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This year has been an active and productive period for the group
at Clarkson involved with nonlinear wave propagaton. We have continued
to make progress in the study of nonlinear evolution equations, theiv
properties and their solutions for both one plus one and multidimensional
noniinear evolution equations. We are continuing our studies of
Painleve equations and nonlinear partial difference equations which

can be used as numerical approximations to various soliton equations.

We have recently considered a singular integral version of the

sine-Gordon equation:
Hu, = sin u (1)

where

Hu(x) = % [ uledg,

is the Hilbert transform of u. An interesting feature of (1) is the
fact that all solutions arise from bound states of an associated
isospectral problem. This is in contrast to say the KdV equation where

only the soliton sector arises from bound states.
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Areas of study include:

Exact solutions of nonlinear equations of physical significance.
Inverse scattering, DBAR method.

Solutions to nonlinear singular integro-differential equations.
Applications of solitons to nonlinear optics, fluid dynamics,

theoretical physics etc.
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Solutions of Multidimensional Extensions of the Anti-Self Dual Yang-Mills
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J. Math. Phys. 28, 777 1987. .\-

Note on Solutions to a Class of Nenlinear Singular Integro-Differential
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Vol. 120, 5 pp. 215-218 1987.

A Method of Solution for Painleve Equations: Painleve IV, V,
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Exactly Solvable Multidimensional Nonlinear Equations and Inverse
Scattering, M.J. Ablowitz, Proceedings of Nonlinear Evolution Equations,
Solitons and the IST, Oberwolfach, Germany 1986, Ed. by M.J. Ablowitz,
M.D. Kruskal and B. Fuchssteiner, World Scientific Publ. Co.

Topics Associated with Nonlinear Evolution cquations and Inverse
Scatteing in Multidimensions, M.J. Ablowitz, Ed. by M. Lakshmanan,
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Numerical Simulation of the Modified Korteweg-deVries Equation,
Thiab R. Taha and M.J. Ablowitz, INS#77 preprint, February 1987.

Hodograph Transformations on Linearizable Partial Differential Equations,
P.A. Clarkson, A.S. Fokas and M.J. Ablowitz, INS#78 preprint, April 1987.
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May, 1987.

DA |
-

N
%

A

DOXRAp SN

-

o

L 1
'

e

NNA
I i

(A

Y A ol o 4 "
TALNRUEAE A JENEN

AR

Y ca

kS

“s ¥y
Fd

A 2

4
'
LAY
-

«amw

., - ._'\;;-‘\}._- \-.\- _'- ~-.\- .'- ‘.- _.-:'- \' _‘--\ n \ ;-‘- N




N Y N I N I I S R T I R TR A Y ¥ . Bpdad 12 Aa® ta’ Aatulin® oY Ty ¢
) . h 8 A

Solutions of Multidimensional Extensions of
the Anti-Self-Dual Yang-Mills Equation

g )

o

- By Mark J. Ablowitz, David G. Costa,® and Keti Tenenblat *

Motivated by recent work on the generalized wave and Sine-Gordon equatons,
: various multidimensional extensions of the classical self-dual Yang-Mills equa-
: tion are developed. A method to obtain a broad class of solutions is given.

L)

b

fy The advent of the inverse scattering transform (IST) has allowed mathemati-
cians and physicists to linearize and solve certain classes of nonlinear partial

, differential equations. A review of much of this work can be found in texts on the

¥ subject (see for example {1]). One such equation of physical interest is the

B sine-Gordon equation (SGE). The SGE arises naturally in the study of surfaces

A ‘ of constant negative curvature in differential geometry. Classical work by

N - Bicklund [2) and Bianchi [3] developed special solutions as well as transforma-
tions between solutions. The IST encompasses the classical approach in a natural

i way and allows one to find a far broader class of solutions to the SGE.

N Natural geometric generalizations of the classical results were obtained in

N [4,5), in which a multidimensional version of the sine-Gordon equation, called

! the generalized sine-Gordon equation (GSGE), and related transformations were

" found. Similar results were obtained for nonlinear generalizations of the wave

equation (GWE) [6). In [7] the associated linear equation and the IST for the
; GWE and GSGE were developed. It was found in [7] that the linear problems for
! : the GWE and GSGE are given by systems of ordinary differential equations
which can be transformed to a nearly standard form. The solutions of the

Address for correspondence: Mark J. Ablowitz, Department of Mathematics, Clarkson University,
Potsdam, N.Y. 13676.
*Partially supported by CNPq, Brasil.
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38 M. J. Ablowitz, D. G. Coeta, and K. Tenenbiat

generalized equations are obtained via factorization of a certain Riemann-Hilbert

boundary value problem.

Motivated by this, one can look for solutions to multidimensional extensions
of other well-known nonlinear systems. In this paper we consider extensions [see
Equations (12)—(14)] of the anti-self-dual Yang-Mills equation given by Pohimeyer
[8). The point of view we take is to develop multidimensional analogues of the
associated linear problem. Solutions of Equations (13), (14) below are associated
to local frames on vector bundles over C*. The solutions are obtained via the
so-called d method (which itself generalizes the notion of a Riemann-Hilbert
factorization problem). Recently there has been considerable development of the
d approach, and here we mention the reviews in [9-13].

A version of the anti-self-dual Yang-Mills equation is given by

d 108 d _, 98
(95 am(e g - o

where @ is a positive matrix valued function of (x,, x,) € C?; see [8]. We obtain
extensions of this equation for a matrix valued function {(x), x = (xy,..., x,) €

C.. as follows:
Consider linear problems of the form

D/m(x,z) = A,(x)m(x,z), 15 j<n,

x=(xy,...,x,) €C" z€C, where D/ = &/ + :¥{ are commuting derivations
acting on m, and &/, %/ are first-order differential operators in the variables

x;, X,. Commutativity implies

D/A,~ D/A, +[A4,.4)] = 0.

As examples choose three distinct sets of derivations:
where we denote x,,, = x, and S,=(-1)

d d
Dzj - ?Tl + Zkgjslkg?;v

where
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The Anti-Seli-Dual Yang-Mills Equation

and
D/ = gé- + Zfr—
: X; r(n/?
where n is an even integer and

/]

- -1 if jsn/2,
1 if j>n/2.

Applying D/ as given above into (3) in each case, we have

dA4, 94,
a—%--afar[A,,A,] =0

and respectively

04, 94,
5%, Swx,, =%
Z jlax Z ka"v
L)
A 04,
i = J = 0

r A= -r
19X, asy ' IXisay

If we introduce { by

we obtain respectively the equations

So% 3x ( ax

'axml

199 9 (o, 99
x S35, (27 ax)'kz‘lslk?i(ﬂ a—x,)

J

Whenever n = 2, each of these equations reduces to (1).

082) - 57 (0 28) <o

3 99 3 A
'IT——‘;_,I(,/,,(Q 3x) 'n‘—a;,_,,(,/z,(ﬂ W)‘O'

39

(6)

(M

(8)

(9)

(10)

(11)

(12)

(13)

(14)

-------
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40 M. J. Ablowitz, D. G. Costa, and K. Tenenbiat

In order to obtain solutions for these equations we use a general result,
Proposition 4. Our approach is similar to the one used in [12] for Equation (1).

Let x denote the space of N X N matrix-valued functions m(x, z) € L,
x€U, U an open domain of C*, z€C, such that m is a locally bounded
function of x with values in L>. Let ¥ denote the space of N X N matrix-valued
functions v(x,z) € L., x €U, such that v is a locally bounded function of x
with values in L! N LP. We introduce the following notation:

Lf,, = (f(2):2€C; f(2).7(z) €L?}, 15 p<c.

We will denote by £, [respectively ¥{,,] the space of functions m(x,z)€ X
[v(x, 2) € ¥] such that dm /dx, and dm /3%, [dv/dx, and dv/dx] are locally
bounded functions of x with values in LJ) , [Ly;, , N L, ,]. We observe that the
domain U of the variable x can eventually be all of C*. Introduce the operator

Cf(z) = sz./Cgi_‘-%d;A df.
LEMMA 1. Let f(z) € L'\ L™, Then Cf € L and

1
ISl S 1f] = + §;|f|L' S fleags-

Proof: Write Cf(z) as a sum of integrals over the ball |{ - z| <1 and its
complement. The estimate follows readily.

LeMMa 2. Let f(n,$)E L., n€C*, t €C, such that af/dn, exists in the
distribution sense. If f and 3f/3n, € L;, then we have

a F 3/(1',{) P
gu, SIS0 a8 A df = [ Sl ap n df

in the distribution sense.

Proof: The proof follows from the definition of the weak derivative df/37 , by
using convenient test functions y/(), 8(¢) and applying Fubini’s theorem. O

From here on, we assume V(x, z) € ¥,, fixed, and we introduce the operator
Tm = mV.

LEMMA 3. Let V(x,z) €%),,. Then CT: ¥ = ¥ and CT: X, > %, are well
defined.

Proof: We show that T: %, = ¥{;,, and C:¥;,= %, are well defined. It
will be clear that the proof also shows that T: & = ¥ and C: ¥ — & are well
defined.
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The Anti-Seit-Dual Yang-Mills Equation 41

(i) For me %,;, we have that Tm=mV € LY, since V and m € L. And,
since m and ¥V (or dm/dx,, dm /3%, and dV/9x,, dV/dX,, respectively) are
locally bounded functions in x with values in L? and L;N LY (or Ly, and
Ly, . N L)), it follows that Trm is a locally bounded function in x with values
in LN LY.

Moreover, for m € &,,, there exist the distributional derivatives d(Tm)/dx,,
3(Tm)3x, locally bounded in x with values in L, , N L3, ;. given by

A(Tm) 3Im av
ij = a—ij+ maxj.

Similarly for d(Tm)/dx, Therefore, Tm€ ¥}, and T: %, - ¥ is well
defined.
(i) Given v € ¥|;,, Lemma 1 implies for a.a. x

|Co(x,2) s slo(x.2) |ezngs-
Since v is locally bounded in x, it follows that Cuv is locally bounded in x with

values in LY. From Lemma 2, we have the existence of d(Cv)/dx,, 3(Cv)/9%,,
and

3{C 3
—f,x") - c(ﬁ"j) (15)
J
Now, Lemma 1 yields
dv dv
(2 - .
( 3;; L 3_x_/ LioLy ( )
and
dv 1| dv dv
zC(—) < 5—|5— +IC(Z'——)
dx, L 27| dx, L ox, Lo
dv ) v
sl 3= +lz5— . (17)
(axl LnL® axl L,nL?

Similar estimates hold for dCv/d%,. Since dv/dx,, dv/dX, are locally bounded
in x with values in L{, , N L, ., it follows from (15), (16). (17) that 4(Cv)/dx;
and d(Cv)/dx; are locally bounded in x with values in L%, ,. Therefore,
Cve d,, and C: ¥}, ~» %, is well defined. O

Let D, = &, + z%, be a derivation acting on functions m, where ., and %,
are first order differential operators in the variables x , X, with constant coeffi-
cients. We note that if me £, then D,m is a locally bounded function in x
with values in LY. Moreover, for v € ¥7;,, D is a locally bounded function in x
with values in L; N LY. Therefore, [D,, T]: &, = ¥ is well defined. Similarly
(D,,C]: ¥y, = & is well defined.

AN e

e L S AT R S S A A S A S W SIS a
. o e e e NN e N

ISR

»
Y

oy

i
a

FEE
Cx

x,

PP PR
L [

Lo RN AL s

A TN

L N
Jed f._"‘v“.,.‘

d@
. Y D S Sk d

' 5

~
* .
.

~
-
~

o N



Y e vy o g ~ N Wy ¥
W b 6l R Mad Sl 0B g tab wag 6o Val Gah el 'Sl Gd Wapt (RN L ASCHEIAN -

A A AALASA LA A Gl AR S A A LG SR G,
¥

y

M i

. by 42 M. J. Ablowitz, D. G. Costa, and K. Tenenbtat

W

of

':;: PROPOSITION 4. Let V(x,z)E ¥, xEQRCC", z€C, such that

i

" (i) DV =0,

] (i) I-CT: -~ % is1-1.

. If m(x,z) € X, satisfies (I-CT)m =1, then m is a solution of the equation '
"

X D,m = Q(x)m, !
¥ here y
-5’: * '
Q(x) = - 5= / 2, (Tm(x,8)) d§ A d§.

R

;" Proof: Since D, is a derivation, it follows that

)

i D,(1) = 0. (18)

) From now on, in view of the above remark, we shall use the fact that the )
:n: commutators [ D,, T] and [D,,C] are well defined on £, and ¥7,, respectively. ’
::n Now (i) clearly implies that :
«

& [D,.T]m =0 (19)

M for all me . On the other hand, using Lemma 2, we obtain that, for any

’:: VE Y,

'i . 1 =
o D,(Cv) = C(Dw) = 777 [ (L) & A dF:

:;o hence 4
R 1 n -
o [D,.Clv = - m[cyzud; A df. (20)

W

Applying D, to the equation (/ ~ CT)m =1 and using (18) it follows that
!
D.m - (DC)Tm = 0, .
' hence .
) A
: DM = [D,,C]Tm + CD,Tm
" - Q(x)+CTDzm'
i ]
. where we have used (20) with v =Tm, m€ 2|,,, and (19) in the last equality. .
- Therefore, g
(I-CT)Dm = Q(x). (21) 5
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The Anti-Seit-Dual Yang-Mills Equation 43

Now, we have
Q(x) = Q(x)1 = Q(x)(I-CT)m = (I-CT)Q(x)m.
which together with (21) and (ii) yields D,m =Q(x)m. O
For future use, we suppose that the given ¥(x. z) € ¥7;, is such that
sup [V(x, ) pner = 8 < 1. (22)
x€U

LeMMA 5. If (22) holds, then

(i) I-CT: 2 = X is 1-1 and onto,
(i) m=(I-CT) e !F)'
(iii) m(x, z) is of class C* in x provided V(x, z) is of class C* in x.

Proof: (i): For each fixed x € U the linear operator m(x,-)— CTm(x,-) is
bounded from L® to L®, with norm less than or equal 10 & <1. Therefore
I—CT is 1-1 and onto with an inverse given by the Neumann series

(1-cr)™' = f (cT)’. (23)
(=0

(i): We must show that inere exist dm/dx,dm/dx, as locally bounded
functions of x with values in LY, .. In view of (23), it suffices to prove that the
partial sums

d

q
Y, 5-(CT) (24)
{=0 J

form a Cauchy sequence. For that we use the following straightforward estimates,
which hold for each fixed x € U and integer [ > 0:

1C8l= < 18l = gEY, (25)

12C8l = < (8l nps + 128l =, 8 € Y. (26)
(CT) Sl S Wiinestfles = 81lz fE€ X, (27)
l(TC)lg‘L;nL?, < 8I|8|L;an- gEY, (28)
|ATC)y) s < 8 (HBl L n i + 128l es). g€ ¥, (29)

Observing the identities

q P q
> %(CT)'I =X (CT)“'lC{ > [(CT)"“I]%?}»‘ (30)
l=p / =l {=p /

q P q
: ¥ %(CT)'I -7 :C(TC)“"{ Y [(CT)"“I]%:, (31)
t=p 4 p=l I=p 7
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44 M. J. Ablowitz, D. G. Costa, and K. Tenenbiat

we use (25) and (27) repeatedly to estimate (30) as

av e
,E T,(CT" E AR e
-p
87| av
T 1- ?T/L'HL"' (42)
and, similarly, we use (26)-(29) to estimate (31) as
P &2t av| 81| v }
CcT l - +
zlgpr( ) E{ 3-’Et.m.-' —SZTLHL"
p(p+1)8" 26"‘
2(1 8) F 7iLnLe ZT L; r\L"

These last two estimates show that the partial sums (24) form a Cauchy (hence
convergent) sequence of locally bounded functions of x with values in L3, ,.
Therefore, there exist dm /dx, in LY, (U, L3, ). Similarly, there exist dm /dx,.
The proof of (ii) is complete.

(iii): If V(x,z) is of class C! in x, then, for fixed z€C and an arbitrary
compact set K C U, we obtain from (32) that

-1
sup Z -a—(CT)l(x z)| < &8— s:;; g%(x,z) ,

x&K|i=p

which goes to zero as ¢ > p — 0. This implies that m(x, z) is also of class C’
inx. O

Now we will use Proposition 4 with the derivations D/ given by (4)-(6) for
Equations (12)—(14) respectively. In each case we must choose V(x,z) € ¥}, in
such a way that the hypotheses (i) and (ii) are satisfied.

We consider the change of variables

u, =2x,+S,.% . for D/ given by (4), (33)

u; =123 S,x +5X for D/ given by (5), (34)
ke,

u; = zrx,_, ., +Z%,  for D/ given by (6). (35)

Then using (4)-(6) we have that D;V =0, for each j, whenever V is a holomor-

v
"V,’I’i",'
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phic function on u;. Therefore, we consider V(u,,...,u,, z) holomorphic on the
variables u, given respectively by (33)—(35). In fact, we shall take V(u,,...,u,, 2)
as a polynomial in the u;’s:

V=Y C(z)u, (36)
laj<p

where multiindex notation is being used. _

Now, we take U € C" to be a bounded domain and consider K = U. Then, we
choose the C,(z)’s, |al < p, in such a way that the linear operator m(x,-)—
CTm(x,-) is bounded from L® to L® with norm <& <1 for all x € K. The
corresponding ¥ in (36) satisfies the hypothesis of Proposition 4 in view of
Lemma 5. Therefore, for such a ¥ fixed, we obtain m(x,z)=(/-CT)™ !,
which satisfies the equation

D/m(x,z) = A (x)m(x,z)
with
1 ) -
4,(x) = - 35 [LH(Tm(x.0)) d A &5,

where D/ = £/ + : ¥/ is given respectively by (4)—(6). It follows that A, satisfy
(7) and respectively (8)-(10). Therefore @ given by (11) satisfies (12)—(14)
respectively.

The matrices m(x, z) can be interpreted as local frames on vector bundles
over C" for Equations (13) and (14). These bundles when compactified may be
viewed as fibre bundles of a complex projective space P! over S?*. The
coordinates u; defined in (34) and (35) arise from the following fibration.
Considering (u,, ..., u,, z,1) as coordinates in P{,"", we take

x' = —zB(I-|z|*B) " ‘u' + (I -|2|*B?) '@,

where x = (x,,...,x,). u=(u,,...,4,), and

0 -1 -1
1 0 :
.o ~1 for (34)
B = 1 e 1 0
0 -1,
e for (35)
ln/Z 0
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) \
sl A )
o Conversely, the fibre above x is given by (u,,..., u,, z,1), where : ~
o’ ‘
“ u' = zBx' + X',
" as in (34) and (35) respectively. We observe that since B + B’ =0, it follows that
W
KL
(3
™ I-|z1B* = (I-|2|B)(I +|2|B)
iy
\ - .
w is inyertible.
[}
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On the Solution of the Generalized Wave o
and Generalized Sine-Gordon Equations o
-~
<
By Mark J. Ablowitz, Richard Beals, and Keti Tenenblat ":
3
b
O
. . L . b
The generalized wave equation and generalized sine-Gordon equations are known :
to be natural multidimensional differential geometric generalizations of the $r-
classical two-dimensional versions. In this paper we associate a system of linear -~
differential equations with these equations and show how the direct and inverse Py
problems can be solved for appropriately decaying data on suitable lines. An ‘
initial-boundary-value problem is solved for these equations. Y
o
-
-
1. Introduction N
. '
In 1967 Gardner, Greene, Kruskal, and Miura [1] discovered that the Cauchy :f
problem, with suitably decaying initial data on the line, associated with the i
Korteweg-deVries (KdV) equation could be solved by making use of ideas from 3
the theory of scattering and inverse scattering. Subsequently a number of e
nonlinear equations of physical interest have been solved by variants of this "
method, often referred to as the inverse-scattering transform (1.S.T.). Accounts of :';:
these techniques, associated algebraic structure, and amenable nonlinear equa-
tions can be found in texts on this subject (see for example [2]). )
An equation which fits into this framework is the sine-Gordon equation: N
Nl
u,~u, —«xsinu = 0. (1.1) NS
\I
The sine-Gordon equation is of interest to physicists and mathematicians. It was A
first solved by LS.T. in [3]. In physics it arises in the study of Josephson :-:
junctions, particle physics, stability of fluid motions, etc. In mathematics it has »
arisen classically in the study of differential geometry. In this paper we shall o~
describe a method which enables us to carry out the 1.S.T. for certain nonlinear :
Y
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n-dimensional generalizations of the sine-Gordon and wave equations («x = 0)
which arise in the study of differential geometry.

Originally, the sine-Gordon equation was derived in the study of surfaces of
constant negative curvature contained in Euclidean space R>? There is an
intimate connection between such surfaces and solutions of the equation. Indeed,
in 1875 Backlund [4] considered the following. Let M and M be surfaces in R’
and /: M —» M be a diffeomorphism such that for any point p in M and
corresponding point p = I/( p) one has the following:

(a) the line determined by p and j is tangent to M and M at p and j
respectively;

(b) the distance d( p, p) =r > 0 is a constant independent of p;

(c) the angle between the normal vectors N(p) and N(p) to the surfaces is a
constant 8 independent of p.

Bicklund proved that under these conditions the surfaces M and M have
constant Gaussian curvature x = x = —(sin*8)/r2 which can be normalized to be
— 1. Moreover he showed that given any surface M CR? with curvature x = —1
there exists a two-parameter family of surfaces M with curvature k = — 1 related
to M by diffeomorphisms which satisfy (a)~(c).

The analytic interpretation of these results originated in what is now called a
Bicklund transformation, which provides new solutions to the sine-Gordon
equation from a given one. Later Bianchi [5] obtained a permutability theorem
for surfaces which provides superposition formulae for the sine-Gordon equation.

Motivated in part by the work of [6], the natural geometric generalizations of
these results were obtained in [7.8] by considering hyperbolic (constant sectional
curvature equal to —1] n-dimensional submanifolds M" of the Euclidean space
R2"~!. The geometric results for hyperbolic manifolds M" contained in R*"~!
were extended [9] to manifolds: M” of constant sectional curvature x <1 (k< —1)
contained in the unit spheres S2"~! (hyperbolic space H2"~!). In particular, the
zero-curvature submanifolds of the unit sphere correspond to solutions of a
generalized wave equation (GWE) which is a homogeneous version of the
generalized sine-Gordon equation (GSGE) associated with embeddings in
Euclidean space.

The higher-dimensional version of Backlund's results takes the following form:

dX + XA'X = A - XB, (1.2)

where

'S
i
X
~
8
&

1<ij<n, (1.3)
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A

Ty W "W

and a = {a,,} €R"*". Equations (1.2)-(1.3) reduce to the Bicklund transforma-

tion for the generalized sine-Gordon equation (GSGE) when ;
-

»

B(z) = (:*+(28,-1))/2:. (1.4) :

“_ & _a
[ ety
FEIAY

and for the generalized wave equation (GWE) when

L% ]
(A

B(z) =—-(1-2%)/2z = \(2). {1.5)

[ ¢
.

The compatibility condition required for the existence of solutions to these
Bicklund transformations results in a system of second-order partial differential
equations for an orthogonal n X n matrix a = {a, j} in (1.2) which is a function
of n independent variables a = a(x,, x,..... x,). The equation has the form

2L %), 5L
x| a,, dx, dx,\a, dx,
1 da,, aa/, . .
F 1 da,, _ 1 Jday, day, o L.
5X—A(a—l/ 3%, | = anar) 8—r,._3x_, i. j.k distinct,

da,, a, day,

2, 9x,° i+ k., (1.6)

+

where £ =1 for the GSGE and ¢ =0 for the GWE.
We observe that when n=2 and e¢=1 (GSGE), the orthogonal matrix a =

{a,,} given by

costu  sinlu
a= 1.7

—siniu  cosiu

for the function u = u(x,1) reduces the GSGE to the classical sine-Gordon
equation (1.1). We note also that if the parameter : in (1.2) is given by : = tan {6,
then @ is the constant in Biacklund's statement (c) above. On the other hand when
n =2 and e=0. then with (1.7) the GWE reduces to the wave equation (1.1) with
k =0. When n >3 the generalization of the wave equation discussed here 1s
] nonlinear. A Bicklund transformation and a superposition formula for the GWE
were obtained in [9]. _

The Bicklund transformations (1.2) described above are in fact matrix Riccati
equations. Linearizations of such a system can be performed in a straightforward
manner (see for example [10]). Introducing the transformation

X=Uv1 (1.8)

SR . . B R i T T S Y
- - . i’ e e :".'.:;"'.5."!\}.&\:1(7 FRTA PRI P )
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; where U. V are n X n matrix functions of x,..... x,, the following linear system is
Y deduced:
du 0 A\(U
(dV) - (A’ B)(V) (19)
t with the components of 4. B given in (1.3). Compatibility ensures that the
orthogonal matrix @ = {a,,} satisfies the GSGE with (1.4) and GWE with (1.5).
Alternatively, if we call
U -
(V) =v.
the following linear system of 2 o.d.e.’s are obtained:
ay -
a—xl = XA/lll + C/i‘l. (110)
where 4 ,+C, are 2n X 2n matrices with the block structure ’.
0 a 0 0 X
~ J
A = . C = . 111 )
! (55 0) / (0 Y/) () 2
’ “w
Here 4,. ¥, are n X n matrices having the following structure: ‘:
e :"

-

a = (% —l)e,a/ ta,.

a, = ae, (1.12)

where e, = {e } , is the unit matrix

"1" '.' ': .y \. ‘t"': ~ k'f

(1 i=k=y,

(e} .= {0 otherwise, (1.13) -
and in component form v, takes the form ::
S
“w
1 da, 1 da, .
(Y,)“ = (1—8,”)“—“‘77:8,/ - (1—8”)0_“ _3X,16"" (1.14)

In (1.12) a is the orthogonal matrix R" — SO(n) associated with the GWE when
8 =X and with the GSGE when § = {(z+1/:), A= {(:-1/2). and v, is the

L A
P z",'“.-\.'"( f“

matrix (1.14): R, = M,(R). v, + v/ = 0. Although v, is determined by a. it will be =

convenient 1o treat (a.y,. - Y,) as the data. Then both (1.6) and (1.14) arise as )

the compatibility conditions for the scattering problem (1.10). :r‘]
I
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Since we shall separately examine the two cases GSW and GSGE, we write
down the explicit scattering problems which are compatible with each of these
equations.

For the GWE the scattering problem takes the form [y = {/(x, )]

A4
*a—xl = AAI‘P + Cj¢ (1.15)
with
0 g,
A, = (a, 0 )v (1.16)
/

and e, is given in (1.14) and C, given by (1.11), (1.14).
For the GSGE the scattering problem for ¢ = ¢ (x, z) is

a 0 e
ax, 5(2) ae, 0 v
ol Imeda) ¢ (1.17
+ + . 17a
Na(i-e) I A )
8(2).A(2).C, given above, or equivalently
ay z z
Ksi,(l\p.;..z.g}\p‘fq\p, {(1.17b)
where
0 ua, _
8 = au 0 u = diag{+1.-1,.... -1)

In this paper we show how the direct and inverse scattering problems
associated with the GWE (1.15) and the GSGE (1.17) can be solved for matrix
potentials tending to the identity sufficiently fast in certain “generic” directions
(to be discussed later). It is along such directions (lines) that suitable initial
values for the entries of a (x) and the matrices v,(x) can be specified. In Sections
2-4 the analysis for the GWE is given, and in Sections 5-8 the analogous
problems are discussed for the GSGE.

Finally. we remark that solving the n-dimensional GWE and GSGE reduces to
the study of the scattering and inverse scattering associated with a coupled
system of n one-dimensional o.d.e.’s. This is in marked contrast to other attempts
to isolate solvable (local) multidimensional nonlinear evolution equations which

s
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are the compatibility condition of two Lax-type operators

Ly = Ay, (1.18)
v, = My, (1.19)

where L is a partial differential operator with the vanable ¢ entering only
parametrically. Although nonlinear evolution equations in three independent
variables can be associated with suitable Lax pairs (e.g. the Kadomtsev-
Petviashvili, Davey-Stewartson, and three-wave interaction equations—see for
example the review [11]), little progress has been made in more than three
independent variables. In this context one has to overcome a serious constraint
inherent in the scattering theory for higher-dimensional partial differential oper-
ators in order to be able to find associated solvable nonlinear equations: namely,
the scattering data generally satisfy a nonlinear equation (see [12-14]). The
analysis discussed herein completely avoids such problems, since the linear
system is simply a compatible set of n linear one-dimensional scattering prob-
lems. On the other hand, these results demonstrate that the initial-value problem
is posed with given data along lines and not on (n — 1)-dimensional manifolds.

2. The forward problem for the GWE

We consider here the spectral problem (1.15), assuming the associated compati-
bility conditions, i.e. the GWE. The strategy is to transform (1.15) to a standard
form and to associate to it a Riemann-Hilbert factorization problem as in [15].
The transformation uses the 2n X 2n orthogonal matrices

¢ ' a 0 1 (1 -1
Ul- (0 1), Uz= .J—i‘(l I). U=U1UZ. (21)

If ¢ is a fundamental matrix solution of (1.15), then the function

P(x.A) = U(x) ¥(x.A) (2.2)
satisfies
a4y '
ax, " Ay + Q. (2.3)
where
o [0 e ‘e, 0
J=UTAU = U 0%-(0_41 (2.4)
J
and 'j
3 q, 1
= -1 - -1 2 1 = -1
Q,=UTicU-UT 5 U %(0 Ju (2.5) ;

JONE PRES

AW kW™ ma

P - P W W P T B L L T e e B L T AL SRR I RIS VR St U Fl RS
ks‘hﬁ\fw&-ﬂ*’.\':‘-:'-"\i‘-ﬁ'\'ﬁ\:‘uh‘u‘?ﬁi‘r_‘(‘:ﬂ.&.&ﬂjf, A A S A SIS AT ST A S A AR I S R LS




W TP U LR O O U PO O PO P WS W LW LW LW L UWL “ NOCTRE LAt &8 G de 4> LA G N a0 "L 'l ale " ot o Ay’ v

........

H
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where
, da
a = -—a -ﬁ; (2.6)
Conversely, (2.2)-(2.6) imply that ¢ is a solution of (1.15). We look for a
solution ¥ in the form
¢(x,A) = m(x, A)e** 7, xJ= ¥ xJ. (2.7)
;=1
Then (2.3) is equivalent to
dm A
Eg-.[4,m]+gﬂm (2.8)
These equations imply that det m is constant. We look for m such that
m(-,A) is bounded, detm(x,A) =1. (2.9)
PROPOSITION 2.1. Suppose that for some A € C, m, and m, are two solutions of
(2.8). (2.9). Then there is a matrix W(A) € SL(2n,C) such that
. my(x,A) = m(x,A)e** ' W(N)e **/ (2.10)

Moreover, if X\ € iR then W is diagonal.
Proof: One checks that

3 [ ] ,
a—x/[e A I (x ) T my(x ) e ’] =0, (2.11)

so the matrix in brackets, W(XA), is independent of x. Now (2.9) implies
exp(Ax-J)W(A)exp(—Ax-J) is bounded with respect to x. which is only
possible if A €R or W(A) is diagonal.

We study the problem (2.8), (2.9) by restricting to lines in R". Let w be a unit
vector in R, and y a vector orthogonal to w. Along the line

L(w,y) = {y+sw:s€R) (2.12)
we consider the restriction of m:

mis.A) = m(s.A:w; y) = m{y+sw Q). (2.13)
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W

"

:'.0 Then (2.8) gives
:,:
!

o B MU ] + O
g Jomw ] =Twd,

‘.

e

1]

::2: Q(s) = Q(s.w.y) = LwQ (y+sw). (2.14)

Ey

1,

DEFINITION 2.1. The data {a,,v,} are small in the direction w if the operator

e norm of the associated matrix function Q satisfies

()

W

) -]
W f_ le(s.w. y)llds < k <1 (2.15)

;-

for some constant k and all y orthogonal to w.

NS

l:;' DEFINITION 2.2. The data {a,,v,} are asymptotically flat in the direction w if

:s' each derivative of each entry of the matrices a,, v, is rapidly decreasing at infinity
":v on each line L(w, y), uniformly with respect to y. Thus, for each such matrix
r::: entry f, each integer N > 0, and each multiindex 8,

1 —9\#8 _

4 (52) 75+ sw)| s ca+1s ™ (2.16) ,
e :
A

I
‘::: ' for every y Lw and s€R.

DEFINITION 2.3. The direction w is oblique if the 2n numbers {+ w } are

] distinct.

b THEOREM 2.2. Suppose the data {a,.v,} are small and asymptotically flat in

4 some oblique direction w. Then for each A € C\/R there is a unique m(-.A)

y which solves the problem (2.8) and (2.9) and satisfies the asymptotic condition

o lim m(y+sw. A) =1, ally L w. (2.17)

0 5 - -

% ”

L: . Moreover m is bounded, m(s. -) is holomorphic on C\ /R, and the limits

m_ (x.A) = lim m(x. Ate) (2.18)

e—=0+

exist and are smooth functions on R" X iR. Also

Alim m(x. A) =1, (2.19)

uniformly with respect to x.
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Before discussing the proof of this theorem, let us consider the implications.
For A € iR the limits m , give two solutions of (2.8), (2.9). Therefore Proposition
2.1 implies the following.

COROLLARY 2.3. There is a matrix-valued function V:iR — SL(2n,C) such
that

m,(x,A) = m_(x,A)e*V(N)e 2= (2.20)

for all xeR", A€iR.

DEFINITION 2.4. The function V is the scattering data associated to (a, v,) and
the direction w.

We now sketch the proof of Theorem 2.2, Note that

a, +al = _:987](“'“) =0, (2.21)
0,+Q =0 (2.22)

In particular, the diagonal entries of Q, are zero. The problem (2.14) with the
conditions

m(-.A)isbounded and lim m(s. A) =1 (2.23)

s -

is exactly of the kind considered in (15}. Indeed Q, =0 and J,, is diagonal with
distinct entries (since w is oblique). It follows from the results of [15] and the
assumption (2.15) that (2.14),(2.23) has a unique solution /A which is bounded
and holomorphic for A € C\iR and has a continuous limit on R" X /R. More-
over, m is smooth with respect to s; hence our assumptions imply also that it is
smooth with respect to y. These considerations give us many of the properties of

m, which is defined by
m(y+sw.A) = m(s.A:w.v), v Liw. (2.24)
To show that m satisfies the full set of equations (2.8). we use the compatibil-
ity conditions (GWE). It is most convenient to choose new variables % =
(X..... X,) by an orthogonal change of coordinates in R" chosen such that

d/ 3%, = 3/3s. The desired equations (2.8) take the form

am , e P
E?l=}\[!,.m]+le=R,m (225)

for j>1. and
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The compaubinty condiuons (GWE) imply

o
2 .00 -5 00

J > 1 (2.26)
[4.0] = [4..}. ) > 1 (2.27)

The soluton to (2.14) sausfies the integral equations (see [15))
A(s.A) = :+/’ o((s - IN[Q(0)m(1.A)] dr. (2.28)

T3

where the limit + o depends on the matnx entry and on the sign of Re A, while
¢ operates on matnices by
¢(u)[B] = e*/-Be */-. (2.29)

We utilize (2.27) (employing shorthand notation) to compute

gxﬂl_xl.,:‘m] ’j”‘#{g_%m‘*'ggiﬂl—kljl',gml}dl
s (9Q
= f¢{%m+[Q;,le+Qg§"€
—A[J,.Q;]m—AQ[J;.m]>dz
af’i{ ’ dr + ! am_AJﬂ -0 di
&® Q;m}dr fd’Q?Tj [/,m] Qgim | dt
- Q;m+/‘¢{Q(g_;_"_x[1;.m]—g;m)dz. (2.30)
Thus
g% ~Rm = /’,,[Q(g%_ R;m)]dx. (2.31)

which implies (2.25). [Note that the asymptotic conditions were used in the
calculation (2.30). to eliminate a boundary term in the integration.] This com-
pletes the proof of Theorem 2.2.
We turn now to the properties of the scattering data V. We introduce an
automorphism of 2n X 2n matrices:
ol 4]

0
I

I
0

, 0 1
B =( I o (2.32)
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THEOREM 2.3. The scattering data V have the following properties:

each entry of ¥ — I belongs to the Schwartz space #(iR): (2.33)

V(=A) = V(M) = V(A) = [v(V)°] 7 (2.34)

Proof: (2.33) follows from results in {15]. To obtain the symmetries (2.34),
observe first that J, and Q; are real and

Leh=-0 0=-0=0 (239)
It follows m(x, A) satisfies the same equation as m(s, A) and that both m(x, A)°

and [m(x, M)~ ')’ satisfy the same equation as m(x, — A). The boundedness and
asymptotic conditions are also satisfied, so

m(x,A) = m(x,\), (2.36)
m(x,\) = [m(x.)\)_l]’ =m(x,\)°. (2.37)

Therefore
V(-A) =m_(0,-A) 'm_(0.-1)
= m. (0.0) [m_(0.0)7']" = ¥(2)', (2.38)

and similarly for the remaining symmetnes.

Let us remark here that the construction of m by a Neumann series implies
the estimates

Imll < (1-4) 7", im— I < k(1—k)"

1

m s (-k)"  gm -1y < k(l-k) (2.39)

where k <1 is the constant of (2.15). It follows that
W-1I)<2k(1-k)*
In particular,
Ww-1I<1  if 0<ks<2-V3.

We conclude this section with a brief discussion of normalizations and the
relationship of this treatment of the forward problem to that in [15]. The
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.I ]
U
;:' normalization (2.17) depends on the choice of a direction w; therefore the
. ~ solution m and the associated scattering data V depend on w. In [15), with n =1,
n the normalization was made at — oo and the resulting scattering data ¥ had
W certain principal minors identically equal to 1. Here, the same considerations
P show that for a given direction w certain principal minors of the associated
:;:n scattering data V are =1. In the absence of a single natural oblique direction,
N we have chosen to consider all possible scattering data and have not
|I. .. . . .
W imposed conditions on principal minors. We return to this question at the end of
N Section 3.
I:".
:':' 3. The inverse problem for the GWE
‘,: Suppose V: iR = SL(2n,C) is a matrix-valued function which satisfies the condi-
:.' tions (2.33) and (2.34). Suppose also that
i
' IV(A)-1]<1. X €iR. (3.1)
DA
P
R THEOREM 3.1. For each x €R" there is a unique matrix-valued function m(x, -)
s": which is bounded and holomorphic on C\ iR, with continuous limits m , on iR, and
" which satisfies
W
o m,(x,A) =m_(x,A)e*/V(A)e ", A € IR,
LS
o
y i =
o |x=l-Twm(x' A) =1 (3.2)
: .
o The function m is smooth on R" X (C\ iR) and satisfies a system of equations
<
W dm
:: i A[J.m]+ @, (x)m, (3.3)
-
s , where Q + Q=1 and Q, is real,
" a(x) 0
vy (x) =t )L (3.4)
s 9 ; 0 y(x)/
:c s
) Moreover, the data {a,.v,} are asymptotically flat in every oblique direction in R".
s This theorem essentially follows from results in [15]. One way to obtain the
'_;- equations (3.3) is to note that the function n, = dm /dx, - A[J,. m] also sauisfies
: the Riemann-Hilbert condition (3.2). from which it follows that Q@ =n m"' is
.‘? continuous across iR. Therefore Q, is entire; it is bounded. hence independent of
» A. which gives (3.3). The symmetry conditions (2.34) imply that m(x.A).
e [m(x.—A)"'), and m(x. - A)® also solve the Riemann-Hilbert problem (3.2).
o By uniqueness, m has the symmetnes (2.36) and (2.37). Therefore Q, is real and
N
»I
kn"
o
j N‘
N
7
'l
)
l"'
~

- ., .
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has the symmetries (2.35), which in turn give (3.4). Finally, an oblique direction w
corresponds to a diagc.ial matrix J, =Xw,J, having distinct entries, and the
results of [15) give rapid decrease of the data Q , along lines in the direction w, as
desired.

Remark: The data Q, generally do not decrease rapidly in directions which are
not oblique.

To connect this result to the GWE, we need one more step.

LEMMA 3.2, There is a function a:R" — SO(n) such thar
, d9a
a = —g 9;/- (3.9)

Proof: The compatibility relations for the system (3.3) imply

8a, aa*
?x_‘ +aa, = 3;7 +aa,. (3.6)

These in turn are the compatibility relations for (3.5). If a solves (3.5) then
d(a‘a)/dx , =0, so we can guarantee that a & SO(n) by choosing it to belong to
SO(n) at a specified point or asymptotically in some oblique direction.

A solution of (3.5) is unique up to left multiplication by a fixed element of
SO(n). If a is any such solution, we refer to {a.v,} as inverse data for the
function V.

THEOREM 3.3. If {a, Y,} are inverse data for V, they satisfy the GWE.

Proof: We simply reverse the procedure at the beginning of the preceding
section. The function

Y(x.A) = (g (;)Uzm(x.A)e“ s (3.7)

satisfies the system (1.14), so (a. Y,) satisfy the GWE.

Let us connect the inverse data explicitly to the asymptotics of m in A. By
(15]. m has an asymptotic expansion

x

m(x,A) -~ Y m,(x)A", A= x. (3.8)
r=0

This expansion can be differentiated term by term. giving

a_(i‘ L= m +[Som,, ] (3.9)

o .-\'.\_.“_- .~
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In particular, m, = | and so we obtain

Q,(x) = = [J.my(x)]

= = lim A[J. m(x.2)]. (3.10)

This gives another method for deriving the symmetries (2.35) of Q from symme-
tries (2.36) and (2.37) of m.

As we noted at the end of Section 2, different functions ¥ may occur as
scattering data for the same inverse data unless some further normalization is
imposed. Therefore to complete the analysis of the relationship between solutions
of the GWE and scattering data, we need to know when two functions ¥}, ¥, as
above give rise to the same inverse data. Let m,, m, be the associated solutions
of (3.2). If the inverse data are the same, then by Proposition 2.1,

my(x,A) = m(x,A)A(A), A € C\R, (3.11)

where 4 is diagonal and holomorphic and has boundary values A ,; moreover
A(A) = I as |A| = 0. Now A has the same symmetry properties as m, so A is the
solution of a Riemann-Hilbert problem (2.3) for a diagonal V. Clearly ¥, and V,

are related by
v,=(a_)'va,. (3.12)

In particular, V gives trivial inverse data if and only if V is diagonal. Conversely,
if ¥; and ¥, are related by (3.12), where A, are the boundary values of the
solution to (2.3) for a diagonal V, then ¥, and ¥, have the same inverse data.

4. A well-posed initial-value problem for the GWE

The result of the preceding two sections both suggest and solve an
initial-boundary-value problem for the GWE. Let us say that a solution {a.v,}
of the GWE is small if there is some oblique direction such that the associated
data {a,, v,} are both small and asymptotically flat in that direction. As before, if
w is a direction (unit vector) in R” and y is orthogonal to w, we parametrize the
line L(w, y) by s —= y + sw. Without loss of generality we may translate the
coordinates and take y = 0.

THEOREM 4.1. Suppose w is an oblique direction in R". Suppose a: L(w,0) —
SO(n) and ¥: L(w,0) = M, (R) are smooth mappings such that @ = — &' da/ds
and ¥ are Schwartz functions of s, ' + y =0, and

7 Nats)las < 3-v2.
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by a constant matrix. Since a(s,w,0) = d(s) is prescribed, the proof is complete.
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f
Then there is a unique small solution {a,v,} of the GWE such that " )
Iy
a(s) = a(sw). 3
]
y(s) = Zw/yl(sw). (4.1) ,
>
Proof: Let i be the solution of by
Im . . L Y
7;(:,)‘) = A[J,,m] + Qm, ‘an:om(s.A) =1, (4.2) y
)
where b
o
f& o z
Ju= Lo, and 0 =U; 1(0 ?)Uz' 7]
o
There is a mapping V: iR — SL(n,C) such that for A € R, i
M, (s, A) = m_(s,A)eM-V(X)e M-, (4.3) n
~l
Note the term e*’-¥(A)e **/- is the specialization to the line L(w.0) of P
e**JY(X)e <. Thus factorization of this latter function gives us an extension 4
to R" of m. V satisfies the hypotheses of Theorem 3.1, so there is an associated ’, ,
solution m of the Riemann-Hilbert problem (3.2) and By
-
b
m(s,A) = m(sw,A). (4.4) .:
-
Let {a.v,} be inverse data for V, normalized so that a(s,w,y =0)=d(s). »
Because of (4.4) we obtain '.5
RS
a(s) = }:wjaj(sw), :
v(s) = Zw]yj(sw). (4.5) :‘
]
The first identity implies i
d_a [ @ t L( 0) .:
as a = ds a on w, N ._::
.:\
so we obtain a = g on L(w,0). This completes the proof of existence. Uniqueness , "
follows from the fact that the scattering data associated to a small solution %]
{a.v,} and to the direction w are uniquely determined by m on L(w,0) and ]
therefore are uniquely determined by the functions & and ¥ defined by (4.5). :-_-j
Therefore the scattering data are uniquely determined by the functions (4.1). The N
scattering data, in turn, determine v, and determine a up to left multiplication e
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Remark: One can think of V(A) as the initial values for the function

Vi(A,y) = e /y(X,0)e 7,

(4.6)

Replacing V(A) in (4.3) by V (A, y) gives the evolution of /1 to all values of R”.
which in turn corresponds to m. This is in analogy to the standard situation in

IST problems.

S. The forward problem for the GSGE

Here we assume the GSGE and consider the associated spectral problem (1.17).
Unlike the GWE, this problem cannot easily be transformed to a single standard
form. Nevertheless we shall still associate a factorization problem of Riemann-

Hilbert type with (1.17).
Once again we denote

1 (1 -1 e, O
O AR

and we let # denote the automorphism

4fu O _Ju O
E"Uz 1(0 I)UzEUzl(o I)Uz‘

where

u = diag(+1,-1,-1,...,-1) € M,.
In particular,

Jr=J, IT=-J, 1<jsn
We set

V(x,2) = Urly(x, 2),

so that the spectral problem (1.17) becomes

P
AY+ ;88 + G,

D
\:1'6'
[}
[WITY

with

'4./ = Uz_ lA,Uz. bl = Uz_ lBjUz, q = Uz—qu2

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

‘l
Lo
L
»,
W
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The trivial (unperturbed) solution a= I, y, =0 of the GSGE hLas the associated
equation

=t 3m)¥ = 49 (5.8)

which has a solution exp(x-J(z)]. We view (5.6) as a perturbation of (5.8) and
look for a solution in the form

V(x,z) = m(x,z)ex 7, (5.9) :[;
The equations for m are then ::'_:
-‘l
dm A J)+=[B J*| + ¢ (5.10 3
E-éz[ jm—mj]+§-z—[ ]m—mj]+ ,m. . ) A
s
As before, we normalize by '
sy
m(-, z) is bounded. (5.11) 1
N
DEFINITION 5.1. The direction w in R" is principal if |w)| > |w/|for 1< j<n. o
Anticipating the argument below, let us consider .,‘
J(2) = Lwd(2) = wd(2), + X wh(2)J,. (5.12) =
. =2 "
This matrix is diagonal with entries + w;8(2), £ w8(z), £ wA(z), 1< /j<n. The ;'
set of z in C such that two distinct diagonal entries have the same real part o
always contains the set LA
o~
S =iRU(z:]z/=1}, (5.13) A
i.e. the union of the imaginary axis and the unit circle. It is equal to this set !
precisely when the direction w is oblique and principal e
DErINITION 5.2. The data {(a.a,.v,}. where again a, = - a‘g—f. are small in -
the direction w if for every y L w, o .
] 1 % »
ST w, y)lds + 3 [~ llaty +ow)-1fids s k <1 (514) ,
- % -2 :‘_
I\J
Here again -
N
A
_ al 0 >
Q - ZW/Q/ Zw/( 0 Y, ' !.,.,
:;:
d
|
| )
.
~
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We say that the data {a,a,, v, } are asymptotically flat in the direction w if {a/. v, }
are asymptotically flat in the direction w.

THEOREM 5.1. Suppase the data (a,a,.v,) are small and asympuotically flat in
some principal oblique direction w. Then /or each z € C\ Z there is a unique m(-. z)
which satisfies the system (5.10), (5.11) and such that for each y L w

lim m(y+sw,z) = I (5.15)

s ~00
Moreover, m is bounded, m(x,-) is holomorphic on C\Z, and m(x, ) has
continuous limits on T from each of the five components of C\ Z.

To be specific, let us denote by m, the limit on £ from the components
{|z|>1, Rez >0} and (|z| <1, Rez < 0}, and denote by m _ the limits from the
other two components.

COROLLARY 5.2. There is a matrix valued function V:Z\(t i} —SL(2n,C)
such that

m,(x,2) =m_(x,z)e* 7V (z)e 7, (5.16)

As before, we define V' to be the scattering data associated to (a.v,) and the
direction w. To prove Theorem 5.1, we make two transformations. First, let

’ - -1 al 0
m(x,2) = U; (0 I)Uzm(x,z)
= U~ 'Uymix.z2). (5.17)
Then the system (5.10) becomes
am’ ’ ’ ’
" [1(2).m'] + Q)m. (5.18)
where
’ -1 a 0 1 r-1 I =
Q)(x.2) = Ui (| U+ 5z [UBU- ] (5.19)
/

Along a line L(w, y), (5.18) leads to

am = [J (z2). m]+Qm‘
m(-, ) bounded, lim m(s.2) =1, (5.20)
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where
Q'(s.2) = Q(s.zsw.y) = Lw,Q;(y+sw,2). (5.21)

Although this problem is not identical to that considered in [15], nevertheless the
methods of (15] apply to give the existence of a unique solution m(-,z)=
m(-. 2. w, y) for all z € C\L such that

f:llQ’(s.Z)Ildr <1 (5.22)

The integral in (5.22) is majorized by that in ¢5.14) when |z| > 1. Changing to
m(y+sw.z) = m(s,z;w, y) (5.23)

and arguing in Section 2, we see that n = U; 'Um’ has the desired properties for
all Jz| 2 1. To obtain results for |z| s 1 we can either use a second transformation
or take advantage of a symmetry. Note that

J(1/2) = J(2)%,

B*=4, 4*=B. C(*=C. (5.24)

Therefore m(x.1/z)* satisfies the conditions for [z| <1. This completes our
sketch of the proof of Theorem 6.1.
As for the GWE, one has symmetry properties in addition to (5.24), namely

- -

that /. J*. 4,8 (:'/ are real and

Jiad Al

J(z) = J(2) = - J(2)°.

A = A, = - A,
B=-B=-B.
¢ =-C=C¢. (5.25)

Thus one has
m(x,z) = [m(x.z)_l]' =m(x.z)°,
m(x,2) = m(x.2). m(x,1/z) = m(x.2)". (5.26)

The svmmetries of }* are an immediate consequence.
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) THEOREM 5.3. The scattering data V have the symmetry properties

V(-2) = V(z) = [V(2)7]",

V(z) = 7(2), V(}) - ()" (5.27)

The analytical properties of ¥ can also be deduced from the results of [15). As
given above, V is defined on each of the five components of Z\{+i}. We join
the two unbounded components by compactifying at so and set

2, = {|z]=1,Rez >0},

Z,={z+7=0,]z1>1)},

Zy = {|z1=1,Rez <0},

Z,={z+2=0,|7)<1}. (5.28)
For convenience, we denote restrictions by

V,=Visg,

J =13

vV, = V"|=/, Jj =24 {5.29)

THEOREM 5.4. Each V¥, has a smooth extension to the closure of Z,. Each
derivative of V— I is O(2") as 2 =0 and O(z™") as z + 0, for each integer
n20. At tithe V, satisfy consistency conditions

VIV YV, (ti) = I. , (5.30)

More generally, for each integer N > 0 there are matrix-valued polynomuals p, of
degree N such that

V(iz=1) = [p,(z—i)]_lp/,,(z—i)+O(z-i]"“) as z =, (5.31)

with similar conditions at — i, where we take Py = P,

As motivation for the next section we note that the function m’ in (5.18)
extends to C\ Z and is the solution of the Riemann-Hilbert factorization prob-
lem (5.16) which is characterized by

.lim m(x.z) = [ (5.32)

------
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6. The inverse problem for the GSGE

Let V:¥ — SL(2n,C) be a matrix-valued function satisfying the symmetry condi-
tions in Theorem 5.3 and the smoothness, decay, and consistency conditions of
Theorem 5.4. Suppose also that

lv(A)-1]< k. Aes, (6.1)

where k’ is a sufficiently small positive constant. Then by the methods of [15],
for x €R there is a unique function m’(x, -), holomorphic on C\ £ with limits
on Z, such that

m,(x,z) = m_(x,z)e* 7V (z)e* /),

lim m'(x,2) = I. (6.2)

12l ==

The function m’ is smooth up to the boundary on R” x(C\ £). and

m(x.z) =1+0(z"), |2] = o0, (6.3)
m'(x,z) ~ i m.(x)z", z = 0. (6.4)
r=(

Moreover, in any principal oblique direction w, for y 1w and A € C\ I

lim m'(y+sw,A) =4, (6.5)

= %o

where A , is diagonal. The convergence in (6.5) is O(|s|~") for every N, and the
same is true for derivatives of m’. Also, m’ and its inverse are bounded functions.
In view of these properties the functions

(‘;—';"—[J/(z).m'])(m')“ (6.6)

are holomorphic on €\ Z. continuous across = except at z = 0. bounded at sc.
and O(1/z) as z = 0. For any fixed x such a function is affine in z ~!. Therefore
m’ satisfies a system of equations which we can write in the form

am’

1
ax = [ m]+ (B = J%)m+ o, (6.7)

where 8/ = B'(x) and C'=C'(x).
The asymptotic expansion (6.4) can be differentiated, and (6.7) implies in
particular that

B'mp = myJ*. (6.8)
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}‘,n Now mj, is asymptotically, and rapidly. diagonal in principal oblique directions,
'0:: so in such directions

B -J* 0 (6.9)

Y Because of the symmetries of V' and the uniqueness of m’ we obtain the
N) symmetries

s m(x.=2) = [m(x.2) ] = mix)”, (6.10) .
m(x,z) = m

These in turn imply that B and C; are real, while

B = (B/) = -(B)".
(6.11)
|:| ¢ = ‘(C,') = (C,') .

Thus these matnices have the form

B/' = Uz—-l

0 B
B 0 )U"
(6.12)

’ -1 Q 0

where 8, a,, v, are real and

a+a,=0=y +y. (6.13)

We can extract more information from (6.8) by exploiting the symmetries
(6.10). These symmetries imply

my = iy = (my ') = m3. (6.14)
SO
’ - f 0
my = Uy ‘(0 g)Uz (6.15)

where f and g take values in O(n). Let

l »
m(x z) = m’(x.:) . (6.16) :
: .
-
:
;
1)
/
t
SR R Y L S P TP P S S TN . - e N e e e e e e
I S 0 N A N A S T A T A N S S N AN N S A S N A N A NN S AN AT



va fa® Bt B bt 084 et a? et 1) Lt By YL * gat o fat . »

<'\
I
oS
Generalized Wave and Sine-Gordon Equations 199 i )
"
Then (mj~')*m" satisfies (6.2), so ::
A
-1\ * "
mi(x.z) = (mg') m"(x,z). (6.17) {
Thus ,:.
my = (mg')7, (6.18) o
o
P
so that : =
g=28" (6.19) o
N
Since also g2 = g'g =1, g has eigenvalues + 1. Now g depends continuously on V ::
and g =7 when V =[. Thus g is symmetric with all eigenvalues +1; hence :
K¢
g=1 (6.20) )
Combining (6.8), (6.12), (6.15). and (6.20), we obtain “:-
B, = fue, (6.21) NG
~
Now (6.21) implies that for j +# k. )
:
ey O ;
L
(6.22) *
{0 0 R
=0 l(0 .)Uz- )
et
4
The compatibility relations for (6.7) include ¥
ey
(9 ’ ’ 1 ’ B —_ a ’ Tall L ’ ’ 6 ‘)3 ‘\.'
a—x‘C, +CC,+4i(JB,+BJ,) = KC" + C/C/ + (/B + B[ J). (6.23) -
! =
In view of (6.22) and (6.12), (6.23) implies .'::-
Ba, 8(1 :-_:
a,_tk + a,ak = a—(:— + akal. (6:4) :::
h Y
)
These are precisely the conditions for solving for a with .
_ da 5 :'_:'
a, = “U aX (6‘5) 1._,-
We can require that u — [ as s — — x along a family of principal oblique lines. 4
<
e
s
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Then since a; is skew symmetric (and real),
a:R" — SO(n). (6.26)
DEFINITION 6.1. (a.v,} is inverse data for the function "

THEOREM 6.1. The inverse data {a.v,} satisfy GSGE.
Proof: Let

~[a(x) 0

U(x) (0 I)Uz. (6.27)
. and set

’ ¥(x,2) = U(x)m(x, z)e* 7, (6.28)

Then the equations (6.6) become

a 1
5% = LAy + =By + Gy, (6.29)
: where
R -1 0 ae,
, . AI - UJ/U = eja’ N (6.30)
8 , 0 be,
=UBU ' = . 6.31
4 4 eb 0 ( )
v 0 0
= 4 J k. -1 5
¢ =UCu 3xj U (0 y/), (6.32)
and
b = afu. (6.33)
To complete the proof we only need to prove
b = ua. (6.34)
Let us write
L. u O u 0
E (0 I)E(O I)' (6.35)
[
:.-
)
.
'\_.
-\.-
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Then we want to prove

A = B". (636)

J J

To prove (6.36) we write the compatibility conditions for (6.29) in the notation of
matrix-valued differential forms. Let

A=YA4,dx,, B=YBdx., C=YC(adx, (6.37)

The compatibility conditions are

AANA=0=BAB,
dA = AANC+CA A, dB = AA B+ BA A,
dC=CAC+AANB+BA A (6.38)

Since C=C"=LC dx , we have

d(A-B") = (A-B)AC+CA(A-B"). (6.39) :
Now R
A, - B =U(J-(8)" U .
. « >
=U(J*-B) U (6.40) .
>
and we know that J/"— B, vanishes asymptotically in certain directions. It A
follows from this fact and (6.39) that 4 — B" =0, :
\
Remarks: .

(1) As for the GWE. the data {a . v,)} can be recovered from the asymptotics
of m’ as z = o0 as in (3.10). Thus the orthogonal matrix-valued function a is also
determined implicitly by these asymptotics.

(2) The data {a.a,,v,) are small in every principal oblique direction if the

constant k’ of (6.1) is small enough, and are asymptotically flat in every principal :'-
oblique direction. -
(3) As for the GWE, two functions ¥, and V, give rise to the same inverse iy

data if and only if
v, =(a.) 'na,, (6.41)
where A is the solution of the Riemann-Hilbert factorization problem (6.2) for a

diagonal matrix-valued function on Z. In particular, V gives the trivial solution -
of the GSGE if and only if V is diagonal. p

St R L R e ] Rl e by gv o g g0 o f )

.

T R R N S e e A At e e e . e
AR -~ PN AT SR RN A A R AT
ANy o AN T DA Lo A NN AN AT RS 2NN




DIOWOLY 9" iy
".‘n',,‘\'.'o'.'c‘:’l',.'t‘. badadnt !

T e S A T R
{ W5 . Ty,

202 M.J. Ablowitz, R. Beals, and K. Tenenbiat

7. A well-posed initial-value problem for the GSGE
With the same conventions as in section 4, one has the same conclusion:

THEOREM 7.1. Suppose w is a principal oblique direction in R". Suppose
a=L(x,0)»SO(n) and ¥ = L(W,0) = M_(R) are smooth mappings such that
&= —a'da/ds and ¥ are Schwartz functions ¥ + ¥’ =0, and

[ las)lds < k.

where k is a sufficiently small positive constant. Then there is a unique small
solution {a,v,) of the GSGE such that

a(s) = a(sw),
¥(s) = Lwy,(sw). (71)

The proof is the same as the proof of the analogous result for the GWE in
section 4, hence is omitted.
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AND INVERSE SCATTERING :.
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v
In this paper we will review some recent work done in the field of integrable nonlinear evolution equations and nverse !
scattering. We will concentrate on the basic underlying areas and refer interested readers to suitable references for complete o
details; specifically background material can be found in various texts on this subject (e.g. [1] by Ablowitz and Segur). More N
recent references will be given as necessary. The outline of the paper is as follows. )
1) Introductory remarks. )
2) A discussion of two separate but related issues. Namely, (a) solving certain nonlinear evolution equations in infinite space: -
and (b) inverse scattering. These are important problems having many physical applications. Moreover. they are related to each =3
other by what we refer to as the Inverse Scattering Transform (IST). :
. 3) At the end of the paper we will make some remarks on the possibility of solving nonlinear evolution equations in tigh i
dimensions (i.c. equations with more than two spatial and one time variable) by using the IST method as we now understand 1t. -,

-
r

il

1. Introduction "]
]
The prototype nonlinear evolution equations for our purposes will be the Korteweg-deVries (KdV) :
equation -~
o
).
“I_6uu.r+uxxx=0 (1) :F:
~ in one spatial dimension, and the Kadomtsev-Petviashvili (KP) equation -\
Yy
(u1_6uux+uxxx)x= -30211”, (2) :‘.
3
in two spatial dimensions. (It turns out that the sign of 62 is critical: there being two cases labeled by KP;: ;-
02-"1; KP"=02=1.) ':n
Historically speaking, the KdV equation was the first equation solved (on the infinite line) by use of -7
inverse scattering. Subsequently numerous other equations of physical interest in one spatial dimension .’
were solved e.g. nonlinear Schrodinger, sine-Gordon, three-wave interaction, modified KdV. Boussinesq,. . .. . . ’
These equations are all partial differential equations. In fact, there are other equations which are discrete tn 7,
space and continuous in time (differential-difference) and equations discrete in both space and time which ;."
also may be solved by IST. One other class of equations in one spatial and one time dimension fit into this -3
scheme, namely nonlinear singular integro-differential equations; with the prototvpe being the so-called :
‘e
0167-2789 /86 /303.50 « Elsevier Science Publishers B.V. )
(North-Holland Physics Publishing Division) ._:
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Intermediate Long Wave equation {2a],

1 o
u,+ i—u‘ +2uu, +(Tu),, =0, Tu= 78-{ coth -215(5 - x)u(¢)dé. (3)
-0
As 8§ =0, (3) tends to the KdV equation (with appropriate coefficients) and as § — oo it tends to the
- so-called Benjamin-Ono equation
1 = u(§)
u,+2uu, +(Hu),, =0, H,=_ -we_xdi. (4)

The method to solve (4) was recently found and it has certain features in common with some two-dimen-
sional problems - specifically KP; (see [2b)).

It should also be remarked that some ode’s can also be solved by similar methods; specifically the
classical equations of Painlevé (see for example [3]). We will not dwell on this aspect any further in this
lecture.

In two spatial one time dimension the KP equation is only one of the equations that can be solved in
infinite space. However, an effective method was not realized until a short time ago. The important new
idea of treating inverse scattering as a “3 problem” (see {9a]) was used in [4] to solve KP;; and paved the
way for the development of the IST for a wide class of equations in 2 + 1 dimensions (a review of this and
related work can be found in [5a,b]). It should be mentioned that earlier work on KP, had been done by
Manakov [6a] and more recently by Fokas and Ablowitz [6b]) and on the multidimensional three-wave
equation by Cornille {7a] and Kaup [7b]. KP; and others like it depart significantly from previous work
and its study has led us to develop a general method to do inverse scattering in n spatial dimensions as we
will indicate in this review (see [8a,b,cl).

The concept of treating inverse scattering as a “9 problem” was originally discussed by Beals and
Coifman in their study of first order systems of differential equations [9a]. Beals and Coifman have also
recently considered multidimensional inverse scattering via d methods [9b].

It should be noted that important contributions in the study of multidimensional inverse scattering
associated with the time-independent Schrddinger problem have been made by Faddeev [10] and Newton
[11}]. In one dimension we also note the important contributions of Shabat [12a], Mikhailov [12b] and
Caudrey [12c). Some of the work in this review is related to these studies although the methodology is
different.

2. Inverse scattering and ther inverse scattering transform

@

The method of solution by IST begins with the study of two compatible linear operators (Lax pairs) :

‘ (L depends on one or more “potentials™ or functions which we call u) :
| RO
| Luo =2y, (s) S

v,= Muv, (6) o

Y &)
P
LS Y

connected by the compatibility condition

RN
PR,

L +[L,M]=0. (M ey

N o R S
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when the flow is isospectral, A, = 0. (7) is the nonlinear evolution equation to be solved. A is a spectral
parameter, which as it turns out loses significance in spatial dimensions greater than one. L is a spatial
operator only; with time acting as a parameter. The parametric dependence in time is what allows us to
study the question of inverse scattering separately and then after this task is completed allows us to solve
the relevant nonlinear equation (7). For KdV the operators are

32

l
L=w—u, M=(4)‘+2u)a—x—ux. (8)

The reader can now verify that (7) yields (1). It should be noted that there are generalizations of (5)-(7),
but we shall not be concerned with that here.

The direct (or forward) scattering problem associated with L means given a potential, in a desired
function class, and solve for eigenfunctions corresponding to suitable initial or boundary conditions.
Usually, appropriate eigenfunctions are defined in terms of an integral equation (e.g. via Green's
functions). From the eigenfunctions scattering coefficients, eigenvalues, etc. can be calculated. Call the set
of all such data obtainable from the solution of (5) §.

The inverse problem is as follows. Given some subset S of $ (i) reconstruct the eigenfunctions and the
potential; (ii) characterize the analytical, algebraic, and /or topological constraints on the data in order to
find a potential in the desired function class.

In recent years significant strides forward have been made in regard to the solution of those inverse
problems motivated by the study of nonlinear evolution equations. Examples in one dimension are

‘/’(x) 2 = Ao, u(x),v(x,A)scalar [see 9¢];

dx"™/
(ii)Il:--i)\Jv+qv, v(x,N),q(x)eCV*N  J=diag(J'.....JV), (J'#J/ i#j) [see9d].

In multidimensions examples are

(m)tya +Av—-u(x,y)v=0, o=o0z+i0;,, x€R", yeR, A=) d%/dx} [see8a.8c,9b]:

=1
(iv) —Av+u(x)v=Av [see10, 11, 8a. 8¢, 9c]:
av

(v) —y+aZJ,g—;)=qv, o=o0g+i0;, x€R", yeR; v.qeC**" J=diag(J/..... I,
0%,

(J/#*J/,i®j) [see8b].
The inverse problem for (i) and (ii) may be written in a compact form. Namely solve
(po—p_)x, k)=p_(x.a(k))V(x, k)

on X (2 is an appropriate contour in the complex k-plane and V is a function depending explicitly on the
scattering data and a(k) is problem dependent) with

p,— I alk), V(x k)givenon Z,

k| =2
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# .(x. k) meromorphicin k€C/Z. (9)

B .(x. k) has a finite number of poles with locations specified: k..., k,; and Res,_, p .(x. k) specified
appropriately.
In (9), u(x, k) is associated with an eigenfunction of the given operator. It is related to ¢(x. k) by

v(x, k) =p(x, k)elexk

where 8, (x, k) is a concrete phase factor which depends on the unperturbed (potential zero) operator. The
parametric dependence A = A(k) is explicitly given (chosen for convenience).

(9) is a variant of the usual Riemann-Hilbert factorization problem. The standard situation involves
finding p , analytic off £ without any extra parameter such as x.

Corresponding to (i) and (ii) above, the second order case is classical and has been studied by numerous
authors (a review of this appears in [1]). Although some work had been done for third order scalar
operators nevertheless it has only been within the past few years that the solution to the general nth order
case has been found. It should be noted that the matrix system (ii) above has also been studied in [12a-c].

A thorough analysis of the problems, including the case of complex diagonal elements of J appears in [9d].
To be concrete we shall given the resuits for the inverse problem associated with the one-dimensional

'-‘-: time-independent Schrodinger equation: i.e. (i) above with n =2, u(x)= —u‘¥(x). Let A(k) = —k?, then
<

:: the scattering equation is
4 [ ]
'\'J v, +(k?-u)v=0, -0<x<o, v=pe k% (10)
&
By — 2ikp, —up=0. (1)
7
_\E The relevant function class for u(x) is 2 _(1 + |x})|lu|dx < x. v(x. k) has solutions (Jost functions)
' which we denote by
. -
iy Y(x, k) =xe""‘.‘
o(x. k) = e k= e ) (12a)
g )x~—=c v(x. k) = e*- ’
) (=~
+
15 Functions with “nice” analytical properties are obtained by multiplving by a suitable exponential factor:
e
- Nxk)=ges = 1|
: M(x. k)=¢e* = 1, T (12b)
4: ( ) ¢ - — o0 N(x,k)=¢e'“ - e..lk{}
) A. X — +
-
j\' The relationship
- _
Yix. k)=v(x, —k) (12¢)
»"'
b
N implies
'
:' Nix. k)=N(x, -k)ei**. (124)
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Completeness of these eigenfunctions requires
M(x,k)=a(k)N(x. k)+b(k)N(x. k),
or, using (12d),

M(X,k) N 2k - 5

a(k) = N(x,k)+r(k)e***N(x, ~k), {1%e)
where r(k)=b(k)/a(k). The analyticity of M(x, k), N(x. k) is deduced by studying the following
integral equations:

M(x, k)=1 +f:°G‘(x—x’,k)u(x’)M(x'.k)dx’. (12f)

N(x, k)=1+j (x-x" k) u(x")N(x". k)dx’, (12g)
where

G, (x. k)= 21:/ s(}elGZk) (12h)

C, being the contour below (+)/above (—) the singularities § =0, £=2k inside the integral (12h).
G .(x,k) is analytic for Imk 2 0 and vanishes as k| — 00. M(x, k), N(x. k) are therefore analytic for
Imk > 0, Im k < 0 respectively and tend to unity as |k} — co.

The scattering coefficient a(k) is also analytic for Im &k > 0 and tends to unity as |k| — o (this can be
deduced from the fact that a(k) is a Wronskian of M, N). a(k) can vanish at a finite number of locations
in the upper half plane: k=k,,..., k,.Imk > 0. Calling

R N E S () (120

we see that (9e) is a special case of (9) where a(k)= —k, V(x.k)=r(k)e>'**. The appropriate residue
statement is

‘Bef(p,(x.k))-clcz"‘/‘p_(x,k/). (12))

C, being called the normalization constants.

It is worthwhile noting that when no poles (i.e. no eigenvalues or boundstates) appear. then the
solvability of (12e) follows from the work of Gohberg and Krein {13] in which they prove the existence of
uniqueness of the solution of the corresponding Riemann-Hilbert factorization problem (in a generic
sense).
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228 M.J. Ablowitz and A.l. Nachman / Multidimensional nonlinear evolution equations and inverse scuttering :
For completeness we list the integral equations for the eigenfunction and potential reconstruction:
!
ON(X) 1 = r(§)N(x.§) '
= 2ikx -
N(x.k)=e (1 ): Tkt Eekew e). (12k) N
=1 ’ ,
s
Lo N(x) 1 = r(§)N(x.£) -
- altkx - L —_—
N(x)=e (1 21 Y A iy et (121) g
;- K
I (. 1= . -
u(x) =2 ZIZICIIV/(X)";/_ r(K)N(x k) dk | (12m)
’=-
N
The solution of the initial value problem for suitably decaying functions u( x, k) of KdV is obtained by '
noting that r(k.t)= r(k.O)e”"‘"’. This follows from the second linear operator M: see (6), (8). The i \
reconstruction of u(x.t) then follows from the inverse problem. In the general case, the data V(x. k. ) in .‘_.
(9) also evolves simply in time (e.g. V(x.k.1)= V(x. k.0)e“'* when V., w are scalars). Schematically, we '\{
have:
(Direct problem) (From M operator) (From inverse problem) '
N . "4 c
u(x,0)=p (x. k. t=0)>V(x. k0)=V(x. k.t)—= pu (x. k.t)—>u(x.1) -
L] ::
The method of solution is what is usually referred to as the Inverse Scattering Transform: IST. This ::
program has been carried out for a surpnsingly large number of physically interesting equations in one )
spatial dimension. In fact, the only equation in one spatial dimension mentioned above that does not have
an associated inverse problem of the form (9) is the Benjamin-Ono equation (4). It shares with the KP, :'_.
equation an inverse problem of the nonlocal R-H form: ~
o'
RY
(.= s e k)= [u_(x k)W (x k. k) dK" (13) 4
,—D
Next. we shall discuss the KP equation and its associated scattering operator L. "
v + e, —u(x. y)v=0. (14) o
Rt
Note in (14) we have taken the eigenvalue A = 0 without loss of generality (by the scaling property of v). R
Since the analysis for the generalization :: )
A3
ov, +dv—u(x,y)v=0, (15) it
where 0 =og +i0;, A=L7.,. d°/dx;. x€R". vy €R.is a natural extension of that in two dimensions, A
we shall discuss this case. Scattering parameters anse in (15) by looking for a function u = u(x. v. k) where L;_
L,=“e|k't~k:> n. (16) ::_:
op, + dp+ ik T —up =0, (17) ~
T
and &k = kg + ik, € C" We shall consder gy = 0. oy < 0. ’
o
%
"
!.
~
-~
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[
P\
We look for a solution p(x. y. k) bounded for all x, v and p — 1 as |k} — . The latter condition s a :._
convenient normalization. I[f we should consider (17) for ¢ = + 1 in analogy to the KPy; scattening problem. s
we immediately notice that the dominant operator is the heat operator which is illposed as an initial value i_\
problem. Even though we pose a boundary problem, immediately we are led to believe that in this case oy
there will be some type of unusual behavior. In fact in refs. {4, 8a] it is shown that the bounded function p .-.:
for 0g * 0 may be analytic nowhere as a function of k. Specifically p = p(x. y. kg, k). In particular u is o
constructed from the following equation. Given u(x, y) — 0 sufficiently rapidly at . the direct problem is X
p=1+G(up), (18) -
s
where o~
Gf=Gef= /G(x—.vc"_v—_v'.kR,k,)[(x’.y’)dx’dy’. (19) ;'
4

<

The Green’s function G is obtained from

3
el("fﬂnl 1 'ﬁ
G(x'y‘knvk1)=Cn.1f/md£dnv C,.E(zﬂ)n. (20a) ‘\.
%

=——5i3“(y)cfe"““““"”“"e(‘vaa(fl+2(kn+m)‘5)d£. (20b) %

[+ " . Or :'.‘

A

where 8(x) = (1 for x>0, 0 for x <0}. In constructing (20) we have looked for a bounded Green‘s.
function, and gave taken the Fourier transform in both x and y.
Taking the d derivative of (18) with respect to k, we find (3/dk, = §(3/0kg +1d/k)):

PN e X el

aP' 6(““) '( a#) (]
—=——"+Glu—|. (21)
dak, ok, ak, |
The first term in (21) is calculated directly using the definition of the Green's function (20).
3G (up) C "N
upj) _ _ Ln Bx. v kg ky £ _ L .y
ak, |okxf° RO OT (kg ki £)(€,— kg )8(s(£)) d8. (22a) £
where ::: -
»
T(kp ky §)= [[em B dnbiOulx, y)u(x. v kg k;)dxdy. (22b) s
k o
Blx. vk ki €)= x4 20 7|6~ ko). (220 3
Og >
: o : o 2
s<£)=s<e.kk.k,>s(s+ﬁk[) - (ke 5k (22d)

-

and 8(x) is the usual Dirac delta function. One can derive (22) either by taking the d derivative directly on

-l
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(20b) or on (20a) using the well-known fact

3 (1 s
ﬁ'(; _ko)-ﬂa(k—ko). (2‘6)

From (22) one can readily calculate du/ dk , (assuming (18) has no homogeneous solutions),

C [
;: = = [0tk OT (ki )8, = kg )8(s(E))m(x. v, €. k1) dE, (23)

(23) is found by noting that du/ 37‘, is a suitable superposition over a fundamental solution
W(x, y. kg, ky, §) satisfying

W(x,y kg, ki, §)=eBxrrnkidy Gluw). (24)
Using the symmetry condition on the Green's function,

e By kn ki OG(x, y, kp.ky) =G(x,y.& k). on s(§)=0. (25)
allows us to find

W(x,y kg, ki §)=eBxrknkilly(x y £ k), ons(§)=0, (26)

and then (23) follows. _
A special case of (23) is n = 1 whereupon du/dk, depends locally on p. For n =1, let k, = k; then (23)
reduces to

9

C o )
= i sgn kot ghk ek 0T (kg ki €D (x, v, oK), (27)

where §,= — kg — (20 /0g)k;. (27) is relevant to the solution of KP: KP,;: 6, =0, ag = —1 (see [4]) and
KP, 0,=1, og =0 (0g <0) with the scaling k, =k /0 (also see the discussion of the limit to the
time-dependent Schrodinger equation later in this paper).

The above discussion is entirely within the context of the direct scattering problem. However, it suggests
what the natural data might be for this problem. We shall call T(k g, k,. £) the inverse data.

The inverse problem is: given T(kg. k|, £) construct u(x, y). However, it is immediately transparent
that there is a serious redundancy question. Namely 7(kg, k. ) 1s a function of 3n parameters with one
restriction (the restriction is due to 8(s(£)) in (23): i.e. T will be given as a function of 3n — 1 variables and
we wish to construct a function u(x, y) depending on n + 1 vanables. But for n =1, namely for the
problem in two spatial dimensions the difficulty disappears. As (27) shows T = T(kgq. k. §5(kg. k1)), hence
T is a function of two parameters as is u.

Using (23) there are numerous reconstruction formulae for u available. However, serious restrictions on
T must be imposed in order to obtain a function u depending only on x, y and vanishing at oc. This is
part of the characterization question, i.e. which inverse data T(k g, k,. §) are “admissible”.

One set of inversion formulae for u is obtained from the generalized Cauchy formula

(k)= ““) ff ‘Waldlnd/‘ (28)
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(Another, more symmetric inversion uses the Bochner—Martinelli formula but this is outside the scope of
the present review.) Applying this to our problem where u — 1, |k| — 20 (the first term is unity) we have

bk
p(x‘y.kn,k,)=1+;// ! — dky dkj . (29)
7 J
where we use the simplified notation ki =(kg..... kg ..... kg ) and similarly for k{. (29) is a linear

integral equation for (using 23)) the potential is constructed from

u(x,y)== 8x /j (x. v, ki ki) dig dkj . (30)
(30) is obtained by taking k, — % in (18) and (29) and comparing the results.
It is clear that in general the right-hand side of (30) will be a function of kg .k :i=1.2,....j—-1,

J+1,..., n. One possible way of characterizing admissible data would be to require T(k g, k, §) to be such
that the RHS of (30) be independent of these parameters, for all j. Such a requirement is analogous to
what Newton refers to as the “miracle” in the time-independent problem (see [11]). However, in this
formulation we can go further and give conditions directly on T(kg, ky, £). The importance of characteriz-
ing T(kg. k|, §) directly not only has to do with understanding on which manifolds of kg, k. £ can one
hope to reconstruct the potential, but also may indicate how one could in principle measure data so as to
produce local potentials in a stable manner.

For n> 1 the compatibility condition 8%u/dk,dk, = 3%s/0k,dk, (i #j) leads to a nontrivial restriction
on T one which is nonlinear;

Z,(T)=N,(T),

where

(31a)

(31b)

N,[T](k.€) =][(s;—k,.)(e,—e:)—(s:—k,.)(s,—e;)]s(s(e'))r(kk.kl.e')r(s'.kl.s)de'.
(31c)

In fact there is a change of variables which allows (31) to be put in a simplified form. Without loss of

generality we may consider the equations (31) with i =1, (i # 1, is obtained from / = 1 by straightforward
manipulation) then introduce new variables (x,w,w,)€C" ! x R" X R which parameterize the sphere

s(€), (x=(X2s---+Xn)
n
W, apww, W, Oww,
k1u= Zzw/xln__i—_ Iw? * k/u X ™73 7 It
J-
t),,gvowl _ OprWoW,
Zwx/l k“—- —w1x1|+ 2w2 (32)
Wl _ O Wy W, oW,
waln Iw? E/ X jr 3~ PE > 2).
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q

Thus for w, % 0 there is a 1-1 map: (kg, k. £) = (X, W, w,) such that

w=¢—ky, w=2k(§-kg)/og, 7 (33a)
72——]--?1,-. (33b)

which for i=1, j=2,..., n yelds

aT )
a—il-Nl/(T)(x'w’WO)’ J=2,...,n. (34)

Again using the generalized Cauchy formula we have

Ny [THx  w, w,)
X, =X

1 .
S= T(x,w,wo)—;ff dxg dxi = i(w,w,), (35)

where ii(w, wy) = F (u(x, y)) is the Fourier Transform of u(x, y) with respect to w, w,. The term &(w, w;)
is the boundary value of T(x,w.w,) as x, — co. This can be seen from the definition of T(x, w, w;) (22b)
and the fact that from (32) x, — oo implies k, — oo and hence u — 1. (35) leads both to admissibility
criteria as well as reconstruction of u(x, y). Given T(kg, k,, £) one computes # by quadratures. We also
reiterate the fact that the formula (35) assumes no homogeneous solutions to (18). We conjecture [8a] that if
# is independent of x and ; and has suitable decay properties for large w, wy, then T is admissible. The
potential is recovered from

u(x, y) =F '(a(w,w)), (36)

where #-! denotes the inverse Fourier transform. Moreover, we see that reconstruction follows purely by
quadratures given T(kg, k;, §) on s(§) =0.

It turns out that the physically interesting cases of the time-dependent and time-independent
Schrédinger equation in # dimensions fall out as special cases of the above result. In what follows we
discuss these cases both as limits (reductions) of the above results and then briefly indicate how the
formulae can be dertved without recourse to any limit.

First consider the case o =i, i.e. 0, =1, og =0~ (a <0); kg, k; =k /05 Then G(x. y. kg. k) —
G(x, y, kg, kg) (in what follows we drop the symbol "),

Gu(x, y. kp ki) = ~iC,sgn(y) [ex-e- €010 y(£2 4 2k + k;)+£)) dE. (37)
(37) can be directly verified, i.e.

LG (%, y, kg ky)=8(x)8(y). .?’=i%+A+2ikR-v. (38)
and hence p — u, where u, satisfies

Puy=-up; and p(x v kg k) =1+G (up). (39a.b)
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K 4
. Certain classes of nonlinear singular integro-differential equations are considered. These equations are mapped. via exphcit
0 transformations, to either ordinary differential equations or to linearizable partial differential equations.

i)
i
~ In recent years considerable interest has focused respectively. In the above, Hu is the Hilbert trans-
k J‘ on certain physically important nonlinear evolution form of u.
. equations which can be linearized. Many of these 1 x ()
P equations fall into the category of linearization via (Hu)(x)=- ALY, dé. (7)
T soliton theory and the inverse scattering transform mJog-x
Y (IST) (for a review of much of this work, see for o
Ny @®© -
P . example ref. [1]). Well-known equations are the wherj\{ L" denotes tl;e Ca6uchy pn:ncu:jal' value m.e
- Korteweg-de Vries equation (KdV) gral. Although eqgs. ( )-‘( ) are relate in a certain
& sense to (1)-(3) respectively (for the relationship of
U+ 22U, Uy, =0, (1) (1) 10 (4) see ref. [12], the IST method for (4)-(6)
- . . has novel features. With respect to the IST me:hod
o the sine-Gordon equation o . .
e, _ N BO [3] has more similarities with KP [4] than with
y.or U, =sin u, (2) KdV (the IST for (5) has been recently considered
N and the Kadomtsev-Petviashvili (KP) equation in ref. [,5])' . , _
- In this paper we consider other singular integro-
i (U, + 22Uty + Upey) = —30%u,,. (3) differential analogs of (1)-(3). These analogs are
-~ Each of these equations has certain singular inte- more c(:jlgsely assoc;ated w,“h (L)—( 3): "bls shown that
vf:"‘- gro-differential analogs, the best known being the so- V;a a 3"e;_l trans orlmanon they can be mapped to
f.: called Benjamin-Ono equation (1)=(3). For example. the equations
L, —
24 4, + 2, + (Hu) o =0, (4)  Wteat2(uHu) =0, (8)
" Analogues of the sine-Gordon and of the KP equa- (U, + o +2(uHu) [}, = —30°u,, (9)
N tions include the sine-Hilbert equation, ] i
#\-’ . are mapped to KdV and KP (for the variable w), via
o (Hu),=sin u, (5) the transformation
-4:: and w=u+iv, v=Hu, (10)
> (u,+Hu, +2uu), = (Hu +2uu,),, (6) where u is real and vanishes at infinity.
v Various generalizations are possible:

'.\:' ' Permanent address: Program for Applied Mathematics, (A) The transformation (10) can be used to map
. Princeton University, Princeton, NJ 08540, USA. certain singular integro-differential equations to
N
b f.'
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ODEs.

(B) Given a linearizable PDE, there exists an
algorithmic procedure for obtaining a singular inte-
gro-differential analog similar to the above.

(C) The above results can be extended to allow
complex valued functions u.

(D) The Hilbert operator can be replaced by other
suitable operators, for example it can be replaced by
the T operator

(Tu)(x)

=513 coth[(®r/26)(& —x)]u(&) d¢, (1)
J constant.

This work was motivated by some recent results of
Counstantin, Lax, and Majda [6]; in particular these
authors proposed the following equation as a model
for the motion of vorticity for an inviscid incompres-
sible fluid flow,

u, =uHu. (12)

They introduced the transformation (10) and showed
that w satisfies the ODE,

w,=—§iw2. (13)

We first consider (A). It should be noted that the
above result can be obtained as follows. Operate on
(12) with (1 +iH) and use

H(uHu) =} [(Hu)* —u?], (14)

which is a special case of the known formula

H(fHg) + H(gHf) = (Hf)(Hg) - f&. (15)

The above result can easily be extended. Since as
is known H?= — | we have that Hw= —iw. Now w s
the boundary value of a function analytic in the lower
half plane (a “lower function™), vanishing at infin-
ity. Hence, Hw= —iw, and more generally,

w=u+iHu=Hw"= —iw" (n>0, integer), (16)

He* = —ie", 17)

etc. This enables us to construct arbitrarily many
reducible equations such as [(a) ODEs; (b) singular
integro-differential equations]:

216
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w,=—biw?, w,=uHu, (L.1a,b)
w,=w? u=u’-3u(Hu)? (1.2a,b)
w,=ie™™, u,=e™ sin u. (I.3a,b)

(B) The extension of the above resuits to PDEs is
straightforward once it is noted that the above con-
siderations go through even if a linear operator is -
substituted for the time derivative in the above
equations. For example, the following iist is easily
obtained [(a) PDEs; (b) singular integro-differen-
tial equations]:

wo=wo, —i(Ww?),, U =t,+2(uHu),, (Il.1lab)

W, + W, —1a(W?) +8(w) =0, (I1.2a)
U+ Uy + 20 (uHU)

+B[u® -3u(Hu)?] =0, (11.2b)
w,=ie™ ", u,=e™sinuy, (11.3a,b)
w,+i[we + (w?),] =0, (11.4a)
U, =(Hu) x +2(uHu) . (11.4b)

Eq. (I1.1a) is essentially the Burgers equation and
can be linearized via the Cole-Hopf transformation

w=—i(Inf),. (18)

Eq. (I1.1b) arises in various population ecological
models and to our knowledge, was first considered
and solved via a dependent variable transformation
and splitting into upper and lower functions by Sat-
suma [7]. Ineqgs. (I11.2) a, B are real constants, and
(I1.2b) is an analog of the Gardner equation (a com-
bination of KAV and modified KdV). Eq. (I1.3b) is
related to the Liouville equation (11.3a) and is known
to be linearizable.

Let us consider the initial value problem for each
of the above equations with u real. Given u(x, 0),
initial values for w(x,t) are obtained from
w(x,0)=u(x,0)+iHu(x,0), and the solution
u(x, t) is recovered from u(x, 1) =Re w(x, ).

Generalizations to systems of equations as well as
discrete analogs are immediate using these ideas,
hence we shall not incorporate them into this discus-
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sion. Multidimensional analogs can also be readily
constructed. For example, an analog to the KP equa-
tion (3) is

d

'a;[u,+um+(2uﬁu),]=—3dzuw, (19)
o%=const and is linearized via the KP equation
%[wr+ww—i(w2)x]=_3azwyyv (20)

which is formally a rescaled version of (3). Eq. (19)
is (2+ 1)-dimensional. A (3 + 1)-dimensional equa-
tion can also be linearized via (20). Namely let H u
denote the Hilbert transform of u(x,y, z, t) with
respect to the variable z, i.e.,
1T u(x, 4,1

Hu=— + —————d¢.

LU x - d¢ (21)
Then instead of KP we may consider a multi-dimen-
sional analog of (19):

%‘[ul+um+2(quu)x]=—3azuy,». (22)

and it is also mapped to the KP equation (20), via
w=u+1H,u. Rational soliton solutions and nonde-
caying soliton solutions of KP are given in ref. (8].
The initial value problem for KP, with decaying ini-
tial data, is considered in refs. [4,9,10] (for a review

seeref. [11]).

(C) Let us now consider complex u. For example,
W, =u, +2(uHu),. (23)
In association with (23) define
w. =utiHu. (24)
Then
(W) =(We ) Fi(wi),, (25)
which is linearized via
w,=Fi(lnf.),. (26)

The initial values are obtained as before but the com-
plex solution u(x, t) is now recovered from

u(x, ) =4(w. +w_). (27)

The above approach can also be used for dealing with
complex initial values of the equations considered in

e T
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(A), (B).

(D) As discussed above we deal with Hu by
extending the function u to its upper and lower func-
tions. Similarly we can deal with Tu by extending u
to a function sectionally holomorphic in horizontal
strips of thickness & [12]. Operators associated with
certain other geometries can also be considered (see
ref. [13]). Actually one may replace, egs. (12), and
(10) say, by the more general system

U,:UV, U‘sz, Lry=—Vx, y<0 (28)

Eqgs. (12), (10) are special cases of the above,
u(x, t)=U(x,0,1), v(x, t)=V(x,0, ). We note that
these equations are mutually consistent. However, it
should be stressed that eqs. (28) are not a (2+1)-
dimensional system since the latter two equations in
(28) are the Cauchy-Riemann equations and so
W=U+iV=W{(z, 1), z=x+iy. The transformation
W=U+i1V maps (28) to

W,=—}iWw?+C(1). (29)
This is derived as follows:
Vvl = L’X! ='i ( L,V)y
dx
d
Va=-U,=—5(UV). (30)
dy

Using the formula g(x, y) = /g, dx+g, dy. from egs.
(28) and (30) we obtain

V, = J' (-~i (L) (ix+2- vy dy)
dy dx

= ‘. [PV, =00 ) dx+ (V1 =UT,) dy]

v

={(F -3 =iC(1).
Hence
W, = - LR3I+ C(1).

From the above discussion it follows that the results
of (A)-(C) are also valid if one replaces /H by T or
by another suitable operator (see ref. [13]).
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) ABSTRACT

In this paper we develop an algorithmic method for transforming

quasilinear partial differential equations of the form u, = g(u)u”‘ +

oo.om m . .
f(“’ux’""u(n-1)x)’ Upy 5 3 U/3X, where dg/du } 0, into semilinear

equations (i.e., equations of the above form with g{(u) = 1). This
crucially involves the use of hodograph transformations (i.e., trans-
formations which involve the interchange of dependent and independent
variables). Furthermore, we find the most general quasilinear equation
of the above form which can be mapped via a hodograph transformation

to a semilinear form.

This algorithm provides a method for establishing whether a given
quasilinear equation is linearizable; i.e., is solvable in terms of
either a linear partial differential equation or of a linear integra!l
equation. In particular, we use this method to show how the Painleve
tests may be applied to quasilinear equations. This appears to resolve
the problem that solutions of linearizable quasilinear partial differ-

ential equations, such as the Harry-Dym equation Uy = (“-]/Z)xxx

k4

typically have movable fractional powers and so do not directly pass

the Painleve tests.
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I. INTRODUCTION -
——— e e e f
Recently there has been considerable interest in the solution of &

. . . - . r

certain physically significant, nonlinear partial differential equations. ’
It turns out that the solutions of these equations may be expressed in o
)

N
terms of the solution of linear equations (either linear integral equations -
e Y
Cd

b

or linear partial differential equations). In 1967, Gardner, Greene,

‘J.

7

Kruskal and Miura [1] associated the solution of the Korteweg-de Vries

Py

"
l. l. o

y]

(KdV) equation with the time independent Schrodinger equation and showed,

s

2

b

.
-I .

using ideas from the theory of direct and inverse scattering, that

T A

l\)

L

the Cauchy problem for the KdV equation (for initial data on the line

o
« l

which decays sufficiently rapidly), could be solved in terms of the

=

¥

solution of a linear integral equation. Subsequently, this novelty

YUY A
I‘A'
)

was developed into a new method of mathematical physics, often referred

' B
P A

to as the inverse scattering transform (I.S.T.), which has led to the

.
»

<

solution of numerous evolution equations (see, for example, [2] for

.

Do

details). These nonlinear evolution equations have arisen in many

R
1

SR

branches of physics including water waves, stratified fluids, plasma

ot

physics, statistical mechanics and quantum field theory. Previous

-"J. s
, .

to the KdV equation, the first physically interesting nonlinear partial

P

differential equation which was solved in terms of a linear partial

differential equation was Burgers' equation

PR

':‘ .'-. ,'-.."... hd r_'r"r_'l ‘:ﬂ. oy

- l*. -
.

LK
pr )

v .

u, = u + Zuu , (1.1
t X X X

i

R N

which was mapped into the linear heat equation via the Cole-Hopf trans-

formation [3].

5 e




|
l
!

By L) l| "adve,0

P lat s et B op hed Ut R S by

Z

Partial ditferentaial equations which can either be salved by
an appropriate  1.5.T. <cheie or by o transformation to a linear partigl
differential equation are said to be linearizable. The most well known
linearizable partial differential equations are of the form

= + > e o u

Uy = U f(u,ux, ’u(n—])x)’ n> 2, U C A (1.2)
Definition 1.1 A partial differential equation is said to be semilinear
if it is of the form (1.2).

There also exist linearizable equations of the form

= + f >

ut g(U)Unx (u’ux’ 1U(n_")x)v n 29 (] 3)
where dg/du % 0.
Definition 1.2 A partial differential equation is said to be quasilinear
if it is of the form (1.3).

Well known examples of quasilinear linearizable equations
include an equation studied in [4],

ut=(u 'ux,‘x‘ s U (1.4)
where « is an arbitrary constant and the Harry-Dym equation (Kruskal [5])
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which is known to be linearizable [6] (see also [2b]).

Fokas and Yortsos [4] considered second order quasilinear
partial differential equations using the symmetry approach of
Fokas [7]. They showed that the most general equation of the form

ue = glulu + flu,u ), (1.6)

which is linearizable is the equivalent to the equation (1.4}, which

via an extended hodograph transformation is mapped to the Burgers' equation.
Similarly, it is known that the Harry-Dym equation (1.5) can be trans-
formed either into the KdV equation (see, for example, [2b] or [8]), or

the MKdV equation (see, for example, Kawamoto [9]). The

notions of equivalence and hodograph transformations are defined below:

Definition 1.3 Two partial differential equations are equivalent if one

can be obtained from the other by a transformation involving the dependent
variables u = ¢ (v) and/or the introduction of a potential variable
(u = v, oru = v).

For example, the Burgers' equation is equivalent to the heat equation.

Definition 1.4 A pure hodograph transformation is a transformation

of the form

'{ L 4 .‘.‘\.'- |(.:'l,I. .‘

e O
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Definition 1.5 An extended hodograph transformation is a transformation -

of the form l;

i -
4 .
X P

T =t, ro= /(u(x',t))dx‘. (1.8) '

‘

Y

The above discussion naturally motivates the following questions: :

Equation (1.4) is a quasilinear analogue, via an extended hodograph ?

transformation, of Burgers' equation. Similarly, the Harry-Dym equation f

'l

(1.5) is a quasilinear analogue of the MKdV equation.

LN

i) [s there an algorithmic method of finding a gquasilinear

analogue of any semilinear equation?

he Yy Ty

i) Is the associated quasilinear equation unique?

a

iii) Conversely, given a quasilinear equation, is there an

S,

algorithmic method of finding whether it can be mapped o
to a semilinear equation as well as finding this semi- -

lJinear equation?

WV W TN T RN W W RN RN SR N RNSRRNTTNTW W W W TRRISIN—ST—"-_—"s
l{‘l"-.{.'

~
In this paper we consider the above questions for semilinear and =
quasilinear equations (1.2) and (1.3) respectively. The answer to )
o
! question i) is affirmative. Also, the associated quasilinear equation N
; ‘h.
is unique, since extended and pure hodograph transformations yield ':
= X
equivalent quasilinear equations. Furthermore, we find the most general Vv
v -
equation of the form (1.3) which can be mapped via an extended hodograph e
-
transformation to a semilinear form. ‘:
So
A r ]
)
o~
N
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The above results are of some interest in establishing whether
an equation is & candidate for linearization. Suppose that one is
interested in investigating whether a given quasilinear equation is
linearizable. We propose the following algorithmic procedure (see §lII);
1. Put the equation into its potential canonical form
v, =v. "+ H(v,,v v ) (1.9)
t X O nx xx* 0 (n-1)x"? '
) . _ =1/n
by using the transformation V. =9 (u).
2. Apply a pure hodograph transformation to equation (1.9). If equation ;ﬂ:
W~
(1.9) is transformable to a semilinear equation, it will become o
3
- O .-‘.
Mg Mgt H(né,ngg,--., "(n-1)x" (1.10) ;?
’l
3
3. Investigate whether equation (1.10) is linearizable. This is ;~
easier than investigating whether (1.2) is linearizable directly. o
The reason for this is twofold. First, for at least third order

equations there is a complete classification of all linearizable
equations. MWithin equivalence, there exist only six such equations
(see below). Hence one needs to study if there exists an equi-
valence transformation to map equation (1.10) with n = 3, to one
of these six canonical equations. Second, for equations with

n > 4 one may investigate the question of linearization via the
Painlevé test. The Painlevé approach is reviewed below. Here we

only point out that quasilinear partial differential equations do

not appear suitable for applying the Painleve test. Ramani,
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' Dorizzi and Grammaticos [10] (see also [11] and the references
L)
therein) introduced the notion of "weak-Painlevé" in order to deal

»

) . . . . . .

b with equations such as the Harry-Dym equation which are linearizable

A after a change of variables. However, the higher KdV equation ﬂ
K} .
e ] «
5- Up = Ut u3ux, although not thought to be linearizable (since it .
3 "
! has only three independent polynomial conservation laws of a certain

S' type [12]),is also "weak-Painlevé" [13]. Therefore the “weak-Painlevé" :
‘|0 Y
b concept does not distinguish between a linearizable and a non g
t i
Y N
A linearizable equation.

[N . . . : . " "

" We point out that one often finds in the literature claims of "new

K, third order linearizable equations. These equations, using the notion of X
WU

. equivalence can be mapped via a pure hodograph transformation to one of

'ﬁ the six canonical equations mentioned above.

;5 The above algorithmic approach is useful provided that a given .
, . . Ly . S

Tinearizable quasilinear equation can be mapped to a semilinear form.

o The above approach will fail if there exist linearizable quasilinear .
*

o> . . y .

28 equations which can not be mapped to a semilinear from. It is shown

q,

‘ in (4] that such equations do not exist for at least n = 2. The

'. question of whether such equatiors exist for n > 3 remains open. N
: :

[A. C(lassification of third order equations 7

,; Svinolupov, Sokolov and Yamilov [14] have claimed that the

" only third order semilinear partial differential equations which are

¢ -
& linearizable are equivalent to the following six equations:
bt A
) .
o P
» )
a -
3

1 N
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Up = Ut UL (1.11)
Up = U Y uut YU, {(1.12)
u, = u + u2u + u (1.13)
t XXX X Ty :
u, = u - lu3 + (a el + & e-u)u + Yu (1.14)
t XXX 8 x x’ )
_ 2,-1 3 2
Up = U - 5u (1 + ux) - §P(u)(ux + 1Ju + YU, (1.15)
_ 32 -1 13
Up = U T UL a - §P(u)u *Yu, (1.16)
where
dpP,2 3
2rye ¢ - &p -
(du) 4p P €, (1.17)
and a, B, Yy, & and ¢ are arbitrary constants. Equation (1.11)

is a linear partial differential equation which is sometimes referred
to as the Airy equation in moving coordinates; equation (1.12) is the
KdV equation, which was the first equation to be solved by 1.S5.7.[1];
equation (1.13) is the Modified KdV (MKdV) equation, also solvable by
1.5.7. [15]; equation (1.14) is the Calogero-Degasperis-Fokas (CDF)
equation [7],{16] equatinns (1.15) and (1.16) are as yet unnamed and

involve the Weierstrass elliptic function P{u). We note that the CDF

u/?

equation can be put 1nto rational form: letv = e ,
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Alternatively, provided that a = B = -2y (if «B # 0, then one
can rescale and translate the variables in (1.14) so that this holds),
letq = sinh(u/2) to obtain

2 2
)]x +4a q q,- (1.19)

) _ g 2

: A = q,,, - 5Laa, /(1 +q
(Equation (1.19) is sometimes referred to as the 'deformed MKdV' equation [17]
; or the modified MKdV [18], though itisequivalent to the CDF equation.)

) We also note that both equations (1.15) and (1.16) can be put into

rational form by the substitution v = P(u).

. IB. The Painlevé Tests

' The Painlevé ODE test, as formulated by Ablowitz, Ramani and
Sequr [19] and Hastings and MclLeod [20] asserts that every ordinary
differential equation which arises as a similarity reduction of a
partial differential equation solvable by inverse scattering is of

Painlevé type; that is,it has no movable singularities except poles,

[

- perhaps after a transformation of variables. Ablowitz, Ramani and
Sequr [19b] and Mcleod and Olver [21] have given proofs of the Painlevée
ODE test under certain restrictions. Subsequently, Weiss, Tabor and

Y Carnevale [22] developed the Painlevé PDE test as a method of applving
the Painleve ODE test directly to a given partial differential equation,

without having to study any similarity reductions (which may not exist
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anyway) partial differential equation is said to possess the A
P v
Painleve property 1f 1ts solutions are “"single-valued" in the k¢
h-
L
neighborhood of noncharacteristic movable singularity manifolds. o
These Painlevé tests have proved to be a useful criterion for the ::'
“~
identification of linearizable partial differential equations. The E:
"\
method introduced by Weiss, Tabor and Carnevale (with simplifications ;
due to Kruskal [23]), involves seeking solutions of a given partial &;
‘)
differential equation in the form N
K
[ ]
o ; s
u(x,t) = 6Plx,t) Laus(t)e? (x,1), (1.20a)
.:‘_
it\
with >
‘-.
.\.-
o (x,t) = x + f(t), (1.20b) 7
where f(t) is an arbitrary, analytic function of t and uj(t), j=0,1,2,..., ::f
-" .
~ )
are analytic functions of t, in the neighborhood of a noncharacteristic Qg,
Y
movable singularity manifold defined by ¢ = 0. Essentially, if a »
N'
. - . - - - ’
given partial differential equation possesses solutions of the form :;‘
.
(1.20) where p is an integer and with the requisite number of arbitrary g:.
l\’
functions as required by the Cauchy-Kowalevski theorem, then the partial »
differential equation is said to pass the Painleve PDE test. :ff
However, the application of the Painlevé tests to quasilinear :iﬁ
A
partial differential equations is not as straightforward. For example, »
consider the Harry-Dym equation (Kruskal [5]) Ii-

Y TP LA TP T o PN AL A SN A A
MMMﬁm‘i&.{ LA G R a LT



which is known to be linearizable [6] (see also [2b]). Then (1.21)

Ay
VA

does not directly (i.e., without a transformation of variables) pass

4

the Painlevé PDE test since it has an expansion of the form

A @ L

ﬁ\}

u(x,t) = c'4/3(x,t) / u-(t)o]/3(x,t), (1.22)

j=01 2

*-
&P

Ny

with ¢ (x,t) = x + f(t), in the neighborhood of a noncharacteristic
movable singularity manifold defined by ¢ = 0 and so has movable cube

roots (see Weiss [24] for details). If an equation has an expansion

of the form
r ® 1
u(x,t) = ¢ P/ (x,t) I u-(t)¢J/r(x,t), (1.23)
j=0

where p and r are integers determined from the leading order analysis, E:
'.\.

then the equation is said to be "weak-Painleve". However, as was ®

pointed out earlier, the non linearizable equation Up = Uiy + u3ux 35

is also weak-Painleve.

'u;yll"“ . £
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’,
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IT. SECOND AND THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS :(ji
-.:_"
An extended hodograph transformation comprises of the change }:1
l\‘l
of variables u - v, © ¢ (u(x,t)) followed by a pure hodograph trans- !
N
formation, and therefore these transformations are simply related. j;%
'.)"-J
We first consider the pure hodograph transformation in more detail. 3:j
o
.,
~a
‘-“ L]
: N O N PR AT ) 3
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e 11

ﬂs lLet
t:Tyx:'(fi") (2'1)

Then using (1.7),

n
<
(o8

W Y T BBt TEL T U, (2.2a)

KA 3, = £,3,.+1.3_=uU5, + 5 . (2.2b)

Therefore the Jacobian of this transformation is u- Similarly for

b the inverse transformation (2.1) we have

3, = x,3 +t,9 = n.ao _, (2.3a)

A
vy
>
[t
[ d

9, = x 3+t ) = n.9 + 3 ,. (2.3b)

Under a pure hodograph transformation, derivatives transform as follows

(2.4a)

2, (2.4b)

or inversely

n, = u_, .= o-u,u (2.5a)

-3 -4 -2 -5

u u Yo, U u u
£ e xx x RS XXX X XXX

, (2.5b)

Vg Vg O gy T mia YAt .- L \v » ..' \~ ." -".\- \' ..- LR "-._-‘_--..' L .\- ‘d
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Therefore the linear partial differential equation

Yt © Uxxx? (2.6)
under a pure hodograph transforms to
_ -3 2 -4

n, = NeeeMe - 3”gg”g . (2.7)

Note that if one applies a pure hodograph transformation to a partial
differential equation in potential form (that is an equation which does
not depend explicitly on the dependent variable) which also does not
depend explicitiy on the independent variables, then the resulting

equation is also in potential form with no explicit dependence on the

independent variables. Therefore, before applying a pure hodograph ;:
transformation to a given partial differential equation, we shall ;.
put the equation into canonical potential form. a'
"
We now consider second order quasilinear partial differential Zj—
equations. ;’:
Z:-
Fu
I‘_‘
ITA. SECOND ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS p
The most general second order, quasilinear partial differential )
equation of the form ﬂ“
-
up = gluuor tlusu ), (2.8) y
-
with dg/du § 0, which may be transformed via an extended hodograph <
)
T-
o
.~:~

\-N-..\-\-\-\-"-'--'- LR e w, - YA My r - AN
{\'A ,:'PA."A..".L"L{ ,‘_f":*-_f‘:‘_vl\'l‘ :"'L‘i& ".\ f:.*?f}-‘ } }h‘?f:‘-ﬁ,'."\ .'\‘.f:\.ﬁ\.-‘ .
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; transformation to a semilinear partial differential equation of the
]
] form
;
! S =S + G(S,S s 2.9
_ . TS *6(S5,) (2.9)
»
1S given by
! . - LI ] _ g—l- 2 ,
p ut g(u)uXX + ( gl 2 )UX +b (U)Ux, (2]0)
! where ' = d/du, and g(u) and b(u) are arbitrary functions which are
' twice and once differentiable, respectively. Furthermore, eguation
d
(2.9) is equivalent to the equation
N
v, = v+ H(v.) (2.11)
t X XX x’? )
4
: which is transformed via a pure hodograph transformation to
p
] .
] ::
- -1 2 12 3
] T S n’H(n ) 212 k.
] o
Proof >
‘.“
In equation (2.8) we make the transformation .
o~
pA
Ly
} Sty 7= Flxgt), n(F, 7)) = ulx,t), >
b ,':
)
L4
then (2.8) becomes ‘
i
)
-
&4
\-‘
D e N A S A S S S S S



Now choose F such that

gF® =1, i.e., Fx =g
Fo = Alu,u ),

where A(u,ux) is such that the compatibility of (2.13) (i.e., F

implies (2.8). Therefore

]‘32|
-39 / g

where A, = 3A/3u, A, = 3A/u ; using (2.8)

X

] -] 2 ] -
-39 % Uex * 9f(usu,) = A, + A, u

xx’
X

Equating coefficients of Uy to zero in (2.15), it is seen that

where a(u) is an arbitrary function. Also from (2.15)

__1'3/2|
Auux = -39 g f(u.ux).
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Therefore, from equations (2.16) and (2.17) we find that
= (99 _ 99, 4 b

Flusuy) = (55— - 3-)uy + b {u)u, (2.18)
where b(u) is an arbitrary function. Hence, it follows that the most
general equation of the form (2.17) which is transformed via the
extended hodograph transformation

T =t, £ = jxg-]/z(u(x',t))dx'
into a semilinear partial differential equation has the form
- 99" _925y,2 4 p
Uy g(u)uxx + 3 5 )ux +b (u)ux. (2.19)

We now wish to transform (2.19) into semilinear form. Our algorithm
is to put (2.19) into a canonical (potential form) partial differential
equation and then apply a pure hodograph transformation to convert the
canonical equation into a semilinear equation. In (2.19) we make the

2

transformation g(u) = v; and obtain

Ve TV VLY Hiv ), (2.20)

where H 1s expressible in terms of b. Equation (2.20) is the
canonical equation (since al' equations of the form (2.19) are equivalent
to (2.20)). It is essential that the ratio of the coefficients of

Vox and Ve in (2.20) is V;Z in order that the quasilinear equation is

transformed into a semilinear one via a pure hodograph transformation.
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Finally, applying a pure hodograph transformation to (2.20), we obtain

. ) -1

as required.

Therefore in summary, in order to determine which equations

of the form

u, = g(u)ux + f(u,ux), (2.22)

X

where %3 # 0 and f(u,ux) is a rational function of u and Uy

are linearizable, it is sufficient to consider the canonical equation
v, = v.v__ + H(v. ), (2.23)

where H(vx) is a rational function of Vo Applying a pure hodograph

transformation to (2.23) yields

This can be put into non-potential form by making the transformation

W, hence
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)
X where
[}
E hiw) = - d:iw}i(l/w)]. (. dh
Y It is shown in Appendix A that equation (2.24) can pass the Painleve
! tests if and only if
'
)
h(w) = 20w +D

)
:
}

where o and B are constants. Hence from (2.25),
; H(w) =aw™ + &, (2.26)
)
. Therefore, this suggests that the most general partial differential

equation of the form (2.22) which is linearizable is equivalent to
)

the equation
z
)
[}
A - ("2 -2
3 Uy (u ux)x * au u . (2.27)
)
N We use the word "suggests" because we are aware that the Painleve tests
R have not yet been proven, though there is considerable evidence suggesting

their validity. This completes the "proof" of the result first obtained

§' by Fokas and Yortsos [4]). However, the method in the present paper 1S
somewhat simpler than that used in [4] and is easily generalizable to

higher order quasilinear partial differential equations.

[y
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118. THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

Proposition 2.2
The most general third order, quasilinear partial differential

equation of the form
+ fluyu,u ), 99 4 o, (2.28)

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

ST =s£££-+G(S,%?Sg§), (2.29)
is given by
Uy = g(u)uxxx ¥ Bu(u’ux)ux ¥ B“,((u’ux)uxx
g’ _ 49 99" _ g’
+ (g' T )B(u,ux)ux + 3 3 )uxuxx, (2.30)
where Bu: = 3aB/5u, Bux D= aB/aux, prime denotes derivative with

respect to u, and g(u) and B(u,ux) are arbitrary functions. Furthermore,

equation (2.29) is equivalent to the equation

vV, = Vv "V + Hiv v ], (2.31)

which is transformed via a pure hodograph transformation to

o

P :f

XX/
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- -3
nT = nft'f- Y,;.H(H{ , [ ) (232)
Proof.
In equation (2.28) we make the transformation
T o= t, £ = F(x,t), n(f,1) = u(x,t),
then (2.28) becomes
n_ = (u)F3n + 3gF F_ n, .+ (gF - F,)n
-9 x £EE X xx &¢ 9y xx t’ s
s f(n,nF o, Fon_ 4 Fnd)
Ex? L xx 0
Now choose F such that
gF =1, i.e., F = g /3, (2.33a)
Fo = Alususu ), (2.33b)

where A(u,ux,uxx) is such that the compatibility of (2.33) (i.e.,

Fee = Fry) implies (2.28). Therefore

- %g-a/3g'ut =Au +A u  + Ay

U x U xx u Axx’

or using (2.28)
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- Auux ¥ Au U ¥ Au Uyxx (2.34)

Y L 8
»or :.- P

By collecting terms and equating the coefficient of u, to zero in

XX
(2.34), it is seen that

LI

1 -1 ,
) = - 39 /39 T alu,u ), (2.35)

A(u,u_,u
(u, x> xx X

- =X

where a(u,ux) is an arbitrary function. Also

ra s W@
AT ARS AR RN,

NS

| _ 1 -4/3,
k Auux + Auxuxx = - 39 g uxf(u,ux,uxx). (2.36)

L

»

Therefore, from equations (2.35) and (2.326) we find that

o,

Sl

. &

f(u,ux,u

l’-'
AL S

o 0. - .
A LR NEN b
7

XX X XX

_ 4/3 , (] 1 2
) = -3(g™ /g ayu, ¢ a3 (3 - P,

]

v

"
@
—
=
-
(=
~—
<
+
o
—
=
-
<
>
~—
L=
+
—_
)
=
~—
os]
—
[
-
=
~—
<
YA R .

s %o

99" _g9'y,2
+(g. 3)uxu

r

) (2.37)

XX

5 @
‘7’

4/3

where B(u,ux): = -3(g /g')a(u,ux). Hence, 7t follows that the

.
LYy

\

LAY

most general equation of the form (2.36) which is transformed via the

V‘J{

extended hodograph transformation

A

X

T o= t, ¢ :[ g—]/3(u(X',t))dx'
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into a semilinear partial differential equation has the form

ug = gluju  + B (uudu +8 ) (usu Ju,,
+ (g. Iq )Blusu Ju, + | 3 U, (2.38)

In (2.38), make the transformation g(u) = v;3, then we obtain

)s (2.39)

where H(vx,vxx) is expressible in terms of B(“’“x) and g(u). Therefore,
(2.39) is the canonical equation (again, since all equations of the
form (2.38) are equivalent to (2.39)). Finally. applying a pure

hodograph transformation to (2.39), we obtain

-1
N.oF Negg- nCH(ng , '”gg”g,) , (2.40)

as required.
Thus proposition 2.2 provides an algorithmic method of transforming

the quasilinear partial differential equation

= 9 2.ala)
Uy g\u)uxxx + f(u,ux,uxx) (2.40a,

where

s atats " L " .{A‘m" 'AA_-._...:\.‘L.A...'L.C, _.'Zs..'.;‘._;‘:‘_-_\ x_\ﬁ.u‘_'
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f(u,ux,u”) - g(u)ux” * R“(u,ux)ux * BU (u’ux)uxx
9 49’ 99 . _ g
(g 39 )B(U,UX)UX + ( g| 3 )Uxuxx, (24]b}
into a semilinear partial differential equation; i.e.
1. Put equation (2.41) into the potential canonical form by making the
transformation v, T 9'1/3(u); hence we obtain
v. = vy + H(v_,v_ ) (2.42)
t X XXX X7 XX
2. Apply a pure hodograph transformation to equation (2.42); hence we
L
obtain 3
n_ =n - H(n_] -n n-3) (2.43) :j
T £EE g £8 8 ?i
3. The resulting partial differential equation will be in potential ;i
P
o
form and usually one first puts the equation into nonpotential
oo
form by making the transformation w = ~_,. Ffurthermore, if the }1
resulting semilinear partial differential equation is linearizable, =
..:.
then it can be expected to be equivalent to one of the six partial _'
differential equations given by Svinolupov, Sckolov and Yamilov :@
N
(14], which are listed 1n 21 (equations (1.11)-(1.16)). o
N
Therefore it mey be necessary to seek a change of dependent variables
X
w = :{0Q) and write the resulting equation in non-potential form. N
hY
An alternative approach 1s to apply the Painleve tests directly N
1’:‘
2
A
Mt M e A A A U T N R oy e ™ a" e o --._1_..'4.--..-r..r.'.'.'_- , J
."-$’ x"" "' e ."-"“\"\ \"* NN \'{':_'f.-_\':'. .\_.-':' .\-‘. e T A T N e e ;‘.:’.\; :‘:
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on the semilinear equaticn, provided that the nonlinear evolution
equation is in rational form (i.c., H in (2.43) is a rational

function of its arguments).

There are two remarks we wish to make about the above procedure.

r-w ¥ v

1. It is important to first put equation (2.41) into canonical form
by making the transformation v, = 9-1/3(u) before applying the pure
hodograph transformation (otherwise the partial differential equation
will remain quasilinear). To demonstrate this, consider the Harry-

Dym equation

- (/%)

t XXX (2.44)

First put (2.44) into potential form by letting v, = u, then

- (v}

t y x " (2.45)

Pl AR
(AL

Applying a pure hodograph transformetion to (2.45) gives

N, o= h;]/zkg,

-l. 'l- l' , “

~ r l’.-'.r"(.l"l'
!!===:: .I‘llﬁl"'

which is just the same equation (i.e., the potential Harry-Dym

a2

equation is invariant under a pure hodograph transformation).

If the quasilinear partial differential equatiun is not in the special

AR

f"l S‘Ei

8 Ve e e T S T N RN P R R e e I " ™) N T T T N B IR T Y '-\'\“\\\’\~
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form (2.41) then the transformation v, * 9 u) yields either a

higher order or nonlocal partial differentiel equation,  For

example, consider the partial differential equation

Then after making the transformation V. T uwe obtain

or

X
-3 j -4

vV, = v v + 31 V.V N .

t X XXX X XX XXX

By considering several examples, we shall now demonstrate how the procedure

developed above can be applied to determining whether a given third

order quasilinear partial differential equation might be linearizable.

In tnese examples, we apply the Painlevé tests to the semilinear equaticn

to determine necessary conditions for the equation to be possibly
linearizable. Furthermore, we show that when these condition are
satisfied, then the equation is equivalent to a linearizable equation
by exhibiting the requisite transformation. Since we are usinj the
Painlevé tests in these examples to exclude severa! possibilit es,
when we conclude below that an equation is "nonlinearizable" (Lecause
the above conditions are not satisfied), we mean “"nonlinearizab e,
subject to the validity of the Painlevé tests“, i.e., in these C.ses

the equation is "probably nonlinearizable."
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Example 2.3

in this example we determine for which values of the constant

is the equation

u, = u3u +<xu2u T (2.47)
t XXX XXX

linearizable. Equation (2.47) was considered by Kawamoto [9], where

we note that if a = 0, then (2.47) is equivalent to the Harry-Dym

-1/2).

equation v,_ + 2(v']/2) < 0 (set u =v In order to set (2.47)

t
in canonical form we make the transformation v, = 1/u, hence

XX

_ -3 1 -4 2
v, = v v - 2( + 3)vx ey - (2.48)

Applying a pure hodograph transformation to (2.48) gives

1 2 -] ’
= = - .49

n, nggg+ 201 3M£€ ng (2.49) ’

-

=

We now apply a sequence of transformations to (2.49). First we put -
(2.49) into non-potential form by letting w = Ny, hence

W =W + 10 -3)(w2/w) (2.50)
T her 2 £/ '

Then, in order to determine whether (2.50) is equivalent to one of the

Six linearizable equations given by Svinolupov, Sokolov and Yamilov

[14] (equations (1.11)-(1.16)), we let Q = In w, hence

‘b."'-l'q-..
'.A\.'J','-'.\JF)’J}J\$?J\A~'-H’
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2.51)

2

= Of{;f + IIQ.’O{; + 5((1 -]) (}:, ( ;

—

Q

1

Finally, putting (2.51) into non-potential form

g = q taflqe, _ + g *%(u -T)qzq.

S 7 g % : 12:52)

(additionally it is simpler to apply Painlevé analysis on equation
(2.52) rather than on (2.50)). It is shown in Appendix B that equation
(2.52) can pass the Painlevé tests only if either o = 0, * = 3/2 or
a=3. If a =0, then (2.52) is the MKdV equation, which is known to
be linearizable [22]). If a = 3/2 or o = 3 (after rescaling q), then
(2.52) is the second equation in the Burgers' hierarchy

3 2

2) + 2 q% (2.53)

3
= + ..( +
q =q 2099, * 9) + g a%q,

T 233

(Olver [25]), which is reduced by the Cole-Hopf transformation

qr = 2(in ul, = 2u€/u,

5

to the linear partial differential equation

(i.e., equation (2.53) is equivalent to (1.11)). Therefore we conclude

that equation (2.47) is linearizable anly for these three values of ..

- et e e e e e
o o .
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N Example 2.4

ot Consider the equation

2)-3/2,

2)—3/2]x (2.54)

u, = [ux(l + U t 2uux(1 + U

where o is a constant. Note that if o = 0, then (2.54) is an equation
Qv which was shown to be linearizable by Wadati, Konno and Ichikawa [6a].

*?w To put (2.54) into canonical form we make the transformation

W

% , hence we obtain

) -3 3 -4 2
o' - 7V
9 t X XXX 2 X XX

[ - 24/0 - )] - avh (2.55)

Wl Applying a pure hodograph transformation to (2.55) gives

o which has the non-potential form (w = n;)

-
A1

-
¥
AR

3
W= WEEE + 3-lw2w,,1 + %—[wwé/(l - wz)]r. (2.56)

Ty

l
>

e}
]
-
(]

hl

Equation (2.56) 15 equivalent to equation {1.19) (after rescaling the

PEL

variables), which is known as the 'deformed MKdV' equation [17] or

¥

o ‘modified MKdV' equaticn [ 18] and as shown in -1, is equivalent to the
e COF equation (1.14) via the transtormation w = cosh(q/2). Hence

'y we obtain

T T o N O g P S A T
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4G 7 Gy T B9 1IN LG/e)q,
ar
13,3,.4q -q
= - =q5 + -2+e . .
9= g " 39 ¢ ule )a (2.57)
[f o = 0 then (2.57) is the potential MKdV equation, while if a ¢ 0,
then (2.57) is the CDF equation. Therefore equation (2.54) is
linearizable for all values of a.
Example 2.5
Consider the equation
-1/2 v ]
ug+ 2 h) e e = o, (2.58)

where f is a rational function and prime denotes differentiation with

>

re o o,
.

respect to the argument. The objective is to determine for which

)
choices of f is (2.58) linearizable (note that if f' = 0, then (2.58) E;
o
is the Harry-Dym equation). First we put (2.58) into canonical form by ;:
&

making the transformation v, T u]/z; hence we obtain

-3 3-4 2
Ve T V% Vaxx T 2V Vxx T f(Vx)'

rS

w

o
N 'J!--‘:T =

{

Applying a pure hodograph transformation to (2.59) gives
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! - W), - gt (w) (2.6 !
4 L A/ A P AL DL (2.00) X
. L)
0 3
: where g(w): = w f(1/w). It can be shown that (2.60) can pass the
¥ Painlevé tests if and only if
N
' ]
") -
: g{w) =uw3+Hw+yw], (2.01)
? hence
U
Y
A Flw) =awl +8 +ywl, (2.62)
& ;
< r .
X where o, 8 and y are arbitrary constants (see Appendix C for details). N
» LSy
: Note that equation (2.60) with g(w) as given by (2.61) is just :
equation (1.18), which is equivalent to the COF equation (1.14) if )
w
' either o« # 0 or vy # 0 (let w = eu/z); if o=y =0andq = wt/w, then
)
| q satisfies the MKdV equation, hence equation (2.60) with g(w) as
I ,
given by (2.61) is linearizable. Therefore, we conclude that the most
y general equation of the form (2.58) which is linearizable is : R
‘ ‘
.
A -1/2 1/2 -3/2 .
] T T BN T TR T T (2.53) ‘
! .
A .
y [1T. HIGHER ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS. g
¥
, The method developed for second and third order quasilinear partial
.: differential equations can easily be extended to higher order equations. )
Y Proposition 3.1
D -
! -
The most gererai quasilinear partial differentia! equation of
’O
f the form
»
L)
'
{
)
“ :.
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+ f(u,u u ), u =Y 39 i 0 (3.1)
nx T =1 T . n o du :

), ut = g(U)U

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

ST Spp * B(SyS 0o Sy ) (3.2)
o
W . .
M) is given by
.".
i () v
= g _ntlg’
" u, = glu)uy + 3 - )8(u,u, ’u(n-Z)x)ux
I
:: n-1
.l. tt _ ]
+Bu + I Bu(r_])xur,(*(ﬂg—g. n )Y no1yxe (3:3)
L r=2
: where prime denotes derivative with respect to u, and g(u) and
K
é B(u’“x”"’u(n-z)x) are arbitrary functions. Furthermore, equation
i
()

(3.2) is equivalent tc the equation

which is transformed via a pure hodograph transformation to

v;t = ”n{) + H(Y

r

AN TR (
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Proof
The proof 15 analogous to thase for Propositions 2.1 and 2.2
above and so we shall only sketch an outline. In equation (3.1) we
make the transformation
T o= t, £=F(x,t), n(,7) = ulx,t),
and choose F such that
gFl =1, ie., F =g /" (3.6)
Ft - A(usux, au(n ])X)’ (3 7)
where A(u,ux,...,u(n“])x) is such that the compatibility of (3.6)
FXt = th) implies (3.1). Therefore
_]_ "]/n ' l '(n+])/n '
nd 9 Uyxx 09 9 f(u’ux”"’u(n—l)x)
=Au + LA u (3.8)
u X '”(r-l)x rXx
r=2
Hence
_1 -(n+1)/n_,
A(u.ux, ’u(n-])x) nd [gu(n 1)
+ B(U u 13 ’U(n_z)x)]‘ (3 9)
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where B(u’ux""’u(n-Z)x) is an arbitrary function. Thervtare, trom
equation (3.9) we find that

S (3 _ntl gt
) = ( . g)B(u,uX,-

f(u,ux,---,u( "’u(n-2)x)ux

+Bu + LB u o+ (99 - g—)uun]) (3.10)

u X U(r_])x FX g

Hence, it follows that the most general equation of the form (3.10)
which is transformed via an extended hodograph transformation

into a semilinear partial differential equation has the form (3.3)
as required. Equation (3.4) is obtained from (3.3) by making

-1/n(

he t i - !
t e ransformat]on Vx g U), Where H(Vx’-.-’V(n_])x) 1S

expressible in terms of B(u,ux,...,u(n_2>x) and g(u) and therefore is
the canonical equation. Finally, equation (3.5) is obtained by applying
a pure hodograph transformation to (3.12).

Proposition 3.1 provides an algorithmic method of transform.ng

the general quasilinear partial differential equatior

u, = gluu + f(u,ux,...,u( ) (3.11a)

n-1)x

where

o9 ol gl
T el R LICHINPP

’u(n-Z)x)Ux

f 99__ q'
+ BUUX + rgBu(r-])xurx* ( g’ n )u‘u(”'])x’

(3.11b)

into a semilinear partial differential equation as follows:
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1. Put equation (3.11) into the potential canonical form by making

-I/n(

the transtormation v = g u); hence we obtain

Ve TV Vot H(Vx’vxx""’v(n-1)x)' (3.12)

2. Apply a pure hodograph transformation to equation (3.12); hence we

obtain

ﬂt= rh& +H(n€,ng€,...,n(n_])€). (3.13)

s .

3. The resulting partial differential equation will be in potential

L I Y

form and usually one first puts the equation into nonpotential form

by making the transformation w =n It may also be convenient to

£
seek a change of dependent variables w = ¢ (Q) (and then write the
resulting equation in non-potential form if necessary) and then apply
the Painleve tests to the semilinear equation to determine if it

is possibly linearizable. (For fourth and higher order semilinear
partial differential equations, there is, at present, no equivalent

theorem to the one given by Svinolupov, Sokolov and Yamilov [14]

for third crder equations.)
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X Example 3.1
)
k In this example we consider the equation
:
_ . 5/2
up = Ut UG, (3.14)

which was shown by Konopelchenko and Dubrovsky [26] to be the

i compatibility condition of the linear operators

L u3/233,
X
) M= o9u/ 2+ 3332, 54 150372y 33 43 ,
K x 2 XX XX X t

where 3XE 3/dx, 8t5 5/2t (i.e., LM - ML = 0 if and only if u satisfies
| (3.13)).

We first put (3.14) into canonical form by making the trans-

) : -1/2

formation vx = u , hence we obtain

. =5 _ -6, ) 2 -7 2 -8 4
Vi Yy Vsx ]va \VZXVQK * I3x) ¥ 6va Vox¥3x T 45vx Vyx
Y Applying a pure hodograph transformation to the above equation we obtain
. - L2 -2
SR PSP 1P "3,'1.;(, (3.15)
which has the nonpotential form
W WSE - 5w (w:w4r + w2{w3{) + 1Ow-2(wfw3, + w;wéi)

- 10w, (

3.1
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f“'. _
Wi We now let Q = 1n w, hence
I'H.
:ii:l
,"I. _ _ 2 _ 2 5
\. {

S

:§ which has the nonpotential form

|
)
i . 2 3 2 4
o 4p = Qg * 5G.A3; * 545 - 5q; - 20aq qy - 547q3 * 5q7g..  (3.17)
o
,
B4 Equation (3.17) can be transformed into two linearizable fifth order
Fa¥i)

P
;\; equations. Fordy and Gibbons [27] show that if q satisfies (3.17)
&

and u and v are defined by the Miura transformations

L) 2 12

qn u:_’_ )V: = B4 /3.]8
< a -9 a; - 79 (3.18)
,¢'

then u and v respectively satisfy the Sawada-Kotera equation [28]

o

; (sometimes referred to as the Caudrey-Dodd-Gibbon equation [29])
i.
ey ,
» u_ = uSg + 5uu3€ + Sugu25 + 5y ug, (3.19)
o
S ard the Xaup equation [30] (sometimes referred to as the Kuperschmidt
Y.
) equation, cf. [27])
v‘
;.'l
:" v = ap .« 25 . 20v° Ry
! . T Vg V5 Ve Vo Vo {3,000
3
’."
25 Both equations (3.19) and (3.20) are knowr to be linearizable, see {31]
"'
o8
3% and [30] respectively. This shows that eqiation (3.14) 15 the quas-
00




LR B on > 3
[@%]
(o)

<

linear analogue of equation (3.17), which is linearizable and so (2.14)

should not be regarded as a “"new” linearizable fitth order equation.

Example 3.2

The second eguation in the Harry-Dym hierarchy is given by

VX X FE

u, = u3[u(uu - %uz)]

: t XX X Ixxx
o
E _ 5 4 5.3 2
1 Ulgy * Su (uxu4x uxxu3x) 24 UyY3x
A (3.21)
i
(see [2b] or [32]). MWe first put {3.21) into canonical form by making
the transformation v, o© u'], hence we obtain
_ -5 5 -6 2
Yo T Vx Vex T 2V (4V2xv4x B 3v3x)
105 -7 2 315 -8 4
PV VoxYax T B Y Ve (3.22)
Applying a pure hodograph transformaticn to (3.22) gives
. = e, 5 r-l _ 5.2 -1
T 56T 7254 2 hE
.25 2 -2 45 4 -3 }
2 ) 3 " 8 5 .o
ARSI S s, A s S A S 2 A S A A W A A S ARSI
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which has the nonpotential form "
F
’
»
) -1 . 35 =22 ;
wT = w55 - 5w (w;;w4£ + 2w2€w3c) s We W
‘W
+ %é ” w2 w-2 L w-3w3w ¢ 135 w5w-4. 13.28)
£2r 2 £ 2 8 ¢
J
As in Example 3.1 above, we now let Q = In w, hence ™
oY
r
5.0 02 . 02 3,5 .
= - = + [ + =
Q= O, - 20,05, + €0 )+ 50, :
i
which has the nonpotential form &
'I
{I
3 53 5 2 15 4 v
9 % 95 " 29 - 100995 - 9795, * g Q.- (3.25) .
N
N
Equation (3.25) is the second equation in the MKdV hierarchy (see[25]). S
This provides further evidence of the close relationship between A
,
the Harry-Dym equation and the MKdV equation. It is well known that b
‘A
the inverse scattering schemes for the MKdV equation and the Harry-Oym A
equation are related through a sequence of gauge transformations which i
also involve an interchange of independent and dependent variables ::
p
[34] (see also [35]). Since the recursion operator for the Harry-Dym ¥
equation is well known (cf. [2b], [32]), then using a theorem due to E
Fokas and Fuchssteiner [36], it can be shown that these recursion ;
operators (or hereditary symmetries in the terminology of [36]) ;
are related by a Backlund transformation. =
;
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IV. DISCUSSION

In this paper we have discussed the relationship between quasi-
linear and semilinear partial differential equations. In particular,
an algorithmic procedure was developed for finding the quasilinear
(semilinear) analogue of a given semilinear (quasilinear) equation
(if it exists). Furthermore, the associated quasilinear (semilinear)
equation is unique up to equivalence. This procedure provides a simple
algorithmic method for determining whether a given quasilinear partial
differential equation might be linearizable. Consequently, several
quasilinear partial differential equations which might appear initially
to be "new" linearizable equations are actually equivalent to the
quasilinear analogue of a semilinear equation which is known to be
integrable.

For example, Abellanas and Galindo [37] showed that the quasi-

linear equation

)3/2u , (4.1)

2 . 5
= + Z8u +
(ocu ZRu + vy XXX

where a, 8 , v are constants, possesses a bihamiltonian structure and
hence an infinite number of nontrivial conservation laws. Note that

equation (4.1) contains as special cases both the Harry-Dym equation

and an equation considered by Bruschi and Ragnisco {38]
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Applying the method developed in the present paper shows that (4.1)
is transformed into either the MKdV equation (if @ # Q) or the
linear equation n_ = eeg (if = 0and £ # 0). (Bruschi and Ragnisco
{38] showed that (4.3) can be transformed via an extended hodograph
transformation to the linear equation.)
In two recent papers, Mikhailov and Shabat [39] have determined

necessary conditions for the existence of nontrivial conservation

laws for systems of equations of the form

uy = Alu)u, + flu,u), (4.4)

where

(This is analogous to the work of Svinolupov, Sokolov and Yamilov [14]
who also used the existence of nontrivial conservation laws as the
¢riterion in their determination of which third order semilinear
equations are linearizable.) In order to determine their necessary
conditions, Mikhailov and Shabat [39] first transformed the quasilinear

equation (4.4) into the semilinear canonical form

4%, W 8%, ., i)
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where

h(r]!‘) 1n£ )Gg)

(4.6)
k(n,8

‘ng ’Gg)

This transformation was achieved by first transforming (4.4) into the

form

t - S(E)O3gxx (4.7)

where

(so equations (4.4) and (4.7) are equivalent), and then applying an

extended hodograph transformation to (4.7).

We note that it would be useful to extend the method outlined in
earlier sections to quasilinear nonlinear evolution equaticns in two
spatial and one temporal dimensions. Due to the presence of more inde-

pendent variables, there is more flexibility in the hodograph trans-

formation.
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Finally, we make a remark regarding the application of the Painlevée 3
b ]
tests. These tests have proved to be a usetul criterion for the indentification K
of linearizable (semilinear) partial differential equations; however, there =
\ is one major restriction in their application. Since the Painleve tests ;;
-
require that a linearizable partial differential equation possesses the iy
J M
' Painlevé property possibly after a change of variables, then one may first
; have to make a change of variables before applying the tests. An open -
£ -
N question is: Which transformations are allowable in the application of :
g the Painleve tests? (i.e., which transformations does one have to check?). .
Y We believe that by using pure hodograph transformations and the notion N
of equivalence, the answer to this question might be found. 3
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APPENDIX A

In this appendix we show that the partial differential equation

Uy =u ot h(u)ux. (A1)
where h(u) is a rational function of u can pass the Painlevé tests if
and only if h(u) is a linear function of u. In (A.1) consider the
traveling wave solution u(x,t) = u(z), z = x-ct, where c is a constant.
Then u(z) satisfies

u'* + h{u)u' + cu' = 0. (A.2)
Integrating yields

u' + H(u) + cu = A, (A.3)

where gg = h(u) and A is a constant. It is known that the only equation

of the form

where R(u) is a rational function of u, which is ot Painleve type

is the Riccati equation
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.

where ,, «; and u, are constants (see Hille @0 ] or Ince [81] for 4 N
proof). Theretore (A.3) is of Painleve type it und unly 1t H{u) is 4 :‘
quadratic function of u, so necessarily th
.

h(u) = au + R, (A.4) 2

where a and 8 are constants. If h(u) has the special form (A.4), then :3
o

equation (A.1) is either (i) equivalent to Burgers' equation if a# 0, or (ii) >
a linear equation if a = 0. Hence (A.1) can pass the Painlevé tests 2
if and only if h(u) is a linear function of u, as required. :.
X

APPENDIX B o
In this appendix we show that the partial differential equation i

&

) 2, .3 2 ?'

G = 9y, * (qa, *+q,) + 5 (- 1)a%q,, (8.1) X

N

. -

where o is a constant, can pass the Painleve tests if and only if a takes

one of the three values 0, 3/2, 3. We first note that if a = 0 then ;
(B.1) is the MKdV equation, which is known to be linearizable [15] and -
pass the Painleve PDE test [22]. Now we shall assume that a # O and :
S

we consider the time-indepenagent solution q(x,t) = y(x) of (B.1), then ::
Y,

y(x) satisfies ;
’R
;

‘b

N
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.x >
N 1Y

? a4 .

4 ‘w
» (S
] LI ] [} [} 2 3 2 L) - 8
, y' U rafyytt e (yt)Tl e 500 - Nytyt = 0. (B.2) >
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p which can be integrated once, yielding

{ -]
K v ' 1 3 .
R y'trayyt +5(a-1)y" = A, (B.3) :

where A is an arbitrary constant. Now make the transformation y = 3w/i, E

' . ;

-,

X giving ’
: .
- ;

. W'+ 3ww' 4+ %(a -1 2w3 = B, (B.4) F

: i
‘F.
where B : =aA/3. Ince [43, p332] shows that the equation
;
L] 3 :J‘
' w'' + 3ww' +yw’ = B, (B.5) it
[ 4
. Cd
where vy and B(# 0) are constants, is of Painleve type if and only if v,
! '
J Yy = 1 (the case B = 0 is discussed below). Hence (B.4) (and hence also -
ot
(B.3)) is of Painlevé type if and only if .
1 -9
' -
Hu-1) =a?,
i.e., -
-
(w-3)(a-3) = 0. (5.6) .-
-
o
"
If «= 3/2 or « = 3 (after rescaling q by a factor of 2) then (B.1) :ﬂ
>
is the second equation in the Burger's hierarchy 3
",
o
. =3 2 3 2 N
¢ 7 Yxxx §(qux + Qx) Y3490 (B.7) i"
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(Olver [25]), which is reduced by the Cole-Hopf transformation

q = 2(In u)x = 2u /u,

to the linear partial differential equation

If B=20 in (B.5), then there exist two choices of y such that

the equation is of Painlevé type, y=1ory = -9. If y = -9, then

e I T TN

A ]

Ed

5 Ny

: (@ + 1)(a - ) = 0. (8.8)

§ If a=-10oras=1/2 (after rescaling q by a factor of 1/2), then (B.1)

2 2
- (qa,, *+a,) - 3d7q,.

M . L O

[f we seek a solution of (B.9) in the form

LI DY P % S I

q(x,t) = <P = g )d(x, 1), (B.10}
AR

LS

with ¢ = x + f(t), in the neighborhood of the noncharacteristic singularity

i)

manifold defined by 4 = 0, then leading order analysis shows that
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N,
p = -1 and there are two choices for ag» 9 * -1 and a; * ?. Equating o
~
coetficients of powers of : determines the recursion relaticns defining a
qj(t), for j 2 1. For to the choice qg = -1, the resonances are -1, .
Ly
3, 3 (the resonances are the values of j at which arbitrary functions A
~o
\'
arise in the expansion (B.10) and for each positive resonance there is -
Y
a compatibility condition which must be identically satisfied). A ;'
L . N
double resonance indicates that the expansion (B.10) does not represent j
9%
the general solution (logarithmic terms must be introduced into the ;'
v
expansion (B.10) so that it represents the general solution). For the ?t
>
choice q0 = 2, the resonances are -1, 3, 6; the compatibility condition e
o
corresponding to the resonance j = 6 is not identically satisfied which o
)
indicates that logarithmic terms again must be introduced into the ;L
~.' 5
. o,
expansion (B.10). Therefore (B.9) does not pass the Painlevé PDE test. :.
e
o
We therefore conclude that equation (B.1) can pass the Painlevé :j
\f
tests if and only if o takes one of the three values 0, 3/2, 3, as )
. ~
required. X
~
X
A
APPENDIX C )
AL LA A
In this appendix we show that the partial differential equation fl
W, = W - 2(wz/w) + g(w) .\ .
t xxx T 2\WWx/Wi T GIWIW,, (C.7) L
.
,\
)
where g(w) is a rational tunction, can pass the Painlevé tests if and ;}
-
only if ’
w
.'\
o~
-1 N
glw) = tw” +rw +  w o, (c.2) A

Pe

',
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where a, ¥ and y are constants. First, consider the time-i1ndependent

solution w(x,t) = y(x), then y satisfies

AR

']
<

: yr = Sy - eyt (c.3)

Y

where ' : = d/dx. Integrating (C.3) gives

v

-..\\
TR

2

y''to=5(y')

AN [o8)

/y - G(y) + A, (C.4)

where gg = g(y) and A is a constant. Multiplying y'3y' and integrating
§

-

again yields

N AT e

[}
~No
~~
.

- y .
%y 3yt - [ v36(v)dv - I—z\y + B, (C.5)

R SRRy

-

where B is another constant. It is well known thgt the equation _

—— e 4 <

g o - ’,

—
~<
~—
~No
"
X
—
<
—
-
(gn]
N
—
.

»

g e,

<

where R(y) is a rational function, is of Painleve type if and only if

o,

Y

R(y) is a polynomial of degree not exceeding 4 (see Hille [40] or Ince [41]

for a proof). Hence equation (C.5) is of Painleve type if and only if
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%
where Qg Ags gy 1y and g are constants. Solving (C.7) for g(y)
yields
_ 2 -2
3(y) = -3agy” + oy - 3oy . (C.8)
If g(y) has the special form (C.8), then equation (C.1) is equation
(1.18) which is equivalent to the CDF equation and which is known to pass
the Painleve PDE test [42]. Hence we have the required result.
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Davey-Stuartson I - A Quantum 2+] Dimensional Integrable System

by

C. L. Schultz and M.J. Ablowitz
Department of Mathematics and Computer Science
Clarkson University
Potsdam, NY 13676
and
D. Bar Yaacov
Department of Mathematics

Vassar College
Poughkeepsie, NY 12601

We introduce a quantum version of the Davey-Stuartson I system, an exactly
integrable, non-local, non-relativistic field theory in 2+1 dimensions. Quantum
commutation relations between elements of the scattering matrix of the under-
lying linear problem are calculated and are consistent with the classical result
of zero phase shift for the lump type solitons. These commutation relations can
be used to demonstrate the existence of an infinite set of commuting operators,

and to exactly diagonalize the Hamiltonian.

PAC numbers: 11.10.Lm
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The field of exactly integrable systems, once largely confined to Sa

the study of phenomena in two dimensions (or equivalently, 1 space + 1 L

time dimension) has recently seen exciting progress in the understanding s

of problems in higher numbers of dimensions. The classical inverse scat- E

tering transform (CIST)1 has been extended2 and used to solve exactly a 1

number of non-linear evolution equations in 2+1d, including the Kadomtsev~ ~;

Petviashvili (KP) equation and the Davey-Stuartson (DS) equation, both of :

which admit localized lump-type as well as extended string-type soliton '3

solutions. Indeed, more recently, recursion operators have been found for k;

a general class of equations, including KP and DS.3 There now also exists 551

H an integrable quantum system in three dimensions, obtained by A.B. Zamolodchikov4 R

and R. Baxter5 by solving the tetrahedron equations, a 3d analogue of the

)
Yang-Baxter equations. The Zamolodchikov-Baxter solution can be interpreted S'
. as a model for the scattering of straight strings in 2+ld, or as a model of E“
.
interacting random surfaces on a lattice in 3d. 2?
Here we use an alternative approach to search for new quantum integrable ;;
systems in higher dimensions. Instead of attempting to find another solution ;,
of the tetrahedron equations, we exploit our knowledge of existing classical Eé
systems and investigate a quantum analogue of the DS system. Davey-Stuartson
is an obvious choice because it reduces in the 1+1d 1imit to the well-known %;
nonlinear Schrodinger (NLS) equation, whose quantum version, the &é-function Ei
Bose gas models. or quantum NLS model7 is one of the best understood inte- }:
grable quantum systems. %Si
In this letter we calculate Poisson bracket relations between elements EE'
of the scattering matrix of the underlying linear problem for DS. These ?\
relations allow one to identify the action-angle variables of the classical :-

problem. We then formally repeat the calculation by replacing the conjugate o
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1: variables by operators and Poisson brackets by commutators and find the >
, commutation relations between elements of the scattering matrix of the
]
¥ corresponding quantum problem. We thus obtain an algebra which is a higher s
4
] . . + . . . . .
L dimensional analog of the Yang-Baxter algebra (in its infinite line version.)
' 4
As is the case in 1+] dimensions7. from this algebra we can demonstrate iy
[y R
) K
R that the Hamiltonian associated with DS is a member of an infinite set of N
1 3
: commuting operators, and can be exactly diagonalized. N
4, ; ¢
' .
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We first discuss the classical case. We will be concerned with the ::
hyperbolic version of the DS equation, a non-linear partial differential : ,
aa
equation for a complex-valued function q = q(x,y,t), ; .
ol
2 2 N
.39 _ 1,9 3 . . o
i = - 3 + —5)q + iA.q - iqA., 1
at 2,2 2y 1 2 (1) L
Y
3 2 i, 3 . 2 =
where (5 - gyl T 7Gx gy)lan), 2
. [ ]
_a i = l i i S
(3x * ay)AZ 703x ay)(rQ)' (2) ."'
W,
‘}.
) | 3
with r = *q (q* denoting the complex conjugate of q). hVs,
»
This time evolution equation for q can be generated by a non-local o
-
-
Hamiltonian (which will depend on the choice made for Al and AZ) via the :'_:
'-',
Hamiltonian formulation of classical mechanics, where q and r are the :"'
R
> conjugate variables. o
\-
\'_
As is the case for all nonlinear PDE's solvable by the CIST, (1) appears ]
as the compatibility condition for two underlying linear equations, ;
r
S R TRAL (32) 3
ax Yy A
-‘:.
3 o9 L F N
gV AV +HIQ vt i)y, (3b) ~°
at Yy ayz !r.
. (0 q . (1 0 e
were Q= (0 3) . 9= (5.5) - O
A Ha, +q,) ,
A= (! ey, (5) o
:21 (rx-ry) A2 4]
T
and v = ¥(x,y,t) is a 2x2 solution matrix.
The first of these equations, (3a), can be viewed simply as a linear ’:
»‘\'
scattering problem in which q plays the role of the potential. (3a) ,.:
l‘\
for suitable choice of boundary conditions, can be rewritten as a system I
[ )
-
e
Y O B T R e A A e A
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4
)
4 d
M
7
. .-F
of linear integral equations, 7
)
PRI I S »
~ - R J J ' ' L R . ] " ] v :-f'
wij((, x, A) = 61‘3'9 + J 'J dr’ G (r-¢'y QM Yo (€', v, A))].J., ::
(6) &
%
where Cl = (x+y) and &) = (x-y) with ¢ denoting the coordinate pair ((1, (2), *
K = xp+ ixl is a complex parameter, A is a real parameter, the indices i, ] ¥
rd
can each take on values 1l or 2 (where we use the notation T=2and?2 :1,) E
and all integrations are over infinite space. Also, for convenience of )
i 2
notation we use iij(c, x, A, t) = wij(e’ Ky A, t)eI(‘R+A) th and we shall N,
~
suppress the argument, t.
2
We choose the Greens function '
LN R it o
1
~R )J W8
2i(x; . +2)J.E. :
| dL i) i - -f .- \
. = J o € (e(£1+£2) o(-J;2) - of-€,-&,) o(Jin)) (7a) N
r\
ds 2i(2?j””i‘i 3
= 8(g;) oley) - j 7, 0(J;2)e (76) 73
dy Zi("‘iRj”')Jici
- -a(gy) ol-g) + | 32 (-, e (1) 3
:5
-~
o~ _ R -1 -R _ .
with %ij = %ij + e %55 7% + JiJJ.((R—xI)l =
| 3
- -~
and %i3 = K. -
)
GL(Q, x) is obtained by taking the appropriate limit of the Greens function
of the more general D-bar prob]em.8 e
)
We also will find it useful to define a solution, ¢, of an adjoint linear fﬂ
problem, ﬁ:
> - -21(;tJ+x.)Jk£k 2 e - [ + ' : 3
cik(c’ “kj* A'Y) = 6.8 + JJ dg 151 cii(c , ng,A )Qlk(c )Gk(( TR,
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Of fundamental interest in both the classical and the quantum problem is
the "scattering matrix" or the "scattering data" of {6), which we define to be

22ieR

Tijles o i) = ” de (9)

For certain choices of the parameters «, A and A', T can be shown to have
a very simple time dependence, and is thus used in the CIST to “reconstruct"
the potential q(x,y,t) at arbitrary times, for appropriately given initial

conditions.

We can calculate Poisson bracket relations between elements of T, where

we define canonical Poisson brackets

. §f 6f 8
tf, g}z ‘IJ de [sq(cj Sr(€) " sr(e) 6q(gj] :

We find, by use of the linear integral equations, (6) and (8), that

(TGB(K’ A, A')9 TYG(T' Hy U')}
2

= ail II dE (ua(z’ Kaet A.) "SB(E’ Ky x) CYS(E’ TSG' u') WaG(E, T. u)

., A')

~ . s e ~ . 3 - .
The solution ¢ and its adjoint ¢ satisfy — cik(ﬁ. Kj

k=1 2%k
*kj(ﬁo Ty U) = 0.
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This identity can be used to rewrite the integrand appearing in (11)

as follows:

{TQB(K, A, 2D, TYG(T, by ')

" I de, f dg, 0(J,(€,-6,1)) £ (6,0 €50 kags X)) ¥aa(E00 £50 x5 )

* CYa(ﬁé’ ES’ Taés U') Waé(ﬁa- ES: Ty U)

2
as1 a J dEa Caa(E, KaB' A‘) Wa6(€. T, U)

M J d€5 CYE(E.’ 156' u')\PEB(E', Ky A)

In order to evaluate (12) it is necessary to find asymptotic expressions
for v and . However, these can be found easily by using (6) and (8) and

noting that it is possible to write 6t in the two alternative forms (7b) or

(7c). Then

Wl Sy s

-~

21(<R+A)Jksk

1im wk kje

J-(c. K, A) =6

.,~R
2i(x, . +2)J, £
dg .z ki
J > 9(+Jk£)e T

AN

kJ'(KI
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Inserting (13) and (14) into (12), we arrive at an expression for
{Tae(" A, A, TY6(1, u, u')} purely in terms of T's.

Instead of writing down the a lengthy expression, which contains terms up to
quartic in T, we instead give results in two interesting limiting cases.
First, letting A = A' = 4y = ¢' = 0 and T(x, 0, 0) = TL(x), we recover the
scattering data of the hyperbolic limit of the D-bar problem, and making

use of an identity easily derived from (6), find Poisson bracket relations

(T (0D TS ()

L L
(Thple)s T = 1k (), Thy(e)) = 0

(thy(e), Thie) = (200 slgrrgeegry) Slegry)

i
_;R
12

- L
{rﬁl((), T%z(r)} + 2n c(KR-rﬁz) olep-1) | Tip(0),

K -je

R

A

as well as a number of other similar relations.

Alternatively, we can take the limit Kp ** = xp + @
T(x, A, ') » T+(e. ©'), where 6 = kgt X e' = xg* A' are kept finite.

In this way, we recover the scattering data associated with a solution to

-Ziedig. + iezJ.t
wij(c, o)e J J° analytic in the upper-half

+
(33): uij(co e)

0 plane, which is used in the Riemann-Hilbert approach to CIST. We find
+ ' + ' _ + ' + '
{5,000 0"), S o (6, ¢")} = 5 ,(e, 0") S (o, o)

do + ] + [
*GecdeJ‘ZEG:ﬂj Sagle* s 0') Sgglo-o. o)

+

g ' + '
" %as Jg f Zilorte] Saslr 0'70) Sgglo. e'o),
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(15¢)
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where we've defined S:H(G' 0') = 20 &(6 - w')éOH + JB T;B(O, 0'). %‘
Similarly, the limit K] T T T kg ® += give us the scattering data associated §’

with a solution analytic in the lower-half o plane. L
The calculation of commutation relations for the quantum DS problem N
is formally similar to the Poisson bracket calculation, with Poisson i%
brackets {q(g), r(¢')} = ié(cl-gi) é(gz-cé ) replaced by commutators tf
[a(e), r(e')] =1i8(g)-€7)6(€,-€,), etc. Now elements of the solution E?
matrix, y, and of the scattering matrix, T, are treated as operators, E;
and care must be taken throughout the calculation to maintain proper 3-
ordering. For the quantum problem defined by the ordering appearing :;-
in (1), (2), (3) and (6), the quantum results are given by (15) and (16) gﬁ
. with { , } replaced by [ , ]. Note that we do not treat the normal };
ordered problem. i?
The classical results, (15), can be used to demonstrate that the §l
coefficients appearing in a (1/<R) expansion of T&l(x) form an infinite E,
set of constants of the motion, and to identify, by suitable rescaling, the Ef
canonical action-angle variables of the problem. The corresponding quantum ﬁ:
results show that T&l(x) generates an infinite set of commuting operators, %;,
including as a member, the Hamiltonian of the DS system. Furthermore, these EE,
operators can be exactly diagonalized by normalized eigenstates formed by ;E
n T%z(xi) acting on an appropriate reference state. This quantum theory %{
;ppears to have a trivial S-matrix, consistent with the fact that the class- EE
ical lump-type soliton solutions of DS experience no phase shift asymptotically E:

when they interact.
The results, (16) for the Riemann-Hilbert formulation of the problem,

have a very different form, and do not immediately allow one to identify

‘.;i- L '.T

the action-angle variables. Never-the-less, ™" and T~ are related to T
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K
|' L
" and T~ through nonlinear integral equations. In the classical problem,
X TIZ and Tél are known to evolve simply in time to have angle variable
L)
s structure. The quantum results corresponding to (16) reduce to the well-
o
' known Yang-Baxter algebra (in its infinite line version) in the 1+1d limit
q w(x, y, €) + u"(x, 6) and S*(e, ') » 6(0 - 0') S*(0).
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NUMERICAL SIMULATION OF THE MODIFIED

KORTEWEG-DE VRIES FQUATION

Thiab R. Taha and Mark J. Ablowitz *
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Abstract

Proposed schemes for the numerical simulation of the Modified
Korteweg-de Vries (MKdAV) equation are impicmented and compared to
other known numerical methods. These schemes are constructed by methods
related (o the inverse scattering transform (IST). In this paper a summary of
their performance using both solitons and nonsolitoa initial values as they
were applied to the MKdAV equation will be presented. Results for
noasoliton initial values are quite novel

1. Introduction

The Modified Korteweg-de Vries (MKdV) equation describes a wide
class of physical phenomena (g, acoustic waves in certain anharmonic
lattices [1] and Alfén waves in a collisionless plasma (2]).

In (1984) we derived nonlinear partial differeace equations which bave as
limiting forms the Korteweg-de Vries (KdV) and the MKdV equations 3).
These difference equations have a number of special properties [4] and are
constructed by methods related to the inverse scattering transform (IST).
We bave also implemented similar schemes for the nonlinear Schrodinger
(NLS) equation (Ablowitz-Ladik) and the KdV equation and compared them
with known numerical schemes [5,6]. Experiments bave shown that the IST
schemes for the NLS and KdV equations compare very favorably with the
other known pumerical methods. Recently we bave implemented and
compared the proposed schemes which were developed in [3] with certain
other known gumerical methods for the MKdV equation (1.1a) [10).

U * 6uluy + ugy = 0. (1.1ab)

The following numerical methods were applied to the MKdV cquatica:
(1) a proposed global scheme, (i) a proposed local scheme, (iii) an implicit
scheme, (iv) a split step Fourier method (Tappert), and (v) a pseudospectral
method (Fornberg and Whitham).

Our approach for comparison was to (a) fix the accuracy (L) for
computations beginning at t = 0 and ending at ¢ = 7, (b) leave other
parameters free (c.g., At, or Ax), and compare the computing time rcquired
{0 attain such accuracy for various choices of the paramecters.

In the above equation (1.1a) one and two soliton solutions with various
values of amplitudes were used as initial conditions, and periodic boundary
conditions were imposed. The aumerical solution is compared 10 the exact
solution, and in additios, two of the conserved quantitics are computed,
namely fu?dr, and f(u* - (4,)*)dc

2 TheR ion of the MKdV 308 (11) Using Numerical Methods

() The proposed global scheme which is based oa the IST is (Taha and
Ablowitz, {3]).
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{ =00

where
T = Rr*‘{kr.:' AW® . RR, 22D + RPSia

- RN P,_,} . R;"{R;'.,AS" - RPG 9. DY
+ RP, Siay - RIY f’t}.
Sa = AD + AW F, + DW é H;,

y=-0

= [DS’) + i [A!‘)E: + D!‘}G,]ﬂ,]‘j...
150

a®
1

o= T [6mys) 67 = 1= RD

1 =00

7
n

v 87y = :{R:R::.‘&:"‘ : r.lR:"ér} LRt

»
"

é A™ [R;‘R;‘, 1]].

ymco

%/6:~l-Fn =z [R:‘:l'R:.’l "

(RR-1RRSY - RERRY s &8

e e rarats
RN AR

.’I‘J-

sy
f‘/:

“y

Pt g

o

\,;- e

.t
Y
e
o

oL N N I Sudl RS
’.I"///'/" R

i "’.I [

[




s agd 0 Vel S ol 0 48 00" 0 0 4 el 6,8 4, RN PR LY TR e 8 Sl Al o

E. = = (RTRRI'T' - RTLLRYIET).

A = -%AE” + %a.D!’) = -—§—A€°’ - —é-a.
@ - Llgo. 1 po o b0, L
Al 6A 40.[), 6,4_ + 40,

[a¥4 (0) .
a = ———, A" = abitrary constant,
@y’ "

R = Axu, and 1| < p (half the length of the interval of interest, and
m > 0). This scheme is implemented with the value of A = %a. and

using the sweeping/iteration technique presented by the autbors {5,6].

(i) The proposed local scheme which is derived from cquation (2.1) with
A9 - 'i'ais

up*'-up - up ' - duptt + Jup )t upty
| o 2(ax)®
Uy = py + Jp - Uney

2ax)®
| i 22“ ll:':z‘{[“:ol]’ + [“'7]’}
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n+ 1 m..™m
2 [u,,"'u:‘ﬂ + u:“u:‘:l + z‘n-lu!l]
Uny 1
L 1 mael me
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m
u
o 2 (unetuni 4 uguly)

mael

u
- o (umitum et & )

. 3[[u:]’u:~,~,* . [u:”']’u:'.]] @2

This scheme is impk d using the ping/iteration technique.
(i) An implicit scheme (Kruskal, 1981) (7):

mel m mel mel mel mel
up ' -ug - Uay -3ugy + 3us'ly -Uaaz

A 2(ax)®

L) m L) m
Un 3 '3un~l + 31‘,. “lUn .y
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TR ARy

+ fu ’]“ [ur -u.'.".,]} } (2.3)

This scheme is also implemented using the sweeping/iteration technique
Scveral values of # are employed and experimentally we find that § = %

gives the best results.
(iv) Split step Fourier method (Tappent (8])

For convenience the spatial period was normalized to {0,2x], then Eq.
(1.1) becomes

LA ] 1‘
U * 6—u'uy + —u = 0, 24
> PR (24)
where p is half the length of the interval of interest, and X = (x + p) «/p.
In order to apply the split step Fourier method for Eq. (24) we (a)
sdvance the solution using only the aoalincar part
xq:6%u’u,=0. 2.5)

This can be approximated by using an implicit method such as

™l my & -3 ™o -3\ m o
in =l ey o 18O - 8@HRY!

@R e @Y+ Batra

- 8w - @)y + @) (26)

where « is a solution of Eq. (2.5); (b) advance the solution sccording to
-~
U + F"xxx =0 @n
by means of the discrete Fourier transform

u(Xjt + &) = FU PR G o)), (28)

(V) Pscudospectral Method by Foruberg and Whitham [9).
The pscudospectral method for Eq. (2.4) is

u(Xt + A1) - u(Xt - A1) * 12 iAxu’(X.l)F"(kF(u))

- 2F(Sin| %ﬁimlr(u)) = 0. (29)

Our numerical cxperiments indicate (for the range of amplitudes we
considercd) that

(1) The proposed global scheme, based on IST, proved to be faster than all
of the methods we considered. It is worth noting that this proposed global
scheme bebaves much better than the othr utilized schemes either whea
beticr accuracy is required or for large amphitudes.

(2) The pseudospectral method becomes competitive wath the IST global
scheme when both high accuracy and large amplitudes are involved.

(3) The implicit scheme behaves better than the proposed local scheme and
the pseudospectiral method for low amplitudes, and it 1s much better thas the
split step (Tappert) method.

(4) The proposed local schemes bebaves better than the pseudospectral
method for small amplitudes for the 1-solitoe case, and becomes competitrve
with the impliat scheme (or large amplitudes.
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(5) The split step Fouricr method bebaves much slower than all of the
methods we considercd. We note that the proposed local scheme did not

petform as well as its global version. We intend to study this situation
further.

Very recently we implemented the proposed global scheme for the
MKJV cquation (1.1b) and compared it to the pscudospectral method, since
our carlicr experiments indicate that the pscudospectral method s the most
competitive scheme for the MKJV cquation (1.1s). In Eq. (1.1b) the
following initial conditions is considcred.

-2z __
(1+x?)?

u(x,0) = (2.10)

Periodic boundary conditions on the interval [-20,20) are imposed. Our
approach for comparison is to (a) compute two of the conserved quantities at
cach time step, namely ¢, = fudy, andcy = f(u' + (u)’)dx for
computations beginning at ¢ = 0 and cading at ¢ = T, (b) leave other
parameters free (¢.g. At or Ax), and compare the computing time required to
attain a relative error in the comserved quantities ¢, and ¢; smaller than
some tolcrance. From the experiments we conducted we bave found that (a)
the stability condition of the pscudospectral method applied to Eq. (1.1b) is

more restricted than for Eq. (l.1a): @) < 0045, compared to

(:r < 0.152 Hence At must be taken smaller. (b) the proposed global
lchmeisnnchhﬂerthn(hepuudmpednlnﬂbodtoaminuhﬁw

ermi."-l |<01%.nd£,-| |<02%\vhm

' utheenavnlueo”u’dxudc, is the calculated one,mdc,ulhccnct
value of f(u* + (u,)*)dx and c; is the calculated ooe.

3. Conclusion

The proposed schemes which are constructed by methods related to the
IST can be used to find numenical solutions of noalinear evolution equatioas
with initial conditioas other than solitons. It is worth noting that this work
can be extended to cover other so-called soliton equations.
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TOPICS ASSOCIATED WITH NONLINEAR EVOLUTION EQUATIONS

AND INVERSE SCATTERING IN MULTIDIMENSIONS

Mark J. Ablowitz

Clarkson University
Department of Mathematics and Computer Science
Potsdam, New York 13676 U.S.A.

Abstract

In recent years the basic structure required to implement the
inverse scattering transform in 1+1 and 2+1 dimensions has been
clarified and extended. Aspects involved with fully multidimensional
problems have also been treated. In particular the inverse scattering

associated with various multidimensional operators and generalizations

of the Sine-Gordon and self-dual Yang-Mills equations have been studied.

A review of some of this work will be discussed in this review.
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The Inverse Scattering Transform (1.5.7.) is a method to solve g
certain nonlinear evolution equations. There has been wide ranging :;
-
interest in this method for many reasons. A review of eariier work can R;:
be found in [1]. A surprisingly large number of physically interesting .
nonlinear equations can be solved via IST; there are many applications in 3;
4
~
physics including: surface waves, internal waves, lattice dynamics, plasma ‘:,
, . ‘ , . . . [
physics, nonlinear optics, particle physics and relativity. Mathematically R
~
speaking the field is also quite rich, with nontrivial results in the g ‘
oA
areas of analysis, group theory, algebra, differential and algebraic ;”'
. . . . »
geometry being used by various researchers. From our point of view IST o
allows us to solve the Cauchy prcblem for these nonlinear systems. We ;2
shall! concentrate on questions in infinite space. All of the nonlinear f;:
equations discussed below arise as the compatibility condition of certain }f
S
linear equations, one of which is identified as a scattering (direct and 5N
a,
inverse scattering is required) problem and the other(s) serves to fix N
the “time evolution" of the scattering data. -
S
In one spatial dimension the prototype problem is the (KdV) ;ﬁ
equation I%:
®
up o+ buu tu T 0. (1) ::j'_
The KdV equation is compatible with s
=
= "'f
Vot u{x,t)v = av (2) .
vy ('Hux)v - (4A+2u)vx (3) ;_::
. , E , . . : \':-
e Ve T Vi implies (1). Equation {(2) is the time independent :{
Schrodinger scattering problem, X the eigenvalue (v = const. in (3)). The pe
»
solution of (1) on the line: -w<x<s for initial values u(x,t=0) N
>
\-
vanishing sufficiently rapidly at infinity is obtained by studying the :&
o,
N
®
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associated direct and inverse scattering problem of (2) and using (3)
to fix the time evolution of the scattering data. [t turns out that
the inverse problem amounts to solving @ matrix Riemann-Hilbert
boundary value problem (RHBVP) whose jump discontinuity depends
explicitly on the scattering data. Calling X=—k2.v(x,k)=u(x,k)e'ik’
the RHBVP takes the following form,

(u-u_)(x,t,k) = v (xt,c(k}) V(x.t,k) on z

ueel, k|oe (4)
where

Vix,t.k) = r(k,t) e ¥, (k)

= -k, L={k:ke 8}, and u_ are the

limiting boundary values,as Imk+0s, of meromorphic functions in the
upper (+) lower (-) half plane. (4) may be converted into a linear
integral equation by taking a minus projection and the potential is
reconstructed via

u{x,t1) = - 1 %; J ou(k.x,t,-k) V(x,t,k)dk (5)
* C

where the contour is taken above all poles of r(k,t). of which there

is at most & finmite number, l(J. = irJ, -:J’O

the reflection coefficrent, r(b, t) evolves simply

3 = 1,-«-N. The

scattering data:
in time 2
(k1) = r(k,0) BT (6)

The above scheme may be extended so as to solve a surprisingly
large number of 1nteresting nonlinear evolution equations. There are
two scattering problems of particular interest 1n one dimension:

(1) Scalar scattering problems:

s L u (x) "y

v
n

(Vi) Baret oraer systems - generalized ARNS
av Vb J vt g
o)
NxN
V(":“)‘Q(’) ¢ ( g ) J = d‘dg (\le"'\)n)
J]fJJ,lfJ
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: Via an appropriate transformation the inverse problem associated with l
K (i), (i1) can be expressed as @ matrix RHBVP of the form (4). The ;'
potentials uj,q can be shown to satisfy nonlinear evolution equations
‘ by appending to (i) and (ii), suitable linear time evolution equations.
3 One then finds that the scattering data V(x,t,k) evolves simply in
)
N time. Well known solvable nonlinear equations include the Boussinesq,
modified KdV, sine-Gordon, nonlinear Schrodinger, and three wave in- -
teraction equations. The reader may wish to consult for example [2a-e] ﬁ
_ for a detailed discussion of some of this material. ;i
4 It is most significant that these concepts can be generalized to :‘
‘ 2 spatial plus one time dimension. Here the prototype equation is
the Kadomtsev-Petviashvili (K-P) equation: 3
| (u, + 6uu, + u__ ). = -30°u (7) .
t x xxx’x yy "
» . . . . . . \
which 1s the compatibility equation between the following linear prob-
f} . .
! lems: .
" ~
: o, ¢ vyt ulxay v 2 0 (8) %
X <,
i ~ : p
Ve * 4vxxx + 6uvx + 3(ux—0 J-a'uydx Jv + yv = 0 (9)
(v = const.). We shall consider the question of solving (7) for i.
b u(x,y,0) decaying sufficiently rapidly in the plane r2 = x2 + y2 - o if
Physically speaking, both cases o2 = -1 (KP1) o = +1 (KPI1) are of 3
. P
interest. Whereas KPl can be related to a RHBVP of a certain type
5 (nonlocal; see ref.3]) KPI] turns out to require new ideas. Letting ’
. 2 <
y -
: v - u(x.y.k)elkx + k'y/o i
. 0 =0 ¢ 1”1‘ "y, 7 0. Then there exist functions .. bounded for all -
; x,y satisfying . - 1 as [k | = o However such a function turns out
y to be nowhere analytic 1n k, rather 1t depends nontrivially on both 2
) | .
X the real and 1maginery parts of k(k=kR + ik])_ o= U(x,y'kR,k,).
™ i ",
- In fact ;© satisfires a generalization of a RHBVP - namely a -
3 (DBAR) problem where . satisfies,
, .
) v
t ¢
0 ol
i W)
o] I‘
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: ;
; h?
’ s L(xya€gaky) V(x,yokg ko) 1 '
sk W00 IR (10) ]
Y where 2. l( o, i ———) and V has the structure
; 2 ok dk} .
’ d R 18(x,y,k £q) :
sJ 0o Is o .
' sgn(ko)e s
V(x,y.kpoky) = Tlkgoky) ' ;
: 2nfa .
' kI kI A
: - Dyte - k) = -2(x + 2y =)k ;
K B(x,y.kp.kpa€g) = (x + 2y OR)((0 k) (x + 2y OR) J :
20I 9] (11) -
£r = -kg - —k;, ko =k, + —k 1 B
! 0 R °R 1* "0 R ORI .
2 .
H (10-11) may be converted into a linear integral equation by employing o
N
the generalized Cauchy formula.T(kR.kI) is viewed as the “nonphysi- N
‘ cal" data, (i.e. inverse scattering data or inverse data) and the X
! potential is reconstructed via 3
. 12
: ulxay) = B2 [ plnyato VO kg kg dkgdly- (2) 2
b The basic ideas used in order to derive these equations is %
g as follows. We convert the equation for u = u(x,y,k): N
(¥} . :
. ouy tugt 21kux - u(x,y)u =0 (13) N
’ into an integral equation ?
1 w(x,y,k) = 1 + G(u,u) (14)
. where
X G(f) = G*f = ”G(x—x',y—y',k) f(x',y')}dx'dy', (15)
X the Green's function kernel being givenby (k=kR+ikI):
L' -
D
1 o1 Extyy)
G(xoyokRka) = 2 2 d&dy
. (2+) (in-£5-2kr) '
4 . sgnly) {die‘xﬁ +orlee2k)y/e -
" 20 ’ ;
- 0 (myoplete2nk,))de (16) :

-’,~‘-\(\\,\.-fﬂlfcffu’\f-"f-.
)




J
I |
where ko-kR z anI and o (x)

{1x>0, 0x<0! {16}

The & derivative of the Green's function is especially simple,

sgn(k i WY Kn s K
gg(x,y,kaikl) = Eg'i'Lge]B(x yokpoky) (17)
nloRl
! when
i 3/3k = %(%FE + 9 %EY—) and
K
B(X’y'kR’kI) = -2(x+2y5E)k0.

1 Taking the 3 derivative of (14)

éﬂ = §§ _y ! [ ' ' ' 1 ' [
ALIALINLSY JJBR(X X'y ¥t skgskulx',y Julx',y' ko, kg )dx ' dy
) 1 ] |3 ] ] ] ]
+ [JG(x—x oy akgakpdulx*y )g%—(x vy akpakpdx'dy (18)
r and using (17) shows that
g - % . Sgn(ko)r(k k) W(Xyskpoky) (19)
T e k) wirkeeky
; where T(kR,kI) = JJe'ie(x’y’kR’kI)u(x,y)u(x,y,kR,kI)dxdy and
w(x,y,kR,kI) satisfies:
{ Wi,y kp,ky) = e 1By skgakp) + JJG(X'XI’y_y kgokp)
u(x',y')w(x',y',kR.kI)dx‘dy'. (20)
[}
i Multiplying (20) by e'18(x’y’kR‘kI) and employing the following
symmetry condition on the Green's function
. e—it(x’y'kR’kI)G(X'y'kR,kI)
) - \
. G(xry’EkaI) (21/
- _ 1 4
where &O = —kO - oRkI’ yields

”(x’y’kR'kI) - eie(x,y,kR,kx) U(x’y’EO’kI)
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whereupon (10-11) follow.

generalized Cauchy formula

LJ(XLY’kR)kI) = 1 +

noting that using (10-11), (23) becomes a linear

The eigenfunction & 15 recovered with the

integral equation

LSS

S Y

S

T B

!

for u. The potential u(x,y) is recovered by taking k+= in (13) or
(14) and (23).
For the K-P the evolution of the data obeys (Y = 4ik3 in (9)
o7 _ ) 2 2 5
5t ° (Bikg)(6kky - 4kg - 3k%)T (24)
o1k
where ko = kR + or , k= kR + 1kI.
Special cases include ¢ = oR+1oI:
(a) KP”; o = -1: op = '1,OI =0
2T _ 4. 2 2
3 81kR(3kI-kR)T (25)
(b) KPI; g = i: oR*O-, o = 1, kI = kl/oR
9T _ . : 2 " -2
3t ° -81(kR+kI)(kR+2kRkI+4kI)T (26)

These formulae allow usin principle to solve the Cauchy problem
for K-P and in particular the limit (ii) discussed abave allows
us to give an alternative solution for KPI via 3 and not via a
nonltocal RHBVP.
Similar ideas apply to higher order scalar problems
n n an-jv

o av I v
(111) 0=+ 5=+ I u.(x) — =0
3y ax" j=2 J ax" I

where: v, uj € { and to first order systems

(iv) v ?v

n
O

where: v,Q(QNXN.J=diag(J].....J 14 JJ. 1 ) with q“
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Interested readers may consult refernce 4a, and review 4b for

! . .
. more details. -
N ~
; The notion of o extends to higher dimensional scattering and 1n- .
K verse scattering problems. However as we shall mention, despite the .
fact that the inverse scattering problem is essentially tractable
)
M there does not appear to be any local nonlnear evolution equations in :
of Ny
} dimensions greater than 2 + 1 associated with multidimensional gener- .
) : alizations of (iii) or (iv). .
. Our prototype scattering problem will be
) [}
. ov, + av + u(x,y)v = 0 y
L} n 32 n '
" A= I =3, xe R, ye R. (27)
L=1 Bxl .
v . N
. Letting ) i
. - ik-x + k“y/o ¢
N v = u(x,y,k)e y p
) o
. ~ . n )
k = kR + ,kI' ke
n .
k-x = [ ijj' 0 = 0p + 0. f
1 .
, Then there exist functions y bounded for all x, y satisfying u=1, as
ij |+ =, j =1,...,n. When og # 0 u turns out to be nonanalytic in
: each of the variables k, i.e. u = u(x.y.kR voookg e koK ) and -
] n 1 n "
N satisfies a 3 problem linear in u, in each of the variables kj; h
) =
i.e. we shall show that u satisfies an equation of the form, .
' 7
: o FYE" PR R TO (28) =
y 3;. J (S
J ¢
where Tj is an appropriate linear integral operator.
4
X The basic idea in order to derive (28) follows a similar X
; format to the two dimensional case described earlier. From the Zi
a O
definition of u(x,y,k) below (27) we see that it satisfies
' \
*
OU)’ + Ap o+ 2ikevu - u{x,y) = 0. (29) :
\.
! \
N
<
N

[d
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We convert to an integral equation

b= 1+ Glu ) (30)
where the Green's function kernel is given by

1 1 Jf ol (x-£+yn)

G(x,y,kp,ky) = dedy
R (2n)"" ioy—gz-Zk-g
1 ixeogt %(€2+2k.g). (31)
- san(y) _ e
o (2n)
y 2 o1k
-yoR(E +2 (kR+ OR ).E)dﬁ. (32)
Taking the 3 derivative of (30)
3 3G ~
o iwy, (33)
J J
and using
36 .1 iB(X,y,kp,KkiyE)
3Rj(x’y’kR,kI) Ti;jﬂ—loRIJe R*"I
WEJ-kKﬂG(D(EndC (34)
where K
)
B(x.y kpak &) = (x+2y 5;)-(5*;;)
0] o
ole) = (£ + k)% - (kg + =Hk)? (35)
R R
shows that
I — ] JT(k k
- — ke (e -k, )6(o(g))
BkJ (Zv) IORI R™I J RJ
w(x,y,kR,kI.E)dC (36)
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N,

where o ( Kok )
‘]b Xy ’ ]
T(kgokyst) = er TRy

and w satisfies

iB(x,y,kp K ~
W(X».Y,kR»kI.E) = e ( Y R IC) + G(UW).
Multiplying (37) by e'i8 and using the symmetry condition
—ie(xt ’k )k :E)
e TR gy kguk) = 6(x,y,E0K)) (39)
yields .
WX,y ko kptl = e"dx’y’kR’kI’C)u(X.y,z. ky)
and hence (36) gives
du  _ 3 _ ) 1
- = T = - sk ’ "k 3
3EJ J(U) (Zﬂ)nWJ T(kR I E)(EJ RJ)
Clo(e)) e B KRR DRy ek de (a1)

We see that %j is an integral operator which depends on a

scalar scattering function T = T(kR,kI,g)g being effectively
(n-1) integration parameters (due to the delta function in (41)

in the nonlocal operator Tj).

One can use a generalized Cauchy formula such as (23)
in order to obtain a linear integral equation to reconstruct u.
However due to the redundancy of the data discussed below, we find
that an alternative method is more useful. The inverse problem is
redundant, i.e. we are given T(kR,kI,g) (3n-1 parameters) and we
must reconstruct a local potential u(x,y) (n+l parameters). A
serious issue is how to characterize admissible inverse data T,

i.e. data that really arises from a local potential (small gerneric

changes in T(kR.k],g) cannot be expected to arise from a local
potential u(x,y)). Insight into this question is obtained by
noting that T must satisfy a nonlinear constraint, one which is
obtained by requiring 32u/3ij8ij = Bzu/aEJ3R1 (i #j). the form

(x,y)‘(x,y,kR,kI)dxdy "37)

(38)

(40)
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of this constraint is given by

X150 - &ij[T] (42)

a nonlinear (quadratic)

where xi\j

nonlocal operator.

is a linear operator and &ij

These operators are given by
= - IR S NN - 2 .1 8
50 = [ Llegrkggd(egmeg) - (6 pmkg)(e57)

6(p(") T (kpokp,€) T(E"kp,8)de". (44)

There is, in fact, an explicit transformation of variables

(kR’kI’E) + (x,wo,w) € (n-lxRan
which simplifies (42). Namely,

AU SIS WS b e

R1 J= 2 J Rj 2 2w2

W. chOw - i
KRy T MRy T2 T T, (122)
Ro%1

.1
kil j=2 wJXIJ ¥ 2w2

Koo= mwix,, + 20 (522)
ij 171 2w2
£, = g w.X ’-N— - i Iwowl
1 j=2 "j°RJ 2 2w2
W 1%0%;
E’J WIXRJ 2 - 2w2 . (.]22) (45)
T A R o T AP St
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transforms (42) into:

= N<-(T)(X,WO,W) . J=2,---n (46)

using the generalized Cauchy formula (23) we have

1 N-‘(T)(i,w,wo) v
IJ'[T](XswsWO) = T(X,W,WO) — JJ 1] .- )_( dXRdXI
= u(w,g) (47)
where
X = (XpXg,mmoXpmmuX,)
a(wo,w) = JJe'i(ywO+x'w)u(x,y)dxdy (48)

We have used the fact that when Wy = 2kI-(g-kR)/oR and w = g-kp
are kept fixed, T(x,w,wo) *-a(w,wo) (The Fourier Transform of u(x,y))
for large xj(wlfo); this is the analogue of the Born approximation.

We expect that for suitably "small" u (i.e. no homogeneous
solutions to the relevant integral quations) if 1 is independent
of x,j and decays sufficiently fast for |wl,|w0|+w, then
T(kR’kI’C) is admissable. Moreover (47) gives a formula to

reconstruct the potential by quadratures. Limits to case
¢ = i and reductions to stationary potentials u{x,y) = u(x)
can be carried out. Details can be found in Ref. [5a,b]. It

should also be noted that in recent work Nachman and Lavine [5¢]
have extended theay ideas to situations where there are

homogeneous solutions to the relevant integral equations.
(42) also suggests why simple local
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nonlinear evolution equations have not been associated with equation
(27). Namely in theprevious lower dimensional (2+1 and 1+1) problems
the time evolution of the scattering data obeyed a particularly simple
equation, (e.g. %E = m(kR,k])T). However in this case such a simple flow
will not be maintained - due to the nonlinear constraint (42).

These ideas can be generalized to first order systems:

v n v
(v) — 4+ 0L J. — = qv
ay j=1 J 3xj
NxN . 1 N
v, L . J.=4d SUTI b
q¢ ; 1ag(JJ JJ)

k £
J ; .
j 4 JJ. LS

with many similar results obtained 6a,b,c; though there are some
important differences as well: see ref. [6c]. Again the scattering
data satisfies a nonlinear constraint. In general, there is no
compatible local nonlinear evolution equation associated with (v).
However when certain restrictions are put on Jj then the constraint
equation becomes linear and the so-called N wave interaction equations
are compatible with the system (v). Nachman and Ablowitz [6a]
showed that at most, the system would be 3+1 dimensional, and Fokas[6b]
showed that indeed the system is reducible to 2+1 dimensions by a
transformation of independent variables (characteristic variables).
In [6c] Fokas studies the inverse scattering of (v).For o = i he
finds an equation similar to (42). However its integrated
form shows that in order for the potential to be reconstructed
one must solve a reduced system of equations of the form (v):
i.e. for N = 2. This is in contrast to the scala' problem where
reconstruction is via quadratures.

Beals and Coifman haven an alternative but similar formula-
tion [7a,b] for multidimensional scalar problems.

There is an n-dimensional problem which also fits within
the framework of [ST: The so-called generalized wave and generalized
sine-Gordon equation (GWE and GSGE). These equations arise in the
context of differential geometry and serve to extend the classical re-
sults of Backlund for the sine-Gordon equation to n-dimensions [8].
The n-dimensional Backlund transformation is given by:

X i . . ) W Wy W W W AW g WY RN T T Y W Y ‘-J.‘v LI S W) ‘(""’“}.-‘d“f‘i“f‘f‘ -"'J" '.{“{“‘J‘- '-'--
BN A U N N A A S G nbnoadwfetaty W . Lo " AW Wy, Lol T A ‘*"‘ W

s

~
L
o,
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ax + xatx = A - x8, (49)
\ where
i n
: dax = = —'.:—:~ dx
1y
i = BI(Z)aijde,
)
aa, . o9
, 1%y 1 %y o
1 R T e
and a = {a..) ¢ R™". Equations (49-50) reduce to the Backlund trans-

4 13
formation for the generalized sine-Gordon equation (GSGE) when

8,(2) = (22 + (26, - 1))s2z, (51)

and for the generalized wave equation (GWE) when
g B.(2) = ~(1-2%)722 = A(2). (52)

The compatibility condition required for the existence of solu-
tions to these Backlund transformations results in a system of second-

order partial differential equations for an orthogonal n x n matrix

; a {aij) in (49) which is a function of n independent variables

a = a(xl,xz....,xn). The equation has the form

i I R U 0 ) R Y A0 U §
ax . ali axi ax a“ RxJ

N 3a 3, .

1 , A

T _%' I : Z;ll Tropdye V)
y k #1,] alk k k
- 0d od,. da
: 5%_ 1 i‘ . - ; axl‘ ‘xl‘, i, ), k distinct,
) k 1y 9% 1y Tk T
! aa o .. da
k 1 1k

~ ;ZJ” ) SJ' T AR (53)
; k I 1
f where « = ] for the GSGE and « = O tor the Uat.
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We observe that when n = 2 and = 1 (GSGE), the orthogonal
matrix a = {aij} given by
(1 finlu
U_;?U S 2
a = (54)
-s1in i u cos 1 u
2 2

u{x,t) reduces the GSGE to the classical sine-
'l>v

for the function u

Gordon equation («x

Ugy © uxx-xsin us=0. (55)

On the other hand when n = 2 and «

0, then with 54 ) the GWE reduces
to the wave equation (55). When n > 3 the generalization of the
wave equations discussed here is nonlinear.

The Bicklund transformations (49) described above are in fact
matrix Riccati equations. Linearizations of such a system can be
performed in a striaghtforward manner, Introducing the trans-

formation

x =l (56)

where U, V and n x n matrix functions of SERRELIY the following linear

system is deduced:

du 0 A u (57)

dav A B8 v

with the components of A, B given by (50). Compatibility ensures that
the orthogonal matrix a = €aij} satisfies the GSGE with (51) and GWE
with (52). Alternatively, if we call

(U> = u o, (58)
v

the following linear system of 2n o.d.e.'s are obtained:

_al’:’ = i o W] 59
ij )\AJ v ¢ CJk N ( )

> .-F-J':f. -".-.. ~-,’ -\,.:.._:" » . -'..-:. -"::, ) ~._.-'.\-'. " “.;.. " )‘. A \'.-.'_ -(‘.. \"\’N ™ ‘h.’\..\{\i.‘-‘.’\f\"\.’..\'*\$\‘.\'_\"\‘.\.‘\"'.:\'.5;-\:.. .:
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where Aj' CJ are 2n x 2a matrices with the block structure

Here éj, % are n x n matrices having the following structure:

-3
aJ = (A - l)elaj + aj.

(61)
aj = aej

where ej = {eJ.}ik is the unit matrix

0 otherwise,

“and in component form Yj takes the form

Ja., . da, .
- A2 _ (1. I SR |
= (-8 03— 557 85 - (1-6;5)3 3, 5563

(v.)
JTkL Lk %k I

- In (61) a is the orthogonal matrix R™ = SO(n) associated with the GWE
"when & =) and with the GSGE when § = %(z + 1/2), = %(z - 1/2), and

Y; is the matrix (63): R, - Mn(R). Y; + \i 0. Equations (53) arise

as the compatibility condition associated with (58). More explicitly,
for the GWE the scattering problem takes the form [¢ = w(x,1)]

L
5 xAJ.w + cjw (64)
J
with
0 a.
A = 1), (65)
J a% 0
J

and C, given by {60,63).
fbr the GSGE the scattering problem for ¢ = ¢ (x,2) takes the

form

SV w(z) 0 “19;

X . y

J a.e 0
jl
0 (l-el)a.

¢ 2 (2) 1Y e ¢ (66)
t

aj(l-el) 0
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(z), aMz), CJ given above, or equivalently

Zii - 3 v 3 Byve Cey 67)
whier ¢
0 ua . |
Bj = J , u = diag(+l, -1, ..., -1).. (68)
at.u 0 |
J

In [8] it is shown how these linear problems may be viewed as a direct
and inverse scattering problem for the GWE and GSGE. Namely the

. direct and inverse problem may be solved for matrix potentials, de-

+ pending on the orthogonal matrix a, tending to the identity sufficient-
: 1y fast in certain “generic* directions. It should be noted that

. solving the n-dimensional GWE and GSGE reduces to the study of the

scattering and inverse scattering associated with a coupled system of
n one-dimensional o.d.e.‘s. This is in marked contrast to other
attempts described earlier to isolate solvable (local) multidimensional

nonlinear evolution equation which are compatibility conditions of two
Lax-type operators, e.q.,

Ly =y (69)
where L is a partial differential operator with the variable t enter-

ing only parametrically. Although as we have seen nonlinear evolution
equations in three independent variables can be associated with such

Lax pairs (e.g. the K-P, Davey-Stewartson, three wave interaction
equations, etc.) little progress via this rcute has been made in

more than three dimensions. As discussed earlier one has to overcome a

serious constraint inherent in the scattering/inverse scattering
theory for higher dimensional partial differential operators in
order to be able to isolate associated solvable nonlinear eguations,
i.e. the scattering data generally satisfies a nonlinear equation
(eq. (42)). The analysis associated with the GWE and GSGE avoids
these difficulties since the GWE and GSGE problems are simply a

compatible set of nonlinear one-dimensional o.d.e.'s
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~ "
ol a2l

\*\\\\«._-. \\‘.’\\\

J'




s
QAR A

R

‘- e R ‘}‘p'

"
.0
vy,
§

0 RN
"‘l. .\'.‘f".‘l he "‘l'hl‘ W T

-17-

The results in ref. [8] demonstrate that the initial value problem
is posed with given data along lines and not on (n-1) dimensional
manifolds.
Similar ideas apply to certain n-dimensional extensions

of the so-called anti-self-dual Yang-Mills equations (SDYM)
[9]. In two complex variables the self-dual Yang Mills equations
take the form (see [10])

3 Q“l 39_ 3

)+

Ix ax1 ax2 ax2

where 2 is a positive matrix valued function of (xl,x2)€¢ .

Alternatively SDYM takes the form

3_1 + 3_2 =0 (72)
Xl X2
3A1 3A2
- + [ALA] = 0, (73)
X X 1772
2 1
where
- ol 3 74
AJ = -0 (74)

The SDYM may be obtained via the compatibility condition
of the following linear system

am am

ax fen, Apm
2 (75)
am am
% tZ 5 = A2m
2 X1
multidimensional extensions may be obtained. For example,
consider the linear system
Dim(x,z) = A.(x)m(x,2), 3 = 1, n 7o)
| . A (77)
Z o ax J sk,
J+l
and
Kne1 T X1 sy 7 (-1)])
e Ao A T N N TN e L Ny e T AT AT ALY AN AT A IS

sy
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U
¥
Compatibility (commutativity) implies:
!
; pia. - oA, + [A.,A.]=0
- z'] i i3
;i
aAi 3A .
o~ o T AAL =0
J i
L)
*
3A, 3A.
‘ *j 3x TSN % = 0.
N J+l i+l
!
\
! A potential @ may be introduced as before:
Ay = 9-12‘2—
. J
)
)
K to obtain
! 3 -1 30 3 -1 23Q
- S, ———— (0 " &) - s, —E— (T =) =0.
r; J axj+1 ( axi) 1 3Xi+1 ( X )
Clearly when n=2 this system reduces tc the classical
SDYM equation.
Solutions to these equations may be constructed via
the 3 method. Define
-
2 NI I
A DZ = Ll + zL2
X with
J: a J = a
p L1 ax, L2 Sj Ay
/ J j*l
. We shall show that the § integral equation
1
)
: m(X,Z) = ] —l— (}( lvli—l de, - d(
' 2T -2
1
b e rrnren e e s e e e .
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RSSO T

satisfies {76). Operating on (£4) with Dg yleids,

XA

Wy eey)
03m = 77 J dg-di + J (85)

z -2

where

a
Ul
a
Fall
PACACA i

&d

j =
T J Lz(mV)d; dz

1
¥ 2mi

Wm) :
J > dz-~dg. (86)

\‘ 5' Y 'l. “

‘-

Y I

Putting (85), (86) together gives

l,‘ ,’." !

.

S ..- (': 5 ‘,n'- .

§'n

in which case using (84) in (87) by writing

—
-
.,

v -
j ] 2=1 | L-zd” dz)
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2

we find g
j -

) , R (D°m) - A. (xjm)V -
b N - 1,7 ( ‘ R - e
» (Dzm Ajm) Zral 7 dg -dr (91) t
N

For V suitably chosen (84) has a unique solution in which case "
:{
Im - B %
Dzm - Ajm = 0. (92) aﬂ

)
¥4

Thus Aj = Aj and solutions of the extended SDYM are obtained. E:
c.':

N

The condition (89) is satisfied if we take V(x,z) = V(u(x),z), ',

with uj(x) = Xy + Sj+1xj+1 and V holomorphic in the uj- Then

Jy = (2_ 3 ,

DZV (3x. + zsja;. ) V(Ui""un‘z) '

J j+1 ),

=P v . S, 126..) = 93 %

zglv (UE,Z)(ZGJK + SJSJ+12631) 0 (93) 3

: )
by virtue of Sj = (-)J. In ref. [9] other examples of .

multidimensional extensions of SOYM and a rigorous derivation

of the foregoing is given. .
.—
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A review of recent results associated with exactly solvable
multidimensional nonlinear systems and related questions of direct

and inverse scattering is given,
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In this lecture o review of some recent results associated with e
L
exactly solvable awltidimensigngl nonlinear systems will be given, N\
\
The motivation for much of this work has come via what is commonly E'
referred to as the Inverse Scattering Transform (1.S.7.; as a A
s
reference see, for example, l]). IST is a method to solve certain =
nonlinear ¢quations by as s0Ciating them with appropriate compatible 1;
linear equations, one of which 1s identified as a scattering problem ;'
and the others(s) serves to fix the “"time evolution” of the scattering -
data. )
"I
In one spatial dimension the prototype problem is the (KdV) 7
o
equation ;'
"'N
u + 6uu +u = 0. (1) b
The KdV equation is compatible with &
- o~
Ver ulx,tlv = av (2) .
'
Ve T (y+ux)v - (4A+2u)vx (3) :-
. e Ve T Vi implies (1). Equation (2) is the Schrbdinger -
scattering problem, A the eigenvalue ( y= const. in (3)). The .
solution of (1) on the line: -=<x<efor initial values u(x,t=0) :
vanishing sufficiently rapidly at infinity is obtained by studying the ;E
associated direct and inverse scattering problem of (2) and using (3) ;;'
.
to fix the time evolution of the scattering data. It turns out that N
the inverse problem amounts to solving a matrix Riemann-Hilbert '
s
boundary value problem (RHBVP) whose jump discontinuity depends o
.. . -1k -
explicitly on the scattering data. Calling A-—kz.v(x.k)=u(x.k)e VRX -
the RHBVP takes the following form, -
(uy-u ) (xot,k) = u_(xt,e(k)) V(x,t,k) on 1 L.
-'..
usel, ki (4) !
,.
where 3}
N r
Vix,t,k) - r(k,t) e KX o(k) = -k, I={kikeR}, and y, are the -
- )
limiting boundary values as Imkt0: of meromorphic functions in the N
. : hd
upper (+) lower (-) half plane. (4) may be converted into a linear ‘:
integral equation by taking a minus projection and the potential is g
“
'
=

[
Py

........ N
> TrlA -fvff." ._.- _1.-\.\-“_-!-.\- I
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reconstructed vig
’ u{x,t) = - j ,—x é p(baxot,b) VLt )ak (5)
. where the contour is taken gbove a1l poles of r{k,t); of which there
: 1s at most a finite number, kj = iuj, rj>0 J = 1,---N.  The
: scattering datd: the reflection coefficient, r{k,t) evolves simply
: in time »
F(h,t) = or(kh,0) BT (6)
1 The above scheme may be extended so as to solve a surprisingly
N large number of interesting nonlinear evolution equations. There are
1 two scattering problems of particular interest in one dimension:
; (i) Scalar scattering problems:
dx Jj=2 dx !
vix.k}, Uj v €
(11) First order systems - generalized AKNS
: dv :
; ax =1 kJv+quv
vix,k),q{x) € (NXN. J = diag (Jl.—-—Jn)
: | AAPRLIRTR
f q]i 0.
3 Via an appropriate transformation the i1nverse problem associate with
? i (i), (i1) can be expressed as a matrix RHBVP of the form (4). The
- potentials uj,q can be shown to satisfy nonlinear evlution equations
\ by appending to (i), (11) suitable linear time evolution equations.
One then finds that the scattering data V(x,t,k) evolves simply in
1 i time. Well known solvable nonlinear equations include the Boussinesaq,
; ; modified KdV, sine-Gordon, nonlinear Schrodinger, and three wave in-
/ . teraction equations. The reader may wish to consult for exampleza'e]
. for a detailed discussion of some of this material.
: It is most significant that these concepts can be generalized to
i 2 spatial plus one time dimension. Here the prototype euqation 15
|

the Kadomtsev-Petviashvili (K-P) equation:
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(u, + Guu  + u S A -
e X xxx); Yy )

which is the compatibility equation between the following linear prob-

lems:
vy VLt u(x,y,t)v = 0 (%) ]
S :
v, + dvxxx + 6uvx + 3(ux-u [_u,uydx Jv +yv = 0 (9)
(y = const.). We shall consider the question of solving (7) for

u(x,y,0) decaying sufficiently rapidly in the plane el = 24 y2 - o

Physically speaking, both cases 02 = -1 (KPI) 02 = +]1 (KPI1) are of
interest. Whereas KPl can be related to a RHBVP of a certain type
(nonlocal; see ref.3]) KPI1 turns out to require new ideas. Lletting

. 2
v u(x.y.k)e KX T ky/o

0=0p+ iol, R # 0. Then there exist functions i bounded for all

x,y satisfying .. - 1 as |k | - o  However such a function turns out
to be nowhere analytic in k, rather it depends nontrivially on both
the real and imaginery parts of k = (kR + ikl). T u(x,y,kR,kI).

In fact y satisfies a generalization of a RHBVP - namely a

'3 (DBAR) problem where . satisfies,

du
5: = ”(x’y’CO’kI) V(x,y,kR,kI) (10)

8
3k,

sgn(ko)e

where 3. (3€~ + i

) and V has the structure
ak R

?B(X,y,kR,kI,EO) ]

T(kg.k;)

PO e

V(X,yskprk,) =

R*I n|oR|
kI k

= (X + Zy ;;)(50 - kR) = -Z(X + ZY '_)ko

] i OI (

kI, ko = kR + T_kl (11)

B(x,y.kR,kI.io)

2a

£y = kg - -
O R (JR

(11) may be converted into a linear integral equation by employing
the generalized Cauchy formula.T(kp,k]) is viewed as the ("nonphysi-
cal” data, i.e. inverse scattering data: 1.c. inverse data) and the

potential is reconstructed via

PR I I A S S R PR
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X
For K-P the evolution of the data obeys (y = 4ik3 in (9))
(8ik0)(6kk - 4&2 - 3&2)

0 0 T

h k. =
where 0 k

Similar ideas apply to higher order scalar problems

n n-J
(iii) ¢ T ou(x)Y -
j=2

where: v, uj € ¢ and to first order systems

(iv) o 8y J— v q(x,y)v = 0 B
where: v,unNx , J=diag(J .....JN). J !

Yl i jwithq'! = 0.

el i

Interested readers many consult referenceda‘b] for associated details.
The notion of & extends to higher dimensional scattering and in-

verse scattering problems. However as we shall mention, despite the

fact that the inverse scattering problem is essentially tractable

there does not appear to be any local nonlnear evolution equations in

dimensions greater than 2 + 1 associated with multidimensional gener-

alizations of (iii) or (iVv). '
Our prototype scattering problem will be

0 vy + Av + ulx,y)v = 0
2

ax

Letting I kzy/o
u(x,y,k)e

bR

+
n
Z
1

Then there exist functions 1 bounded for all x, y satisfying u=1l, as
ij |+ =, J = 1,...,n. When op # 0 u turns out to be nonanalytic in

each of the variables k, i.e. 1= u{x,y,ky ,...kg , k, ,....k, ) and
R] Rn ll 1n
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catisfios a & problem Troear an 0 a0 each of the variables b .y 1.€. 5
satisfies an equation of the torm, !
:ﬁ% = TJG:); J=J,....n (15)
J

where }j(u) is an appropriate linear integr§1 operator which depends
only on one scalar scattering function T : Tj = TJ[T], T=T(kR,EI,€)
£ being (n-1) integration parameters in the nonlocal operator Tj. The
inverse problem is redundant, i.e. we are given T(kR,kI,g)(Bn-l) para-
meters) and we must reconstruct a local potential u(x,y)(n+l para-
meters). A serious issue is how to characterize admissible inverse
data T, i.e. data that really arises from a local potential (small
generic changes in T(kR,kI,g) cannot be expected to arise from a
local potential u(x,y)). Insight into this question is obtained by
requiring azu/akiaij . azu/aRjaRi (i # j). The form of this
constraint is given by

L0 - &iJ[T] (16)

where 1;j is a linear operator and N.. a nonlinear (qQuadratic) non-
local operator. Details can be found insa'b]. Equation (16) can be
integrated and this integrated version may be used to reconstruct
u{x,y) as well as give a characterization for admissible scattering
data: T(kR,kI,g). However (16) also indicates why simple local
nonlinear evolution equations have not been associated with equation
(8). Namely in the previous lower dimensional (2+1 and 1+1) problems
the time evolution of the scattering data obeyed a particularly simple
equation, (e.q. %% =w(kR,k1)L However in this case such a simple flow
will not be maintained - due to the nonlinear constraint (16).

These ideas can be generalized to first order systems:

~ n -
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with similar results obtained Again the scattering data satico-
fies a nonlinear constraint. In general, there s no compatible local
nonlinear evolution equation associated with (v). However when cer-
tain restrictions are put on J. then the constraint equation becomes
linear and the so-called N wave interaction equations are compatible
with the system {v). Nachman and Ablowitzoa] showed that at most, the
system would be 3+] dimensional, and Fokas6b] showed that indeed the
system is reducible to 2+1 dimensions by a transformation of independ-
ent variables (characteristic variables).

Beals and Coifman have given an alternative but similar formula-

7a,b] in the scalar case.

tion
There is an n-dimensional problem which also fits within
the framework of 1ST: The so-called generalized wave and generalized
sine-Gordon euqation (GWE and GSGE). These equations arise in the
context of differential geometry and serve to extend the classical re-
8)

sults of Bicklund for the sine-Gordon equation to n-dimensions -.

The n-dimensional Bdcklund tranformation is given by:

dx + xatx = A - x8, (17)
where
"X
dx = I eV de.
=1 7]
i = 81(Z)aijdx3' )
2, . 3, . e
B‘J = El— E;ll dx . - El— :;lld i 1 <14, <n, (18) "
I i J 1) oj o
and a = {aij} e R Equations (17-18) reduce to the Bdcklund trans- i
formation for the generalized sine-Gordon equation (GSGE) when 5:
\..
e (2) = (2% (28, - 1))/, (19) n
..;
and for the gencralized wave equation (GWE) when ;’
¢ (2) = -(1-2%)/22 = A(2). (20)
The compatibility condition required for the existence of solu- N
tions to these Backlund transformations results in a system of second- ﬁr
)
~
~
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: order partial differential equalionys tor an orthogonal n x n matris y
‘ ’
:'. 4 = ‘aij'\' in (17) which 19 @ function of n 1ndependent variables A
]
n a - a(xl,xz....,xn). The equation has the form )
.
. r
: - Aad, ) RY:
; SR 000 U ¥ A IR S | :
‘ R o 511 .‘xi JXJ a“ -l)\J— )
)
iy "
— 1 %% Py
e + z 7 3x X = (al‘a]J' 1 7 Js v
4 k # i, a k k
0 1k y
U
) ; 2
; a,. 3a,. da
: a% 1 a)l(‘ a ; axh axlk' . J. k distinct,
k 1) Jj 1k71j k J .
) da. .. 2a .
9 ik ey (21) X
53 cxk al'i Bx‘
~ .
th h
where ¢ = 1 for the GSGE and ¢ = 0 for the GWE. 3
2 We observe that when n = 2 and « = 1 (GSGE), the orthogonal .
-, matrix a = {a, } given by R
;)- _1_ . l 2
cos 3 u sin 5 v
" a = (22) .
! .1 1 '3
P csin 5 u cos 5 u ;
4 ”
P for the function u = u(x,t) reduces the GSGE to the classical sine- |
% Gordon equation (x = -1}, :
o
> - - i = -
. Upp = Uyy " XSTN U 0. (23)
- On the other hand when n = 2 and «x = 0, then with (22) the GWE reduces
y to the wave equation (23). When n > 3 the generalization of the )
j wave equations discussed here is nonlinear. N
; The Backlund transformations (17) described above are in fact .
) matrix Riccati equations. Linearizations of such & system can be :
performed in a striaghtforward manner (see for examp1e9 ). Intro-
. ducing the transformation
;l
¢ x = uv L, (24)
i
l' . . -
‘ where U, V and n x n matrix functions of x;,..,x , the following linear :
n .
. .
B o J"J".I"J"-‘ NS IR i RPN LN - Sl " a
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system 1s deduced: .}
au 0 3 u i

= t (25) J...

dv A B v e

0
with the components of A, B given by (18). Compatibility ensures that ’
the orthogonal matrix a = -fa‘.j} satisfies the GSGL with (19) and GWE :.':f
with (20). Alternatively, if we call 7o)
(U> -‘

= v, Y

v -

W

the following linear system of 2n o.d.e.'s are obtained: \:
Y _ A v+ C.y (26) >

= . v, ()

S ]

where Aj' CJ. are 2n x 2n matrices with the block structure X
_ 0 3 0 3

A, = . C. = (27) »

J J ‘ ~

FR '

J \

Here EJ., ?J. are n x n matrices having the following structure: Z:::
5 N

x‘

a.=(+-1e,a. + a., O

J 5 ) 17 J !-.

(28) i

a. = ae, i

J J _:n.

where ey = {ej}ik is the unit matrix "
1 s ko=, -
{e.) . = (29) o

J7 ok 0 otherwise, e
and in component form /\J. takes the form \
LS

ca ca, . »

1 £ ) 1 =

(A), = (-6 )= —d e oo(1-e ) e a) ]

Ik AL IS a W o

In (28) a is the orthogonal matrix R" - 50(n) assocrated with the GhE ~::-
when § =X and with the GSGE when ¢ = l(z + 17270, l(: - 1/2), and "_‘-'.‘
] ) « t « S

yJ. is the matrix (30): Rn - Hn(R). wJ *+ v, = 0. fquations (21) arise >
~ ~..I
as the compatibility condition associated with (26). More explicitly, )
for the GWE the scattering problem takes the form [¢ = ({x,:)] )
ay ~
,—‘--AA.'\ ‘C. (31) a0

de J J 0.
"'\"'-.'\."'."."'."‘-"" 7o - :\'-..\" s ."\"_\ ~ ':\"-.'\':,-.':\"-.J:n":‘.'.. n ‘*.' - _\ \‘.\‘\."~.‘:\'.~.";:‘.
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$ with .
3 U a. ;
: foely AT (32) :
: a. 0
J
: and C, given by (27,30). "
| 9
f For the GSGL the scattering problem for ¢ = U (x,2) takes the
Ko form
{ p.
g oxJ. ¢ v N
| a.e 0
iy ! s
»
| 0 (I-e )aJ '
! + 2(2) v+ C.u (33)
t
Jn aj(l-el) 0
f‘ -
~ &§(z), A(z), Cj given above, or equivalently .
' Vool ipuece (34) :
ox . 2 ] 2 7] i’
g J
> where
1 O ua .
e B, = IV, u o= diag(+1, -1, ..., -1). (39)
" t .
a.u 0
I J .
i ' In8] it is shown how these linear problems may be viewed as a direct :
N and inverse scattering problem for the GWE and GSGE. Namely the
1 . direct and inverse problem may be solved for matrix potentials, de-
. pending on the orthogonal matrix a, tending to the identity sufficient-
" ly fast in certain “generic" directions. [t should be noted that :
? . solving the n-dimensional GWE and GSGE reduces to the study of the
: scattering and inverse scattering associated with a coupled system of
) n one-dimensional o.d.e.’'s. This 1s in marked contrast to other -3
; attempts described earlier to isolate solvable (local) multidimensional N
) nonlinear evolution equation which are compatibility conditions of two N
~
o Lax-type operators, e.g., ~
b L = Ay (36) X
5 G T MU (37) -
;. where L is a partial differential operator with the variable t enter- -
4 ing only parametrically. Although as we have seen nonlinear evolution
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equations 1n three  independent variables can be associated with Such
Lax patrs (e.q. the b1, Davey-Stewdrtson, three wdve interaction
equations, etc.) little progress via this route has been made in more
than three dimensions. As discussed earlier one has to overcome a
serious constraint inherent 1n the scattering/inverse scattering
theory for higher dimensional partial differential operators in
order to be able to isolate associated solvable nonlinear equations,
i.e. the scattering data generally satisfies a nonlinear equation
(e.g. (16)). The analysis associated with the GWE and GSGE avoids
these difficulties since the GWE and GSGE problems are simply a
compatible set of nonlinear one-dimensional o.d.e.'s. The results
in [8) demonstrate that the initial value problem is posed with
given data along lines and not on (n-1) dimensional manifolds.

Similar ideas apply to certain n-dimensional extensions of the so-
called anti-self-dual Yang-Mills equations (SOYM). In9] it is
shown that thése muiti-dimensional nonlinear equations are associated
with compatible two-dimensional linear systems. Broad classes of
solutions may be calculated by the 3 method. Since the overall com-
patible linear systems are coupled two-dimensional equations, the
scattering data does not satisfy the nonlinear constraint discussed
earlier.

Finally we remark that there is a class of nonlocal equations
which can be reduced to exactly solvable equations. In the context of

multidimensional nonlinear equations perhaps the most interesting

example is
B 2
(ut YUt Z(Uqu)x)x = -3¢ Uyy' (38)
where
(Hou)(x,y,z,t) = 1 l u(x,y,6.t) dr. (39)
- 2 Ty £, - 2
and denotes the Cauchy principal value integral. (38) is reduced
to the K-P eugation
2 2 ‘
- = - 3 0
(wt ' w)()()( I(N )X)X 3 wyy ( )

via the transformation

w = utiH u. (41)

Details and other examples are given in [10].
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rre. An example of 3 problem arising in a finite difference context: Direct and g
’ inverse problem for the discrete analog of the equation y,, +uy= oy, p
i (28 O. Ragnisco and P. M. Santini VARK ). RDlowz 4

Dipartimento di Fisica. Universita® “'La Sapienza.” Roma, ltaly and Istituto Nazionale di Fisica Nucleare,
Sezione di Roma, Italy

L P '
b ) S. Chitlaru-Briggs and M. J. Ablowitz :-
Depariment of Malhernancs and CompulerSczence Clarkson College of Technology. Puisdam. New York o,
'. (28°¢ 13676 )
! bed, (Reoceived 7 January 1986; lcceptedfor publication 18 November 1986)
N am, we The direct and inverse spectral problem for the discrete analog of the equation
Y latter ¥ + 4 = oy, is solved in the framework of “3 ™ theory. The time evolution of the spectral :
Y ry evoost data for the simplest nonlincar differential difference equations associated to this linear .
3 ' o= Ogives problem is derived. y
. .
B 8 Lemmooucnon Bl aquation) has boen nvestgated via RH methods by ¢ e
; - (24 S  ber of authors. In particular, we refer to the thesis of Sanda :
¢ In receat years, there bas been considerable interest in L. Chitlare-Briggs who not only considered this one-dimen- :
X, ) are the study of ezactly solvable nontinear evolution equations sional problem, but weat beyond to study multidimensional )
o 1) and (2 by the method of the inverse scattering transform (IST). [ ropiemg guch as the one under scrutiny in this paper. Un- ‘
. igsteQ The results for one-dimensional partial differential equa-  foreungeely, her life was prematurely cut short and her study 3
y tions and their discrete analogs is by now classical and Cov- o4 15 be ended. This article is dedicated to Sanda L. Chit- .
N ered in tests on the subject.’ On the other hand, the work lare-Briggs. . R
o done on IST for 2 4 1 dimensions has ounly been satisfactori- \L THE DIRECT PROBLEM .
bs ly understood within the past few years.” The prototype ) 5
probiem studied is the Kadomtsev—Petviashvili (KP) equa- We investigate the linear problem
'#l» (303 toa: - ¥(n — Lm) + B(a,m)¢(n,m) + A(am)¥(n + 1,m) y
. o, 0wy 4, ), = — 307U, . AN G (e 1), L e A a1

wwmmmm
"*p"'—‘*# o
‘!\nemtwmdaldnouoﬂk pay

RO am
'n\‘n" N

’I-m-m(nu)m(u..u, ds 10 a noolocal
"RH problem). The second case, KPIL, was found to tie out-
side RH theory. ltmqmmdmmlmedthenouonof“a”
(DBAR) problem. We recall that Beals and Coifman,* in

their elegant work on systems of ordinary differential equa-
tions, noted that the RH problem was, in fact, 8 case
of the more general notion of a J problem. The J problem
gives a simple and powerful method by which the underlying
inverse spectral problem for the KPII equation (and other
analogous equations, like Davey-Stewardson 11, modified

LD

(KPI) 1.(KPI). ; g e S mm-:thit.hnbmdmdymmducedmu .9
’c- PN ‘ y _, i .‘_.'_ 3 ‘,‘

wwmrm,ﬁu i ﬂll.md

where (8,m)€Z’, and the “potentials” B, 4 — lvullhnﬁ- :
datlyhnsund(a)npmﬂm ;
' mm.ﬂ.mmmlmm -

6. RSN,
ltuuytonethﬂ,whenl-o.themmmlmnof L

(z.l)njunﬂq (1.2) for oeR; to perform this limit, set

A(nm) mexp(A(V(n + I,m + 1) — V(am))], x=nl,

y=(0/2)mA?, and let A—-0;: one recovers (1.2) with

umV,. -
To handle Eq. (2.1), we introduce a function u, defined

a

‘p(n.mz) = ¢(n,m)[¢*(nm;z)] "', (2.2)

where ¢ is a special solution of the “bare™ problem asso-
ciated to (2.1) (i.c., the one correspondingto 8 =0,4 = 1),

. R KPIL, ..) can be solved. given by 3
- In this paper a discrete analogof (1.2) forthecase o = 1 WO (amz) =2 "((z + 2= ")/2)" (2.3) ¥
'« D.Ray, is investigated. To our knowledge this is the first considera- The f ' I th <f the followi . N
X tion of a discrete multidimensional scattering problem via d ¢ function x wili then satisly the lollowing equation -
' 8 theory. One very important observation is that fully discrete  zu(n — 1,m;z) + B(n,m)u(n,mz) ™
- . spectral problems virtually always require the use of 8 d ap- +27 A m)u(n + 1,m32) -
?‘l proach. The reason for this has to do with the fact that dis- -1y N (2.4) N
": "(1909);! Cretizations are generally unstable (* ‘ill-posed”™) as partial = (2427 Ju(am+ 12). : .
1 36). 4 difference equations in Z? [in analogy with problem (1.2) Requiring that, as a function of z, u satisfies the boundary 3
R R “itho = 1 for both x and y finite). condition ‘
. l Proborcm"m the osmu'pondmg one-dimensional ducreu lim p(rmyz) = 1, (2.5)
y. lem (i.e., the finite-difference analog of the Schrodinger -
kv T e Py, 200, Aot 1087 0022.2400/87/0407T7-0400250, @ 1067 Amercan rasas o pryses  TT7
DGO N 0‘.‘“!‘!‘.‘].. |'. Lad) "’. . .! y o Fo g 05, ? . -'F o -"\'.vl' Lol , Lo J‘\v'\'“ N '\" {\ \’ - '.' r\"\a\"\"\' \"' '.\’
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Yag Sag ve@ vy <
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af) tal ¥ “ag %

"h (2.4) is equivalent t0 the summation equation

+ -

z

A -
X {(B(n' m )u(n',m’x)

+2 U m') — (8’ + Im'2)],
(2.6)

plamz) =1 — G(rn—n'm —m'2)

where the Green's function G is defined as

L § 2;§ 4
22)? Juj=r 2, D=1 3

XG5 G (8,2,32)

G(amz) =
(.7
with

&(:.m)-[i+ﬂ-z,(z+-‘-)]' e}
. 5, z z

J

G(n,m;) -—-(z+z"‘) ‘;i —-‘-x"(-'l+ . ).

From its very definition, it turns out that G enjoys the follow-
ing symmetry propertics:

G(nmz) = — G(am; —2), (2.9)

G(amz) = — (= 1)"""G(n,mz), (2.9%)

Ginm3Z) =& "w;, "G(nmz), (2.9¢)
where + w,, + o,, defined as

w, =2/ . (2.10a)

wy, = (Z+ 1/2)/(z2 + 1/2), (2.10b)
are the simple pole singularities of G, as a function of z, and
2, on the integration contours. As in the correspoanding coan-
tinuum linesr problem (1.2), these singularities are intogra-
bk.ndbypufamgthinwmthmpecttox,.
gt for G the following expression, which clearly shows that
G is not an analytic function of 2 = 7 exp(ip) (in Eq. (2.11),
8| -ap(l"l)]o

x[e(n -m) -0(7+¢)e( — @)D, + 11029 — 9,) + (2,)8(x + 29 — 9,)]

—9(r+¢)9( —p—- %—)[6( - 9,)0(d, —

- 6(4»)6( > v)tenr ~0,0(9, - 29

_e(—-;i+¢)9(r-p)[9(01)9_(20-

- = - Lt -'.r

The * mwd&mchu .
byb‘?"ddmvhuapﬂmhmm

L b

(2.12)
e(z2) -(l/f)'lll(ﬁ ZP)(?-I- l)" (2.13)

Equation (2.12) can be either derived from (2.11) by means
of the standard formula

2-3( 2]
ar d I
or, directly from (2.7), taking into account the distribution
formula

2L
a 2—10

As in the continuum case, the existence of a connection
formula between 1 and its *'d " derivative plays an essential
role in the method. In our case, it has the following expres-
sion:

(2.14a)

)-16(:-—:,). (2.14b)

a
—pu(nm:
Jz'“ 2)
=a(z)u(nmz) + (- 1)"*"B(z)u(n,m, — ).
(2.18)
™ J. Math. Phys., Vol. 28, No. 4, April 1087
‘\ ‘o AINT G »:J~ 4 A 'J- ','f"' r{’ ’f o, d‘.'_'q e

2p —7) +O(xr —9,)0(J, — 29 — 27)]
) +6(—9,)8(d 29 + 7))

=0, +6(9, +ne(z¢-zf-o.)1]. Q.11

&

The “spectral deta” a(z), A(z) mrdnedwdnm-
dﬁwthebumh

‘e

P>

a(s) mce(sX) o "oy "

X [(B(nm)p(nm2)
+ 27U (nm) ~ Lju(n + Lm2)],

+ o
B(2) = —c(zX)

z

AR - - -
X [B(n,m)u(nm2)
+ 57U (nm) — lu(n + 1m;D)).

(2.16a)

(_l)-+- —.n,: -

(2.16b)

To prove formulas (2.15), (2.16) it is sufficient to perform
the “3 " detivative of the summation equation (2.6), taking
into sccount Eq. (2.12) and the symmetry properties (2.9),
and then to notice that the lhs and the rhs of (2.15) satisfy
the same nonhomogeneous summation equation.

{il. THE INVERSE PROBLEM

The main tool for solving the inverse problem, namely
for reconstructing the potentials A(n,m) and B(n,m) from
the spectral data a(z) and 5(z), is provided by the general-
ized Cauchy formuls
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uuuicr&w data, they read
w0y m = [ J;AJZ [a(:)p(n,m,bf.i’f,‘«;.

e [ and e f 1

cz‘;

mnu.,uiubkmhm:pmm
J

dSNdE = 2id§adl, (8 = $a + 15, = p exp(iy)).

. Identifying f with u, choosing D as the whole complex z
plane, and taking into account Eqs. (2.5) and (2.15), for-
mula (3.1) yields the following linear integral equation for
I’8

. [a()utrnmd) + (= D** "B unm;, = )]
ulnmyz) I+2m_fj;d§/\dz - L

Once, through the solution of (3.2), x4 is known in the
vhokcnnpu:ﬂumoumanlymthepun-
tials through the formulas

B(nm) = ug(nm + 1) —(n — Lm),
A(n.m) -] +p‘”(n.m 't}) —p"’(u - l.m)
b ui ), (3 )

(1) IUREY
Pam) (l‘(l - L-l

( 3.3.)

(-.-4-1)

+(~- l)'“‘ﬁ(;)u(m, - (3 5‘)

mwmm' g}
A,(rm) w Bn + 1m)G ™" &'n =B ’) ,
B,(nm) = GO (nm+1) ~ G™(n = Im), v
A, (nm) = — ;A(uu)(a‘"(u
B,(n,m) =0, "’-'.

A, (am) = —lA(n,m)-[Gml(n —1,m) ~G®(n+1,m)
+1A(am +2)G%(n — 1,m) — L A(Rn 4+ 2m + 2)G¥(n + 1)),

Bt("o’") = 0.

Equation (4.2a) is clearly a two-dimensional version of the
Toda lattice,” which is immediately recovered, by assuming
that 4 and B do not depend on m.

Equation (4.2b) is in turn a two-dimensional version of
tbe infinite Volterra system,® and finally Eq. (4.2¢) is a dif-
ferential-difference analog of the KPII equation.
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* -y .
).',"‘/';~
LI'LIS Y] .

AASALSOOOBCOUD R X )

:‘-;v, ‘ "("m) - ~.3"’"(ﬂ,ﬂl) le(’l.ﬂl)

Im) ~ G“’(n + l.m)l. v

AN AN B B A R A A S

(3.2)

:
Wom) = — oL f f dEAGE (¢ [a(&In(nmT)

( - n'*'a(:)n(u.m. —bl}
'_ ‘1" % « .(3 Sb)

_..»

X

mwnus:vownouormw

--._'r- R KR -",‘ .‘!.

,l& '(M) z“'_'_l'm_‘.u], {(4.1b)

(4.2c)

The evolution of the spectral data is derived from for-
mulas (4.1) by letting #,m —  and comparing the “3 " de-
rivative of EqQs. (4.1) with the time derivative of (2.15). To
perform this comparison one has to take into account that, s
it can be seen from (2.6), for large n and m u goes to a
constant value as z approaches 0.
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The corresponding re:ults are the fo.'uwing.
(i) For Eq. (2a)

a,(z) = (27" -7 ')a(2);
B,(2) = — (27" +17")8(2).
{ii) For Eq. (2b)
a (z)a(z)=B8,(2)/B(2) =27 -3 %
(w) For Eq. (2¢)
a,(s)/a(z) =B,(2)/8(z)
= [E+T"H(1-3?)
— @+ (1 —27Y).

A more systematic investigation of the class of evolution
equation associated with the linear problem (2.1) is con-
tained in Ref. 9, where the bi-Hamiltonian structure of this
class is explicitly derived.
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