Then there exist funCtions o bounded for all , y satisfying i-,I as ',

Ik l- , j W... n. when o R 1 0 o turns out to be nonanalytic in

each of the variables k, i.e. u = i(x,y,k l ...kR kl k n) and

R n I n

* p. %*% 'aa~ *,. a , a ~ a . a w -'a a 'a P* a 'a a ' ? ? *X..
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ta is f i vS a ,, rob 1)1 1 r1'1r1 in , in .;ic h 1 t ' , .. ; i.e.I H

"at lsf it's an eqtj tI(on of the t-1,1k

,2- _ TJ(' ); j ] . n (15)

where Tj(u) is an appropriate linear integral operator which depends

only on one scalar scattering function T :T = T.[T], T=T(kR,kIV)

being (n-1) integration parameters in the nonlocal operator T. The N'

inverse problem is redundant, i.e. we are given T(kR,ki,)(3n-1) para-
R''

meters) and we must reconstruct a local potential u(x,y)(n+1 para-

meters). A serious issue is how to characterize admissible inverse

data T, i.e. data that really arises from a local potential (small
generic changes in T(kR,ki) cannot be expected to arise from a

local potential u(x,y)). Insight into this question is obtained by

requiring /a A i  (i j j). The form of this

constraint is given by

X. i(T) N i[T] (16)

where is a linear operator and Ni. a nonlinear (quadratic) non-

local operator. Details can be found in5a b. Equation (16) can be '

integrated and this integrated version may be used to reconstruct

u(x,y) as well as give a characterization for admissible scattering

data: T(kR,ki). However (16) also indicates why simple local I
R'.'

nonlinear evolution equations have not been associated with equation

(8). Namely in the previous lower dimensional (2+1 and 1+1) problems

the time evolution of the scattering data obeyed a particularly simple3T
equation, (e.g. - =w(kR,kl)T. However in this case such a simple flow

will not be maintained - due to the nonlinear constraint (16).

These ideas can be generalized to first order systems:

L 4-. qv
ay j=] j Ox. i

NO, Nv, q c ,  d-

J* ., k .

~ "SN% *S', 5 ~ SN ~ ~ j "~O' ',~. , ,, '-* 2
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WIth S if m 1a r r uI I fi d ,i i the S(i, tI rit r q (dt ,a " t 1 P

fies a noril i near coristra hInt In general , there is no compatible local

nonlinear evolution equation associated with (v). However when cer-

tain restrictions are put on J then the constraint equation becomes

linear and the so-called N' wave interaction equations are compatible
6-] '

with the system (v). Nachman and Ablowitz showed that at most, the

system would be 3+1 dimensional, and Fokas 6b] showed that indeed the t

system is reducible to 2+1 dimensions by a transformation of independ-

ent variables (characteristic variables).

Beals and Coifman have given an alternative but similar formula-

tion7ab] in the scalar case.

There is an n-dimensional problem which also fits within

the framework of IST: The so-called generalized wave and generalized

sine-Gordon euqation (GWE and GSGE). These equations arise in the

context of differential geometry and serve to extend the classical re-

sults of Backlund for the sine-Gordon equation to n-dimensions

The n-dimensional Bicklund tranformation is given by:

dX + XAtX = A - XB, (17)

where
n

dX =Z dx
j=1 3j,

Aij i a 3i dxj,

sa la I idB. dx. - 1 d < i j < n, (18)

ij a- Xi  a Ox
j 

n x

and a fa i} P . Equations (17-18) reduce to the Bcklund trans-

formation for the generalized sine-Gordon equation (GSGE) when

9 (z) = (z (2 i - 1))12z, (19)

and for the generalized wave equation (GWE) when

i(z) -(-z 2 )12z - X(z). (20)

The compatibility condition required for the existence of solu- %

tions to these Bdclund transformations results in a system of second-

.IMS ~ ~ 1 i' .f~ ~S' $ -S-



order partial di ff rertil oqudtioui 1(1or, or ()rtf)i;onaI n x n naltrix p
d = daij in (11) which i. a function o, n independent variables

a = a(x 1 ,x 2 .. .X). The equation has the form

( 1aa

ix a x.hx . a ,x

- Z lx -x k  = 4alial, 1 i j,

k Ii,j a k k

a 1 a ai j1 k distinct,

a aax .
k li

where l: = I for the GSGE and c = 0 for the GWE.

We observe that when n = 2 and r = I (GSGE), the orthogonal

matrix a = (ai given by

Cos u sin u
CS2 2
a =  (22)

a -sin 1 U Cos iu (2

2 2

for the function u = u(x,t) reduces the GSGE to the classical sine-

Gordon equation (K = -1),

- u -Psin u 0. (23)utt Uxx

On the other hand when n = 2 and < = 0, then with (22) the GWE reduces

to the wave equation (23). When n > 3 the generalization of the

wave equations discussed here is nonlinear.

The Bicklund transformations (17) described above are in fact

matrix Riccati equations. Linearizations of such a system can be

performed in a striaghtforward manner (see for example 9). Intro-

ducing the transformation

x = , (24)

where U, V and n x n matrix functions of x1 ,..,xn , the following linear



system is deduced: .,

dV) ( t ( 25 ) "

with the components of A, BI given by (18). CoVmpatibilIity ensures that ".

the orthogonal matrix a -- :,aij}1 satisfies the GSG[ with (19) arid GW,[ -

with (20). Alternatively, if we call =

the following linear system of 2n o.d.e.'s are obtained: .

A. A 1P3 + C T, (26) r"

where A Ci are 2n x 2n matrices with the block structure

C : , j) . (27)

Here aj jaenxnmtices having the following structure: :

a I e + a ,

(28)"

aj aej .;.

where ej : (ejik is the unit matrix• "

0i i:k ~ otherwise, "=

and in component form =takes the form ,

~.

( ki : ( - J a k "kW alk J i, --

In (28) a is the orthogonal matrix p n  SO(n) associated with t he GWE ,.

when 6S = X and with the GSG[ when 7 zI; ,=I: 1: and "'

j is the matrix (30): IRn  - M r=) 0. Equations, (21) arise

as the compatibility condition associated with (26). More explicitly,..

for the GWE the scattering problem takes the form [ (.;

A .

dX. 
(31

w - - ,. , *.-. .. ' . '. -. '. ' .' -" -'.'. .. ,-,-.. .,-... .-. ,-,.%.-.- .-.... , .......-.. ,,,, , .- > - -"I-



with 32

Aj 0

and C, given by (27,30).

for the GSGE the scattering problem for X ( ' ,2) ta IeS th(

form

/(z) /0 el ai)
x a e 1  0

+ W 0 (lH-e1 a j) + Cjp, (3
+ + cz) (33)

(a (-e 0

6(z), A(Z), Cj given above, or equivalently
@_z AjC + z B" (4Px - Z 2 , Cc., (34)

where

B = , u = diag(+1, -1 . .. -1). (35)
a 0

In8] it is shown how these linear problems may be viewed as a direct

and inverse scattering problem for the GWE and GSGE. Namely the

direct and inverse problem may be solved for matrix potentials, de-

pending on the orthogonal matrix a, tending to the identity sufficient-

ly fast in certain "generic" directions. It should be noted that

solving the n-dimensional GWE and GSGE reduces to the study of the

scattering and inverse scattering associated with a coupled system of

n one-dimensional o.d.e.'s. This is in marked contrast to other

attempts described earlier to isolate solvable (local) multidimensional

nonlinear evolution equation which are compatibility conditions of two

Lax-type operators, e.g.,

L = 4 (36)

My (37)

where L is a partial differential operator with the variable t enter-

ing only parametrically. Although as we have seen nonlinear evolution

V %el V
' w~



, S.

equations in thre,1 i'd4'nt variables can he ssoci ated with such

Ldx pairs (e.q. the -P, D3vey-Stewdrtsorn, three wdvc interaction '-S

equations, etc.) little progress via this route has been made in more _

than three dimensions. As discussed earlier one has to overcome a

serious constraint inherent in the scattering/inverse scattering

theory for higher dimensional partial differential operators in

order to be able to isolate associated solvable nonlinear equations,

i.e. the scattering data generally satisfies a nonlinear equation

(e.g. (16)). The analysis associated with the GWE and GSGE avoids

these difficulties since the GWE and GSGE problems are simply a

compatible set of nonlinear one-dimensional o.d.e.'s. The results

in [8] demonstrate that the initial value problem is posed with

given data along lines and not on (n-1) dimensional manifolds.

Similar ideas apply to certain n-dimensional extensions of the so-
9]

called anti-self-dual Yang-Mills equations (SDYM). In it is

shown that these multi-dimensional nonlinear equations are associated

with compatible two-dimensional linear systems. Broad classes of

solutions may be calculated by the method. Since the overall com-

patible linear systems are coupled two-dimensional equations, the

scattering data does not satisfy the nonlinear constraint discussed

earlier. .

Finally we remark that there is a class of nonlocal equations

which can be reduced to exactly solvable equations. In the context of

multidimensional nonlinear equations perhaps the most interesting

example is

(ut + u xx+ 2(uH U) x - 3c~ u (38)ut UXxx x yy,

where

(H u)(X!yuzt) dF (39)

and + denotes the Cauchy principal value integral. (3E) is reduced

to the K-P euqation

(w ) - ) 32 (0
via the transformation

w ud1H u. (41) ,"N

Details and other examples are given in (10].

V'-V%
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An example of d problem arising In a finite difference context: Direct and
inverse problem for the discrete analog of the equation 0,, +LJ b=o#-o -- -
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U16 we The direct and inverse spectral problem for the discree analog of the equation
tetto 0.. + 8 - 0#, i olved in the framework of -J theory. The time evolution of the spectral
t7 dam for the simplest vinleieard101 tial4difwemz equations associated to this linear

IMO problem is deuived.

L W I ON basbeerninvestigated via RH methods t14 ums-
L ~~berofnbos in paiular. we refer to the ths eleanda

In recea years, that hat been considerable inerstdi n&igs who not only comidereid this modhn-
X" w d Ady oda*l saVabl44-e manhoer evolutIon eqmadi jg5 p inbImtw beyonds to liuy -1ti

1)ad by the method of the inverse sattering ror (MS). I R1" sbateon mcuiyi this paper. Un-
The results for ove-dimensloinafl partial differential aqua- fartimatelly, her life was prematurely cut short and her study

tosand their discrete analog s aby now classical and co- had to be cide. This articl is dedicated to Sand, L Cuit-
ced in tcob on the subject I On the other hand, the work jvkg
damieon 1SF for 2+1I dimensions has only beow satisfactoai- I MOAC RG
ly understood within the past few years. The prototype IL16IEC OU M

1 problew studied ithe Kadonsev-Petvisshvili (1(P) equa- We investigate the lina problem
do) , tion: I(-1m) +B(",h)*(nm) +A(#4m)#fln + 1,m)

tog100010CO U11 aModate linear problem wher ("~s)W, and thepotin*iW.B,A - I vaish iS-
( deadyb ass um d (4or) m Soto~iy

M.1 asi ~rie~ wll nthe dpest erolution *qua-
P Thms gt m t riica thoices dw ~ U n diolls uscs with ft as bm alim yintroduced in R

tdanakoy5 showITed" tha KJOs* , .

is d~ km aHbr 11)t~rr(4 f it is eay to we that, when B =-0, the continuum limit of
(RU)thiry.* Z- , ,t a P0100 (2) is just Eq. (1.2) for oek4 to perform this limi,. set

S (DDAR) problem We recall that Deals and Colfznan,'in ,~-V
their elegant work on systems of ordinary differential equa- To handle Eq. (2. 1). we introduce a functionu,~ defined
tians, noted that the RH problem was, in fact, a special conse s
0( the mome general notion of a problem. The 3 probem-
Sivaa smple and powerful method by which the underlying ~ J~ n)[V(~ZJ (2.2)
inverse spectral problem for the KPII equation (and other where e' is a special solution of the "bare" problem asso-
analogous equations, like Davey-Stewardson 11, modified ciated to (2-1) (i.e., the one corresponding toB =, A = 1).

*KPIl,...) can be solved. given by
In this paper adiscrete analog of ( 1. 2) for the case~ a I e(n~m;z) =z - ((z + z-') /2)-. (2.3)

.. D. Ray, is inestigated. To our knowlege this is the first considers- Th ucin wlltesasftefooigeqto:
* li~~~11n of a discrete multidimensional scattering problem viaThfuconjswlthnaifyheolwngqutn

t heory. One very important obevation is that fully discrete ;u (n - l,m z) + B (n,m )i. ( n,m~z)

spectral problems virtually always require the use of a 5 p + z -'A (n~m )M (n + I ,m;z)

0909); K Proaclh. The reason for this has to do with the fact that dis- ( nm+lZ 24
(I~O9)~D retizations are generally unstable (ill-pose") as par&MW + ~ ~ +1.) 24

056). difference equations in Z, (in analogy with problem ( 1.2) Requiring t hat, as a function of z. a~ satisfies the bommary
with a I for both xand yfinite I. condition

Of course, the corresponding one-dimensional discrete tim (n.m;z) = 1, (2.5)
PlOblem (i.e., the finite-Mierence analog of the Schrodinger IM--

777 . Mom. Pfi'. 28 (4). Apt# 1067 0022-24"/07/0407" 4 O.50 0 107 Amecn WwCftl huMof R9 ics 77



.4) is equivalent to the Wemmation From its very definition, it turns out that G enjoys the follow- I
t+. ig symmetry properties:

P01^4x -! GO, - ,,',, - W' S) G(Rm,;z) - - G(R^,. - Z), (2-9a)
S. l'. - - - -

X([(A'm') u(nm'z) G(0,m;z) - - ( + l) "G(n,m;z), (2.9b )

+ z' (N',m*) I- IV (' + ,m';z) ], G(nf,m) -w,- "w- G(n,mz). (2.90c)

(2.6) where ±w, ± w2, dcfmfed a

where the Green's function G is defi "d as -/2 . (2.10)

G~isin;, W2 '(' i., 2 + 112)1(z+ lz), (2, 1Ob)

(2.1)2 J.. - Z 1  2 ares the simple pole sinsularities of G. as a function of, at OW

Xp7G(z.X) (2.7) tinum linea problem (1.2). these ,-%laries ot Welm

mW ad by peforming the integation with respect to :2, we
pt for 0 th Wowi n whch cleary shc s that? !. )1-'.

( )  i (2.3) Gha n aaslytictimsozs rap( )(inEq. (2.1),
z 4-, +-S]s exp(uO,)

. I A -+-L

S10, - m) - j+',( -,IF)0 + 1)0(2ip - ) + ) +-0(,)0( + 2f-1)

)(' - ) +- F- 2)

Ie 2 - r - )G(1+ -2e(9 - 2r

fi10als frm mwyt -y' db 0 -1 0 6= The omapecUl dl" a(z), 0() am reuited to the p-om

8we by _ IS )  thiamww -s h * -eb *m" dtvof h mmatoeuton(.,tai

•(S -0p(da 2p) (V 1) (2.13b) +at z-'(AtEq ( ) -2 I and (Re symer proe (2.9k),."

E s i te co2ti1u can , beethe eite c fom (211 byncin dte o oieth h andst +h rh o(2) if

frawbetw~eadits "hO" deriuive pas n esenia lithr a e omlaos su-to qain

roe the etdard or ae t - h formulan expres

Ai. + 
T H E ( L 1 4 a )L E

~.. ~(2.1) *(z-e~z(2.16b)~

or ,m) dirctl from (2.7) forin into account prohem namely

forma To [ru thua po ( n,1) i is aunl m to m
e (z)t- (nLr)+ ( --)! )" )'./ (n2.-- 3) th setr zat (Az) - 1'(z), s provided (2th4gne)l

cfth.15) ndard formulaf -r-ul

-04 '"a I" d y om (2.7),p" k in accout the )r the deria of' the- i( n + 1,rn .equation (2.6)
z - 20into accont Eq. (2.12) and the symmetry prop2r9ia

As in the continuum case, the existence of a connection and then to notice that the lbs and the rbs of (2. 15) satisfy

formula between y and it3s~' derivative plays an essential the same nonhomogeneous summation equation.
role in the method. In our case, it has the following expres-
sion: 111. THE INVERSE PROBLEM .

JA A (n~mz) The main tool for solving the inverse problem, namely
for reconstructing the potentials A (n,m) and B(n,m) from

a a(z)pu(n,mi!) + ( I)* l(z)p (nm - Y). the spectral data a (z) and 16(z), is provided by the general-
(2.15) ized Cauchy formula
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(C~~d dfdjcd~~ =id d 2Ad2dC,t4 -Cx + 41 -P xPQXl))-

21i0 z2w1 0 -z Identifyngfwith p choosigD sth wholcom~iplex z
-~ ,(3.1) plane, and taking into acount Eqs. (2.5) and (2. 15), for-

mula(3. 1) yields the following Ihinr integral equation for
wbere D isasuitable domfan isthe zplaeand p:

p(R.M;z) - I +-L ff d A dj (3.2)~.) l)'~C~4nm;-)

Once, throgh the solution of (3.2),/ p s known in the Ju(2
)( n M) =f dC [ 4 d fA C [a (;)p(nmg)

whole compkasplane, one n easily resomt the poa- 2
tish through the formulas+(-)1CMnm if.

5(n,M) -A" 1 non + b) -,08i( - .) (3.3a) -

A~ a ) m + p ~ a ~ 4 4 ,-, m ~ ~ l~ ,)IV O U M S CI T R EVO~ L IO N O FA O W D a ' 14

~wbg,,a~idp awe the leading Wo lanh

+ ( -~ d I[a(C(p)x(ulm .~J (3Lnm -2(x Io+1) 41b
23 . A'. c--.-. + I r*-

+ 3 (340 0 ,

0,nm) +n5( + 1ei1Gaum*(R) - L + +

A,(a~m) - -4~an)[Wn- ,')G(M+1

A, ~ ~ n (n- Eli 1 ( B 1,m + 1,A n +R 2,Z ) 0 1 n+1 ,( c
B, ~ (x)G"3 I -G M.(.a

EqAi (4.) is clearl a[Wdesialerinote Thevltoofteserldtasdevdfomo-

Equation (4.2) is nurly a two-dimensioal version of peror This vomptison ofe sto dta int aervcfon fhar-a

the infinite Volterra system,$ and finally Eq. (4.2c0 is a dif- at can be seen from (2.6), for large n and m p~ goes to a
ferential -difference analog of the KPII equation. constant value saz approaches 0.
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