
4-A192 641 INFINITE DIMENSIONL D"MAl ICAL SYSTEMS AMD TNEIR FINITE 1/1
DIMENSIONAL ANALOGUES(U) AMERICAN MATHEMATI1CAL SOCIETY
NON YORK 0 MAXWELL 1967 AFOSR-TR-98-01SS AFOSR-S7-8279

UNCLftSIFIED F/0 12/1 ML

Ehhmhhhhhhhhhu
MENOMONEE



13.2
mA 6

L =6
11111125 1I~~I1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARS1963-A

quo Iw



* ~q AQIL~flU11FILE CObi
;11Lqmm*AG

REPORT DOCUMENTATION PAGEAD-A 192 041 1b. RSRCIEMRIG

6 SECURITY CLAhhIPiCATION AUTHORITY 3. OISTRIBUTIOIAVAILABILITV OF REPORT

UCASF IED Anpro'ied for public reilase,
ft. DgCLASI PICATIOIDOONG RAODING SCHEDULE ds~ .
&PERFORMING ORGANIZATION REPORT NUMDER(S) 5. MONITORING ORGANIZATION REPORT NUMAERIS)

6.NAME OP PERFORMING ORGANIZATION b. OFFIC SYMBOL 7& AOFOITRING ORGANZATIO

(I, eppicabde)

American MAthematical S Iciety AFOSR
G&. ADDRES (City. Seats mmd ZIP Code) 7b. ADDRESS (City. Stabe and ZIP Codk)

294 Caldwell Hall
Ithaca, New York 14853-2602 BLDG #410

Boiling AFB, DC 20332-6448
as. NAME OP PUNOINGVPONSORING 91b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

004AU.ZATION (if appUcabi.)

AFOSR INM AFOSR- 8 7-0279
0&. AONI (City. Stt and ZIP Cod.) 10. SOURCE OP FUNDING NOS.

PROGRAM PROjECT TASK WORK UNI~T
BLDG #410 E LEME NY NO. NO. NO. N

Bolling APB, DC 20332-6448 61192F 2304 A4
11. ITL 11111111111111 Smnrrty, C81111iIc~aoaI
INFINITE DIMENSIONAL SYNAMICAL SYSTEMS AND THEIR FINITE DI ENSIONAL NALuG :E

12. PORSONAL AUTHOR(S)
Professor Maxwell
13& TYPE OP REPORT 13b. TIME COvEREO 1~4. DATE OF REPORT (Yr.. Mo., D") I.PAGE COUNT

FINAL 1pRoml5 Jul 83 14 Sej 87 1987 T 27
14. SUPPLEMENTARY NOTATION

DTIC
1?. COSATI CODES 1S SU~jECT TERMS tContsnue o Etoc~f nugmber)

FIEL GROUP Sum. GR.

MAR 01111988
19. ABSTRACT (Continue, On revere. if nwee.,fY and den tif 61 biotc number, 74L~ AA'fA)

A three days meeting was held at University of Colorado. 20-22 May*1987. The

speakers gave reports on their research to-date concerning nonlinear.40C.?t and

possible systems of DE") which faithfully capture their essential behavior,

particularly in terms of chaotic behavior. Four of the principal speakers

(Ercolani. McLauglin, Sell and Marsden) have AFOSR support.

2a. OISTRIGUTION/AVAILAGILITY OF ASSTRA,. 21 ABSTRACT SEICURITY CLASSIFICATION

UNCLASEIPIEOI1UNLIMITEO IVCSAMS AS Fill *, -tNCLASSIFFIED

n&. NAME OP RESPONSIBLE INDIVIDUAL 22b TELEPH.ONE NJMSER 22c. OFFICE SYMBOL

ARJE NACHI'MIcld neNoe

0FOM 1473,83 APR EO'r %. A% '3S OBSOLETE. %V-W nIT
SECURITY CLASSIFICATION Cc



INFINITE DIMENSIONAL DYNAMICAL SYSTEMS AND THEIR
FINITE DIMENSIONAL ANALOGUES

Wednesday, May 20 - Friday, May 22, 1987
Turk Seminar Room, 3rd floor Morrison

Wednesday, May 20 A0RT -88 019:00 a.m. Registration and coffee F~ ~
9:30 N. Ercolani

"Sine-Gordon Phase Space - Geomietry Instability"
10:30 COFFEE
11.00 D.W. McLaughlin

"Coherence and Chaos in a Perturbed Sine-Gordon Si'stenf'
12:00 LUNCH

L.30 G. Forest
"Correlations Beiween the Perturbed Sine-Gordon Sy~stemi"

2:30 COFFEE
3:00 J. Poschel

"On Infinite Dimensional KAYi Theorems"
4:00 Discussion period
5:00-7:00 Cocktails at A.D. Wihite House

(No Fornmal Dinner Plans)

Thursday, May 2)
9:00 a.m. G. Sell

"The Principle of Spatial Averaging and Inertial Manifolds"
1O:00 COFFEE
10:30 C. Foias

"Integral Manifolds: Inertial M1anifolds"
11:30 Discussions
12:00 LUNCH

1:30 B. Nicolaenko
"Conipufalional As ~pects of Ineriial Manifolds"

2:30 COFFEE
3:00 S. Chow

"I'nertial .IJanifolds"
4:00-4:30 A!. Brin

"Remarks on the E' godic Theory of Foliations and Attractors.
4:00-6:00 Discussionzs/Addjtwc Short Presentationis

(No Formal Di,r Phw is)

Friday, May 22
8:30 S.S. Antman

'Asympototi of . .';'war Parabolic Equations of I'iscoelasticiiy"
9:45 J.E. Mfarsdc't

"Exponemi.'. '..:i: of Separatrices"
10:45 COFFEE

11:00 A. Mfielke
'Haniltoi:,,: .. ,'J Invariant Manifolds for Elliptic Equations in
Cylindrical

12:00 LUNCH
1:00 N. zabisk I

"Mfodel Cvim,;', :;e 2D Eiler and Xavier Stokes Equations"
2:30 End of Formi:'
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Sine-Gordon Phase Space - Geometry and Instabilities

by

Nick Ercolani

Abstract:
The Sine-Gordon Hamiltonian system

L [ + + - cos 

CO 2
on the phase space of functions u E x C , periodic in x of

period L, is completely integrable. The complete involutive set of

integrals is encoded in the coefficents of an entire function of X E C

A (u; X)

which depends on u. (A is the Floquet discriminant of a X-eigenvalue

problem whose coefficients involve u.)

The modulational instabilities of Sine-Gordon are associated to

the level sets of

A: CL X CL (entire functions)

which lie over critical values of A (={A(X) JA2 has complex double

roots).

Such a level set is stratified by a finite number of invariant

manifolds. We show that the topology of these manifolds, how they ar-

connected to one another, and how this topology governs the Lyapunov

exponents of associated i-".ib-ilities can all be determined from the

function A(X).
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Spatial Coherence and Temporal Chaos in Near-Integrable PDE's

by

David W. McLaughlin

Abstract:

The damped and driven pendula chain,

utt - uxx + sin u = E [-au ut + F sin ct],

is studied as a prototype model of coherence and chaos in a near

integrable PDE. Both numerical and theoretical studies are summarized.

The two main points are that the nearby integrable system provides (i)

homoclinic orbits which act as sources of sensitivity (chaos) and (ii)

candidates for approximate coordinates of the attractor. In addition,

techniques founded on the nearby integrable system provide direct

numerical checks on the validity and accuracy of these two points.

These numerical and theoretical techniques are used to study in detail

a route to chaos which involves the following characteristics:

(i) temporal - one frequency -+ two frequencies -+ chaos;

(ii) spatial - zero - one -+ two localized excitations;

(iii)symmetry changes and pattern competition;

(iv) low dimensional, chaotic attractors;

(v) temporal intermittancy;

(vi) homoclinic crossings;

(vii)interactions and transitions between localized and extended

states

2 1



1) N. Ercolani, G. Forest, D. McLaughlin (i) Lect. Appl. Math. 23,

149-165 (1986); (ii) Physica 18D, 472-474 (1986); (iii) "Homoclinic

Orbits for the Periodic Sine-Gordon Equation", submitted, Physica D;

(iv) "Geometry of the Modulational Instability" Parts I and II

(Preprints, University of Arizona).

2) A. Bishop, M. G. Eorest, D.W. McLaughlin, E. Overman, Physica

D. 23, 293-328 (1986).

3) (i) A. Bishop, D.W. McLaughlin, E. Overman, to appear, Proc. of

Conf. on Solitons, Tech. Univ. Denmark, Ed. by P. Christensen (1987);

(ii) Physica 19D, 1-41 (1986).

4) A. Bishop, et.al. Physica 7D, 759-779 (1983).

5) N. Ercolani and M. G. Forest, Comm. Math. Phys. 29, 1-45

(1985).

6) H. McKean, Comm. Pure. Appl. Math 24, (1981).
q.

7) Physica 7D - The entire volume; (ii) Physica 23D - The entire

volume.

3



Correlations Between the Perturbed Sine-Gordon Equation

and Finite Modal Equations

by

Greg Forest

Abstract:

In this lecture we describe: i) numerical results on the

bifurcations of the damped, periodically forced Sine-Gordon equation

with periodic boundary conditions, in a finely tuned parameter range;

ii) an interpretation of the spatial and temperal bifurcation

structures of this perturbed integrable system with regard to the exact

structure of the Sine-Gordon phase space; iii) a model dynamical

systems problem, which is itself a perturbed integrable Hamiltonian

system, derived from the perturbed Sine-Gordon equation by a finite

mode truncation in the nonlinear Schrodinger limit; and iv) the

bifurcations to chaos in the four dimensional model problem.

In particular, we focus on a likely source of chaos in both the

o.d.e. and p.d.e. systems: the existence of homoclinic orbits in the

unperturbed integrable phase space and the continuation of these

homoclinic structures in the perturhed problem. Finally we numerically

correlate the homoclinic crossings in the chaotic dynamics of the full

and reduced problems.
These experimental results provide physical intuition about the

coexistence of simple ccherent spatial structures and temporal chacs,

and set the stage for carrying out the rigorous mathematical analysis

to support the numerical work.
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My collaborators are Nick Ercolani and Dave McLaughlin on the

theoretical aspects, Alan Bishop on the formulation of the experiments

and Ed Overman, Yannis Kevrekidis, Mike Jolly, Mac Hyman, and Randy

Flesch on the numerical studies.

References:

1. "A quasi-periodic route to chaos in a near-integrable p.d.e.," A.

Bishop, G.Forest, D. McLaughlin, and E. Overman, Physica 23D

(1986), 293-328, and references therein.

2. "Correlations between the perturbed Sine-Gordon equations and

finite model equations," A. Bishop, R. Flesch, G. Forest, D.

McLaughlin, and E. Overman, preprint, May, 1987.

3. "Geometry of the modulational instability: local results";

"Geometry of the modulational instability: gobal results";

"Homoclinic orbits in the periodic Sine-Gordon equation", by N.

Ercolani, G. Forest, and D. McLaughlin, preprints, 1987.
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An Infinite Dimensional KAM - Theorem

by

it
J. Poschel

Abstract:

We consider a d-dimensional 'attice A = Zd of harmonic

oscillators, whose frequencies wi, i E A, are considered as parameters

which may be adjusted if necessary. The unperturbed situation is

described by the Hamiltorian

N= (w,y) = i i ii

A A
in the phase space A x IR . We consider a perturbation H = N + &P,

where P has a spatial structure (analogous to a Fourier series

expansion): P = I PA'
AEA

where d is a system of finite subsets of A, and PA "lives on A". The

size of the perturbation is expressed in terms of a measure p on A, fcr

example:

(*) j(A) = J il

iCA

We then require (roughly speaking)

-ea(A)

with some suitable a > 0.

We are able to show that then, for sufficiently small e, the

perturbed system possesses a Cantor set of infinite dimensional,

invariant smooth tori n:th "inear flow on them. The frequencies W c'f

these tori satisfy the l- ' division condition

(**) 1(k , w)I -Y 6(I.:, * ..v' , 0 A k E ZA,



where

<>= wi(supp k)

6(t) e ~~/o~ t to a > 0.

We remark that for example with (*,condition (**) holds on a set of

A
large (Gaussian) measure in w-space IR.

The above generalises and improves a result by Frohlich, Spencer

and Wayne (.Stat. Phys. 1986,42).
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Principle of Spatial Averaging and Inertial Manifolds

by

John Mallet-Paret and George R. Sell

Abstract:

We study the behavior of inertial manifolds for the

reaction-diffusion equation

(1) ut = A U + f(x,u)

on a region 0 C Rn where n 2. our objective is to show that this

equation can have an inertial manifold without the spectral gap

property

lim sup Xn+ 1  X nn co

For example if 9 = [0,2w 33 then
X - X n  3.

for all n.

'!he key idea in the lecture is to introduce the Principle of

Spatial Averaging and to show this principle can be used to show the

existence of inertial manifolds. This theory does apply in the case

3 3
where (1) is dissipative, f C C , and 0 = (0,2r) , where the boundary

condition are of Dirichlet, Neumann or periodic, types.

Rf n: IMA Preprint 331

8



Integral Manifolds: Inertial Manifolds

by

Ciprian Foias

Abstract:

Many partial differential equations describing dissipative

phenomena have, when supplemented with appropriate boundary conditions,

the following form

(1) ut + Au + R(u) = 0

where A is a positive operator on a Hilbert space I with a compact

inverse A-1 and R(u) is a differentiable operator from the domain 9(A)

of A into 1, satisfying
(2) IR'(u)vl cjAujjA~v v uvT()

where c > 0, 0 P < 1/2 are constants and 1-1 denotes the norm in 1.

An inertial manifold of (1) is a finite dimensional (Lipschitz)

manifold A in T(A), invariant to (1) (i.e. the solutions of (1) which

start in A remain in A) and exponentially attracting all bounded sets

in 1 [1). A natural way to construct such a manifold is to choose a

large sphere F in the linear space generated by the eigenvectors of A

corresponding to the first m distinct eigenvalues A1 < A2 <.-.< Am of

A, and to construct the integral manifold I of (1) determined by F; of

course r must not be characteristic, i.e. Au + R(u) should not be

tangent to F at any u E F. Finally, one shows that the closure A of

in T(A) is an inertial manifold. This method was developed in [2] for

several remarkable partial differential equations. In [2] a central

9



role is played by the spectral blocking property of -. Namely, for u E

I let A(u) denote the maximum of (Ag,g) over all vectors g of length <

1 and tangent to I at u. Assume that the spectral gap between Am and

the next eigenvalue Am+1 of A is large enough; more precisely that
A m+l -Am Am +Am' u ~

(3) 2 > c( 2 sup lAul.
UE2

Then if for all u E F we have

Am+l +AmA (u) 2

this last inequality holds for all u E 2. A sketch of the proof of

this property was given in the lecture. Some remarks and conjectures

in connection with the above topics were also presented; particularly a

candidate for an inertial manifold of the 2D Navier-Stokes equations

was introduced.

[1] C. Foias, G.R. Sell, R. Temam: Inertial manifolds for nonlinear

evolutionary equations, IMA preprint series #234 (U. of Minnesota,

March 1986).

[2] P. Constantin, C. Foias, B. Nicolaenko, R. Temam: Nouveaux
I S $

resultats sur les varietes inertielles pour les equations

differentielles dissipatives, C.R. Acad. Sci. Paris, 302, Serie I,

1986, 375-378; Integral ranifolds and inertial manifolds for

dissipative partial differential equations (in preparation).

10
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Inertial Manifolds For Dissipative Perturbed Hamiltonnian Systems

by

Basil Nicolaenko
p ?bstract:

We present an outline of a general theory of Inertial Manifolds

for damped Hyperbolic systems and dissipatively perturbed Hamiltonian

Systems. A prior lack of compactness of the relevant semi-groups

raises the usual problems.

We introduce appropriately modified Hamiltonians to penorm the

problem. The "strong squeezing" and "cone invariance" properties are

still essential in constructing Inertial Manifolds. In contrast with

previous work on parabolic dissipative systems, these "cone properties"

now only make sense with respect to the metric (equivalant norm)

induced by the Hamiltonian.

We give an explicit construction for a system of perturbed

conservation laws modeling chaotic vapor-liquid phase changes in a

compressible flow with non-convex Van-der-Waals equations of state.

Computer movies show complex temporal interactions between large scale

spatial structures; this suggests a reduced set of local coordinates cn

the corresponding inertial ranifolds.

BibliograDhy:

1. "Integral and Inert:Ei Mnifolds", P. Constantin, C. Foias, B.

Nicolaenko, R. Te-v-, _nitted to Springer Verlag Lecture Notes

in Mathematics.
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2. "Inertial Manifolds for Dissipative Perturbed Hamiltonian

Systems", B. Nicolaenkco, (future M.S.I. Report); also submitted to

"1A.M.S. Contemporary Mathematics" Series.
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Differentiable Foliation in Infinite Dimensional Systems

by

Shui-Nee Chow

Abstract:

We consider abstract evolution equations in a Banch space Z.

x = A x + F(x) , x C Z

where A generates a C° semigroup of linear operators on Z and F is a

nonlinear function. Under some general conditions, we show that if F

is Ck, then there exist a Ca , o < a < 1, foliation near x = 0.

kFurthermore, each fiber is C . The relation between foliations and

inertial manifolds is discussed. Generalization to compact invariant

sets is also considered.

References:

[1] S.N. Chow, K. Lu, and Xiao Biao Lin, Differentiable Foliations in

Infinite Dimensional Systems. In preparation.
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Remarks on the Ergodic Theory of Foliations and Attractors

by

M. Brin

Abstract:

The main purpose of this talk is to present some 
general Ze

principles of studying finite dimensional dynamical systems with

attractors by means of ergodic theory and to indicate a possibility of

generalzing these methods for infinite dimensional evolution equations

with compact attractors. If a dynamical system has an attractor, one

usually hopes that the asymptotic behavior of the system when t -+ is

very well modeled by the induced asymptotic behavior on the attractor.

To make this work, one considers the set of "good" points on the

attractor, i.e, those points whose orbits are correctly distributed on

the attractor (in the sense of the Birkhoff ergodic theorem) and for

which the linearized equation has correct asymptotic properties (in the

sense of the Oseledetz multiplicative ergodic theorem). The next step .

is to construct the stable manifolds of "good" points and to conclude

that any point in the stable manifold of a "good" point has the same

asymptotic characteristics (for t + ) as the "good" point itself.

The final step is to show that almost every (w.r.t. the Lebesgue

measure) point from the basin of attraction has correct asymptotic

properties. To do that one shows that the stable foliation satisfies a

version of the Fubini thecren, i.e. is absolutely continuous.

14



The first step in generalizing this approach for the infinte

dimensional case was made by D. Ruelle who constructed stable manifolds

for the "good" points on a compact attractor (R. Mane proved a similar

theorem for Banach spaces). Z. Nitecki and myself showed that in this

case the stable foliation is absolutely continuous, which leaves some

hope that the above finite dimensional approach may be generalized for

some infinite dimensional evolution equations. The fact that a Hilbert

space does not carry any canonical or natural measure similar to the

Lebesgue measure, adds another meaning of the absolute continuity of

the stable foliation since it allows one to measure the size of a set

consisting of stable leaves. Such a set is big if its cross sections

by finite dimensional planes transverse to the foliation have large

measure. By the absolute continuity, this property does not depend on

the particular cross section.

15
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Asymptotics of Quasilinear Parabolic Equations of Viscoelasticity

by

Stuart S. Antman

Abstract:

The motion of a mass point on a spring is perhaps the most

fundamental problem in the theory of oscillations. If the force

exerted by the spring on the mass depends nonlinearly on the position

and velocity of the mass point, then the analysis of the governing

unforced differential equations is routine. A spring having these

properties is effectively assumed to have zero mass. If the spring

itself has mass, then its motion is coupled with that of the end mass.

In the case under study the spring is assumed to be nonlinearly

viscoelastic, so that its motion is governed by a third-order

quasilinear "parabolic-hyperbolic" system. The coupled system is

studied in the limit that the mass density of the spring goes to zero.

The leading term of the resulting asymptotic expansion of the soluticn

satisfies the system in which the spring density is zero. It is shco.wn<

that the motion of the end mass typically does not satisfy an ordinar;

differential equation of the type described above. The formal

asymptotic expansion of the solution of the full initial-boundary vallue

problem accounting for an intial layer, can be fully justified. The

justificiation relies cn a n- ber of delicate estimates for quasilin:.

parabolic equations.

16
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References

1) S.S. Antman, The Paradoxical Asymptotic Status of Massless

springs, University of Maryland Technical Report, 1987.

2) S.S. Antman, Asymptotic Analysis of Quasilinear Parabolic
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Exponentially Small Splitting of Separatrices

by

J. Marsden

Abstract:

Both upper and lower estimates are established for the separatrix

splitting of rapidly forced systems with a homoclinic orbit. The

general theory is applied to the equation

+ sin P = 6 sin

for illustration; in this example, for any n, 0 < n < r/2, and 0 < e <

1, 0 6 60, for 60 sufficiently small, the separatrices are proved

to split by an amount is no more than

6C(7, 60) exp 2 - 3
where C(n, 60) is a constant depending on n and 60. If we replace 5 by *

FP6, p 8, then we have the sharper estimate

c2 eP6e-/ 2 e splitting distance < CIP~e-T/2e

for constants C1 and C2 . In particular, in this latter case, the

Melnikov criterion correctly predicts exponentially small splitting.

The techniques developed here can be applied to estimate the thickness

of stochastic layers in the unfoldings of degenerate singularities and

in KAM theory.



Hamiltonian Structures and Invariant Manifolds for Elliptic

Equations in Cylindrical Domains K
by

Alexander Mielke

Abstract:

We consider second order elliptic systems which are derived by

minimizing an energy functional I(u) = !- W(u,vu)dy. For cylindrical :e

domains 0 = (0,T) x 2 with variables (t,x), the corresponding

Euler-Lagrange equations can be written in Hamiltonian form, viz.
(*) = aH/av, = -al/au

where u = Ou/at, v = aW/au, and H(u,v) = f{u-u - W(u,Vx u,U))dx

(cf. [1]).

On the other hand it is well-known that for elliptic equations cn

infinite cylindrical domains (i.e. Q = x 2) with 2 bounded, all s:-3-'

solutions lie on a finite dimensional center manifold CM (cf.[2,3]).

Now it can be shown that the Hamiltonian structure of (*) carries cvc-r

to a Hamiltonian structure for the ordinary differential equation

describing the flow on CM. However this structure is non-canonical e

to the curvature of the CM.

An Application to Saint-Venant's Problem is given [4].
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Model Complementarity for the Two-Dimensional Euler

and Navier-Stokes Equations

by

Norman J. Zabusky

Abstract:

Continuum nonlinear dynamical systems in more than one space

dimension are almost all mathematically intractable. For example, tbe

generic equations of fluid dynamics, the incompressible Euler (i=O) and

Navier-Stokes equations in two dimensions,

d t i E i W+ it W = vAW, A' = -W,dt t - y x xy

are examples with no time-dependent analytical solutions if the initial

condition is two or more localized vorticity distributions, w(x,y,O)

A major goal of the study of nonlinear dynamical systems is an

analytical understanding that will allow accurate predictions of sta-

variables or functions of state variables over moderate-to-long tires.

To accomplish this objective, it is necessary to use more than one

model to represent complimentary aspects of a dynamical process. ... t

results of simulations with these models must be visualized and

quantitative feature extraction must be performed using numerical

diagnostic algorithms. Th:s permits the judicious investigator to

"separate" complex inter -c.:rs among coherent structures into si:-cir

and hopefully analytica" , ri,:table parts. This synergetic apprch-.

was used in the discover:. -f soliton. 1 ,2
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The essential problems in inviscid, incompressible two-dimensional

hydrodynamics were not posed until computer simulations showed:

Qxtsymmetrizatton of noncircular distributions of vorticity; merger of

like-signed vorticity; binding of opposite-signed vorticity; and

entratnment in a host vortex of small regions of irrotational fluid of

opposite-signed vorticity. In all these processes one also observes

gradient intensification Qf vorticity due to relative transport. Three

key questions in evolving inviscid or nearly-inviscid two dimensional

flows are:

(1) What are the mechanisms by which smooth vorticity

distributions aggregate or "condense" into near-circular

regions of vorticity (that is: the mechanisms of

anixymmetrization and gradient intensification)?

(2) What are the mechanisms by which two like-signed regions of

vorticity merge or the mechanisms by which two

opposite-signed regions of vorticity bind or entrain?

(3) How do the filaments (small scales) which arise in

axisymmetrization, merger and binding affect the long tire

evolution of the large-scale structures?

Axisymmetrization, merger and binding may be considered fundamental

physical space interactions in two-dimensional turbulent flow. 3 4 In

spectral jargon, merger corresponds to an "upward" energy cascade and

filamentation accounts for the "downward" enstrophy cascade. The

filamentation of vorticit, during axisymmetrization, merger and binding

is best understod by ccnsidering the local corotating or cotranslatini

streamfunction.
4
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In a recent review, Melander, Overman and Zabusky
5 discussed

computational and mathematical vortex dynamics, emphasizing

two-dimensional aspects. Here we focus briefly on complementary models

and numerical diagnostics in this field. Beginning in the early 1970's

finite-difference, spectral, pseudospectral and vortex-in-cell models

and algorithms became very popular. The first three must include a

dissipative mechanism to resolve small-scale structures. However, if

gradient-scale lengths form which are smaller than five computational

zones then significant truncation and aliasing errors arise. Thus,

none of these schemes are capable of a general study of the Euler

equations or even of "very high" Reynolds number flows at "moderate"

times, despite the increasing availability of supercomputer resources.

However, aspects of these flows can be better studied with the contour

dynamical algorithms6 '7 '8 '9'1 0 and the moment model. 11 Contour

dynamics, a generalization of the "waterbag" model1 2 is a

free-boundary-integral evolutionary method that is ideally suited for

incompressible, inviscid or nearly-inviscid two-dimensional flows. The

contours are the boundaries of constant density that are the sources of

the flow; e.g., of constant vorticity regions in the homogeneous Euler

equations and of constant mass density regions in the stratified Euler

equations. Generally, the velocities of the contours are obtained frcm

integrals (homogeneous Euler) or integral equations (stratified Euler,

etc.) on the contours. Thus, in CD the evolution of plane curves

describes the nonlocal and nonlinear dynamics of two-dimensional fluid

and plasma systems. It is a natural technique for flows in unbounded

media because the Green's function has a simple form. After "beyond"

early times, (13, 14) one nust utilize topological-change or "surgery"
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algorithms which interconnect and clip contours. In effect, these

introduce a smallest scale into the problem. Dritschel has automated

this process with a robust algorithm which he calls "contour

surgery."'1 4 Although it violates the Euler equation conservation laws,

it seems to give very good results "up to" intermediate times since the

errors are confined to the smalls + scales.

The moment model is derived by assuming that the vortex regions

which create the flow are well-separated. A moment representation for

each region is introduced and truncated after second moments

(elliptical representation) and thus one obtains two additional degrees

of freedom for each centroid. Although an asymptotic description, the

model works well for closely interacting vorticies and resolves the

initial stages of vortex merger. In particular, the model becomes

integrable when applied to the symmetric merger of two identical vortex

regions, and yields explicit necessary-and-sufficient conditions for

merger. Although the moment model is derived under the assumpticn cf

uniform vorticity, the conditions for merger are in agreement with our

high-resolution spectral simulations containing initially smooth

circular vortex distributions. This indicates a certain degree of

universality of the merger conditions.

Recently we examined the problem of asymmetric merger, a more

realistic problem, and thereby one richer in parameters. One may ask:

which vortex "core" will be the utctor in a merger?1 6'1 7 It would be

terribly expensive to answer the question of the vortex victor with a

pseudospectral code and even with a contour dynamical code. However,

the moment model gives excelIent insights into the victory process and

yields information for an 3:i'ytical assault on the unrestricted merger

problem. 18
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