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ABSTRACT

Kconsider univariate nonparametric regression. Two standard nonpara-

metric regression function estimates are kernel estimates and nearest neighbor

estimates. Mac9-?(1981 noted that both methods can be defined with respect

to a kernel or weighting function, and that for a given kernel and a suitable

choice of bandwidth, the optimal mean squared error is the same asymptotically

for kernel and nearest neighbor estimates. Yan t) defined a new type of

nearest neighbor regression estimate using the empirical distribution function

of the predictors to define the window over which to average. This has the effect

of forcing the number of neighbors to be the same both above and below the

value of the predictor of interest; we call these symmetrized nearest neighbor

estimates. The estimate is a kernel regression estimate with predictors given

by the empirical disribution function , the true predictors. We show that for

estimating the regression function at a point, the optimum mean squared error

of this estimate differs from that of the optimum mean squared error for kernel

and ordinary nearest neighbor estimates. No estimate dominates the others.

They are asymptotically equivalent with respect to mean squared error if one

is estimating the regression function at a mode of the predictor.

Key Words and Phrases: Nonparametric regression, kernel regression, near-

est neighbor regression, bias, mean squared error.
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Section 1: Introduction

We consider nonparametric regression with a random univariate predictor.
Let (X, Y) be a bivariate random variable with joint distribution H, and denote
the regression function of Y on X by m(z) = E(Y I X = z). If it exists, let
fin denote the marginal density of X. A sample of size n is taken, (yi, z) for
i -1,..., n. Two common estimates of the regression function are the Nadaraya-
Watson kernel estimate and the nearest neighbor estimate, see Nadaraya (1964),
Watson (1964) and Stute (1984) for the former, and Mack (1981) for the latter.
Fix ze and suppose we wish to estimate m(zo). The kernel and nearest neighbor
estimates are defined as follows. Let K be a nonnegative even density function.

Kernel Estimates Let hi., be a bandwidth depending on n. Then the
kernel estimate is

K, z - Zo

(1) ?hk.(Xo) = EI = hkeo

E- K(~ Zi-X

Nearest Neighbor Estimates Let k = k(n) be a sequence of positive in-
tegers, and let B, be the Euclidean distance between z0 and its kth nearest
neighbor. Then the nearest neighbor estimate is

Fn Xi- £0

(2) (nk Nx ) =
E ,K(M R.°

Under differentiability conditions on the marginal density f., Mack has shown
that the asyptotically optimal versions of the kernel and nearest neighbor esti-

mates have the same behavior. Let m (j' and f.) denote the jth derivative of m
and f. respectively. If cK = f K2 (£)d£ and dK = f £2 K(x)dx, remembering
that K is symmetric, the kernel estimate has bias

(3) bi¢k., h2.dKm(2 )(zo)f.(xO) +2m(l(£°)f l((£)2xO) + o(h 2)

and variance

(4) vart,., =CxVar(Y X = zo)/(nh,.,f. (£0)) + o((nh1,)-).
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There is obviously a bias versus variance tradeoff here, so that if one wants
to achieve the minimum mean squared error, the optimal bandwidth is h.,
n- /a and the optimal mean squared error is of order 0(n-4/6). The formulae
for bias and variance of the kth nearest neighbor estimate are the same as in
(3) and (4) if one substitutes 2f. (z0 )nh. for k.

Let F denote the distribution function of X, and let F. denote the empirical
distribution of the sample from X. Let h... be a bandwidth tending to zero.
The estimate proposed by Yang (1981) and studied by Stute (1984) is

(5) M.. 3(xo) = (nh...,)1 - hiK .(i .(o

The nearest neighbor estimate defines neighbors in terms of the Euclidean norm,
which in this case is just absolute difference. The estimate (5) is also a nearest
neighbor estimate, but now neighbors are defined in terms of distance based
on empirical distribution function. This makes for computational efficiency if
the uniform kernel is used. A direct application of (5) would result in 0(n 2h)
operations, but using updating as the window moves over the span of the x's
results in 0(n) operations. Other smooth kernels can be computed efficiently
by iterated smoothing, i.e., higher order convolution of the uniform kernel. An-
other possible device is the Fast Fourier transform (Hirdle, 1987). Since the
difference between (2) and (5) is that (5) picks its neighbors symmetrically,
we call it a symmetrized nearest neighbor estimate. Note that rnkNjv always
averages over a symmetric neighborhood in the z-space, but may have an asym-
metric distribution of z points in this neighborhood. By contrast, rh°,,, always
averages over the same amount of points left and right of z 0 , but may in ef-
fect average over an asymmetric neighborhood in the z-space. The estimate
r&,, has an intriguing relationship with the k-NN estimator used by Friedman
(1986). The variable span smoother proposed by Friedman uses the same type
of neighborhood as does vh, 33 and is used as an elementary building block for
ACE, see Breiman and Friedman (1985). The estimate (5) also looks appeal-
ingly like a kernel regression estimate of Y against not X but rather F. (X).
Define

(6) 1f0*M"(xo) = h-' J, [m(x)K( F(Z)_- F(zo) )dx.
(6) ff.,,~( o n = fz

Then Stute shows that as as n -- oo, h... --+ 0 and nh,3 ,, --- co,

(7) (nh...) (th. 33 (zC) -fii. (xo)) =:,Normal(0,CKVar(Y X = zo)).

This has the form (4) as long as h... = hk., f. (x0 ). With this choke of h.,.,
Stute's estimate has the same limit properties as a kernel or ordinary nearest
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neighbor estimate as long as its bias term satisfies (3). Stute shows that the
bias is of order O(h' .), although he does not give an asymptotic formulae. It
is in fact easy to show that the bias satisfies to order o(h,, )

(8) bias,19 = h~onndK M(2) (ZOVfz(ZO) -M") (ZO)l(ZO)

2 f.3(zo )
Comparison of (3) and (8) shows that even when the variances of all three
estimates are the same (the case h... = hi..f, (zo)), the bias properties differ
unless

Otherwise, the optimal choice of bandwidth for the kernel and ordinary nearest
neighbor estimates will lead to a different mean squared error than what obtains
for the symmetrized nearest neighbor estimate.

The preceeding discussion presumed that we are interested in estimating
the regression function only at the point zo and that bandwidth was chosen
locally so as to minimize asymptotic mean squared error. In practice, one is
usually interested in the regression curve over an interval, and the bandwidth is
chosen globally, see for example Hirdle, Hall and Marron (1988). Inspection of
(3), (4) and (8) shows the usual tradeoff between kernel and nearest neighbor
estimates: in the tails of the distribution of z, the former are more variable but
less biased.

The symmetrized nearest neighbor estimate is a kernel estimate based on
transforming the z data by F. Other transformations are possible, e.g., log(x).
In general, if we transform by to = G(z), if m. (to) = m(x) and to has density
f., then the bias and variance properties of the resulting kernel estimate are
given by (3)-(4) in m. and f,, the translation to f, and m being immediate by
the chain rule.

An Example

For illustrative purposes we use a large data set (n=7125) of the rela-
tionship of Y = expenditure for potatoes versus X = net income of British
households (in tenth of a pence) in 1973. The data come from the Family Ex-
penditure Survey, Annual Base Tapes 1968-198S, Department of Employment,
Statistics Division, Her Majesty's Stationary Office, London, and were made
available by the ESRC Data Archive at the University of Essex. See Hirdle
(1988, Chapter 1) for a discussion. For these data, we used the quartic kernel

K(u) - (1 - u2)'(I u 1: 1).
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We computed the ordinary kernel estimate (1) and the symmetrized nearest
neighbor estimate (5), the bandwidths being selected by crossvalidation, see
Hixdle and Marron (1985). The crossvalidated bandwidths were hk,, = 0.25
on the scale (0,3) of Figure 1 and h.,. = 0.15 on the F scale. The resulting
regression curves are plotted in Figure 1. The two curves are similar for z < 1,
which is where most of the data lie. There is a sharp discrepancy for larger
values of z, the kernel estimate showing evidence of a bimodal relationship and
the symmetrized nearest neighbor estimate indicating either an asymptote or
even a slight decrease as income rises. In the context, the latter seems to make
more sense economically and looks quite similar to to curve in Hildenbrand
and Hildenbrand 1986). Statistically, it is in this range of the data that the
density f. takes on small values, which is exactly when we expect the biggest
differences in the estimates, i.e., the kernel estimate should be more variable
but less biased.
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