
.O . - -

NDIGITAL CONTROL OF THE CZOCHRALSKI GROWTH OF
0) GALLIUM ARSENIDE
CY) SYSTEM REFERENCE MANUAL

Valid for Czochralski Growth Controller Software Version 2.4
0)
t - Arizona State University

Semiconductor Materials Research Laboratory
College of Engineering & Applied Sciences
Tempe, AZ 85287

January 4, 1988

Scientific Report, April 1, 1987 - December 31, 1987 atZ o "

ARPA Order No.: 9099
Contract No.: F49620-86-C-0012 N
Contract Effective Date: 10/1/85 Z Z -

Contract Expiration Date: 3/31/90

6 Program Manager. G. H. Schwuttke , :.,

(602) 965-2672 *01 99

Contract Monitor: Gary Witt - .
(202) 767-4931 ._,vr Ivao ir

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Prepared for. D T IC
Defense Advanced Research Projects Agency
1400 Wilson Blvd. ELECTE
Arlington, VA 22209 FEB 2 5 1988

Air Force Office of Scientific Research
AFOSR/NE
Boiling AFB, DC 20332

88 2 24 148

Scientific Report

DIGITAL CONTROL OF THE CZOCHRALSKI GROWTH OF
GALLIUM ARSENIDE

SYSTEM REFERENCE MANUAL

Valid for Czochralski Growth Controller Software Version 2.4

Sponsored by

Defense Advanced Research Projects Agency

G. H. Schwuttke
Principal Investigator

(602) 965-2672

'44 Accession For
2. NTIS GRA&I

DTIC !AB
UwiEnrixounced E
ju~tii±catio

Arizona State University B
Semiconductor Materials Research Laboratory Di : tiibut I 01/_ _

College of Engineering & Applied Sciences Av, ltbl1ty Cdes

94CURI1'V CLASSIOICATION OF TWIS PAGE

REPORT DOCUMENTATION PAGE

IREOTSECURITV CLASIFICATION 1.RSRCIEMRIG

24, SECURITY lbS1,~iN ,~xr. 0ISTf@CTINVE iAILS F EPR

2.OICI.ASSIF 'CAr ION/OVNGRAAONG SCNEOULE Apoe .pbIlcrjae

4. PERFORMIN4G ORGANIZATION REPORT NUMSERIS) 5. M0NI1TORING ORGANIZATION REPORT MSRS

aFafig-Tit. 8li 8 - 0
G& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANI1ZATIONM

Semiconductor Materials Lab. SPA Air Force Office of Scientific Research

Oic. ADDRESS lCity. State and ZIP Code, 7b. ADDRESS (Ciy. Stan. end ZIP Code) .

Arizona State University AFOSR/NE
Tempe, AZ 85287 Boiling AFB, D.C. 20332

a.L NAME OF FUNOING/1PONSORING 19b. 0 .FFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

4, F49620-86-C-0012

AFL R/G 41 10. SOURCE -OF FUNDING NOS._ _ _ _ _

BLG40PROGRAM PROJE CT TASK WORK UNIT
*BOLLING AFB, DC 20332-6448 EL Ma 10. o O

11. TITLE 11netud. Secunty Clamafleatiln

Di ital Control of the Czochralski Growth of
(- 1 mim Arsenide System Reference Manual ____________

12. PERSONAL AUTHOPI(S)

Karl Riedling
13& TY4PE OF REPORT 13ti. TIME COVERED 1.DATE OF REPORT (Yr~.. Mo.. Day) IS. PAGE COUNT

Scientific FROM 4/1/87 TO 12Z231/8 88/01/04 412

* Id. SUPPLEMENTARY NOTATION

17. COSATI CODES I& SUBJECT TERMS (Continue on reverse if neessnary anja identify 67 Nlock nunmerl

% PIELO IGROUP I SU9). GR.- 4Digital Control,
GaAs

I I I~e~eenceManual,
19,g ASSTRACT eConjona.. on ,uve if fteceinay and Odentify by blocit Rmarib

* This report provides an updated and extended description (Version 2.4) of the structure and
the operation of the controller software developed for A&4-?-digital Czochmlski Growth Control
System (CGCS) for compound semiconductors. This manual outdates all previous versions.

The Controller Software Reference Manual discusses the design considerations applied to
digital LEC crystal growth control, gives a short overview of the growth controller computer

hardware and operating system environment, describes the functions of the CGCS from an
operator's point of view, and delineates the internal operations of the controller software by

disussngthe controller software and algorithms. Various appendices provide tables of
mesgsand error codes. .~

2CL OISTRI SUTIONIAVAI LASLIT Y OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION

UNCASSFIE/UNIMIEOC SAME AS RPT. COTIC USERS

N. 2.2* NAME OF REPNIBE10VIOUAL 22b. TELEPI4ONE NUMBER 22c. OF CYMSOL

D 0 FORM 1473, 83 APR EDITION OF I JAN 73 S obSOLETE. _____________

Pc AL Pa

ABSTRACT

This report provides an updated and extended description (Version 2.4) of the structure and
the operation of the controller software developed for ASU's digital Czochralski Growth Control
System (CGCS) for compound semiconductors. This manual outdates all previous versions.

The Controller Software Reference Manual discusses the design considerations applied to
digital LEC crystal growth control, gives a short overview of the growth controller computer
hardware and operating system environment, describes the functions of the CGCS from an

L operator's point of view, and delineates the internal operations of the controller software by
discussing the controller software and algorithms. Various appendices provide tables of
controller software tasks, routines, and variables, file format information, and lists of system
messages and error codes.

M Rp

Table of Contents

Table of Contents

List of Illustrations...................ix

Summary...........................xi

The Scope and Structure of This Documentation........xiv

CGCS Program Versions...................xvi

1. Introduction........................1

1.1 The LEC Growth Process For Compound Semiconductors 2

1.2 A Digital Controller for GaAs Czochralski Growth . 6

1.3 Crystal Growth Automation...............10

*2. The Hardware of the Czochralski Growth Control System 12

2.1 General Hardware Design...............12

2.2 Computer Hardware...................14

.- ~ %-2.3 Hardware Setup...................17
'~ '~* 2.3.1 iSBC 80-24 Single Board Computer..........17

2.3.2 iSBC 064A (or equivalent) Memory Expansion
Board........................18r2.3.3 iSBC 517 I/O Expansion Board..........18

2.3.4 iSBC 204 Disk Controller.............19
2.3.5 DT772/5716-32D1-B-PGH A/D Converter Board . .. 19
2.3.6 MP8316-V D/A Converter Board..........20
2.3.7 Cardcage....................20
2.3.8 Console Terminal.................20

~ .. 2.3.9 Printer.....................21

2.4 Computer - Puller Interface..............22
2.4.1 Analog Input Signals...............22
2.4.2 Analog Output Signals...............26
2.4.3 Digital Input and Output.............27

4AL - -

" . Table of Contents

3. System Software on the CGCS Computer 29

3.1 Design Considerations for a Real-Time Operating
System 29
3.1.1 Intel's iRMX-80 and FORTRAN 29
3.1.2 The Structure of a Task in a FORTRAN-iRMX-80

Environment 32
3.1.3 Sharing of Common Code Sequences Between

Several Tasks 33
3.1.4 Data Transfer Between Tasks 35
3.1.5 Generation of Control Structures in a FORTRAN-

based iRMX-80 System . _.... 37
3.1.5.1 Static Task Descriptors and Task

Descriptors 37
3.1.5.2 Exchange Descriptors 38
3.1.5.3 Messages 40

3.1.6 Data I/O in a Real-Time System 42
3.1.7 Naming Conventions 43

3.2 Software Structure 45

3.3 ROM Resident Software 49
3.3.1 The RXISIS-II Monitor 49

3.3.1.1 Monitor Commands 50
3.3.1.2 Other Monitor Functions ... 54
3.3.1.3 The Monitor in a Real-Time System 54
3.3.1.4 Exit From the Monitor 55

3.3.2 The RXISIS-II Confidence Test 56
3.3.2.1 Memory Test 56
3.3.2.2 CRT Console Test 57
3.3.2.3 Printer Test 57
3.3.2.4 I/O Port Test 58
3.3.2.5 Floppy Disk Test 58

3.3.3 The iRMX-80 Nucleus 58
3.3.4 The Alternative Terminal Handler 59

* 3.3.4.1 Programming Interface 61
3.3.4.1.1 Line Input Operations 61
3.3.4.1.2 Console Output 61
3.3.4.1.3 Printer Output 62
3.3.4.1.4 Line Input and Output Request Messages 62
3.3.4.1.5 Single Character Input 63
3.3.4.1.6 Output Mode Setup and Input Prompt

String Selection 64
3.3.4.1.7 Cursor Control Code Generation 65
3.3.4.1.8 Break Detection 66
3.3.4.1.9 Public Parameters 66

I
0. ~

~- ii -

Table of Contents

3.3.4.2 User Interface of the Alternative Terminal
Handler 69

3.3.5 The Generic Loader Task 73
3.3.6 Entry Points Into ROM Resident Code 75
3.3.7 Configuration of the RXISIS-II System ROM . . . 76

3.4 RXISIS-II 79
3.4.1 The Operation of RXISIS-II 79

3.4.1.1 Available Devices- - 82
3.4.1.2 Available Programs and Functions Under

RXISIS-II 82
3.4.1.2.1 Intel Supplied Utility and Development
Software 83

3.4.1.2.2 Other Utility Software 83
3.4.1.2.3 Programming Languages Under RXISIS-II 84
3.4.1.2.4 Special RXISIS-II Functions and

"Programs . 85Prgas......................oo e o.........8

3.4.1.3 Executing Programs Under RXISIS-II 87

3.4.2 The Programming Interface of RXISIS-II 89
3.4.2.1 Preparation of RXISIS-II Programs Without
Additional Tasks 89

3.4.2.2 Preparation of RXISIS-II Programs With
Additional Tasks 91

3.4.2.3 The Preparation of Real-Time Application
Systems92

3.4.2.4 Use of ROM Resident Routines by Application
2. Systems 93

3.4.2.5 Other Utility Routines in the Library
RXIROM.LIB 96

4. The Operation of the Czochralski Growth Control System 97

4.1 Basic Operation Concepts of the CGCS 97
4.1.1 General System Design 97
4.1.2 Control Loops in the CGCS103
4.1.3 Diameter Evaluation in the CGCS106

4.2 Starting the CGCS 110

4.3 Command Set of the CGCS112
4.3.1 General Remarks 112
4.3.2 Summary of Internal Commands 113
4.3.3 Comprehensive Description of the Internal

Commands 114

4.4 Parameter Ramping 123

- iii -

n
% -

.,,• - - .- - %''- " '

4

Table of Contents

4.5 Macro Commands 124

4.6 Disk Files 126

4.7 Variables 131
4.7.1 General Remarks 131
4.7.2 Special Variables131

- 5. The Czochralski Growth Control System Software 135

5.1 CGCS Concept and Structure 135
5.1.1 Program Structure135
5.1.2 General Program Information 136

5.2 System Interface and Auxiliary Routines140
5.2.1 iRMX-80 Control Routines - Library FRXMOD.LIB . 141

5.2.1.1 Non-Reentrant Message Sending/Receiving
Routines 141

* 5.2.1.2 Reentrant Message Sending/Receiving
Routines 145

5.2.1.3 Interface Routines for iRMX-80 Nucleus
Functions 149

5.2.1.4 "Flag Interrupt" Service Routines 153
5.2.1.5 Access Control Routines 156
5.2.1.6 System Error Messages159
5.2.1.7 Free Space Manager Initialization 161

5.2.2 Console, Printer, and Buffer Input/Output
Routines - Libraries FIORMX.LIB, FIOISS.LIB,
FIORXI.LIB, and FIORXR.LIB163
5.2.2.1 Input/Output Initialization167
5.2.2.2 Input Routines 169

5.2.2.2.1 Programming Interface169
5.2.2.2.2 Operator Interface 177

5.2.2.3 Output Routines 180
5.2.2.4 I/O Mode Selection and Auxiliary Routines 191
5.2.2.4.1 Input Mode Selection Routine FRINMD 191
5.2.2.4.2 Output Mode Selection Routine FROUTM . 192
5.2.2.4.3 Printer Mode Selection Routine FRPRMD . 193
5.2.2.4.4 Input Prompt String Selection Routine
FRINPR 193

5.2.2.4.5 Screen Clearing Routine FRCLRO 194
5.2.2.4.6 Printer Timeout Setting Routine FRSPTO 195
5.2.2.4.7 Output Mode Change Indicator Function
FRMCHG 195

5.2.2.5 Control String Building Routine FRCSTR . 196
5.2.2.6 Auxiliary Routines 197

- iv -

Table of Contents

5.2.2.7 ISIS-II and RXISIS-II Versions of the I/O
Routines 199

5.2.2.8 Configuration Constants Used by the I/O
Routines 202

5.2.2.9 CGCS-Specific I/O Routines 203

5.2.3 Disk Interface Routines - Libraries FXDISK.LIB
and FXDSKI.LIB 206
5.2.3.1 Disk File Opening - Routine FROPEN . . . 209
5.2.3.2 Reading From a Disk File - Routine FRREAD . 210
5.2.3.3 Writing To a Disk File - Routine FRWRTE . 211

S"5.2.3.4 Access to Random Files - Routine FRSEEK . 212
5.2.3.5 Disk File Closing - Routine FRCLSE 212
5.2.3.6 Program Loading - Routine FRLOAD213
5.2.3.7 Directory Maintenance - Routines FRATTR,

FRDELT, and FRRNME 214
5.2.3.8 Exit to Operating System - Routine FREXIT 216
5.2.3.9 Disk File Status Checking - Function FRDSTA 216
5.2.3.10 Disk Error Message Generation - Routine

* FXDSKE 217

5.2.4 General Utility Routines - Library FXUTIL.LIB . 219
5.2.4.1 Timer Task FXTIME 219
5.2.4.2 Console Input Routines FXOCNS, FXRCNS, and

FXCCNS 223
5.2.4.3 Command Line Interpreter Support Routines . 225
5.2.4.4 Data Transfer To and From Absolute Memory

Locations 227
5.2.4.5 Overflow Protected Integer Arithmetics . 229

5.2.5 High-Speed Hardware-Based Floating-Point
Routines - Library FP8231.LIB 232
5.2.5.1 General Information 232
5.2.5.2 Additional Routines in FP8231.LIB 235
5.2.5.3 The Implementation of the Alternative
FORTRAN-80 Floating-Point Routines 236

5.3 The High-Level Growth Controller Software 238
5.3.1 The Operator Interface 238

5.3.1.1 The Console CRT Screen 238
5.3.1.2 Auxiliary I/O Routines 239
5.3.1.3 The Command Interpreter - Task RXIROM . . 240

5.3.1.3.1 Overlay CZOV01 - Module SETPAR -
Commands SET and CHANGE 247

5.3.1.3.2 Overlay CZOV02 - Module SETVAR -
Commands SET and CHANGE 250

5.3.1.3.3 Overlay CZOV03 - Module COMMEN -

Command COMMENT 251
5.3.1.3.4 Overlay CZOV04 - Modules MENOUT and
CLRSCR - Command HELP 251

IV--

% '4%

Table of Contents

5.3.1.3.5 Overlay CZOV05 - Modules OPMODE and
CLRSCR - Command MODE 252

5.3.1.3.6 Overlay CZOV06 - Module DEBUG0 - DEBUG
Commands 253

5.3.1.3.7 Overlay CZOV07 - Module DEBUG1 - DEBUG
Commands 254

5.3.1.3.8 Overlay CZOV08 - Modules FRAME and
TIMLIN - Command RESTORE 255

5.3.1.3.9 Overlay CZOV09 - Module FILES -
Command FILES 255

5.3.1.3.10 Overlay CZOV10 - Module REQCMF -
Commands START and FILES 256

5.3.1.3.11 Overlay CZOV11 - Module CALCUL -

Command CALCULATE 257
5.3.1.3.12 Overlay CZOV12 - Module DATAFI -

Commands FILES and DATA 257
5.3.1.3.13 Overlay CZOV13 - Module EXICZO -

Command EXIT 258
5.3.1.3.14 Overlay CZOV14 - Module CONDIT -

Command IF 259
0 5.3.1.3.15 Overlay CZOV15 - Module DISPLY -

Command DISPLAY 260
5.3.1.3.16 Overlay CZOV16 - Module DOCUMT -

Commands FILES and DOCUMENTATION 260
5.3.1.3.17 Overlay CZOV17 - Module DIRECT -

Command DIR 260
5.3.1.3.18 Overlay CZOV18 - Module RESOVL -

Command RESET 261
5.3.1.3.19 Overlay CZOV19 - Module INIDAT -
Command INITIALIZE261

5.3.1.3.20 Overlay CZOV20 - Module PLOTOV -

Command PLOT 262
5.3.1.3.21 Overlay CZOV21 - Module CLEARO -
Command CLEAR 262

5.3.1.4 The Command Executor - Task CMMDEX 263
5.3.1.4.1 Command Message Processing263
5.3.1.4.2 The Ramping Executor 268
5.3.1.4.3 Floating-Point Conversion of Measured

Data 269
5.3.1.4.4 DEBUG Data Retrieval 269
5.3.1.4.5 Conditional Command Executor269
5.3.1.4.6 Data Dump to the Documentation File . 270
5.3.1.4.7 Analog Output to a Chart Recorder . . 271
5.3.1.4.8 Program Code Integrity Check271

5.3.1.5 The Measured Data Output Task - Task MEASDO 272
5.3.1.6 The Command File Input Task - Task CMFINP . 273
5.3.1.7 The Command File Output Task - Task CMFOUT 274
5.3.1.8 The Disk Output Task - Task DSKOUT 274

vi

0~

Table of Contents

5.3.2 The Process Controller 275
5.3.2.1 The PID Controller Routine FRPIDC 275
5.3.2.2 The Diameter Controller - Task DIACNT . . . 281
5.3.2.2.1 The Diameter Controller Routine

Proper - Module DIACNT281
5.3.2.2.2 Anomaly Compensation - Routine ANOMLY . 284
5.3.2.2.3 Diameter Evaluation Algorithms -

. Routine SHAPE 285
5.3.2.2.4 The Initialization of the Routine

d SHAPE - Routine RESET 298
5.3.2.2.5 The Re-Activation of SHAPE - Routine

SREACTV . 299RECV....................................9

5.3.2.3 The Analog Data Controller - Task ANACNT . 299
5.3.2.3.1 The Analog Controller Routine Proper -

Module ANACNT 299
5.3.2.3.2 The Analog Data Input Routine ANAINP . 302
5.3.2.3.3 The Relay Controller Routine MOTDIR 304
5.3.2.3.4 The Analog Data Output Routine ANAOPT 306
5.3.2.3.5 The Low-Pass Filter Routine LOWPAS . . 307

6. CGCS Software Configuration 310

7. Supporting Programs for the CGCS 315

7.1 Data File Display Utility SHODAT315
7.1.1 General Remarks 315
7.1.2 Running SHODAT 317

7.2 Macro Command Editing and Displaying - Programs
COMMED and READCM 320
7.2.1 General Remarks 320

7.2.2 The Macro Command File Editor COMMED321
7.2.3 The Macro Command File Display Utility READCM . 324

Pppendix 1: Additional Documentation 325

Appendix 2: Hardware Setup and Testing327

Appendix 3: Operating System Memory Allocation331

Appendix 4: Disk Error Codes 334

Appendix 5: Command Line Editing and Control Characters
under RXISIS-II and the CGCS 337

- vii -

0: "

Table of Contents

Appendix 6: Utility Programs Under RXISIS-II 340
Appendix 6.1: File Attribute Modification Utility

ATTSET 340
Appendix 6.2: Disk Comparison Utility CMPDSK342
Appendix 6.3: File Comparison Utility COMP343
Appendix 6.4: Enhanced File Copy Utility COPYCP 345
Appendix 6.5: Disk Copy Utility CPYDSK 346
Appendix 6.6: File Generation Utility CREATE348
Appendix 6.7: Disk Directory List Utility DIRFIL . . 349
Appendix 6.8: File Conversion Utility HEXCHK350
Appendix 6.9: File Listing Utility LIST 351
Appendi' 6.10: File Display Utility SHOW 353

Appendix 7: CGCS Memory and I/O Maps 354
Appendix 7.1: Memory Map 354
Appendix 7.2: I/O Map 354

Appendix 8: System Tasks 356
Appendix 8.1: ROM Resident System Tasks 356
Appendix 8.2: iRMX-80 System Tasks in the CGCS 357
Appendix 8.3: FORTRAN - iRMX-80 Interface Tasks 357Appendix 8.4: Controller Tasks 358

Appendix 9: Routine Names 361
Appendix 9.1: FORTRAN-iRMX-80 Interface Routine Names . 361
Appendix 9.2: Controller Routine Names 365

Appendix 10: COMMON Blocks 369

Appendix 11: Variable Names373
Appendix 11.1: Most Important Variables373
Appendix 11.2: Complete List of Variables, Sorted by

Address 379Appendix 11.3: Variable Addresses for CGCS Versionsa".'d'2se frCG**Vr'

2.0 - 2.4 385

Appendix 12: CGCS File Formats 392
Appendix 12.1: Variable Name File CZONAM.Vmn392

O Appendix 12.2: Variable Name Source File392
Appendix 12.3: Macro Command Files 393
Appendix 12.4: Data Files 396

Appendix 13: Czochralski Growth Control System Messages . 399

O Appendix 14: Dynamic Behavior of the PID Controller
Routine 405

-viii-

'

O,

...1 . •

N
SList of Illustrations

i p List of Illustrations

. Fig. 1: A Czochralski puller for compound semicon-
ductor crystal growth 3

Fig. 2: Implementation of the digital Czochralski
Growth Control System 6

Fig. 3: Hardware memory map of the CGCS computer. 14

Fig. 4: Block diagram of the CGCS computer 15

Fig. 5: Analog input interface24

Fig. 6: Analog output interface 26

.. ~ Fig. 7: Memory maps of the CGCS controller com-
puter under RXISIS-II (a), and of an Intel
development system under ISIS-II (b) 47

Fig. 8: Configuration of the RXISIS-II system ROM. . . 78

Fig. 9: Console screen of the CGCS 97
N.

Fig. 10: Comrand execution in the CGCS101

Fig. 11: Control loop for one of the four motors in
the CGCS (analog/digital and digital/
analog conversions are not explicitly
shown)........ 104

* Fig. 12: Heater temperature and crystal diameter
control loops (analog/digital and digital/
analog conversions are not explicitly
shown) •....... 105

Fig. 13: Crucible position control loop (analog/

digital and digital/analog conversions are
not explicitly shown) 106

Fig. 14: Block diagram of the evaluation algorithms
for the crystal diameter, the growth rate,
the crystal length grown, and the crucible
position setpoint (analog/digital and
digital/analog conversions are not ex-
plicitly shown)107

Fig. 15: Command Interpreter overlays. 137

- ix -

List of Illustrations

L' Fig. 16: Memory map of the CGCS 138

Fig. 17: Command processing in the CGCS 246

Fig. 18: Growth of a crystal partially immersed in
an oxide encapsulant melt 286

Fig. 19: Volume of a paraboloid section 291

Fig. 20: Interpolation algorithm for the evaluation
of the crystal diameter at the boric oxide
encapsulant surface, and of the volume

immersed294

Fig. Al: "Actual" input signal used for the simula-
tions 405

Fig. A2: Controller output signal (full line) and
error integral (broken line) for unlimited

• operation with no option active 406

Fig. A3: Controller output signal (full line) and
error integral (broken line) for output
signal limiting with no anti-windup407

Fig. A4: Controller output signal (full line) and
error integral (broken line) for output
signal limiting with anti-windup mode A 408

Fig. A5: Controller output signal (full line) and
error integral (broken line) for output
signal limiting with anti-windup mode B 410

Fig. A6: Controller output signal (full line) and
error integral (broken line) for integral
limiting but no output signal limiting. 410

* Fig. A7: Controller output signal (full line) and
error integral (broken line) for integral
and output signal limiting 411

d.

-. X -

r " %%. AW . % 'leg A

--- --- ---- rW F W

Sumr

aSummary

~Summary

This manual constitutes a comprehensive documentation of
process control, system, and auxiliary software developed by

- Arizona State University with the target of designing a
digital controller system for the Liquid Encapsulated
Czochralski (LEC) growth of gallium arsenide single crystals.

Digital crystal growth control was chosen because of its sign-
ificant advantages over the standard analog approach:

* Better reproducibility of process parameters and control
actions.

. * A higher degree of flexibility with respect to operation
procedures and process parameters.

* Powerful process automation.

* * Expanded process data logging facilities.

The digital Czochralski Growth Control System (CGCS) is based
on a microcomputer built around an Intel 8085 microprocessor.
The system hardware consists of commercial OEM components; the
microcomputer features 16 KBytes of Read Only Memory (ROM) and
56 KBytes of Random Access Memory (RAM), an Intel 8231 Numeric
Processor, two industrial standard 8" single sided, single
density flexible disk drives, and the Analog/Digital and Digi-
tal/Analog Converters and Input/Output (I/O) hardware which it
requires to interface to the Czochralski puller. In addition
to a console CRT terminal, a line printer and a multi-channel
chart recorder are provided. The controller computer was de-

psigned as a multi-purpose unit which permits, in addition to
the actual process control, to execute auxiliary programs for
the maintenance of disks and disk files, and for the prepara-
tion and evaluation of growth runs. The operating system used
is Intel's Real-Time Multitasking Executive iRMX-80; a special

*system environment, RXISIS-II, was developed for the execution
of utility and support programs.
The CGCS is wired to monitor process data in parallel to the

standard analog growth controller; its output can alternative-
ly replace the analog controller's output. For reasons of
simplicity, it uses part of the analog system's signal condi-

4tioning and output circuitry. In particular, it provides the
* "analog motor speed and the heater power controllers with speed

and power setpoints. The digital system can be operated in
five modes each of which is an inclusive set of the preceding
ones:

- xi -

4.%

-.- z 4°' U ~ '' ' 4'

k Summary

(1) Monitoring: The CGCS collects data from the puller which
4 can be displayed and recorded, but it does not control the

puller.

(2) Manual: The CGCS controls the growth process but allows
only to enter setpoints for the primary process parameters
(temperatures, motor speeds) . No closed-loop diameter
control is possible.

(3) Diameter: This mode includes closed-loop diameter con-
trol, based on the standard weighing method. Special al-
gorithms compensate for the buoyancy effects caused by the
encapsulation melt.

(4) Diameter/ASC: In addition to the above features, an anom-
aly compensation technique is used, which makes the diame-
ter calculated by the CGCS more reliable.

(5) Automatic: A special algorithm permits to maintain the
* crystal-melt interface at a constant location within the

heater, regardless of the amount of melt depleted due to
crystal growth.

The CGCS software allows to dynamically access any parameter,
including the parameters of controller loops, by direct opera-
tor commands. An arbitrary number of data locations can be
identified with a symbolic name, and displayed, modified, and

3. used for the decision-making process built into the CGCS.
Parameters may be "ramped" within an arbitrary time from their
current to their intended final values. Commands may be re-
corded on special disk files which may be edited and replayed
as "Macro" commands during a later run; the sequence and tim-
ing of the recorded commands is exactly reproduced. These
commands can be arbitrarily interspersed with new commands en-
tered on the console; the resulting command sequence may be
recorded again, which gives the system a learning ability.
Macro command files may comprise any number of commands and
can easily be invoked by name. A special feature permits to

* execute Macro commands conditionally, i.e., if and when a
specified relation between an arbitrary system parameter and a
constant value is reached. These properties of the CGCS allow
to execute the crystal growth process essentially automati-
cally, without the necessity of operator interactions. Crys-
tals grown under automatic control exhibit improved uniformity
of their electrical and crystallographic properties, compared
to conventionally produced LEC crystals. Process yield in
terms of single crystals and of usable wafers per crystal is
distinctly superior to the yield of the standard analog tech-
nique.

-xii-

4. Summary

Great emphasis was put on the design of the operator-machineci interface: A specially formatted CRT console screen provides
information about all data measured by the CGCS. Command
entry is interactive, with as much flexibility as possible for
the format of the commands. Several help menus and extensive

-U command prompts guide the operator. The dialogue between the
operator and the CGCS can be recorded either on disk, or on a
line printer; each item is tagged with the time when it was
issued. This permits, in conjunction with the data recording
facilities of the CGCS, to trace the effects of a particular
operation or event; the data taken during a run can be sub-
mitted to various process analysis and modelling approaches.

tii

r.

Tneo

-The Scope and Structure of This Documentation

' The Scope and Structure of This Documentation

,. This documentation comprises the entire software for the
Czochralski Growth Control System, and for functions related
to it. Although it also addresses the hardware configuration

- and operation as far as necessary, it should not be considered
a hardware manual. Particularly in the sections detailing the
actual process controller operations (chapter 5.3), readers
proficient in FORTRAN may find it advantageous to have the
program listings at hand (which are very extensively
commented, too); frequently, references are made within this
manual to the names of program variables or routines. It is,
however, not necessary to study the source programs for using
this documentation. With regard to the volume of this
Reference Manual, information on Intel's operating systems
ISIS-II and iRMX-80 for which detailed publications are
commercially available is kept as concise as possible. These
publications and a number of additional documentations which
may supplement the material presented here are listed in

* Appendix 1.

This System Reference Manual comprises seven main chapters and
fourteen appendices. After a short introduction in chapter 1
to the LEC process for compound semiconductor crystal growth,
and the considerations applying to its automation, the hard-
ware environment of the CGCS is discussed in chapter 2, where
also CGCS-specific details about the configuration of the com-
puter hardware are presented. Appendix 2 contains a procedure
for the initial setup and test of the CGCS computer.

Chapter 3 discusses the operating system environment of the
CGCS, starting with some views on the specific demands imposed
on the software in a real-time environment, and delineating
subsequently the operating system firmware in Read Only Memory
(ROM), and the disk based operating system emulator RXISIS-II
which provides favorable conditions for the execution of auxi-
liary and supporting software. (A number of file management
utility programs for use under RXISIS-II which have been writ-

* ten by the author are presented in Appendix 6.)

The functional concepts and design of the CGCS are the topic
discussed in chapter 4; this section provides also some in-
structions for the use of the CGCS, as far as required for

understanding the operation of the software.

Chapter 5 consists of three sub-sections which cover the
structure and two distinct parts of the CGCS software, respec-
tively: Chapter 5.2 describes the interface to and the func-
tions of a large number of system interface routines; section
5.3, the growth controller software proper, broken down into

- xiv-

P

-- , - - u rw-r--w- -- r--rw's--rw-z-r-a -v-.r - - w.. -- r -- -- r -: -~ ,- -...

The Scope and Structure of This Documentation

an operator interface, and the process control functions.
Although the system interface routines covered by chapter 5.2
are, indeed, "black boxes" for the higher-level parts of the

P-., CGCS, a thorough understanding of their operations was never-
theless considered essential for a complete comprehension of

S-the high-level controller software. The 7resentation of the
controller routines is augmented in Appendix 14 by a discus-
sion of the dynamic response of the generic PID- (Proportion-
al-Integral-Derivative) controller routine under various
operation modes.

Chapter 6 discloses the procedure required for combining the
program modules discussed in chapter 5 into an operational
process control program, which is, due to the complexity of
the CGCS, not trivial either.

The final chapter 7 concludes the survey of the CGCS software
by discussing three auxiliary programs which support the oper-
ation of the CGCS and which can be executed on the CGCS com-
puter under RXISIS-II (or on an Intellec Series II Development
System under ISIS-II).

The appendices not mentioned so far contain summaries of in-
formation which should be accessed easily for reference pur-
poses, e.g., memory maps, disk error codes, disk file formats,
system messages, or routine and variable names.

,%S

'°

PA xv

- - --- J------ - - - 6 - -- -w -- -w -r n . w ~ -

P a

CGCS Program Versions
~CGCS Program Versions

This section describes the "evolution" of the documentation
for the Czochralski Growth Control System by listing the
features introduced with each release. Information on the
CGCS software as given in this documentation is based upon
version 2.4 of the Czochralski Growth Control System.

Version 1.3: (October 19, 1985)

(Version 1.3 was the first program release actually used for
growing gallium arsenide crystals.)

Version 1.4: (December 5, 1985)

(1) INITIALIZE sets the diameter setpoint to the seed diame-
ter. (This feature was discontinued from Version 2.1 on.)

(2) The Diameter evaluation routines check for zero seed lift
speed and disable diameter calculation in this case.

(3) An automatic RESET is executed when required.

(4) The calculated Diameter is recorded in the Data file.

Version 1.5: (February 1986)

(1) RESET permits the entry of an initial value for the Crys-
tal Weight and/or the Length Grown. (The effect of RESET
on the Crystal Weight is a new feature of this release.)

(2) The length of the crystal stored by the buoyancy compensa-
tion part of the diameter calculation routine was in-
creased from 37.5 millimeters to 75 millimeters. The
thickness of one "slice" is approximately 0.5 mm; the

6 maximum permitted seed travel speed exceeds 200 mm/h.

(3) The actual Diameter value is automatically copied to the
Diameter setpoints when any diameter controlled mode is
entered.

Version 1.6: (February 18, 1986)

(1) The Data Dump facility was newly introduced. Extra rec-
ords are written to the Data file in case of an error
detected by the Diameter Evaluation routines.

-xvi-

r

hp ,
ak4i 1WN)

CGCS Program Versions

(2) The crystal diameter is evaluated with the actual growthp rate rather than with the (actual) seed lift speed.

(3) The Diameter Evaluation routines were modified to recover
-.automatically from Speed Overflow errors. (In previous

b i versions, such errors disabled the diameter evaluation
permanently; a RESET command was required to recover from

q this condition.)

Version 2.0: (April 11, 1986)

(1) The number of ramping channels was increased from 8 to 20.

(2) The maximum number of Conditional commands is 8 rather
than 2. Conditional commands entered while already 8

S'"Conditional commands are pending are ignored. (In earlier
versions, a Conditional Macro command issued while already
two Conditional commands were pending replaced the older
one).

(3) A Selective CLEAR command was introduced which permits to
. remove only those Conditional Macro commands from the

onConditional Command queue which pertain to a specified
Variable.

(4) The PLOT feature was implemented, providing 8 analog chan-
nels for the output of arbitrary INTEGER*2 parameters,
plus a set of pre-processed system parameters (Tempera-
tures, Diameter error, Growth Rate, and Crucible Position
error).

(5) 8 INTEGER*2 DUMMY locations were provided as a Macro com-
mand scratchpad.

(6) The CGCS can be put into a TEST mode. (Program patches
(in ANACNT) were required in previous versions to execute
run simulations.)

Version 2.1: (October 13, 1986)

(1) An erroneous algorithm in the Diameter Evaluation routine
was corrected which resulted in a relative error of the
calculated Growth Rate in the order of 10 percent.

(2) The buoyancy compensation routines were re-designed. In
particular, a new interpolation algorithm was used for the

determination of the crystal diameter at the top surface
of the boric oxide encapsulant. A partial compensation of

- xvii -

CGCS Program Versions

the effects caused by melt recession at the end of the
growth process was provided.

(3) Two new operation modes of the PID controller routine are
available with release 2.1. They provide different ap-

* proaches for a safe "anti-windup" function which improves
the dynamic behavior of the controller in its output lim-
ited regime.

(4) The scaling of the Heater and Base Temperature output to
the chart recorder was improved. A Variable-defined out-
put range permits a flexible adaptation of the chart re-
corder output to various operating conditions.

(5) A timeout for the printer interface was activated. This
feature prevents a defective or un-selected printer from
suspending the operation of the system.

Version 2.2: (October 24, 1986)

(1) A new, more stable diameter interpolation algorithm re-
places part of the procedures introduced with Version 2.1.

(2) The melt recession compensation algorithms were improved.
A numeric parameter permits to adapt the Diameter Evalua-
tion routines to arbitrary degrees of melt recession.

(3) The (square of the) crystal diameter stored in a table
internal to the Diameter Evaluation routine is checked for
excessive deviations with respect to its previous value,
and adjusted accordingly if necessary.

(4) A check for a possible boric oxide encapsulant height* overflow permits to run the CGCS safely with increased
boric oxide charges.

(5) Conditional command checking is disabled for several sec-
* onds after a new (Conditional or unconditional) Macro

command was started, in order to make sure that at least
the f irst command of a Macro f ile can be executed in any
case.

(6) An improved Macro command execution sequence guarantees
0. the proper processing of Macro commands even in the case

of transient disk errors.

(7) The generation of the Data disk file which was performed
by two tasks in previous versions (one, collecting data in
a buffer, and one, writing the buffer to disk) was concen-

-xviii -

I0

CGCS Program Versions

trated in one single task. This measure provides the
memory space required for the installation of the other
software enhancements and reduces the probability of a
temporary system deadlock due to a lack of pool memory,

- with the penalty of a possible minor record timing inac-
curacy in the case of very short intervals between Data
file records.

Version 2.3: (December 5, 1986)

a *[(1) A periodic memory check was provided in this release, com-
prising the RAM resident main program code.

Version 2.4: (August 11, 1987)
(1) The algorithms for the diameter evaluation were changed to

* determine the growth rate from the current rather than the

previous crystal diameter.

. (2) A safety limit was imposed on the calculated diameter
value used internally by the Diameter Evaluation routine,
which protects the operation of the CGCS in case of severe
transients imposed on the measured system parameters.

(3) A parameter THETA was newly introduced into the motor PID
controllers which permits to set any operation mode be-
tween the feed-forward algorithm used up to now (THETA =
256) and a plain PID controller function (THETA = 0).

I:

- xix -

% %a %'~' %-- - *9 * ~ * ~ ;% *~:N

1i. Introduction

1. Introduction

The Czochralski Growth Control System Reference Manual en-
deavors to give a comprehensive description of the computer
hardware and the software used in the autonomous digital
growth controller for the LEC process for GaAs. This control-
ler, specifically, the software which performs the process
control operations, will be referred to as "Czochralski Growth
Control System" (CGCS) throughout this manual.

The first section of this documentation will be devoted to an
overview of the LEC process and its automated digital control.
The second part deals with the computer hardware used, and its
implementation. Next, we will discuss the operating system
environment of the CGCS, and the implementation of various
auxiliary and utility programs. The last main chapter, final-
ly, details the software design of the CGCS proper, starting
with the description of interface routines which are otherwise
to be considered as "black boxes" within the controller soft-

4 ware, and ending with the discussion of the high-level control
routines. The configuration of the modules constituting the

- CGCS into the final operational software package, and the
description of some support programs for the CGCS will con-
clude the System Reference Manual.

o-

iA -

,A

6l

Te h Eh LC

1... The LEC Growth Process For Compound Semiconductors

The Czochralski process is gaining increased importance not
only for the growth of high purity silicon crystals but also
for the large scale production of compound semiconductors like
gallium arsenide. Although Czochralski grown GaAs crystals do
not yet reach low dislocation densities comparable to those
obtainable with the major competitor process, the Bridgeman
technique, the Czochralski process offers, nevertheless, sig-
nificant advantages over boat growth processes:

* The stoichiometry and the purity of Czochralski-grown
crystals is superior to the properties of boat-grown
ones. Semi-insulating substrates can be obtained with
less or without chromium doping.

* The Czochralski process is better suited for a large scale
production, and it is therefore cheaper.

A Czochralski puller (Fig. 1) consists essentially of a heated
crucible made of quartz or boron nitride which contains the
semiconductor melt. A small single crystal rod, the seed, is
immersed into the melt and slowly lifted. The melt whose tem-
perature is kept slightly above the semiconductor's melting
point solidifies at the interface to the seed; with the proper
temperature distribution and seed lift speed, a cylindrical
single crystal can be grown whose crystallographic orientation
is determined by the orientation of the seed. The crucible
and the seed are rotated in opposite directions in order to
minimize the influence of potential inhomogeneities of the
temperature distribution inside the furnace. An inert atmo-
sphere, usually argon, prevents the oxidation of the melt and
of the crystal.

The growth of compound semiconductors like GaAs is impeded by
the fact that these materials tend to dissociate at higher
temperatures. The two components are bound together only
loosely, and the one with the higher gas pressure (in our

0 case, arsenic) tends to evaporate to a greater degree than the
other (gallium), which results in intolerable deviations from
stoichiometry and, in consequence, in bad electrical charac-
teristics. While the miscellaneous variations of the Bridge-
man process employ hermetically sealed quartz ampoules to pre-
vent the loss of the volatile component, two approaches are

* . used in the Czochralski process, either individually or com-
. bined: First, the pressure of the inert atmosphere inside the

puller is increased to several hundred psis in order to coun-
terbalance the arsenic vapor pressure, and, second, the semi-
conductor melt and the part of the crystal next to it are en-

-2-
..

t 7 - 2 -**'' ' .

".,F -..- V

-: 1.1 The LEC Growth Process For Compound Semiconductors

capsulated in a vitreous melt of boric oxide (hence "Liquid
Encapsulated Czochralski" (LEC) process).

WIH ,U SEED ROTATION

MOTOR

.- SEED LIFT
MOTOR

CONE SEED

,- BORIC OXIDE
ENCAPSULATION

'-" •H EATER
CRYSTAL CRUCIBLE

BODYPE

bN p.

f%"" .: [aAsME LT '

P-, CRUCIBLE LIFT CRUCIBLE ROT.
• MOTOR , MOTOR

Fig. 1: A Czochralski puller for compound semiconductor
"..' crystal growth.

.. Technical applications of semiconductor single crystals re-
quire a defined, and preferably cylindrical, shape of the
crystal ingots which have to be sliced into wafers with given
dimensions. Semiconductor crystal growth implies, therefore,
an efficient control of the diameter of the crystals grown.

O.

...

-p3

A-~p i. p p ** -*p ,'. ~ ~ 'pk,. . . p .,i

1.1 The LEC Growth Process For Compound Semiconductors

Neither must the diameter drop below a minimum value (which
would prohibit cutting a wafer with the specified diameter),
nor should the diameter exceed its nominal value too much
since the excess material is wasted as it must be ground away
before the ingot is sliced into wafers. Conventional Czoch-
ralski pullers for compound semiconductors determine the diam-
eter of the growing crystal from the increase of its weight
per unit time which is obviously proportional to the crystal
volume solidified per time. Taking a constant pull rate,
i.e., a constant height of the incremental solid cylinder, for
granted, this volume is proportional to the square of the
crystal diameter. Diameter control can be effected by chang-
ing the temperature of the melt and/or the pull rate appropri-
ately: The solidification of the molten semiconductor materi-
al generates heat which must be removed from the interface
between the crystal and the melt in order to permit a continu-
ous growth. The amount of heat which can be removed from the
interface is, however, determined by the geometry of the fur-
nace and of the crystal, and it is more or less constant.
Increasing the temperature of the melt permits therefore less

0. material to solidify, which results in a reduction of the
crystal diameter if the pull rate is kept constant. On the

. other hand, an increase of the pull rate while the melt tempe-
-.' rature is maintained has the consequence that the roughly

constant volume of semiconductor material which can be solidi-
fied per unit time has to be stretched out to a longer and
narrower cylinder, thus reducing the crystal diameter, and
vice versa. (Compound semiconductors are, however, generally
grown with temperature based diameter control since changes of
the pull rate tend to deteriorate the material quality.)

A basic compound semiconductor puller features, therefore, the

following elements (compare Fig. 1):

(1) A temperature controlled heater.

(2) Four speed controlled motors which are in charge of

* (a) the rotation of the crucible;

(b) the rotation of the crystal;

(c) the seed lifting motion; and

* (d) the lifting of the crucible which keeps the interface
between the melt and the solid crystal at the same
location within the heater in order to guarantee a
constant temperature profile at the critical interface
region.

4

-.]/
0_?, %]P.

1.1 The LEC Growth Process For Compound Semiconductors

(3) An electronic balance which permits to determine the crys-
tal'Is weight and the weight increment; the latter signal
can be used to control the heater temperature in order to

* maintain a defined crystal diameter.

Conventional compound semiconductor Czochralski pullers use
* analog electronic circuits to control the heater temperature

and the motor speeds. Although this is an obvious approach
(since all input and output parameters are inherently analog

& signals) , there are several severe drawbacks associated with
-~ analog control circuitry:

4-(1) Analog controllers usually obtain their control parameters
(e.g., the gain of a controller amplifier) from the set-
ting of a potentiometer. It is not only difficult (and,
frequently, impossible) to modify such parameters dynami-
cally during a growth run although this might be desir-
able, it is also problematic to return to exactly the same

4-? ~settings which were used during earlier experiments once a
* parameter was changed.

(2) Despite of the fact that there are analog controllers on
the market which feature a high degree of automation, the
actual growth process is basically determined by the human
operator. The high degree of human interaction, combined
with the questionable repeatability of an analog system,
makes it difficult to guarantee exactly reproducible

4~ growth conditions for subsequent growth runs.

()Crystal growth is, in fact, a very complex and not yet
sufficiently understood process. A better understanding
of the process which is the prerequisite for any process
improvement can, however, be based only upon the thorough
analysis of actual growth data. The logging of process

-~ data, particularly, of a greater number of data channels,
is a very awkward procedure in an analog system; usually,
crystal growers have to be content with in the order of
three data channels logged on an analog chart recorder.

All these considerations favor the introduction of digital
computer control for Czochralski crystal growth. A numerical-
ly based control permits not only absolute reproducibility of
process parameters; it can much more readily be interfaced to
automation approaches, and it permits, last but not least, the
recording of growth data in a form suitable for later computer

- analysis.

%~~

-p4'5

1.2 A Digital Controller for GaAs Czochralski Growth

1.2 A Digital Controller for GaAs Czochralski Growth

The basic target of the ASU project towards digital control of
the Czochralski process for GaAs crystal growth was to replace
the standard analog controller supplied by Cambridge Instru-
ments, the company that built and delivered the puller proper,
by a suitable computer-based controller. Since the entire
setup is basically an experimental one, great emphasis had to
be put on versatility and flexibility. Therefore, the ap-
proach shown in Fig. 2 was chosen:

The digital controller is connected in parallel to the stan-
dard analog system. Both systems monitor in parallel the out-
put signals generated by the puller's sensors. Switches (ac-
tually, relays driven by the digital controller) permit to
apply control signals to the puller either from the analog or
from the digital controller. This allows, in conjunction with

-.the proper software support, to switch control between both
systems even during a growth run, which is particularly impor-
tant during the setup and tuning of the digital controller.

- For reasons of simplicity, the digital system uses part of the
signal conditioning circuitry and the motor controller and
heater SCR circuits of the standard analog console. The digi-
tal system supplies, therefore, only motor speed and heater
power setpoints; the standard analog controller's circuitry
provides closed-loop motor speed and heater power control.

_ANALOG

ICONTROLLER

DIGITAL

i"'. CONTROLLER

'" * DIGITAL

Fig. 2: Implementation of the digital Czochralski Growth
Control System.

-6-

JM' - 6- , - ei

',-.:-

S,,,',

-•A-. J p . --bth.6~

1.2 A Digital Controller for GaAs Czochralski Growth

Furthermore, only those functions of the puller which directly
affect the growth conditions are digitally controlled. Al-
though the digital system is therefore not capable of running
the puller entirely without the standard analog circuitry,
this restriction to the most important operations permits to
concentrate on features which are essential for the crystal
growth, and facilitates the hardware and software implementa-
tion of the digital controller.

The following analog signal sources were chosen to be moni-
tored by the digital controller, in parallel to the analog
Cambridge console:

(1) Three thermocouples, measuring up to three heater zone
temperatures. (Currently, only a single-zone heater is in
use.)

(2) Four tachometers which are connected to the four motors
for seed and crucible lift and rotation. (In contrast to
the Cambridge Instruments terminology of "crystal" lift
and rotation, we are using "seed" lift and rotation within
this documentation and within the software, in order to
avoid confusions of "crystal" and "crucible", particularly
in abbreviations.)

(3) Up to three wattmeters which are connected to the puller's
heater(s).

(4) The weight gauge monitoring the crystal weight.

(5) An analog differentiator circuit which generates a signal
proportional to the first derivative of the crystal weight
with regard to time. Determining the differential weight
with an analog circuit rather than calculating it numeri-
cally from the plain weight was found advantageous because
the crystal weight changes very slowly due to the slow
growth of compound semiconductors. In order to allow to
calculate with a reasonable resolution the differential
weight from the plain weight in practical time intervals,
the weight signal would have, therefore, required an
extremely high analog-to-digital resolution, in excess of
20 bits. Suitable hardware is hardly commercially avail-
able, at least, for an affordable price. In contrast, a
resolution of 14 bits is sufficient for all signals, in-
cluding the plain weight, if analog weight differentiation

v is used.

(6) Two potentiometers which return voltages proportional to
the current positions of the seed and the crucible, re-
spectively.

_ L

* .

-' V4*..-wi~'i;. ' '.

= . 1.2 A Digital Controller for GaAs Czochralski Growth

(7) A thermocouple measuring the temperature at the bottom of
the crucible ("base temperature").

. (8) A pressure gauge sensing the pressure inside the puller's
vessel.

(9) The "contact device" which is basically an ohmmeter cir-
cuit which monitors the resistance between the seed and
the melt. This resistance drops from infinity to a cer-
tain value when the seed touches the (semiconducting)
boric oxide encapsulation melt, and it drops further when

-. contact between the seed and the actual semiconductor melt
is established.

-. (10) Eight spare channels which can be used to record additio-
nal information (for example, the outputs of auxiliary
thermocouples) together with growth data.

The signals which are supplied by the digital controller as
replacements for the analog system's outputs are:

(1) Three heater SCR control voltages, anticipating a three-
zone heater. (Currently, only one control voltage is
used.)

(2) Four speed control voltages for the seed and crucible lift

and rotation motors.

(3) Up to eight internal parameters can be submitted to a
digital/analog conversion; the resulting eight analog
signals can be recorded on a suitable multi-channel chart
recorder.

In addition, digital signals are monitored by the digital
controller and provided for the puller:

(1) Four motor direction signals: They are required, in addi-
tion to the (unipolar) speed control voltages, in order to

* determine the direction of motor motion (up or down, or
clockwise or counterclockwise). The same control signals
are also used within the standard analog controller; these
signals generated by the analog circuitry are monitored by
the digital system to provide complete status information.

0. (2) One master control signal: All control signal changeover
.Y. relays are energized to select the digital system as a
, control signal source if this signal is present. Other-

wise, the analog controller is in full charge of the
puller. This is obviously an output-only signal of the
computer system.

-8-

.4, 141.

~--- - -rl -rn f S - - - - - - -

-~ 1.2 A Digital Controller for GaAs Czochralski Growth

The quasi-parallel operation of the analog and the digitalp controllers suggests a multi-step approach for the implementa-
tion of the computer-based system which is, indeed, supported
by the digital controller software. Each of the following
operation modes is upwardly compatible to the previous ones,
providing all their functions plus some additional ones:

'1) Monitoring: The puller is still controlled by the analog
* system; the computer can be used to collect, display, and

record measured data. This operation mode is evidently
essential for establishing the proper operation of the
data acquisition hard- and software, and it can be used to
compare the actions of both controllers.

(2) Manual Growth: The control signals for the heater(s) and
~ the four motors are generated by the digital system.

Still, they result directly from temperature and speed
setpoints, and no closed-loop diameter control is per-

4 formed. The power applied to the heater(s) can be con-
* trolled in two ways: The system permits to provide three

temperature setpoints, and one power limit value. The
heater power output is determined by a temperature control

.. ~ ~loop while it is less than or equal to the limit value; it
is set to the limit value if the temperature controller
would request a greater heater power. The transition be-
tween both sub-modes is smooth and transparent to the
user.

(3) Diameter Control: In this mode, the heater temperature is
* not only determined by its (manually entered) setpoint but

also by a control loop which tries to keep the measured
crystal diameter close to its corresponding setpoint.
(For practical reasons, the "manual" temperature setpoint
is corrected only slightly according to the diameter de-
viations, which results in a safer operation and gives im-
proved control over the growth parameters.)

(4) Crucible Lift Control: The semiconductor melt in the cru-
cible is gradually depleted while the crystal is grown.
In order to maintain the solid-liquid interface at the
same location within the heater, which is essential for
reproducible crystal growth, the crucible has to be raised
slowly during the growth run. This is done automatically
in this operation mode, using a specially developed algo-
rithm.

-ft.-

d ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ V- -- -- -
WP W V~-rF ' r

____ ____ ___ 1.3 Crystal Growth Automation

1.3 Crystal Growth Automation

A significant improvement of the current performance of the
crystal growth process, in particular, of its yield, can only
be expected if it is possible to grow crystals reproducibly,
with repeatable properties. This implies, however, a higher
degree of process automation in order to reduce the influence
of the irregularities inevitably induced by human control
actions. Evidently, a digital controller is much more suit-
able for automating a process than the conventional analog
systems. (Although the Cambridge Instruments analog control-
ler permits to control the crystal diameter automatically over
large parts of the growth process, its total operation is far
from automatic, and some very crucial operator actions are
still required within the "automatic" growth phase.)

The digital Czochralski Growth Control System (CGCS) was, in
general, designed to duplicate the existing analog controller.
This is not true, however, for the approach chosen towards
process automation. Our approach is not based upon a simple

S control of essentially one system parameter (namely, of the
crystal diameter setpoint) but on the reproduction of all
actions pertaining to the process. However, crystal growth is
a highly complex operation which is strongly influenced by
unforeseeable effects like random changes in the melt flow
patterns in the crucible. It was, therefore, regarded an im-
possible task to automate an entire growth run by blindly re-
peating a fixed pattern of actions in a deterministic control-
ler; we felt automation could only be achieved reasonably by
splitting the process into small steps which are more prom-
ising targets for automatic control, and by the application of
heuristic approaches. The system was, furthermore, designed
to permit gradual improvements of such process steps, in order
to optimize them more or less independently. The optimized
steps can be joined together in a suitable way, being executed
conditionally if required, to finally control an entire growth
run.

* The following features were therefore provided in the digital
Czochralski Growth Control System in order to allow the opti-
mization of the growth process:

(1) The system permits to modify interactively not only the
actual growth data setpoints (for example, the diameter or

0 the motor speed setpoints) but also any arbitrary internal
-~ system parameter ("Variable") which has an impact on the

process. This applies specifically to the control loop
parameters (e.g., to the gain of a control loop).

- 10 -

% a' -

1.3 Crystal Growth Automation

(2) The above changes can be made not only instantaneously but
also slowly, by "ramping" a parameter linearly from its
current to its intended final value within an arbitrary
time. This approach prevents not only abrupt changes
which are likely to upset a delicate process, it offers
also a simple but efficient tool to automate process se-
quences. (For example, the cone between the seed and the
crystal body can be grown by a ramp of the crystal diame-

U. ter setpoint from the seed diameter to the intended crys-
1:.. tal diameter over a time determined by the pull rate and

the planned cone length.)

(3) Operator commands which affect the actual growth process
can be optionally recorded on a disk file; the time at
which a command was issued (relative to the start of com-
mand recording) is added as a tag to each command record.
These "Macro" command files can be edited off-line, and
invoked during a later growth run where they repeat exact-
ly the recorded sequence of operator actions. since pre-
recorded commands may be arbitrarily interspersed with

0 commands entered by the operator during the run, and since
the combined sequence of commands may be recorded again on
a new disk file, the system achieves a "learning" ability.
This command recording makes sense for self-contained
process steps only (for example, for heating up the fur-
nace, or for starting the growth proper), but it saves the
operator a number of actions which frequently have to be
done within a very limited time, and it prevents the inad-
vertent omission of important process steps.

(4) Further process automation can be achieved by the condi-
tional execution of such Macro command files. A pre-re-
corded set of commands is started only if and when a sys-A tem parameter which can be arbitrarily defined with the
pertinent command incurs a certain numeric relation (e.g.,
greater than or equal) to a given constant. Such Condi-
tional commands may also be issued from a Macro file; it
is, therefore, possible to concatenate Macro files depend-

*ing on the current status of the system. Even relatively
complex process steps like seeding can thus be automated.

The current design of the Czochralski Growth Control System
does effectively permit a fully automated growth. The task of
the operator is reduced to supervising the process and inter-

* acting in the case of a malfunction (e.g., if the crystal
16M "twins"). The current CGCS can not react to such events simp-

ly because it can not "see" them. Any attempt to include such
%W features in an automated controller must therefore be based on

the introduction of additional information, for example, of
'01 data supplied by suitable optical sensors.

~W"2~W V ' w*J' . r ~P -J. --. X MAs his .x N~ V~ b VW nr7V.- 7W 1,-WV 'CV rv r'- ' .- '- W- '- ~

2.1 General Hardware Design

2. The Hardware of the Czochralski Growth Control System

2.1 General Hardware Design

The digital Czochralski Growth Control system consists essen-
tially of two parts which are linked together relatively
loosely: one part, the "brains" of the system, is a suitable
microcomputer, the other part is constituted by the hardware
which interfaces the digital control computer to the essenti-
ally analog outside world. We will deal with both parts sep-
arately.

A.>. Microcomputer systems for industrial applications are usually
designed exactly for the control task which they have to per-
form, i.e., with built-in software and a dedicated interface
to the operator and to the process they have to control. Fre-
quently, they feature only a very restricted set of function
keys for operator input, and limited display facilities for
the output of system status and data. We felt that such a
system concept would hardly meet the requirements of an exper-

* imental system which was supposed to offer the following char-
acteristics:

*Flexibility: The system software must be easy to modify,
in order to adapt the system to varying demands, to intro-
duce new features, and, last but not least, to correct
programming errors.

*Versatility: The control computer should not only be able
to control growth runs but also assist in the evaluation
of measured data taken during crystal growth, and permit
the preparation of experiments.

*Stand-alone operation: The growth controller computer
should be used as a stand-alone unit, without requiring a
host system for data transfer, evaluation, and mainte-
nance.

* *Interactive operation: The system should be run in an
interactive mode, permitting a dialogue between the opera-
tor and the controller computer. This was regarded par-
ticularly important since the main target of the project
was to learn about the dynamics of the crystal growth
process, rather than producing crystals on a large scale
according to pre-determined rules.

*Data display and logging facilities: As a consequence of
the above considerations, it was regarded essential that
the system should be able to display, evaluate, and record
as many growth related parameters as possible.

-12 -

ON.0

-. 2.1 General Hardware Design

All these demands cannot be fulfilled by a dedicated computer
system with completely built-in software resident in ROM (Read
Only Memory). It is not only an awkward procedure to modify
ROM resident programs, particularly if frequent changes are

. required, it is even close to impossible to accommodate
lengthy and frequently conflicting routines within the limited
memory space available. Since it was necessary anyhow to pro-
vide mass storage devices for growth run data logging, we
planned a generic disk-based microcomputer system which per-
mits to load arbitrary programs from flexible disks. Command
input to and data output from the control computer is handled

-. by a standard CRT terminal which permits interactive operation
- and data display.

I .t

- 13 -

-.

2.2 Computer Hardware

2.2 Computer Hardware

The hardware of the controller computer is based upon an Intel
.c.. 8085 eight-bit microprocessor. This particular processor was

chosen because of the vast experience we already had with it
.and because of the support software which was already avail-
.able for it, which permitted to expect a fast system develop-

ment. The experiences made with comparable applications
showed that the processor's performance is sufficient if a
system is well designed. The 8085 is able to address a 64
KByte memory space (plus 256 Input/Output (I/O) ports); with
regard to the desired flexibility and versatility, as much of
this memory space as possible was to consist of read-write
memory (RAM - Random Access Memory). Only the absolute mini-
mum of ROM which is indispensable for the operation of a com-
puter was provided; the ROM resident code has, essentially, to
control the loading of the actual application software from
disk. The memory components available suggested, in addition,
a memory bank switching approach which further reduces the
amount of memory space consumed by ROM: The total ROM area of
16 KBytes is subdivided into two banks of equal size which can
be activated alternately and which consume, therefore, only 8
KBytes of address space. One bank holds confidence test rou-
tines and a Monitor which are only needed for starting and/or
debugging the system; the other bank is reserved for perma-
nently required operating system routines. Therefore, 56
KBytes are available for RAM within the 64 KBytes address
space; Fig. 3 shows a memory map of the controller computer.

SFFFH

~EOOOH

ECPANSION
AOOOH 48 K BYTES

RAM

* 8000H

5000H

4000H

RAM 2c K BYTES

* R OMBANKJ ROMBANK0 O SBE

0.
8 8K"Y

Fig. 3: Hardware memory map of the CGCS computer.

0 - 14-

2.2 Computer Hardware

2NSOLE MA, V -IAV DISK 01 358 CRYSTAL PUUER
"E;MNAL PrIN'PE ;ECCRDER DRIVES

o- ------------------- -------------------

,ELAYS SIGNAL

:NTERFACE CONDIT.

INTER - FACE
--- -- -- -- -- ---- -- -- -- -- -- --- -- --- - - - - -

S-SBX 331 F SBC 30 1I

SE 4 BC 064A SBC 517 iSBC 204 MP 8316-V DT 772/57161
Single Board I Memory 0 ' 0/A AID
Computer i Expansion anson Conol Convee Converter

INTEL MULTIBUISCONTROLLER COMPUTER

Fig. 4: Block diagram of the CGCS computer.

The controller computer is built of commercial OEM (Original
* "" Equipment Manufacturer) components most of which are supplied

by Intel Corporation; these boards are interconnected via
Intel's Multibus. The system configuration is shown in Fig.
4: An Intel iSBC 80-24 Single Board Computer board holds the
8085 CPU, the 2x8 KBytes of ROM, 8 KBytes of high-speed RAM,
and an Intel 8231 Arithmetic Processing Unit (APU) on an iSBX
331 expansion board which permits to increase the throughput,
particularly of data output to the system console. Two expan-
sion boards, an iSBC 517 I/O, and an iSBC 064A Memory Expan-
sion Board, provide additional I/O lines and the remaining 48

* KBytes of RAM, respectively. (An iSBC 028A board was used in
the ASU system instead of the iSBC 064A board due to avail-
ability reasons. Both boards are interchangeable in the
controller computer; in either case, only 56 KBytes of the 64
KBytes RAM on the iSBC 064A, or of the 128 KBytes RAM on the
iSBC 028A are used.) An iSBC 204 Floppy Disk Controller board
constitutes the interface to the mass storage which consists
of two (industrial standard) 8" single side, single density
flexible disk drives with a storage capacity of 250 KBytes
each.

-15-

14

_*.Z*

2.2 Computer Hardware

A standard "dumb" CRT terminal serving as an operator console
is connected to the iSBC 80-24 Single Board Computer via an
RS-232 serial interface. A similar serial interface on the
iSBC 517 I/O Expansion Board connects to a printer whose main
task is providing a hard copy of the dialogue between the
operator and the Czochralski Growth Control System.

The controller computer has to monitor and generate a number
of analog and digital signals which were listed in chapter 1.2
of this documentation. The interface to the analog signals
consists of one Analog-to-Digital (A/D) and one Digital-to-
Analog (D/A) Converter board. Both boards are interconnected
to the microcomputer proper via the Multibus system bus; data
is read from and written to them via I/O port accesses.

The A/D Converter is a Data Translation DT772/5716-32DI-B-PGH
board which features 32 differential input channels with a
sensitivity of ±10 V (which may be increased by a factor of up
to 8 under software control). The voltage of the (software
selectable) input channel is converted into a 16 bit integer
value by the board, corresponding to a resolution of 1/65,536;
this data is read and eventually processed by the computer. A
bank of isolation amplifiers between the signal sources and
the A/D converter prevents ground loops which might induce
noise and provides the necessary pre-amplification of low-

* - level signals like the outputs of thermocouples.

The analog control voltages for the puller are output by a
Burr-Brown MP8316-V D/A Converter board. This board features
16 channels with an output voltage swing of 0 ... 10 V; its
resolution is 12 bit (1/4,096). Eight of the 16 output chan-
nels are reserved for the interconnection to an analog chart
recorder for on-line data output.

- Digital I/O of the motor direction information and of the con-
.- troller selection is performed via a series of digital I/O
. ports on the iSBC 517 I/O Expansion Board. These signals are

buffered and pre-processed by a simple external digital cir-
* cuit. Relays constitute the actual input and output interface

to the puller, permitting absolute isolation between the pul-
ler's circuitry and the computer.

O°V

- 16-

%..%

-2. Hra Setup

223 Hardware Setup

'°. _ _ _ _ _ _ _ _ _ _ _ _

2.3.1 iSBC 80-24 SinQle Board Computer

' A detailed description of the operation of the iSBC 80-24
* .board is contained in Intel's iSBC 80-24 Single Board Computer

Hardware Reference Manual (order No 142648-001). In general,
the default settings listed there, and the hardware modifica-
tions specified in Intel's iRMX-80 User's Guide (order No
9800522-05) apply. If the following specifications contradict
the data supplied by Intel, however, the information given in
this documentation is valid.

The jumpers listed below have to be removed from the board
(the numbers in parentheses refer to the sheet of the Intel
schematics and to the location on this sheet):

E83 - E84 (9-B4)
E84 - E85 (9-B4)
E100 - E118 (9-C4)
El01 - E106 (9-C4)
E119 - E120 (9-C4)
E148 - E149 (4-C7)

The following jumpers have to be added:

E141 - E144 (3-B7): This jumper suppresses CPU wait states
if ROM is accessed. Even 2732A EPROMs
with 250 ns access time were found to
be fast enough to be read without
intervening wait states.

E102 - E91 (9-B4): Connects Multimodule interrupt MINTRI
'- (J6) to IRO.

El01 - E118 (9-C4): Connects output of Timer 0 to IRI.
E100 - E106 (9-C4): Connects MULTIBUS INT2/ to IR2.
E99 - El05 (9-C4): Connects MULTIBUS INT3/ to IR3.
E98 - E109 (9-C4): Connects MULTIBUS INT4/ to IR4.
E97 - E110 (9-C4): Connects MULTIBUS INT5/ to IR5.
E96 - E117 (9-B4) : Connects 80-24 USART RxRDY to IR6.
E83 - ElI5 (9-B4): Connects 80-24 USART TxRDY via OR gate

(U34-9) to IR7.
E84 - E112 (9-C4): Connects MULTIBUS INT7/ via OR gate

(U34-10) to IR7.
E119 - E114 (9-C3) : Connects U15-9 (PFIN/ latch) to

~INTR5.5.

-17 -

* .d d .

2.3 Hardware Setup

The following modifications are required for proper PROM type
decoding:

(a) Install the single jumper in J7 (4-B6) between pins 6 and
9.

(b) Remove the four-line jumper in J8 (4-B6). Install an
8-pin header in J8 which has three parallel jumpers be-
tween pins 9 and 10, 8 and 11, and 7 and 12, respectively.
Connect a wire from J8, pin 13, to wire-wrap post E80.
Alternatively, a wire connection can be made on the solder
side of the board between J8, pin 13, and pin 4 of the
8085 CPU (U36).

These connections simulate a set of four 2716 EPROMs to the
address decoder. The address pins All of the 2732A EPROMs
actually used are connected to the SOD output of the 8085 CPU,
which permits ROM bank switching.

Install the iSBC 301 RAM expansion board, and make sure that

the maximum RAM address is set to 3FFFH on the 80-24 board
(jumper 154-155; default factory configuration). Install the
iSBX 331 Arithmetic Processing Unit in Multimodule connector

. J6 (i.e., in the Multimodule connector in the center of the
board). No changes of the default configuration of the iSBX
331 APU board are required. Refer to Intel's iSBX 331 Fixed/
Floating-Point Math Multimodule Board Hardware Reference
Manual (order No 142668-001) for further information.

2.3.2 iSBC 064A (or eguivalent) Memory Expansion Board

Set the base address of the 64 KByte RAM to OOOOOH. (This is
the factory default configuration of all boards with more than
32 KBytes RAM.) No further connections or modifications are
required. Refer to Intel's iSBC 016A/032A/064A/028A/056A RAM
Board Hardware Reference Manual (order No 143572-001) for the

* details of the board setup.

2.3.3 iSBC 517 I/O Expansion Board

* •Set the I/O base address of the board to OBOH (jumper pad S2
1-6 and jumpers 87-88). Remove jumper 103-111. Connect the
TxRDY and RxRDY outputs of the 8251A USART on the 517 board to

, the MULTIBUS INT7/ and INT5/ lines, respectively (jumpers 97-
105 and 96-107). Make sure the baud rate generator for the
USART is wired for 153.6 kHz (corresponding to 9600 Baud),

- 18 -

S

r. -

A..%% 9 J. '

.. ? 2.3 Hardware Setup

which is the factory default configuration (jumper pad S1 I-
4). Refer to Intel's iSBC 517 I/O Expansion Board Hardware
Reference Manual (order No 9800388-01) for further informa-
tion.

* 2.3.4 iSBC 204 Disk Controller

Set the I/O base address of the board to 80H (DIP switch S2:
4-off, 5-off, 6-off, 7-on). Connect the Controller's inter-
rupt output to MULTIBUS INT2/ (jumper 63-67). Configure the
disk drives as required (compare Intel's iSBC 204 Flexible
Diskette Controller Hardware Reference Manual (order No

-~ 9800568A), and the documentation supplied by the manufacturer
.- " of the drives), and connect them to the controller.

2.3.5 DT772/5716-32DI-B-PGR A/D Converter Board

. Configure the board for I/O mapped operation at an 8-bit base

address of 20H:

Remove the following jumpers:

W 4 (memory-I/O mode)
-' W 6 (memory-I/O mode)

. W12 (addressing mode)
- W33

W34
W73 (addressing mode)
W36 - W42 (base address)
W 2 (INH1/)
W 3 (INH2/)
W20 (error interrupt)

. W21 (data ready interrupt)

Install the following jumpers:
W 5 (memory-I/O mode)

W 7 (memory-I/O mode)

W31 (base address)

All other jumpers should be left at the factory configuration.

. ,Refer to the User Manual for DT772 Series Analog Input Systems
S"for MULTIBUS Computers (document number UM-02829-A) for fur-

ther information.
I..

- 19 -
J.

.~N Np.,

2.3 Hardware Setup

2.3.6 MP8316-V D/A Converter Board

The D/A converter board must be operated I/O-mapped, with a
base address of 40H. Its output voltage must be unipolar, 0
to 10 volts. The foilowing, and only the following, jumpers
must be set on the board:

W3 *
W 5
W17
W19 *
W21
W23
W25 *
W27 *
W29
W31 *
W33 *
W34
W37 *

* W41
W43

(* denotes the default factory setting.)

2.3.7 Cardcage

Assign the highest MULTIBUS priority to the iSBC 204 Disk Con-
troller. Install a mate for the 80-24 board's P2 connector,
and connect a momentary action switch (if possible, a switch
labeled "INTERRUPT") between ground and P2-19 (PFIN/). This
switch causes an RST 5.5 interrupt if pressed, which is used
by the ROM resident code to vector control to the Monitor.

"'. Advantageous but not indispensable is a "RUN" LED (or a pair
S.-" of complementary "RUN" and "HALT" LEDs) connected via P2-28

(HALT/).

2.3.8 Console Terminal

Any dumb CRT terminal can be used in the controller computer
which allows direct cursor x-y addressing via control sequen-
ces with a maximum length of 4 bytes. The actual control
codes are determined by a disk file which is loaded together
with RXISIS-II (RXISIS.PSC; compare chapter 3.3.4.1.7) and
which can easily adapted to terminals with different control
codes; the system as implemented at ASU is configured for a

0.

-20-

et 10

2.3 Hardware Setup

WYSE WY-50 (or a Lear Siegler ADM-5) terminal which uses the
following hexadecimal control codes or sequences:

Cursor Up: [OBH]
Cursor Down: [OAH]
Cursor Left: [08H]
Cursor right: COCH]
Cursor Home: [IEH]
Clear Entire Screen: [lAH]
Clear line: [lBH] + [54H]

. "Absolute Cursor Positioning:
[1BH] + (3DH] + [lFH+<line>] + [lFH+<column>]

(<line> and <column> are the intended line and column numbers,
starting with 1. The control sequence for positioning the
cursor at line 5, column 16 is therefore: [IBH] + [3DH] +
[24H] + [2FH].)

Configure the CRT terminal as follows:

Baud rate: 9600

Parity: odd
Data bits: 7
Protocol: CTS/RTS

The terminal should permit to send Breaks; it must service the
CTS/RTS handshaking lines.

2.3.9 Printer

Any printer with a line length of 132 characters can be used.
The printer must be equipped with an RS232 interface and set
up as follows:

Baud rate: 9600
Parity: none
Data bits: 8
Protocol: CTS/RTS

It must service the CTS/RTS handshaking lines.

Although a printer which can be set to 9600 baud is prefer-
able, any other baud rate can be used if the iSBC 517 board is
set up correspondingly (compare chapter 2.3.3).

- 21 -

'p

'VR

2.4 Computer -Puller Interface

2.4 Comouter -Puller Interface

This chapter is only intended to present a general overview
over the interface between the puller and the computer, as far

* . as is required for understanding the operation of the CGCS.
Detailed information about the hardware will be given in a
separate documentation.

2.4.1 Analog Input Signals

The following analog input signals are submitted to analog-to-
digital conversion via the analog input interface circuitry:

*Three Heater Temperatures: Since the puller on which the
* CGCS was implemented at ASU has only one heater, one hard-

ware interface only has been installed for the heater ther-
mocouple. The measured temperature (or, rather, thermo-
couple voltage) is routed within the Analog Data Input task

*of the CGCS to all three heater temperature channels. The
input of the interface circuitry is connected directly to
the heater thermocouple. The nominal input voltage range is
0 to 30 my, which corresponds to a temperature range of

A'approximately 20 to 1,500 *C (20 pV =1 1 C).

*Base Temperature: This temperature is measured with a ther-
mocouple located at the center of the bottom of the cruci-
ble. The input of the interface circuitry is connected dir-
ectly to the base thermocouple. The nominal input voltage
range is 0 to 30 mV, which corresponds to a temperature
range of approximately 20 to 1,500 *C (20 p.V ---1 C).

*Weight: The signal supplied by the weight gauge is pre-
processed by the standard analog circuitry of the Cambridge
Instruments puller. It is picked up from the input of the
analog Automatic Diameter Controller board. Its nominal
input voltage range is 0 to 8 V for 0 to 8 kg (1 V =1 kg).

*Differential Weight: This input signal is obtained from
analog differentiation of the above weight signal. This
differentiation is done within the analog Cambridge Instru-
ments console by means of a dedicated board (the predecessor
of the Automatic Diameter Controller which essentially con-
tains the differentiator circuitry only). Although, on
principle, the Differential Weight signal could have been
picked up from the Automatic Diameter Controller board as
well, this solution was found to be not ideal because any
inadvertent or deliberate adjustment on the analog console
would have affected the Differential Weight signal measured

-22 -

2.4 Computer - Puller Interface

by the CGCS. The nominal input voltage range is 0 to 10 V
for 1 to 10 g/min (1 V 1 1 g/min).

* Seed Lift Speed: This signal is picked up directly at the
seed lift tachometer. Its nominal input voltage range is 0
to ±90 V, corresponding to a lift speed of 0 to ±250 mm/hr
(1 V 2 2.78 mm/hr).

* Crucible Lift Speed: This signal is taken from the crucible
lift tachometer. Its nominal input voltage range is 0 to
±90 V, corresponding to a lift speed of 0 to ±20 mm/hr (1 V

0.22 mm/hr).

* Seed Rotation Speed: This signal is output by the seed ro-
tation tachometer. Its nominal input voltage range is 0 to
±90 V, corresponding to a rotation speed of 0 to ±60 rpm (1
V ! 0.67 rpm).

* Crucible Rotation Speed: This signal is generated by the
crucible rotation tachometer. Its nominal input voltage
range is 0 to ±90 V, corresponding to a rotation speed of 0
to ±66.9 rpm (1 V 0.74 rpm).

* Seed Position: The Seed Position signal is taken directly
from the position potentiometer. Its nominal input voltage
range is 0 to 6 V for a seed position range of 0 to 600 mm
(1 v i00 mm).

* Crucible Position: The Crucible Position signal is picked
up directly at the position potentiometer. Its nominal in-
put voltage range is 0 to 2 V for a crucible position range
of 0 to 200 mm (1 V 1 100 mm).

* Gas Pressure: This signal is output by the gas pressure
conditioning unit inside the analog Cambridge Instruments
console. Its nominal voltage range is 0 to 1.5 V, cor-
responding to a pressure range of 0 to 1,500 psi (1 mV 1
psi).

* Three Heater Powers: The Heater Power signals are taken

from the power indication output of the heater SCR con-
trollers which are part of the analog Cambridge Instruments
circuitry. Since the puller on which the CGCS was imple-
mented at ASU has only one heater, only one hardware inter-
face has been installed for the heater power. The measured
value is routed within the Analog Data Controller task of
the CGCS to all three heater power channels. The nominal
voltage range of the Heater Power signal is 0 to -5 V for a
power range of 0 to 60 kVA (1 V 12 kVA).

- 23 -

9,

2.4 Computer - Puller Interface

* Contact Device: This signal is supplied by the pertinent
hardware of the Cambridge Instruments analog console. Its
nominal range is 0 to 1 mV, corresponding to a reading on
the analog contact device meter of the Cambridge console of
0 to 100 units.

Each of the above 17 channels (only 13 of which are currently
implemented at the ASU puller) is measured via an interface
schematically outlined in Fig. 5:

ISOLATION BUFFER
FROM AMPLIFIER
PULLER AMPLIFIER

LOWPASS ' LOWPASS -10...+10 V
L,--j FILTER #1 FILTER #2

I >

GAIN

GAIN
OFFSET

AD 215... +215 U GROWTH
---I CONVERTER ---------------- LOWPASS -------- CONTROLLER

, FILTER ROUTINES

CONTROLLER COMPUTER

Fig. 5: Analog input interface.

Two generic types of interface boards were developed, one, for
the thermocouple signals, and one, for all other sources.
(Eight spare channels which were provided for various experi-
mental measurements can be equipped either with a thermocou-
ple, or with a general purpose amplifier.)

The signal generated by the puller is submitted to an isola-
tion amplifier via an input voltage divider which permits a
vernier gain adjustment, and reduces the high-voltage input
signals from the tachometers to the range of ±10 V permitted
by the isolation amplifiers. A low-pass filter blocks pos-
sible r.f. noise which might cause interferences in the isola-

p. - 24-

-V.

2.4 Computer -Puller Interface

tion amplifiers. (No vernier gain adjustment was provided for
the thermocouple amplifiers.) The isolation amplifier pre-
vents ground loops and the interferences which are usually
caused by them, and it provides an easy way of inverting the

**polarity of signals like the heater power voltage. Its gain
*is set such that the voltage at the output of the isolation

amplifier is in the range of -10 V to +10 V. This output
signal is submitted to a second low-pass filter with a cutoff
frequency in the order of 0.1 Hz; this filter is required for

* eliminating components with a frequency greater than half the
sampling frequency (1 Hz) which might cause aliasing other-
wise.

The conditioned signals from all analog input channels are
* submitted to a 32 channel, 16 bit A/D converter which is phys-

ically part of the controller computer. The A/D converter is
configured to transform analog signals in the range -10 V ...
+10 V to signed integers between -32,768 and +32,767. The A/D
converter operates under the control of the CGCS software; it
is programmed to read each active input channel once per sec-
ond in a random access mode. The relation between the physi-
cal input channels of the A/D converter and the logical data
used by the CGCS software is determined by a software-based
table which links each element in an input data array to one
hardware channel of the A/D converter. This table, and even
its size, can be modified easily, even while the CGCS is run-
ning, which permits an extremely flexible operation if hard-
ware channels have to be activated or de-activated temporarily

* for some experiments.

Before the data read from the A/D converter are made available
to other tasks within the CGCS, they are submitted to digital
low-pass filtering. In contrast to the hardware filter cir-
cuitry, the software filter routines can be re-programmed eas-
ily; this filtering further reduces random noise and spikes.
This is particularly important if not each measured input

* value is actually used by the CGCS algorithms, which applies,
for example, to all input data required for the diameter eval-
uation. The low-pass filters provide in this case a weighted
average over the recently measured data, rather than the plain
(and possibly noisy) measured values.

-25-

2.4 Computer -Puller Interface

2.4.2 Analog Output Signals

The following signals have to be supplied to the puller by the
digital controller:

*Three Heater Power Setpoints: These output signals replace
the output of the analog temperature controllers within the
analog console; they are connected directly to the inputs ofi the heater SCR controllers. Only one Heater Power Setpoint
channel is currently used in the single-heater system at

* * ASU. The voltage range required is 0 to 5 V, corresponding
to 0 to 100 percent heater power.

*Four Motor Speed Setpoints: These signals replace the set-
point voltages of the analog controller for the seed and
crucible lift and rotation speeds. Their required voltage
range is 0 to 10 V for the rotation speeds, and 0 to 5 V for
the lift speeds.

The analog output circuitry is schematically shown in Fig. 6.

GROWTH
CONTROLLER ------2--SGN L --- _______

ROUTINES--------------CION O...+ 212 DA0... +10V~
------------------------- --------------- CONVERTER

SIN ------------- DIIA
PROCE SS. --------- OUTPUT

CONTROLLER COMPUTER

5-,, VLTAGEANALOG MOTOR CONTROLLERSVOLTAGEHEATER SCR CONTROLLER
DIVIDER CHART RECORDER

_______RELAYS ______

0.CONTROL. MOTOR DIRECTION RELAYS

Fig. 6: Analog output interface.

, - 26 -

2.4 Computer - Puller Interface

The 12-bit D/A converter used was set to unipolar output since
only positive voltages are required by the puller. Digital
data supplied to it by the Analog Data Controller task have
therefore to be converted to their absolute values, and scaled
to a 12-bit range (0 to 4095). While the heater powers are
intrinsically positive data, this does not apply to the motor
speed setpoints whose signs determine the direction of the
movement (up/down or clockwise/counterclockwise). The signal
conditioning routine strips therefore the signs off the motor
speed setpoints, and supplies them to a digital output routine
which activates the relays which control the motor directions
accordingly. (It should be noted that the measured motor
speed data are bipolar, while the pertinent setpoints must be
unipolar.)

The output signals generated by the D/A converter are connect-
ed to the corresponding inputs of the puller either directly,
or via simple voltage dividers. It was not found necessary to
install isolation amplifiers for the output signals, firstly,
because their voltage levels are relatively high, and second-

0ly, because they are in a less sensitive part of the controlloops.

Eight channels of the D/A converter are hooked up to a chart

recorder; no special interface is required for them either.
The signals supplied to the chart recorder are set to their
absolute values by the CGCS software; a message is issued at
the CGCS console if a parameter which is being routed to the

-, analog output changed its sign.

U 2.4.3 Digital Input and Output

The sole application of digital input signals is monitoring of
- .'the status of the motor direction control relays inside the
, Cambridge Instruments analog console. These relays are con-

trolled by switches on the analog console if the analog con-
.7 troller is in charge, or, otherwise, by digital output gener-

ated by the CGCS. Since one of the constraints of the CGCS
p was that a "bumpless" transition between the analog and the

digital controllers should be possible under all circumstan-
- . ces, it was necessary to monitor this relays status continu-

ously. This information is used to preset the motor speed
S .' setpoints when the CGCS gains control; the digital controller

provides output signals for the motor control relays which
' *.replace the ones derived from the front panel switches on the
' analog console.

0.,-
27 -

N "O

5-°

2.4 Computer -Puller Interface

Status input and control output is mapped to two lines for

each motor, which corresponds to one input and one output
byte, respectively. one additional digital output line con-

frmthe analog console if it is de-activated, and from the
digital controller if it is energized.

Tedigital outputs are routed to relays on a digital inter-
faeboard which generate the actual control signals for the

Cambridge Instruments circuitry, and which provide full isola-
tion between the 5 V logical level within the controller comn-
puter, and the 28 V rectified a.c. voltage used by the Cam-
bridge console for relays control. Similarly, the relays sta-
tus of the Cambridge console is converted into signals suit-
able for digital processing by a number of relays on the digi-
tal interface board.

-28-

3.1 Design Considerations for a Real-Time Operating System

3. System Software on the CGCS Comnuter

3.1 DesiQn Considerations for a Real-Time OperatinQ System

3..1 Intel's iRMX-80 and FORTRAN

From the software point of view, there are various approaches
for designing real-time process controllers: The most sim-
plistic one is writing a dedicated program which has to com-

%. kprise all auxiliary functions like console and data I/O, and
which is able to react properly to asynchronous external

..." events (like an operator command, or a machine status change)
by the use of hardware interrupts, or by means of software
polling loops. For a more complex environment or process to
be controlled, however, this approach is hardly feasible any
more. The programmer is not only overburdened with all the
auxiliary and housekeeping functions whose number and com-
plexity increase dramatically as the complexity of the system
operations grows; the controller software proper also tends to
get out of hand and become confused due to the lack of modu-
larity which is frequently found with such systems.

A considerable improvement of the readability and serviceabil-
ity of a process controller or any other real-time computer
application can be achieved by using a special real-time oper-
ating system. An operating system off-loads the programmer
from chores like providing software drivers for peripheral
devices; it usually hides the genuine constraints of real-time
operations from the programmer, permitting him to concentrate
on a functional rather than chronological approach for the
layout of the controller software. Breaking down the opera-
tion of a system into a number of more or less autonomous

- "tasks" is a first step towards modular programming; since
tasks can be coded rather independently (even by different
programmers), program development is facilitated, and correc-
tions of errors or software modifications become easier.

For the 8-bit, 8080/85-based, hardware chosen, a real-time
operating system has been distributed by Intel Corporation

.under the name "iRMX-80" (Intel's Real-Time 1ultitasking
' Executive for 8080 or 8085 processors). Although already

obsolete when finally applied for the design of the CGCS,
iRMX-80 provides absolutely sufficient support for an applica-
tion like the Czochralski controller, at least, with a number

0 . of specially written enhancements.

The development of software for an 8-bit environment was
always somewhat impeded and limited by the restricted availa-
bility of programming languages. Intel supported - at least at
the time when the CGCS and its supporting software were de-

- 29 -

S;N
'V°. ~.V~

3.1 Design Considerations for a Real-Time Operating System

signed - only three high-level languages in addition to as-
sembly language, namely, BASIC, PLM-80, and FORTRAN.

As an interpreter-based language, BASIC had to be ruled out
immediately for an implementation of a more complex system
like the CGCS since it could not be combined reasonably with
the functions of iRMX-80 to constitute a genuine real-time
system. There is an iRMX-80 based version of BASIC which
does, however, not allow to break down a complex system into a
number of BASIC coded tasks; its interface to modules program-
med in different languages is more than awkward. The size of
the BASIC interpreter and, even more, its insufficient speed
virtually prohibit its use for any serious application. BASIC
is a valuable tool, though, for the setup and testing of
various I/O interfaces, and for the fast development of small
auxiliary programs; two BASIC versions were therefore prepared
to be run on the CGCS computer.

PLM-80 (a dialect of PL-I for the microprocessor environment)
was used and recommended by Intel as an implementation lan-
guage for iRMX-80; accordingly, the interfaces to the iRMX-80
system routines were designed for a call by PLM-80 coded mod-
ules. PLM-80 has a major drawback, though: Its numeric
routines support only integer variables in the range of
-32,768 to 32,767; the floating-point operations which were,
in fact, found to be required for most of the CGCS modules
would have to be coded with awkward calls to routines of a
floating-point library.

FORTRAN-80 (Intel's implementation of FORTRAN 77), finally,
was the only language supplied for the 8-bit environment which
provides floating-point operations as a standard. FORTRAN was
therefore the obvious choice for at least those routines of
the CGCS which use floating-point variables. Although the
program development environment provided by Intel would have
permitted to freely combine modules coded in FORTRAN-80, in
PLM-80, and in assembly language, it was not considered wise
to use both high-level languages: Either of them requires a

*separate set of supporting library routines (although FORTRAN-
80 shares some of the PLM-80 libraries), which would have
increased the total size of the program code unduly. Since
the capabilities of PLM-80 are essentially a subset of those
supported by FORTRAN, FORTRAN-80 was chosen as the basic im-
plementation language of the CGCS.

1P Unfortunately, FORTRAN-80 uses a parameter passing convention
which is, in general, not compatible with PLM-80 and, hence,
iRMX-80; interface routines had therefore to be provided which
permit to call iRMX-80 system routines from FORTRAN. These
routines were generally written in assembly language with

,... - 30-

-'p

'V.

3.1 Design Considerations for a Real-Time Operating System

regard to speed and code size. Furthermore, the standard
FORTRAN-80 1/O routines turned out to be practically unusable
for the application in mind: FORTRAN 1/O is extremely slow
and requires an excessive amount of program code and stack

,:~:resources. In addition, it does not reasonably support the
generation of a fixed console screen mask which was found
indispensable for the continuous display of a large number of
measured values. These considerations led to the development
of dedicated routines for console, printer, and disk I/O which
require only a fraction of the system resources needed by the
corresponding FORTRAN-80 routines. These I/O routines were
coded in assembly language as well in order to guarantee a
sufficient performance. The obvious penalty of using special
1/O routines was, however, that the resulting code can hardly
be regarded as standard FORTRAN.

* A further enhancement was provided by replacing the standard
software-based floating-point libraries of FORTRAN-80 by

~. < specially written interface routines which use the numeric
processor hardware, i.e., the 8231 Arithmetic Processing Unit

0 chip on the iSBX-331 expansion board. With a small deteriora-
tion of the achievable accuracy, these routines increase the

. execution speed of floating-point operations by about one
order of magnitude, and simultaneously decrease the size of
the required floating-point program code to about 50 percent.

Within this chapter, the general rules for coding FORTRAN
tasks in an iRMX-80 environment shall be reviewed. The dis-

~ cussion comprises the following points of view:

- * The structure of a task in a FORTRAN-iRMX-80 environment.

- I * Sharing of common code sequences between several tasks.

* Data transfer between tasks.

/\ <P Generation of RMX control structures in a FORTRAN based
system.

*Input and output of data in a real-time environment.

For basic information about iRMX-80 and FORTRAN-80, the reader
should refer to the pertinent documentation supplied by Intel
Corporation.

-31 -

3.1 Design Considerations for a Real-Time Operating System

3.1.2 The Structure of a Task in a FORTRAN-iRMX-80 Environ-lie ment

No user-supplied main programs are permitted in an iRMX-80 en-
vironment. The attempt to execute a main program under iRMX-
80 will result in a disastrous system error. The main routine
of each task must therefore be coded as a subroutine in FOR-
TRAN; its general structure comprises an initialization se-
quence which is executed only once when the task starts run-
ning the first time, and an endless loop. There must not be
any exit from this loop, particularly not via a "RETURN"
statement, except if a task suspends or deletes itself. The
subroutine forming the main body of the task may in turn call
other subroutine or function subprograms; special care must be
taken, though, if a routine may be used by more than one task.

The task initialization sequence depends on which operations
are to be performed by the task. It must contain a call to

the routine FQFSET if the task uses any floating-point opera-
tions or intrinsic functions, a call to the routine FXIOST

*O (compare chapter 4.2.2.1) if the routine performs any I/O
operations via the special routines rather than via FORTRAN
"READ" or "WRITE" commands, and a call to FRINIT (compare
chapter 4.2.1.2) for each message - response exchange com-
bination which is permanently allocated to the task. Further-
more, all other exchanges including interrupt and "flag inter-
rupt" (a special enhancement added to iRMX-80, compare chapter
4.2.1.4) exchanges which should be built by the task must be
created during this initialization sequence. A FORTRAN task
which uses the first three functions may therefore have the

-:' following structure:

SUBROUTINE MYTASK
- INTEGER*1 MYEXCH(19), IOEXCH(31)

COMMON /MYTSKl/ MYEXCH,X,Y,Z,AB
C (The named COMMON block comprises 19 bytes
C reserved for an exchange-message combination,
C and 5 REAL variables with 4 bytes each.)

CALL FQFSET (0,0)
C (Compare FORTRAN-80 Compiler Operator's Manual)

CALL FXIOST (IOEXCH)
C (This subroutine call initializes the I/O
C structures; compare chapter 4.2.2.1)

CALL FRINIT (MYEXCH,20,199)
O.' C (This statement has the effect that the next 20

C bytes following MYEXCH are incorporated in
C a message with TYPE 199; compare chapter 4.2.1.2)
100
C (The main task code follows here)

GOTO 100

-32 -

V~~~~~ ~~~~~ V % N % % .Xj.. . ~. ~ ~ ~ > ... ~
gg ~ ~ %

3.1 Design Considerations for a Real-Time Operating System

3.1.3 Sharingr of Common Code Secruences Between Several Tasks

Coding in a real-time environment differs significantly from
the straightforward approach which is possible with batch
execution. In general, there is no possibility to predict

* which task will run at which time or will be going to access
data or shared software resources. The basic philosophy of
iRMX-80 is that separate resources are allocated to each task,
in particular, a separate stack. Whenever a task is inter-
rupted or waiting at an exchange its current status (i.e., the
status of the processor's hardware registers) is saved on the
task's stack. Therefore, data is automatically protected if
it is kept on the stack or within memory locations which are
local to the task (which means that they cannot be accessed by

*any other task). A variable which is not kept in a COMMON
block is intrinsically local to a FORTRAN routine.

This protection does not hold, however, if a subprogram is
~ .. shared by several tasks and if this routine uses locations in

4 read-write memory for intermediate data storage. If a task
has been interrupted while executing such a common routine it

%P will resume execution exactly at the point where it was inter-
rupted when it becomes ready again; still, the local data

* within the common routine may have been changed meanwhile by
another task which used the same routine. There are several
possibilities to avoid such unpredictable occurrences: The

rd common routine may be linked separately to each task which
uses it, it may be compiled with the "REENTRANT" compiler
option, it may disable interrupts during critical operations,
or a software lock may be applied to it.

- The first approach may appear to be the easiest one, still, it
expands the memory requirements for the code significantly,
particularly if the routine is rather lengthy (and even rela-
tively simple FORTRAN routines turn out to require plenty of
code when they are compiled).

The second approach permits the mutual use of a routine by
several tasks as data is allocated on the task's stack rather
than in absolute memory locations if reentrancy was specified.
Still, this method extends the stack requirements of each task

* which calls the common routine; stack requirements are already
rather high anyhow in a FORTRAN environment. In general, the
FORTRAN library routines, e.g., for floating point arithmetics

4 and intrinsic functions, are reentrant, and so are most of the
iRMX-80 modules. Storing local data on the tasks' stacks,
they add significantly to the stack requirements. The stan-

W, dard FORTRAN-80 I/O routines, for example, require an addi-
~, . tional stack of 800 bytes for each task which performs I/O.

Besides allocating data on the tasks' stacks, the FORTRAN-80

-33 -

3.1 Design Considerations for a Real-Time Operating System

floating-point routines use locations in read-write memory
which are intrinsically private to each task because they are
located within an extension of its task descriptor. (A simi-
lar approach is also applied by the specially written 1/O rou-
tines; compare chapter 4.2.2.)

Routine protection by disabling all interrupts of the system
constitutes the least code and execution time consuming pro-
tection approach. A routine which is protected in this way
can never be interrupted since external events (including
system clock ticks) simply cannot be recognized by the operat-
ing system nucleus (which is in charge of the interrupt han-
dling); no other task can become active therefore while inter-
rupts are disabled, no matter what its priority is. However,
this protection technique cannot be used for lengthier code
sequences because it would unduly deteriorate the reaction of
the system to external events, and it cannot be used on prin-
ciple if the protected code tries to invoke operating system
functions. Its application is therefore limited to suffi-
ciently fast processes which do not require iRMX-80 routines;

* the high-speed floating-point routines for the numeric proces-
sor (compare chapter 4.2.5) were designed to use protection by
interrupt disabling.

The last method of protecting a common routine, namely, by
means of software interlocks, imposes a slightly increased
execution time overhead; it may also affect the order of exe-
cution of the tasks. The software interlock makes any task
wait at an exchange immediately at the beginning of the common
routine if the routine is being used by another task. No
matter what its priority is, the task has to wait until the
execution of the protected sequence by the currently running
task is terminated. When leaving the common routine, the cur-
rently executing task sends a message to the entry exchange
which permits the first task which waits there to become ready
and to resume execution if no task with a higher priority is
ready. Such a software interlock can be easily accomplished
by calling the subroutine FRACCS (compare chapter 4.2.1.5)

* prior to entering the protected sequence (i.e., prior to the
subroutine or function call which accesses the common code),
with an exchange exclusively used for the protection of the
particular common code sequence as a parameter. The next
statement after the call to the shared routine must be a call
for the subroutine FRRELS, specifying the same control ex-
change, which releases the software interlock.

In order to compare these approaches, consider the following
situation: a low-priority task is just executing a routine
shared by other tasks when a high-priority interrupt handling
task becomes ready which will eventually access the same

- 34 -

3.1 Design Considerations for a Real-Time Operating System

common routine. In the case of separate copies of this rou-
tine for both tasks, the interrupt routine will run regularly,
without any additional delay or overhead. The same applies if
reentrancy was specified for the shared code; the parameters
of the low-priority task are saved on its stack, and the

. ~..resources of the common routine can be fully utilized by the
high-priority task. The high-priority task will never become

- ready if interrupts were disabled by the common routine, but a
second interrupt may be missed if it happens before the pro-
tected routine re-enables the interrupt system. In the case
of a software interlock, the interrupt handling task finds

* itself waiting at an exchange where there is no message avail-
able; it is therefore removed from the ready list, and the
task with the highest priority which is ready becomes the
running task. This task may or may not be the task which is
blocking the common routine. Anyhow, the interrupt routine
has to wait until the low-priority task has terminated its
execution within the shared code sequence and has sent a
message to the exchange guarding the entry point of this code.

ELOnly then, the interrupt task will be returned to the ready
list and probably become the running task. The unpredictable
delay imposed upon the interrupt task may, however, have

J.caused the missing of an interrupt. The use of software in-
terlocks should therefore be considered very carefully, and
they should generally not be used in conjunction with inter-
rupt handling tasks or with tasks with a very critical timing.
(As a matter of fact, this does not only apply to the explicit
use of software interlocks. Some routines, for example the

.% . ~ special I/O routines of chapter 4.4.2, may also impose an un-
due delay on a task with critical timing.)

3.1.4 Data Transfer Between Tasks

.~ similar considerations apply to the exchange of data between
- ~ tasks. There are two main ways for passing data: first,

memory locations may be used for data storage which can be
6accessed by several tasks. In FORTRAN which does not support

the "PUBLIC" scope of labels and variables, the only way to do
~' so is using a (named) "COMMON" block. The second possibility

for performing transfer of data is to send it to another task,
~ .~.formatted as a message.

*Both approaches have advantages and disadvantages: Data
transfer via a "COMMON" block must be protected by a software

*' interlock; some of the approaches - interrupt disabling or a
software interlock - which can be used for protecting common

% code sequences can be applied for this purpose as well. This
protection is indispensable because you never can predict the

35 -

-- -----

3.1 Design Considerations for a Real-Time Operating System

occurrence of an interrupt. It might happen just when a task
is reading a multi-byte variable in a "COMMON" block, and it
might trigger the execution of another task which accesses the
same data area. The interrupting task may or may not change
the variable which was just being read by the interrupted
task. Wnen the interrupted task resumes its execution, the
second part of the variable it is reading may significantly
differ from its previous value although the variable itselr
was only slightly changed. (For example, a two-byte integer
may have held 256 (0100H) ; its value is to be changed by an
interrupt triggered task to, say, 255 (OOFFH). The interrupt
might happen between the reading of the low byte (which is
still at OOH) and the high byte (which is set from 01H to OOH
by the interrupting routine). The interrupted routine will
therefore read a value of zero (OOOOH) instead of the correct
values 256 or 255 which it would have read had the interrupt
occurred a few microseconds earlier or later.) Still, the
same considerations concerning the detaining of high-priority
routines apply as for the protection of shared code by a soft-
ware interlock.

A software interlock is not necessary for passing data through
J%_P COMMON blocks or other shared data structures in read-write

memory, though, if a proper operation can be guaranteed by
prudent choice of the priorities of the routines involved: If
data is to be written by the task with the lowest priority
only (at least, with the lowest priority among the tasks which
access the data), this task can never interrupt any other task
because its priority is too low. Updating of a data location
can therefore never interrupt any read access to the same
location. The low-priority task writing the data ought to
disable interrupts during its writing operation, though, to
protect itself from being interrupted during this critical
operation. Since writing two or four bytes requires only a
matter of microseconds, the delay imposed on the interrupt
response is negligible which is introduced by disabling the
interrupts. This approach is used within the CGCS for updat-

a.. ing arbitrary memory locations addressed by symbolic names
* ("Variables") ; no other protection method was feasible for

4 this purpose without unduly restricting the range of access-
ible memory locations.

Although sending a message implies a significantly higher
software overhead, it appears to be the safer way, particular-

* ly for interrupt service routines, and it is therefore the
only genuine iRMX-80 data passing technique. The major disad-
vantage of the message approach is, however, that data can be
sent to only one other task; in contrast, the use of "COMMON"
blocks permits access to the data by an unlimited number of
tasks.

-36 -

0' 0- 6W

3.1 Design Considerations for a Real-Time Operating System

There is an important exception to the need of data access
protection in a real-time environment: Single bytes can be
freely written or read without any further software overhead.
This is true because the current operation is always termin-
ated by the hardware before an interrupt is acknowledged and
serviced. Single bytes will therefore always hold a correct
(but possibly slightly obsolete) value. This applies in
particular to Boolean variables (flags) which can therefore
even be used for a software "interrupt" (compare chapter
4.2.1.4). (Incidentally, word type variables (e.g., two-byte
integers) may also be transferred without protection if they
are always referred to by their absolute addresses, and if no
address calculation is involved. These variables are, in
general, also moved with one machine code instruction only.
These considerations apply in FORTRAN to simple INTEGER*2
variables, and to elements of INTEGER*2 arrays which are
referred to by explicitly coded subscripts. J(3) and N do not
need protection therefore if J and N are of type INTEGER*2;
however, J(N) does since array elements whose subscripts have
to be calculated at execution time are transferred by FORTRAN-
80 in a byte-by-byte mode.)

3.1.5 Generation of Control Structures in a FORTRAN-based
iRMX-80 System

The peculiar properties of FORTRAN, particularly the limited
scope of variable names, require some special approaches for
the generation of and the access to iRMX-80 control structures

-d by FORTRAN routines. Some of these structures have to be sup-
plied by dedicated PL/M or assembly language modules in any
case.

3.1.5.1 Static Task Descriptors and Task Descriptors

*The most straightforward approach for generating these struc-
tures is including them into the configuration module. This
module must either be coded in PL/M or in assembly language,
or it can be interactively created by means of Intel's Inter-
active Configurator Utility (ICU-80). Still, it should be
noted that the ICU-80 software is only capable of creating
Static Task Descriptors kept in the configuration module; it
is indispensable to use dedicated assembly language or PL/M

" .code for creating Static Task Descriptors if they are, e.g.,
to be loaded from disk at execution time. (Special interface
routines have been written, though, which permit to use an

- 37 -

I ,
"4

3.1 Design Considerations for a Real-Time Operating System

ICU-80 generated Configuration Module within an iRMX-80 system
overlay; compare chapter 3.4.5).

Additional care is required when the Static Task Descriptors
of a FORTRAN-iRMX-80 system are defined: FORTRAN requires an
extension of the Task Descriptor where it can place its float-
ing-point registers. (This approach provides individual
floating-point registers for each task. Although the FORTRAN
floating-point routines require such locations in conventional
data memory they can therefore be considered reentrant.) The
length of this extension depends on the type of floating-point
arithmetic used: 18 extra bytes have to be reserved if soft-
ware floating-point routines or the special routines for the
8231 Arithmetic Processor Unit are used, 13 bytes, if the
system contains an iSBC 310 High Speed Mathematics unit and
the corresponding FORTRAN libraries are included.

Two more bytes in the Task Descriptor extension area are
needed if the task performs I/O via the special routines
mentioned above. These extra bytes have also to be declared
in the "EXTRA" line of the Static Task Descriptor building
program sequence if the Interactive Configurator Utility is
used to create these control structures.

3.1.5.2 ExchanQe Descriptors

Exchanges may be generated at any time by a FORTRAN task with
a call to the interface routine FRCXCH (compare chapter

.4.2.1.3). A sufficient area in read-write memory is required
where FRCXCH can build an exchange, i.e., ten contiguous
bytes. The way how to supply this memory area depends on the
intended scope of the exchange: an exchange which is to be
used within the task only, e.g., for a timed wait in a timer

task, or for task suspending, may be specified by the follow-
ing statements:

INTEGER*1 EXCH(10)
CALL FRCXCH (EXCH)

100 ...
C (Infinite loop of the routine)

GOTO 100

* In this case, the scope of the exchange EXCH is limited to the
% subroutine where it was defined. If this routine calls other

subroutines, it has to pass EXCH as a parameter in order to
permit access to the exchange built at this memory location.
Still, some types of exchanges do not require a global scope
altogether although they are accessed by other tasks. This

- 38 -

d4

Ia

3.1 Design Considerations for a Real-Time Operating System

applies in particular to response exchanges, used in conjunc-
tion with FRSEND (compare chapter 4.2.1.2), and to "flag
interrupt" exchanges generated with a FXCRFE call (compare
chapter 4.2.1.4). The information about these exchanges is
transferred by a message to the tasks which are supposed to

-. send messages to them.

IF The probably more common use of an exchange is its application
for data or control transfer between different tasks. Such an
exchange can no more be built in normal data storage locations
as there is no way to let other tasks know about its position.
The only possibility for creating such exchanges is to build
them in memory allocated to a (named or unnamed) "COMMON"
block. Exchange-message combinations which control the access
to data within a "COMMON" block may (but need not) be created
within this "COMMON" block, for example in its first loca-

~ 4tions. Other exchanges may be contained within one or more
- specialized "COMMON" blocks (which need not be protected by a

,~ .. ~software interlock as they are only accessed by iRMX-8O rou-
* tines). The declaration sequence of a task routine using such

exchanges might be:

INTEGER*1 EXCHl(lO) ,EXCH2(lO) ,EXCH3(lO)
COMMON /EXCH/ EXCH1, EXCH2, EXCH3

Note: An exchange must be created once and only once during
program execution. Creating an exchange twice may cause a
disastrous system error if tasks are already waiting at the
exchange. Particularly exchanges located in "COMMON" blocks
must be treated very carefully: they must have been initial-
ized when the first message is sent to them or when a task
wants to wait there for a message, but only one task can be
responsible for creating them. The safest way to build ex-
changes properly is either to specify them in the configura-
tion module, or to let them be created by a dedicated initi-
alization task or subroutine which should have a sufficiently
high priority to run before any other task which might use the
exchanges, or before other tasks have been created altogether;

* the latter approach is used in the CGCS.

In order to avoid a lengthy and complex configuration module
or common initialization routine, only these exchanges should
be created beforehand which might be accessed by more than one
task. An exchange which is used by one task only might as
well be created by this task, during its initialization se-
quence. This approach can help to improve the clearness of
the software structure.

-39 -

00

-.0N-'Z 71 -W I -s-CI"

3.1 Design Considerations for a Real-Time Operating System

3.1.5.3 Messages

The structure of a message within an iRMX-80 system depends
essentially on its particular purpose: Some messages are only

V.-. required in order to trigger the execution of a task (e.g.,
the interrupt messages) , some of them are used to transfer
data. Some messages should be sent back to the transmitting
task to acknowledge their receipt or to indicate the termina-
tion of some kind of processing. This multitude of different
task structures was probably the reason why there is no mes-
sage-creating iRMX-80 routine. Creating a message in FORTRAN,
however, may come close to impossible if the message should
not only contain data but also addresses. The process of
building messages was therefore incorporated into special mes-
sage sending and receiving routines (compare chapters 4.2.1.1
and 4.2.1.2); the only prerequisite of these routines is that
data which are to be transmitted with the message must be kept
in contiguous memory locations.

%J
This can be accomplished in two ways: either can the data be
located in a COMMON block, in which case the sequence of vari-
able names in the COMMON statement defines the sequence of
storage locations in memory; or variables may be defined lo-
cally and forced into a certain order by means of an EQUIVA-
LENCE statement. The use of a COMMON block for this particu-
lar purpose is not recommended: The COMMON block should not
be accessed by any other task if it contains message data (al-
though a software interlock might be used for its protection
under certain circumstances) , and declaring a named COMMON
block means that its name has to be kept reserved for the
entire system, which might make programming a little more dif-
ficult, aside from the fact that each COMMON block needs a
special treatment during linkage and locating. Anyhow, the
following examples show how data even of different types can
be arbitrarily arranged in memory. Suppose four variables,
two REAL (4 bytes long), one INTEGER*1, and one INTEGER*2,
should be stored contiguously. This can be done with a COMMON
block:

/i' REAL A,B
INTEGER*1 I
INTEGER*2 J
COMMON /MESSGl/ I, A, B, J

*The above sequence of statements has the effect that the first
byte of the common block holds I, the next eight contain A and
B, respectively, and the last two of the eleven bytes, J.
These eleven bytes can be referred to by specifying I as a
parameter in the corresponding routine calls. The second

040

3.1 Design Considerations for a Real-Time Operating System

approach requires a little more coding but confines its effect
to the routine where the block is declared:

REAL A,B
INTEGER*I I
INTEGER*2 J
INTEGER*1 DUM(ll)
EQUIVALENCE (DUM(),I),(DUM(2),A),(DUM(6),B),

* (DUM(I0),J)

The four variables are forced into contiguous memory locations

by setting them equivalent to elements of the dummy array DUM
whose elements are, of course, intrinsically contiguous. The
resulting data block can again be referred to as I or - if
preferred - as DUM or DUM(1). (FORTRAN-80 defaults to the
first element of an array if the subscript is omitted.) Great

' care must be taken, however, to assign the correct locations
within the dummy array to the corresponding variables as there

' . is no checking whatsoever which could detect a possible over-
10 °lap or gap. The memory consumption and the execution time of

the COMMON and EQUIVALENCE approaches are identical.

The special FORTRAN-iRMX-80 interface comprises two different
sets of routines which permit to perform the "send", "wait",
and "accept" operations with a call from a FORTRAN program.
One set - FXSEND, FXWAIT, and FXACPT (compare chapter 4.2.1.1)
- copies the contents of a specified data block into memory
supplied by the Free Space Manager, sets the additional param-
eters, sends the message, copies (within the receiving task)
its data contents to a similar memory block which belongs to
the receiving task, and returns the memory holding the message
to the Free Space Manager. This set permits the unlimited
queuing of messages at the receiving exchange; it implies
therefore a first-in-first-out buffer operation. Its routines
are interlock protected and therefore not recommendable for

, . high speed tasks (aside from the fact that the Free Space

Manager might impose an indefinite delay if it runs short of
memory). For applications with a critical timing, a second
set of routines has been provided, namely, FRCRSP, FRSEND,
FRWAIT, and FRACPT (compare chapter 4.2.1.2). Within this set
of routines, only one message is used for a given data inter-
face. This message is allocated within the local memory of
the sending task, together with a response exchange. Before
any data is placed into the message, the sending task must

*make sure that the message has already been returned by the
receiving task, calling the LOGICAL*I FUNCTION FRCRSP. If themessage is available, it can be modified and sent to the re-

: "ceiving task. The receiving task copies the message's con-

tents to its own data area and sends the message back to the
transmitting task. As all these routines are reentrant and,

- 41 -

0 °
%* PW-*%% ~ ;--.s

3.1 Design Considerations for a Real-Time Operating System

as the data transmission is simply skipped if the receiving
task did not yet acknowledge the receipt of the previ -ous
message, the tasks involved cannot be delayed. The penalty
for this is the possible loss of information, and the lack of
a buffering feature. Still, the loss of information will
usually not matter if it affects only data which are updated
periodically.

3.1.6 Data 1/0 in a Real-Time System

The program-user interface of a real-time process control
system differs significantly from the one applied to a batch
processing program: An ordinary non-real-time interactive

*% program may request input, wait until the operator (or the
e . disk controller) has supplied this input, continue execution,

and write its results to an output device. This sequence may
be repeated infinitely, still, the execution of the program
will always follow the same scheme. In a real-time environ-
ment, however, processing is (usually) not totally suspended
while a task waits for input. A number of other tasks may be
executed concurrently, and some of them may generate output.
The straightforward data I/O approach used in batch processing

-request for input and output of a result in a fixed consecu-
tive mode - does not hold any more in a real-time system. If
several tasks are executed in parallel (or, as a matter of
fact, consecutively but with undetermined order), they create
also output in parallel, and they require input in parallel
rather than serially. The I/O routines supplied with FORTRAN,
however, support only a serial input and output. Therefore,
special I/O routines were developed which permit random disk
output, and quasi-parallel console output. The latter is ac-
complished by random access addressing of the console CRT

'"'.4screen, which permits to write a particular output item (e.g.,
a measured parameter) always to the same location on the
screen. The output area on the console screen can be sub-
divided into a scrolled and a non-scrolled part to allow

*random access output (in the non-scrolled portion) , and the
display of basically sequential data such as the echoes of the
input entered on the console (which must necessarily be se-
quential) in the scrolled area.

while the generation of output by a number of different tasks
does not create any problems (it might even be helpful if the
amount of output generated varies strongly with time since
using several output tasks would permit some data buffering),

4. input cannot be performed unambiguously by more than one task.
Generally, the operator has to be notified which data is
expected from him by the system, which is done with an output

-42 -

V

.

or% t
v-J6

J.

0.

* 3.1 Design Considerations for a Real-Time Operating System

action. Even if the task that has written the input request
line to the console waits immediately afterwards for the data
input there is no guarantee whatsoever that there will not be
an interrupt in between which, in turn, might make another
task issue an input request, possibly even before the first
request could be noticed by the operator. Therefore, only one
task within the system may perform all the data input and the
output of input requests. (In the CGCS, this is done by the
Command Interpreter task.)

A similar philosophy applies to the disk I/O. Although the
N special FORTRAN-iRMX-80 interface routines can handle random

disk files and although iRMX-80 allows for one file to be
opened for reading by more than one task, there are some
important practical restrictions. In general, only one task

-. :should be responsible for the input from a disk file to make
- sure that the contents of the file are processed correctly,

and only one task is permitted to write to the disk. Since
disk accesses can require relatively long times to be pro-

1- cessed it might be a good idea to perform data collection and
data output within separate tasks. This approach was, in
fact, used in earlier versions of the CGCS for the output of
measured data to a disk file; the undue consumption of Free
Space Manager-supplied memory by this approach demanded final-
ly to abandon it from version 2.2 on.

-; .. 3.1.7 Naming Conventions

In order to avoid a collision of the variable and routine
names between the iRMX-80, FORTRAN-80, and interface routines
which are kept in various libraries, and between system and

.. actual application routines, special conventions for the names
of program modules and PUBLIC entry points and data locations
have been defined:

• iRMX-80 routines use names beginning either with "IRQ.... " or
with "R? ". Some of the alternative iRMX-80 routines
which were provided for an enhancement of the operating
system (compare chapters 3.3.4 through 3.3.6) use PUBLIC
variable names beginning with "R@ ".

• FORTRAN library routine names begin either with "FQ " or

with "F? ". Entry points internal to the special float-
- ing-point routines based upon the 8231 APU (compare chapter

4.2.5) have names starting with "F@ ".

* Variable and constant names declared PUBLIC by the FORTRAN-
a iRMX-80 interface routines begin with "F0 ".

43

wo

., A&

3.1 Design Considerations for a Real-Time Operating System

* The names of reentrant FORTRAN-iRMX-80 interface routines
start with "FR....".

" FORTRAN-iRMX-80 interface tasks, non-reentrant routines, andexchanges have names beginning with "FX....".

'C

- 44 -

N "N

41

I R 'R3.2 Software Structure
3.2 Software Structure

As already mentioned above, the design of the controller
computer, and the choice of its operating system environment,
was directed towards a maximum of flexibility and ability of
the system to be run in a stand-alone mode. This entails that
the major part of the software which is to be executed on the
controller computer should be loadable from a mass storage
device only if and when required. Accordingly, only those
modules were designed to be kept in Read Only Memory (ROM)
which are absolutely indispensable for the operation of the

Sisystem, i.e., the Nucleus of the operating system iRMX-80, a
* Loader task which runs under iRMX-80 and which allows to load

programs from disk, and the Terminal Handler which constitutes
the interface between the software executed on the controller
computer and the console terminal. (The latter function was,

*. in fact, not required for boot-loading programs, but it ap-
peared reasonable to keep a routine in ROM which was presumab-
ly required by each application.)

The possibility to split a total of 16 KBytes ROM into two
banks of 8 KBytes each could advantageously be used for the
implementation of auxiliary programs like a Monitor which con-
stitutes a simple but powerful debugging tool, and a set of
hardware Confidence Test routines. These functions do not
necessarily require the support of iRMX-80; hence, they were
put into one 8 KBytes bank of ROM (Bank 0), while the iRMX-80
routines reside in the second bank, Bank 1. Since only one of
the two banks may be active at a given time, the use of the
Monitor or Confidence Test routines precludes access to iRMX-
80, and vice versa.

. After power-on or a reset, the system first activates ROM Bank
0 (via the SID output of the 8085 processor), and executes a
memory test routine which is part of the Confidence Test. If
the memory test was passed without an error, the operator is

S.. -given the choice of either entering the Monitor routines, or
of loading a disk resident operating system, RXISIS-II.

I' " [RXISIS-II is, in fact, an iRMX-80 based task which emulates
the operating system ISIS-II (Intel's System Implementation

.upervisor) (hence "RXISIS"'). ISIS-II is the operating system
developed by Intel Corporation for its Series-II Microproces-
sor Development Systems; it comes with a number of utility
programs some of which are indispensable for the stand-alone
operation of the CGCS computer, and it is a favorable environ-
ment for the development of additional utilities and auxiliary
programs. ISIS-II provides functions like directory-based
access to disk files, and unified input and output to devices
and disk files, to programs running under its supervision;

- 45 -

I

-- " . ..4-

3.2 Software Structure

RXISIS-II was accordingly designed to duplicate all essential
support functions within the iRMX-80 environment, essentially
by re-formatting the parameter tables of the ISIS-II system
calls and forwarding them to iRMX-80.

A, When RXISIS-II is to be loaded, the monitor submits control to
the start routine of the iRMX-80 Nucleus. After some internal
initialization steps, iRMX-80 creates a number of ROM resident
tasks; aside from the Terminal Handler and the Loader tasks, a
task named RXIROM is activated which programs the Loader task
to read the bulk of RXISIS-II from disk into memory. In addi-
tion, a small module is loaded from disk which contains the
cursor positioning codes for the console terminal used. Load-
ing these codes from disk rather than keeping them in ROM al-
lows an easy adaptation of the computer system to terminals
with potentially different control codes.

-' RXISIS-II is, in fact, a continuation of this task RXIROM.
Similar to ISIS-II in the development system environment,
RXISIS-II makes itself resident in part of the read-write

0 memory. An extension of the operating system, a Command Line
Interpreter, parses input entered at the console for valid
commands, i.e., for the names of available disk files which
hold executable programs, and loads these programs into the
remaining free memory. Programs executed under ISIS-II or
RXISIS-II are, in general, supposed to return control to the
operating system when they are terminated; the Command Line
Interpreter (but usually not the entire operating system) is
loaded again, and the next program may be invoked and exec-
uted. The memory maps of ISIS-II and RXISIS-II are compared
in Fig. 7; aside from the smaller size of the application
programs area under RXISIS-II, and its slightly different
boundaries (which were necessitated by the larger size of the

1 iRMX-80 routines, compared to their ISIS-II counterparts, and
by some constraints imposed by the hardware interfaces of
iRMX-80), both systems are, indeed, very similar; virtually

V.. all well-behaved ISIS-II application programs can therefore be
executed under RXISIS-II if they can put up with the lower

* "ceiling" of available memory. ("Well-behaved" means that the
programs must route all their input and output operations over
the standard ISIS-II functions, as opposed to direct access of

* peripheral devices.)

Although a wealth of auxiliary and utility programs can be
S. executed under RXISIS-II (including, among others, a BASIC

interpreter, and a full-screen text editor), this environment
is not particularly suited for the execution of complex real-
time controller programs like the CGCS. The emulation of

-. ISIS-II imposes a code overhead which is not required if the
N. proper iRMX-80 functions could be invoked directly as well.

-46-

I% %

3.2 Software Structure

Furthermore, RXISIS-II has to provide all functions of ISIS-II
some of which are not required at all in a controller program.
RXISIS-II was therefore designed to be replaced eventually by
an arbitrary real-time system (as opposed to "program") which
could be tailored to comprise exactly the required operating
system routines. Such systems are, for example, a second,
iRMX-80-based, version of the BASIC interpreter, and, of
course, the CGCS. From the operator's point of view, there is

* no difference between loading a program under RXISIS-II, or an
entire system; both are invoked by name. If the name of a
system has been entered, however, a small module only is load-
ed by RXISIS-II which deposits the system's name in memory and
re-starts iRMX-80. In due course, RXIROM loads the real-time
system instead of RXISIS-II. (The cursor positioning codes
for the CRT terminal are loaded in any case.) This task may

* or may not be kept active within the loaded system; in the
CGCS, it is continued as the Command Interpreter task, which
allows to utilize its resources which otherwise would have
been wasted. Almost the entire read-write memory above the
small data area of the ROM-resident system is available to the
loaded real-time system.

o FFFH FFFF4 ISIS -II MONITOR
ROM

EDOO RXISIS-II OPERATING EOOOH

COOOH COOOH

AOOOH ACOOH APPLICATION
- PROGRAMS

APPLICATION UNDER

80001 - PROGRAMS 8000H ISIS-l
UNDER
RXISIS -II

6000H 6000H

0 4000H

DATA AREA FOR ROM
RESIDENT SYSTEMIS -1OPRTN

2 M000 0 MONITOR00 SYSTEM

SYSTM RO CONF. TESTH

Ir CGOSCONTROLLER COMPUTER UNDER RXISIS -II MEMORY MAP UNDER INTEL'S ISIS-I1

Fig. 7: Memory maps of the CGCS controller computer under

RXISIS-II (a) , and of an Intel development system
under ISIS-II (b).

- 47 -

% %

3.2 Software Structure

The Monitor may still be invoked from RXISIS-II or from any
real-time system, either via the RXISIS-II DEBUG command, by
pressing the "Break" key on the console terminal, or with the
"Interrupt" switch on the cardcage. Since either the Monitor
or iRMX-80 may be active, any access to the Monitor disables
all iRMX-80 functions; the real-time system is virtually
"asleep". This does not matter very much in the case of
RXISIS-II, where fatal (disk) errors are also trapped by the
Monitor, but it might be disastrous during the execution of a
process control program. Therefore, entry to the Monitor was
made more difficult in the CGCS by disabling the "Break" key
detection; in case of a disk error, however fatal it may be
under ISIS-II or RXISIS-II, control is not vectored to the
Monitor either. (The "Interrupt" switch on the computer card-
cage still permits access to the Monitor even while the CGCS
is active, which is sometimes required for debugging pur-
poses.) The Monitor may be used to inspect and modify memory
locations and processor registers, and to set breakpoints in
program code and execute programs until a breakpoint is en-
countered; iRMX-80 resumes full operation while a program is

I being executed from the Monitor. The Monitor also allows to
re-boot RXISIS-II, which is, incidentally, the only way (short
of a hardware reset) to terminate iRMX-80 BASIC, and it per-
mits to activate the Confidence Test.

W4

V.

~- 48 -

.4

J

.4

3.3 ROM Resident Software

3.3 ROM Resident Software

3.3.1 The RXISIS-II Monitor

The RXISIS-II Monitor is kept in bank-switched ROM; it does
therefore not consume any of the iRMX-80 system's resources.
In order to permit proper memory bank switching, the Monitor
must only be entered and left via special code sequences.
'The same applies to the Confidence Test which is entered
anyhow upon reset or from the Monitor only.)

The Monitor can be accessed in the following ways:

(1) After a system reset, or after execution of the Confidence
Test.

(2) From RXISIS-II with the DEBUG switch.

(3) From RXISIS-II or any application system via a Break
entered on the system console.

(4) From RXISIS-II or any application system via an RST 5.5
hardware interrupt which is generated by pressing the
"Interrupt" switch on the cardcage.

(5) From RXISIS-II upon fatal disk errors.

Entry to the Monitor via a Break or an RST 5.5 interrupt is
locked out during program file loading operations. (This is
necessary as the Monitor uses the Loader buffer as scratch
memory. Programs loaded while a Monitor interrupt happens
might therefore be mutilated.) RST 5.5 interrupts are ser-
viced immediately; entry requests given with a Break command
become effective only after the Break key was released. Since

* a Break is initially noticed by the Terminal Handler as a
transmission error, a beep and a "<" error character may be

S"-output by the Terminal Handler before the Break is serviced
(compare chapter 3.3.4.2). This constitutes no actual error
and can be ignored.

Note: Debugging in a real-time environment requires utmost
caution! From the point of view of iRMX-80, the Monitor
belongs to the task during whose execution it was invoked. By
no means, the user must attempt to commence the execution of
code belonging to a different task since this inevitably
messes up the system totally. This demand is implicitly ful-
filled if the user refrains from specifying a start address
with the "G" (Go) command.

- 49 -

%Ai

3.3 ROM Resident Software

3.3.1.1 Monitor Commands

All Monitor commands may be entered with upper- or lowercase
%%, characters. They consist of one single character, and one or

more parameters, if applicable. Multiple parameters must be
separated either by a comma (",") or by a space; no space is
permitted between the command character and the first parame-
ter. All numeric parameters are interpreted as hexadecimal
numbers; only their last two or four digits (depending on
whether a byte or a word parameter is required) are relevant.
Errors during parameter entry can therefore be corrected by
repeating the parameter without an intervening delimiter until
the last two or four places are correct. Input lines are
generally entered with "Return"; any other input than hexa-
decimal numeric characters ("0" through "9" and "A" through
"F") , comma, space, and Return causes a "COMMAND ERROR" mes-
sage. A period (".") is used by the Monitor as an input
prompt character. The command syntax was chosen similar to
the ISIS-II Monitor.

* The following Monitor commands are available:

D<locfrom>[,<locto>]
"- Display Memory Contents:

The contents of all memory locations between and in-
cluding <locfrom> and <locto> are displayed in hexa-
decimal. Only the contents of <locfrom> are displayed
if <locto> is omitted or less than or equal to
<locfrom>.

E Exit to the Current System and Close Open Files:

Upon this command, the Monitor is left, and control is
submitted to the currently active operating system.
In general, it lies in the responsibility of the cur-

* •rently active system to close all open disk files, and
to restore a defined state of all routines used (com-
pare chapter 3.4). This function requires therefore
the "cooperation" of the current operating system, and
it is therefore not available with some application
systems (e.g., with iRMX-80 BASIC). In such a case,

O. the Monitor tries to execute the "Q" (Quit) command.
- Either command must be explicitly confirmed by the

user.

i . - 50 -

05

% % %. *

3.3 ROM Resident Software

F<locfrom>,<locto>,<byte>
Fill Memory With a Specified Byte:

The locations between and including <locfrom> and
<locto> are overwritten with <byte>. An error message
is output if the operation would extend into ROM.

G(<start>][,<breakptl>[,<breakpt2>]]
Go - Execute Program Code:

The Go command permits the execution of program code.
The execution begins at the location <start> or, if no
<start> address was specified with the command, at the
location determined by the current Program Counter
contents (compare "X" command). Up to two breakpoint
locations may be specified at whose execution the pro-
gram is to be interrupted. These locations must lie
in RAM, and they must contain the first byte of an
executable machine code instruction. Furthermore,
they must not be overwritten by an intervening program
loading operation lest the breakpoint becomes ineffec-
tive and unpredictable results ensue after the monitor
was activated the next time. In a real-time environ-
ment, the breakpoints may belong to arbitrary tasks.
The start location, however, must belong to the task
during whose execution the Monitor was invoked. Note
that breakpoint specifications must be preceded by a
delimiter (comma or space) if the default start loca-
tion is to be used.

H<param>,<param>
Hexadecimal Addition and Subtraction:

The "H" command performs an addition and subtraction
of two two-byte parameters. The sum and the differ-
ence (in 2's complement notation) of the two param-
eters are displayed.

I[<port>]
Input Data From I/O Port:

This command allows to read the contents of any ar-
bitrary I/O port. <port> is interpreted as a one-byte
number in hexadecimal notation. For multiple inputs
from the same port, the <port> parameter may be omit-
ted. The command defaults to the last port specified
in this case.

- 51 -

IN N N

3.3 ROM Resident Software

M<locfrom>,<locto>,<destloc>
Move Memory Contents:

The I'M" command permits to move the memory contents
between and including <locfrom> and <locto> to loca-
tions starting with <destloc>. <destloc> should not
lie between <locfrom> and <locto> in order to prevent
the modification (by partial repetition) of the byte
pattern to be moved. <destloc> must be located in
RAM. Memory contents are transferred in increasing
address order.

O[<port>],<data>
Output Data Byte To I/O Port:

The data byte specified with the command is output to
the I/O port specified with <port>. The <port> ad-
dress is interpreted as a single-byte number and may
optionally be omitted; in this case, the Monitor de-

* faults to the last output port specified. The <data>
byte must be preceded by a delimiter if <port> is
omitted.

P{011) Printer Output On/Off:

All Monitor output shown on the console CRT can be
routed, in addition, to the printer. A "P1" command
turns on this function, a "P0" command turns it off.
A built-in time-out function disables the printer
output if the printer did not respond within a certain
time (10 to 30 seconds, depending on the clock fre-
quency used). (This may also happen during lengthy
Monitor output operations with the "D" command if the
printer's input buffer needs longer than the time-out
to be emptied. If this is regarded as a problem, it
can be fixed by reducing the printer buffer size.)

Q Quit the Monitor and Re-Boot RXISIS-II:

The "Q" command permits to leave the Monitor and to
re-boot RXISIS-II. Open disk files are not closed

* before RXISIS-II is re-booted; files which may have
*been open for writing or updating will be mutilated in

this case. Great care is therefore required when the
'"Q" command is used to prevent the loss of output
files. The command must therefore be confirmed ex-
plicitly by the user.

- 52 -

il!IC S 111 ' 1119 111

.. *'" S l

3.3 ROM Resident Software

S<address>,<data>[,<data>[,<data>...]]
Substitute Memory Contents:

This command allows to change the contents of arbi-
*'.. trary locations in RAM. When the <address> input is
* - terminated with the delimiter character, the current

contents of the location at <address> are displayed.
Hexadecimal data entered at this stage are used to
replace the old contents of the specified location.
No change of the location displayed is made if another
delimiter is keyed in without an intervening hexadeci-
mal number. In either case, the address is increment-
ed by one, and the above procedure is repeated. The
command is terminated with a "Return".

.* . X Display Register Contents:

~X<reg><data>[,<data>[,<data> ...]

Modify Register Contents:

Two versions of the "X" command permit the display and
the modification of register contents, respectively.

v Upon entry of a plain "X", the contents of all proces-.6, sor registers are displayed. The second command mode
permits to modify the register contents, beginning
with the register specified with <reg>, similar to the
"S" monitor command. <reg> may be "A", "B", "C", "D",
"E", "H", and L" for the corresponding registers, "F"

' .for the flags, and "S" and "P" for the stackpointer
and the program counter, respectively. The current
contents of the register to be modified are displayed;
the register may either be overwritten or preserved,
depending upon whether a hexadecimal number followed
by a delimiter, or a delimiter only is entered.
Following a data entry with a delimiter permits to
modify the next register; the command is finally
terminated with a "Return". (The sequence of registers
is A, F, B, C, D, E, H, L, SP, and PC for either "X"
command.)

Z Enter Confidence Test:

The Confidence Test routine can be entered with the
I"Z" command at any time. A user confirmation is re-
quired. Note: When the Confidence Test returns tothe Monitor, it resets the stackpointer to the top of

the Monitor's stack, and all other registers to zero.It is therefore not possible to continue the execution

of a program after the execution of the Confidence
Test.

bt

- 53 -

I'

3.3 ROM Resident Software

3.3.1.2 Other Monitor Functions

The Monitor provides, in addition to the above utilities, de-
tailed system error message output. All errors which are con-
sidered fatal under RXISIS-II are trapped there (essentially,
these are the errors defined as fatal under ISIS-II, plus all
errors happening during system bootloading). Application
systems may use this feature as well; it is not utilized,

* though, by the CGCS. The calling sequence for the error
message generation routines is outlined in chapter 3.3.6.

3.3.1.3 The Monitor in a Real-Time System

As mentioned above, the Monitor is executed as if it belonged
to the task which was active while the Monitor was invoked.
This is true although the interrupt dependent iRMX-80 func-
tions are disabled while the Monitor is active. Due to the
inherent complexity of a real-time system, great care is

* required to prevent system breakdowns when Monitor operations
are performed. This does not only involve caution when regis-
ter or memory contents are changed; this applies particularly
to program execution, and to Monitor exiting.

In most cases, the "G" command, specified without start and

breakpoint addresses, is the most straightforward way to
4 return to real-time operations. The system continues where it

was interrupted (unless it was interrupted by a fatal error
under RXISIS-II, in which case RXISIS-II has to be re-booted
anyhow), and behaves as if it never had been interrupted at
all. (Since the Monitor halts iRMX-80, periodic operations,
particularly, the timekeeping functions, are disabled tem-
porarily. The time displayed by the CGCS will therefore
differ from its correct value by the duration of the Monitor
operation.)

The "E" command, in contrast, permits to terminate a program
* executed under RXISIS-II, and it also terminates the CGCS.

Application systems which want to utilize this feature must

take care not to override iRMX-80 task scheduling. Upon an
"E" command, the Monitor executes a routine which must be
provided by the application system; its start address has to
be stored previously in a dedicated Monitor location in RAM
(see Appendix 3). Control must by no means be passed directly
to the system task which performs the termination operations
like disk file maintenance; such an approach would mean that
the task interrupted by the Monitor call might be continued as
another task, which is an absolutely fatal error in any real-

U94 - 54 -

.J.

L.

3.3 ROM Resident Software

C time system. The only unambiguous procedure which allows a
safe Exit operation is discussed in the next chapter.

It should be noted, though, that a Monitor Exit only closes
open disk files but does not perform any of the other clean-up
chores which are essentially required for a safe operation of
a process control system like the CGCS, particularly if it is
in charge of the puller. The "E" command should therefore
used in case of an emergency only from within the CGCS.

The "Q" command, finally, is an uncompromising way to quit the
Monitor: the current system is simply destroyed by restarting
iRMX-80 and re-booting RXISIS-II. Still, it is the only way
to leave systems such as iRMX-80 BASIC which do not provide
any other means for the termination of their services. (The

•* .*' "Q" command processing sequence is automatically entered by
the Monitor if an "E" command was issued but no provisions
were made for exiting the real-time system with a preceding
clean-up.)

A Hardware System Reset is approximately equivalent to enter-
ing the Monitor, e.g., via a Break, and quitting with the "Q"
command. Upon a Reset, the Monitor is entered via its Restart
sequence; entering a "Return" permits to re-boot RXISIS-II.

3.3.1.4 Exit From the Monitor

Due to memory bank switching, the Monitor and Confidence Test

routines may only be left via two paths, namely:

w. (1) Via a RST 1 instruction which bootloads RXISIS-II, and

(2) Via a jump to an exit sequence located at 1FF8H.

The first path is used by the Monitor upon a Quit ("Q") com-

mand, the second, upon Go ("G") and Exit ("E") commands.

Systems which ought to provide the possibility of an Exit
("E") Monitor command have to pursue the following steps:

(1) They have to store the start address of an Exit Routine in
the Exit Pointer locations of the Monitor, i.e., at the

4 addresses 2008H (low byte) and 2009H (high byte) (see
! Appendix 3).

- (2) This Exit Routine must be written as a subroutine (which
is eventually called by the Monitor) which must return to

* the Monitor (with a RETURN instruction) in any case. The

- 55 -

r. V.P

3.3 ROM Resident Software

Exit Routine may set a flag which is polled by a system
task in charge of the file handling. Whenever the system
task finds this flag set it should close all open files
and perform subseauently all actions considered appropri-
ate. The Exit Routine should not attempt to directly
accomplish these operations itself. This approach was
chosen for RXISIS-II where the exit flag is checked each
time the ISIS-II entry point or one of the ISIS-II Monitor
subroutines is invoked. There may be a considerable delay
between exiting the Monitor and a call to any RXISIS-II
system routine, though, during which the program to be
terminated keeps on running.

A different (and faster) approach is employed by the
special Disk I/O routines (compare chapter 4.2.3) which
are used by the CGCS: The Exit Routine sends, in this
case, a message to the Disk I/O Interface task which
triggers the file closing sequence. A message can be sent
from any task, and the termination sequence is started
immediately; hence, no noticeable delay between an "E"

S command and its execution can be seen in the CGCS.

3.3.2 The RXISIS-II Confidence Test

The RXISIS-II Confidence Test code is kept in bank-switched
V ROM and does therefore not consume system memory under regular

iRMX-80 operation. It can be invoked and executed from the
Monitor (compare chapter 3.3.1). In addition, the Memory Test
sequence is run after each power-up reset in order to confirm
proper system operation. It is not executed upon a reset
triggered when the is already running, which permits to in-
spect memory after a system reset necessitated, e.g., by a
software failure.

All functions of the Confidence Test can be selected inter-
actively in turn. Ample user information is provided.

Upon completion, the Confidence Test returns control to the
Monitor.

0. 3.3.2.1 Memory Test

The Memory Test comprises the following features:

(a) Verification of the ROM checksums.

S.,
-56-

'p.e

3.3 ROM Resident Software

(b) Check of the proper function of the RAM.

(c) Initialization of all RAM locations (except between 3000H
and 30FFH) with zeros.

The current status of the Memory Test routine is output on the
console CRT by means of eight binary digits which represent
the address range currently under test. The routine halts if
an error is detected; the display on the console CRT indicates
in this case the whereabouts of the erroneous memory location.
The following sequence of operations and output is performed:

* CRT DISPLAY
[NONE] RAM check at locations 2000H - 2020H.

0000 0000 ROM sequence test (ROM 0 - 1 - 2 - 3).
0000 1111 Checksum, test of Bank 0, ROM 0 and 1.
0001 1111 Checksum test of Bank 0, ROM 2 and 3.
>BEEP<

: ~ 0000 0000 Preparation for the RAM test.
4XXXX XXXX The display counts down twice from 1111 1111 to

0010 0000. The binary numbers displayed indicate
the high byte of the address under test.

>BEEP<
0000 1111 Checksum test of Bank 1, ROM 0 and 1.
0001 1111 Checksum test of Bank 1, ROM 2 and 3.
>BEEP<

* 3.3.2.2 CRT Console Test

The CRT Console Test permits to check the communication inter-
face to the console terminal. Each character entered at the
console is echoed multiplely in order to fill 24 lines with 80
characters each. Control characters are indicated by an up-
arrow (")preceding the pertinent regular ASCII character.
Since there are no carriage return or line feed characters
embedded between the 80*24 characters, a bottom screen line
which is not completely filled indicates problems with the
transmission protocol (compare chapter 2.3.8). Transmission
errors such as parity, overrun, and framing errors detected in
the data received by the system are reported. The Console
Test can be left at any time by entering a space.

3.3.2.3 Printer Test

The Printer Test routes any input from the console to the line
printer. The console input is transmitted literally, i.e., it

- 57-

N* *

U

3.3 ROM Resident Software

is necessary to enter a carriage return and a line feed in or-
der to receive these characters on the printer. All control
characters including "Escape" are transmitted. The test can
be terminated by entering two consecutive "Escapes".

3.3.2.4 I/O Port Test

The I/O Port Test sequence permits to read data from and to
write to any arbitrary I/O port. Address and data inputs are
requested and output is given in hexadecimal notation. (The
"I" and "o" commands of the Monitor are probably more conve-
nient for this purpose, though.)

3.3.2.5 Floppy Disk Test

The Floppy Disk Test provided with the Confidence Test rou-
tines supports two standard size, single density, single side

drives under an iSBC 204 Disk Controller. The test performs
the following operations, first on drive 0, then on drive 1:

(1) Recalibrate (position head over track 0).

(2) Format (provide track and sector information on the disk).
Disks formatted with this function are not compatible with
ISIS-II or RXISIS-II!

(3) Verify CRC (check the Cyclic Redundancy Check checksums
generated during formatting).

(4) Random Read/Write Test (write data into randomly distri-
buted sectors and read them back for verification).

NOTE: The contents of the disks used in this test are irrever-
sibly destroyed!

3.3.3 The iRMX-80 Nucleus

The iRMX-80 Nucleus resides in ROM Bank 1 which is to remain
* active during all regular iRMX-80 based operations. The ROM

resident iRMX-80 routines comprise the necessary iRMX-80 sys-
tem initialization information, and the iRMX-80 Nucleus prop-
er, i.e., the routines responsible for the maintenance of the
operating system, for the proper scheduling of tasks, and for
the transfer of messages between them.

-58-

0W

['..

3.3 ROM Resident Software

After the internal iRMX-80 structures were created, a number
of iRMX-80-supplied tasks or their replacements (the Alterna-
tive Terminal Handler and the Loader Tasks), and a task named
RXIROM start running. RXIROM programs the Loader Task to read
the cursor positioning routine RXISIS.PSC from disk (compare
chapter 3.3.4.1.7), and to subsequently load either RXISIS-II
(from a file RXISIS.BIN), or any other real-time application

? m (like iRMX-80 BASIC, or the CGCS), and vectors control to the
loaded code. Since the loaded systems have to refer heavily

- to addresses in ROM (e.g., for all Nucleus function calls), it
is essential that the program loaded from disk was actually
configured for the ROM version used. This is checked by
RXIROM by means of a ROM version code which must be provided
by any loaded system in a particular memory location (compare
Appendix 3).

3.3.4 The Alternative Terminal Handler

The Alternative Terminal Handler replaces the Full Terminal
Handler of iRMX-80. All functions performed by the iRMX-80
Terminai Handler are identically available from the Alterna-
tive Terminal Handler. The following major differences be-
tween the iRMX-80 Full Terminal Handler and the Alternative
Terminal Handler apply:

* Improved line-editing.

* Fixed-screen CRT console output possible.

* Additional printer output supported.

* Additional single character input feature.

* Additional control functions.

* Break detection.

* The most important feature of the Alternative Terminal Handler
* is, aside from more coinenient line-editing, the possibility

of a Fixed Screen output, which encompasses the output of a
*dedicated cursor positioning code prior to each output action.
* After each regular output operation, the Terminal Handler

re-positions the cursor to the current end of the input line,
-K' whose position on the screen can be freely specified by the

programmer. The CRT terminal used must permit direct cursor
addressing.

- 59 -

,* ' . . -4 -

0FL

3.3 ROM Resident Software

At system restart, the Terminal Handler is in the conventional
scrolled output mode, i.e., input data is always echoed in the
currently last line on the CRT screen (which is, due to the
automatic scrolling of a CRT terminal, in most cases the bot-
tom line of the screen). Output data is also appended sequen-
tially in the currently last line. The CRT screen thus repre-
sents a sequential protocol of the most recent I/O operations.
This approach is no more suitable for a genuine real-time sys-
tem: Miscellaneous output is usually generated in a random
sequence and at different rates for different items. Since
the occurrence of an output operation may not be predictable,
it is close to impossible to permit the entry of operator
input without disturbance by interspersed output. The only
approach to avoid this problem and to permit the operator to
monitor a complete overview of the system's most recent output
is to use a Fixed Screen approach where each input or output
item has its dedicated place on the CRT screen. Updating of
the CRT screen does therefore no more affect the location of a
certain item on the screen, quite in contrast to the scrolled
mode.

In the Fixed Screen Mode, the Alternative Terminal Handler
reserves two contiguous lines where the input echo is built.
No output data should be directed to these lines. While it
lies in the responsibility of the application software to
provide the proper cursor positioning code in front of each
output string, the Terminal Handler re-positions the cursor
automatically to the current end of the input echo string
after each output action. No interference between output and
input operations can thus happen since all input characters
echoed are simply appended to the input line. The input line
itself is cleared by the Terminal Handler when a new input
string is requested; the position of the input line on the
screen and, if required, an input prompt string may be speci-
fied by the programmer.

Similar to the Full Terminal Handler, the Alternative Terminal
Handler provides a type-ahead feature, i.e., data can be en-

* tered although no input request from other tasks is currently
pending. The type-ahead buffer permits the entry of up to 80
characters, depending on the number of type-ahead lines (up to
20 (empty) lines can be entered into the type-ahead buffer).

-[Two I/O features are new, compared to the iRMX-80 Terminal
O.- Handlers: First, output to a printer (or any other device

which can be connected to a serial output port and which re-
ceives output but does not generate input), and, second, a
single character input (in contrast to the line-oriented input
featured by iRMX-80). Furthermore, the list of Terminal Han-
dler Control Characters (RQCTAB) was extended, and hence the

60

OI7

3.3 ROM Resident Software

number of control features. In addition, an arbitrary routine
supplied by the application system (R@@BRK) is invoked if a
"Break" is received from the console, and if the break detec-
tion is enabled.

• 3.3.4.1 Programming Interface

Both with regard to the programming and to the operator inter-
face, the functions of the Alternative Terminal Handler are
upwardly compatible to those of the iRMX-80 Full Terminal Han-
dler. The following information is therefore kept concise as
far as it is identical to the programming of the iRMX-80 Full
Terminal Handler.

3.3.4.1.1 Line Inout Operations

Requests for an input line can be directed to either the Reg-
ular Input Exchange RQINPX or to the Debug Input Exchange
RQDBUG. During regular operation, RQDBUG is inactive; it be-

V. comes active only after a Cntl-C was entered at the console.

The format of the Read Request Message which has to be sent
either to RQINPX or to RQDBUG is identical to that of the
iRMX-80 Terminal Handler; the following TYPE values are per-
mitted:

* READ$TYPE (8), which permits reading using the type-ahead
feature of the Alternative Terminal Handler.

" * CLRRDTYPE (9), which clears the type-ahead buffer prior to
requesting an input line.

* LASTRDTYPE (10), which disables the input from RQDBUG and
enables input via RQINPX. LASTRDTYPE preserves the con-
tents of the type-ahead buffer.

r 3.3.4.1.2 Console Output

Two exchanges are available for generating console output,
namely RQOUTX and RQALRM. RQOUTX may be disabled, which is

* not possible for RQALRM. As with the iRMX-80 Terminal Hand-
ler, the following message types are permitted:

- 61 -

61

. . .

0"

3.3 ROM Resident Software

* WRITE$TYPE (12): A message of this type may be sent to
either exchange.

-* ALARMSTYPE (11) : Messages of this type must only be sent to
RQALRM. The output of the bytes specified with the message
is initialized with a string of five asterisks (1*") and two
BEL characters. Note: In Fixed Screen output mode, the
output strings supplied by the user tasks must be initiated

* with a cursor positioning code sequence. Since this se-
quence is only output after the above alarm string, the
position of this string on the screen will be undefined.
The use of ALARM$TYPE is therefore discouraged if in Fixed
Screen mode.

3.3.4.1.3 Printer Output

All output which should be sent to the printer (or whatever
serial output device is connected to the second RS-232 port of

* Othe system) must be sent to the exchange RQPRNT. Only WRITE$-
TYPE (12) is permitted as message type.

3.3.4.1.4 Line Input and Output Request Messages

The format of the request messages for the three above opera-
tions is identical.

0
LINK

2
LENGTH = 17

STYPE =SEE ABOVEIF~5

- HOME EXCHANGE (NOT USED)
[o 7

RESPONSE EXCHANGE
9

STATUS
11

BUFFER START ADDRESS
*. 13
4 BYTE COUNT

15
ACTUAL

17
Jr.

-62-

) d P V. 2 *INV %

-,

3.3 ROM Resident Software

STATUS and ACTUAL are set by the Alternative Terminal Handler;
all other items must be provided by the programmer. STATUS is
either 0 if the requested operation was performed properly, or
18 (BAD$COMMAND) if an illegal TYPE parameter was specified.
ACTUAL is set to the number of bytes actually input or output.

3.3.4.1.5 Single Character Input

Single character input as provided by the Alternative Terminal
Handler bypasses the control character evaluation and line

.1 editing functions of the Terminal Handler; it was included for
compatibility with ISIS-II and its Console Input (CI) routine.
Input of a single character can be requested by sending a re-
quest message to the exchange RQCHIX. The next character in-
put after the request message was received at RQCHIX is re-
turned with the request message rather than being processed by
the Terminal Handler. An application system which chooses to
utilize this function should make sure that always at least
one request message is waiting at RQCHIX in order to prevent
input characters which were entered while no request message
was waiting from being added to the Terminal Handler's buffer
and being therefore lost for the routine using the single
character input. Furthermore, line input request messages of
type CLRRDTYPE (9) should be used for intervening and con-
cluding line input actions in order to clear spurious contents
of the type-ahead buffer.

A request message sent to RQCHIX must have the following
structure:

0
LINK

2
LENGTH = 10

% 4 TYPE= ARBITRARY]
4

HOME EXCHANGE (NOT USED)

RESPONSE EXCHANGE

10

INPUT CHARACTER is returned by the Alternative Terminal Hand-
ler; in order to conserve time, no further syntax check is
performed on the request message.

- 63 -

I'A'

. . . .- - -

3.3 ROM Resident Software

3.3.4.1.6 Output Mode Setup and Input Prompt String Selection

The subroutine RQISCM was provided to permit the selection of
the output mode (scrolled output or Fixed Screen), of the
input lines in Fixed Screen mode, and of an input prompt
string. The maximum length of this string is determined by
the relation

string lenqth 32 - cursor positioning string length -

- 2*(line clearing code string length +1)

Longer strings are truncated.

An output mode change can be effected at any time by a call to
the Terminal Handler subroutine RQISCM. This routine should

. be called by only one task within the application system,
preferably while no input request is pending. The following
parameters must be passed to RQISCM:

CALL FROM PLM:

CALL RQISCM (.inline,.printl, .inistr,inisl)

* CALL FROM FORTRAN:

CALL RQISCM (inline,printl,inistr)

with:

inline Number of the line on the CRT screen re-
served for the input echo.
inline = 0 ... Conventional Scrolled Mode
inline <> 0 .. Fixed Screen Mode

printl Number of printable characters within the
- input line initialization string (must be

less than or equal to the initialization
string length)

inistr Input line initialization string: Must
contain all information exceeding the
cursor positioning and line clearing
codes; input prompt characters may be
entered here.

inisl Input line initialization string length.

0,. PARAMETERS FOR ASSEMBLY LANGUAGE CALLS:

STACK Input Line Number Storage Location
STACK Printable String Length Storage Location

V .B+C . Initialization String Start Address
E ... Initialization String Length

- 64 -

3.3 ROM Resident Software

Note that in Fixed Screen mode the Alternative Terminal Hand-
ler clears the input line specified with the "inline" param-
eter, and the line following it. No check for the validity of
the line number submitted is performed. The two input lines
may virtually be located everywhere on the CRT screen; how-
ever, the bottom line of the screen should not be included
into the input area if the input echo (including a leading
prompt string) might exceed one line on the screen; otherwise,
the display would scroll up when the input line is terminated
with Carriage-Return.

3.3.4.1.7 Cursor Control Code Generation

In general, the cursor positioning and line clearing codes
required depend on the type and make of the CRT terminal used.
In general, they must be determined at system configuration
time. In the implementation of the Alternative Terminal
Handler on the CGCS computer, the terminal-dependent codes are
kept in a disk file which is loaded in front of any real-time
application system. This disk file has to provide the follow-
ing labels at the specified addresses:

27DOH ... Vector to the Cursor Positioning Code Generation
Routine.

27D3H ... Vector to the Line Clearing Code Generation Rou-
tine.

.27D6H ... Cursor Up Code.
27D8H ... Cursor Down Code.
27DAH ... Cursor Left Code.
27DCH ... Cursor Right Code.

27DEH ... Cursor Home Code.
27EOH ... Clear Screen Code.

.

27E2H ... Clear Line Code.

The locations from 27E4H through 27FFH can be used for the
Code Generation routines. Two bytes are reserved for each
simple code; the chronologically first byte of the code must
be kept in the high byte of the code word, the second, in the
low byte. (This can readily be achieved using a DW Assembly
Language directive, followed by the two codes in chronological
order.)

The layout of the operating system environment on the CGCS
computer is designed to accommodate cursor positioning rou-
tines for terminals with control codes not exceeding four
characters for positioning and two characters for line clear-

- 65 -

It

3.3 ROM Resident Software

ing in the address space from 27DOH through 27FFH. Although
it is possible to provide longer cursor positioning code gene-
ration routines under RXISIS-II, this is not feasible for the
CGCS. Alternative cursor positioning routines must therefore
be kept in the memory range mentioned above in order to avoid
collisions with the CGCS.

With regard to speed requirements, the parameter passing con-
ventions of either PL/M or Fortran could not be maintained for

* the Code Generation routines. They must therefore be written
in Assembly Language. The following parameters are required:

D ... Line number (l) (I) *)
E ... Column number (l) (I) *)
H+L . Pointer within the output string (1,0)
A ... Length of the positioning string (0) *)

Line and column numbers are required for the generation of the
Cursor Positioning Code only.

3.3.4.1.8 Break Detection

The Alternative Terminal Handler monitors the Break status of
the console I/O line. A routine R@@BRK (which is provided by
the ROM resident code of RXIROM) is invoked whenever a break
was detected (or, more accurately, after the break condition

4. was terminated), provided an enable flag (RQENBK) which is
declared PUBLIC by the Terminal Handler was set (to OFFH).

3.3.4.1.9 Public Parameters

In addition to the entry exchanges, the following parameters
are declared PUBLIC by the Alternative Terminal Handler. They
may be accessed by user routines but should be handled with

* great care. Some of them must by no means be changed by
external routines. The PUBLIC parameters are listed below;
the routine where they are declared PUBLIC is also noted.

RQDBEN (RQTHDI) Debug Enable Flag:
O., 0 ... Cntl-C and Cntl-A are disabled.

OFFH .. Cntl-C and Cntl-A active.

"Cntl-C" and "Cntl-A" can be locked out if the Alternative
Terminal Handler flag location RQDBEN (debug enable) is

b. - 66-

3.3 ROM Resident Software

reset to a zero value. A non-zero value leaves them ac-
tive but inoperative if no task waits at RQDBUG.

* ~. RQDBMD (RQTHDI) Debug Mode Flag: *)
0 ... Input via RQDBUG.OFFH .. Input via RQINPX.

The Debug Mode flag is set by the input task of the Alter-
native Terminal Handler. It must not be modified by ex-
ternal code but may be used to monitor the current input
mode (Regular or Debug Input).

. RQENBK (RQTHDI) Enable Break Detection Flag:
0 ... Break detection disabled.

OFFH .. Break detection enabled.

The routine R@@BRK is invoked if this flag is set and a
Break condition is detected. Otherwise, the Break is ig-
nored.

RQTHMC (RQTHDI) Input Mode Changed Flag:
0 ... No Input Mode change.

OFFH .. Input Mode changed from Debug
to Regular.

This flag is supplied as an indicator for operation mode
changes of the Input Terminal Handler. It is set when
RQTHDI cnanged back from Debug Mode (i.e., input via
RQDBUG) to Regular Mode (i.e., input via RQINPX). Appli-
cation tasks may monitor this flag in order to determine
whether a restoration of a Fixed Screen output is neces-
sary (which is probably the case if a background task was
accessed via RQDBUG). The flag RQTHMC has to be reset by

. .* the user code. Its status has no effect on the operation
of the Alternative Terminal Handler.

R@ECHO (RQTHDO) Echo output entry exchange *)

No messages should be sent to this exchange by user tasks!

-67 -

*Rai&

3.3 ROM Resident Software

R@@TDS (RQTHDO) Terminal Output Task Descriptor *)

R@@PDS (RQTHDO) Printer Output Task Descriptor *)

* These two PUBLIC variables are the start addresses of the
Task Descriptors of the two tasks which interface the Con-
sole (RQOUTX) and Printer (RQPRNT) Output Request exchan-
ges to the output task (RQTHDO) proper. Suspending either
of them locks out output via the corresponding exchange.
The two tasks are suspended and resumed by the input of
Cntl-S and Cntl-Q (for console output) and of Cntl-E and
Cntl-F (for printer output) on the console, respectively.

R@OENA (RQTHDO) Terminal Output Enable Flag *)
0 ... Output disabled.

OFFH .. Output enabled.

R@PENA (RQTHDO) Printer Output Enable Flag *)
0 ... Output disabled.

OFFH .. Output enabled.

-k These two flags permit to enable and disable terminal and
printer output (via RQOUTX and RQPRNT), respectively.
They should be modified externally only with great care
since they must be used in conjunction with enabling and
disabling the interface tasks (see above). Disabling is,
in general, done by resetting the appropriate flag, en-
abling, by resuming the interface task after the flag was
set. Direct suspending and resuming of the interface
tasks is discouraged.

R@OKIL (RQTHDO) Terminal Output Kill Flag.
0 ... Regular output.

OFFH .. Output discarded.

R@PKIL (RQTHDO) Printer Output Kill Flag.
* 0 ... Regular output.

OFFH .. Output discarded.

The two Output Kill flags may be set or reset at any time.
Output requests directed to RQOUTX and RQPRNT, respective-
ly, are simply ignored if they are set. They do not af-

0., fect the system otherwise. The setting of the Output Kill
flags is toggled upon each Cntl-O or Cntl-V input.

- 68 -

SC'

3.3 ROM Resident Software

R@INLN (RQTHDO) Input line number *)
0 ... Scrolled output.

<>0 ... Input line number in Fixed Screen
mode.

The input line number/flag held in this variable may be
read only by external routines.

*) Do not attempt to modify these locations!

3.3.4.2 User Interface of the Alternative Terminal Handler

The line input feature of the Alternative Terminal Handler has
been improved significantly in user-friendliness, compared to
the iRMX-80 Terminal Handlers. In general, the input line
echo on the console CRT screen corresponds exactly to the con-

4 tents of the input buffer. A line entered on the console is
submitted to the system only after the line was terminated
with one of four Line Termination Codes. Until that happened,
editing is possible via two Editing Codes.

The length of an input line is limited to 80 characters, i.e.,
to the width of a CRT screen. Due to input prompt characters

*. or strings, the line may, however, extend over two lines on
the console screen. (The console terminal should be set to an
Auto New Line Enable mode if possible.)

A beep is output if the user tries to enter data beyond the
available buffer length. Type-ahead is available for up to 80
characters which may be entered before an input line is re-
quested by the system. Since the type-ahead input is echoed
on the CRT screen only when it is requested, it has to be en-
tered blindly. Unless a type-ahead line was terminated with a
Line Termination Code, it can be edited arbitrarily, either
before or after it was echoed. Note that Cntl-X deletes the
type-ahead buffer completely, i.e., even type-ahead lines
which were already terminated. A warning beep is output if
the operator tries to exceed the type-ahead buffer length.

In Fixed Screen Mode, the input line is displayed at a fixed
location on the screen. Its display area has therefore to be
cleared periodically. This is done by the Alternative Ter-
minal Handler after an input request message was received.
The previous input line is thus displayed even after it was
entered and passed on to the system by the Alternative Ter-
minal Handler; the cursor is, however, moved to the extreme

4 left end of the input line. This behavior was required in

- 69 -

44jj

3.3 ROM Resident Software

order to permit complete input lines which were already ter-
minated to be displayed in type-ahead mode. After an input
request was received, the input area is cleared, the input
prompt string is output if applicable, and the cursor is moved
to the first location on the screen available for the input
line echo unless there was already input in the type-ahead
buffer, which is otherwise written to the screen with the
cursor positioned after its end.

The Alternative Terminal Handler accepts 16 control characters
with a special meaning. Any such character which is input on
the Console Terminal (and which is not caught by a single
character input request beforehand) triggers the appropriate
action listed below. Other control characters are rejected
unless they are preceded by Cntl-P.

(1) Line Termination Codes:

The following codes terminate an input line and advance
the input buffer to the routine requesting input. In
general, the termination characters are appended to the
input data unless there is no more enough room in the

-." buffer.

" CR Carriage Return: Converted to a CR-LF pair and
written to the buffer and echoed as CR-LF.

LF Line Feed: Treated identically to Carriage Re-
turn.

ESC Escape: Appended to the buffer, echoed as "$"+
CR-LF (no "$" if entered in type-ahead mode).
(Note that Escape is used as an input line clear-
ing command within the CGCS.)

% Cntl-Z Control-Z: Deletes all buffer contents, transmits
an empty buffer. Echoed as a CR-LF pair. In

* type-ahead mode, Cntl-Z may be used to delete the
last, yet unterminated, line entered, without
affecting the contents of preceding input lines.
(Due to system timing problems which could be
overcome only with a great expenditure of code
and/or processing time, an input line entered into
the type-ahead buffer immediately after one or
more Cntl-Z characters may not be echoed although
it is regularly advanced to the task requesting
input.) Control-Z is interpreted as a program
termination code by some auxiliary programs (e.g.,
the-Macro Command Editor) running ulmder RXISIS-II.

- 70 -

et

3.3 ROM Resident Software

(2) Line Editing Codes:

RO Rubout: Deletes the last character in the input
buffer and on the screen. (It is, however, impos-
sible to remove a character in the last column of
the CRT screen from the display if the terminal
used does not permit a "scroll-back" of the cursor

* from the leftmost position of a line into the last
position of the preceding line. Nevertheless, the
erased character is removed from the input buffer;
a correct display can be obtained with Cntl-R.)

Cntl-X Control-X: Deletes the buffer and the type-ahead
buffer completely. Appends a "#" to the input
line echo and advances to the next line on the

K screen (not in type-ahead mode).

(3) Miscellaneous Control Codes:

Cntl-P Control-P: The character following Cntl-P is in-
put literally even if it is a control character.

Cntl-R Control-R: Restores the input line echo on the
console CRT. No visible effect if input line does
not extend over two physical CRT screen lines.
Can be used if characters were deleted in an inputline extending over two CRT lines and the cursor

Sdid not move up to the upper echo line.

Cntl-S Control-S: Suspends regular console output. The
tasks requesting regular output are halted. Does

* not affect output sent to the RQALRM exchange.
Suspending output already suspended has no effect.

Cntl-Q Control-Q: Resumes output suspended with Cntl-S.
Resuming output not suspended has no effect.

Cntl-O Control-O: Regular output is deleted if Cntl-O
was entered. The routines or tasks generating
output keep running; their output is lost. Regu-
lar output can be restored if Cntl-O is entered a
second time.

Cntl-E Control-E: Suspends printer output. Tasks re-
questing printer output are halted. Suspending

V printer output which is already suspended has no
effect.

- 71 -

3.3 ROM Resident Software

Cntl-F Control-F: Resumes printer output suspended with
Cntl-E. Resuming output not suspended has no ef-
fect.

Cntl-V Control-V: Printer output is deleted if Cntl-V
was entered. Tasks requesting printer output keep
running; their output is lost. Printer output can
be resumed if Cntl-V is entered a second time.

Cntl-C Control-C: This control is only effective if the
Debug Enable Flag RQDBEN is set, if the regular
input exchange RQINPX is active, and if a request
message waits at RQDBUG. In this case, all con-
sole input is directed to the request messages
waiting at RQDBUG, and RQINPX is no more serviced.
In addition, a message is sent to the exchange
RQWAKE unless there is a message already waiting
there. The regular input mode is restored and the
Mode Changed Flag RQTHMC set to OFFH if a message
of LASTRDTYPE (10) is sent to RQDBUG. The type-

* ahead buffer is cleared. (Control-C is used by
the iRMX-80 Debugger, and by iRMX-80 BASIC. It
has no effect whatsoever in the CGCS.)

Cntl-A Control-A: Cancels the effect of Cntl-C; all
input is directed to the regular input exchange
RQINPX. Cntl-A is only active if RQDBEN is set
and RQINPX was not serviced (i.e., in Debug mode).
The Mode Changed Flag RQTHMC is set to OFFH, and
the type-ahead buffer is cleared. (Control-A is
used in conjunction with the iRMX-80 Debugger
only; it has no effect whatsoever in the CGCS.)

4. The Terminal Handler indicates console input transmission er-
rors by echoing special characters, accompanied by a beep.

-. The erroneous character is discarded, and the following char-
acters are echoed:

FRAMING OVERRUN PARITY
ERROR ERROR ERROR

? - - -

> + +
+

S<+ - +

+ + +

-72-

W _KI J 3 _W-r'M XPV b V - V.WNWf bW- I W

3.3 ROM Resident Software

3.3.5 The Generic Loader Task

The Generic Loader Task RQLOAD is designed for a twofold ap-
plication:

(a) as a Bootloader to load entire iRMX-80 based systems into
RAM, and

(b) as a standard Loader during the regular operation of an
iRMX-80 system.

The Generic Loader permits, in contrast to the iRMX-80 Boot-
loader, to specify a device and filename at runtime, which al-
lows to use it as a standard Loader. Similar to the iRMX-80
Bootloader, and unlike the iRMX-80 standard Loader task LOAD,
it does not require the support by the Directory Services task
DIRSVC which keeps its code sufficiently short to make it fit
into a Bootloader module.

Several functions were provided in addition to those supported
by the iRMX-80 task LOAD:

* It is possible to protect memory areas by setting low and
high boundaries for the Loader's operations. Any attempt
to load code into locations with an address less than the
low boundary or greater than the high boundary terminates
the loading operation and sets the STATUS field of the re-
quest message to a corresponding error value.

* The Loader accepts only absolute object code files with all
EXTERNAL references satisfied. It is therefore impossible
to load code inadvertently which is not suited for execu-
tion.

* The Loader can control the execution of other routines.
Prior to the actual loading operation, an EXTERNAL routine
R@LLOK is invoked (which is part of RXIROM in the RXISIS-II
environment). This routine disables entry to the Monitor
which is otherwise permitted to use the Loader buffer as
scratch memory. Correspondingly, a routine R@LREL is call-
ed when the Loader is finished and its buffer can be used
again by the Monitor.

* A recovery procedure for soft disk errors improves t he re-
liability of the loading operations. In case of 1 1.
read error, RQLOAD moves the head out one track, re-r-
tions it to the correct track, and attempts to reiA
If reading fails again, it steps the head cne :ri "
the center of the disk, back again, and tr-es i

- 73 -

* 3.3 ROM Resident Software

tain data. This cycle is repeated up to five times; only
if the error persists, a disk error message is issued.

The interface between the Generic Loader and the surrounding
system is compatible with the iRMX-80 LOAD task. The Loader
is invoked by a request message sent to its entry exchange
RQLDX; the message must have the following structure:

0
LINK

2
LENGTH = 17

4
; TYPE = 19

; 5
HOME EXCHANGE (NOT USED)

7
RESPONSE EXCHANGE

9
4 STATUS

FILE NAME POINTER
13

ADDRESS BIAS
: 15

17 ENTRY POINT
17

The calling task must set the LENGTH, TYPE and RESPONSE EX-
CHANGE fields, and, in addition, the FILE NAME POINTER and
ADDRESS BIAS locations. FILE NAME POINTER must point to an
iRMX-80 compatible 11-byte File Name Block; ADDRESS BIAS holds
a value which is added to the loading start address specified
by the disk file loaded (modulo 64K). RQLOAD returns two STA-
TUS bytes and, in ENTRY POINT, a start address if the module
loaded was a main module, or otherwise zero. The STATUS value
returned corresponds to ISIS-II and iRMX-80 standards (compare
Appendix 4).

The Loader task RQLOAD requires, in addition to the request
message, parameters in two memory locations declared PUBLIC by
RQLOAD:

RQLLBD Two-byte (ADDRESS) variable holding the Low Loader
Boundary.

RQHLBD Two-byte (ADDRESS) variable holding the High Load-
er Boundaly.

- 74 -

ILA

3.3 ROM Resident Software

Loading is only permitted to addresses between and including
the values stored in RQLLBD and RQHLBD. These boundaries may
be changed at any time provided the Loader is not active while
they are being changed. The default values set by the Load-
er's initialization sequence are 0001H for RQLLBD, and OFFFFH
for RQHLBD. It is therefore possible to load to the entire
64K address range from 0001H through OFFFFH, with the excep-
tion of location OOOOH (which is used for ROM anyhow and can
therefore not reasonably be included in a loading operation).

The Loader uses a 256 byte (100H) buffer which must be kept in
controller accessible RAM, and which may be used by other
tasks or routines as scratch memory while the Loader is not
active. (No permanently required data can be stored there.)
In the CGCS controller computer, the Loader buffer is allocat-
ed in the top memory page, from address OFFFOH through OFFFFH.

Particularly for bootloaded systems, it is important to have
as much memory as possible available for the code to be load-
ed. Still, some memory is required for the code and data
structures of the task requesting the Loader's operations. It

" ¢is possible, though, to locate at least data in an area which
may be overwritten by the loaded code. This applies, for ex-
ample, to the iRMX-80 File Name Block holding the name of the
file to be loaded. This File Name Block can be kept anywhere
in memory except in the lower 128 bytes of the Loader buffer.
In general, all information which is no more needed once the
new file was loaded can be kept in memory which may be over-written.

3.3.6 Entry Points Into ROM Resident Code

In general, the RXISIS-II Initialization Code and the RXISIS-
II Monitor (plus Confidence Test) are entered via vectors in
the 8080 Restart area (compare Appendix 3). The corresponding
addresses may be called or jumped to by user code, or the user
code may issue the proper RST instruction. The following
entry points are available:

RST 0 OOOOH Monitor System Reset Entry Point.

RST 1 0008H RXISIS-II Initialization and Re-Boot.

RST 2 0010H Monitor Main (Breakpoint) Entry Point:
Register contents are saved; PC is set to
contents of Top of Stack.

- 75 -

eA

3.3 ROM Resident Software

RST 3 0018H Monitor Auxiliary Entry Point; see separ-
ate Table.

A set of parameters is required if the Monitor is entered via
its Auxiliary Entry Point (RST 3). The value passed in regis-
ter C (the first parameter of a call from PL/M) determines the
Monitor function invoked, while the register pair D+E holds a
parameter required for this function. (From PL/M, this param-
eter is passed as the second in a procedure call.)

The following switch parameters are permitted for C (all other
* values cause an error message):

C = 0 Submit Control to the Monitor: This entry point is
used by the DEBUG switch under RXISIS-II. All proces-
sor registers, except the stackpointer and the program
counter, are reset to zero. The stackpointer is set to
the Monitor's own stack, and the program counter to
the value passed in D+E.

C = 1 Error Entry Point: This entry point is invoked by
RXISIS-II in the case of a fatal (disk) error. The
contents of the register pair D+E are interpreted as
an error code (corresponding to the ISIS-II and RMX-80
error codes, compare Appendix 4). An error message is
generated with an extensive error identification text
if the error code is a more common one; control is
subsequently submitted to the Monitor via its Reset
Entry sequence. The Exit ("E") command of the Monitor
is therefore inoperative; it is the responsibility of
a system which calls this entry point to close all
open files prior to the Mon- r call.

3.3.7 Configuration of the RXISIS-II System ROM

Due to the bank-switched operation of the system ROM, its
configuration is not entirely straightforward. Essentially,
the following steps are required for the preparation of the
ROM resident software:

(1) The contents of both ROM banks have to be linked together
separately. Bank 0 contains the Confidence Test and the
Monitor, Bank 1, the iRMX-80 Nucleus, the Alternative
Terminal Handler, the generic Loader, and the ROM resident
part of RXISIS-II, RXIROM.

A special treatment is required for the preparation of the
Confidence Test routines: The ROM checksum verification

-76-

... .

*, 3.3 ROM Resident Software

sequence which is part of the Confidence Test in Bank 0
can obviously operate on the ROM bank only which contains
the ROM test code, i.e., on Bank 0. In order to permit
testing of ROM Bank 1, a duplicate of the ROM test routine
is copied into RAM at execution time (after the RAM was
tested) from where it can access ROM Bank 1. This dupli-
cate routine must therefore be configured for an execution
in RAM (the addresses between 3000H and 30FFH are reserved
for this purpose) but moved into the ROM address range
(from OFOOH through OFFFH) during program configuration.
This can be accomplished by means of an interactive Object
File Editor utility (OBEDIT) which has been specially de-
signed for the configuration of the RXISIS-II system ROM.

The iRMX-80 based routines in ROM Page 1 can be configured
with the help of Intel's Interactive Configurator Utility
ICU-80. ICU-80 generates an iRMX-80 Configuration Module
and a Create Table (which hold information about the tasks
and exchanges in the iRMX-80 system); the SUBMIT (batch)
file created by ICU-80 requires some slight modifications,
though, in order to accommodate the specific features of
the RXISIS-II environment.

(2) The modules holding the contents of the two ROM banks have
to be combined separately with code which is common for
both banks. This applies to the bank switching sequences
in the area of the 8085 Restart vectors (addresses OOOOH
through 003FH), and to the Monitor exit sequence which re-
activates ROM Bank 1; this sequence is located at the
high-address end of the ROM area (addresses 1FF8H through
1FFFH). Since ROM page switching is done by ROM resident
code, it is essential that the page switching sequences
are provided in corresponding addresses of either ROM bank
in order to guarantee a correct continuation of the pro-
gram code in the new ROM page after a bank switch.

. (3) The contents of either ROM page are subsequently submitted
to a checksum calculation; two two-byte checksums, each
covering 4 KBytes of ROM, are deposited (by OBEDIT) at the
addresses 0020H through 0023H.

(4) ROM page switching is effected by controlling the most
significant address bit of the ROM chips with the SOD
output of the CPU. Therefore, the first ROM chip holds
the lowest 2 KBytes of Bank 0 in its lower half, and the
lowest 2 KBytes of Bank 1 in its upper half, and so on.

* .The two modules with the contents of ROM Banks 0 and 1,
respectively, have therefore to be "sliced" into four
sections of 2 KBytes each, and interleaved properly in
order to result in the memory pattern shown in Fig. 8.

- 77 -

% %

3.3 ROM Resident Software

This procedure can be done again with the Object File
Editor OBEDIT. The resulting disk file is, finally,
programmed into the four 2732A EPROMs of the CGCS com-
puter.

BANKI
00H- ROM ONTENTS

0800H,+

2800H ROM 2

v', O000H!

'I..

I.. -- ROM1

S1800H

0800 ROM 0

080-H - -==,.

Fig. 8: Configuration of the RXISIS-II system ROM.

- 78 -

3.4 RXISIS-II

g 3.4 RXISIS-II

3.4.1 The Operation of RXISIS-II

. "> RXISIS-II is an emulator for Intel's operating system ISIS-II
(Intel System Implementation Supervisor) executed under In-

tel's iRMX-80 Real Time Multi-Tasking Executive for 8080/85
Sp Processors on Intel's OEM Single Board Computer hardware. In

general, RXISIS-II emulates the most important features of
ISIS-II, and permits programs written for use under ISIS-II to
run in a real-time environment. File notation and handling is
identical for both systems, and files created under either
system are compatible to the other. Some restrictions apply
to the emulation of ISIS-II, though, since RXISIS-II is mainly

* ., intended as an auxiliary software package for genuine real-
,: . time process controllers where many development system orient-

ed functions of ISIS-II are hardly required. This applies, in
particular, to the possibility of batch processing with SUBMIT
files. No features which support the re-routing of console

input to a disk file have been implemented with RXISIS-II; it
is, therefore, not possible to execute SUBMIT command files
under RXISIS-II.

Additional restrictions apply to the size of memory available
to programs executed under RXISIS-II (compare Fig. 7): While
the top of user accessible memory is at OF6BFH under ISIS-II,
it had to be lowered to OC7FFH in order to accommodate the
RXISIS-II code; with the iRMX-80 Debugger loaded, MEMTOP isonly at 92FFH. On the other hand, the program space available

. ~for programs under RXISIS-II starts already at 2800H rather
than above the ISIS-II file buffers, which is typically at
3680H. In order to fully utilize the available RAM, specially
relocated versions of some programs may therefore be used
under RXISIS-II. Several reasons demanded that the above
memory mapping was chosen for RXISIS-II:

(a) The disk I/O buffers internally used by RXISIS-II must be
located in Multibus accessible RAM, i.e., at addresses
above 4000H.

(b) RXISIS-II contains numerous iRMX-80 library routines which
can hardly be subdivided in order to fill only certain
memory locations, e.g., the area between 2800H and 3680H.

0 (c) RXISIS-II must provide not only the subroutine entry
/ ,°. points of ISIS-II but also of the ISIS-II Monitor, which

implies that addresses around OF800H had to be reserved
for entry points.

..

3.4 RXISIS-II

Since RXISIS-II is essentially considered a software tool,
providing additional disk file handling capability for genuine
real-time application systems, it is designed to be eventually
overwritten and replaced by arbitrary real-time applications
running under iRMX-80. Such application code is bootloaded
from disk similar to RXISIS-II, and it may freely use the ROMresident routines of RXISIS-II. In general, the system always

comes up under RXISIS-II; as far as the user is concerned,
however, other real-time application systems can be invoked
from RXISIS-II at any time just like ordinary ISIS-II pro-
grams.

Being based on the ROM environment described in the previous
chapter, RXISIS-II is designed to make ample use not only of
the ROM resident iRMX-80 routines but also of the Monitor. For
high-level debugging purposes, the iRMX-80 Active Debugger may
be loaded into the RXISIS-II system at any time; it becomes
resident and can be activated and used as detailed in Intel's
iRMX-80 User's Guide. Although the memory space available for
utility and user routines is significantly restricted in this
case due to the memory requirements of the Debugger, this
feature adds powerful debugging aids.

In order to supplement the utility routines available under
RXISIS-II, and in addition to ISIS-II BASIC, a special iRMX-
80-based version of BASIC is available. This BASIC inter-
preter can be invoked from RXISIS-II but does not utilize the
RAM resident RXISIS-II routines. Indeed, it is an entirely
independent real-time system. This approach permits the most
economic use of system memory and provides the iRMX-80-based
BASIC with about 6.5 Kbytes more of free program and data
storage space than its ISIS-II counterpart under RXISIS-II.

RXISIS-II is activated whenever a disk which contains its sys-
tem files - RXISIS.BIN, RXISIS.CLI, and RXISIS.PSC - is in-

N stalled in drive 0, and an "E" or "Q" command is executed from
the Monitor, or when "Return" is pressed after the initializa-
tion sequence after a Reset. RXISIS-II is normally not re-

* loaded when a program executed under its control terminates.
RXISIS-II displays a sign-on message and loads its Command

A Line Interpreter from the file RXISIS.CLI. (The Command Line
Interpreter shares memory with ISIS-II application programs,
which makes it necessary to re-load it each time a program
terminates.) RXISIS-II displays a hyphen ("-") as a prompt,

O. similar to ISIS-II, and waits for a command to be entered.
The command line editing and control codes listed in chapter
3.3.4.2 or in Appendix 5 can be used under RXISIS-II.

*The execution of ISIS-II software under RXISIS-II is identical
to ISIS-II. The reader may refer to Intel's "ISIS-II User's

- 80 -

0m

O.

a.

3.4 RXISIS-II

Guide" to obtain full information. With only a few excep-
tions, RXISIS-II commands refer to the names of disk files

* :which have to be loaded and executed. In contrast to ISIS-II,
however, the names of these files are not identical to the

- "~. commands to be entered by the operator; a file name extension
. "- is used to indicate to RXISIS-II the type of the program, and

the way it is to be executed. Programs with the file name
extension ".RXI" are qualified to run in a genuine real-time
environment, which implies certain additional features which
are not available under ISIS-II, such as type-ahead. The
extension ".RXR" indicates that the program may be executed

* .~under RXISIS-II, but real-time operation is not permitted. In
some cases, this is due to the insufficient stack size of pro-
grams which were only available as object code. Since inter-
rupts may result in a stack overflow with these programs, all
interrupts must be disabled while the actual program code is
executed, and they may only be enabled during calls to RXISIS-

-. II system routines. In addition, some programs like Intel's
CRT-based full-screen editor CREDIT or the ISIS-II version of
BASIC use input handlers of their own which are based upon
single character console input rather than line-based input.

S[..It is essential that type-ahead is disabled for such programs
to guarantee their proper operation. The ".RXI" and ".RXR"
extensions are automatically appended to the user specified

- * program name by the RXISIS-II Command Line Interpreter; nei-
ther of them need therefore be specified by the user.

Each command (with the exception of "@" and "DEBUG") is, in-
deed, interpreted by RXISIS-II as the name of a program file.
If, for example, the user entered "MYPROG", RXISIS-II first
searches for a file "MYPROG.RXI". If RXISIS-II finds such a
file, it loads and executes it. Otherwise, RXISIS-II con-
tinues with a search for "MYPROG.RXR". A message indicatingthat type-ahead is disabled is output if "MYPROG.RXR" has been

p. found and loaded. If this file does not exist either, RXISIS-
. II scans the disk directory for a file "MYPROG". Since a file

without an ".RXI" or ".RXR" extension may be incompatible with
RXISIS-II, great care must be taken in executing it; such pro-

6 ggrams are therefore not automatically executed after loading
but control is vectored to the Monitor. The user may, in this
case, choose whether he wants the program executed (with the
Monitor's "G(o)" command), or whether he prefers to exit back

4to RXISIS-II with the Monitor's "E(xit)" or "Q(uit)" commands.
(iRMX-80 and RXISIS-II system code and data in ROM are pro-

*tected from being overwritten by incompatible program code.)
Different files "MYPROG.RXI", "MYPROG.RXR", and "MYPROG" may

. exist in parallel on the same disk. By default, "MYPROG.RXI"
will be executed. It is possible, however, to load and run
also the other two programs if "MYPROG.RXR" and "MYPROG." are
invoked, respectively. (The trailing period in the "MYPROG."

- 81 -

' :4

3.4 RXISIS-II

command would constitute a command error under ISIS-II. Under
RXISIS-II, in contrast, it is used to explicitly access pro-
gram files without a file name extension.) In both cases,
control will be vectored to the Monitor after the respective
program was loaded.

File and device names may be entered in upper- or lowercase
characters.

3.4.1.1 Available Devices

The following device names are permitted under RXISIS-II:

:FO: ... Disk Drive #0: This drive must contain a valid
RXISIS-II system disk, i.e., a disk containing the
files RXISIS.BIN, RXISIS.CLI, and RXISIS.PSC. The
device specification ":FO:" is assumed by default; it
may be omitted.

:Fl: ... Disk Drive #1

:CI: ... Console Terminal Input

:VI: ... Console Terminal Input; treated identically to :CI:

:CO: ... Console Terminal Output

:VO: ... Console Terminal Output; treated identically to :CO:

:LP: ... Line Printer

:TO: ... Line Printer; treated identically to :LP:

:BB: ... Byte Bucket: Pseudo output device for dummy output
operations

3.4.1.2 Available Programs and Functions Under RXISIS-II

Programs which are not included in the following list are not
necessarily RXISIS-II incompatible. The programs listed below

., have, however, been successfully tested under RXISIS-II.

Some of these programs (e.g., CREDIT or BASICI) use single
character rather than line based input. Characters which are
entered while these programs are not ready to accept input are
added into the type-ahead buffer of the Terminal Handler which

- 82 -

4I

3.4 RXISIS-II

may eventually overflow, causing an error beep. During some
operation sequences, e.g., during data output in ISIS-II BASIC
or while CREDIT refreshes a CRT screen page, the program oper-
ation is halted if any key on the console terminal is pressed,
and resumed only after any key is pressed again. The program
operation proper is, however, not affected by such effects.

3.4.1.2.1 Intel SuVplied Utility and Development Software

The following Intel supplied utility and software development
programs have been tested under RXISIS-II and were found to be
fully compatible. For more information, please refer to In-
tel's "ISIS-II User's Guide" (unless otherwise specified).

ATTRIB File Attribute Display and Modification Program.

COPY File Copying Program.
4,

CREDIT CRT Based Text Editor (see Intel's "ISIS-II CREDIT
CRT Based Text Editor User's Guide"): a special
CREDIT.MAC file is generally required which cus-
tomizes CREDIT for the CRT terminal used. No
type-ahead can be used with CREDIT.

DELETE File Deleting Program.

. DIR Disk Directory Display Program.

LIB Library Manager Program.

LINK Program Module Linker Program.

LOCATE Program Module Locator Program.

RENAME Disk File Renaming Program.

U, 3.4.1.2.2 Other Utility Software

The following additional utility routines which were original-
ly written to extend the capabilities of Intellec Development

I Systems running under ISIS-II were adapted for RXISIS-II.
Some of these programs were newly configured for RXISIS-II;
the ".RXI" versions of these programs cannot be executed under
ISIS-II since they use memory below the ISIS-II buffer area.
For more information about the programs listed below, refer to

*,. Appendix 6 of this documentation, unless otherwise stated.

83

3.4 RXISIS-II

ADOC Text Formatting Program (see Text Formatting
Program "ADOC" Reference Manual, K. Riedling,

.1 February 1981).

ATTSET File Attribute Modification Program.
Dp

CMPDSK Disk Comparison Program.

COMP Disk File Comparison Program.

COPYCP Disk File Copying and Compare Program.

CPYDSK Disk Copying Program.

CREATE File Creation Program.

DIRFIL Disk Directory Formatting Program.

DISOBJ Object File Display Program (no documentation
available).

HEXCHK Hexadecimal File Dump Program.

LIST File Listing Generation Program.

SHOW File Display Program.

3.4.1.2.3 Programming LanguaQes Under RXISIS-II

Although arbitrary program .ource files may be generated or
edited under RXISIS-II (with CREDIT), the use of compilers is,
unfortunately, prohibited by the restricted memory size. It
is possible, though, to execute Intel's 8080/85 Macro Assem-
bler ASM80 (and, in turn, to link and locate program modules
with the LINK and LOCATE programs). ASM80 could, in fact, be
executed under RXISIS-II with full real-time capabilities

* (i.e., with the ".RXI" extension); still, the Cross Reference
*. generation overlay ASXREF has insufficient stack resources,

which requires that ASM80 be executed in the Restricted Mode
(i.e., without type-ahead) if the XREF switch is used.

There are two versions of Intel BASIC interpreters available
*O for use under RXISIS-II: The ISIS-II BASIC Interpreter can be

invoked with "BASICI"; it offers all functions known from
ISIS-II but a relatively limited workspace area (11848 bytes).
An iRMX-80 based BASIC can be loaded with "BASIC"; its work-
space is larger (18268 bytes) but it does not support some
functions of the ISIS-II BASIC (e.g., program line editing).

- 84 -

- -- r' ~'r -rrW a ~W r~~r W~W~ WrlW~ - -W Wry -rr-rP

3.4 RXISIS-II

iRMX-80 BASIC is, indeed, not executed under RXISIS-II but
constitutes a self-contained complete iRMX-80 system which can
be loaded from RXISIS-II but replaces RXISIS-II. It can only
be left via the Monitor (or via a system reset), in contrast
to ISIS-II BASIC which can be exited via the standard "EXIT"
command. BASIC programs generated with either version are
fully compatible.

ASM80 8080/85 Macro Assembler (see Intel's "ISIS-II
8080/85 Macro Assembler Operator's Manual").

BASIC iRMX-80 based BASIC (see Intel's "iRMX-80 BASIC
Reference Manual").

* BASICI ISIS-II based BASIC (see Intel's "BASIC-80 Refer-
ence Manual").

.J

3.4.1.2.4 Special RXISIS-II Functions and Programs

The following functions and programs are used exclusively by
RXISIS-II; they cannot be executed under ISIS-II (although
there are some similar ISIS-II functions).

@: Disk File Display Utility.

This disk file display utility is executed by the
'". RXISIS-II Command Line Interpreter rather than by
.-an explicitly loaded program. It is invoked by

entering

S@ [<device name>]<file name>
Only disk files can be displayed with "@". The
first page of the specified file is presented im-
mediately. The operator can continue the file
display line by line by pressing the space bar on

•. the console terminal; pressing any other key trig-
gers the display of a new page. The display proc-
edure can be exited by pressing the Escape key.
Tab characters are resolved properly. Lines whose
lengths exceed the screen width (80 columns) are
subdivided; the subdivision is indicated by an ar-
row ("--->") to the left of the continuation line.
Non-printable characters are replaced by question
marks (").Since all console input is inter-
preted as control signals for the display utility,
no type-ahead input can be entered during the exe-
cution of this function.

- 85 -

V. %
*l jipp%

3.4 RXISIS-II

DEBUG: Program Execution Under Monitor Control.

DEBUG is, in fact, not a program call but sets an
internal switch in RXISIS-II. Its use is similar
to the DEBUG function of ISIS-II; further informa-
tion can be obtained from Intel's "ISIS-II User's
Guide".

FORMAT: Disk formatting utility.

FORMAT permits to format blank disks. The program
is invoked with the command

FORMAT [<device name>]<label>

where <device name> may be either :FO: or :Fl:,
and <label> any sequence of one to six alphanumer-
ic characters which may be followed by an optional
extension of a period and one to three alphanumer-
ics. <device name> determines the drive on which
the disk is to be formatted, and <label>, the fu-
ture disk label. <device name> may be omitted; in
this case, the disk in drive 0 is formatted. The
program confirms the data given with the call, and
requests operator actions where necessary. Note
that only the ISIS-II but not the RXISIS-II system
files are created with the FORMAT call. An error
message pertaining to missing RXISIS-II files is
therefore issued after the execution of FORMAT if
the disk in drive 0 was formatted. FORMAT re-
boots RXISIS-II after its execution. Any type-
ahead is therefore lost.

RMXDBG: iRMX-80 Debugger.

The program RMXDBG loads and activates the iRMX-80
Active Debugger (compare Intel's "iRMX-80 User's
Guide"). The top of user accessible memory is

* moved down to 92FFH. RMXDBG makes itself resident
in memory and returns control to RXISIS-II; arbi-
trary RXISIS-II compatible programs which do not
exceed the available memory space may be loaded
and executed. The Debugger remains active until
RXISIS-II is re-booted.

0.

3.4 RXISIS-II

@ File Display Utility.

FORMAT Disk Formatting Utility.

RMXDBG iRMX-80 Debugger.

., 3.4.1.3 Executing Programs Under RXISIS-II

_, The first routine which is automatically invoked upon power-up
is the built-in Confidence Test, or, more precisely, the
memory test sequence of this routine (compare chapter 3.3.2).
The Confidence Test vectors control to the System Restart
sequence of the Monitor which issues a proper sign-on message.

". Any hardware system reset happening at a later stage directs
control immediately to the Monitor, bypassing the Confidence
Test. Memory contents are thus preserved from destruction by
the memory test routine.

An RXISIS-II system disk, i.e., a disk containing the files
-" "RXISIS.BIN", "RXISIS.CLI", and "RXISIS.PSC", should now be

inserted into drive #0. Pressing the "RETURN" key immediately
after the "System Restart" message was output makes the system
load RXISIS-II from disk. Control is vectored to the Monitor
if any other key is pressed (compare chapter 3.3.1). A hyphen
("-") appears as an operator input prompt when RXISIS-II is
ready for command input.

-, .: At this stage, any program compatible with RXISIS-II may be
invoked. Since RXISIS-II obtains console input via the Alter-
native Terminal Handler, all line editing and control features

pdescribed for the Alternative Terminal Handler (compare chap-
ter 3.3.4.2) apply fully.

There are two basic operation modes for the execution of user

programs, namely, Regular and Debug Mode.

(1) Regular Mode: Upon entry of the device name (if applica-

ble; only ":F0:" and ":F1:" are permitted) and, without
intervening spaces, the file name, the program file is
loaded, and control is submitted to the loaded code unless
an error was detected by RXISIS-II during program loading.
It lies in the responsibility of the loaded program to
return control to RXISIS-II upon completion.

(2) Debug Mode: Debug Mode is entered if the above command is
preceded by the switch "DEBUG" (and an intervening space).
In this case, the specified file is loaded, but control is

- not transferred to the loaded code. Instead, the Monitor

- 87 -

3.4 RXISIS-II

is invoked. The user is now at liberty to display or
modify code or data prior to executing the program (com-
pare chapter 3.3.1). If the loaded code was a main mod-
ule, its start address is already available in the Moni-
tor's Program Counter location; in this case, the program
can be started with a simple "G" (GO) command without
additional parameters. Execution breakpoints may be set
if necessary. The user must take care to return control
to RXISIS-II after program execution (compare chapter
3.3.1.4). A "DEBUG" command entered without a subsequent
file name permits to access the Monitor without loading a
program.

Three general types of programs may be invoked under RXISIS-
II. The simplest type is represented by most of the utility
programs listed in chapters 3.4.1.2.1 and 3.4.1.2.2. These
programs are, from the point of view of the resident iRMX-80
system, a simple quasi-subroutine extension of RXISIS-II.
Such programs may be executed in arbitrary order, without many

* precautions since they belong, from iRMX-80's point of view,
to the task RXIROM which executes RXISIS-II.

Some programs, however, require one or more additional tasks

to be created, e.g., "FORMAT" and "RMXDBG". These additional

tasks are usually built by the part of the disk loaded code
which is an extension of RXIROM. Such programs must by no
means be simply overwritten by new program code or data even
if they are no more required since the additional tasks they
contain have been included into the iRMX-80 task scheduling.
The easiest way to get rid of such no more required tasks is
to re-create the entire iRMX-80 system by re-booting RXISIS-
II.

Some applications, finally, do not need the ISIS-II interface
of RXISIS-II altogether; they are more efficiently configured
without RXISIS-II. Such programs (e.g., iRMX-80 BASIC or
genuine real-time application systems like the CGCS) are kept
in an overlay which is loaded instead of RXISIS-II rather than
in addition to it after an iRMX-80 system restart. RXISIS-II
was configured to permit the loading of such entire systems as
if they were simple utility programs like those described in

,chapter 3.4.1.2; aside from a more prolonged disk activity,
the operator will hardly notice any difference. Such systems
are activated by loading a dummy program under RXISIS-II

S. (e.g., "CZOCHR.RXI") whose only purpose is to vector control
to a dedicated part of the Command Line Interpreter code.
This routine replaces the extension ".RXI" by ".BIN", stores
the modified file name for the bootloader, and calls the boot-
loader. In our example, the file "CZOCHR.BIN" is therefore
loaded instead of "RXISIS.BIN" after iRMX-80 was restarted.

- 88 -

VIV

3.4 RXISIS-II

3.4.2 The Programming Interface of RXISIS-II

3.4.2.1 Preparation of RXISIS-II Programs Without Additional
Tasks

The system routines provided by RXISIS-II behave - with some
minor differences - identically to the corresponding ISIS-II
and ISIS-II Monitor routines. The appropriate documentation
in Intel's "ISIS-II User's Guide" applies therefore; the lib-
rary modules of the ISIS-II SYSTEM.LIB may be used to access
RXISIS-II functions.

-I No special care is required for the preparation of programs
intended for running under RXISIS-II which do not introduce
new tasks, and the instructions given in Intel's "ISIS-II

4, User's Guide" can be followed exactly. Programs which are to
be executed under RXISIS-II must not use memory above OC7FFH
(or, above 92FFH if they should run with the iRMX-80 Debugger
installed); on the other hand, they may access memory from

it 2800H upwards. This boundary is not affected by the number of
disk files used by the program. Note that RXISIS-II sets the
stackpointer to the current top of memory before it submits
control to the user program loaded; code or data located next
to MEMTOP may therefore be overwritten if the user code uses
the stack without redefining the stackpointer. (On the other
hand, programs which do not redefine the stack may return to
RXISIS-II with a simple RETURN machine instruction.)

In order to maintain compatibility between ISIS-II and RXISIS-
II, the program code start address should, if possible, be
chosen at 3680H according to the ISIS-II rules. The stacksize
must be at least 24 bytes plus the stack required by the pro-
gram itself in order to permit a non-restricted execution
mode. Programs which should be executed under RXISIS-II must
be configured as main programs (otherwise, the Monitor is
invoked after the routine was loaded, and the start address
has to be entered manually).

No special procedures are required for the linkage and locat-
ing of such programs; all PUBLICs required to satisfy the
EXTERNAL references are contained in the standard ISIS-II
library SYSTEM.LIB which should therefore be linked in as the

. last library. (The library RXISIS.LIB must be included after
N SYSTEM.LIB if either of the new routines SETMTP or EXICHK is

used.)

The following ISIS-II and ISIS-II Monitor routines and func-
tions are implemented under RXISIS-II:

- 89 -

3.4 RXISIS-II

ISIS-Il: OPEN
CLOSE
DELETE
READ
WRITE

*SEEK
LOAD
RENAME
EXIT
ATTRIB
RESCAN
ERROR
WHOCON
SPATH

MONITOR: CI (Console input)
CO (Console output)
LO (Printer output)
CSTS (Check console status)
IOCHK (Check system i/o configuration)

0 IOSET (Set system i/o configuration)
MEMCK (Return top of user accessible memory)

The following restrictions and differences to ISIS-II apply:

(i) No line-edited disk files are permitted.

(2) RESCAN can therefore be applied to the console input only.

(3) Only the console CRT terminal is permitted as a console
-device. This prohibits the use of SUBMIT files.

(4) It is not possible to re-define the console device either
with CONSOL or with IOSET. The IOSET routine provided is
only a dummy routine without any effect.

* Two routines are available in RXISIS-II in addition to the
ISIS-II system routines, namely, SETMTP and EXICHK. Their
entry points (and the entry points of all above RXISIS-II
routines) are kept in the library RXISIS.LIB.

SETMTP: This routine permits to change the top of the user
0. accessible RAM. The address specified with the call

is the highest location which can be overwritten
during program loading. The routine requires one
address type parameter (the MEMTOP value) if called
from PL/M, or the MEMTOP value in the B-C register
pair if called from assembly language.

90

3.4 RXISIS-II

EXICHK: This routine returns the System Exit flag which is set
by the Monitor to OFFH upon an "E" command (compare
chapter 3.3.1.4) and which is otherwise reset to zero.
The flag is a byte parameter returned in the A regis-
ter; the processor's zero flag is set accordingly.
EXICHK may be called by routines which perform lengthy
operations without invoking any of the (RX)ISIS-II
functions. An ISIS-II EXIT call should be performed
if EXICHK is found set.

* 3.4.2.2 Preparation of RXISIS-II Programs With Additional
Tasks

Evidently, compatibility to ISIS-II need no more be maintained
for such programs. Additional tasks can be created dynamical-
ly by the appropriate RQCTSK calls issued by the program's
main routine (which continues the RXISIS-II task RXIROH).
Such systems must be linked with the PUBLICs of the ROM resi-
dent system which are contained in the library RXIPUB.LIB.
The program should verify whether the version of RXIROM resi-
dent in the system when it is called is the same version with
which it was linked. (The version code of RXIROM is the value

. of the PUBLIC parameter RXIVER.) In some cases, it may be
necessary to link such programs also to the PUBLICs of the
disk resident part of RXISIS-II (e.g., to prevent the direc-
tory-based Disk File System routines from being linked in a
second time). An un-purged version of RXISIS.BIN is, for such
purposes, available under the name RXISIS. The program
should, however, also check the RXISIS-II overlay version
number in this case which is the value of the PUBLIC parameter
RXIVSN. (The RXIVER and RXIVSN values of the current system
configuration are stored in RAM at the locations OFEAEH and
OFEAFH (for RXIVER), and OFEACH and OFEADH (for RXIVSN),
respectively (see Appendix 3).

After their execution, programs containing additional tasks
must no more return to RXISIS-II unless they made sure by
lowering MEMTOP accordingly (via a SETMTP call) that the code
of the task(s) created by them is located in memory which is
protected from being overwritten, or unless all tasks and
exchanges created by the program are deleted. Otherwise, such
programs should be terminated with an RST 1 instruction which
restarts RMX-80 and re-boots RXISIS-II, rather than with an

* ISIS-II EXIT call.

I le
-91 -

4 3.4 RXISIS-II

3.4.2.3 The Preparation of Real-Time Application Systems

The rules given in the preceding chapter apply also to real-
time application systems which include RXISIS-II. Systems
which do not need the ISIS-II emulation (like the CGCS) should
rather be configured as independent iRMX-80 based disk over-
lays. Such overlays are loaded in two steps:

First, a dummy program with the name of the system and the
extension ".RXI" is loaded which vectors control to a dedi-
cated routine of the RXISIS-II Command Line Interpreter. The
Command Line Interpreter replaces the ".RXI" file name exten-

" .. sion by ".BIN" and passes the resulting program name to the
ROM resident initialization/loader code. Such a dummy program
is available on the RXISIS-II Software Development Disk under
the name "BOTLOD.OBJ" (or, e.g., as 'CZOCHR.RXI"); it need
only be renamed appropriately.

4) Second, the system proper is loaded by the ROM resident boot-
loader. The bootloader checks the ROM system version under

* which the overlay was created and issues a fatal error message
if this version differs from the current one. The bootloader
expects the two-byte ROM version code (which is supplied by

* RXIROM as the value of the PUBLIC variable RXIVER) in the
locations OFEAEH and OFEAFH, where it must have been deposited
by the system overlay loaded.

Application system code may be loaded into RAM between and
including 2800H and OFEADH. Memory below 2800H is reserved
for the ROM resident tasks; the memory locations from OFEBOH
through OFEEFH contain the Disk Controller's buffer, and RAM
from OFFFOH through OFFFFH is used by the Loader. The latter
locations may be overwritten by application systems if the
Loader is no more needed; still, they are also partly used bythe Monitor. Data stored there may therefore be mutilated

when the Monitor is invoked. (Compare Appendix 3.)

In general, real-time application systems can be configured
according to the rules for bootloaded iRMX-80 systems. The
ROM resident part of the task RXIROM loads the disk overlays,
checks for loader errors and for the correct linkage version,
and starts executing the loaded code beginning with its entry
point address (the overlay must be a main module). A special
routine, RMXOVL, has been provided in RXIROM.LIB which must be

* •linked in as the first module when the application system
overlay is created, instead of the START module of the iRMX-80
Loaded System Library LOD8xx.LIB. The commission of RMXOVL is

- _to create the tasks and exchanges contained in the Create
Table of the overlay, and to delete the task RXIROM which is
supposed to be no more required by the application system.

92

".0

3.4 RXISIS-II

Furthermore, RMXOVL is configured to provide the ROM system
version code in OFEAEH and OFEAFH. (Application systems may
use a similar entry routine which does not delete RXIROM, and
continue this task with an arbitrary function. This has been
done, for example, in the CGCS where RXIROM continues as the
Command Interpreter task.)

The LINK call for configuring the overlay should therefore
contain the following items:

An iRMX-80 Configuration Module
RXIROM.LIB (RMXOVL) (or an alternative module)
Application specific modules
LOD8xx.LIB (The Bootloader Library for the iSBC used)
All iRMX-80 extensions required

" RXIPUB.LIB
RMX8xx. LIB
BOTUNR. LIB
UNRSLV. LIB
PLM80. LIB

The Configuration Module and a configuration SUBMIT file may
be created with Intel's Interactive Configurator Utility
I"-80. Still, the ICU-80 created SUBMIT file must be edited
to comply with the above structure.

Disks exclusively used for a real-time application system need
not necessarily contain the files RXISIS.BIN and RXISIS.CLI.
Still, they must provide the Cursor Positioning overlay
RXISIS.PSC if they are to be mounted on drive 0. Due to the
loading approach chosen, application system overlays may be

qlocated on and invoked from either drive.

3.4.2.4 Use of ROM Resident Routines by Apvlication Systems

Aside from the Terminal Handler and Loader tasks, the RXISIS-
II ROM contains several routines which are used by RXISIS-II
but may also be called by application system tasks:

RXCFNB: Create File Name Block.

This routine parses an input buffer for a valid file
name whose start address is submitted as a parameter.
It returns a completion code which specifies the
device type or possible error conditions, and a File
Name Block which can be directly used by the iRMX-80
Disk File System routines. If called from an assembly
language routine, RXCFNB also provides a pointer to

- 93 -

S.

3.4 RXISIS-II

the first character after the file name. Leading
spaces in the input buffer are ignored by RXCFNB.
Strings following a colon (":") are interpreted as
device names; only the device names listed in chapter
3.4.1.1 are permitted. Strings without a leading
colon are supposed to be names of disk files on drive
0 (":FO:" is appended internally). Invalid device
names (all entries different from the names listed in
chapter 3.4.1.1), invalid file names consisting of
more than 6 alphanumeric characters, illegal exten-
sions longer than 3 alphanumeric characters, and
missing extensions (file name terminated with a period
but without an extension) are reported. The File Name
Block is undefined or partly undefined in this case.
It is also undefined if a non-disk device was speci-
fied. A special code is returned if the string
"DEBUG" (without extension) was detected. A file name
is considered terminated if the first not alphanumeric
character (not necessarily a blank) is detected; the

*register pair B+C is returned as a pointer to the
location of this character.

CALL FROM PLM:

status = RXCFNB (.buffer,.file$nameSblock)

PARAMETERS FOR ASSEMBLY LANGUAGE CALLS:

A ... Completion Status Byte (0)
B+C . Input String Start Address (I)

Address of First Character After String (0)
D+E . File Name Block Start Address (I)

The following status codes are returned:

* OOH ... Device = :CO: or :VO:
01H ... Device = :CI: or :VI:
02H ... Device = :LP: or :TO:
OFH ... Device = :BB:
10H ... Device = Disk; File Name With Extension.
11H ... Device = Disk; File Name Without Extension.

ol 20H ... Device = Disk; File Name "DEBUG".
40H ... Illegal Device Name.
80H ... Illegal File Name.
81H ... Missing File Name.
82H ... Illegal Extension.
83H ... Missing Extension.

-94-

3.4 RXISIS-II

Valid data are contained in the File Name block if the
codes 10H, 11H, or 20H are returned.

RXCEXT: Create Extension

V Similar to RXCFNB, RXCEXT parses an input buffer for a

file name extension string (one to three characters).
The parameters and completion codes of RXCFNB apply
analogously.

RXCNEX: Create Null Extension

In contrast to the above routines, RXCNEX does not add
data to a file name block specified with the call but

S. replaces a possible extension within the file name
block by binary zeros (corresponding to no extension).
For reasons of compatibility, the same parameters and

* completion codes apply as for RXCFNB; although no
input string is actually required a dummy such param-

* eter must be specified with a call from PL/M.

. RXCRMX: Create RMX-80 Overlay System

This routine replaces the START module of the Loaded
System Library LODxxx where xxx corresponds to the
type of the processor board used (80-24, 80-30). It
uses the Create Table RQCRTB specified for the overlay
system; such a table may be created by Intel's Inter-

- active Configurator Utility ICU-80. The address of
this Create Table must be passed as a parameter to the
RXCRMX call. (Since RQCRTB is declared PUBLIC by
ICU-80, a "Multiplely Defined Publics" error message
referring to it is issued during the system linkage;
this error message can be ignored.) RXCRMX first
creates all exchanges and subsequently all tasks

-" " specified in the Create Table.

1 CALL FROM PLM:

CALL RXCRMX (.RQCRTB)

PARAMETERS FOR ASSEMBLY LANGUAGE CALLS:

6 B+C . Address of the Create Table RQCRTB

.

- 95 -

N%
-I

I

3.4 RXISIS-II

3.4.2.5 Other Utility Routines in the Library RXIROM.LIB

The library RXIROM.LIB holds, in addition to the routines al-
ready discussed above, a number of auxiliary routines which
may be called by application programs. Since these routines
are not included in the system ROM, they have to be linked in
explicitly when the user program is configured.

RMXOVL: Start Module for iRMX-80 System Overlays.

This routine has already been mentioned and discussed

in chapter 3.4.2.3.

LNKDBG: Link RMX-80 System Overlay with Debugger.

5' This module has to replace RMXOVL if the iRMX-80 Ac-
5tive Debugger is to be included in an iRMX-80 real-

time application system. It includes the Active
Debugger's Static Task Descriptor and some initializa-
tion sequences required for the execution of the
Debugger (particularly, the generation of a RAM resi-
dent vector to the breakpoint entry point of the
Debugger). The module RST5VC in RXIROM.LIB must also
be included with LNKDBG. The particular structure of
RXISIS-II prohibits that the modules constituting the
iRMX-80 Debugger can be directly requested if the Con-
figuration Module is created with ICU-80. The corres-
ponding libraries must be specified with the ICU-80
"LINK" command.

CRTFNB: Create File Name Block.
CRTEXT: Create File Name Extension.
CRTNEX: Create Null Extension.

These routines are, in fact, the predecessors of
RXCFNB, RXCEXT, and RXCNEX, respectively (see chapter
3.4.2.4). They differ from the ROM resident routines
insofar as they perform a more stringent check of the
file name string. With CRTFNB, a file name must be
terminated with a blank (space or control character),
while with RXCFNB any non-alphanumeric character is
accepted as the file name terminator. (Non-alphanume-
ric characters within the six places of a file name,
or the three of an extension, cause an error code of

4 80H and 82H, respectively, if the file name string is
parsed with CRTFNB.) The same applies to CRTEXT. The
programming interfaces are identical to those of the
corresponding "RXC..." routines.

-96-

4.

'% . * % %

4.1 Basic Operation Concepts of the CGCS

4. The Operation of the Czochralski Growth Control System

4.1 Basic Operation Concepts of the CGCS

4.1.1 General System Design

The Czochralski Growth Control System (CGCS) was designed as
an interactive real-time process control program whose initial
purpose was to replace the conventional analog controller
supplied by Cambridge Instruments for the CI-358 LEC puller.
From its initial commission of emulating the analog system,
the digital controller was further enhanced by the addition of
advanced deterministic and, finally, heuristic control fea-
tures. The key characteristics of the CGCS can therefore be
grouped according to the level and quality of control.

(1) Emulation of the analog controller:

The CGCS is connected to the puller's output signals in
parallel to the analog system, permitting both controllers
to monitor a growth run in parallel (compare Fig. 2). The
following CGCS functions can be considered a replacement
of the analog controller:

* Display of measured data and setpoints: All relevant
measured data (as listed in chapter 2.4.1) are displayed
permanently on the console terminal; Fig. 9 shows a
(simulated) display screen.

08-10-87 21:19:54 Run ID: Demonstration Screen MACRO System Time: 27:16:22
..

Actual: Setpoints: Mode: Automatic Length: 85.45
Diameter (D): 83.73 82.00 82.00

Raning: 2/20 Condit.: 1/8

Temp. 1 (Ti): 23.65 23.63 23.50
Temp. 2 (T2): 23.98 23.95 23.80 Weight: 2348. Diff.Wt.: 1.476

* Temp. 3 (T3): 23.39 23.36 23.25 Seed Pos.: 246.7 Cruc.Pos.: 23.89
Base Temp: 20.19 Gas Press: 297.6

Power Limit (PL): 80.00 80.00
ActuaL: Setpoints:

Seed Lift (SL): 9.003 9.000 9.000 Seed Rot. (SR): 4.997 5.000 5.000
Cruc Lift (CL): 1.487 1.492 1.500 Cruc Rot. CR): -30.0 -30.0 -30.0
......

Power In/Out: 47.37/45.29 49.12/48.28 45.40/42.12 Contact: *32*

2881H= -28 28C9H= -31 2842H= 0.001250 36F9H= 23.67148
set proplO -20 300
macro
! Executing Macro MACRO *

deb c rcrset 4
Please Comand:

comm This is a demonstration screen with arbitrarily invented data_

P Fig. 9: Console screen of the CGCS.

- 97 -

... % tZ N~* N*** N,*'*-

4.1 Basic operation Concepts of the CGCS

The console screen shown in Fig. 9 displays, in general,
the following items:

(1) Date, time, and run identification in the top line.
Two times are displayed, namely, the actual time (in
24 hours format), and an internal system time which
starts at zero when the system is initialized, and
can count up to 95 hours, 59 minutes, and 59 sec-
onds. (It wraps around to zero after 96 hours, and
starts counting up again.) The top line holds, in
addition, a space between the run identification and
the system time where the name of a Macro Command
(see below and chapter 4.5) will be displayed while
it is executed.

(2) A regularly updated display of measured system pa-
rameters and of setpoints. Two columns are provided
for the display of the setpoints: The left column

.8 holds the currently valid setpoints, whereas the
* right column displays the final setpoints which may

differ from the current setpoints if a parameter is
being modified by the system. If a parameter is set
by the output of a controller (e.g., the heater tem-
perature in diameter controlled mode), the right

S., column indicates a bias value input to the control-
ler. Parameters which can be entered as setpoints
are, in addition to their full names, identified in
the screen display by the two character abbreviation
with which they are to be identified. The system
was designed to accommodate a three-zone heater.

'p Therefore, three heater temperatures and three pairs
of power values are displayed. (In the current im-
plementation at ASU, only one heater channel is
meaningful; the measured data for the second and the
third channel have been tied to those of the first
channel.) There are two output power values for
each heater channel, referred to as "In" and "Out";
the "In" values specify the percentage of maximum
power which is input to the power controller, while
"Out" gives the actual output power; both are scaled

Vto lie between 0 and 100. (The "In" values are, in
fact, calculated and output by the CGCS, whereas the
"Out" data are measured data input by the CGCS.
"In" and "Out" refer to the power controller, not to
the CGCS.)

(3) Internal system status information: This informa-
A. tion comprises the number of parameters being "ramp-
*0~~~ed" (i.e., being modified linearly between their in-

itial and intended final values within an arbitrary

-98 -

* ~ 4.1 Basic Operation Concepts of the CGCS

time), and the number of Conditional Macro commands
pending, against their respective maximum values (20
and 8, respectively) . Furthermore, the operation
mode (see MODE command) is displayed close to these

* two values in the top right corner of the screen.

(4) Command echoes and system messages: While the upper
part of the CGCS output screen is in a f ixed format
and updated in a random access mode, the echo and
message area (five lines in the bottom third of the
display) is scrolled up as information is added in

* the bottom line. The echoes of operator entries are
displayed there, and messages issued by the system
are directed there, too. In addition, the same area
is used by some commands for the display of menus or
auxiliary information. The scrolled portion shrinks
to four lines if auxiliary data display is requested
with the DEBUG Continuously command. In this case,

P the top line of the scrolled portion is used for the
DEBUG output.

*(5) Command prompt line: All operator actions are re-
quested in the last line but one on the screen.

(6) Input area: The bottom line is reserved for the
currently entered command line. In general, the
RXISIS-II rules apply to the entry and to the edit-
ing of commands.

*Data logging and recording: All parameters displayed on
the console screen can optionally be recorded on disk
for later analysis. One record (which contains thep values of more than 50 parameters) can be written to
disk at intervals ranging from one second to 255 sec-
onds. The entire dialogue between the operator and the
CGCS can be copied to a line printer or to a disk file,
with the time appended at which each line was generated.

*Control of the "primary" system parameters: The primary
parameters - heater temperature(s), motor speeds, and a
power limit for the heater(s) - can be modified interac-
tively in either an absolute mode (i.e., by specifying a
target value), or in a relative mode (i.e., by entering
the intended positive or negative change) . In either
case, the system can be instructed to adjust the parame-
ter instantaneously to its final value, or to "ramp" it

- *. gradually between its initial and intended final values
within an arbitrary interval. Digitally implemented PID
control loops are used for maintaining the controlled
parameters at their respective setpoints.

-99 -

IF WIV -1rr r r rWV r' rrr ~v. r w.~rvri' ~ ' -Fr r C C uI

4.1 Basic operation Concepts of the CGCS

* * Diameter control: Based on the standard weighing meth-
od, the diameter of the crystal grown is determined with
an algorithm which takes into account the buoyancy of
the part of the crystal which is immersed in the boric
oxide encapsulant. Depending on the operation mode of
the CGCS chosen, the heater temperature can be control-

* led to maintain the crystal diameter at its setpoint.
(Further details of the controller operation are given
in chapter 4.1.2.)

J.(2) Advanced features of interactive control:

The following features of the CGCS facilitate and enhance
control over the puller; although they increase the degree

-. . of automation significantly over the one offered by the
analog Cambridge Instruments controller, they are not
sufficient yet for an entirely automated operation.

*"Variables": Any arbitrary system parameter can be
0 identified by a symbolic name, and displayed and modi-

fied exactly like primary parameters. (A directory of
Variable names is kept in a disk file; its size is only
limited by the available disk space and by the time it
takes to locate a given Variable.) This feature permits
access to intermediate results and to controller parame-
ters which may be modified dynamically according to the
requirements of the process.

*"Macro" commands: All commands actually pertaining to
the crystal growth process can optionally be recorded in
a disk file, with the time (relative to the start of the
recording) appended at which each command was issued.
The resulting command file may be edited (or created)
with a Macro Command Editor program which runs under
RXISIS-II, and used as an input for subsequent growth
runs. Commands recorded in the Macro command file are
executed exactly with the sequence and timing of the

*original run. Since Macro commands can be referred to
by a single-word command, and since they can be started
arbitrarily, they constitute a powerful feature of
combining complex sequences of commands, thus relieving
the operator from more complex command entries, improv-
ing the reproducibility of the process, and avoiding

0,?operator errors. Commands originating from a Macro
command file may be interspersed with commands entered
on the console; the resulting stream of commands may be
recorded on disk again, which constitutes kind of a
learning ability of the system. Macro commands may even
invoke other Macro commands, which permits to concate-

a~ -100-

4I -

K.
4.1 Basic Operation Concepts of the CGCS

nate a series of Macro commands for a more complex oper-
ation. (The current structure of the CGCS does, how-
ever, not permit subroutine-type Macro calls. A Macro
command which invokes another Macro command is therefore
preempted.)

The command flow in the CGCS is schematically depicted
in Fig. 10; commands entered on the console and from a
Macro command file are pre-processed by the Command
Interpreter and Macro Command Input tasks, respectively,
and submitted to the Command Executor task which con-
stitutes the interface to the actual process control
tasks. All commands sent to the Command Executor are
advanced in chronological order to a Command Output task

- which writes them to disk if instructed to do so.

ZONSOtt COMMAND
.- TERMINAL NTER-

CPERATOR) PRETEP

COMMAND MACRO DISK
EXECUTOR COMMAND MACRO

, OUTPUT COMMAND)

DISK MACRO
'MACRO COMMAND
CMMAND) INPUT

CRYSTAL GROWTH CONTROL ROUTINES

Fig. 10: Command execution in the CGCS.

-101-

%.,

4.1 Basic Operation Concepts of the CGCS

(3) "Intelligent" control:

The above features are strictly deterministic, similar to
most known crystal growth automation approaches. They are
not sufficient, though, for a fully autonomous growth

.. .Ycontrol since they are not flexible enough to allow for
the fluctuations which are typical for crystal growth
processes. While some operator interaction is therefore

* required for initiating operations or sequences of opera-
tions in other "automated" crystal growth controllers, the
CGCS endeavors to replace the decisions made by the opera-
tor by internally generated decisions, which requires
features akin to artificial intelligence.

"Intelligent" control is effected in the CGCS by the
conditional execution of Macro command files, i.e., by the
execution of a Macro command if and when a Variable as-
sumes a specified relation to a given constant (e.g.,
greater than or equal). The CGCS maintains a table of
such Conditional Macro commands which may be issued at any
time by the operator, or by another Macro command; the
conditions for the execution of each of these commands are
checked periodically until either the condition is found
met, and the Macro command is executed, or until the
Conditional Macro is removed from the table by a pertinent
command. Since each Macro command may issue one or more
Conditional Macro commands, the CGCS can be programmed to
handle properly even relatively complex operations like
seeding in an entirely autonomous way.

In contrast to the above "vertical" hierarchy within the CGCS,
we can distinguish five "horizontal" operation modes each of
which comprises a higher degree of closed-loop control. The
operation modes are identified by a numeric parameter and a
keyword name as follows:

0 - Monitoring: No control at all is performed by the CGCS in
this mode.

1 - Manual: Closed-loop control comprises the four motor
'.11speeds, and the temperatures of up to three heaters. The

CGCS does not effect closed-loop diameter control.

0.6 2 - Diameter: In addition to the motor and heater closed-loop
control, the CGCS controls the crystal diameter via the
heater temperature (compare chapter 4.1.2). The plain

/ - differential weight, without anomaly correction, is used
for diameter evaluation.

-102-

v o-eW

4.1 Basic Operation Concepts of the CGCS

3 - Diameter/ASC: "ASC" stands for "Anomaly Shape Control":
A correction similar to the approach used in the analog
Cambridge Instruments Anomaly Shape Control board is used
for pre-processing the differential weight prior to the
diameter calculation (compare chapter 5.3.2.2.2). Aside
from this correction step, mode 3 is equivalent to mode 2.

4 - Automatic: Automatic mode comprises all features of Diam-
eter/ASC mode, plus closed-loop control of the crucible
lift speed which maintains the growth interface at a
constant location within the heater's hot zone (compare
chapter 4.1.2).

4.1.2 Control Loops in the CGCS

The fundamental operations of the CGCS, namely, the control of
the speeds of the four motors for seed and crucible lift and
rotation, and of the power supplied to the heater or heaters,
utilize conventional closed-loop control methods which are
generally based on PID controllers realized with a generic PID
routine. This routine is invoked with dedicated parameters
for each control loop. In addition to standard proportional,
integral, and derivative control, the generic PID controller
features several modes of output limiting and "windup" protec-
tion (which enhances its dynamic response if the controller
incurs a limit condition); the possibility to add a bias value
to the output of the PID controller allows for feed-forward
operations, and for small corrections of setpoints which are
basically determined by other sources.

The standard control loop for each of the four motors is out-
" lined in Fig. 11: The primary control of the motors is done

by the analog circuitry which came with the Cambridge Instru-
ments controller. Under digital control, the setpoint for
these analog motor controllers is supplied by the D/A con-
verter outputs of the CGCS, rather than from a potentiometer
on the analog console. Basically for the compensation of non-
linearities and offset errors of the analog motor controllers,

digital PID loops are used to pre-process the signals finally
submitted to the analog system in order to make the actual
speeds exactly match their corresponding setpoints. A com-
bined feed-forward and PI control approach can be used to

o optimize the performance of the entire control loop. (Using
an analog hardware-based rather than a digital software-based
technique for the primary motor control guarantees a suffi-
ciently smooth and fast operation without overburdening the
digital system.)

1"~- 103 -

4.1 Basic Operation Concepts of the CGCS

SP RID ANALOG
SPE P I DAMOTOR MOTOR
SETPOINT CONTROLLER

%'

DIGITAL SYSTEM ANALOG SYSTEM

Fig. 11: Control loop for one of the four motors in the CGCS
(analog/digital and digital/analog conversions are
not explicitly shown).

With regard to the diameter control method generally applied

to the growth of compound semiconductors, temperature and
diameter control are closely related to one another (Fig. 12):
In "manual" mode, i.e., without closed-loop diameter control,
a temperature setpoint value is compared to the digitized

Noutput of the thermocouple which monitors the temperature of
.the heater; the resulting difference is submitted to a PID

'Sr controller whose output controls the power setpoint of the
analog heater SCR controller. In "automatic" closed-loop
diameter controlled mode, the heater temperature setpoint is

* modified by the output of a superimposed diameter control
loop. In contrast to the standard Cambridge Instruments

-- diameter controller which controls the heater temperature
according to the deviation of the first derivative of the
crystal weight ("differential weight") from a given setpoint,
the CGCS first calculates the actual crystal diameter, and
uses it as an input to the diameter controller. This permits
a more straightforward and understandable operation of the
controller. Since the CGCS was designed for up to three
heater zones, three independent temperature and diameter con-
trollers according to Fig. 12 have been provided in the con-
troller program.

- 104 -

el

". .4.1 Basic Operation Concepts of the CGCS

MANUAL POWER LIMIT
AUTO ______

TEMPERATURE HEATER

SDTPOINT P I HEATER• • " CONI"ROLLER

'THERMO-

LIMIT

DIAMETER -, p CRYSTAL
SE.POINT - I

" " d/dt

DIAMETER VW
CALCULATION ddE' \ GAUGE /'

DIGITAL SYSTEM ANALOG SYSTEM

Fig. 12: Heater temperature and crystal diameter control
loops (analog/digital and digital/analog conversions
are not explicitly shown).

An auxiliary control loop (Fig. 13) can optionally be applied
to the vertical speed of the crucible: Since the level of the
semiconductor melt in the crucible drops during a growth run

-. according to the amount of material solidified, the interface
between the solid crystal and the melt would change its posi-
tion within the heater, which is liable to cause growth in-
stabilities, unless the crucible is lifted exactly by the
amount of the melt drop. On conventional pullers, the cruc-
ible lift speed is set to a fixed value which is calculated
under the assumption of an ideally cylindrical crystal with

S constant diameter. The CGCS, in contrast, computes a setpoint
value for the crucible position as a by-product of the diame-
ter evaluation routines, essentially by determining the amount
of melt already used up by the crystal; this setpoint is
compared to the actual crucible position, and the resulting
error signal is used as an input for a PID controller whose
output is superimposed on the crucible speed setpoint.

-105-

V..

4.1 Basic Operation Concepts of the CGCS

MANUAL

8CRUCIBLE CRUCIBLE LFT

SPEED MOTOR MOTOR

SETPOINT CONTROLLER

LIMIT
CRUCIBLE
POSITION I
SETPOINT /, PID

'CRUCIBLE
POSITION

CRUCIBLE WEIGHT
POSITION GAUGE

CALCULATION G

, DIGITAL SYSTEM ANALOG SYSTEM

Fig. 13: Crucible position control loop (analog/digital and
digital/analog conversions are not explicitly
shown).

4.1.3 Diameter Evaluation in the CGCS

The actual diameter of the crystal, and a number of auxiliary
parameters like the crucible position setpoint, the growth
rate, and the crystal length grown, are calculated by the CGCS
once every ten seconds. In addition to the differential

A,, weight, several other measured parameters are used as inputs
for these computations, as shown schematically in Fig. 14.

The diameter evaluation approach used in the CGCS is based
upon the differential weight signal supplied by an analog
differentiator circuit. After its A/D conversion, this signal
is submitted to digital low-pass filtering; an anomaly compen-
sation analogous to the approach used in the Cambridge Instru-
ments Anomaly Shape Control board may be applied to it. The
current diameter of the crystal is calculated from this dif-

*~ ferential weight using the actual growth rate (i.e., the dif-
ference between the seed and crucible lift speeds plus thespeed with which the semiconductor melt drops when it is con-

. sumed by the crystallization process). A full compensation

- 106 -

et

4.1 Basic Operation Concepts of the CGCS

for the buoyancy in the boric oxide encapsulant is provided;
the diameter evaluation routine keeps track of the shape of
the part of the crystal next to the solidification interface
(to be accurate, of the last 75 millimeters of the crystal),
and calculates the volume immersed in the encapsulant and the
height of the boric oxide layer from this information. This
approach permits the use of actual physical parameters of the
system (like densities, dimensions, and speeds) rather than
the modified parameters required in conventional analog
growth.

,E 3-if T~ CiAME"ER CRYSTAL
_GE 'ALCJLATION 31AMETER

": - d/dt
-- GROWTH RATE GROWTH

CALCULATION RATE
*~ PEE_ ,

* -C "Y C___UC__L_

CR UC!13 CRYSTAL CRYSTAL
ENGTH'LNT

AC.EEO .- YLCULATION LENGTHA_ ,CHOM,

'3;CN
£";-C ER CRUCIBLE CRUCIBLE

OSITION POSITION

RUC:BLE ' ALCULATION SETPOINT
'" " ' CSITIN -

ENC,.OER

CRYSTAL SHAPE STORAGE
ENCAPSULANT LEVEL CALCULATION

. ANALOG SYSTEM]RCWTH PARAME"EAS

,4

Fig. 14: Block diagram of the evaluation algorithms for the
crystal diameter, the growth rate, the crystal
length grown, and the crucible position setpoint
(analog/digital and digital/analog conversions are
not explicitly shown).

4

The diameter and crucible position evaluation algorithms which
are used throughout the major part of a crystal growth run are
based on the following assumptions:

- 107 -

% %t
..

• % ,% .- I-- . "- - . - pp. . , -, "- - ,,% - p ' pp % % ., % .' % ' l

4. ascOerto Cnetso heCC

conserv asc peation Cnet of the toa ms metplscysa)

WhilTe assumptli (2 srasonablhtylsifednte.aeo

theheaoto boric oxide encapsulant osno eathe cystathi

does noe smreoapplyto meth other two asutions towaetrdsf the
endile ofd amrotacceia Thee tastoee the cr euciblte

hiofthe semiconductor melt tdsocnratitselfordune tot sufae
V tensinsvaio n and recde torsthe maset oflth cruciblef. t

above assumption have to beamndedy astfe follows:eo

decim rsesnine ordrutouppl thnie matrialh beings solidife
th i the d crystal.os o wtth rytlti

(2) The ap grwih opces upTherforeio between the mcnuctore
mell and t cruciblesablsfe with boterics oxid

thencpuontihrducesr mettnstotth effetive boi oxidae
henight andrcdtwrs the crystal grows.uibe ft

ablen os hanlg bothanlii. na extreme cases, adnyrbtryite

anov aPAsuetofs hav coeod toede the firstwseto:oniin

(whe The semiconductor melt fils th eylntrirecrucl diameh o-
ser), wheeacakae woe 0dcnfomste withther second stie.,)

extemeamet iresio).uValute foral betwn 0oadf1e
prit toe model. nemdaesaebtentetoetee

(2 in e a a heuisich mode:s Motliy thediskformedeby theseiodcr
reeimelt des creucbe itsl tiks whlen wth meltis usie

up gh by thtgown crystal; thg sedrihohihitdess

The mayahoever, ealctoniealyitm lesd thn durin the aregular-

zbeof willin threohexte rorae adrin thebinraly growth
.edt stage Sicecrtal grothe wilalway sfthariunde condi-

tAnsAPAvlo correspondin to the first set of ssumptionsAi

itializheeds wih1an eantti value uf0cnomihtescnl est is.

explicitlyvet, to aondifern ayle.sta uig heua
grwh nAPAvlu esta u.silgetrta

zeowl hrfr eaporit uigtefnlgot

-108-

4.1 Basic Operation Concepts of the CGCS

The RESET command is closely linked to (and required by) the
diameter evaluation routines. It initializes the shape infor-

- mation required for the buoyancy compensation under the as-
sumption of a cylindrical seed with the diameter specified
wizh the INITIALIZATION command (or sequence) which passes
thrcugh the entire boric oxide encapsulant layer, and it pro-
vides initialization values for the crystal length and weight

*calculation. Furthermore, a RESET command resets ALPHA to 1
* , and cancels all effects of a possibly different previous ALPHA

value.

'10

%

4.2 Starting the CGCS

4.2 Starting the CGCS

The Czochralski Growth Control System (CGCS) is started from
RXISIS-II, but it is a genuine real-time process control
program which is independent of the RXISIS-II environment.

NOTE: The system needs the CGCS system disk permanently in
drive 0. The operator must by no means exchange this
disk unless prompted to do so (see the EXCHANGE com-
mand). To be save in the (improbable) case of a disk
error on the system disk, a second system disk should be
kept at hand which must, however, be of the same system
version. The system will crash inevitably at the attempt
to install a disk in drive 0 which holds a different

'. CGCS version!

The CGCS is invoked from RXISIS-II like any other RXISIS-II
function, namely, via a call by its name, CZOCHR. Provided
the disk in drive 0 holds a valid copy of the CGCS, it will be
loaded, and a sign-on message is displayed. During this ini-
tialization, the system checks whether the A/D Converter hard-

- ware is installed and operational, and it enters into a Test
mode if this is not the case. A message "Test Run" is dis-
played if the A/D converter does not respond properly, and
input from the A/D converter and output to the D/A board are
suppressed. This feature permits testing of the CGCS software
in an environment which does not provide the hardware inter-
face to the puller; running the CGCS with disabled inputs
allows, in addition, to simulate input parameters for testing
purposes. (Analog I/O can also be suppressed under software
control in a fully equipped hardware environment; compare

5 chapter 4.7.2.)

Among may other initialization chores, the CGCS disables the
BREAK key on the console terminal, and enforces a duplication
of Monitor output on the printer. All inadvertent entries
into the Monitor program will therefore show up in a Documen-
tation printout.

During the entire growth run, the CGCS checks the integrity of
its program code periodically. RXISIS-II should be re-booted,
and the CGCS re-started as soon as possible if a memory error
is reported in order to avoid unforeseeable reactions of the
system.

Subsequently, the CGCS prompts for the current date (which is
not updated even if a run extends beyond midnight) and time,
and for an arbitrary run identification code. Date and time
must be entered in the format displayed by the CGCS; the sec-
onds can, however, be omitted (they will be assumed to be zero

-110 -

4o

6i

4.2 Starting the CGCS

in this case). The date and time entries must be acknowledged0 by the operator; a plain "Return" in response to the confirma-
tion prompt will accept the data displayed in the top line of
the screen.

* During the initialization of the system, some commands are
automatically performed by the CGCS, thus saving the operator
typing and making sure that all required information is enter-
ed. The system permits to open a Documentation output file
(otherwise done with the DOCUMENTATION command), and requests
a set of constants (see the INITIALIZATION command). Finally,

teCommand Interpreter's prompt "Please command:" is ds
played, and the CGCS enters its regular operation mode. ds

%, %

~W~ WW WI . - Wr V_ " W 'W _ _ - W W WV' r 'Vr -r -,-- 1

4 o d o e

4.3 Command Set of the CGCS
"J" 4.3 Command Set of the CGCS

4.3.1 General Remarks
The operation of the CGCS is determined by independent com-

mands which are interpreted by the Command Interpreter (one of
. the CGCS's iRMX-80 tasks). There are two types of commands,

namely, Internal, and Macro commands. Internal commands are
directly executed by the program; they provide the basic con-
trol functions. Macro commands, in contrast, are in fact disk
files which are read when their name was entered as a command.
These disk files hold, in turn, one or more Internal commands,
with a time information attached. These Internal commands are
therefore not only executed in the order in which they were
recorded on the file but also with the same timing. Macro
command files can be generated either by directly recording
the commands entered on the console during a growth run, orwith the Macro Command Editor COMMED.

Internal commands are generally invoked interactively, i.e.,
0 the operator is prompted for more information if necessary.

Some of the Internal commands can be entered in one single
command line, which simplifies the dialogue between the system
and the operator significantly. All items which may be speci-
fied together with the command keyword are listed in the sum-
mary of Internal commands in chapter 4.3.2. Commands which
are likely to affect either the growth process proper, or
essential functions of the CGCS, require, in general, a recon-
firmation of the data entered by the operator with an explicit
acknowledgement response (e.g., "Y(es)"); any other entry,

.s--including "Return" only, cancels the command.
All valid Internal commands and the descripticns of their
purposes are listed below in alphabetical order. It is ob-
viously not possible to give a similar list of Macro commands

A since they may be freely defined by the operator. It is
therefore up to the operator to keep a record of his Macro
commands and of their functions.

'I..' The following syntax is used for the Internal commands:

CAPITALS constitute the part(s) of the command which must be
a 4 entered exactly as specified.

.' .lowercase parts of the command keyword are optional. They are
specified here for clarity and may also be typed in but
are ignored by the Command Interpreter.

Items in angular brackets < > have to be replaced with the ap-

-112 -

4.3 Command Set of the CGCS

propriate contents, e.g., a parameter value or a Macro
command name.

Items in square brackets] are optional and may be omitted.

Items included in braces { 1 and separated by a vertical bar
are optional but one item of the list must be specified.

.. Items must be separated by at least one space (except within

file names).

* Note: Commands may be issued in arbitrary order. A command

is, however, only recognized when the prompt "Please command:"
is displayed!

4.3.2 Summary of Internal Commands

CALCulate [(R IIH)]
CHANge [(DITn SLICLISRICRIPLI<varname>)[<value> [<time>]]]
CLEAr [<varname>]
COMMENT [<arbitrary text>]
DATA

- - DEBug [C [<varname> [(1121314)]]]
I DEBug [C [<hexaddr> [{AIlII2IRIHlIH2IH41 [{121314}]]]

DEBug [D [(<varname>j<hexaddr>)]]
DEBug [M [<varname>]]
DEBug [M [<hexaddr> [{AI1I1I21R1HIH21H4)]]]
DEBug [0 [(1121314)]]
DEBug [R [(<varname> <hexaddr>)]]
DEBug [S [(<varname> <hexaddr>)]]

- DIRectory [(011)]
DISPlay [<varname>]
DOCUmentation
DUMP
END
EXCHange [(011)]
EXIT
FILEs
HELP or ?
IF [<varname> [(<l=I>}[(<I=I>)] [<value> [<macro>]]]]
INITialize
MODE
PLOT [{<varname>j<hexaddr>) [{112131415161718)]]

*' -. QUIT
. RESEt [<initial weight> <initial length>]

RESTore
SET [(DITnISLICLISRICRIPLI<varname> [<value> [<tine>]]]

•. *. STARt

- 113 -* -

5

4.3 Command Set of the CGCS

4.3.3 Comprehensive Description of the internal Commands

CALCULATE: This command permits to calculate the sum, the
difference, the product, and the quotient of two numbers.
The input format and the treatment of the numbers depends
on a switch entered with the command: The switch is "R1"
for floating-point ("REAL") numbers, "I" for integers
(which must lie between -32768 and 32767), and "1H" for
hexadecimal values (e.g., memory addresses) which have the
same numeric range as integers. Input values are expli-
citly requested in any case. The result is displayed in

.,. .,'decimal and hexadecimal form, with the internally used
hexadecimal format for floating-point numbers if applica-
ble.

CHANGE: This command permits to modify the value of one of
the nine primary system setpoints (crystal diameter, three
heater temperatures, seed and crucible lift and rotation
speeds, and power limit), or of an arbitrary system Vari-
able (see chapter 4.7 and Appendix 11). CHANGE determines
the current value of the specified parameter and adds the
input value to it, thus permitting relative changes.
Since the actual execution of the command is kept separate
from the operator interface, the actual value of the tar-
get parameter may differ from the one displayed during the
processing of the command if the target parameter is being
ramped when the command is issued. Setpoints which are
used as an input to a controller (e.g., the Temperature

'V setpoints in Diameter controlled modes), are displayed
with the values output by the controller. CHANGE permits
a smooth transition of the parameter between its current
and its final values by allowing a transition time during

* . .. which the parameter is ramped (see remarks about parameter
ramping in chapter 4.4). The transition time may range
from zero to 9999 minutes (in fact, longer transition
times are possible but cannot be displayed any more). The
shortest non-zero transition time is one second; this

* value is used for all non-zero transition time values less
than one second (0.017 minutes). The CHANGE command may

-4 be completely entered in one line, or in any combination
of items. It may be recorded to and executed from a Macro
command file.

O.

CLEAR: The command CLEAR removes pending Conditional Macro
commands from the Conditional Command queue. It may be
used to branch between Macro commands if a condition spec-

* if ied with an IF command is not met within a given time.
There are two types of CLEAR commands: An unconditional

-114-

4.3 Command Set of the CGCS

CLEAR which removes all pending Conditional Macro com-
mands, and a Selective CLEAR which cancels only those
Conditional commands which refer to the Variable specified
with the CLEAR command. CLEAR can be recorded to and
executed from Macro command files.

COMMENT: This command inserts one line of comment into the
Data output file. The comment line is tagged with the
operation mode, time, and length grown information and
embedded between the (binary) records in the Data file,

* '. thus permitting the correlation between arbitrary events
and the data recorded. Even if no Data file is in use,
the comment line is recorded in the Documentation output.
(In fact, the COMMENT command is the only one to provide
arbitrary text in the Documentation output.)

DATA: The DATA command permits to open or close the Data out-
put file. It offers the operator to open a Data file if
there is no open such file, and it permits to close the

- . Data file if it is invoked while a Data file is open.
* After a disk error, the file which was involved in the

error is flagged as "inactive". Not reactivating an inac-
tive file is equivalent to closing it. The functions of
DATA may be also accessed through the FILES command.

DEBUG Continuously: One member of the DEBUG command group,
the DEBUG Continuously command permits the continuous
display of the values of up to four system Variables. The
data output provided is updated at the same rate as the
fixed screen output (once every five to six seconds). (In
fact, the memory locations specified with DEBUG Continu-
ously are sampled once every second; their values are also
recorded in the Data file.) Data can be selected for
display either by specifying a Variable name, or by sub-
mitting the hexadecimal address of the memory location(s)
whose contents are to be displayed. In the latter case, an
additional format information is required since DEBUG does
not know what kind of data resides at an arbitrary storage
location in memory. The display formats available are
ASCII (A), interpreting one byte at the specified address
as a (printable) character, one and two byte decimal inte-
gers (Ii and 12, respectively), decimal floating-point
(REAL - R), and one, two, and four byte hexadecimal repre-
sentation (Hl, H2, H4). Finally, one of the four DEBUG
output channels (numbered 1 to 4) must be specified to
which the output is to be directed. (Channels 1 to 4 are
displayed in the DEBUG output line on the console from

- 115 -

4.3 Command Set of the CGCS

left to right.) The DEBUG Continuously command may be
completely entered in one line, or in any combination of
items. It may be recorded to and executed from a Macro
command file.

DEBUG Display: The DEBUG Display command displays the con-
tents of one or several adjacent memory locations which
have been specified either by a Variable name, or by a
hexadecimal address. (For displaying the contents of a
Variable in its standard representation, the DISPLAY com-
mand is probably more convenient.) The four bytes start-
ing at the given address (or part of them) are displayed
as ASCII characters, in hexadecimal notation, as one and
two byte decimal integers, and as (four byte) floating-
point numbers. The command may be completely entered in
one line, or in any combination of items.

DEBUG Modify: This command permits to modify one to four
0 bytes in memory whose starting address must be specified

either with a Variable name, or as a hexadecimal number.
The program knows how many bytes have to be modified to
change the value of a Variable specified by name, but the
data format has to be submitted separately if a hexadeci-
mal address is used. The formats available are ASCII (A),
interpreting one byte at the specified address as a
(printable) character, one and two byte decimal integers
(Ii and 12, respectively), decimal floating-point (REAL -
R), and one, two, and four byte hexadecimal representation
(Hl, H2, and H4) . The program displays the current con-
tents of the specified location(s), and prompts explicitly
for a new input value. With the exception of the new

* value, the entire command or parts of it can be entered in
one command line. (For changing Variables specified by
name, the SET and CHANGE commands are probably more conve-
nient; in addition, they offer the ramping feature which
is not supported by DEBUG.) The DEBUG Modify command can

* be recorded to and executed from a Macro command file.

DEBUG Off: While DEBUG Continuously turns on the output of
Debug data, DEBUG Off turns it off again. The location (1
to 4) which is to be turned of f must be specified. The

0.command may be entered in one or in two lines. It may be
recorded to and executed from a Macro command file.

- 116 -

N N N

4.3 Command Set of the CGCS

DEBUG Resume: This command affects the internal operation of
the system. It should only be used for debugging pur-
poses. Therefore, no further information is given here.

DEBUG Suspend: This command affects the internal operation of
the system. It should only be used for debugging pur-
poses. Inconsiderate use of this command may disable the
CGCS entirely. Therefore, no further information is given
here.

-' DIRECTORY: The DIRECTORY command displays the contents of the
directory of the specified disk. In addition to the file
names, the disk label and the numbers of sectors in use
and free on the disk are displayed. Note: The actual
number of sectors in use may be much greater if a file is
open for output on the specified disk. The actual number
of used sectors cannot be determined, though, since it is
an internal parameter of the operating system. The num-
bers displayed for the used and free sectors are, however,

*preceded by a "1>" and a 11<" sign, respectively, in this
case. The command may be entered in one line.

DISPLAY: This function displays the value of a Variable sub-
jmitted as a parameter with the call. The command may be

entered in one line.

DOCUMENTATION: A call to DOCUMENTATION permits to switch on
or of f the Documentation output on the printer or on a
disk file. DOCUMENTATION offers to open a Print file if
no such file is open, and to close it if it is open.
During the file opening procedure, DOCUMENTATION permits

~' to set the interval between Data Dumps to the Documenta-
.. tion output (compare command DUMP). Any arbitrary inter-

val between 1 and 255 minutes may be specified; periodic
Data Dumps may be disabled altogether. After a disk er-
ror, the file which was involved in the error is flagged
as "inactive". Not reactivating an inactive file is equi-
valent to closing it. The DOCUMENTATION routine is auto-

.. matically invoked when the system is started; it may also
be accessed from the FILES command.

DUMP: This command initiates a dump of 21 system parameters
(essentially, of the measured data) to the Documentation

*output. In addition, it triggers one record written to
the Data file.

-117-

04.%

4.3 Command Set of the CGCS

* END: The END command is the official way to terminate a corn-
4 mand record in the Control Output f ile (which eventually

may be used as a Macro command f ile) . Although no more
entries are added to the Control Output file after an END
command, the file remains open, and the next record may be
started at any time with a START command. (This permits
to use one Control Output file throughout a growth run to
which certain command sequences are recorded; the records
in it can be separated into several Macro command files
using the Macro Command Editor. Note, however, that an
END command preempts a Macro command file used for input
regardless of whether there are more commands after the
END command or not.)

EXCHANGE: This command permits to exchange a defective or
full disk safely. It closes the files on the specified
disk which are still open, prompts the operator to substi-
tute a new disk, and re-opens all f iles on the new disk
which were open on the old disk when the operator indi-
cated to the system that the new disk was installed.
Since the output files are opened with the same names on
the new disk, any f ile with an identical name on the new
disk is overwritten. In addition, the output f iles need
some editing because control structures used on the Data
and Control Output files are not provided by EXCHANGE.
(It is sufficient to concatenate the two output files with
the ISIS-II/RXISIS-II COPY command, or to concatenate the
second part of a Data or Macro command file with a separ-
ately generated file header.) Note that a Macro command
will be preempted which is being read from a disk which is

* to be EXCHANGEd.

EXIT: The only regular way to leave the CGCS is the EXIT com-

*mand. Depending on the current operation mode, the EXIT
command "cleans up" the controller. It stops the lift

p:. motors if the puller is under the control of the CGCS,
* reduces the heater power to zero within six hours (unless

the power is already zero), stops the rotations, and re-
linquishes, finally, control to the analog controller.
Several safety procedures prevent the accidental execution
of this function.

FILES: This command displays the current status of the Print,
Data, and Control Output files and their names if the
files are open. subsequently, it permits to open or close
one of the three files, entering the respective DOCUMENTA-
TION, DATA, and Control Output f ile handling routines.

-118-

4.3 Command Set of the CGCS

After a disk error, the file which was involved in the
error is flagged as "inactive". Not reactivating an inac-

tive file is equivalent to closing it.

HELP: The HELP command (or, alternatively, a simple question
mark ("")provides a set of command menus on the screen.
The menus displayed comprise a summary of the Internal
commands, the currently available Macro commands, and an
extensive explanation of each command. The Macro command
list and/or the extensive help display may be skipped if

IF: This command permits the conditional execution of a Macro
*command (it does not work with Internal commands) . The

Macro command specified with the IF call is executed if
and when a condition is met which is based on the numeric
relation between a variable and a constant which are sub-
mitted as parameters of the IF call. The numeric rela-
tions may be "greater than" (I>"1) , "equal to" ("1="1) , "less
than" ("1<"1) , or any combination of two of these three
("1<>"1 stands for "not equal"). The order of the relation
characters does not matter; 11=>11 is identical to ">=1" and
means "greater than or equal to". Eight (8) Conditional
Macro commands may be pending at a time; any Conditional
command issued while the maximum number of commands are
pending is ignored, and a pertinent error message is dis-
played. The command may be completely entered in one
line, or in any combination of items. It may be recorded
to and executed from a Macro command file.

* .INITIALIZE: This command permits to assign values to certain
system 'parameters which cannot be (easily) changed other-
wise since they are kept in memory in a pre-processed form
to facilitate control operations. The values set with
INTALZ ar himtrso h rcbl n h ed

teamount of boric oxide used, and the densities of the
solid crystal, the crystal melt, and the boric oxide melt.

* Since these values are, in most cases, hardware dependent
constants anyhow, INITIALIZE offers default values which

,~ . ~can be accepted with a plain "Return", or overwritten by
new data. INITIALIZE is automatically executed when the
system is started; it must be called during a growth run
when the crystal is melted back partly, and growth is
resumed with a full-diameter crystal within the boric
oxide melt. In this case, the diameter of the crystal
must be specified as a seed diameter, in order to provide

-119-

4I

0Ft§M ~VTV

4.3 Command Set of the CGCS

a correct diameter evaluation after a subsequent RESET
call.

MODE: The MODE command permits to select one of five opera-
tion modes which are numbered 0 through 4. Each mode is a
inclusive set of the functions of the preceding one. Mode
0 ("Monitoring") provides monitoring without control, Mode
1 ("Manual"), a basic control but no closed-loop diameter
control. The Latter is possible with Mode 2 ("Diameter")
which, however, does not include an anomaly compensation.
Mcde 3 ("Diameter/ASC"I) provides anomaly compensation, and
Mode 4 ("Automatic"), in addition, a Crucible Lift control
which is based on the exact amount of melt withdrawn from
the crucible during the crystal growth. Each mode change
is reported by the system, and an automatic Data Dump is
triggered. The MODE command may be recorded to and exe-
cuted from a Macro command file.

0PLOT: The PLOT command permits to output continuously (simi-
lar to the DEBUG Continuously command) the values of up to
eight locations in memory which can be specified by Vari-
able names or by absolute hexadecimal addresses. While
DEBUG Continuously routes its output to the operator con-
sole and the Data f ile, the PLOT output is directed to
eight spare channels of the D/A converter which are con-
nected to a suitable chart recorder. PLOT can only handle
Variables which are in INTEGER*2 notation, which applies
to all measured parameters and control output signals, and
to a numiber of internal system parameters (compare chapter
4.6 and Appendix 11). A number of auxiliary locations
were provided which hold "expanded" values of parameters
of which only a narrow numeric range is of interest. For
further information on the PLOT command, refer to chapter
4.6. The PLOT command may be recorded to and executed
from a Macro command file.

QUIT: The QUIT command permits to preempt a currently active
-~ Macro command.

RESET: The proper operation of the diameter evaluation rou-
* tines requires a RESET command at the beginning of the

actual growth. The RESET command resets the length grown
counter and the weight output to zero or to values speci-
fied with the call, and initializes the internal data
structures of the diameter routines. It is indispensable
to issue such a command after each INITIALIZE command

S. - 120 -

S.

AS6

4.3 Command Set of the CGCS

(including the one automatically performed at the begin-I ~ ning of the CGCS operations), and after each irrecoverable
"Speed overflow" error, when the puller is again in a
well-controlled condition and growth can resume. (Other-

* wise, no new diameter output is generated, and diameter
control is not possible.) A RESET command which sets the
crystal length and weight to zero is automatically gener-
ated if necessary when the operation mode is changed to
one of the diameter controlled ones (Mode 2 through 4).
It is possible to maintain the current length and weight
values with a RESET command either by answering the perti-
nent questions accordingly if in the interactive mode, or
by specifying a value for the parameter to be maintained
which is less than twic.e its most negative value (i.e.,
less than -16000 for the crystal weight, and less than
-1200 for the crystal length). The RESET command may be
recorded to and executed from a Macro command file.

4RESTORE: The RESTORE command restores the console output if
it was corrugated, which can happen very easily if one of
the function keys on the console terminal is pressed mnad-

* vertently, or if the "Return" key is pressed while the
cursor is in the bottom line of the screen, e.g., after
the entry of a full input line of 80 characters. It does
not affect the actual control operations of the CGCS.

SET: This command permits to modify the value of one of the
nine primary system setpoints (crystal diameter, three
heater temperatures, seed and crucible lift and rotation
speeds, and power limit), or of an arbitrary system Vani-
able (see chapter 4.7 and Appendix 11) . It sets the
specified parameter to the input value, thus permitting
absolute changes. SET permits a smooth transition of the
parameter between its current and final values by allowing
a transition time during which the parameter is ramped
(see remarks about parameter ramping in chapter 4.4. The

transition time may range from zero to 9999 minutes (in
fact, longer transition times are possible but cannot be
displayed any more) . The shortest non-zero transition
time is one second; this value is used for all non-zero
transition time values less than one second (0.017 minu-
tes). The command may be completely entered in one line,
or in any combination of items. It may be recorded to and
executed from a Macro command file.

-121-

4.3 Command Set of the CGCS

START: This commands starts the recording of commands in the
Control Output file. If no such file is open, START per-

mAmits to specify and open a Control Output file. Command
times recorded in the output file are relative to the time

- -~ of the START command. (For example, a SET command issued
35 seconds after the START command will be executed 35
seconds after the Control output file was invoked as a
Macro command during a later run.)

12

4.4 Parameter Ramping

4.4 Parameter Ramping

Parameters entered with the SET and CHANGE commands may be
ramped linearly between their current values and the final
values specified with SET or CHANGE. Arbitrary ramping times
between 1 second and 9999 minutes may be used. Up to 20 pa-
rameters (primary system setpoints or arbitrary Variables) may
be ramped at a time, no matter whether the pertinent commands

% . were entered from the console, or from a Macro command file.
~ The number of parameters which are ramped at a given time is

displayed on the console screen. Note: A SET or CHANGE comn-
.~ ~*mand requesting parameter ramping which is issued when already
~ 20 parameters are being ramped will be executed instantaneous-

ly, without ramping. Watch therefore the number of ramped
parameters carefully when you use extended ramping and/or
Macro commands. A SET or CHANGE command referring to a param-
eter which is already being ramped does not increase the
number of ramped commands. Parameter ramping can be halted by
commanding CHANGE <parameter> 0 0 (change the parameter by 0

* within 0 minutes).

12

4- Mar Comm-andsa

~4.5 Macro Commands

All operator entries input when the "Please command:"1 prompt
* is displayed are first compared to the list of the Internal
a commands. If no match is found between the first four charac-

ters of the operator input and any one of the Internal command
* names, the CGCS assumes that a Macro command was requested,

and searches the system disk in drive 0 for a file with an
* extension "1.CMD"1 whose name matches the operator entry.

Therefore, the following rules apply to Macro command names:

(1) Macro command names may consist of one to six alphanumeric
characters; the first character must be alphabetic.

(2) The first four characters of the Macro command (three
-~ characters if the command begins with "DEB") must not

match any internal command name. (Note, though, that com-
a. mands whose keywords are shorter than four characters have

their names padded to the right with spaces. The name
4 "SETPNT"1 is therefore a perfectly legal Macro name.)

Macro names which are part of a Conditional command are
excepted from these restrictions.

(3) A file with the name <macro>.CMD must exist on the disk in
drive 0, and it must be in the special Macro command for-
mat.

(4) Macro commands generally do not take any parameters.

a.If any one of the above conditions is not met, an "Illegal
command" message is issued by the Command Interpreter, and the
command is ignored.

-- Macro command files comprise a set of recordable internal
commands which are stored in a binary encoded format in order
to save disk space and processing time. Since references to
Variables are stored as the absolute binary addresses of these
Variables and since Variable locations may change when soft-

4 ware modifications are made, it is essential that Macro com-
mands referring to absolute memory locations are only executed
under the program version for which they were generated. A
warning is issued if the user attempts to execute a Macro
command which was designed for or generated by a CGCS version
different from the one in use, and all Internal commands with-

4 in the Macro command file which refer to absolute memory loca-
P.tions are dropped. (They are indicated to the operator,

though, with an appropriate error message.) Macro command
files generated under a previous system version have to be
converted with the Macro Command Editor COMMED into a valid
Macro command for the current system version.

-124-

V.

4. Macro Commands

Macro command files can be created in either of two ways:

(a) By recording actual commands during a growth run, using a
Control Output file and the START and END commands, or

S(b) With the Macro Command Editor COMMED which can also be
used to modify command files recorded during a growth run.

9The following Internal commands can be recorded on and later
executed from a Macro command file:

CHANGE
CLEAR
DEBUG CONTINUOUSLY
DEBUG MODIFY
DEBUG OFF
DEBUG RESUME
DEBUG SUSPEND
END
IF
MODE

'- - PLOT
* - RESET

SET

Macro commands can be invoked from a Macro command file, but
they are not recorded in a Control Output file. This was done
on purpose since a Macro command invoked from another Macro

~ Y command preempts the command file from which it was invoked.
(There can be only one Macro command f ile in use at a given
time.) A Control Output f ile generated during a growth run
receives commands issued by the operator as well as commands
stemming from a Macro, and it is not possible to distinguish

-. between both. The operator generated commands interspersed
with the commands originating from the Macro would, however,
be effectively lost if the Macro call were also recorded in
the Control Output file. Replaying this Control Output file
as a Macro f ile at a later stage would simply result in the

6 Macro being preempted by the one which was invoked during the
~ recorded run, and only the commands on the new Macro would be

executed automatically. This would deteriorate the self-
learning ability of the CGCS considerably.

Note: Commands issued by a Macro command file remain active
even after the Macro was terminated or preempted!

-125-

N. '0
r

4.6 Disk Files

4.6 Disk Files

Besides the Macro command (input) files, there are three files
available for output from the CGCS under the operator's dis-
cretion.

PRINT FILE: The Print file receives the complete dialogue be-
tween the operator and the system. Each line of output is
tagged with the absolute and the system times; the date on
which the run was started and the run identification are
contained in page header Lines. The Print file can be opened

4.?::(activated) or closed (deactivated) with the DOCUMENTATION
command or via FILES. Print file output can alternatively be
sent to the line printer (which is indicated by 11:LP:11 in the

* .. FILES display), or to a disk file. Arbitrary (valid) file
names and extensions may be chosen, and the file can be opened
on either disk drive. (It is recommended, though, that drive
1 is used for the Print file output because the Print file

V. tends to become very bulky, and there is not too much room
*left on the system disk.) In addition to the operator dia-

logue, Data Dumps are recorded in the Print file which contain
the following items:

* Measured values of the three heater temperatures.
* Heater power input and output values.
* Measured motor speeds.
* Seed and crucible positions.
* Crystal length and diameter.
* Weight and differential weight.
* Base temperature.

.~. ~ * Gas pressure.

In order to conserve space, the output items are identified
A only with two-character mnemonics:

AT1 ... Heater #1 Temperature (in millivolts)
T2 ... Heater #2 Temperature (in millivolts)
T3 ... Heater #3 Temperature (in millivolts)

*SL ... Seed Lift Speed (in millimeters/hour)
CL ... Crucible Lift Speed (in millimeters/hour)
L ... Length Grown (in millimeters)
D ... (Calculated) Diameter (in millimeters)

Pl eaddPwr(nu) o etr# pret
Ph . Demanded Power (Input) for Heater #2 (percent)
P~i .. Demanded Power (Input) for Heater #2 (percent)
PSR ... Demed Patoe Sput) for HeteP#Mpecet
SR ... Seedbl Rotation Speed (in RPM)

W ... Crystal Weight (in grams)
DW ... Differential Weight (in grams/minute)

-126-

V V 10~- ~ : * ~ %~~w ~

4.6 Disk Files

Plo Actual Power (Output) of Heater #1 (in percent)
P2o .. Actual Power (Output) of Heater #2 (in percent)
P30 . Actual Power (Output) of Heater #3 (in percent)
SP ... Seed Position (in millimeters)

* *CP ... Crucible Position (in millimeters)
BT ... Base Temperature (in millivolts)
GP ... Gas Pressure (in PSI)

Data Dumps are initiated in the following cases:

- * Upon a DUMP command.
* At a change of the system's operation mode.

K * Periodically with a specifiable interval.

In the f irst two cases, a Data record is also written to the
Data file.

DATA FILE: All important system parameters can be recorded on
the Data disk file. A set of data is compiled in regular
intervals and written to disk. With regard to execution time

': -. and disk space requirements, these records are written in a
not directly legible binary format; special support software

* which can decode Data files and output selected channels, for
instance, to a chart recorder, is required. The following
items are contained in each data record:

Operation Mode
system Time
Length Grown
Measured Data (17 channels - all data displayed permanent-

ly)
Auxiliary Analog Data (8 channels)
Power Output (3 channels)
Current Setpoints (9 channels - all data displayed perma-

-. ~~~nently) (hnes saoe
Auxiliary Setpoints (hnes saoe
Debug Continuously Addresses and Data (4 * 3 channels)
Diameter
Debug Continuously Variable types (1 channel)

Each channel holds two bytes of data; one record of 64 chan-

nels (63 active, 1 spare) fills exactly one sector on the
output disk.

~ VThe Data file can be opened (activated) or closed (deactivat-
ed) with the DATA command, or via FILES. Arbitrary (valid)
file names and extensions may be chosen, and the file can be
opened on either disk drive. (It is recommended, though, that
drive 1 is used for the Data file output because the Data file

-127-

%

Law

4.6 Disk Files

tends to become very bulky, and there is not too much roomiileft on the system disk.) The operator has to specify an in-
terval for the data acquisition when you open a Data file;
there are about 1800 sectors available on an empty disk, and
each record consumes one sector. (The remainder of the sec-
tors on the disk is required for housekeeping.) Si-nce it
should make sense not only to record data but also to process
it later on, it is probably a good idea to restrict data

- . recording to processes which are actually of interest, and to
choose the recording interval according to the dynamic be-
havior of the processes involved. (Once a Data file has been
opened the interval can not be changed any more. A new Data
file has to be opened if a different recording interval is
needed.)

CONTROL OUTPUT FILE: All recordable commands (compare chapter
4.5) are recorded in a Control Output file if such a file is
open, and if the START command has been issued. A Control

.t~. Output file can be opened with the START command, and it can
0be opened and closed with FILES. The file may be opened on

either disk drive, but it must be opened on drive 0 if it
should serve as a Macro command file within the same run. No

- . file name extension is required with the Control Output file
name; the CGCS appends automatically "1.CMD"1. Command record-
ing can be deactivated with an END command at any time after a
START command; the Control Output file remains open, though,
until it is either closed with FILES, or until the CGCS is
EXITed. One Control Output file can hold multiple Macro
command records on the Control Output file which are started
and terminated with the START and END commands, but the file
requires editing in this case (with COMNED) before all these
Macro command records can be used. (Otherwise, the first END
recorded would preempt the Macro command, and all following
commands would be ignored.)

Note: During a growth run, a Macro command file can be created
for "instant use" in the following way:

(1) Open a Control Output file on drive 0 (important!) with an
arbitrary name, preferably using the START command.

(2) Enter the command (s) you want to have in the f ile but be
careful that you do not interfere with a growth run in

0. progress.

A(3) Close the Control Output file (with FILES), and

(4) Use it as a Macro ccmmand when required.

r - 128-

-k

* 4.6 Disk Files

A Control Output file must be closed before it can be invoked
it as a Macro file.

PLOT OUTPUT: In contrast to th above three output files, Plot
Output is directed to an analog rather than a digital device,
namely, to a multi-channel chart recorder. In general, any
Variable whose type is INTEGER*2 can thus be submitted to the
chart recorder output, and so can any arbitrary two-byte memo-
ry location which is referred to by its address. This in-
cludes all measured input data (which are in INTEGER*2 format
anyhow), plus a number of internal system parameters. (Refer
to the list of Variables in Appendix 11 to find the Variables
which might be of interest.) In general, the absolute values
of the Variables specified are output on the eight spare ana-
log output channels, scaled from 0 to 10 V for the full range
of 0 through 32767 of positive INTEGER*2 numbers. A message
is output on the console and recorded in the Documentation
output whenever a Variable changes its sign. (Initially, all
outputs are supposed to refer to positive values.)

In addition to the standard INTEGER*2 Variables, the following
Variables obtained from a special treatment of internal data
were provided for chart recorder output:

(1) Heater and Base Temperatures: Four Variables, EXTMP1,
EXTMP2, EXTMP3, and EXTMPB, hold an expanded Heater or
Base Temperature value. The full range (0 to 10 V) of the
output obtained from these Variables is determined by the
Variables RANGT1, RANGT2, RANGT3, and RANGTB, respective-
ly, starting from an offset value which is set by the
Variables OFFST1, OFFST2, OFFST3, and OFFSTB. Like all

Pother Variables, these parameters can be modified with the
standard SET, CHANGE, or DEBUG Modify commands; their
values must be specified in millivolts. In order to PLOT
on the Chart Recorder Channel 3 the temperature of the
Heater 1 which is supposed to lie, say, between 22.5 and
24.5 mV, the following commands may be used:

SET OFFST1 22.5 0
SET RANGT1 2 0
PLOT EXTMP1 3

Temperature values below the specified offset will result
in a zero output, and values greater than the offset plus
range values, in an output voltage of 10 V. Note that the
offset may be ramped, too; this permits to record a devia-
tion from a given setpoint.

- 129 -

U

4.6 Disk Files

(2) Growth Rate: An expanded Growth Rate value is kept in
GRRATE. A zero output corresponds to a growth rate of
zero (as calculated by the Diameter Evaluation routine
SHAPE); the maximum output is reached for a growth rate of
20 mm/hr. GRRATE can assume positive and negative values
(the latter during meltback).

(3) Diameter Error: The Variable DIAERR holds the difference
between the Diameter setpoint and the actual diameter. A

4:" zero difference is output as mid-scale (5 V); zero and
maximum output correspond to an actual diameter 10 mm
smaller and greater than the setpoint, respectively.

-! Greater deviations than 10 mm result in the proper minimum
or maximum output signals.

(4) Crucible Position Error: Similarly, the Variable CRPERR
% Nis set to a value corresponding to the deviation of the
- actual crucible position from the calculated value. A

zero error is again represented as mid-scale; the maximum
deviation which can be resolved is ± 10 mm. (The crucible
is too low if the output is less than mid-scale.)

Any PLOT channel can be activated by the command

.PLOT <varname> <channel #> or
PLOT <hexaddr> <channel #>

The command may be entered in one line, or one item at a time
as requested by the CGCS. The system checks whether the type
of the Variable specified is indeed INTEGER*2 (it assumes
INTEGER*2 locations if a hexadecimal address was entered), and
attaches the value of the specified location to the proper
output channel. Channel numbers 1 through 8 are permitted.
An output channel remains active and connected to a Variable
until it is re-assigned; output may be de-activated with the

-i .PLOT ZERO <channel #>

" command. The analog output is updated periodically once every
second.

. .o .

- 130 -

%.'.

4.7 Variables

4.7 Variables

4.7.1 General Remarks

The concept of the CGCS permits an easy way to modify any
arbitrary parameter used by the system, a way which is cer-
tainly more convenient and safer than using the parameter's
absolute address in memory: A virtually unlimited number of
parameters can be accessed by a name unique to each parameter.

* The CGCS looks up the actual address and the type of a speci-
fied variable in a directory file; the number of parameters
accessible in this way is only limited by the reasonably ob-
tainable size of this file. The directory file has the name
CZONAM.Vmn, with m and n, the major and minor version code

Snumbers. It contains Variable names, addresses, and types in
a binary encoded form, and is generated from a source file
VARADD.SRC by means of a dedicated program CONVAD. The direc-
tory f ile must be updated for each new system version since
the Variables listed in it may have changed their addresses
due to program modifications.

~- Variable names must consist of one to six alphanumeric charac-
ters; the f irst character must be alphabetic. Variables can

*either be simple storage locations, or arrays. Elements of
arrays must be specified by the number of the element (begin-
ning with 1) , in parentheses immediately following the array
name. (There must not be a space between the name and the
opening parenthesis.) An omitted array element number de-
faults to 1. Valid Variable names are, for example, "TIME" or
"1ANAPAR (6)"1. The name may be entered in upper- or lowercase
characters.

q Chapter 4.7.2 provides a list of special Variables which are
more than a simple parameter since their values directly de-
termine the operation of the CGCS. A table of the most impor-
tant Variable names, sorted according to their meanings, and a
complete list of all Variables used by the CGCS are provided
in Appendix 11.

4.7.2 special variables

System Control:

TEST This Variable puts the CGCS into a Test mode if it is
set to -1; all other values maintain the regular oper-
ation of the system. In Test mode, input from the A/D
converter and output to the D/A converter and the

JVrelays board are inhibited. This permits to safely

-131-

% L IliI,!

4.7 Variables

assign values to an array of Variables which are
otherwise set by the A/D converter's output, and to
run the system with these faked "measured data" for
testing purposes. (The names of the input array vari-
ables are made up from the letter "'M" plus a five
character mnemonic; compare Appendix 11.) Note: TEST
must not be set to -1 while the CGCS is actually con-
trolling the puller!

DIASTA This is an internal status parameter of the Diameter
Evaluation routines. It may be set to -2 at the end
of a growth run in order to disable the diameter eval-
uation and, in particular, the generation of error
messages which may be triggered by some of the actions
usually involved in the close-down procedure of the
puller. Diameter evaluation may be enabled again with
a RESET command.

ALPHA The parameter ALPHA determines the diameter evaluation
*algorithms within two extreme approaches. ALPHA

should be a floating-point number between 0 and 1.
For further information, see chapters 4.1.3 and
5.3.2.2.3).

XTLSHP This parameter holds (in floating-point format) the
maximum permitted difference between the squares of
the diameter of the crystal (in millimeters) in two
adjacent sections of the crystal, approximately 1.2
millimeters apart from one another. The square of the
diameter stored for buoyancy compensation purposes is
adjusted, if necessary, to differ by not more than the
value of XTLSHP from the preceding value.

Display Control:

INTRVL This Variable determines the duration of the intervals
between subsequent output operations to the console.

0 one unit corresponds to an interval of 50 millisec-
onds. The default value of 10 corresponds to a com-
plete screen update every four to six seconds, depend-
ing on the other activities within the CGCS. More
frequent updates may be required during testing and
alignment; they can be achieved with smaller INTRVL
values. The fastest screen update is done with INTRVL
set to 1; a zero INTRVL value disables the screen out-

*put entirely. Note: The screen display will
"freeze" irreversibly if INTRVL is set to zero; regu-
lar operation will not be resumed even if INTRVL is
set back to a non-zero value. The system has to be

-132-

uI

T4 W mm RO-

*i ", 4.7 Variables

restarted in order to re-activate data output on the
screen. (The CGCS remains operable, though, with the
screen output disabled.) INTRVL does not affect the
output of the time, of operator commands, and of
system messages.

*Data Dump Control:

DUMPIN The Variable DUMPIN holds the interval between period-
ical Data Dumps to the Print file; the time units are
minutes. DUMPIN may be set to any convenient value at

• .* any time; a DUMPIN value of zero disables the period-
ical Data Dumps.

DUMPFL This Variable triggers an additional Data Dump (and an
"' additional record written to the Data file) if it is

set to -1. Note that a SET DUMPFL -1 0 command is the
only save way to trigger additional Data Dumps from a
Macro Command file. (DUMPFL is reset by the Data Dump
routine; it must therefore be set to -1 repeatedly if
more than one Data Dumps are required.)

Scratchpad Variables:

DUMMY In order to facilitate advanced Macro programming,
eight dummy INTEGER*2 locations were provided. These
locations are not accessed by the CGCS code proper,
but they may be arbitrarily ramped or used as flags
(set to specific values) and employed in Conditional
Macro commands. The dummy locations are referred to
as DUMMY(1) through DUMMY(8).

Miscellaneous - Read-Only Variables:

TIME The Variable TIME holds the current system time (in
seconds) in an unsigned two-byte INTEGER location.

. This counter wraps around to zero after 65,536 sec-
onds. Note that the contents of TIME are interpreted
as a signed INTEGER*2 number by the display and also
by the Conditional Macro Command execution routines;
time counts greater than 32,767 seconds are thus in-
terpreted as negative numbers.

RAMPNG This Variable holds the number of parameters which are
currently being ramped. You may look at it (and have
your Macro commands look at it), but messing around

- 133 -

01%01'

4.7 Variables

with RAMPNG will inevitably confuse the CGCS. The
results may be spectacular but probably not desirable.

- CNDCNT The same considerations as to RAMPNG apply to the
count of pending Conditional Macro commands kept in
this Variable.

ZERO This location holds, simply enough, a zero INTEGER*2
value. You may try to modify it but you won't be very
successful since this location is in ROM and thus

N inaccessible to any writing attempt.

13

?'.o

_I

N-'
N'

~- 134 -

,d" - 1' ,n"W , '." " a 4 r P . ' ,' r t r 1 "."." , . L t

* 5.1 CGCS Concept and Structure

5. The Czochralski Growth Control System Software

5.1. CGCS Concept and Structure

5.1.1 Program Structure

From the programmer's point of view, the Czochralski Growth
Control System (CGCS) is an iRMX-80 based real-time applica-

I tion system consisting of a number of iRMX-80 "tasks". A task
* is a section of program code, usually dedicated to one control

commission or part of it. It is more or less independent from
* other tasks and is executed whenever its specific action is

required and system resources are available, according to the
priority level which has been assigned to it. The execution
of a task is scheduled by the operating system's "Nucleus",

* . either in response to extraneous events (interrupts), or when
a task receives data which it was waiting for in the form of a

- "message" from a fellow task.

4 From the user's point of view, however, the CGCS consists es-
-. sentially of three functional groups each of which, in turn,
* consists of several tasks:

(1) The System Interface: This part of the software is trans-
parent to the user. It provides, nevertheless, essential
functions like data formatting, input and output, or time-
keeping.

-(2) The Operator Interface: These tasks form the link between
the operator and the controller routines proper. Holding
the system's "intelligence", they constitute the by far
largest part of the CGCS code. The Operator Interface is
responsible for the following actions:

(a) Prompting for and interpretation of operator commands
which control the functions of the CGCS.

(b) Execution of operator and Macro command file sourced
commands. This function was kept strictly separate

4r from the operator command interpretation in order to
facilitate the handling of Macro commands.

*(c) Recording of all commands pertaining to the actual
crystal growth process.

-(d) Periodic output of measured data on the console CRT
4. terminal, and to a disk file, and preparation of data

to be output on an analog chart recorder.

-135 -

V '

ep e2;;~ e0

5.1 CGCS Concept and Structure

(3) The Process Controller proper: These are the routines
actually involved in controlling the heater power(s) and
motor speeds according to the pertinent setpoints provided
by the Operator Interface. They also constitute the
interface to the analog and digital 1/O hardware.

We will follow the above scheme for the subsequent discussion
of the CGCS software. Chapter 5.2 is devoted to the large
number of system and system interface routines which, due to
their rather generic design, can be regarded as "black boxes"
within the controller code proper. The actual controller code
is discussed in chapter 5.3, in two sub-sections corresponding
to the operator interface, and the process controller, respec-
tively.

5.1.2 General Program Information

The CGCS consists of routines part of which were written in
6FORTRAN, part in assembly language. In general, the operator

interface and part of the actual controller routines are FOR-
TRAN-based, whereas the system interface modules (and all
system routines which were not supplied by Intel) are coded in
assembly language. Assembly language was chosen when one or
more of the following requirements had to be met:

* Interface to iRMX-80 system routines which cannot be
called directly from FORTRAN due to different parameter
passing conventions.

* High operation speed, which is particularly important if a
routine is invoked very frequently.

* Numeric operations which can be coded more efficiently in
assembly language than in FORTRAN (e.g. , the low-pass
filtering algorithm).

* FORTRAN, on the other hand, was chosen where the use of a
high-level language was considered advantageous with regard to
program clarity and programming efficiency. It was the ob-
vious choice for routines which involve floating-point arith-
metics. In order to improve the execution speed and code

'I efficiency of FORTRAN, a set of library routines was imple-
* mented which replace the standard (lengthy and slow) FORTRAN

floating-point algorithms by routines which make use of the
8231 Numeric Processor. These routines are not only several
kilobytes smaller than the standard ones, they also boost the
execution speed by about one order of magnitude.

-136-

.0 1

5.1 CGCS Concept and Structure

A special approach was necessary to fit the CGCS into the
available memory of less than 54 KBytes. (More than 10 of the
total 64 KBytes are required for the ROM resident system and
its data areas in RAM.) The entire code of the Czochralski
system would have exceeded this limit by far. It was, there-
fore, necessary to choose an overlay approach (Fig. 15): Pro-
gram code which is not required permanently within the system
is loaded into a reserved memory area only when needed, over-
writing an other currently dispensable overlay. The only
function where this is possible without unduly impeding the
system operation is the Command Interpreter which controls the
dialogue between the operator and the system. Since the oper-

3, ator can only enter one command at a time, and since human
command entry is a very slow procedure anyway, compared to the
standards of a microcomputer, it was possible to split the
Command Interpreter's functions into a total of 22 differentoverlays each of which is in charge of one particular command
or a group of related commands. According to the size of the
largest overlay, a memory area of 2 KBytes was reserved for

4. •the Command Interpreter overlays; the total combined size of
all overlays is approximately 30 KBytes.

K FUJNCniON #1:
SET/MODIFY

____________________PARAMETER

COMMAND FUNI #2:

INTERRE SEMODIFYI VARLABLE'

"% I

S3 0FUNCTON *21:

MCLEAR CONDIONAL

I iFig. 15: Command Interpreter overlays.

-137-

1" 1

I 1

%= "

5.1 CGCS Concept and Structure

FFFFH
-MEMORY POOL.

O:O H , //BUFFERS
, -, 'EOOOH

COOOH
CZOCHRALSK GROWTH

-- CONTROL SYSTEM
AOH PROGRAM AREA

8000H

OVERLAY PROGRAM
6000H AND DATA AREA

,000 v CGCS DATA AREA. 4000H /

* tDATA AREA FOR ROM
2000H RESIDENT SYSTEM

iRMX -80 MONITOR
SYSTEM ROM CONF. TEST

OOOOH

A.'. Fig. 16: Memory map of the CGCS.

The layout of the Czochralski Growth Control System memory map
(Fig. 16 and Appendix 7) was chosen to facilitate software up-
dating. The Variable concept for an easy modification of in-
ternal system parameters (compare chapters 1.3 and 4.7) re-
quires a translation table which correlates the symbolic name
of a system "Variable" to its physical storage location in
memory. Since this translation table has to be generated
manually, it is obviously not desirable if it has to be re-
written totally after each minor modification of the con-
troller software. The system grows or shrinks at its high-
address end; therefore, all important system Variables were
located at the lowest addresses available, immediately above
the code and data areas of the ROM resident system, in order
to prevent them from being affected by system size changes.
Most of these data must be available to several system tasks;

- . extensive use was therefore made of named FORTRAN "COMMON"
. blocks which are arranged (in alphabetical order) at the

lowest addresses and consume approximately 1,280 bytes.
(Since FORTRAN COMMON blocks require a special treatment at
program linkage time in the Intel 8080/85 environment, it is

-138-

NeN N

IL -7 N. . .K -I" ' '-s= 7 -V Tq' - *~ S. 'P -W- "WW -% %'W S ~ L b

5.1 CGCS Concept and Structure

again advantageous to have them all located at addresses which
are least liable to change.) The COMMON blocks are immediate-
ly followed by the general system data area. The lowest
addresses within this area are used by the data locations of
assembly language modules some of which have to be manually

- "tied" to "COMMON" blocks; these locations are still not very
likely to be affected by program modifications. They are
followed by the data areas of the permanently resident FORTRAN
based software which are essentially scratchpad locations for
the internal use of these routines. The remainder of the data
area whose total size is approximately 9,900 bytes holds
system data which hardly need be explicitly accessed and whose
actual absolute addresses do, therefore, not matter.

A 2 KByte range immediately above the data area is reserved
-~ '.'for the Command Interpreter overlays' code and local data. It

-is succeeded by the bulk of the system code. This code area
has currently a size of about 39.5 KBytes; the area between
its top and some disk buffers and system variables which re-
side next to the high-address end of RAM is used as a memory
pool from which memory can be dynamically assigned to system
tasks when required. The size of this memory pool does not
matter unless it becomes too small; the program code may
therefore grow without penalty due to software improvements.
(The memory reserves are currently in the order of 1.5 KBytes,
which does permit program improvements but certainly not the
introduction of major new features.)

.1139

1P
d' J.

. -J . -% -_ - _ ; -to - W -W; V PL F L W q N, K- 1. W I. --v %.- -W -1 .7 V

5.2 System Interface and Auxiliary Routines

5.2 System Interface and Auxiliary Routines

The routines listed in this section are of a rather generic
nature. Although they have been initially developed for a
process controller similar to the CGCS (and considerably
improved since), their supporting nature distinguishes them
from the genuine process controller software which will be
discussed in chapter 5.3. In general, these routines can be
regarded as "black boxes" as far as the CGCS is concerned;
some details about their operation and their interface to the
software from which they are called are presented here, how-
ever, in order to permit a more thorough understanding of the
CGCS software proper.

The system interface and auxiliary routines are, in general,
kept in various libraries from where they are linked with the
actual CGCS software when required. The following libraries
are used within the CGCS:

FRXMOD.LIB contains all Fortran-iRMX-80 interface, access,
and data transfer control routines. These modules
can only be executed in an iRMX-80 environment.

FIORMX.LIB is the I/O formatting library for execution under
iRMX-80.

FORTIO.LIB interfaces the I/O conversion routines to a FOR-
TRAN environment.

SFXDISK.LIB permits to perform directory-controlled disk or
J device I/O under RMX-80.

FXUTIL.LIB comprises a set of auxiliary utility routines
. which may or may not require interface routines

contained in the above libraries.

Similar routines for an ISIS-II or RXISIS-II environment are
used by auxiliary programs supporting the CGCS:

FIOISS.LIB holds the (slightly simplified) ISIS-II versions
of the routines in FIORMX.LIB.

FIORXI.LIB offers all features of the FIORMX.LIB but can be
executed with less overhead under RXISIS-II.

FXDSKI.LIB is equivalent to FXDISK.LIB for an ISIS-II or
RXISIS-II environment.

-140-

'.

, *

5.2 System Interface and Auxiliary Routines

5.2.1 iRMX-80 Control Routines - Library FRXMOD.LIB

NAME TYPE FUNCTION CHAPTER

- FXSEND subr non-reentrant msg. sending rout. 5.2.1.1
FXWAIT subr non-reentr. msg. receiving rout.

* FXACPT subr non-reentr. msg. receiving rout.

FRSEND subr reentrant message sending rout. 5.2.1.2
FRWAIT subr reentr. message receiving rout.
FRACPT subr reentr. message receiving rout.
FRINIT subr initialization routine
FRCRSP func check for response message

- FRCXCH subr exchange creation routine 5.2.1.3
FRDLVL subr interrupt level disabling rout.
FRDTSK subr task deletion routine
FRDXCH subr exchange deletion routine
FRELVL subr interrupt level enabling routine
FRRESM subr task execution resuming routine
FRSUSP subr task execution suspending rout.
FRACTV func task descriptor of running task

FXCFLG task flag interrupt creation task 5.2.1.4
FXCRFE subr create flag interrupt exchange
FXDLFE subr disable flag interrupt exchange

FRACCS subr access common resources 5.2.1.5
FRRELS subr release common resources
FRINAR subr create an access control exch.

FXSYSE subr system error reporting routine 5.2.1.6

FRIFSM subr Free Space Manager initializ. 5.2.1.7

5.2.1.1 Non-Reentrant Message Sending/Receiving Routines

The three routines FXSEND, FXWAIT, and FXACPT permit the
transmission and reception of messages with arbitrary lengths.
They can be called as subroutines by a FORTRAN program.
Message data are physically located in memory supplied by the
iRMX-80 Free Space Manager. FXSEND builds a message within
these memory locations, copying the data indicated by the
"variable" and "length" parameters to the message. Therefore,
the sending task may change the data which was submitted to
FXSEND immediately after the call for FXSEND. The data which

r -141 -

5.2 System Interface and Auxiliary Routines

is to be included into the message must, however, be located
in contiguous memory locations (compare chapter 3.1.5.3).
FXSEND transfers the number of bytes specified by the "length"
parameter, starting with the location indicated by "variable".
"Variable" is therefore the name of the first variable (in-
dependent of its type) within the data block. It remains in
the responsibility of the programmer to specify a correct byte
count with "length" as there is no possibility whatsoever for
FXSEND to check for the actual data block length. A zero data
string length is permissible; still, a (dummy) "variable" name
must be specified even in this case. Note: The maximum
permitted "length" value for FXSEND is 243; larger values
cause a "SYSTEM ERROR" message at execution time, and the
"send" command is ignored.

The message dispatched by FXSEND may be received by any mes-
sage receiving routine described in this or in the next chap-
ter. The routines FRWAIT and FRACPT will return it to the
response exchange which was specified with the FXSEND call,
after having copied the data sent with the message to memory
locations of the receiving task. A correct response exchange
must therefore be specified with the FXSEND call if a task
might use FRWAIT or FRACPT in order to receive the message at
the specified exchange. The routines FXWAIT and FXACPT, on
the other hand, return the memory used for building the mes-
sage to the free space manager, and no response message is
generated. In this case, the "response exchange" parameter in
the FXSEND call may be any dummy variable name; it must, how-
ever, not be omitted. Anyhow, the "life" of the message sent
via FXSEND must be terminated either by the receiving task or
by any task which services the response exchange (if one was
specified) with FXWAIT or FXACPT.

The functions of FXWAIT and FXACPT correspond to those of the
iRMX-80 system routines RQWAIT and RQACPT, respectively. A
task which performs an FXWAIT call waits at the exchange
specified with the call either until a message is available at
this exchange or until the time limit (if requested) is over.
If a task times out at an exchange, FXWAIT sets the "length"
parameter to zero and returns a "type" value of 3 (TIMED$OUT-
$MSG) if a "type" value of zero has been specified in the
FXWAIT call. Note: The parameter "time limit" must indicate
an INTEGER*2 variable! This demand is automatically fulfilled
if numeric (integer type!) constants are used in conjunction
with the default integer length of the FORTRAN compiler
FORT80.

FXACPT, on the other hand, checks whether a message is avail-
able at the specified exchange. If so, the message is removed

.4

- 142 -

.'o

5.2 System Interface and Auxiliary Routines

from the exchange and processed. If there is no message,
FXACPT returns a "length" value of zero.

An untimed or prolonged wait performed with FXWAIT does not
contradict the demands for non-reentrant interlock protected
routines: The first part of the FXWAIT and FXACPT code is
made reentrant, permitting an unlimited quasi-parallel use of
this code by an arbitrary number of routines. Only the last
part of these routines - the returning of the memory used for
the message to the Free Space Manager - had to be made non-
reentrant.

The further treatment of the message is the same for FXWAIT
and FXACPT: The routines first check the "type" value speci-
fied with their call. If FXWAIT or FXACPT were called with a
"type" parameter of zero, a message of any type is accepted;
the message "type" value is copied to the FXWAIT or FXACPT
"type" parameter. For any non-zero "type" parameter, FXWAIT
and FXACPT check the message type value. If it is equal to
the specified value, the message is further processed, other-
wise, a "SYSTEM ERROR" message is issued, and FXWAIT or FXACPT
try to receive another message at the same exchange. A zero
"type" value must therefore be used if messages with different
"type" values may be received; a further check can be per-
formed by the receiving task. The type checking feature, on
the other hand, permits the detection of misguided or errone-
ous messages.

Having accepted the message as correct, the number of bytes
which has been specified with the "length" parameter when the
message was generated by the sending task is copied from the
data area of the message to a data area in the receiving
task's memory which is defined by the parameter "variable".
Therefore, the data pattern which existed in the data block of
the sending task when the message was built is copied to a
data block within the receiving task. This data block starts
with the location indicated by "variable", as explained for
FXSEND. The number of received data bytes is returned in the
"length" parameter. Note that FXWAIT and FXACPT return only

"one "length" byte. The variable specified for "length" should
- therefore either be declared as INTEGER*l or explicitly set to

zero prior to the FXWAIT or FXACPT call. Otherwise, acciden-
tal data in the high byte(s) of an INTEGER*2 or *4 variable
would cause a totally meaningless value. Furthermore, the
programmer has to make sure that the allocation of the message
data within the receiving task corresponds to the allocation
within the sending task, i.e., the number, types, and order of
the variables within the data block of the receiving task must
be the same as in the sending task.

-143-

I~ %,

5.2 System Interface and Auxiliary Routines

Finally, FXWAIT and FXACPT check whether the message was actu-
ally generated in memory supplied by the Free Space Manager.
If so, the message is returned to the memory pool of the Free
Space Manager. No further action is taken if the message has
not been created by FXSEND (and was therefore not built from
Free Space Manager memory). This permits the receiving of any
arbitrary message by FXWAIT or FXACPT.

ROUTINE FXSEND:
m-9. -•

"'. Routine Type: Assembly language subroutine; not reentrant;
protected by a software interlock.

Initialization: Execution of FXITSK.

Routine Call:

CALL FXSEND (receiv.ex. ,resp.ex,variable, length,type)

with: receiv.ex.: Name of the exchange to which the
message is sent.

resp.ex: Name of the response exchange to which
the message should be returned.

variable: Name of the first variable in a con-
tiguous data block which is to be transmitted.

length: Number of bytes to be transmitted (or name
of an INTEGER*1 or INTEGER*2 variable holding
this value).

type: Message type value (or name of an IN-
TEGER*1 or INTEGER*2 variable holding this

Required Stack: 10 bytes

ROUTINE FXWAIT:

Routine Type: Assembly language subroutine; not reentrant;

protected by a software interlock.

Initialization: Execution of FXITSK.

Routine Call:
O.,

CALL FXWAIT (exchange,time lim.,variable,length,type)
'.

with: exchange: Name of the exchange where the task is
to wait for a message.

-144--. -

* 4.m

O%

*1
kg

5.2 System Interface and Auxiliary Routines

time lim.: Time limit (INTEGER*2 constant or name
of an INTEGER*2 variable holding this value).

variable: Name of the first variable in a contigu-
ous data block which is to be updated by the
message.

length: Name of an INTEGER*1 variable where FXWAIT
stores the number of data bytes received.

V type: Type value or name of an INTEGER*I or
- INTEGER*2 variable where FXWAIT stores the

"type" value of the received message if a zero
value has been specified.

-i N Required Stack: 18 bytes

ROUTINE FXACPT:

*. Routine Type: Assembly language subroutine; not reentrant;
. protected by a software interlock.

Initialization: Execution of FXITSK.

Routine Call:

CALL FXACPT (exchange,variable,length,type)

Parameters: see FXWAIT

Required Stack: 18 bytes
.tI

I 5.2.1.2 Reentrant Message Sending/Receivinc Routines

In order to avoid the unpredictable execution delays which may
be imposed upon a task using FXSEND, FXWAIT, or FXACPT, a
second set of message transmitting and receiving routines was
provided. While a task using one of the above routines might

0 have to wait at the interlock exchange until the routine
becomes available and would probably incur some further delay
during the memory allocation performed by the Free Space
Manager, there is no (inherent) delay if the reentrant rou-
tines FRSEND, FRWAIT, and FRACPT are used. The characteris-
tics of these routines, however, differ slightly from those of
the non-reentrant ones.

-~ The major difference is caused by the fact that FRSEND doesnot copy the data which is to be dispatched. In contrast,

FRSEND uses a fixed message which is closely connected to a
dedicated response exchange. No message must be explicitly

' - 145 -

5.2 System Interface and Auxiliary Routines

sent to this exchange. The response exchange and the message
header form a 19 byte block in the data area of the transmitt-
ing task. This block must immediately precede the block of
data which is to be sent with the message. (This can be
guaranteed as shown in chapter 3.1.5.3 if the first variable
to be transmitted is preceded by a 19-element INTEGER*1 array
whose name is the name of the response exchange.) Note that
the name of the response exchange need not be made public to
other tasks as the message itself contains the corresponding
information. Prior to the first call for FRSEND, the trans-
mitting task must call the routine FRINIT which creates the
response exchange and initializes the message header. Note:
FRINIT must be called once and only once by each task which is
going to use FRSEND. The meaning of the parameters in the
FRINIT call is similar to the FXSEND parameter set. The data
block length is limited to 246 for the FRSEND routine; a
larger value will cause a "SYSTEM ERROR" message, and the task
which has issued the FRINIT call is effectively suspended
(waiting forever at its own response exchange). As all infor-
mation about the message length and type has already been
defined in the FRINIT call, the set of parameters required for
the FRSEND call differs significantly from the one required
with FXSEND.

A very important advantage of the fixed message locations used
with FRSEND is that the actual working data area of a task may
be transmitted to another task without the need of copying it
within the sending task. Still, this imposes a problem as any
changes of the data within the message are legal only after
the message was received, copied, and returned by the receiv-
ing task. Variables within the message data block should
therefore be changed only when the message is waiting at its
response exchange. Before writing data into the message data
block, the user task should check the LOGICAL*l function
FRCRSP which returns a .FALSE. value if the (correct) message
is waiting at the response exchange, and otherwise a •TRUE.value. If FRCRSP returns a .TRUE. it is suggested to skip the

message preparation and dispatch entirely as the receiving
9 task would not be ready to accept new data anyhow. This
* , applies, of course, particularly if the transmitting task runs
-' periodically in order to update its output data. Only one

FRCRSP check is required before each message dispatch; once
the message has been returned to its response exchange, it can
only be removed from there by an FRSEND call. FRSEND, in
turn, checks independently from FRCRSP whether the message is
actually available for sending, and removes it from the res-
ponse exchange. If no message (or not the correct message)
was waiting at the response exchange, FRSEND returns to the

. calling task without further notice and without having sent a
message. This implies, however, another important conse-

O. - 146 -

% %

4

* h

-, - 5.2 System Interface and Auxiliary Routines

quence: a task cannot perform several succeeding FRSEND calls
with the same message if its priority is higher than the
priorities of the receiving tasks. In this case, the sending
task continues running and does not permit the first receiving
task to remove the message from its input exchange. All other
tasks would therefore forever be locked out from data trans-

-' fer.

While the exchanges to which the non-reentrant routine FXSEND
sends its messages may be served by FXWAIT and FXACPT as well
as by FRWAIT and FRACPT, this does not apply analogously to
the FRSEND messages. They must be received either by FRWAIT
or by FRACPT. Only these routines return a message to its
response exchange. Note that any message, no matter what its
origin was, is sent to the location indicated by its response
exchange field if its length exceeds eight bytes. (This
message length is not identical with the parameter "length".
The actual message length results from the value of "length"

* [plus nine (for the message header).)

Aside from the final treatment of the message, the charac-
. teristics of FRWAIT and FRACPT are identical to those of

FXWAIT and FXACPT. FXWAIT and FXACPT return the message to
the Free Space Manager after having processed it; their reent-
rant counterparts send it back to the response exchange. Thel information given about FXWAIT and FXACPT in chapter 5.2.1.1

applies therefore analogously to FRWAIT and FRACPT, respec-
tively.

ROUTINE FRSEND:

Routine Type: Assembly language subroutine; reentrant.

Initialization: Call for FRINIT.

Routine Call:

I CALL FRSEND (receiv.ex., resp.ex.)

" with: receiv.ex.: Name of the exchange to which
the message is sent.

resp.ex: Name of the response exchange to which
the message should be returned.*

Required Stack: 10 bytes

ROUTINE FRWAIT:

- 147 -

0-

5.2 System Interface and Auxiliary Routines

" Routine Type: Assembly language subroutine; reentrant.

Initialization: none.

Routine Call:

with: exchange: Name of the exchange where the task is
to wait for a message.

time lim.: Time limit (INTEGER*2 constant or name
of an INTEGER*2 variable holding this value).

variable: Name of the first variable in a contigu-
ous data block which is to be updated by the
message.

length: Name of an INTEGER*1 variable where FRWAIT
stores the number of data bytes received.

type: Type value or name of an INTEGER*I or
INTEGER*2 variable where FRWAIT stores the
"type" value of the received message if a zero
value has been specified.

Required Stack: 18 bytes

ROUTINE FRACPT:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none.

Routine Call:

CALL FRACPT (exchange,variable,length,type)

Parameters: see FRWAIT

Required Stack: 18 bytes

p! ROUTINE FRINIT:

pRoutine Type: Assembly language subroutine; reentrant.

% .Initialization: none.

%bi. Routine Call:

0 CALL FRINIT (resp.ex,length,type)

-148-

%I*

%

*

,.

" 5.2 System Interface and Auxiliary Routines

with: resp.ex.: Name of the 19 byte response exchange -

message header block immediately preceding the
data block.

length: Number of bytes to be transmitted (or name
of an INTEGER*1 or INTEGER*2 variable holding
this value).

type: Message type value (or name of an IN-
TEGER*1 or INTEGER*2 variable holding this
value).

Required Stack: 12 bytes

ROUTINE FRCRSP:

- Routine Type: Assembly language subroutine; reentrant;
must be declared as LOGICAL*l in the calling
FORTRAN program.

Initialization: none

Routine Call:

boolean = FRCRSP (resp.ex.)

with: boolean: LOGICAL*l variable (or immediate use of
FRCRSP as parameter, e.g., in a logical IF
statement)

resp.ex: Name of the response exchange which is
tested for the waiting message.

The routine returns .TRUE. if the correct response message
is not waiting at the specified exchange, and .FALSE., if

-it is waiting.

"V Required Stack: 0 bytes

I

5.2.1.3 Interface Routines for iRMX-80 Nucleus Functions

The remaining iRMX-80 Nucleus routines - as far as they are
applicable to a FORTRAN based system running on hardware such
as an iSBC 80/24 board - are interfaced by the routines de-
scribed within this chapter. (No interface routine was pro-
vided for the iRMX-80 task creation routine RQCTSK.) Since
these interface routines simply adapt the parameters supplied

* by FORTRAN to the requirements of iRMX-80, they maintain com-
pletely the characteristics of the corresponding iRMX-80 sys-

. - 149-

,%

%

5.2 System Interface and Auxiliary Routines

tem routines (whose names result from the routine names if the
first two characters "FR..." are replaced by "RQ..."). All
routines specified within this chapter are reentrant.

Two routines are provided for the creation and deletion of
exchanges, FRCXCH and FRDXCH, respectively. The exchange ad-
dress parameter of both routines must specify a ten byte loca-
tion in memory. FRCXCH builds and initializes an exchange in
any case. In contrast, FRDXCH checks first whether a task or
a message is waiting at the specified exchange. If so, no
further action takes place, and FRDXCH returns a .FALSE. valueto the variable specified as its second parameter. If neither

a task nor a message is waiting at the exchange, the exchange
is deleted, and FRDXCH returns a .TRUE. value.

Three routines permit the control of the status of a task: It
can be deleted (with FRDTSK), suspended (with FRSUSP), or its
execution can be resumed if it was suspended (with FRRESM).
These three routines require the name of an INTEGER*2 variable

* as a parameter which holds the address of the task's task de-
scriptor. There are two possibilities for supplying task de-
scriptor addresses to a FORTRAN program: They may either be
stored in a (named) COMMON block by a small assembly language
or PL/M routine which may be called as part of the initializa-
tion sequence, or each task determines its own task descriptor
address by calling the (INTEGER*2) function FRACTV, and stores
the task descriptor address returned by FRACTV in memory.

Two routines, FRELVL and FRDLVL, finally, permit the enabling
- and disabling of interrupt levels, respectively. The appro-

Nj. priate interrupt level must be specified as a parameter with
their call.

ROUTINE FRCXCH:

Routine Type: Assembly language subroutine; reentrant.

• Initialization: none

Routine Call:
.4'

CALL FRCXCH (exchange)

0 with: exchange: Name of a 10 byte area in read-write
R memory where iRMX-80 can build an exchange.

Required Stack: 2 bytes

-150 -

~i
I 44 .

A-

5.2 System Interface and Auxiliary Routines

ROUTINE FRDLVL:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRDLVL (level)

with: level: Interrupt level (see iRMX-80 documenta-
tion) constant or INTEGER*1 or INTEGER*2
variable name holding this value.

Required Stack: 2 bytes

ROUTINE FRDTSK:

Routine Type: Assembly language subroutine; reentrant.

-. Initialization: none

Routine Call:

CALL FRDTSK (task descriptor)

with: task descriptor: Name of an INTEGER*2 variable
holding the address of the task descriptor of
the task to be deleted, or FRACTV function
call.

Required Stack: 4 bytes

* ROUTINE FRDXCH:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRDXCH (exchange,boolean)I
- with: exchange: Name of the exchange to be deleted.

boolean: Name of a LOGICAL*I variable whose value
is returned by FRDXCH depending on whether the

-151-

5.2 System Interface and Auxiliary Routines

exchange could be deleted (.TRUE.) or not
(.FALSE.).

Required Stack: 6 bytes

ROUTINE FRELVL:

Routine Type: Assembly language subroutine; reentrant.

*Initialization: none

Routine Call:

CALL FRELVL (level)

- with: level: Interrupt level (see iRMX-80 documenta-
'/ tion) constant or INTEGER*1 or INTEGER*2

variable name holding this value.

Required Stack: 2 bytes

ROUTINE FRRESM:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRRESM (task descriptor)

with: task descriptor: Name of an INTEGER*2 variable
holding the address of the task descriptor of
the task to be resumed.

Required Stack: 4 bytes

ROUTINE FRSUSP:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRSUSP (task descriptor)

- 152 -

4O

5.2 System Interface and Auxiliary Routines

with: task descriptor: Name of an INTEGER*2 variable
holding the address of the task descriptor of
the task to be suspended, or FRACTV function
call.

Required Stack: 4 bytes

ROUTINE FRACTV:

Routine Type: Assembly language subroutine; reentrant;
* must be declared as INTEGER*2 in the calling

FORTRAN program

Initialization: none

Routine Call:

variable = FRACTV (dummy)

with: variable: Name of the variable where the task
descriptor address of the running task can be
stored.

dummy: Name of a dummy variable which may be of
any arbitrary type except CHARACTER.

The routine returns the start address of the task descrip-
tor of the running task as an INTEGER*2 variable.

Required Stack: 0 bytes

5.2.1.4 "Flag Interrupt" Service Routines

A special feature called "flag interrupts" allows a task to
indicate to another task the occurrence of an event (e.g., of
a clock tick) without the overhead inherently involved in
sending a message. Instead of dispatching a message, the
"transmitting" task sets a one-byte "flag" location in memory
to OFFH. Each flag location is linked to a message-exchange
pair similar to iRMX-80 interrupt exchanges. A dedicated task
runs periodically every iRMX-80 clock tick (50 ms), checking
all flag locations of whose existence it has been notified,

4sending the "flag interrupt" message to the corresponding
exchange if it finds a flag set, and resetting all flags to
zero. The execution of any other task can thus be controlled
by the flag status if the task is to wait at the flag inter-
rupt exchange. Although this approach inherently causes a
delay between the setting of the flag and the processing of

- 153 -

4 ..

O-

5.2 System Interface and Auxiliary Routines

the flag interrupt, it reduces the overhead for the transmitt-
ing task significantly (since modifying one byte in memory is
obviously faster than executing all the iRMX-80 Nucleus opera-
tions involved in sending a message), which may be important
for tasks with critical timing.

The software provided for the servicing of "flag interrupts"
consists of one task and two non-reentrant routines which may
be called by any task in order to create or delete a "flag
interrupt" exchange. The task, FXCFLG, runs once each system
time unit (50 ms) and polls all flag bytes which have been
previously specified to it by calling the "flag interrupt"
exchange creation routine FXCRFE. If a flag byte is found
set, it is reset, and a message adjacent to the "flag inter-
rupt" exchange is sent to this exchange. If a message is
already waiting at this exchange, FXCFLG changes only the
"type" byte of the interrupt message from its normal value of
1 (INT$TYPE) to 2 (MISSED$INT$TYPE) in order to indicate to

. "the task(s) which service(s) the exchange that at least one
"flag interrupt" has been missed. Note that FXCFLG does not

* check whether the message waiting at the exchange is actually
the pertinent interrupt message; no other messages should
therefore be sent to a "flag interrupt" exchange.

The priority of FXCFLG should be set rather high, in any case
higher than the priorities of the tasks which might use "flag
interrupts". It might be even necessary to assign a priority
to FXCFLG which is (numerically) smaller than 128, i.e., a

*priority in the range used by the genuine interrupt service
routines.

A task may receive the information that a "flag interrupt" has
happened by simply waiting at the "flag interrupt" exchange in

.A: an untimed wait. Either FXWAIT or FRWAIT may be used for this
purpose. Having received the interrupt message, the task may
check its "type" byte in order to make sure that no "flag
interrupt" was missed. (Exactly the same proceedings are re-
q- red for tasks acknowledging genuine interrupts.)

Having terminated the flag byte polling loop, FXCFLG checks
whether there was a request for creating or deleting a "flag
interrupt" exchange. If there was one, it is executed before
FXCFLG returns to its timed wait. The exchange FXCDFE to
which such requests are sent by FXCRFE and FXDLFE must be
initialized by the configuration module in order to guarantee
its existence when the first message is sent to it.

" FXCFLG keeps its pointers to flag byte and exchange locations

in memory supplied by the Free Space Manager. Therefore, flag
bytes and the corresponding exchanges may be dynamically

- 154-

A ~ ~ ~ ~ '~ A 5i2 2 1

5.2 System Interface and Auxiliary Routines

introduced by tht other tasks in the system. For each "flag
interrupt", FXCFLG requests eight bytes from the Free Space
Manager which hold the flag byte and the exchange addresses
and a pointer to the next eight-byte block which may or may
not be contiguous to the preceding one. (FXCFLG uses only six
of the eight bytes; eight bytes, however, are the smallest
amount of memory which can be allocated by the Free Space
Manager.) A newly created "flag interrupt" control block is
added as the first block to be checked within a polling cycle;
this reduces the program overhead considerably. In order to
delete a "flag interrupt" exchange upon a corresponding re-
quest, FXCFLG searches for the specified control block, chan-
ges the pointer of the preceding block in order to thread it
to the block following the one to be deleted, and returns the
memory block to the Free Space Manager.

Two non-reentrant subroutines, FXCRFE and FXDLFE, permit the
creation and the deletion of "flag interrupt" control struc-
tures. Both routines use the routine FXSEND in order to send
an appropriate message to FXCFLG. In order to create a "flag
interrupt" exchange, the name of a 15 byte location in RAM
must be specified where FXCFLG can build an interrupt ex-
change. The "flag interrupt" exchange starts its operation
immediately after the FXCRFE call. The deletion of "flag
interrupt" control structures is, in contrast, a somewhat more
complicated procedure. First, the task which wants to delete
the interrupt exchange should call FXDLFE which disables the
control structures maintained by FXCFLG and prevents any
future "flag interrupts". Due to the possible delay between
the deletion request and the actual deletion of the FXCFLG
control block, there might be still the possibility of a "flag

- interrupt" after the FXDLFE request was executed. The task
P performing the deletion should therefore incur a timed wait

(with FRWAIT) at the "flag interrupt" exchange which should
last at least one time unit, better, several time units.

- -. Having made sure thus that no "flag interrupt" is to happen
*.-- any more, the task may delete the interrupt exchange (with
- FRDXCH). Keep in r-ind that a message sent to a non- (or no

more) existing exchange may cause a disastrous system error!

TASK NAME: FXCFLG
ENTRY POINT: FXCFLG

* STACK LENGTH: 36 bytes

PRIORITY: z 128 (higher than all tasks using its
services)

DEFAULT EXCH.: none
EXTRA: 0

INITIAL EXCH.: FXCDFE

-155-

.- . ~ .. Ai~ AA %*

5.2 System Interface and Auxiliary Routines

ROUTINE FXCRFE:

Routine Type: Assembly language subroutine; not reentrant;
protected by a software interlock.

Initialization: Execution of FXITSK

Routine Call:

CALL FXCRFE (exchange,flag)

A with: exchange: Name of a 15 byte location in read-
write memory where the "flag interrupt" ex-
change can be created.

flag: Name of a flag byte.

Required Stack: 24 bytes

ROUTINE FXDLFE:

Routine Type: Assembly language subroutine; not reentrant;

protected by a software interlock.

- Initialization: Execution of FXITSK

Routine Call:

CALL FXDLFE (exchange)

with: exchange: Name of the "flag interrupt"
exchange to be deleted.

Required Stack: 22 bytes

5.2.1.5 Access Control Routines

Three routines permit to establish and maintain software in-
terlocks for common code or data. The routine FRINAR builds a

'Vi message-exchange combination in 15 bytes of contiguous memory,
and allows access to the protected sequence by sending the
message to the exchange. FRACCS, in turn, performs a "wait"

0. operation at the specified exchange. If the release message
is available at the exchange, it is removed, and the task
which has called FRACCS can continue its execution. Other-
wise, the task has to wait until the task which is currently
using the protected resources has terminated its execution and
sent the release message back to the control exchange, calling

* -156 -

S

5.2 System Interface and Auxiliary Routines

FRRELS. FRACCS checks whether the release message was the
correct one; if not, a "SYSTEM ERROR" message is generated,
and FRACCS continues waiting for the correct release message.

" ~.This implies several important rules for the use of these rou-
tines:

First, the programmer has to make sure that the control ex-
change is already created at the time the first task wants to

' "' access it. This can only be done by calling FRINAR in an
initialization routine, once for each exchange-message com-
bination. The configuration module must not be used for this
purpose as it would only create the exchange without sending
the message to it, which would, of course, block all tasks
which would wait at the exchange. Defining the exchange in
the configuration module and executing FRINAR at a later stage
would be even worse: a fatal system error might happen if a
task was already waiting at the exchange when the FRINAR call

"*-. was issued.

Second, the sequence which is enclosed by FRACCS and FRRELS
o -has to be kept as short as possible. Although the three rou-

tines described in this chapter are reentrant, their execution
might affect the regular scheduling of the iRMX-80 tasks (com-
pare chapter 3.1.3). The probability that this might matter
is the higher the longer a task remains within a protected
area and the more tasks want to access this protected area.
Separate access control exchanges should therefore be provided
for each independent unit (code or data) which may be used by
several tasks. FRACCS should be called immediately before
accessing the shared resources, and FRRELS, immediately after
having left them. The shared routines ought not to perform
actions which might lead to additional delays of their execu-
tion: an untimed wait, for example, would not only affect the
task currently executing within the common code but also all
other tasks which might want to access it. If the software
interlock is used to protect data in common blocks, each task
accessing these data should only copy them to or from local

4 memory locations under the protection of the access control
* - routines; any further operation should be done by code outside

the protected sequence.

Third, one but only one FRRELS call must follow an FRACCS
call. If a protected routine branches, each branch must be
terminated by FRRELS; the same applies analogously to routines
with several entry points. Omitting an FRRELS call after
having exited the protected code would not only lock out the
common code or data forever, it would also lock out all rou-
tines which would ever attempt to access it. A surplus FRRELS

- 157 -

5.2 System Interface and Auxiliary Routines

call, in contrast, is ignored due to the special structure of
this routine.

Note: No message must ever be sent to the control exchange
except by FRRELS. The control exchange must not serve any
other purpose but controlling the access to the following code
segment.

ROUTINE FRACCS:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRINAR call, specifying the same control
exchange.

Routine Call:

CALL FRACCS (exchange)

N with: exchange: Name of the control exchange where the
calling task must wait for the protected
sequence to become accessible.

Required Stack: 6 bytes

-, ROUTINE FRRELS:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRINAR call,specifying the same control
exchange

Routine Call:

CALL FRRELS (exchange)

, with: exchange: Name of the control exchange to which
- its corresponding message has to be sent by

FRRELS.

Required Stack: 2 bytes

ROUTINE FRINAR:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

- 158 -

Al

5.2 System Interface and Auxiliary Routines

Routine Call:

CALL FRINAR (exchange)

with: exchange: Name of the control exchange - message
combination (15 bytes) which has to be ini-
tialized by FRINAR.

%Required Stack: 4 bytes

5.2.1.6 System Error MessaQes

Most of the system and interface routines perform some kind of
error checking, particularly when messages are received. In
general, the routines branch to an exception code, and call
the routine FXSERR if an error is detected. This routine may
be supplied by the programmer; a default routine with this
name is contained within the I/O library FIORMX.LIB (and hence
used by the CGCS). This routine writes the following error

* message to the console (within the scrolled part of the CRT
screen), accompanied by a "beep" signal:

***** SYSTEM ERROR (TASK tsknam, LOC hexl) *****

Within this message, "tsknam" is the actual name of the task,
as specified in the configuration module, and "hexl" is the
(absolute) hexadecimal address where the call to the routine
which detected the system error had been performed. If, for
example, a FORTRAN routine calls FRACCS in order to gain
protected access to shared resources, and FRACCS detects an
erroneous message waiting at the control exchange, the "SYSTEM
ERROR" message will contain the name of the task the FORTRAN
routine belongs to and the absolute location of the FRACCS

% call within this routine. The task name and location informa-
tion provided with the error message does not necessarily mean
that the error was caused by this task; most probably some
other task is to blame for it. Still, the interface routines
lack the ability of clairvoyance, and they can only report an
error when it was detected but cannot give any further sugges-
tion what might have caused it. Anyhow, the information con-
tained in the error message may be helpful to detect and re-
move the error source.
Application routines may also use this facility. Still, a
direct call to FXSERR does not necessarily make sense as this
routine returns not the location from where it was called but
the location from where the routine was called which, in turn,
called FXSERR. This was done on purpose in order to give af:' closer information about the actual point where the error

- 159 -

_V
N I-

S-

5.2 System Interface and Auxiliary Routines

occurred since the interface routine which performs the actual
FXSERR call may have been called repeatedly by the same task.
An FXSERR call from a routine which forms the body of a task
would even render a completely meaningless "location" value.
This can be overcome by calling the routine FXSYSE which
performs the required interfacing and returns the location of
the FXSYSE call with the error message.

Both routines (FXSERR and FXSYSE) are non-reentrant (i.e.,
protected by a software interlock) and do not require any

parameters.

ROUTINE FXSERR:

Routine Type: Assembly language subroutine; not reentrant;
protected by a software interlock.

Initialization: Execution of FXITSK.

Routine Call:

CALL FRSERR

Required Stack: 8 bytes

ROUTINE FXSYSE:

Routine Type: Assembly language subroutine; not reentrant;
protected by a software interlock.

Initialization: Execution of FXITSK.

Routine Call:

CALL FXSYSE

* Required Stack: 10 bytes

, 60

.

I , - 160 -

5.2 System Interface and Auxiliary Routines

System error messaQes generated by the iRMX-80 control rou-
tines:

FXSEND: Too large message length (> 243) was specified by the
- calling task. No message is sent.

FXWAIT: The type of the received message differs from the type
specified with the routine call. The task continues
waiting for a correct message.

FXACPT: The type of the received message differs from the type
specified with the routine call. The task attempts to
receive another message.

FRSEND: none

FRWAIT: See FXWAIT.

FRACPT: See FXACPT.

FRINIT: Too large message length (> 246) was specified by the
lor calling task. The task is suspended.

FRCRSP, FRCXCH, FRDLVL, FRDTSK, FRDXCH, FRELVL, FRRESM,
FRSUSP: none

FRACTV: none

* FXCFLG: Illegal message detected at the creation/deletion re-
quest exchange. The message is ignored.

FXCRFE, FXDLFE: none

FRACCS: Illegal message detected at the access control ex-
change.

FRRELS, FRINAR: none

5.2.1.7 Free Space Manager Initialization

Prior to being able to request memory from the Free Space
Manager, any iRMX-80 application has to supply a sufficient
amount of memory to it. This is only possible at execution
time; still, it has to be done early enough before memory is

". requested from the Free Space Manager. The initialization
module is generally the most appropriate place to execute this

*memory transfer, at least the first time.

- 161 -

i i

5.2 System Interface and Auxiliary Routines

In order to permit the initialization of the Free Space Mana-
ger from FORTRAN routines, the subroutine FRIFSM was provided.
FRIFSM has to be called with the start and end addresses of
the memory to be submitted as parameters. Arbitrary memory
block lengths may be defined, and FRIFSM may be invoked multi-
plely. Since the Free Space Manager can only handle memory
blocks whose lengths are greater than 8 and multiples of 4,
the lengths of the memory blocks submitted (i.e., end address
minus start address plus one) should comply with these rules
in order to avoid the transfer of unusable memory. FRIFSM
ignores all calls with end addresses less than or equal to
start addresses; still, it does not check whether at least
eight bytes were to be transferred. Note: Memory locations
outside the submitted block may inadvertently be changed if
blocks shorter than four bytes are submitted!

ROUTINE FRIFSM:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRIFSM (start address, end address)

with: start address: INTEGER*2 variable or constant
holding the address of the first byte to be
submitted.

end address: INTEGER*2 variable or constant hold-
ing the address of the last byte to be sub-
mitted.

Note: (<end address> - <start address> + 1) must be
greater than or equal to 8 and should be a multiple of 4.
FRIFSM is disabled if <start address> < <end address>.

* •Required Stack: 2 bytes

- 162 -

S

rv-qrKrW wr

NZ

5.2 System Interface and Auxiliary Routines

5.2.2 Console. Printer, and Buffer Input/Output Routines
Libraries FIORMX.LIB. FIOISS.LIB. FIORXI.LIB. and
FIORXR.LIB

NAME FUNCTION CHAPTER

FRIOST initialization routine for I/O funct. 5.2.2.1

FRDATI data input routine (from console) 5.2.2.2
FRSTRI character string input routine (cons.)
FRDTBI data input routine (from user buffer)
FRSTBI character string input routine (buffer)

. FRDATO data output routine (to console) 5.2.2.3
FRSTRO char. string output routine (to cons.)
FRDTPR data output routine (to printer)
FRSTPR char. string output routine (to print.)
FRDTBO data output routine (to user buffer)
FRSTBO char. string output routine (to buffer)

FRINMD input mode selection routine 5.2.2.4
FROUTM output mode selection routine (console)
FRPRMD printer mode selection routine
FRINPR input prompt string modification
FRCLRO CRT screen clearing routine
FRSPTO printer timeout setting routine
FRMCHG LOGICAL*l function: output mode changed

FRCSTR .ontrol string building routine 5.2.2.5

FRSTHX conversion ASCII-INTEGER*l 5.2.2.6
FRFXIN conversion ASCII-INTEGER*2
FXFLIN conversion ASCII-REAL
FRHXOT conversion to hexadecimal ASCII string
FRFXOT conversion INTEGER-ASCII

-. FXFLOT conversion REAL-ASCII

The I/O routines described within this chapter perform input
from and output to a console CRT terminal, output to a print-
er, and input from and output to a user supplied buffer. The
latter feature can be utilized to create the output to a text

4type disk file, or to read such a file, respectively.

U. In order to permit a reasonable overhead for the applicationroutines (particularly, a reasonable stacksize), the following
program structure was chosen: Rather small reentrant modules
are called by the user task, using its stack, in order to

- 163 -

5.2 System Interface and Auxiliary Routines

build I/O request messages. These messages are sent to the
entry exchanges either of the input task INDATX or of the
output task OUTDTX. These tasks perform the required conver-
sions and request in turn input from the iRMX-80 Terminal
Handler, or they send output to it, if applicable.

*Despite of the reentrancy of the interface routines, there is
a considerable time delay inherent with each I/O operation as
each interface routine has to wait for a response of the I/O
task it called. First, the message requesting an I/O opera-
tion has to queue at the entry exchange of the corresponding
input or output task. Second, the conversion routines them-
selves may require a considerable execution time, and third,
the I/O task has to wait for the response of the Terminal
Handler. This response is - in the case of an output request
- delayed by the time required for sending the output string
to the console or printer. Input requests may even be detain-
ed for an indefinite time until the operator entered an input
line. (Still, this does not mean that the processor is total-
ly busy with the I/O action and cannot execute any other task

o• meanwhile.) The execution of INDATX can only be resumed after
a complete logical input line was entered on the console. It
is therefore very likely that one task is most time waiting
for a command entry issued by the operator. INDATX is then
actually in a permanent wait for a response of the Terminal
Handler. Furthermore, the echo output - which may be gener-
ated after the input of a line from the Terminal Handler -
requires the availability of the output task. If already
several other tasks are queued at the entry exchange of OUT-
DTX, the release message of INDATX will only be issued after
all these output requests were processed. Even operations
which do not require the service of the Terminal Handler,
i.e., I/O from/to a user supplied buffer, suffer from these
delays since their pertinent output requests have also to
queue at the input exchanges of INDATX or OUTDTX.

Therefore, a task with a critical timing (or, which is equi-
valent in most cases, an interrupt service task) should never

9 perform any input or output operation. This applies even to
apparently low-speed tasks: a timer task which runs only once
a second, performing a timed wait (for 20 RMX time units at 50
ms each) meanwhile, will become inaccurate if it includes an
output operation. This is true because the timed wait will
delay the task in any case until 20 clock ticks have passed.

O. If this task, however, has to wait somewhere else, for example
for the response of OUTDTX, some clock ticks may or may not
already have happened while the task was not waiting at the
timing exchange. (The auxiliary timer task FXTIME has, there-
fore, to use a special approach for writing its time informa-
tion to the console screen.)

- 164 -

- 5.2 System Interface and Auxiliary Routines

Any task requesting output has to wait until the output action
was performed. Otherwise, memory locations could be changed
before or - even worse - while they are being processed by the
output routines. This imposes also the demand that the memory
locations which were specified by the task requesting output
must not be changed by any other task. (The necessity for an
input requesting task to wait until the input was done is
evident.) Therefore, it is advantageous to provide dedicated
tasks which perform output operations but no operations which

2 might be urgently needed somewhere else. Splitting the gener-
ation of output between several tasks might be a good idea if
the system is rather complex, particularly, if large amounts
of output are periodically generated. In this case, several
tasks can improve the system's performance since they can
queue at the entry exchange of OUTDTX, thus providing some
kind of buffering. In contrast, console terminal input should
be requested by one task only (compare chapter 3.1.6). This
restriction does not apply to I/O from/to a user supplied
buffer: The task requesting buffer I/O submits a buffer of
its own with the I/O request, and this buffer is handled
whenever the I/O tasks find time to do so. The sequence of
buffer I/O requests is therefore irrelevant, provided they
apply to different buffers for each task.

• .. -INDATX uses two input sources, namely the console CRT and a
user supplied buffer, and OUTDTX can output to three channels,
namely, the console CRT, the printer, and a user supplied buf-
fer. Device I/O is done by the Alternative Terminal Handler
(compare chapter 3.3.4) which supports console CRT I/O and, in
addition, the output to a printer performed via an additional
USART on an I/O expansion board. Only the Alternative Ter-
minal Handler must be used in conjunction with the modules in
FIORMX.LIB; only this Terminal Handler supports two I/O de-
vices and directly addressed CRT terminal output.

The I/O tasks do not receive messages directly from the rou-
S-tines requesting I/O operations. Two small reentrant sub-

routines are provided for input and output, respectively,
.-- which build messages and wait for the response of the I/O

tasks. This was done in order to off-load the application
software from the overhead of creating a message for each I/O
operation. Each interface routine has several entry points;
some of them trigger directly an input or output operation,
some can be used to set parameters of the I/O routines.
Separate entry points are provided for the input and the
output of CHARACTER variables and of variables of any other
type. This was necessary because FORTRAN uses different
parameter passing conventions for these two groups. While a
normal variable - no matter what its type is - is passed by
its address only, FORTRAN passes two parameters for each

- 165 -

'SM,

5.2 System Interface and Auxiliary Routines

CHARACTER variable, namely, its (start) address and its
length. (The length of a CHARACTER variable is determined
when the FORTRAN program is compiled; it is either set by the
declaration or by the length of a string contained in the
source code.) It is essential that the appropriate interface
routine is invoked for a certain parameter. Calling a string
I/O function with a non-CHARACTER parameter or vice versa will
inevitably cause a disastrous system crash. There is no
possibility whatsoever for the interface routines or the I/O
tasks to determine the actual type of a parameter.

The scheduling of output to the console CRT (which is supposed
to be permanently connected to the system) and to a user sup-
plied buffer is straightforward: A request message is sent by
the interface routine to the entry exchange of OUTDTX, and the
calling task waits within the interface routine for the return
of the request message which happens when OUTDTX has completed
its work. OUTDTX, in turn, sends an output request message of
its own to the Output Terminal Handler (if applicable) , and
waits until this request message is returned upon completion.

* Only upon receipt of the returned request message, the task
requesting output is released from its message-exchange inter-
lock. This approach was no more suitable for the scheduling
of printer output, since the printer may be disconnected or
unable to receive data for a prolonged period while it empties
its buffer. OUTDTX would be detained for an indefinite time
in this case if it would wait for the Terminal Handler's
response after the attempted output to the printer. Console
I/O would thus also be delayed unnecessarily. Therefore, a
different scheduling approach was chosen for the printer
output: The output requesting task waits (within the inter-
face routine) first for the printer output request message of
OUTDTX which is returned to this access control exchange
either by OUTDTX or by the Terminal Handler, depending on
whether information was only added to the printer buffer in
OUTDTX, or whether the buffer was actually dispatched for

*printing. Only when this message was received, the interface
Vtask sends the request message to the entry exchange of OUT-
* DTX. Tasks requesting output from a (not ready) printer queue

therefore at the access control exchange, and they are re-
leased only either when the printer is operable again, or
after a time-out (in which case an error message is displayed
in the scrolled portion of the console CRT). OUTDTX is,
however, not affected by a not-ready printer.

166

5.2 System Interface and Auxiliary Routines

TASK NAME: INDATX
ENTRY POINT: FXINTI
STACK LENGTH: 184 (a) or 174 (b) bytes
PRIORITY: 134 (higher than all routines which

request input)
DEFAULT EXCH.: none
EXTRA: 18 (a) or 13 (b) (see chapter 3.1.5.1)

!. (a) ... for software floating-point arithmetics
(b) ... for hardware floating-point arithmetics

SINITIAL EXCH: FXINDT

TASK NAME: OUTDTX
ENTRY POINT: FXINTO
STACK LENGTH: 200 (a) or 181 (b) bytes
PRIORITY: 135 (higher than all routines which

DEFAULT EXCH.: none
EXTRA: 18 (a) or 13 (b) (see chapter 3.1.5.1)

(a) ... for software floating-point arithmetics
(b) ... for hardware floating-point arithmetics

FXPRAC

The above mentioned stack length values were calculated from
the stack length information included with the FORTRAN float-
ing-point routines invoked by INDATX and OUTDTX. They are
necessarily a worst-case estimation which is never fulfilled
for an actual execution since the stack value is calculated by
the ISIS-II Linker as the sum of the stack requirements of all
routines which will never all be active at the same time.
During practical use, a stack of 150 bytes was found to be by
far sufficient for INDATX as well as for OUTDTX.

5.2.2.1 Input/Outvut Initialization

Two different types of initialization have to be distinguished
in this particular context: first, the I/O tasks INDATX and
OUTDTX themselves have to be initialized, which, however, need
not be of further concern here. Explicit initialization isrequired, though, for the interface between application tasks

and the I/O modules.

- 167 -

5.2 System Interface and Auxiliary Routines

Special precautions have to be taken when the Static Task
Descriptors of the tasks are defined. Each task which uses
FORTRAN floating-point arithmetics has to add either 13 or 18
additional bytes to its Task Descriptor, depending on whether
hardware or software floating-point arithmetics was chosen
(compare chapter 3.1.5.1). In addition, each task that uses
the I/O routines has to add two more bytes to its Task De-
scriptor in order to permit the installation of a pointer to
the exchange-message combination required by the I/O routines.
Only one value for such an offset is legitimate within the
entire system. If none of the tasks which perform I/O uses

",. FORTRAN floating-point functions, an "EXTRA" value of 2 may be
chosen. Otherwise, the "EXTRA" value of all tasks which use
the routines in FIORMX.LIB must be set to 15 (for a system
including an iSBC 310 High Speed Mathematics board) or to 20
(if software or 8231-based floating-point arithmetics is used)
if one or more tasks perform not only I/O but also floating-
point operations. A corresponding offset value - 0, 13, or 18
- has also to be specified at system linkage time, together
with some other system constants (compare chapter 5.2.2.8).

Furthermore, each task which will perform I/O operations has
to call the initialization routine FRIOST once and only once.
The task has to specify the name of a 31 byte location in
read-write memory where FRIOST can build an I/O request mes-
sage and the response exchange for the I/O tasks. It is this
address to which the pointer added to the task's Task Descrip-
tor points. A task can only perform either input or output at

* a given time; therefore, only one I/O request message is
required for a task. Linking this message (and the response
exchange) to the Task Descriptor of the task allows to omit
this information in any future I/O request as the interface
routines can independently determine these addresses. This
saves a considerable program code overhead.

ROUTINE FRIOST:

Routine Type: Assembly language subroutine: reentrant.

Initialization: none

Routine Call:

CALL FRIOST (exchange)

with: exchange: Name of a 31 byte long memory location
where FRIOST can build an 1,0 request message
and a response exchange for the 1/0 tasks.

Required Stack: 2 bytes

-168-

0%

.w'x US XW

., ~ 5.2 System Interface and Auxiliary Routines

5.2.2.2 Input Routines

5.2.2.2.1 Programming Interface

-,. Two console input routine entry points are provided, FRDATI
and FRSTRI. FRDATI can handle all kinds of variables - IN-
TEGER (including LOGICAL), REAL, and Hollerith type - except

variables of the type CHARACTER which must be input by FRSTRI.
I Two routines, FRDTBI and FRSTBI, are provided for "input"

(i.e., conversion from ASCII into binary numeric notation)
from a user-supplied buffer. The contents of the user sup-
plied buffer are scanned for the requested input in this case,
rather than data obtained from the Terminal Handler. No echo
output is generated on the console. Therefore, multiple tasks
may concurrently use the buffer input feature, provided they
submit different buffers.

The input routines must be called as follows:

• CALL FRDATI (control string,variable,status)
or

CALL FRSTRI (flag string,character variable,status)
% " or

CALL FRDTBI (control string,variable,buffer,status)
or

CALL FRSTBI (flag string,character var.,buffer,status)

<control string>:

<control string> can be either a string, enclosed between
single quotes, or a CHARACTER type variable, holding the
following information:

control string := 'flag,type'

V *. where <flag> is an integer which determines the actual
' . input operation, and <type> is a single character (upper-

or lowercase) which controls the kind of conversion per-
- formed by the input routine.

<flag string>:

No <type> identification is required in the case of FRSTRI
or FRDTBI; the control string comprises therefore only the

0. value of <flag>, enclosed in single quotes, or the name of
. a CHARACTER variable holding a corresponding string.

-169-

CHARACTER va iable

4

5.2 System Interface and Auxiliary Routines

<variable>:

<variable> is the name of a single variable whose contents
are to be set by INDATX. The type of this variable should
correspond to the <type> specified with the control string
in order to avoid the destruction of other data if INDATX

*reads more bytes than are reserved for the specified vari-
able. Only CHARACTER variables may be used in a FRSTRI
call. The length of a string which is input via a FRSTRI
call is automatically determined by the dimension of the
CHARACTER parameter. (A FRSTRI call with a CHARACTER*10
variable specified as a parameter will, for example, read
10 characters.)

Note: INDATX always returns a signed two-byte integer
(INTEGER*2) if "I" was specified as <type>. It is, there-
fore, not possible to assign an input value directly to an
INTEGER*1 variable.

<status>:

After each input request, INDATX returns a one byte Bool-
ean variable to the parameter <status> which indicates the
result of the input request. The value of this variable
is .FALSE. (OOH) if the input request could be fulfilled;
it is .TRUE. (OFFH) if either an input error occurred or
if the input string was empty. No new value is assigned
to <variable> if <status> was set to .TRUE.; the applica-
tion program should check this flag in order to determine
whether it did receive new data or not. It is recommended
to use a LOGICAL*l variable as <status> parameter; this
variable can easily be checked in a logical IF statement.

<buffer>:

This parameter should be the first byte of a user supplied
buffer. The buffer should be declared as an INTEGER*1
array under FORTRAN; it must by no means be a CHARACTER
type variable. The first byte of the buffer (i.e., the
first element of the array) must be set to the length of
the actual buffer (which starts at the third element of
the array) prior to the call to FRDTBI or FRSTBI. The
second byte is reserved for INDATX use and should not be
modified by the user; the actual contents of the buffer

*start at byte 3. The buffer may be referred to either by
BUFFER or by BUFFER (1) within an FRDTBI or FRSTBI call;
prior to the call, the data must be provided in the buffer
beginning with BUFFER (3) which is to be converted accord-
ing to <type> and to be written to <variable>. INDATX may

*- 170-

5.2 System Interface and Auxiliary Routines

parse up to the number of bytes within the buffer which
was specified by BUFFER (1).

Example:

CINTEGER*l BUFFER (130)
C (The buffer proper should contain 128
C bytes in our example, plus the two

I. C length bytes)
BUFFER (1) = BUFLEN

C (BUFLEN must be <= 128)
DO 100 I = I,BUFLEN
BUFFER (1+2) =

C (Place data into the buffer)
100 CONTINUE

CALL FRDTBI ('1,E',X,BUFFER,STAT)
C (Scan the buffer for a floating-point
C number, convert it and store it in X)

,0 The input functions and conversion algorithms are selected by
means of the parameters <flag> and <type>. <flag> affects the
handling of the input line which was entered by the operator
or contained in the user-supplied buffer, and <type> controls
the conversion algorithms:

-y * <flag>:

-.* <flag> controls eight functions of INDATX which are mapped to
the eight bits which represent the one-byte integer <flag>.
Its value can be calculated as follows:

S-, <flag> = 0 (if the current input buffer contents are to be
processed, starting at the input pointer, i.e.,
after the character last read)

+ 1 (if a new input line is requested; in the case of
buffer input, the buffer pointer is reset to the
beginning of the input buffer)

.,+ 2 (if input is to be performed after the input
pointer was reset to the beginning of the line
which is currently kept in the buffer)

+ 4 (if input is to be performed after the input
pointer was moved to the next blank)

0. + 8 (if input is to be performed after the input
pointer was moved to the next digit)

+ 16 (if input is to be performed after the input
pointer was moved to the next character)

+ 32 (if the echo output is to be suppressed)

0.

-171-

W r tI

-. ~~T Pr- X- rr'wrw P71 rFa WU IV- -V- 1%" V1.- -

5.2 System Interface and Auxiliary Routines

+ 64 (if input is to be performed after the input
pointer was advanced to the first floating-point
number)

+ 128 (if input is to be performed after the input
pointer was advanced to the first non-blank char-
acter)

The interdependence between the bits 0 through 4 and the cor-
responding functions is shown in the following table in order
to make the use of the <flag> parameter easier. Bit 5 which
suppresses the echo output is not included in the table in
order to enhance its clarity; a value of 32 has to be added to
the appropriate <flag> value shown below if it is to be set.
The highest two bits, 6 and 7, are hardly to be used in con-
junction with other values than 0, 1, or 2.

ADVANCE TO NEXT ALPH.CH. ADVANCE TO NEXT ALPH.CH.
ADVANCE TO NEXT DIGIT ADVANCE TO NEXT DIGIT
ADVANCE TO NEXT BLANK ADVANCE TO NEXT BLANK
RESCAN INPUT LINE RESCAN INPUT LINE
READ A NEW LINE READ A NEW LINE

<flag> <flag>
00I0 0 0000 16 1 0000

1 0 0001 17 1 0001
2 0 0010 18 1 0010
3 0 0011 *) 19 1 0011 *)
4 0 0100 20 1 0100
5 0 0101 21 1 0101
6 0 0110 22 1 0110
7 0 0111 *) 23 1 0111 *)

8 0 1000 24 1 1000
9 0 1001 25 1 1001

10 0 1010 26 1 1010
11 0 1011 *) 27 1 1011 *)
12 0 1100 28 1 1100

* 13 0 1101 29 1 1101
14 0 1110 30 1 1110
15 0 111 *) 31 1 1111 *)

*) The rescan option is inoperative if a new input line was
requested.

Setting the lowest-order bit of <flag> (bit 0) in a FRDATI or
FRSTRI call makes INDATX request a new input line from the
Terminal Handler prior to performing any conversion. The
previous contents of the input buffer are overwritten, and
data are lost which have not yet been read from the previous

- 172 -

AMiIlrzS

52System Inefc n uxiliary Routines

input line. In buffer input mode, the function of bit 0 is
identical to that of bit 1. Either one of those bits should
be set when new user supplied buffer contents are submitted
for scanning.

The second bit (bit 1) determines whether the pointer within
the line buffer is to be reset to the beginning of the buffer
prior to reading. An input request with this bit of <flag>
set can process the entire input line, from its beginning,

-, while otherwise the requested data are taken from the charac-
ters in the input string indicated by and following the cur-
rent input pointer position. The input pointer is normally
set to the first character that has not yet been processed,
and the next input request is satisfied starting at this

Iposition. The rescan option moves the pointer back to the
beginning of the line, thus permitting the same input line to
be processed by repeated read commands.

The third, fourth and fifth bits (bit 2-4) allow data selec-
tion within the input line. They make the input pointer
advance to the next blank, digit, and alphabetic character,
respectively. ("Blank" means spaces and control characters

-~ such as "tabs", as far as they are not regarded as commands by
the Terminal Handler and therefore stripped from the input

*line. "Digits" refers to the characters "0"1 through "19", andp "alphabetic", to "A"l through 11Z"1, upper- or lowercase.) This
feature is very helpful if combined entries - e.g., entries

-, consisting of command keywords and numbers - have to be pro-
. ,,cessed. Setting more than one of these bits makes INDATX
~ .~ first search for the first blank following the current posi-

tion of the pointer, then for the first digit, and finally for
-the first alphabetic character (if applicable). Note that

signs are lost during numeric input if bit 4 is set. In order
-~ to scan for signed numbers, or numbers in floating-point nota-

tion which may start with a decimal point, it is advisable to
use bit 6 rather than bit 4 (see below).

The sixth bit (bit 5) permits, if set, to suppress the genera-
~ -,tion of echo output in the split-screen mode. This can be
~A *~hhelpful if information is to be added to an input line before

it is echoed back. This flag bit is ignored in the completely
scrolled screen mode where the echo of the input line remains
on the screen anyhow, and it is ineffective unless a new input
line was requested (bit 0 set). S ince no echo output is
generated by the buffer input routines, bit 5 is ineffective
in this case, too.

Bit 6 permits the search for numbers in all permitted fixed-
and floating-point notations. The pointer is advanced until

% *.any one of the following characters is detected: "10" ... "19"1,

- 173 -

oN

5.2 System Interface and Auxiliary Routines

I"E" or "e", ".", "+", and "-". Numeric entries which would be
mutilated if bit 4 were used can thus be processed properly.

Bit 7, finally, advances the pointer to the first non-blank
character. This switch permits to skip blank portions of the
input line.

* <type>

The <type> parameter can be one of the following characters or
strings:

Aw: The next w (w < 128) characters, beginning with the
position of the pointer, are copied into memory loca-
tions beginning with <variable>. The programmer has
to make sure that the specified string length w does
not exceed the available memory area which is reserved

A for <variable>. (In most cases, <variable> will be
the name of an array. It must by no means be the name
of a variable declared CHARACTER although it is pos-
sible to assign data to a CHARACTER variable by read-
ing it into an array of, say, type INTEGER*1 and the
same length, which is linked to the CHARACTER variable
with an EQUIVALENCE statement. Still, the FRSTRI call
is more convenient for reading CHARACTER variables.)
The input string whose length was specified with w is
filled in any case: if the logical end of the input
string (a carriage return) is encountered before w
characters were read, the remainder is filled with
spaces. The string may even exceed the length of the
input buffer. In this case, a new input line is re-
quested from the Terminal Handler, and the new input
is added "seamlessly".

B: The input string is interpreted as a hexadecimal

number. Input is terminated if any character except
11011 ... "9" "A" ... "F", or "a" . f" is detected.

* An arbitrary number of hex digits may be entered; only
the value corresponding to the last two digits is
stored in the (INTEGER*l) variable supplied by the
calling routine.

E,F: The next contiguous string of numeric characters is
0. interpreted as and converted to a floating-point

number. "E" and "F" are equivalent commands. The
A numeric string is considered terminated when a charac-

ter other than a sign (accepted only in the first
positions of the string or of an exponent), a decimal

' point, an "E" (upper- or lowercase, accepted only once

- 174 -

DO

. . 5.2 System Interface and Auxiliary Routines

within a number), or any of the numbers "0" through
1"9" is encountered. The numeric string must not ex-
tend beyond the physical end of the input buffer. If
the end of the buffer is encountered before the nume-
ric string was terminated, an error message is output,

'. and no value is assigned to the REAL variable passed
as a parameter by the requesting task. No formatting
restrictions apply; numbers can be entered in any
arbitrary combination of floating-point or scientific
notation (compare the examples in chapter 5.2.2.2.2).
Leading spaces are ignored. The full range of REAL

' variable values is supported. Numbers greater than
*' the maximum floating-point number (±3.4E38) are enter-

ed as the greatest permissible number; underflow
numbers (less than ±1.17E-38) are set to zero.

I: The next contiguous string of numerals is converted
into an INTEGER*2 variable (two bytes, signed). The
end of the string is recognized if another character
than "0" through "9" is encountered. The string must
not extend beyond the physical end of the input buf-
fer. Aside from this demand, any input string length
and therefore any magnitude of the input number is
permissible; still, the numbers will be treated modulo
(32768) (compare chapter 5.2.2.2.2).

W: The input string is interpreted as a hexadecimal num-
ber. Input is terminated if any character other than
1110"1 ... "9", "A" ... "F", or "a" ... "f" is detected.
An arbitrary number of hex digits may be entered; only
the value corresponding to the last four digits is
stored in the (INTEGER*2) variable supplied by the

*calling routine.

Xw: The next w (w < 128) characters are skipped, beginning
*.with the current position of the input pointer. A new

input line is requested if the length to be skipped
extends beyond the physical (but not the logical) end
of the input line.

Zw: A total of w bytes, beginning with the location speci-

fied by <variable>, is set according to the up to
(2*w) non-blank characters following the input pointer
position (leading spaces are skipped, though). These
characters are interpreted as hexadecimal digits. The
left-most digit is stored in the highest-order loca-
tion, and so on. The transfer of the data is ter-
minated either if the specified number of bytes was
filled or if any character but "0" through "9" and "A"

C through "F" (upper- or lowercase) was encountered.

- 175 -

It

5.2 System Interface and Auxiliary Routines

The remaining half-bytes which could not be set by the
input string are set to zero in this case. (Note that
the input pointer remains at the location where the
first non-hex character was found; the next read
request will start at this position.) A continuation
of the input string across the physical input buffer
boundary is possible.

Note: An omitted numeric extension of the "A", "X", and "Z"
type commands is interpreted as zero.

Sample calls:

LOGICAL*l STAT

CALL FRDATI ('i,F1, X, STAT)
IF (STAT) ... (error exception routine)

This call assigns a new floating-point value to the REAL vari-
able X. The input buffer is cleared, and a new input line is

0 requested prior to converting the decimal string into the
binary floating-point representation.

CHARACTER*10 CHAR

CALL FRSTRI ('0', CHAR, STAT)

The next ten characters, beginning with the current position
of the input pointer, are transferred to the CHARACTER vari-
able CHAR. The input buffer has to contain the required
information from an earlier input request. The remainder of
the variable CHAR is filled with spaces if the logical end of
the input line (a carriage return) is encountered. No input
is requested from the operator.

CHARACTER*3 CONTRL

CONTRL = '1,F'

* CALL FRDATI (CONTRL, X, STAT)

This call is identical to the first example. Using a CHARAC-
TER variable as <control string> parameter may save some
typing, particularly if the same control string is repeatedly
required. (It has no effect, however, on the program code
length as identical strings are allocated to the same internal
location by the FORT80 compiler.)

INDATX has a built-in error detection facility: Erroneous or
missing parameters within the control string or fixed- or
floating-point numbers which extend beyond the physical end of

- 176 -

L
i,

5.2 System Interface and Auxiliary Routines

the input buffer are reported on the console CRT as an "INPUT
ERROR". In this case, the <status> flag is also set to
.TRUE., and no new value is assigned to the <variable> loca-
tion.

ROUTINE FRDATI:

qRoutine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.N

6.1 Required Stack: 14 bytes

ROUTINE FRSTRI:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Required Stack: 14 bytes

- -ROUTINE FRDTBI:

Routine Type: Assembly language subroutine; reentrant.

S:Initialization: FRIOST call.

Required Stack: 14 bytes

ROUTINE FRSTBI:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Required Stack: 14 bytes

5.2.2.2.2 Operator Interface

The input routines are designed such that a maximum of data
safety can be combined with a maximum of convenience for the
operator. The following table shows the resulting internal
data for different input strings, read with different <type>
parameters.

-- 177-
r, M4

It

5.2 System Interface and Auxiliary Routines

INPUT STRING A4 E,F I Z4

ABCDEFGHIJK "ABCD" 0. 0 ABCDEF0O
#) 1.0000 0 EFOO00

XYZ "XYZ " 0. 0 00000000
123.456 "123." 123.456 123 12300000
1.5E-3 "1.5E" 0.0015 1 10000000
+4321.012E-002 "+432" 43.21012 4321 00000000
-E4 "-E4 " -10000.0000 0 00000000
E99 "E99 " 3.40E+38 0 E9900000
32767 "3276" 32767.0000 32767 32767000
32768 "3276" 32768.0000 0 32768000
32769 "3276" 32769.0000 1 32769000
-32767 "-327" -32767.0000 -32767 00000000
-32768 "-327" -32768.0000 -32768 00000000
-32769 "-327" -32769.0000 -1 00000000
40490FDB *) "4049" 40490.0000 7723 40490FDB

#) If <flag> bit 6 (compare chapter 5.2.2.2.1) is set.

•*) This is the floating-point representation of PI
(3.14159264).

(Note that the hexadecimal representation in the right-most
column was adjusted to show the highest-order byte at the
left. The internal storage of floating-point numbers reverses
this orientation, i.e., the lowest-order byte is assigned to
the lowest address, and the highest-order byte, to the high-
est.)

Input rules for fixed- and floating-point numbers:

* Leading spaces or zeros are ignored.

" The number is terminated by the first character which is not
permitted for the particular format or by the logical end of
the input line (carriage return).

* If several numbers are requested within one input entry,
they have to be separated by spaces (unless other demands
are imposed by the application software). Any number of
separating spaces is permitted. It is, however, possible to
use arbitrary delimiters between multiple input numbers if
the <flag> bit 6 (advance to next number) is set.

" Plus signs are automatically assumed if no "minus" is
entered.

*.h

-178-

N lSl t t ik SII1 1 11 1 W tI

5.2 System Interface and Auxiliary Routines

* Floating-point numbers may be entered as a (signed or un-
signed) exponent only, omitting the mantissa. The character
"E" or "e" is therefore interpreted as 1 (l.EO).

* A decimal point is assumed after the last digit of a float-
* Aing-point number if no decimal point was entered.

yInput Line Editing and Control Characters:

The I/O routines support the line editing features and the
control character set of the Alternative Terminal Handler.

For a full explanation of the control codes processed by the
.Alternative Terminal Handler refer to chapter 3.3.4.2 or

Appendix 5. The following summary shows the line editing and
control commands valid for the FIORMX I/O routines. Note that

- S. ESC (Escape) is used as a line deletion rather than a line
termination command by the I/O Interface routines.

', .". All control characters except the following ones are rejected
by the Terminal Handler (except when entered immediately after

Ua "Cntl-P"):

CR (Carriage Return) - Line termination.

LF (Line Feed) - Line Termination.
RUBOUT - Delete last character.
ESC (Escape) - Delete current input line.
Control-X - Delete entire input buffer.

'. .Control-Z - Delete current input line, and return end-of-file
. "(compare chapter 5.2.2.7).

Control-R - Re-write the input line on the console screen.
Control-P - Accept control characters literally.
Control-S - Halt output to the console.
Control-Q - Resume output to the console.
Control-O - Discard or resume output to the console.

.' .. Control-E - Halt output to the printer.
- ,. Control-F - Resume output to the printer.

Control-V - Discard or resume output to the printer.
Control-C - Invoke iRMX-80 Debugger (not used in the CGCS).
Control-A - Exit from iRMX-80 Debugger (not used in the CGCS).

"Cntl-C" and "Cntl-A" can be locked out if the Alternative
Terminal Handler flag location RQDBEN (debug enable) is reset

*O to a zero value (which is done in the CGCS).

-179-

c4,

.- •. - . .WA-

5.2 System Intearface and Auxiliary Routines

5.2.2.3 Output Routines

Six routines are supplied within FIORMX.LIB which permit the
output of CHARACTER and of other type variables to the con-
sole, to the printer, and to a user supplied buffer. FRDATO,
FRDTPR, and FRDTBO permit the output of all variables (except
of type CHARACTER) to the console, to the printer, and to a
user-supplied buffer, respectively, whereas FRSTRO, FRSTPR,
and FRSTBO are exclusively provided for handling CHARACTER

S.variables. While the console and printer output routines
generate actual output, the buffer output routines only de-
posit a string which is obtained by the conversion of (binary)
data within a user-supplied buffer. The further handling of
this buffer is under the responsibility of the application
routine.

The console output routines can be programmed to generate
either a normally scrolled or a split screen output. In the
normally scrolled mode, output (and the input echo) is added
after the last line written to the screen, i.e., most of the

*time in the last line of the screen. The previous output
moves up by one line.

In contrast, the output area is divided into three main zones
if the split-screen mode was selected: Part of the screen can
be directly addressed, and there is no relation between the
position of an output string on the CRT screen and the time
when it was written. Another part of the screen forms a
scrolled area. Output written to this area is added in its
last line, and the previously written lines move up by one
line. The software overhead for generating such a scrolled
output is, however, relatively large as each line of the
scrolled block has to be re-written each time a new line is
added. For a scrolled block of eight lines, therefore, eight
lines have to be written when a one line output is requested.
(This is inevitable as this type of scroll is no more per-
formed by the hardware of the terminal but by the software of
OUTDTX.) With regard to the large overhead, the size of the

0 scrolled block and the output to it should be confined to a
% o minimum consistent with the application. (Hence, the CGCS

uses a scrolled area of five lines rather than the default of
eight lines.) Any echo output, if requested, is also directed
to the scrolled block. The third area on the screen, finally,
is the input area which may but need not be contiguous to the

S.scrolled block. While the scrolled block can be freely moved
on the screen under execution-time control, the position of
the input area is fixed at the bottom of the screen. Its size
must be defined as a configuration constant; it must be large
enough to permit the cursor to perform the jump to the next
line without leaving the screen area when a carriage return is

-180-

5.2 System Interface and Auxiliary Routines

entered. Otherwise, a (hardware) scroll would ensue and, in-
evitably, a lot of confusion in the next data output. The
Alternative Terminal Handler supports a default input line

i r. length of 80 characters. An input area of two lines is there-
fore only sufficient if no input prompt string (compare chap-
ter 5.2.2.4.4) is to be used (which applies to the CGCS).
Otherwise, the number of input lines kept in the constant

FOLINC (compare chapter 5.2.2.8) should be set to 3. Note,
.. however, that the Alternative Terminal Handler clears two

lines in the input area (the input line proper and the line
following it) ; therefore, no information can be reasonably

*written to the bottom line on the screen if FOLINC was set to
2. The last line of the screen is generally only required as
a buffer zone for the cursor; it is not automatically cleared

. if FOLINC is set to a value greater than 2. It can therefore
be freely used for directly addressed output. (Note that

-. directly addressed output can be written virtually anywhere on
-. the screen. It will, however, be aventually overwritten or

deleted if directed to the scrolled area or to the input
*area.)

The output routines must be called as follows:

CALL FRDATO (control string,variable)
or

CALL FRSTRO (control string,variable)
or

CALL FRDTPR (control string,variable)
Sor

-: . CALL FRSTPR (control string,variable)
- or

CALL FRDTBO (control string,variable,buffer)
or

CALL FRSTBO (control string,variable,buffer)

<control string>:

7'. <control string> can either be a string, enclosed in
single quotes, or a CHARACTER variable which holds the

- appropriate information (compare chapter 5.2.2.5). The
control string must have the following format:

a) for FRDATO, FRDTPR, and FRDTBO:

control string := 'line,column,format'

b) for FRSTRO, FRSTPR, and FRSTBO:

control string := 'line,column'

- 181 -

e,

5.2 System Interface and Auxiliary Routines

A <format> may be specified also for FRSTRO, FRSTPR, and
FRSTBO; it is, however, ineffective.

The reason why a control string was chosen rather than
V separate parameters is that this approach saves consider-

ably FORTRAN code, compared to the specification of dif-
ferent parameters. One of these, <format>, would have
been a CHARACTER type variable anyhow. The control string
approach adds also safety to the system as an omitted
parameter within the control string can under no cir-
cumstances affect the system operation. Conformity rea-
sons demanded the extension of this approach to the input
routines where its advantages are less stringent.

<variable>:

<variable> can be the name of a variable whose type cor-
responds to the output routine and to the <format> parame-
ter, if applicable. It may also be a constant. Note that
string output is permissible only with FRSTRO, FRSTPR, or
FRSTBO; a suitable string may be specified directly as a
subroutine parameter.

<buffer>:

<buffer> must be the name of a suitable buffer array (by
no means of type CHARACTER!). Usually, an INTEGER* 1 array
will be chosen. The first two bytes of this buffer area
(i.e., the first two elements of an INTEGER*l array) are
used as control bytes: The f irst byte has to hold the
available number of bytes within the buffer region proper,
stored there prior to the output routine call; the second
byte is used by OUTDTX and should not be changed by the
application program. It holds the number of the location
within the buffer proper which follows the last location
written to. The buffer proper starts with the third byte;
OUTDTX builds an output line there. Note: Although the
structure of the buffers and control bytes is identical
for INDATX and OUTDTX, the same buffer should be used for
input an output with great care only. In particular, the
buffer pointers which are kept in the second byte of the
buffer are changed by both routines. (This does not mat-
ter, however, if the input buffer pointer is set to the
start of the buffer (with <flag> bit 0 or 1) before each

S. input action, and if the output pointer is not used be-
cause a non-zero <column> value is passed with each output
call.)

The output routines permit random positioning of the output
strings on the console, on the printer, and in the output buf-

-182-

5.2 System Interface and Auxiliary Routines

fer. Within the scrolled output area on the console, on the
printer, and in the buffer, positioning is only possible with-
in the current output line. In the non-scrolled area of the
console CRT terminal, every position on the screen can be ar-

.. '. bitrarily accessed. These features uncouple the position
where output is displayed from the order in which it was gene-
rated.

The parameters <line> and <column> permit the random address-ing of output screen or line locations. <format> controls the

conversion which has to be performed by OUTDTX. The <line>
and <column> parameters and the numeric extensions of <format>

:must be unsigned integer numbers. Any value is permitted (as
far as there are no limits imposed by the corresponding func-
tion) ; the submitted value is treated modulo(128). Leading

.spaces or zeros are ignored. The parameters must be separated
% by commas. Using a string as a parameter of the output rou-

tine calls implies that the location of an output on the CRT
screen is basically fixed. A dynamic addressing which permits
the calculation of the output location by the application rou-
tine can be accomplished with the CHARACTER*16 function FRCSTR
with appropriate parameters as <control string> (compare chap-
ter 5.2.2.5).

* <line>

The meaning of this parameter depends on the output device

chosen:

(a) CRT output in split-screen mode:

<line> indicates the line in which the output generated by
OUTDTX is to be placed. Any value between 1 and the maximum
number of lines on the console CRT screen (which must be
specified at program configuration time) is interpreted as a

O line number. Two (ranges of) values of <line> have a special
meaning to OUTDTX: a zero value indicates that the output
generated by OUTDTX is to be placed into the current output
line of the scrolled area on the screen, without sending this
line to the console. This permits building an output line by
repeated output requests with <line> equal to zero. Any value
of <line> greater than the number of lines on the CRT screen

Cputs the output into the current output line of the scroll
buffer, too, but transfers this line immediately to the con-

CA sole.

0.

A - 183-

5AA L N

5.2 System Interface and Auxiliary Routines

(b) CRT output in completely scrolled mode:

In completely scrolled mode, three output functions can be
selected with the <line> parameter:

<line> = 0: Output is built in the output buffer but the
buffer is not yet transmitted to the Terminal Handler.

<line> = 1: The contents of the output buffer (including the
items added by the output call with <line> set to 1) are
output on the CRT console. No Carriage Return - Line Feed
pair is appended. This switch permits, for example, to
write an input prompt to the console which is to be con-
tinued by user-supplied input.

<line> > 1: A CR-LF pair is appended to the line built in the
buffer, and the line is output. The output buffer of
OUTDTX is cleared after each output operation.

(c) Printer output:

For printer output, any <line> value other than zero will make
OUTDTX print the printer output buffer after having added the
output item passed with this call. A zero <line> value p---
mits - similar to the console routines - the collection of
data in the printer buffer without printing the line. There
is no option comparable to <line> = 1 for the printer, though.
Note that the scroll buffer and the printer buffer are auto-

* matically cleared after having been dumped to the output
device.

(d) Buffer output:

A zero <line> value makes OUTDTX perform the proper conver-
sion, and deposit the ASCII string obtained from the conver-
sion routines within the buffer. A non-zero <line> value
makes, in addition, OUTDTX append a CR-LF pair immediately
after the last item output. (Note that this might lead to
problems if an output line is not built in the user-supplied
buffer in a conventional "from left to right" mode but by
random positioning of various output items. In this case, a
dummy output can be made to a position after the last output
item in order to place the CR-LF pair correctly.)

* <column>

Similar to <line>, any <column> value between 1 and the maxi-
mum number of characters on a CRT screen line, on the printer,
and in the user-supplied buffer, respectively, is interpreted

18- 184 -

l.4-,

Sd
SI

5.2 System Interface and Auxiliary Routines

as the start position of the output string requested. (The
CRT and printer line lengths have to be specified within a
configuration module; the usable user-supplied buffer length
must be placed into the first byte of the buffer array.) This
applies in any output mode. For a zero column value, the new
output is located beginning with the column immediately fol-
lowing the (temporally) last column to which output was writ-
ten in the scrolled area. The use of a zero column value does
not make sense for directly addressed output, it may, still,
prove helpful if a scrolled, printer, or buffer output line
has to be built. However, absolute and relative addressing
should not be mixed under any circumstances. An output re-
quest with a zero column value, following absolutely addressed
output to locations at the left end of the line, might over-
write other output located to the right of its start column.
Using the relative addressing (with the zero column value) is
recommended if independent blocks have to be closely packed
within a line and if their chronological order should be
maintained. On the other hand, tables should be generated

F with absolute addressing.

Special actions are taken if either the start column value
exceeds the permitted line length, or if the output string
starting at this position would exceed it. In the first, for
buffer output also in the second case, an "OUTPUT ERROR"
message is sent to the scrolled block, and the output request
is ignored. The treatment of the second case depends on
whether scrolled or unscrolled output was requested (printer
output is considered as scrolled): In the case of scrolled
output, the contents of the line buffer are sent to the output
device, the buffer is cleared, and the output string is moved
to the left end of the next output line. No more printer
output can be written to this second line since it is immedi-
ately sent to the Terminal Handler for output. Otherwise,
output processing is terminated with an "OUTPUT ERROR" mes-
sage.

<format>:

The interpretation of the bytes beginning with the location
specified with <variable> depends on the contents of the <for-
mat> string. Generally, this string consists of one character
(upper- or lowercase) followed by one or two integer numbers
which must be separated from each other by a period. Leading

N. or trailing spaces are permitted.

REAL variables are rounded to the specified number of digits;
although any number of digits may be requested, accuracy is1' limited to slightly more than seven places. In order to save

- 185 -

-

4

67 I - V-Z -
1

5.2 System Interface and Auxiliary Routines

execution time, only nine digits are actually converted; if
more were specified, the least significant digits are set to
zero. The following <format> commands are permitted:

Aw: The w (w < 128) bytes following the location specified
with <variable> are interpreted as ASCII characters

and therefore converted to a string with length w.
(Note that non-printable characters are internally
counted like printable characters, which might cause
confusion if two strings are to be fitted together in
separate output requests.)

Ew.d: A (four byte) REAL variable is converted into the
scientific notation format. The total string length
reserved for this variable is w; d indicates the
length of its fractional part. In any case, w must be
greater than (d + 6) ; otherwise, an "OUTPUT ERROR"
message is generated, and the output request is skip-
ped. The parameter d may be any positive integer,
including zero. The output is right justified in its

0 reserved area; its general form is sd.ddddEsdd where s
is a sign ("+" is only output in front of the expo-
nent), and d are digits. Positive and negative over-
flow, and indefinite values are indicated by a "+", a
"-", and a "". , respectively, preceding a string of
asterisks in the mantissa area.

Fw.d: A REAL variable is converted to a floating-point re-
presentation. The output string length reserved is w,
the length of the fractional part, d. An "OUTPUT
ERROR" message is issued if w is less than (d + 3).
The output is right justified within its reserved
area. Floating-point error conditions are reported as
above; in addition, a format overflow is indicated by
a string of asterisks instead of the digits of the
number (see example).

Gw: This format is a hybrid between the "E" and the "F"
formats: a REAL variable is converted into a repre-
sentation which requires exactly w characters (w must
be greater than 2 lest an "OUTPUT ERROR" is reported).
The variable is converted to an "F" representation if
this is possible with the given data space. The
length of the fractional part is modified accordingly
from 0 to (w - 2). If w is less than seven, values
smaller than the least significant digit of the frac-
tional string are represented by a string of zeros
(which applies also to the "F" format). Too large

° numbers are indicated by a "format overflow", a string
of asterisks. For values of w greater than or equal

- 186 -

S

5.2 System Interface and Auxiliary Routines

to seven, however, the routine changes to scientific
notation (see example) , using again all w character
positions.

*Iw.m: The variable indicated by the routine call parameter
is interpreted as an INTEGER and treated accordingly.
The value w (w > 0) indicates the reserved output
string length, and m is a mode selection parameter. A
format overflow is indicated by w asterisks. The mode

~ selection parameter represents the type of the INTEGER
- variable to be converted; it may assume the following
~ values:

m = 0: Signed two-byte INTEGER*2 (-32768 :5 I <

32767). (In this case, m may be omitted.)

m = 1: Signed one-byte INTEGER*1 (-128 5 I 5 127).

m = 2: Unsigned two-byte integer (not supported by
~I FORTRAN) (0 :5 I 65535).

m = 3: Unsigned one-byte integer (not supported by
.d ~r.FORTRAN) (0 5 I : 255).

The latter two values of m permit the output of in-
teger data generated by assembly language and PL/M

routines rather than FORTRAN.
-Xw: A string of w spaces is output to the console. This

command can be used in order to clear single lines or
parts of lines. Note that, although no variable is
involved in this operation, a (dummy) <variable>
parameter must be specified which may be a constant or
the name of any variable except a CHARACTER variable
or constant.

-Zw: The w/2 bytes indicated by the <variable> parameter
* are converted to their hexadecimal representation and

output as a string of length w. The parameter w must
be an even number greater than zero.

OUTDTX has an error detection routine which reports an "OUTPUT
ERROR" if an erroneous control string was encountered. Such
an error can be caused by a missing parameter within the

* string or by a parameter which is out of range. Note that the
routine does not distinguish between console, printer, and
buffer output errors. The erroneous output request is cancel-
led. The "OUTPUT" (and "INPUT") "ERROR" .essages are dis-
played in the scrolled block if a divided screen is used;
otherwise, they are simply added to the last output line.

-187 -

5.2 System Interface and Auxiliary Routines

They are embedded between strings of asterisks and accompanied
by a "beep" signal in order to attract the operator's atten-
tion. An "OUTPUT ERROR" should never occur in a debugged
system; an "INPUT ERROR" may also be caused by (although not
very probable) erroneous operator ac-ions during data entry.

Sample program sequence:

CHARACTER*11 STRING
CHARACTER*16 COMMD
INTEGER*1 K
INTEGER*1 OUTBUF(66)
INTEGER*2 L
OUTBUF(1) = 64
STRING = 'Output line'
COMMD = '5,40,15'
X = 3.141592654
Y = 123.456789
K = 99
L = 4321

101 CALL FRDATO ('5,30,F7.2', X)
102 CALL FRSTRO ('0,1', STRING)
103 CALL FRDATO ('5,10,E16.7', Y)
104 CALL FRDATO ('99,0,13.1', K)
105 CALL FRSTRO ('5,48','This is a sample')
106 CALL FRDATO (COMMD, L)
201 CALL FRDTPR ('0,30,F7.2', X)
202 CALL FRDTPR ('0,10,E16.7', Y)
203 CALL FRSTPR ('0,48','This is a sample')
204 CALL FRDTPR (COMMD, L)
205 CALL FRSTPR ('0,1', STRING)
206 CALL FRDTPR ('1,0,13.1', Y
301 DO 302 I=3,66
302 OUTBUF(I)=#20H
303 CALL FRSTBO ('0,1','And one more sample',OUTBUF)
304 CALL FRDTBO ('0,30,G7',X,OUTBUF)

* 305 CALL FRDTBO ('0,0,F7.0',Y,OUTBUF)
306 CALL FRSTBO ('1,0',' That''s the end.',OUTBUF)

The above sequence writes data into the fifth line on the CRT
screen and to the bottom of the scrolled screen area, it
produces two output lines on the printer, and one line of
buffer output. Line 5 on the console screen - as set by
statements 101, 103, 105, and 106 - will read (the left margin
of the output line is at the left margin of the paper):

1.2345679E+02 3.14 4321 This is a sample

- 188 -

N,

5.2 System Interface and Auxiliary Routines

The last line of the scrolled portion of the screen will beS output when statement 104 is processed; it will be:

Output line 99

Note that the output in line 5 will appear on the screen
strictly in the order of the pertinent statements. It will,
however, remain on the screen until either part of it is
overwritten by other output or until the screen is cleared.

The output on the printer will consist of two lines which look
exactly like the above two lines. Keep in mind that the se-
quence of the printer output commands cannot be chosen as
f reely as in the case of the CRT output. Once a line number
other than zero was encountered, the output line is printed,
and nothing can put any additional output into this line. The
first line in our example will be printed when statement 204
is executed, the second, after statement 206.

4 The user supplied buffer OUTBUF contains 64 actual buffer
locations; including the two control locations at its beginn-
ing, its total size amounts to 66 bytes. The first byte is
set to the length of the buffer proper (64) in the initializa-
tion sequence. Lines 301 and 302 overwrite the buffer proper
with spaces (#20H). The following lines build an output linetd within the buffer which will read:

And one more sample 3.14159 123. That's the end.

A carriage-return - line feed pair is appended at the end of
the above output. The length of the actually used part of the

* buffer can be obtained from the second buffer location, in our
.5,case, OUTBUF(2). This location holds the number of the next

byte after the output string. The total length of a string
-, without a CR-LF is therefore OUTBUF(2) - 1, and OUTBUF(2) + 1

if a CR-LF pair was added.

* (The statement numbers in the sample program were introduced
for reference purposes only.)

The following examples show the results of the different
conversion routines for REAL variables (the arrows indicate
the widths of the reserved areas):

-189 -

5.2 System Interface and Auxiliary Routines

E12.4 F12.4 G12 G5
VARIABLE < ----------- > < ---------- > < ------------ > <--- >

0. 0. 0. 0. 0.
1.E-20 1.OOOOE-20 .0000 1.OOOOOE-20 .0000

-1.E-20 -1.OOOOE-20 -.0000 -l.OOOOOE-20 -.000
1.23456E-6 1.2346E-06 .0000 .00000123456 .0000

3.141592654... 3.1416E+00 3.1416 3.1415926500 3.142
-3.141592654... -3.1416E+00 -3.1416 -3.141592650 -3.14

9999.49 9.9995E+03 9999.4900 9999.4900000 9999.
9999.50 9.9995E+03 9999.5000 9999.5000000 ****.

1.E6 1.OOOOE+06 1000000.0000 1000000.0000 ****.
-1.E6 --I.OOOOE+06 1*********** -1000000.000 ****.
1.El0 1.OOOOE+10 *******.**** 10000000000. ****.

-1.E10 -1.OOOOE+10 ******.**** -1.OOOOOE+10 ****.
1.E20 1.0000E+20 *******.**** 1.OOOOOE+20 ****.

pos. overflow +*.**** +******.**** +**********. +***.
neg. overflow -*.**** -******.**** -**********. -***.
indefinite ?*.**** ?******.**** ?**********. ?***.

-< --------- > < ------ > < ---------- > <--- >

Note: The areas reserved for the output of an item are over-
written in any case when the output action is performed, even

.1 if they partly consist of spaces. Although other data may be
written into these blank regions, this output will be des-
troyed the next time the previous item is output.

ROUTINE FRDATO:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Y7.. Required Stack: 14 bytes

ROUTINE FRSTRO:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Required Stack: 14 bytes

.9

$ - 190-

Op

5.2 System Interface and Auxiliary Routines

ROUTINE FRDTPR:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Required Stack: 14 bytes

ROUTINE FRSTPR:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Required Stack: 14 bytes

ROUTINE FRDTBO:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Required Stack: 14 bytes

ROUTINE FRSTBO:

W-. Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

pRequired Stack: 14 bytes

5.2.2.4 I/O Mode Selection and Auxiliary Routines

The following routines permit to select certain features of
the I/O tasks INDATX and OUTDTX. They may be called at any
time from an application task.

I

5.2.2.4.1 Input Mode Selection Routine FRINMD

This routine permits to specify whether or not an input line
is to be echoed to the scrolled portion of the console screen
in the split screen mode. This command is, however, ineffec-

- 191 -

frji

5.2 System Interface and Auxiliary Routines

tive if a completely scrolled screen is being used. Echo out-
put may also be suppressed for certain input actions if the
<flag> value in the FRDATI or FRSTRI call is set accordingly.

ROUTINE FRINMD:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Routine Call:

CALL FRINMD (flag)

with: flag: Integer parameter:
4flag = 0: no echo output
4flag <> 0: echo output generated

Required Stack: 14 bytes

5.2.2.4.2 Output Mode Selection Routine FROUTM

The routine FROUTM permits to switch between the completely
scrolled and the split screen modes. For the latter, the
number of the first line of the scrolled part and the number
of lines within the scrolled part must be specified.

ROUTINE FROUTM:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Routine Call:

CALL FROUTM (line,length)

with: line: Number of the first line of the scrolled
block (for split screen mode) or zero (for
completely scrolled screen)

length: Number of lines within the scrolled block
(irrelevant for line = 0)

Required Stack: 14 bytes

- 192 -

rot"

5.2 System Interface and Auxiliary Routines

5.2.2.4.3 Printer Mode Selection Routine FRPRMD

A call to this routine switches the printer off and on under
software control. In addition, switching the printer on with

' ithis routine enables the printer output again if it was dis-
. - abled because the printer was found inoperable by OUTDTX.

q .ROUTINE FRPRMD:

.*

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Routine Call:

CALL FRPRMD (flag)

- with: flag: Integer parameter:
0* flag = 0: no printer output
-flag <> 0: printer output generated

Required Stack: 14 bytes

5.2.2.4.4 Input Prompt String Selection Routine FRINPR

This routine allows to specify a prompt string which may be
*? . output at the beginning of the input line. This feature per-
* mits, for example, to inform the operator about the current

status of the system, e.g., about the current command level,
and it allows even to explicitly request data. An arbitrary
string consisting of printable and non-printable characters
may be chosen. The string length permitted depends on the
cursor addressing mode of the console terminal used; for a
terminal with four byte cursor addressing codes and two byte
relative positioning and line clearing codes, the string
length is limited to 22 characters; longer strings are trun-
cated. In order to delete the prompt string, the value (not
the character!) 0 must be specified as a parameter. (In order
to avoid undue software overhead, FRINPR is not used in the
CGCS.)

* Note: A FROUTM call clears the input prompt string. In order
- -. to set a certain output mode and to specify a (printable)

input prompt, first the FROUTM call, and afterwards the call
to FRINPR has to be issued!

p - 193 -

"p'.
V.

VV

5.2 System Interface and Auxiliary Routines

ROUTINE FRINPR:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Routine Call:

CALL FRINPR (character)

with: character: CHARACTER*1 variable or single charac-
ter string holding the new input prompt
character; value 0 (or ASCII NUL charac-
ter) for clearing the input prompt string.

Required Stack: 14 bytes

5.2.2.4.5 Screen Clearin Routine FRCLRO

There are two ways to delete output on a split screen: either
can the screen be cleared line by line, using an "X80" format
(for an 80 character wide screen) in an FRDATO command, or a
single FRCLRO call is performed. The first approach is useful
if only part of the screen is to be erased; in order to blank
the screen completely, however, the FRCLRO call is by far more
efficient. Note: Although FRCLRO erases the output on the
screen, it does not clear the scroll buffer. The contents of
the scrolled block will therefore appear again on the screen
when the next output to the scrolled area is performed. The
only way to clear the scroll buffer is to write blank lines
(one for each scroll block line) to it.

ROUTINE FRCLRO:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

Routine Call:

CALL FRCLRO

I

i Required Stack: 14 bytes

- 194 -

0'

.t.

5.2 System Interface and Auxiliary Routines

5.2.2.4.6 Printer Timeout Setting Routine FRSPTO

This routine permits to set the printer timeout (in iRMX-80
time units of 50 ms) to a value differing from the one speci-
fied at program linkage time. This permits, for example, to
increase the printer timeout if large amounts of data are to
be printed and if the printer was already found operable.
FRSPTO can be called at any time by any task within the sys-
tem.

ROUTINE FRSPTO:

Routine Type: Assembly language subroutine; reentrant.

, .. Initialization: none.

Routine Call:

CALL FRSPTO (timeout)

with: timeout: INTEGER*2 variable or constant specifying
the desired printer timeout in iRMX-80
time units (50 ms).

Required Stack: 0 bytes

5.2.2.4.7 Output Mode Chance Indicator Function FRMCHG

- This function must be declared LOGICAL*I within the calling
FORTRAN routines. FRMCHG returns a .TRUE. value only when a
background system terminated its operations, and when the
foreground system using OUTDTX routines will probably have to
clear and restore its screen (compare chapter 3.3.4.2).

. (Background systems can be invoked with "Cntl-C" via the
Alternative Terminal Handler.) Since there is no backgroundP -? system in the CGCS, FRMCHG is not needed there.

ROUTINE FRMCHG:

Routine Type: Assembly language subroutine; reentrant;
* must be declared as LOGICAL*I in the calling FORTRAN

program.

Initialization: none.

"- - 195 -

%

5.2 System Interface and Auxiliary Routines

Routine Call:

boolean = FRMCHG (dummy)

with: boolean: LOGICAL*l variable (or immediate use of
FRMCHG as parameter, e.g., in logical IF
statements).

dummy: arbitrary variable or constant (no CHARAC-
TER!).

Required Stack: 0 bytes

5.2.2.5 Control String Building Routine FRCSTR

The control strings for OUTDTX are primarily defined when the
source program containing the output function calls is writ-
ten. In order to permit the definition of these control
strings at runtime, under program control, the CHARACTER*16

i •function FRCSTR was provided. This function converts two in-
teger parameters and a string (or a previously defined CHARAC-
TER variable) to a string which is accepted by the OUTDTX
routines. Output lines and/or columns may therefore be se-
lected directly by the program software. FRCSTR can advan-
tageously be used as a parameter in an output routine call.

ROUTINE FRCSTR:
.'..

Routine Type: Assembly language subroutine; reentrant;
must be declared as a CHARACTER*16 variable in a

FORTRAN program.

Initialization: none

Routine Call:

S character variable = FRCSTR (line,column,format)

with: line: Integer constant or variable, holding the
line number (compare chapter 5.2.2.3).

column: Integer constant or variable, holding the
column number (compare chapter 5.2.2.3).

O. format: Format string (or CHARACTER variable
I. holding a format string) (compare chapter

5.2.2.3)

Required Stack: 6 bytes

-196-

O%.

*11.'XP J.

5.2 System Interface and Auxiliary Routines

5.2.2.6 Auxiliary Routines

The following routines do normally not require the program-
mer's attention. They are subroutines which are called by the
I/O tasks INDATX or OUTDTX. They may, however, be used by
other routines than those contained within the I/O libraries.
Still, their use requires great care as some of them are
neither reentrant nor protected.

Six conversion routines are kept in the library FORTIO.LIB.
The library NOFLOT.LIB provides the hexadecimal and decimal
integer I/O routines only, and ties away to dummy subroutines
the references to the floating point I/O routines. (This lib-
rary can therefore be used for all applications which do not
require floating-point I/O.) All conversion routines were
written in assembly language; they can be called by assembly
language routines only since the high speed requirements
imposed demanded a more efficient parameter passing than
possible with FORTRAN or PL/M. In the following, only a
summary of the parameters required for calling them from an
assembly language routine is given. The non-reentrant rou-
tines FXFLIN and FXFLOT must not be shared between the rou-
tines in FIORMX.LIB and any application software. If they are
required elsewhere within a system which also contains the I/O
tasks discussed in this chapter, a separate copy of them must
be supplied. These restrictions do not apply, however, to the
other four routines which are reentrant.

ROUTINE FRSTHX:

Routine for the conversion of ASCII strings into positive IN-
TEGER*1 variables (modulo (128)).

PARAMETERS:
A ... Result (0)
C ... Input string counter (remaining string length +

1) (1,0)
D+E . Input string pointer (1,0)

Note: D+E point to the character after the next non-blank or
non-digit on return!

I

- 197 -

ReV
. etO

5.2 System Interface and Auxiliary Routines

ROUTINE FRFXIN:

Routine for the conversion of ASCII strings into INTEGER*2
variables.

PARAMETERS:
C ... Input string counter (remaining string length +

1) (1,0)
D+E . Input string pointer (1,0)
H+L . Result (0)

On return, D+E point to the first non-digit which follows a
digit. The routine requires an error handler module FXIERR.
The corresponding features of INDATX apply.

ROUTINE FXFLIN:

Routine for the conversion of ASCII strings into REAL vari-
ables.

PARAMETERS:
STACK Address for the storage of the result (I)
C ... Input string counter (remaining string length +

1) (1,0)
D+E . Input string pointer (1,0)

On return, D+E point to the first non-digit which follows a
digit, a sign, or an "E". The routine requires an error
handler routine FXIERR. The corresponding features of INDATX

-i apply.

ROUTINE FRHXOT:

Routine for the conversion of a (binary) byte into two bytes
of ASCII-coded hexadecimal representation.

* PARAMETERS:
C . .. Byte to be converted (I)
D+E . Pointer within the output buffer (1,0)

On return, D+E point to the location within the output buffer
which follows the last character converted. The register pair

O. H+L is not used by the routine.

.

! - 198 -

S-.5.2 System Interface and Auxiliary Routines

ROUTINE FRFXOT:

Routine for the conversion of INTEGER*l or INTEGER*2 variables
into ASCII strings.

PARAMETERS:
STACK Address of the integer which is to be converted

(I)
STACK Start address of the output string (I)
C ... Mode: (I)

0 ... Signed two-byte integer (INTEGER*2)
1 ... Signed one-byte integer (INTEGER*l)
2 ... Unsigned two-byte integer
3 ... Unsigned one-byte integer

E ... Length of the output string (I)

The features discussed for OUTDTX apply analogously.

ROUTINE FXFLOT:

Routine for the conversion of REAL variables into ASCII
strings.

PARAMETERS:
B+C . Start address of a 7 byte control area in memo-

ry:
Byte 0-1: Address of the REAL variable to be

converted
- 4. Byte 2-3: Start address of the output string

Byte 4: Format type (ASCII character):
"Ell ... Scientific notation
"F" ... Floating-point format
"G" ... Hybrid format

Byte 5: Output string length
Byte 6: Fractional part length

The features discussed for OUTDTX apply analogously.

5.2.2.7 ISIS-Il and RXISIS-II Versions of the I/O Routines

Three libraries, FIOISS.LIB, FIORXI.LIB, and FIORXR.LIB, are
provided in addition to the "standard" FIORMX.LIB library to
permit the execution of the above I/O routines under ISIS-II
and under RXISIS-II. They are, accordingly, used by the ISIS-

-. II or RXISIS-II-based auxiliary routines which support the
CGCS, e.g., by the Macro Command Editor COMMED. In general,
the properties of the iRMX-80 routines are reduplicated within

- 199 -

N.

%w ~ _V1 ---------~~Wp J C ~1~ ~ -~

5.2 System Interface and Auxiliary Routines

the ISIS-II and RXISIS-II versions, with the exception of some
genuine real-time functions. There are two different versions
for an RXISIS-II environment: The routines in FIORXR.LIB be-
have like the ISIS-II routines in FIOISS.LIB, while the rou-
tines in FIORXI.LIB essentially reduplicate the features of
the iRMX-80 routines in FIORMX.LIB. The following table shows

- the major differences between the four libraries:

LIBRARY FIORMX FIORXI FIORXR FIOISS

environment iRMX-80 RXISIS-II ISIS-II

ROM vsn dependence YES NO

initialization FRIOST FRINIO

input prompt 0 - 22 CHARACTERS 0 - 1 CHARACTER

* printer timeout YES NO

FRSPTO YES NO

FRMCHG YES NO

exit at CNTL-Z NO YES

The following essential differences apply:

* The ISIS-II and RXISIS-II routines must be initialized by
a call to the subroutine FRINIO which does not take any
parameters. The FRIOST call of the iRMX-80 routines is,
in contrast, not required.

- * There is no timeout for the printer under ISIS-II or

RXISIS-II. Programs will "freeze" if printer output is
requested while the printer is not ready. No error

* message is generated in this case either.

* There is no restriction as to the line editing features
of ISIS-II or RXISIS-II. In particular, all control
characters of the Alternative Terminal Handler are avail-
able under both RXISIS-II library versions; there is,

• however, no Output Mode Change Detection (routine FRMCHG)
in FIORXR.LIB. With the FIOISS.LIB and FIORXR.LIB rou-
tines, the use of the Cntl-R and Cntl-X commands should
be avoided if the input echo line exceeds one line on the
CRT. Using these commands in this case will mess up the
display. Note that "Escape" does not delete the input

-200-

.~ VhV\'(\ .V~% NI -

1Y5.2 System Interface and Auxiliary Routines

line display on the CRT screen although it deletes the
contents of the input line. With all libraries except
FIORMX.LIB, the entry of Cntl-Z terminates the execution
of a program. An appropriate sign-off message is provid-
ed by the I/O routines.

In contrast to the iRMX-80 or RXISIS-II based I/O routines
IP which use the cursor positioning routine of the Alternative

Terminal Handler, a cursor positioning routine must be spe-
cially provided for the ISIS-II based routines. The standard
cursor positioning routine uses a step-by-step motion of the
cursor in order to position it to the current output position.
Although this is the only approach which is compatible with
most terminals (including the old older versions of Intellec

. development systems), it is not optimal as it requires long

. output times as well as a large buffer. If the terminal used
has the capability of direct cursor motion, an alternative
FRPSCR routine should be used. This routine should be linked
in prior to FIOISS.LIB when the software is configured. An
alternative FRPSCR routine can be designed according to the

*rules given in chapter 3.3.4.1.7 for the cursor positioning
" routine of the Alternative Terminal Handler. Defining an

~ "alternative cursor positioning routine will usually not affect
the stack requirements of the I/O tasks. (More than 100 bytes
of the stack of OUTDTI are not used at the time of the FRPSCR
call, and any such routine is not likely to require more than
a small fraction of this available stack area).

0* In order to fully utilize the advantages of an alternative
FRPSCR routine, the parameters which are normally kept in the
module FXTISS (which would have to be changed anyhow if a
console terminal other than an Intel system is used) should
also be declared PUBLIC by this routine (compare chapter
5.2.2.8). While all parameters in FXTISS can be changed in a
rather straightforward way, some considerations should be

S-.applied to the length of the transfer buffer FOTRBF as the
size of this buffer can be considerably reduced if a terminal
with direct cursor addressing is used. Its length can be
calculated as follows:

MAX. LENGTH OF THE CURSOR POSITIONING STRING +
CRT SCREEN WIDTH (CHARACTERS PER LINE) +

* CURSOR POSITIONING STRING (FOR LAST LINE, COLUMN 1) +
(24 * NUMBER OF LINES IN THE INPUT AREA) - 1 +

I LENGTH OF THE INPUT BUFFER OF THE TERM. HANDLER (122)

- 201 -

0Au

5.2 System Interface and Auxiliary Routines

5.2.2.8 Configmration Constants Used by the I/O Routines

The strong dependence of the I/O routines on the hardware on
which they are executed prevented their completely straight-
forward insertion into the application code. Several data
modules are required for all environments. Standard data
which apply to an Intellec development system are kept in
library modules in FIOISS.LIB and will be inserted into the
final code unless different data are explicitly linked in in
front of the library files. A similar approach is used for
the iRMX-80 and RXISIS-II based routines. While the general
features of program linkage will be discussed in chapter 6 of
this documentation, the special data files dedicated to the
I/O programs are presented below. The following table lists
all PUBLIC variables required by the I/O routines and, if ap-
plicable, their default values. A "D" in the column "Default
Value" indicates that memory locations in the data segment are
assigned to the particular PUBLIC label (via a "DS" assembler
directive) rather than a value (with a "SET" or "EQU" direc-
tive). The first two PUBLIC variables shown in the table are,

* for example, defined by means of the assembly language code
sequence:

PUBLIC FOIBFL,FOIBUF
FOIBFL SET 80

DSEG
FOIBUF: DS FOIBFL

END

Note that all PUBLIC variables within a module must be speci-
fied in an alternative module. The following source files
which contain one parameter module each may be modified in
order to provide alternative modules:

MODULE FIORMX.LIB FIORXI.LIB FIORXR.LIB FIOISS.LIB

IFXCONF FXCRMX.SRC FXCRXI.SRC FXCRXR.SRC FXCISS.SRC
FXOFST FXOFST.SRC -

FXTERM FXTRMX.SRC FXTRXI.SRC FXTRXR.SRC FXTISS.SRC
FXPRDT FXPRMX.SRC FXPRXI.SRC FXPRXR.SRC FXPISS.SRC

MODULE VARIABLE DEFAULT MEANING

* FXCONF FOIBFL 80/122 Input buffer length @)
FOIBUF D Input buffer with length FOIBFL

FXOFST FOOFST 18 Offset value depending on the FOR-
TRAN floating-point routines (see
5.2.2.1) *)

- 202 -

d.. . " . % -"- - -% - . . . -- % o % "% ". "% ".-. "% " -° "% -% ". "% "

5.2 System Interface and Auxiliary Routines

FXTERM FOLINC 24/25 Number of console output lines @)
FOCOLC 80 Number of output columns on the CRT
FOMXSC 8 Maximum number of scrolled lines in

split-screen mode
FOINLC 3 Number of lines in input area
FOCURU IB41H Cursor up (Esc-A) #)
FOCURD 1B42H Cursor down (Esc-B) #)
FOCURL 1B44H Cursor left (Esc-D) #)
FOCURR 1B43H Cursor right (Esc-C) #)
FOCURH 1B48H Cursor home (Esc-H) #)
FOCLRS 1B45H Clear screen (Esc-E) #)
FOCLRL lB4BH Clear line (Esc-K) #)
FOLMIC FOLINC-FOINLC
FODMYS (FOINLC-l)*24
FOTRBF D Transfer buffer +)
FOOBUF D Line output buffer, length FOCOLC
FOSBUF D Scroll buffer, length FOCOLC*FOMXSC
FOCRBF D Auxiliary array, length FOMXSC*3

FXPRDT FOPRBL 120 Printer buffer length
FOPRBF D Printer buffer, length 2*FOPRBL

- FOPRTO *) 40 Printer timeout (in RMX time units)
.AFOPRTM *) 10 Number of "Printer not ready" mssgs

@) RMX-80 AND RXISIS-II / ISIS-II
*) FIORMX.LIB only
#) FIOISS.LIB only

- +) Length of FOTRBF:
iRMX-80 AND RXISIS-II:

8+FOCOLC

ISIS-II: 2*(2+(FOLINC-l)+FOCOLC) + 2*(l+(FOLINC-2))+
FOINLC*24-1 + FOIBFL
(cursor pos. + output) + (input area prep.)
+ (inp. echo)

5.2.2.9 CGCS-Specific I/O Routines

The specific operation of a process control system like the
CGCS requires that some output items, in particular, the
entire dialogue between the operator and the system, should
also be recorded for documentation purposes either on the

- printer, or on a disk file. A special set of interface rou-
* tines was therefore specially prepared for the CGCS which can

be called by any task which requires input or generates out-
* put, namely, STRIN and DATIN for the input of data to vari-

- 203 -

N 5.2 System Interface and Auxiliary Routines

ables of type CHARACTER and of any other type, respectively,
and STROUT and DATOUT for the corresponding output operations.

The input routines DATIN and STRIN echo the entire input line
to the documentation output, while the output routines DATOUT
and STROUT write simultaneously to the screen and to the
documentation output. In either case, each documentation
output line is preceded by the actual and the internal system
time of its generation. The documentation routines format
their output into pages of 56 lines each; each page is headed
by a line which holds the run's date, a run identification,
and a page number.

The CGCS-specific I/O routines are based on the corresponding
routines in FIORMX.LIB, and have to be called essentially with
the same parameters hence. DATIN and STRIN may be called only
when a new line is actually requested from the Terminal Hand-
ler; the <flag byte> for these calls must, however, have bit 1
rather than bit 0 set (compare chapter 5.2.2.2.1). (DATIN and
STRIN read the entire input line into a buffer which is copied

0 to the documentation output, and subsequently vector control
to FRDATI and FRSTRI, respectively. Since the input line has
already been read into the interface routines' input buffer,
FRDATI or FRSTRI have to re-scan the line rather than request-

ing a new one from the Terminal Handler.)

The CGCS-specific routines are not reentrant; critical parts
of them must therefore be protected by a software interlock
which must be initialized with a call to the routine INIPRT
before any task requests access. INIPRT is called (without
parameters) from the initialization routine FXUSIN (compare
chapter 5.3.1.3).

While there is only one task (namely, the Command Interpreter)
which requests input from the console, there are several tasks
in the CGCS which create output which ought to be routed to
the printer or to the Documentation file. This prohibits the
use of some of the output buffering features built into FRDATO

• and FRSTRO; it is not possible to collect items within the
output routines which are to be written to one line in the
scrolled portion of the console screen, since another task
which generates output while a line is being built wtild obvi-
ously interfere with the data already in the buffer. All
lines to be written to the scrolled area which could not be
generated in a single output command have therefore to be con-
structed in a buffer with the buffer output routines; only
when the line image in the buffer has been completed, it may
be output with DATOUT. (Since each task can own a private
output buffer, there is no danger of interference any more.)

- 204 -

00

5.2 System Interface and Auxiliary RoutineE

The peculiarities of a real-time process control system re-
quire an extremely high degree of fault tolerance, particu-
larly for the I/O routines. The failure of a peripheral (and,
possibly, only auxiliary) device like a printer must by no

.-- '- means permanently detain the operation of the remainder of the
system. Therefore, a printer timeout feature was provided
which discards printer output if the printer did not respond
within a given period (currently, 10 seconds); after three
unsuccessful attempts to write to the printer, printer output

* - is disabled altogether. (A corresponding error message is
displayed on the CRT console.) Printer output can be activ-
ated (or, re-activated) with a call to the subroutine STARTP.

'a.M

4

b - 4.

I

I, ."

~- 205 -

5.2 System Interface and Auxiliar. Routines

5.2.3 Disk Interface Routines - Libraries FXDISK.LIB and
FXDSKI. LIB

The following routines permit the use of basic disk functions
by a FORTRAN program without involving the tremendous code
overhead imposed by the standard FORTRAN routines. While
FXDISK.LIB contains a version for a genuine iRMX-80 environ-
ment, the routines in FXDSKI.LIB can be executed under ISIS-II
or RXISIS-II. Both versions behave identically with regard to
their programming interfaces.

NAME TYPE FUNCTION CHAPTER

FROPEN subr disk file opening routine 5.2.3.1

FRREAD subr read data from disk file 5.2.3.2

FRWRTE subr write data to disk file 5.2.3.3

- FRSEEK subr perform SEEK operation 5.2.3.4

FRCLSE subr disk file closing routine 5.2.3.5

FRLOAD subr load code from disk file 5.2.3.6

FRATTR subr disk file attribute setting 5.2.3.7
FRDELT subr disk file deleting routine
FRRNME subr disk file renaming routine

FREXIT subr exit to operating system 5.2.3.8

FRDSTA func check the status of a disk I/O 5.2.3.9
operation

FXDSKE subr disk error message generation 5.2.3.10

In contrast to the console and printer I/O routines, the disk
I/O operations are confined to an unconverted transfer of
strings or binary data. This approach results in a higher
transfer speed and in reduced disk space requirements. If
necessary, conversions to ASCII can be carried out with the

O Buffer Output or Input routines described in chapter 5.2.2
prior to a disk file output or after the input from a disk
file.

File access for the READ/WRITE/SEEK/CLOSE operations is con-
trolled by a file number which can be freely assigned (as an

-206 -

%

5.2 System Interface and Auxiliary Routines

INTEGER*l) with the FROPEN call. All further operations refer
to the file only by means of the file number. The file name
specified with the FROPEN call may define a genuine disk file
(in the standard ISIS-II notation), or one of the I/O devices
supported by the current operating system. Any valid ISIS-II
device may thus be used in an ISIS-II environment; under
iRMX-80 (with the Alternative Terminal Handler installed) and

q RXISIS-II, the a restricted range of devices is supported
(compare chapters 3.4.1.1 and 5.2.3.1). In the iRMX-80-based
version (FXDISK.LIB), there is no restriction (except the
memory available) to the number of concurrently open files if
the buffers required by the Disk File System are built in
memory supplied by the Free Space Manager. (It is possible to
specify in the iRMX-80 Configuration Module whether Free Space

*. Manager supplied or fixed memory locations are to be used for
the disk file buffers.) In contrast, the number of concur-
rently open files is limited to six with the ISIS-II/RXISIS-II
version (FXDSKI.LIB). Any valid INTEGER*1 value (-128 to 127)
may be used as a file number; all concurrently open files

* must, of course, have different file numbers. (The use of
negative file numbers is, however, not recommended. The
Console Input routines described in chapter 5.2.4.2 use file
number -1 which should therefore not be used otherwise.)

While the ISIS-II/RXISIS-II version of the Disk Interface Rou-
tines (FXDSKI.LIB) is a relatively simple subroutine interface
to the corresponding ISIS-II system routines (or to the ISIS-
II emulation within RXISIS-II), the iRMX-80-based routines in

. : FXDISK.LIB are considerably more elaborate in order to main-
tain the full real-time facilities of iRMX-80: Similar to the
I/O software covered by the preceding chapter, the disk inter-

* |face software consists of one central task (FXDISK) which
receives messages from small subroutines which are called by
the user FORTRAN program. It advances, in turn, messages to
the iRMX-80 Disk File System. The message transfer between
FXDISK and the subroutines which are called by the user task
is essentially identical to the approach used for the I/O
system, and the (physically) same message locations are used.

. This does not impose any disadvantage as a user task may only
. perform console or disk I/O at a given time. Any user task

which executes any kind of disk access via FXDISK must there-
fore be initialized by an FRIOST call prior to any disk rou-
tine call. The same considerations about the task configura-
tion apply as specified in chapter 5.2.2.1, particularly with

0 'regard to the "extra" bytes following the task descriptor.

-". "p FXDISK requests the appropriate operations from the Disk File0 "" System, using the (modified) user task supplied request mes-

sage, and can subsequently handle the next disk I/O request
issued by another task. An auxiliary task receives the Disk

- 207 -

No

5.2 System Interface and Auxiliary Routines

File System responses and releases the request messages to
their source tasks. I/O requests are thus "pipelined" through
FXDISK, the appropriate Disk File System task, and the auxili-
ary response task, which implies that several requests may be

*handled in parallel. The full real-time capabilities of the
Disk File System are therefore maintained by the Disk Inter-
face routines. The user task which has requested a disk
operation is kept waiting until the operation has been ter-
minated. This is essential as the task may neither be allowed
to change data locations before or while their contents are
written to disk, nor to continue its processing without know-
ing the results of the disk operation. This fact excludes, of
course, high-speed tasks or tasks with a critical timing from
disk operations.

Under iRMX-80, FXDISK maintains a 16 byte control block for
each open file which contains the number of the file, its
name, the address of the entry exchange supplied by the Disk
File System for the particular file, and two auxiliary bytes
which contain the link information to the next control block.

0 These internal control structures are built of Free Space
Manager memory.

In either version -FXDISIC.LIB and FXDSKI.LIB -,FXDISK re-
turns a two-byte "status" value which must be interpreted by
the user task. No error check - except those which are re-
quired for the internal operations of FXDISK - is performed,
and no error message output is generated on the console. This
was done on purpose as some applications might involve delib-
erate disk errors which should not confuse the output on the

-console. The responsibility for the interpretation of the
"status" word remains fully with the application program.
Generally, no further disk 1/O action should be performed by
the calling task until the result of the preceding disk access
was checked. A reentrant interface routine - FRDSTA - which
must be declared as a LOGICAL*l function in FORTRAN makes the
interpretation of the "status" word easier, and the routine
FXDSKE provides an error message on the console unless the

* application takes error handling actions of its own. (FXDSKE
generates only an error message; it does not off-load the
calling task from providing some kind of error routine to

* . which it can branch in the case of a disk error.)

-208-

~~,% %

S
m

.,

0"

5.2 System Interface and Auxiliary Routines

TASK NAME: FXDISK
ENTRY POINT: FXDISK
STACK LENGTH: 38 bytes
PRIORITY: higher than all tasks requesting disk

operations
DEFAULT EXCH.: none
EXTRA: 0

. INITIAL EXCH.: FXDSKX

5.2.3.1 Disk File Openina - Routine FROPEN

Prior to any access to a disk file, this file has to be opened
by means of a call to the subroutine FROPEN. This call must
contain an arbitrary but exclusive INTEGER*1 file number which

.'. will also be used in order to identify the file in all future
accesses, its file name (in ISIS-II format) , and an access

* parameter which defines the type of file access. The access
parameter is an INTEGER number which may assume the values 1,
2, or 3, corresponding to opening for reading, writing, and
updating (reading and writing), respectively. Under iRMX-80,
a file may be opened for reading under more than one (dif-
ferent) file numbers; still, it may be opened only once for
writing or updating. (Under ISIS-II, a disk file may be open-
ed only once for any access type.) The file name specified
with the FROPEN call may correspond to a genuine disk file, or

V to any device supported by the resident operating system. All
ISIS-II devices are supported under ISIS-II; under RXISIS-II
and iRMX-80 (with the Alternative Terminal Handler), the fol-

1. lowing devices are supported:

.- :CI: ... Console Input
:VI: ... Console Input
:CO: ... Console Output
:VO: ... Console Output
:LP: ... Line Printer
:TO: ... Line Printer
:BB: ... Byte Bucket

The Byte Bucket is a dummy device which, as an output device,
simply ignores output data. If the Byte Bucket is used as an
input device, it returns an empty string (with length zero).
:CI: and :VI: may be opened for input only, all other devices

* (except :BB:), for output only.

FROPEN returns an INTEGER*2 value which indicates the file

status; a zero value corresponds to a successfully fulfilled
file opening request, while other values indicate some kind of

- 209 -

% %

5.2 System Interface and Auxiliary Routines

a disk error (compare chapters 5.2.3.9 and 5.2.3.10, and
Appendix 4).

ROUTINE FROPEN:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

CALL FROPEN (filenumber, filename, access, status)

with: filenumber: Arbitrary INTEGER*I number, dedicated
to the corresponding file.

filename: Filename, corresponding to ISIS rules.
access: Integer parameter:

S1 ... opened for reading
2 ... opened for writing
3 ... opened for updating

status: Error status parameter (zero for faultless
operation, non-zero in the case of an
error); compare 5.2.3.10.

Required Stack: 14 bytes.

5.2.3.2 Reading From a Disk File - Routine FRREAD

Each call of this routine transfers a number of bytes to
locations in memory whose start address and count have to be
given as parameters. The routine returns the number of the
bytes actually read which is usually identical to the re-
quested length unless the end of the disk file or a disk error
were encountered. Since the end of file is not reported with
a non-zero status value, the "actual" value should be checked
by the application software, in addition to the "status"
parameter. Similar to FROPEN, a two-byte status parameter is
used to indicate possible errors.

- 210 -

5.2 System Interface and Auxiliary Routines

ROUTINE FRREAD:

Routine Type: Assembly language subroutine; reentrant.

". -iInitialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

CALL FRREAD (filenumber,variable,length,actual,status)

with: filenumber: see 5.2.3.1 (FROPEN)
variable: Start address for the storage of the

data read from the disk file.
length: Number of bytes to be read from

the file.
actual: Number of bytes actually read from the

file.
status: see 5.2.3.1 (FROPEN)

Required Stack: 14 bytes.

5.2.3.3 Writing To a Disk File - Routine FRWRTE

.Each call to this routine transfers a number of bytes from

memory locations whose start address and count have to be
* given as parameters to a disk file indicated by its file

Snumber.

ROUTINE FRWRTE:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

CALL FRWRTE (filenumber, variable, length, status)

with: filenumber: see 5.2.3.1 (FROPEN)
variable: Start address of the data to be written

to the disk file.
length: Number of bytes to be written to the file.
status: see 5.2.3.1 (FROPEN)

% %Required Stack: 14 bytes.

- 211 -

AO

[-

5.2 System Interface and Auxiliary Routines

5.2.3.4 Access to Random Files - Routine FRSEEK

The routines FRREAD and FRWRTE permit the input from and the
%, generation of conventional sequential files. Random disk

files may be handled with these routines, provided that the
file marker (which indicates the position of the block which
is to be read or written within the file) is moved to the
correct position prior to the actual read/write operations.
The file marker can be positioned by means of the routine
FRSEEK. An extensive description of the SEEK function can be
found in the ISIS-II or iRMX-80 User's Guides.

ROUTINE FRSEEK:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB

only).

Routine Call:

.*. .* CALL FRSEEK (filenumber,mode,blockno,byteno,status)

with: filenumber: see 5.2.3.1 (FROPEN)
mode: INTEGER*l parameter:

0 ... return current marker position
1 ... Decrement marker position
2 ... Set marker to new position

. 3 ... Increment marker position
4 ... Jump to end of file

blockno: file block number (0 ... 4004)
byteno: Byte number within the block

(0 ... 127)
status: see 5.2.3.1 (FROPEN)

Required Stack: 14 bytes.

5.2.3.5 Disk File Closing - Routine FRCLSE

Any access to a disk file must be terminated by closing this

file. Disk files opened under iRMX-80 for writing or updating
O. which have not been closed properly do not show up in the disk

directory and can therefore no more be accessed. Similar to
all other file accessing routines, FRCLSE references the file
by means of its number; a status value is returned by FRCLSE.

- 212 -

0~i

5.2 System Interface and Auxiliary Routines

ROUTINE FRCLSE:

Routine Type: Assembly language subroutine; reentrant.

& Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
..' 'only).

Routine Call:

CALL FRCLSE (filenumber, status)

with: filenumber: see 5.2.3.1 (FROPEN)
status: see 5.2.3.1 (FROPEN)

Required Stack: 14 bytes.

5.2.3.6 Program Loading - Routine FRLOAD

In contrast to the preceding routines which are designed for
handling data disk files or I/O from/to physical devices, the
subroutine FRLOAD permits to load program code from disk.
Under iRMX-80 and RXISIS-II, only genuine disk files may be
specified with the FRLOAD call; ISIS-II permits also devices
as a source of code loading operations.

FRLOAD loads code into the system's read-write memory without
transferring control to this code; its basic function is
therefore loading subroutine overlays which are eventually
invoked by the resident program code. It is possible to
specify a bias value with the FRLOAD call which shifts the
program code to memory locations different from the memory

" area defined during the overlay linkage. The code can usually
not be executed in these shifted locations, still, it can be

. "stored there and can be moved later into its correct position.
FRLOAD does not prevent main program code from being loaded,
which is illegal in a genuine multi-tasking environment under
iRMX-80; still, an error message (a non-zero status value) is
returned if the loaded code was a main program. The applica-
tion program has to make sure not to access the loaded code in
the case of a disk error.

0.

213

O:
.J4

5.2 System Interface and Auxiliary Routines

[- ROUTINE FRLOAD:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

.J. CALL FRLOAD (filename, bias, status)

with: filename: Filename, according to ISIS-II rules.
bias: Bias value (INTEGER*2), usually zero
status: Error status parameter (zero for faultless

operation, non-zero in the case of an
error); compare chapter 5.2.3.10 and
Appendix 4.

Required Stack: 14 bytes.

5.2.3.7 Directory Maintenance - Routines FRATTR, FRDELT, and
FRRNME

The above three routines effect the interface to the directory
maintenance functions ATTRIB, DELETE, and RENAME, respective-
ly. They can only be used in conjunction with genuine disk
files, not with I/O devices.

ROUTINE FRATTR:

Routine Type: Assembly language subroutine; reentrant.S..

S.'

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB, only).

• Routine Call:

.5 CALL FRATTR (filename, control string, status)

with: filename: Filename, according to ISIS-II rules.
cntl string: CHARACTER*2 string with the form

0•. (FIIISIW)(011), according to ISIS-II
, conventions.

status: Error status parameter (zero for faultless
operation, non-zero in the case of an
error); compare chapter 5.2.3.10 and
Appendix 4.

- 214 -

0N

5.2 System Interface and Auxiliary Routines

Required Stack: 14 bytes.

ROUTINE FRDELT:

Routine Type: Assembly language subroutine; reentrant.

q Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

*' CALL FRDELT (filename, status)

with: filename: Filename, according to ISIS-II rules.
status: Error status parameter (zero for faultless

operation, non-zero in the case of an
• ,error); compare chapter 5.2.3.10 and
a. Appendix 4.

Required Stack: 14 bytes.

ROUTINE FRRNME:

I Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

CALL FRRNME (filenameold, filenamenew, status)

with: filenameold: Old filename, according to ISIS-II
rules.

filenamenew: New filename, according to ISIS-II
rules.

status: Error status parameter (zero for faultless
operation, non-zero in the case of an
error); compare chapter 5.2.3.10 and
Appendix 4.

Required Stack: 14 bytes.

- 215 -

5.2 System Interface and Auxiliary Routines

5.2.3.8 Exit to Operatina System - Routine FREXIT

The routine FREXIT should be used in order to terminate the
operation of the current program or real-time system. Upon
call to FREXIT, all open files are closed, and control is vec-
tored to the resident system, i.e., to ISIS-II or RXISIS-II if
the routines in FXDSKI.LIB are used, or to an appropriate in-
itialization of iRMX-80 for FXDISK.LIB. (In fact, a routine
R@EXIT is called in the latter case. The default R@EXIT rou-
tine provided in an RXISIS-II based environment will re-boot
RXISIS-II.)

ROUTINE FREXIT:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (iRMX-80-based routines in
FXDISK.LIB only).

Routine Call:

CALL FREXIT

Required Stack: 14 bytes.

5.2.3.9 Disk File Status Checking - Function FRDSTA

It has already been mentioned that the above disk file access-
ing routines do not perform any exception handling of their
own if an error condition is detected, except returning a
non-zero "status" value. This status value should be checked
by the application code after each disk access. Since a
frequent check of an INTEGER*2 value with FORTRAN "IF" state-
ments imposes an undue code overhead, the LOGICAL*I FUNCTION
FRDSTA was provided. (The compiler generated code is con-
siderably less extensive if a logical "IF" is applied to a
Boolean variable rather than an INTEGER.)

ROUTINE FRDSTA:
S." Routine Type: Assembly language subroutine; reentrant;

must be declared as LOGICAL*1 in the calling FORTRAN
program.

Initialization: none

- 216 -

0qW1
.l

" .- 5.2 System Interface and Auxiliary Routines

Routine Call:

boolean = FRDSTA (status)

" with: boolean: LOGICAL*l variable (or immediate use of
-'. '.. FRDSTA as a parameter, e.g., in a logical

IF statement).
Istatus: Error status parameter (zero for faultless

operation, non-zero in the case of an
error); compare chapter 5.2.3.10 and
Appendix 4.

Required Stack: 0

5.2.3.10 Disk Error Messace Generation - Routine PXDSKE

* .A disk error reported by the disk file handling routines does
not necessarily mean that there was actually an error condi-

0 tion. In order to determine, for example, whether a disk file
with a certain name already exists, e.g., to permit its pro-
tection from an inadvertent destruction by overwriting, the
file can first be opened for reading rather than writing.
There will be an error reported, of course, if a file with the
specified name does not yet exist, although this condition is
actually the error-free case. Generally, there are three

* ." different possibilities in treating a non-zero status value
returned by the disk handling routines:

* The status parameter did, indeed, not indicate an error; it

can therefore be ignored.

* The application program outputs an error message of its
own, in addition to actions related to the fact that the

S. - last disk operation was not successfully performed.

* The generic error message output provided with FXDSKE is
* used. The application software has to branch according to

't the faulty disk operation.

The routine FXDSKE requires the software background and sup-
port of the output routines described in chapter 5.2.2.3. It

- generates the following error message in the scrolled part of
the console output:

***** DISK ERROR xxx yy (TASK tsknam, LOC hexl) *

This line is accompanied by a "beep". The task name and error
location information is treated identically to the system

- 217 -

el

5.2 System Interface and Auxiliary Routines

error message described in chapter 5.1.1.6. An error number
("xxx") is provided in order to identify the particular error
condition. FXDSKE may be called after each disk access,
regardless whether the status value actually reported an error
or not. The routine is immediately skipped if the status
parameter was zero. Refer to Appendix 4 for a complete list
of error messages.

The error message generation routine FXDSKE is not reentrant
but protected by a software interlock. This interlock is
initialized by the routine FXDSKI which must be called during
system initialization.

ROUTINE FXDSKE:

Routine Type: Assembly language subroutine; not reentrant;
protected by a software interlock.

* Initialization: FXDSKI call.

Routine Call:

CALL FXDSKE (status)

with: status: Status parameter returned by the disk
handling routines (INTEGER*2).

Required Stack: 16 bytes.

- 218 -

5.2 System Interface and Auxiliary Routines

5.2.4 General Utility Routines - Library FXUTIL.LIB

This library contains a set of utility functions which are
- frequently required in a real-time system. The following sub-

p -programs are kept in FXUTIL.LIB:

NAME TYPE FUNCTION CHAPTER

FXTIME task timer task 5.2.4.1
FRSETT subr reset timer

FXOCNS subr open console file 5.2.4.2
FXRCNS subr read from console file
FXCCNS subr close console file

FRCMPS func string comparison routine 5.2.4.3
FRCVUC subr string conversion to uppercase

0 FRPOKE subr transfer of data to memory 5.2.4.4
FRPEEK subr transfer of data from memory
FRADDR func returns address of parameter

FRADD subr overflow-protected addition rout. 5.2.4.5
FRMULT subr overflow-protected multiplication
FRSHFT subr scaling by powers of 2

FRPIDC subr PID controller routine 5.3.2.1

The generic PID controller routine FRPIDC will be discussed
together with the actual crystal growth control routines in
chapter 5.3.2.1; it is, however, part of FXUTIL.LIB.

5.2.4.1 Timer Task FXTIME

FXTIME is a multi-purpose iRMX-80 task which can perform most
of the lower-speed timing of an application system. (It does
so, indeed, in the CGCS.) Using the on-board clock of the CPU
board, it generates flag interrupts (compare chapter 5.1.1.4)

-each second, every ten seconds, each minute, and in arbitrary
programmable intervals from 1 to 256 seconds. Furthermore, it
provides two (unsigned) INTEGER*2 seconds counters, one start-
ed immediately after the system reset, and one, when a dedi-
cated flag was set. An alarm clock function (linked to a flag
interrupt) is executed when the second seconds counter is
equal to or exceeds a preset value. Finally, the task gener-

- 219 -

S',[

.Jo%0,

5.2 System Interface and Auxiliary Routines

ates ASCII strings (in the format HH:MM:SS) which represent
the actual time, the internal system time (i.e., the time
since the last system reset), and a relative time which can be
started arbitrarily by setting a flag. These three strings
are output on the console, once every second, thus off-loading
the application program from providing this output; console
output can be enabled independently for each of the three time
display strings. (The third, relative, time is not displayed
in the CGCS.) The interaction between FXTIME and the system
is performed exclusively via a 65 byte area in read-write
memory which can be regarded as a COMMON block by FORTRAN
programs. The start address of this area is declared PUBLIC
as FOTIME; it has to be tied to the corresponding FORTRAN
COMMON block by means of the procedures discussed in chapter
6.

FXTIME provides a total of five output flags which can be used
to trigger a flag interrupt within other tasks, and therefore
to control the timing of the system. Three flags - the sec-
onds, ten seconds, and minutes flags - are set in regular

* intervals, starting with the system reset; the variable inter-
val flag is set in regular intervals which can be defined
between 1 and 256 seconds by means of an unsigned INTEGER*1
variable. (Note that values greater than 127 correspond to
negative integers in FORTRAN; 128 is represented by -127, and
255, by -1. A zero value causes a 256 seconds interval.) The
variable which presets the interval may be changed at any
time; still, it does not become effective before the next flag
interrupt happened. The fifth flag is set when the alarm
clock is triggered, i.e., when the seconds counter #2 which is
started when a dedicated flag was set becomes equal to or
greater than a preset time. These two time values are stored
as unsigned two-byte integers. This approach permitted to
extend the executable time range from 32767 seconds (ap-
proximately 8 hours) to 65535 seconds; values greater than
32767 are represented by negative INTEGER*2 values in FORTRAN.
In addition, the execution time of FXTIME could be cut down
significantly by omitting the sign treatment. Since the

* seconds counter #2 keeps running only while it is enabled by a
control flag, there are two ways to disable the "alarm clock":
either can the preset time be set to a very high value which
is unlikely to be ever reached (which is also done automa-
tically each time an alarm was triggered), or the counter #2
is simply disabled by resetting its control flag. Note: All

0. flags used as Boolean data are single-byte variables which may
assume the values 0 (flag reset) or OFFH (flag set), which
correspond to INTEGER*1 values of 0 and -1, and to LOGICAL*1
values of FALSE. and TRUE., respectively. Flags which are
used as an input are interpreted as reset if all bits of the

-' byte indicated by the address are zero, and as set if any bit

- 220 -

0z

5.2 System Interface and Auxiliary Routines

differs from zero, i.e., for any non-zero INTEGER value. In
contrast to the "alarm clock" function, the setting of the
other four output flags by FXTIME cannot be disabled.

.The seconds counter #2 can be enabled at any time; it is reset
to zero while it is disabled, starting from zero when the
counter is activated again. The counter #1, in contrast, can
be reset only by a call to the reset subroutine FRSETT; it can
neither be stopped nor disabled. The same considerations with
regard to its internal format - unsigned two-byte integer -
apply as to the counter #2.

Three character strings hold the display of three different
timers: The first timer indicates the time since system reset
(or, since the last FRSETT call), the second, the actual time,
and the third, a differential time. All three strings have
the identical format HH:MM:SS. The internal time wraps around
to zero after 96 hours, the actual time is output in a 24 hour
format, and the differential time is limited to 99 hours by
the two digits display area for the hours. In order to permit

-.r a correct display of the actual time, the time of the system
- reset (or the time when FRSETT was called) has to be made

known to FXTIME, which is done by means of three INTEGER*1
variables (for hours, minutes, and seconds, respectively).
The differential timer, finally, is reset each time a per-
tinent flag is set.

These three strings are kept in memory locations which can be
accessed via the COMMON block FOTIME; they can also be output
on the console. Console output is performed via the I/O rou-
tines in FIORMX.LIB which have therefore to be included in the
system. Three flags permit the independent activation of the
output of each of the strings. The output can be arbitrarily
located on the console CRT screen; a control string for the
string output routine FRSTRO (compare chapter 5.1.2.3) has to

. ~. be provided in FOTIME for each timer string.

The 65 byte control area FOTIME contains the following data:e

SBYTE TYPE MEANING

0 1*1 One second interrupt flag byte (0)
1 1*1 Ten seconds interrupt flag byte (0)
2 1*1 One minute interrupt flag byte (0)
3 1*1 Variable interval interrupt flag byte (0)

.. 4 1*1 Alarm clock interrupt flag byte (0)

5 1*2 Seconds counter #1 (from system reset) (0)
7 1*2 Seconds counter #2 (sta-ted with byte 34) (0)
9 CH*8 Internal time string (from system reset) (0)

U. - 221 -

U,

O-

5.2 System Interface and Auxiliary Routines

17 CH*8 Actual time string (0)
25 CH*8 Differential time string (0)

33 1*1 Interval for variable interval interrupt (I)
" 34 1*1 Run flag for seconds counter #2 (I)

(0 ... Stop, <>0 ... Run)
35 1*2 Setpoint for alarm clock (counter #2) (I)
37 1*1 Flag: Reset differential timer (<>0 ... Reset)

(I)

38 1*1 Time of system reset - Hours (I)
39 1*1 Time of system reset - Minutes (I)
40 1*1 Time of system reset - Seconds (I)

41 1*1 Flag: Enable internal time output (I)
(0 ... Disable, <>0 ... Enable)

42 1*1 Flag: Enable actual time output (I)
43 1*1 Flag: Enable differential time output (I)

* 44 CH*7 Output control string - Internal time (I)
(Control string for an FRSTRO call -
"<line>,<column>")

51 CH*7 Output control string - Actual time (I)
58 CH*7 Output control string - Differential time (I)

TASK NAME: FXTIME
ENTRY POINT: FXTIME
STACK LENGTH: 34 bytes
PRIORITY: 129 (or even higher)
DEFAULT EXCH.: none
EXTRA: 0

INITIAL EXCH.: none

EXECUTION TIME: 1 ms (worst case) once a second

ROUTINE FRSETT:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none.

Routine Call:

CALL FRSETT

Required Stack: 2 bytes.

- 222-

oJ.

' " '

5.2 System Interface and Auxiliary Routines

5.2.4.2 Console Input Routines FXOCNS. FXRCNS, and FXCCNS

Three routines - FXOCNS, FXRCNS, and FXCCNS - permit console
input from an arbitrary disk file which replaces the console
CRT terminal. Replacing the console input by disk file data
requires that exactly one logical line must be supplied to the
system with each READ call. This is, however, not possible
with the standard disk I/O routines of chapter 5.2.3 since
these routines return a fixed number of bytes without regard-
ing the logical end of an input line. Therefore, a special

-" Read Console routine FXRCNS was prepared which returns always
exactly one logical input line (with a length of 1 to 80 char-

- acters). FXRCNS obtains its input either from the console
terminal (trivially), or from an arbitrary disk file. A Line

- Feed Character (OAH) is interpreted as the end of the input
line. Input lines exceeding 80 characters (including the
terminating CR-LF pair) are truncated to 80 characters; their
remainder is submitted with the next FXRCNS call. The input
line may be further processed by the User Buffer Input rou-

* tines FRDTBI and FRSTBI described in chapter 5.2.2.2; the
al buffer format used is fully compatible.

- The console file is opened with a call to FXOCNS; the name of
a disk file or device suitable for input must be specified
with the call. The file is opened, using the Disk Interface
routines of chapter 5.2.3, and assigned the file number -1

- -(OFFH) . In the case of an error during file opening and
reading, the error is reported with the default disk error
message routine (compare chapter 5.2.3.10), and the console
input is re-directed to the console terminal.

An input line is read from the currently valid console file
via a FXRCNS call. The start address of an 82 byte buffer
according to chapter 5.2.2.2 must be specified with the call:

INTEGER*1 BUFFER(82)
LOGICAL*l STAT
REAL X. C

."- CCALL FXOCNS ('CONSOL')

C (a disk file on :FO: with the name CONSOL
C is to be used.)

-,- 100 CALL FXRCNS (BUFFER)

C (read up to 80 bytes of console input)
0 'CALL FRDTBI ('1,E',X,BUFFER,STAT)

C (scan the buffer for a floating-point
C number and store the result in X)
C
C (process the input)
C

- 223 -

. . %N
,

5.2 System Interface and Auxiliary Routines

GOTO 100
C (read the next input line)

The above example is equivalent to

LOGICAL*l STAT
REAL X

C
CALL FRDATI ('1,E',X,STAT)

if ':CI:' is used in the FXOCNS call rather than 'CONSOL'.

The input from the specified console file is continued until

(a) the console file is explicitly closed with a FXCCNS call,
or

(b) the end of the console file is encountered (i.e., if a
string of length zero is read). In the latter case, an

* Error 29 (End of Console Input File) is reported.

In either case, the console terminal is re-opened as the
. system console.

The Console Input routines are not reentrant, and they are
unprotected. They must, therefore, be called by one task
only, and only one file can be used in conjunction with them
at a given time.

The Console Input routines are not used within the CGCS; they
constitute an essential part, though, of the Macro Command
Editor utility COMMED (compare chapter 7.2).

ROUTINE FXOCNS:

Q% . Routine Type: Assembly language subroutine; not reentrant.

* Initialization: none.

Routine Call:

CALL FXOCNS (filename)

with: filename: Filename, according to ISIS-II rules.

Required Stack: 18 bytes.

- 224 -

5.2 System Interface and Auxiliary Routines

ROUTINE FXRCNS:

Routine Type: Assembly language subroutine; not reentrant.

N Initialization: FXOCNS call.

Routine Call:
CALL FXRCNS (buffer)

with: buffer: 82 bytes buffer, formatted according to
FRDTBI and FRSTBI rules (compare chapter
5.2.2.2.1).

Required Stack: 18 bytes.

.',, ,ROUTINE FXCCNS:

* Routine Type: Assembly language subroutine; not reentrant.

Initialization: none.

Routine Call:

p CALL FXCCNS

Required Stack: 18 bytes.

5.2.4.3 Command Line Interpreter Support Routines

Command line interpretation involves usually the comparison of
input strings with command strings. This comparison cannot be
performed in a straightforward way by FORTRAN based software,
particularly if the lengths of the input and command strings
are not necessarily identical. Two routines, FRCMPS and
FRCVUC, have been provided in order to make the command line

., interpretation easier.

FRCMPS compares two strings which are submitted as parameters,
Seither until the strings are found to differ from each other,

until the end of one of the strings was encountered, or until
a special "wild card" character was recognized in one of the
strings. The routine - which has to be declared as a LOGI-

S., CAL*l FUNCTION in FORTRAN - returns a Boolean variable which
is TRUE. if both strings are equal, and otherwise .FALSE..
Since leading blanks (spaces, tabs, and other non-printable
characters) are stripped off the strings before the comparison

-225 -

5.2 System Interface and Auxiliary Routines

is performed, the position of a command within a command line
does not matter. The "wild card" character is particularly
useful if complete words are permitted as commands but an
abbreviation of these commands to their leading characters
should also be possible. The "wild card" character is defined
at system configuration time with the one byte variable
FOWCCH. The library FXUTIL.LIB uses a vertical bar ("I") as a
default wild card character. (Note: FOWCCH is actually a
program constant which can be defined, e.g., with an assembly
language "SET" instruction. It is included in the program
code rather than being stored in memory like a variable.)
Suppose the string "CO1l" was specified as one of the two
parameters of the function FRCMPS. In this case, a .TRUE.
value would be returned if the strings "C", "CO", "COM",
"COMMAND", or "CONTROL" were specified as the second parame-
ter. On the other hand, FRCMPS is set to .FALSE. if the
string "Cx" is encountered where "x" is any arbitrary number
of printable or non-printable characters other than "0". Note
that CHARACTER variables are filled up with spaces by the

Einput routines if the input line was shorter than the size of
the CHARACTER variable. A single "C" entered on the console
and stored in a CHARACTER*4 variable will therefore be fol-
lowed by three spaces in its internal representation. It will
therefore be recognized as different from the above mentioned
string "COi". Only a "C" read to a CHARACTER*1 location will
be regarded identical to this comparison string.

Since a correct command which is, e.g., given in lowercasecharacters would be considered different from an uppercase

command string, the subroutine FRCVUC was provided whose
commission is to change to uppercase the contents of the
CHARACTER variable specified as its parameter. (Actually,
characters with an ASCII equivalent of 61H or greater are
converted to the range of 41H to 5EH, which affects also some
special characters. These characters are rarely used in com-
mands, though.)

* ROUTINE FRCMPS:

g Routine Type: Assembly language subroutine; reentrant; has
to be declared as a LOGICAL*I FUNCTION in FORTRAN.

Initialization: none

Routine Call:

boolean = FRCMPS (stringl, string2)

- 226 -

4

S.

.... 5.2 System Interface and Auxiliary Routines

with: boolean: LOGICAL*1 variable (or direct use in a
LOGICAL IF statement).

stringl,2: CHARACTER variables or strings of
arbitrary lengths.

-. Required Stack: 0

ROUTINE FRCVUC:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRCVUC (char.var.)

with: char.var.: CHARACTER variable.

Required Stack: 0

5.2.4.4 Data Transfer To and From Absolute Memory Locations

Complex applications in a real-time system require frequently
the direct access to absolute locations in memory, e.g., for
the access to Variables in the CGCS. Such an access is impos-
sible directly from a FORTRAN program since FORTRAN permits to
handle the value stored at a (symbolically referenced) address
only but not the address itself. Two routines, FRPOKE and
FRPEEK, permit to store date at a certain address which can be
submitted as an INTEGER*2 constant or variable, and to read
data from this address, respectively. Therefore, data can be

* (transferred to and from regular FORTRAN variables if their
positions in memory are known. Both subroutines require the
specification of the numbers of bytes which are to be trans-
mitted; they permit thus not only to move single bytes but
also multi-byte variables and even arrays. The number of
bytes which may be treated with one FRPOKE or FRPEEK call is
limited to 127; negative values of the INTEGER*1 length para-
meter or zero cause the routine to be skipped without further
notice and effect.0

The address of a FORTRAN variable can be determined at execu-
tion time by means of the INTEGER*2 FUNCTION FRADDR.

- 227 -

.

5.2 System Interface and Auxiliary Routines

ROUTINE FRPOKE:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRPOKE (variable, address, length)

with: variable: Name of a variable (or first element of
an array) which is to be stored in memory.

address: INTEGER*2 value (constant or variable)
indicating the start address beginning
with which <variable> is to be stored in
memory.

length: Positive INTEGER*1 value (>0, <128) in-
dicating the number of bytes to be trans-

.ferred.

S Required Stack: 2 bytes.

ROUTINE FRPEEK:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRPEEK (variable, address, length)

with: variable: Name of a variable where data are to be
stored which are copied from memory.

address: INTEGER*2 value (constant or variable)
indicating the start address of the source
data.

* length: Positive INTEGER*1 value (>0, <128) in-
dicating the number of bytes to be trans-

*ferred.

Required Stack: 2 bytes.

-228-

NA.

N

5.2 System Interface and Auxiliary Routines

ROUTINE FRADDR:

SRoutine Type: Assembly language subroutine; reentrant; has
to be declared as an INTEGER*2 function.

Initialization: none

Routine Call:

,-. integer*2 = FRADDR (variable)

'. with: integer*2: Set to the address of <variable>.

Required Stack: 0

- 5.2.4.5 Overflow Protected Integer Arithmetics

Three assembly language routines, FRADD, FRMULT, and FRSHFT,
permit the overflow protected high-speed integer addition,
multiplication, and division operations particularly required
for the operation of the generic PID controller routine FRPIDC
(compare chapter 5.3.2.1). The results of the FRADD and
FRSHFT operations are set to the absolutely largest integer
number with the correct sign if they would otherwise exceed
the permitted range of an INTEGER*2. FRADD performs the
addition of two INTEGER*2 variables, FRMULT, their multiplica-
tion to a signed four byte result (INTEGER*4) (in which case
an overflow is impossible), and FRSHFT allows to multiply an
INTEGER*2 variable by a positive or negative power of 2 which
is specified as its second parameter (which corresponds to an
appropriate left or right shift of the binary data). Rounding
of the least significant bit is provided with FRSHFT in the

case of a negative scaling factor, i.e., of a division by a
(positive) power of two. With the exception of FRSHFT which

can also be called from PL/M programs, these three subroutines
can only be invoked by assembly language routines. (The high-
speed performance required for these routines prohibited the
use of the parameter passing conventions of FORTRAN or PL/M.)

ROUTINE FRADD:

Routine Type: Assembly language subroutine; reentrant.

! Initialization: none

SRoutine call: No call from FORTRAN or PL/M!

- 229 -

9.

0

5.2 System Interface and Auxiliary Routines

from assembly language programs:
CALL FRADD

Parameters:

D+E ... First item
H+L ... Second item, result

Required Stack: 0

ROUTINE FRMULT:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine call: No call from FORTRAN or PL/M!

from assembly language programs:
CALL FRMULT

Parameters:
Input:

D+E ... First factor
H+L ... Second factor

Output:
D Product, byte 3 (MSB)
E Product, byte 2
H Product, byte 1
L Product, byte 0 (LSB)

Required Stack: 6 bytes

ROUTINE FRSHFT:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine call: No call from FORTRAN!

from PL/M:
result = FRSHFT (shift, input)

with: <result> := <input> * 2 ** <shift>

- 230 -

5.2 System Interface and Auxiliary Routines

input, result: type ADDRESS
shift: type BYTE

from assembly language programs:
CALL FRSHFT

Parameters:

C Shift parameter:
>0 ... Left shift - multiplication
<0 ... Right shift - division
0... No change

D+E ... Input value
H+L ... Result

Required Stack: 0

L

,.o

°

b.
- 231 -

IL~

LIRM- -I-- - rr r r r VW VW - - - - - - - - - p

L';.

5.2 System Interface and Auxiliary Routines

- 5.2.5 High-Speed Hardware-Based Floating-Point Routines -
Library FP8231.LIB

A number of additional numeric routines enhance the perfor-
mance of FORTRAN programs running on Intel 8080/85 based sys-
tems by partly replacing standard FORTRAN modules. Using the
hardware Arithmetic Processing Unit (APU) (Intel 8231) rather
than software floating-point algorithms, these routines are
considerably faster than those provided in the standard FOR-
TRAN-80 libraries, and they require significantly less code.
The following interface software was specially prepared for
the RXISIS-II/iRMX-80 environment:

* Replacement routines for the standard Intel FORTRAN-80
floating-point algorithms of the libraries FPSOFT.LIB and

a,. FPSFTX.LIB. The alternative routines require an Intel 8231
Arithmetic Processing Unit to be present in the system.
Programs utilizing the alternative routines must be run
either under iRMX-80, or under RXISIS-II.

* * Replacement for the most important floating-point functions
contained in the standard FORTRAN-80 library FPEF.LIB. The
same hardware and environmental requirements apply as above.

* An alternative conversion routine from binary floating-
point notation to ASCII strings which replaces the equiva-
lent FPSOFT.LIB or FPSFTX.LIB software. (The output of
floating-point numbers is usually performed much more fre-
quently than the complementary conversion from ASCII to
floating-point; it appeared therefore not necessary to
replace the latter routine by software using the APU.) As
above, an 8231 APU and an iRMX-80 or RXISIS-II environment
are needed.

The high-speed floating-point routines are used within the
CGCS (where they particularly speed up output of numeric data
to the console screen), and in the RXISIS-II versions of the
support utilities SHODAT, COMMED, and READCM (compare chapter

*e 7.).

5.2.5.1 General Information

The alternative floating-point routines effect a transparent
replacement of the standard software floating-point algorithms
contained in the Intel supplied FORTRAN-80 libraries. They
are based on a dedicated Numeric Processor, namely, the Intel
8231 APU (Arithmetic Processing Unit). They adapt the stan-
dard floating-point format used by FORTRAN-80 to the special

- 232 -

..,

rK. '.y

5.2 System Interface and Auxiliary Routines

format required by the APU, and vice versa. Special provi-
sions were made to extend the relatively limited numeric range
of the APU (±1.0E-19 ... ±1.0E19) to the standard FORTRAN-80
range (±1.0E-38 ... ±3.4E38). Despite the considerable soft-

- 2 ware overhead imposed by the different data formats, the al-
ternative routines run significantly faster than their soft-
ware counterparts. The amount of code required is reduced by
about 50 percent; the stack is also significantly smaller.
The overall system performance is thus improved considerably.

Aside from two exceptions, the routines in FP8231.LIB need no
explicit calls from FORTRAN programs; the proper calls are
automatically inserted by the FORTRAN compiler. The implemen-
tation approach chosen for FP8231.LIB off-loads therefore the
programmer from the burden of explicitly calling APU-based

. software.

- The following features are provided in FP8231.LIB:

Basic arithmetic routines, corresponding to the FORTRAN-80
routines in FPSOFT.LIB or FPSFTX.LIB:

- Addition
- Subtraction
- Multiplication
- Division
- Square
- Square Root

* Floating-point to ASCII conversion, corresponding to the
routine FQFB2D in FPSOFT.LIB or FPSFTX.LIB.

Transcendental functions, replacing routines in FPEF.LIB:

- Logarithm (natural and common)
: - Exponent

- Sine, Cosine, and Tangent
- Inverse Sine, Cosine, and Tangent

7 - Arctangent of two parameters (ATAN2)
.- Absolute Value of a Complex Number (CABS)

The interface routines for the 8231 APU were designed for
operation in a system based upon standard Intel OEM Single
Board Computer hardware. An 8231 Numeric Processor Multi-

*module expansion board (iSBX 331) is available for the
8085-based iSBC 80-24 Single Board Computer. With regard to
this hardware environment, the software was designed to run
under Intel's Real Time Multitasking Executive iRMX-80 (and
hence, under RXISIS-II.) Therefore, the APU-based routines

- 233 -

7)

52System Itraeand AxlayRoutines

have to meet the specific requirements of a real-time (or, a
pseudo-real-time) environment with a multitasking approach.

The main target pursued with the APU interface routines was to
replace the standard FORTRAN-80 software floating-point lib-
rary routines with a set of functionally equivalent software.
The standard FORTRAN-80 routines are either reentrant (i.e.,
they use the stack of the task from which they were invoked as

* - a scratchpad for internal data), or they use resources which
* . are local to each task (namely, the floating-point accumulator

which is allocated in an extension of the Task Descriptor of
each task which performs floating-point operations). Both
approaches protect data handled by the routines from inter-
ferences if a routine is interrupted while servicing one task,
and eventually invoked by another task without being permitted
to finish the previous operation. The APU hardware is, in
contrast, a shared resource, and provisions must be made to
prevent tasks from interrupting an APU operation in progress.
There are, in general, two possibilities to achieve this goal:

0 *Software interlocks, or

*Disabling interrupts.

The first approach is the one primarily suggested by the
structure of iRMX-80, and it appeared initially favorable
because it permits the CPU to continue processing while the
APU is busy. With regard to the very fast APU operation,
however, the overhead to execute the interlock structures
would require more time in most cases than the APU action to
be protected. The longest APU algorithm needs less than 3
milliseconds (the Power function), and the plain arithmetic
operations last less than 100 microseconds, which is in the
order of magnitude an iRMX-80 interrupt service requires.
Therefore, the critical parts of the APU interface routines
are protected simply by disabling the interrupt system, which
evidently prevents other tasks from running and eventually
accessing the APU. Since disabling and enabling the inter-

6_ rupts requires only one-byte machine instructions with an
execution time of 800 nanoseconds each, this approach is
clearly faster and more code-efficient than a software inter-
lock; the synchronization between the CPU and the APU is done
by a simple polling loop. Since the interrupts are never
disabled for more than a couple of milliseconds, no signifi-

0. cant deterioration of the interrupt response of the system is
V. to be expected. (Interrupts happening at a higher rate than a

few hundred per second are too fast anyhow to be reasonably
processed by iRMX-80.)

~*i. - 234 -

.. % %4%

%

5.2 System Interface and Auxiliary Routines

Compared to the standard software floating-point algorithms of
FORTRAN-80, the accuracy of the APU operations is slightly
worse, due to the fact that the internal results are truncated
to the mantissa length of 24 bits rather than being rounded.
For most operations, the absolute values of the results ob-
tained with the APU are therefore slightly less than those
derived from software algorithms. The maximum relative dif-
ferences lie in the order of 1.OE-6; in most cases, the rela-
tive differences between software and APU based results are
less than 1.OE-7. For practical programming, this deterio-
ration of the floating-point accuracy can be neglected.

5.2.5.2 Additional Routines in FP8231.LIB

In addition to the actual replacement routines for the stan-
dard FORTRAN-80 library floating-point algorithms, there are
two functions available in FP8231.LIB, namely, ATANX and CABS.

ATANX: This function is equivalent to the FORTRAN ATAN2 func-
tion (inverse tangent of the quotient of two parame-
ters). Still, this routine requires less execution
time and less stack, due to its simpler internal
structure. Two parameters of type REAL are required.

Call from FORTRAN:

result = ATANX (paraml, param2)

with: result = arctan (paraml/param2)
-PI/2 <= result <= PI/2

CABS: This function calculates the square root of the sum of
the squares of its two parameters, corresponding to
the absolute value of a complex number.

6 Call from FORTRAN:

result = CABS (paraml, param2)

with: result = SQRT (paraml**2 + param2**2)

I

- 235 -

-

%

0

5.2 System Interface and Auxiliary Routines

5.2.5.3 The Implementation of the Alternative FORTRAN-80
Floating-Point Routines

- The alternative FORTRAN-80 floating-point algorithms can be
easily implemented in a system by including the library
FP8231.LIB at system configuration time. With the exception
of ATANX and CABS, the calls to the APU routines are inserted
automatically by the FORTRAN-80 compiler; the replacement of
the software floating-point algorithms is simply effected by
linking the library modules in the proper order.

The current version of FP8231.LIB supports an iSBC 80-24
.v Single Board Computer with an iSBX 331 Multimodule Board

installed in Multimodule connector J6 (base address OFOH).
Other base addresses can be used if a constant F@BASE holding
the proper port address is declared PUBLIC in a module linked
in front of FP8231.LIB. The programs using the alternative
routines can be configured either as complete iRMX-80 systems,
or as main programs to be run under RXISIS-II. RXISIS-TI
programs can be run without re-booting the system afterwards;

4 no measures exceeding those required anyhow for the generation
and execution of a real-time system are necessary.

The linkage sequence is in both cases:

RMX8xx.LIB (START) *)
Object Files
FORTRAN-iRMX-80 Interface Routines
FP8231.LIB
F80RUN.LIB
F80RMX.LIB or F80NIO.LIB
FPEF.LIB
FPSFTX.LIB
iRMX Libraries *)
PLM80.LIB
RXISIS.LIB #)

•) Not for RXISIS-II based programs.
#) Only for RXISIS-II based programs.

The stack requirements for the various operations are listed
below. The two values given apply to an error-free and an er-
roneous operation, respectively. In the latter case, EH
stands for the stack requirements of the error handler. The

O., programs or tasks using the alternative FORTRAN-80 routines
should provide the maximum stack required for a single opera-

-. tion, plus some reserve.

- 236 -

ep

5.2 System Interface and Auxiliary Routines

Addition: 26/48+EH
Subtraction: 26/48+EH
Multiplication: 26/48+EH
Division: 26/48+EH
Square: 16/50+EH
Square root: 26/56+EH

Common Logarithm: 46/88+EH
Natural Logarithm: 46/88+EH
Exponent: 46/88+EH

Sine, Cosine, Tangent: 26/58+EH
" Inverse SIN, COS, TAN: 26/58+EH

ATAN2: 38/66+EH
- ATANX: 32/60+EH

CABS: 20/52+EH

Conversion Bin./ASCII 34

-237 -

0

'V -.

*. i

5.3 The Hih-Level Growth Controller Software

5.3 The High-Level Growth Controller Software

5.3.1 The Operator Interface

5.3.1.1 The Console CRT Screen

4 The output on the CRT console terminal is the major visible
part of the CGCS's Operator Interface. Several tasks some of
which are not even part of the Operator Interface proper con-
tribute to the console output (compare Fig. 9):

(1) Fixed Part (Lines 1 through 16 or 17):

Timer Task (FXTIME):
Actual and system time.

Command Interpreter Task (RXIROM):
Table frames, text output, date, and run identifica-

A tion.

0 Command Executor Task (CMMDEX):
Macro command name (if set); operation mode.

Measured Data Output Task (MEASDO):
All numeric values; Debug output in line 17 if acti-
vated.

- Command File Input Task (CMFINP):
Macro command name (if cleared).

(2) Scrolled Part (Lines 17 or 18 through 21):

Command Interpreter Task (RXIROM):
Operator entry echoes, various messages.

Command Executor Task (CMMDEX):
Various messages.

*Command File Input Task (CMFINP):
Various messages.

Diameter Controller Task (DIACNT):
Various messages.

0., All other tasks:
Disk, I/O, or system error messages.

(3) Prompt Line (Line 22):

Command Interpreter Task (RXIROM)

- 238 -

F 5.3 The High-Level Growth Controller Software

(4) Input Area (Lines 23 and 24):

Directly written to by the Terminal Handler.

The numeric values written to the console are, in general,
-~ given as physically relevant magnitudes, i.e., as properly

scaled floating-point numbers. The following dimensions apply
to the various items:

* Diameter, Lengths, Positions: Millimeters.

.. ,*'5'.* Temperatures: Millivolts (thermocouple voltages).

* Lift Speeds: Millimeters per hour.

\h 5 *' ~ * Rotation Speeds: Revolutions per minute.

* Weights: Grams.

* * Differential Weight: Grams per minute.

* Powers, Contact Device: Arbitrary units (0 ... 100).

* Gas Pressure: Pounds per square inch.

* Densities: Grams per cubic centimeter.

5.3.1.2 Auxiliary 1/0 Routines

* The tasks which request console input or generate console
output (compare chapter 5.3.1.1) use, in general, the FORTRAN-
iRMX-80 Interface I/O routines whose names start with "FR..."
to write to the screen, or the routines discussed in chapter
5.2.2.9 if they also write to the documentation file. All
these output routines require a screen position information
which is passed in the first parameter of the subroutine
call. Some locations on the screen are, however, very fre-
quently written to, and it was advantageous to provide special
routines for these output actions which have the screen posi-

*tion information implicitly built in. Calling any of these
"shorthand" routines spares the programmer entering one par-

* ameter, and it abbreviates the actual program code. Similar-
ly, some input actions like the checking for the input string
"Y(es)" can expediently be handled by dedicated routines.

The following routines (and several others) are kept in the
assembly language module AUXASM. With the exception of
PRETTA, they may be called by any task performing output.

-239-

0l l I-r

5.3 The High-Level Growth Controller Software

PROMPT: This routine writes the string which was passed to it
as a parameter left-adjusted into the input prompt line
(line 22).

MESSGE: The string passed as a parameter to MESSGE is written
into the scrolled screen area.

ERRMSG: Similar to MESSGE, the ERRMSG routine writes to the
scrolled screen area, appending a "beep" in order to at-
tract the operator's attention.

PRETTA: This routine writes "- press "RETURN" key to conti-
nue" to a specifiable screen location (usually in the
prompt line), and waits for any input on the console.

Three additional I/O routines are kept in the FORTRAN module
AUXCOM:

BEEP: This routine simply issues a "beep" on the system con-
sole. It takes no parameters.

CLIPRL: The subroutine CLIPRL overwrites the input prompt
line with spaces. It does not take any parameters.

CHKANS: This routine is a LOGICAL Function. It returns
".TRUE." if a valid input line beginning with an upper- or
lowercase "Y" was entered on the console, and otherwise
".FALSE.". CHKANS needs a LOGICAL argument which is re-
turned ".TRUE." if an empty line ("Return" only) was en-
tered, and otherwise ".FALSE.".

*! 5.3.1.3 The Command Interpreter - Task RXIROM

The Command Interpreter task has a special position among the
CGCS tasks in several regards:

* * It is, in fact, the continuation of the ROM resident part
of RXISIS-II, RXIROM, and the first task to come "alive"
in the CGCS. Although it is "unofficially" referred to as
"COMINT" within the program source modules, we will use
here its "official" name RXIROM (which is also reported,
e.g., by disk error messages).

* It performs the system initialization and activates all
other CGCS tasks.

* It is the only task which requests and processes operator
input (but not the only task to generate output).

-240 -

tx 5.3 The High-Level Growth Controller Software

The Czochralski Growth Control System is invoked under RXISIS-
II by the command "CZOCHR". RXISIS-II searches for and loads
a program module "CZOCHR.RXI" whose only purpose is to vector
control to a special code sequence in the RXISIS-II Command
Line Interpreter which replaces the file name extension ".RXI"
by ".BIN", provides the resulting module name "CZOCHR.BIN" for
the ROM resident bootstrap routine, and restarts the system.

* The bootstrap routine is part of the task RXIROM; normally, it
,loads into RAM and starts RXISIS-II. Being entered in the de-

scribed way, however, it loads the module "CZOCHR.BIN" rather
than "RXISIS.BIN" from disk drive 0; "CZOCHR.BIN" holds the
entire resident code of the CGCS plus preliminary initializa-

* tion values for some data locations, and a special start mod-
ule which is loaded into the memory area which will later be
used by the Command Interpreter overlays. Control is passed
to this initialization code when the program file was success-
fully loaded.

The start module is entered via the assembly language routine
u CZINIT which first sets an internal flag of the Monitor which
.,: enforces a duplication of the Monitor's CRT output to the

printer. (This measure provides a permanent printed record of
an inadvertent entry into the Monitor program which might
happen due to software or hardware failures.) CZINIT also
resets a flag which controls the activation of the Monitor
from the console keyboard. (This is why the Monitor can be
entered under RXISIS-II but not from the CGCS by pressing the
"Break" key of the console terminal.) Subsequently, CZINIT
builds a new task stack close to the top of memory since the
stack of RXIROM is too small. It stores a program version
code in a reserved memory location; later, a version code
which is loaded with each overlay will be compared to this
datum in order to ascertain that only matching program modules
are loaded. After some initialization calls to FORTRAN and
FORTRAN-iRMX-80 Interface routines, CZINIT passes control to

* the FORTRAN subroutine FXUSIN.

FXUSIN initializes the digital I/O interface and several con-
* trol structures which can be accessed more conveniently via

,. %. FORTRAN than via assembly language. It calls the (assembly
language) subroutine TESTHD which checks whether an A/D con-
verter board is installed in the system by initiating a con-

. version and checking the status byte for a "Conversion Ready"
bit which is returned by the A/D converter. The Variable TEST

*is set to -1 if no A/D converter response was detected within
ZW.. a defined timeout period; otherwise, TEST is returned with the

value 0. (This check is important if the CGCS software might
be run on hardware which does not feature the A/D and D/A
interfaces. In this case, practically all system resources

'~' '- ~ would be spent by the task ANACNT for waiting for the A/D con-

241 -

% %.

'V

5.3 The High-Level Growth Controller Software

verter to finish a conversion, which obviously never happens
if there is no A/D converter within the system. The CGCS
would, therefore, be practically locked in such a test envir-
onment. The value of TEST is later used for bypassing the
analog input and output routines within the task ANACNT. Note
that TESTHD is called before ANACNT is created.) Subsequent-
ly, FXUSIN calls the assembly language subroutine CREATE which
is, similar to TESTHD, part of the module CZINIT. CREATE ac-
tivates all tasks of the CGCS, which can only be done safely

-after the above initialization, and makes unused memory (in-
cluding the old RXIROM stack) available to the memory pool of
the iRMX-80 Free Space Manager. After the return from CREATE,
FXUSIN provides a sign-on message (plus a message referring to
a "Test Mode" if TEST has been set to -1), and loads the data
overlay "CZOOVD" from drive 0.

Similar to "CZOCHR.BIN", "CZOOVD" is loaded only once during
every growth run. "CZOOVD", which holds the (initialization)
values of practically all system parameters, is kept separate

* from the main code module on purpose. The preparation of the
CGCS program modules is a lengthy and complicated procedure
which would have been indispensable after each modification of
a system parameter initialization value if these data had been
kept within "CZOCHR.BIN". Since it is very likely that numer-
ic parameters require changes more frequently than the program
code, it was preferable to load them from a special data over-
lay which can be modified and configured relatively easily.

The auxiliary routine LOVLAY which is exclusively used by
RXIROM loads overlay modules into RAM. (The information where
an overlay is to be loaded is part of the overlay program
file. It is, therefore, sufficient to specify the name of the
file to be loaded.) Several safeguards are provided which
permit to trap the potentially disastrous loading of improper
files:

* The data on each disk file and, in addition, the program
D, code itself, contain checksums which are validated by the
* Loader task. Any damage to a program file is therefore

very likely to be detected and reported by the Loader.
VLOVLAY returns a message "Defective program disk" in this

case.

• Each overlay contains memory locations which hold its name
and the program version code. LOVLAY reports "Software
damage likely - reset the system" if either the overlay
name or the program version loaded with the overlay do not
match the expected data. (It is important not to mix

modules belonging to different CGCS versions because all
overlays access code or data within the resident part of

-242-

* J Q M IA Ik N N

5.3 The High-Level Growth Controller Software

the CGCS. Since the absolute address of a routine or a
data location may change due to system modifications, an
overlay routine may call improper code or access wrong
data if its version does not correspond to the version of
the resident code.)

Note: Do not disregard error messages returned during overlay

loading. A potentially disastrous effect of a defective over-
lay may show only after a considerable time. It is always
dangerous to copy single overlay files to a work disk, or to
exchange work disks inconsiderately. There is, however, no

S -danger if a Disk Error 24 is reported during overlay loading,
and if the defective disk is replaced by one which holds the
same program version.

In very rare cases, a Disk Error 120 - Unable to Open File -
may be displayed when the system attempts to load CZOOVD.
This may happen if the operating system is overburdened during
the start phase, for example, if a key is continuously being
pressed on the console terminal. In this case, the memory
pool has not been initialized yet when memory is requested
from it by the Loader software, and the above error condition
ensues. The "Defective program disk" message may be ignored

'- in this case, and loading may be retried by pressing "Return".

The start routine FXUSIN displays the creation date of the
data overlay CZOOVD (which is also an indication that this
module was loaded properly), and requests the current date.
The date should be entered in the format shown in the prompt,
but any string of 8 characters which starts with a digit is
accepted. The date information is stored for reference pur-
poses only; it will be used on the console screen, in the
documentation output page headers, and in the header records
of the Data files. After the date, the current time is re-
quested from the operator; the system expects two or three

,Y positive integer values as an input, separated by colons
5.. (":") , spaces, or any other non-numeric characters. The time

should be entered in 24 hours format; zero is assumed as a
6 seconds value if only hours and minutes were specified. The

internal system time starts running - yet invisibly - when the
subroutine FRSETT is called after the "Return" key was pressed

p to enter the time information, and the absolute time is set to
the value entered (compare chapter 5.2.4.1). Finally, FXUSIN
requests a "Run Identification" which can be any arbitrary

S 'string up to 20 characters long. A blank run ID can be enter-
ed by simply pressing "Return".

FXUSIN calls now the subroutine TIMLIN which is part of the
start code in the future overlay area. TIMLIN generates the
date, absolute time, run ID, and system time display in the

- 243 -

N6_

5.3 The High-Level Growth Controller Software

top screen line which will be shown throughout the entire
growth run. The operator can accept or reject the data dis-
played; this is, by the way, the only occasion within the
entire CGCS software where a plain "Return" is interpreted as
"Yes"s (otherwise, it is treated as "No") . Depending on the
outcome of this query, FXUSIN either loops again through the
date, time, and run ID input section, or it returns to CZINIT
which passes control to the resident portion of the Command
Interpreter, i.e., to the routine COMINT.

COMINT starts its operation by writing the output "frame" to
the console terminal which is eventually filled in with the
output of measured data. This is done by the subroutine FRAME
which resides in the overlay CZOV08. This overlay has to be
loaded by COMINT; it overwrites the code of CZINIT and FXUSIN.
(This and the following initialization can, therefore, not be
done from FXUSIN which would otherwise be the logical place to
do them; there is no way for a routine in an overlay to call
directly another overlay resident routine which uses the same
physical memory locations.) We will discuss the subroutine

0; FRAME later which is also called upon a RESTORE command.

The next two routines invoked during the initialization of
COMINT reside in overlays CZOV16 and CZOV19, respectively.
DOCUMT permits to activate a Documentation output, either on
the printer or on a disk file, and it allows to specify an
interval for dumps of measured data to the Documentation out-
put. INIDAT permits the initialization of some process para-
meters. Both routines will be dealt with later.

COMINT enters now its infinite loop which starts with the
output of the prompt "Please command:" and the request of
operator input. The input routines transfer an input line of
up to 80 characters into an internal buffer when the operator
terminates his entry with "Return"; no data are available to
the CGCS before "Return" is pressed. First, COMINT attempts
to transfer the first six characters in this input buffer to
the CHARACTER variable COMMD. The LOGICAL variable STAT is

* returned ".TRUE." by the STRIN call if and only if an empty
line was entered ("Return" only). COMINT repeats its input
prompt in this case, and waits for the next entry. Otherwise,
the first character of the input line is checked and the input
rejected if it is a space (the command keywords must be left
adjusted within the input line to be processed properly).

The presumable command keyword in COMMD is now compared to
(currently) 25 keyword strings, corresponding to the 24 Inter-
nal commands (the HELP command has the alternate keyword "?").
Control is vectored to the appropriate sequence within COMINT
if a matching string is found. (The string comparison routine

.4 I - 244 -

K.W

It 5.3 The High-Level Growth Controller Software

FRCMPS uses the character "I" as a wild card symbol which can
be matched to any character (compare chapter 5.2.4.3) ; only
four characters are compared since the keyword strings consist
of four or less characters only.) The command entry is inter-

~: N preted as the name of a Macro command if no matching Internal
~. :. ~ command was detected. A Macro file name string is created by

the assembly language routine MAKEFN which appends the file
m name extension "1.CMD"1 at the logical end of the presumptive

Macro command name (which is either after the sixth character
~ of COMMD, or at the first space in COMMD, whatever happens

first). COMINT tries to open the Macro file for reading, and
closes it immediately, in order to test whether a file with
the specified name and the extension "1.CMD"1 does exist. This
is the case if no error status is returned by the FROPEN call;
FROPEN will return an error value of 13 ("No such file") if no
Macro file was found with the specified name, most likely due

1to a mistyped command. An error value of 4 ("Illegal file
name") may be returned if the command input contains non-
alphanumeric characters, which may also happen due to typing

*errors. COMINT returns to the beginning of its command loop
with an appropriate message in these cases; the default disk

.,~ ~.*error message is output if any other disk error was detected.
J%' If a file with the proper name was found, COMINT assumes that

it is a valid Macro file (this fact will be checked later) ;
it requests an operator acknowledgement ("Execute Macro com-
mand ... ?"), and sends a command message to the Command Execu-
tor which eventually will start the execution of the Macro
command.

In general, all commands which may be recorded on and issued
by a Macro command file are executed by the Command Executor.
These commands are "sent" to the Command Executor by means of
messages, buffer areas in RAM4 which are made available to the

- ~ receiving task by the iRMX-8O operating system. Command
messages have a "type" value of 161 (the message "type" is
simply a safety feature which guarantees that correct data is

\, ~received). The first byte of the command message proper
determines the command type (in our case, 30H stands for

* "Macro Command"), and the remainder of the message holds
parameters of the specific command, up to a length of 13
bytes. The same format, with two additional leader bytes
holding the command time, is used to store commands within a
Macro file; compare Appendix 12. Using special message trans-
mission routines of the FORTRAN-iRMX-80 Interface Program

* Package permits to easily merge command messages from dif-
. .. ~,ferent sources (namely, from the Command Interpreter and the

'P. Command File Input tasks) and to queue them at the Command
Executor's input for processing. After having been accepted

-C by the Command Executor, the command messages are passed on to

-245 -

0

5.3 The High-Level Growth Controller Software

the Command File Output task which records them in a Command
Output file (Fig. 17).

...- - - -- - - - - - - -

CONSOLE 'COMMAND !
TERMINAL - INTER-

-;OPERATOR) PRETER "
.%

M M DISK
COMMAND CA CRO I DISEXECUTOR C MAND A M RDOUTPUT RC MMAND)

DISK A C ROMARO -CRCMA

COMMAND) I I INPUT

.j' %
+

CRYSTAL GROWTH CONTROL ROUTINES

iFig. 17: Command processing in the CGCS.

".-% Most of the Internal commands are processed in overlay resi-
dent routines which we will discuss later, rather than within
the main Command Interpreter routine COMINT. This approach

Jhelped to keep the resident COMINT code concise. Only the

, following commands do not require overlays to be loaded:

, EXCHANGE: This is considered an emergency routine which must
be called if a disk has to be changed due to any kind of

-.,' ,

defect. It would not make sense to load an overlay from a
• - possibly defective disk. In order to prccess the EXCHANGE
._ w~ycommand, COMINT calls the FORTRAN subroutine XCHDSK which

closes all files on the specified disk, waits for an ope-
~changed, and re-opens all output files on the new disk.

END: An End of Command Record code (7FH) is sent to the Com-

mand Executor if this command was issued.

QUIT: The FORTRAN subroutine QUITCM which is invoked by
COMINT disables the Macro command file input (by resetting
the proper / flag) and the Timer #2 which controls the

.' ', - 246 -

. , , Il I Wi

follwin comand donotrequre verays o b loded
EXCHNGE Ths isconideed n emrgecy outie wichmus

.now

5.3 The High-Level Growth Controller Software

execution of Macro commands. It fakes a timer alarm by
setting the flag TIMINT, and waits for two iRMX-80 time
units (100 ms) to permit the Command File Input task
CMFINP to run in response to the faked alarm. CMFINP

"-a i" closes the Macro command file, clears the Macro name on
" 8 the top line of the console screen, and issues a corre-

sponding message if it finds the I/O flag reset.
DUMP: The subroutine DUMP which is called immediately upon a

DUMP command sets a flag (DUMPFL) to .TRUE. whose status

is periodically checked by the Command Executor (compare
chapter 5.3.1.4.6). The Command Executor, in turn, in-

'itiates a Data Dump to the Documentation output when it
finds this flag set.

All other commands are handled by the overlay resident rou-
tines. In order to avoid loading an overlay which has already
been loaded by a preceding command, COMINT checks the value of
the variable OVRLAY which is set by each overlay to its re-

* spective overlay number. (This is not explicitly done by
program code but by assigning a value to OVRLAY with a BLOCK-
DATA program; this value is stored in OVRLAY when the overlay
is loaded.) The COMINT overlays are discussed in the follow-
ing chapters in their numerical order which has been deter-
mined essentially by historical reasons.

N ." 5.3.1.3.1 Overlay CZOV01 - Module SETPAR - Commands SET and
CHANGE

The subroutine SETPAR receives the MODE switch as a parameter
which distinguishes between the SET and CHANGE commands, and

S-/ it returns the LOGICAL variable LOAD. LOAD is returned

".FALSE." if SETPAR can complete the processing of the com-
mand, i.e., if the command applies to one of the nine Internal

i~ '" parameters (diameter, three temperatures, four motor speeds,
and power limit). Otherwise, LOAD is ".TRUE.", and COMINT has
to load the overlay CZOV02 in order to complete command pro-
cessing.

SETPAR re-scans the command line originally issued to COMINT,
- searches in it for the first space, and then for the first

three alphabetic characters after the space, in order to de-
termine the parameter which is to be SET or CHANGEd. An ex-

-. plicit request for a parameter is issued if no suitable data
* .*. -are found in the input line, and a new input line is read and

parsed for its first three characters. The command is cancel-
4"" led if this second attempt is also unsuccessful. In either

case, the input line pointer is moved back to the beginning of

-247 -

5.3 The High-Level Growth Controller Software

the parameter string, i.e., the next input command will read
the parameter string again unless a search option is used with
the input routine call. The three input characters are now
compared to the nine mnemonics which stand for the primary
parameters (three characters are required because the third of
them must be a space in order to match a valid mnemonic).
SETPAR is left immediately, with LOAD set to ".TRUE.", if no
matching mnemonic is found.

The routine scans now to the first space after the parameter
string and tries to read a valid floating-point number from
the input buffer. This number will represent the target value
of a SET command or the increment of a CHANGE command. A
proper value is requested if no numeric value is found after
the parameter string, and a new input line is read in this
case. Either input line is scanned for the next (floating-
point) number, and a transition time entry is prompted for if
no such number or a negative value is f ound. The command is
regarded cancelled if no valid input is entered after it was
explicitly requested. A similar approach is used within all

0 Command Interpreter routines which process commands permitting
..J..the entry of command parameters in the input line.

In order to generate an operator confirmation prompt, SETPAR
determines the final value of the modified parameter. This
value is equal to the input value for. a SET command but must
be calculated as the sum of the current parameter value and
the specified increment in the case of a CHANGE command.
Internally, the setpoint and actual values of the primary
parameters are stored as scaled two-byte integer (INTEGER*2)
values. This was done because analog data are input and out-
put as integer values; the controller routines operate on
integers because integer algorithms are faster and require
less code, and data recorded in the Data file are also in

4. integer format, which reduces the Data file size by a factor
4.of two, compared to floating-point numbers. The physically

relevant (floating-point) data which are displayed and entered
on the console are obtained from the internal integer values

S by multiplying them with appropriate scaling factors.

one peculiar property of real-time systems must be considered
at this point: Unlike conventional computer programs, rou-
tines which are part of a real-time system may not freely read
and write data. This is true because multi-byte values are

S usually stored and retrieved in sequences of several machine-
code instructions. The scheduling of system tasks is, how-
ever, hardly predictable in a real-time environment, and a
task might be interrupted, e.g., during a multi-byte read, by
another task which might write to the same memory locations.
Although the actual value stored in these memory locations

-248 -

4N.N

---- ---w r --- r -t -"j - - - - -r wj'e-r-n- WW ~~ T W W TW IW ~ W W

5.3 The High-Level Growth Controller Software

might change only slightly, a totally unusable value might be
retrieved by the interrupted task. Such an event may be rela-
tively unlikely but nevertheless disastrous; the following
safety measures are taken within the CGCS to prevent it (com-

>e -" pare also chapter 3.1.4):

(1) Some data areas are protected by access control routines
(FRACCS and FRRELS) which permit only one task at a time
to read them or write to them.

(2) The system Variables are implicitly protected by the prop-
er choice of the priorities of tasks which access them.
They are only written to by the Command Executor which has
a very low priority and can therefore never interrupt the
execution of a higher-priority task which might use a
Variable. The storage of the Variables is protected by
using a special routine (STODAT) which temporarily dis-
ables the system interrupts.

(3) Values which have to be read only can be retrieved reliab-
, ly by reading them twice. This process can be repeated

until both reads result in the same value.

The latter approach is the one chosen in SETPAR; a counter
prevents the system from being blocked in the unlikely case
that a matching value pair is never found.

SETPAR checks the final setpoint for negative temperature or
power limit values, and requests an operator acknowledgement.
The output line has, unfortunately, to be built relatively
awkwardly in a buffer (LINBUF) because the output routines
which write also to the Documentation file can only accept a
complete line of output (compare chapter 5.2.2.9).

Upon a positive answer of the operator, SETPAR builds the
,". command message. The command type byte holds the encoded

* command mode (SET or CHANGE) and the target parameter; the
input value is converted to an INTEGER*2 (which is checked for
a potential overflow), and the transition time value which was
specified in minutes is multiplied by 60 to hold a ramping
time in seconds. The command message is dispatched to the
Command Executor, and SETPAR returns to the resident COMINT
code.

O

p..

~- 249 -

'a

k •

5.3 The High-Level Growth Controller Software

5.3.1.3.2 Overlay CZOV02 - Module SETVAR - Commands SET and
CHANGE

SETVAR is invoked after a SET or CHANGE command for which none
of the Internal parameters was specified. The CGCS assumes in
this case that the command applies to a system Variable, i.e.,
to an item in a list of named memory locations. SETVAR re-
ceives the input buffer from SETPAR with the pointer at the
first character of the presumptive Variable name; it reads a
string of up to 10 characters into an internal buffer, termi-
nating the input action when a space (i.e., the end of the

Variable name) is encountered. The name string is converted
to uppercase, and passed to the assembly language routine
FINDAD.

FINDAD compares the presumptive Variable name in VARNAM to a
list of names kept in the specially formatted file CZONAM.Vmn,
where m and n are the major and minor program version numbers,
respectively. Each entry in this file holds a Variable name
(1 to 6 alphanumeric characters long, but the first character

0 must be alphabetic), the Variable type (one- and two-byte
integers or four-byte floating-point numbers), encoded with

* -" the number of elements if the Variable name refers to an ar-
-. ray, and the Variable address or the start address of an array

(compare Appendix 12). FINDAD checks the index of an array
element which may optionally be passed in parentheses immedi-
ately after the Variable name, and returns the actual address
of the Variable or array element, and a type code which is
positive if a valid entry was found in the CZONAM file, and
negative in case of an error.

SETVAR checks the type code returned and issues an error mes-
sage if necessary; otherwise, it retrieves the current value
of the Variable. This is done with a call to the assembly
language subroutine PEEKDW which reads the four bytes at the

address passed as a parameter repeatedly until a stable result
is obtained (compare chapter 5.3.1.3.1). The four bytes read
may have to be converted to a floating-point number according

• to the type of the Variable; the result of this operation is
later used to display the current and the final values of the
Variable. Subsequently, the routine tries to obtain a SET or
CHANGE final value and a transition time from the input buf-
fer, and it issues corresponding prompts if no data are found.

* .Similar to SETPAR, SETVAR checks integer values for a valid
' range, builds a command message if the operator acknowledge-

ment was positive, dispatches the message, and returns to
COMINT.

- 250 -

5'.

5.3 The High-Level Growth Controller Software

5.3.1.3.3 Overlay CZOV03 - Module COMMEN - Command COMMENT

The routine COMMEN inserts a comment line into the Data file
if such a file is active.

-• *.COMMEN scans to the first space in the original command input
line, and tries to read valid input from the remainder of the
command line (to receive any comment which was entered to-
gether with the COMMENT command). A corresponding prompt is
issued if the command line did not contain any data except the
keyword. COMMEN returns immediately to COMINT if no Data file
is active (i.e., IOFLAG(2) is reset); otherwise, it provides
operation mode, time, and length grown information in its
output buffer, sets the first byte of this 128 byte buffer to
-1 to indicate a comment line, and writes the buffer to the
Data file. It is essential that a full record (128 bytes) is
appended to the Data file to maintain the file's special for-
mat (compare Appendix 12).

5.3.1.3.4 Overlay CZOV04 - Modules MENOUT and CLRSCR - Com-
mand HELP

-. This overlay provides the Help menus of the CGCS in response
to the commands HELP and "?". It writes in random access mode
into lines 17 through 21 which are otherwise reserved for
scrolled and Debug output. The latter is immediately disabled
when MENOUT is entered by resetting the flag ENDBGO. Although
the output routines do permit to write over the scrolled area
in random access mode, this output remains on the screen only
until data is output again in scrolled mode. Any system
message which is issued while the HELP command is executed
will therefore preempt the display of the current Help menu.

MENOUT first clears the five lines of the scrolled area byoverwriting them with spaces (in the subroutine CLRSCR), and

* outputs a quick menu of Internal commands which is built right
. into the program. The next help screen optionally displayed

by MENOUT contains a list of Macro command names which are
derived from the disk directory of the disk in drive 0 (file
ISIS.DIR). The directory is scanned for all valid files with
an extension ".CMD". Up to 40 Macro files can be listed on
one screen; if there are more Macro files on the system disk,
MENOUT pauses and continues its output when the operator
pressed the Return key.

After displaying the Macro commands, MENOUT permits to request
more information about the Internal commands. If the operator
accepts this offer, MENOUT displays again the short menu.

- 251 -

L .''+

5.3 The High-Level Growth Controller Software

(The initial menu display sequence is also used for this pur-
pose; a LOGICAL variable controls the continuation of the
execution of MENOUT after the menu was output. This approach
was chosen rather than a subroutine call because it is more
program code efficient, and because it does not require awk-
ward measures like COMMON blocks or lengthy subroutine param-
eter lists to make variables available to all routines in-
volved.) Simultaneously, MENOUT opens the help file CZOMEN
for reading which holds five lines of text for each command.
There are two modes in which the contents of CZOMEN can be

* . displayed: One mode steps through the file, displaying record
by record, while the other one scans the file until a keyword
entered by the operator is found in the first line of an en-
try; only this entry is displayed. Both modes can be combined
since an empty input line ("Return" only) always results in
the next record being displayed, whereas the first four char-
acters of a non-empty input line are used to search through
the file CZOMEN. Multiple entries can therefore be searched
for in one pass, provided they are in ascending alphabetical
order. A single-character entry (nominally, "Q", but any
other character has the same effect) terminates the search,
and MENOUT is exited after closing the menu file and re-en-
abling a possible Debug output by setting the flag ENDBGO.

5.3.1.3.5 Overlay CZOV05 - Modules OPMODE and CLRSCR - Com-
mand MODE

The operation mode setting routine OPMODE displays a mode menu
similar to MENOUT, and permits the entry of a mode number.
The number entered is compared to the current mode and checked
for its validity; corresponding messages are output if either
the current mode was chosen, or if an illegal mode number was
entered. OPMODE permits to re-select the current mode; al-
though this has no effect whatsoever on the current growth
run, the command is recorded in the Command Output file and
may be effective during a later execution of this file as a

* Macro command. (It may also be used to trigger a data dump on
the printer and in the Data file; there are more straightfor-
ward methods to achieve this, though.)

The operator is prompted for an acknowledgement of his mode
entry in any case. OPMODE requests an extra acknowledgement

r (with "OK" rather than "Y(es)") if the mode is changed from
Monitoring (mode 0) to any controlled mode, or vice versa, in
order to prevent the probably disastrous effects which an
inadvertent change might have. The newly entered mode is
encoded in a command number, and the command message is sent
to the Command Executor.

- 252 -

* .-. ,%

.4

5.3 The High-Level Growth Controller Software

w5.3.1.3.6 Overlay CZOV06 - Module DEBUGO - DEBUG Commands

The six DEBUG sub-commands - Continuously, Display, Modify,
Off, Resume, and Suspend - are handled by the two overlays
CZOV06 and CZOV07 (modules DEBUGO and DEBUG1, respectively)
which are concatenated similar to the two overlays for the SET
and CHANGE commands. The command execution is commenced in
the module DEBUGO where the command input line is first scan-
ned for the DEBUG mode switch, which is any one of the letters
C, D, M, 0, R, and S. As usual, a mode switch is requested if
none or only an illegal one was found.

The processing of the DEBUG commands requires various inter-
pretations of the input line, depending on which sub-command
was issued. In order to facilitate this processing, the en-
tire contents of the input buffer are read into an internal
buffer (LINBUF) from which input items are retrieved. The
contents of this buffer are shifted to the left by one item

lafter each successful input operation, which permits to read
the next item always from the beginning of the buffer. (Items
must be separated by spaces; the buffer shifting subroutine
SHIFTB simply advances to the first non-blank character after

.1 the first space and copies the buffer onto itself from this
location on.)

For all sub-commands except Off, either the name of a Variable
or an address is required as the first parameter. An input
item starting with a number is considered a (hexadecimal) ad-
dress, otherwise, the parameter is submitted to the routine
FINDAD which was already discussed in chapter 5.3.1.3.2. The
DEBUG routines distinguish between address and Variable input
by setting the Variable type location VARTYP to -1 in the case
of address specification, whereas values from 0 to 3 are re-
turned by FINDAD for Variables.

Indeed, the information otherwise provided by FINDAD in the
Variable type location must be obtained from the operator if
address input was chosen since DEBUG would not know how to
interpret the data at the specified address. (This informa-
tion is not needed for the Display sub-command which outputs
data anyhow in all perceivable notations.) A data format is,
therefore, retrieved from the input buffer or requested from
the operator if an address value was specified with a Continu-
ously or Modify sub-command. (The formats used for numeric
Variables are internally set to "Il", "12", and "R", depending
on VARTYP.)

The Continuously and Off sub-commands require a Debug Channel
number, i.e., the number of the output location in the Debug
line (1 to 4) which the command refers to. For both sub-com-

- 253 -

1 1M i l 1 1

5.3 The High-Level Growth Controller Software

mands, all necessary information is now available, and the
proper command messages can be sent to the Command Executor.

The Display and Modify sub-commands display the current con-
tents of the specified memory locations; in order to obtain

* this datum, four bytes beginning with the given address are
" -. copied into local memory in an approach similar to the one

used in SETPAR and SETVAR (compare chapter 5.3.1.3.1). The
contents of the specified location(s) are is immediately
displayed in several modes if the Display sub-command was
issued: The four bytes or part of them are interpreted as

• .. *.ASCII string data, as an INTEGER*I and INTEGER*2 variable, as
floating-point data (type REAL), and as hexadecimal numbers.
(A special treatment is necessary for the ASCII interpretation
in order to avoid problems with data bytes which might be
interpreted as control codes by the console terminal. Such
bytes are replaced by periods (".").)

While the Continuously, Display, and Off sub-commands already
have been completely processed when the end of the module

0 DEBUGO is reached, this is not true for the Modify, Resume,
and Suspend commands. They have to be passed on to the second
part of the DEBUG routine, DEBUG1 in CZOV07.

5.3.1.3.7 Overlay CZOV07 - Module DEBUG1 - DEBUG Commands

Similar to SETVAR, DEBUG1 is only loaded if DEBUGO returns
with a status flag set to ".TRUE.". Data are passed between
both routines by means of a special named COMMON block (DBG-
COM) which is located at the top of the overlay area where it
is preserved when DEBUG1 is loaded.

In order to conclude the processing of the Modify sub-command,
DEBUG1 displays the current contents of the specified memory
locations, and requests explicitly new data. Both values are
displayed again for operator confirmation, and the command

*message is built if the confirmation was given.

The sub-commands Resume and Suspend which permit to resume and
suspend the execution of an arbitrary task are treated essen-
tially in common: Both require the address or the name of an
iRMX-80 Task Descriptor as a parameter. Task descriptors

S. which are referred to as Variables have the Variable type
value of zero returned by FINDAD. Since specifying an address
with a Resume or Suspend system call which is not the address
of an iRMX-80 Task Descriptor would have a disastrous effect
on the entire system, multiple safeguards are used besides
checking the VARTYP value: The name of the task, six alpha-

- 254

%S0
II

5.3 The High-Level Growth Controller Software

numeric characters, is stored in memory locations whose start
address can be derived from the presumptive Task Descriptor.The command is cancelled if either non-alphanumeric characters

are detected in the name area, or if the first character is
not alphabetic. After an operator acknowledgement, a proper
command message is again dispatched to the Command Executor
which will, in turn, resume or suspend the specified task.

5.3.1.3.8 Overlay CZOV08 - Modules FRAME and TIMLIN - Command
RESTORE

This overlay provides the mask for the "fixed" output on the
console CRT screen. It is executed upon a RESTORE command,
and during the system initialization.

FRAME which is in charge of the main output mask first dis-
ables the output of measured data by resetting the flag
RESTDO(3). This is important to avoid interferences between
the two groups of output operations. Furthermore, Debug out-
put in line 17 is suspended by resetting the flag ENDBGO.

V. FRAME clears the CRT screen, and calls TIMLIN which restores
the top (time) line. Subsequently, all fixed output items are
written one by one, followed by a five line parameter dimen-
sion information written over the scrolled screen area.
Having provided this menu, FRAME enables the output of mea-
sured data by setting RESTDO(3), and actually enforces data

-'output by setting the remaining two flags of the array
RESTDO. FRAME pauses then until the operator presses the
"Return" key to permit him to read the display in the scrolled
area. Writing a blank line into the actual scrolled output
restores the previous contents of the scrolled area after a
RESTORE command.

5.3.1.3.9 overlay CZOV09 - Module FILES - Command FILES

The subroutine FILES permits to display the current status of

the three output disk files (the Documentation, Data, and
Command file), and to change the status of a selected file.

First, FILES displays the name and the status of each file.
The file names are kept in the CHARACTER array FILNAM; the
file status is determined by the values of IOFLAG and FILLOC.
The proper element of the array IOFLAG is set to ".TRUE."
whenever a file is actually active, i.e., data can be written
to it. FILLOC, in contrast, represents the physical location
of a file; 0 and 1 stand for drive 0 and 1, respectively, and

- 255 -

5.3 The High-Level Growth Controller Software

2, for output to the printer. FILLOC is set to 3 if no file
is open at all. In the case of the Control Output file, the
setting of the flag RECORD has also to be taken into account
which is ".TRUE." while commands are actually recorded (i.e.,
after a START command), and ".FALSE." otherwise.

The operator may now specify one of the three output files
which he wants to be opened and closed, or return immediately
to COMINT. The actual file treatment is performed by one of
three separate overlays; the proper overlay number is deter-
mined by FILES and passed to COMINT in OVRLAY; COMINT concate-
nates the proper routine.

5.3.1.3.10 Overlay CZOV10 - Module REOCMF - Commands START

and FILES

The subroutine REQCMF can only be called via the START and
FILES commands; it opens, initializes, and closes Control (or
"Command") Output files.

9 The response of REQCMF depends on the status of the file; it
distinguishes between three cases:

(1) No Command Output file is open (IOFLAG(3) is ".FALSE.",
and FILLOC(3) is 3).

(2) The file has been opened, but it cannot be written to due
to a preceding disk error (IOFLAG(3) is ".FALSE." but
FILLOC(3) is not equal to 3).

(3) The file is open and active (IOFLAG(3) is ".TRUE.").

In the first case, REQCMF offers the operator to open a Con-
trol Output file, and requests a file name if he agrees. A

A" complete Macro file name is built from the operator's entry by
appending ".CMD" (with the subroutine MAKEFN), and the result-

S.. ing file name is checked for validity and for the drive where
the file will be located (with CHKFNM). In order to prevent
the accidental overwriting of an existing file (if the opera-
tor entered the name of a file which already exists on the
same disk), REQCMF tries to open the file with the specified
name for reading first, and issues a warning if this procedure
was successful, i.e., if a matching file was found. Other-
wise, the Command Output file is opened for writing, and a
header record is written to it. The header record holds zeros
in its first two bytes (which otherwise contain the execution
time of a command), and the system version code in the third
and fourth byte. The remaining 12 of the 16 bytes of the

-256 -4.

5.3 The High-Level Growth Controller Software

header record are currently undefined. REQCMF finally sets
IOFLAG and returns to COMINT.

In the second case, REQCMF permits either to re-activate the
* file (possibly, the error condition has already been corrected

which set it inactive), or to close it. An open and active
file may be closed only; if the operator agrees to close the
file, IOFLAG and RECORD are reset, FILLOC is set to 3, and the
file name string is deleted.

5.3.1.3.11 Overlay CZOV11 - Module CALCUL - Command CALCULATE

The CALCULATE command constitutes a helpful utility which is,
in fact, not connected to the crystal growth process at all.
CALCUL permits to evaluate the sum, the difference, the prod-
uct, and the quotient of two numbers. With regard to the

"* requirements of the DEBUG commands, three formats are select-
4able for input and output data, namely, (two byte) Integer,

Hexadecimal, and Real (floating-point). One set of instruc-
tions applies to the processing of floating-point input
values, and an other, to integer and hexadecimal data. The
results are displayed in decimal and hexadecimal notation in
either case; the CALCULATE command may therefore be used to
determine the internal (hexadecimal) representation of an
arbitrary integer or floating-point value.

5.3.1.3.12 Overlay CZOV12 -Module DATAFI - Commands FILES
and DATA

With the exception of the header record generation, the rou-
tine DATAFI which is responsible for the initialization and
maintenance of the Data file is analogously identical to
REQCMF (compare chapter 5.3.1.3.10).

A data sampling interval (in seconds) is requested from the
operator when a Data file is opened; any value between 1 and
255 is accepted. The header record is built after the opera-
tor acknowledged the interval value. It contains the date,
the run ID, the data records interval, and the system version.
This header which is 32 bytes long is written to the newly
opened Data file four times, to permit the first Data record
to start at a disk sector boundary. (This is important be-
cause disk operations are much faster if an entire disk sector
can be written or read.)

- 257 -

*.!

" I''

5.3 The High-Level Growth Controller Software%

5.3.1.3.13 Overlay CZOV13 - Module EXICZO - Command EXIT

This module has the chore of "closing down" the CGCS and the
puller. It requires a double acknowledgement by the operator
to be actually executed, in order to prevent accidental exit-
ing from the CGCS. It performs the following operations:

(1) EXICZO disables periodic data dumps to the Documentation
output.

(2) It sends an END command to the Command Output file if such
a file is still open.

(3) It clears potentially pending Conditional Commands by
transmitting a CLEAR command code to the Command Executor.

(4) It performs a QUIT command (calling QUITCM) to preempt a
currently active Macro.

(5) It switches off Data recording by de-activating a Data
- file (setting IOFLAG(2) to ".FALSE.").

(6) It shuts the system down with the following actions if the
. digital system is actually controlling the puller:

(a) It terminates automatic growth, changing the operation
mode to "Manual" by sending an appropriate command
message.

(b) It terminates any parameter ramping possibly still in
progress by resetting the Ramping flags RMPFLG (com-
pare chapter 5.3.1.4).

(c) It checks the current values of the motor speed and
power limit setpoints, and enters into the following
actions if any one of them is not equal to zero:

(1) It permits the operator to skip from EXICZO and to
*shut the system down on his own account.

(2) It ramps the power limit setpoint to zero within
approximately 6 hours unless it is already zero,
generating an appropriate command message.

(3) It ramps the seed and crucible lift speeds to zero
within one minute.

(4) It provides a time countdown in the input prompt
line which starts at 360 minutes if the power

- 258 -

5.3 The High-Level Growth Controller Software

limit need be ramped down, and otherwise at one
minute.

(5) It ramps the seed and crucible rotation speeds to
zero within one minute when the countdown display
shows one minute.

r(d) It prompts the operator to switch off the puller's
* power supply, and submits control to the analog con-

troller when the operator indicates that this is pos-
A -sible by commanding "EXIT" again. The operation mode

is set to Monitoring with a suitable command message.

(7) EXICZO disables the output of measured data, and stops the
Measured Data Output Task (compare chapter 5. 3. 1.5).

* *: Simultaneously, it resets the Timer Output Enable flags
ENTIMO to prevent the display of new time strings.

(8) It closes all output files which are possibly still open,

(9) Clears the console screen and writes a sign-off message,

(10) Switches all output relays off, and

(11) Calls the routine FREXIT which will re-boot RXISIS-II.

.~ ~,5.3.1.3.14 overlay CZOV14 - Module CONDIT - Command IF

CONDIT receives the command input line buffer from COMINT; it
tries to retrieve a Variable name from it by scanning to the
first non-blank character after the first space. A Variable
name is requested if none was found. This name is converted
to uppercase (with FRCVUC) and processed by FINDAD which
returns the address and the type of the Variable specified.

::Z .Next, one or two relational characters (" 11<I1=11, or 1'>11) are
* either read from the input buffer, or explicitly requested. A

numeric value of 1 to 3 is assigned to each valid relational
character; the two relational characters and the Variable type
are packed into one byte of the command message in order to
conserve space. After a comparison value which is simply
stored in the command message, the name of the Macro command
which is to be executed conditionally is retrieved in the

0standard way. A Macro file name is built from the command
name (with MAKEFN), and CONDIT tests the requested Macro file
in the same way which COMINT uses for the same purpose. The
Macro name is stored in the command message which is dis-
patched if the file exists and the operator acknowledgement
was obtained.

- 259 -

5.3 The High-Level Growth Controller Software

5.3.1.3.15 Overlay CZOVIS - Module DISPLY - Command DISPLAY

DISPLY requires the name of the Variable whose value is to be
displayed as its only input. The name is either read from the
input line buffer, or explicitly requested. After a conver-
sion to uppercase, it is submitted to FINDAD which returns the
address and the type of the Variable. The Variable is read
subsequently with the algorithms already discussed above (com-
pare chapters 5.3.1.3.1 and 5.3.1.3.2), and displayed accord-
ing to its type.

5.3.1.3.16 Overlay CZOV16 - Module DOCUMT - Commands FILES
and DOCUMENTATION

The module DOCUMT is accessed during the initialization se-
quence, from FILES, and at a DOCUMENTATION command call.
DOCUMT is very similar to REQCMF (compare chapter 5.3.1.3.10)
and to DATAFI (compare chapter 5.3.1.3.12). The major dif-

-1 ferences between these routines are (aside from the different
IOFLAG and FILLOC array elements which they use):

(1) DOCUMT explicitly permits to use the printer as an output

device (which would not make sense with the other two
files).

(2) It permits to specify an interval for the periodic output
of measured data to the Documentation file, and

(3) It opens the Documentation file, enables printer output
(in case it was disabled due to a printer timeout), and
initializes the output routines with a call to the routine
STARTP which is part of the DATOUT module (compare chapter
5.2.2.9). STARTP presets the line counter and generates a
page header line in the Documentation file.

5.3.1.3.17 Overlay CZOV17 - Module DIRECT - Command DIR

DIRECT displays the directory of the disk in the drive speci-
fied, together with some information about the disk itself.
Having obtained a valid drive number (0 or 1), DIRECT first

0., reads the disk label, i.e., the name of the disk, which is
kept in the file ISIS.LAB. Next, the routine determines by
checking the file location array FILLOC whether files are open
for output on the specified disk. In this case, the informa-
tion about the free and used disk space cannot be reliably
obtained (because iRMX-80 maintains a disk allocation map in

-260-

eti

5.3 The High-Level Growth Controller Software

its internal memory and writes it back to the disk only when a
file has been closed), and the corresponding values are pre-
ceded by "less than" and "greater than" signs, respectively.
The number of occupied sectors on the disk is retrieved from
the disk map file ISIS.MAP; each bit set in ISIS.MAP cor-
responds to a used sector. These bits are counted by the
(assembly language) Function BITCNT, and written to the direc-
tory header line. Since each single-density, single-sided 8"
disk holds 2002 sectors of 128 bytes each, the number of free
sectors can be calculated easily. Finally, DIRECT reads the
disk directory file ISIS.DIR, and displays all file names in a
way similar to the one chosen for the Help menu output (com-
pare chapter 5.3.1.3.4). DIRECT can only output 6 entries per
screen line since full file names, including extensions, have
to be displayed. The routine pauses after having written the
header line and four lines of directory contents, and con-
tinues overwriting the directory display with new data after
the operator pressed the "Enter" key. DIRECT returns to
COMINT when the "Enter" key was pressed after the last valid
directory entry was displayed.

.%

5.3.1.3.18 Overlay CZOV18 - Module RESOVL - Command RESET

The RESET command is indispensable for the initialization of
the diameter evaluation routines. It prepares not only the
buoyancy compensation routines in the module SHAPE (compare
chapter 5.3.2.2) but initializes also the weight and length
values displayed. RESOVL offers the standard option of reset-
ting length and weight to zero; it permits to maintain the
current value for each of these parameters or to enter new
values if the zeroing option was rejected. The values input
by the operator are scaled to obtain integer data in the for-
mats used internally for weight and length representation; a
value of -32768 (the most negative integer value) indicates
that the corresponding parameter value should be preserved.
RESOVL sends these values to the Command Executor which calls
the actual reset routine.

,. 5.3.1.3.19 Overlay CZOV19 - Module INIDAT - Command
*a INITIALIZE

i ..- INIDAT is called upon an INITIALIZE command and, in addition,
during the system preparation sequence. It displays the cur-

rent values of six system parameters (seed and crucible dia-
meter, boric oxide weight, and the densities of the solid
crystal, the semiconductor melt, and the boric oxide melt),

- 261 -

R 1

5.3 The High-Level Growth Controller Software

and permits the operator to either accept them by pressing
"Return" only, or to enter new data. Negative values, which
are invalid in any case, are trapped, and the parameters are
converted back to their internal storage format. In order to
facilitate diameter evaluation, the system uses the squares of
the diameter values, and densities in grams per cubic milli-
meter. Finally, INIDTA checks the minimum height of the boric
oxide encapsulant melt (i.e., the height of a cylinder of mol-
ten boric oxide with the specified mass which fills the entire
cross section of the crucible) , and sets the boric oxide
weight to zero if it is too small to be handled properly by
the Diameter Evaluation routine (compare chapter 5.3.2.2.3).

5.3.1.3.20 Overlay CZOV20 - Module PLOTOV - Command PLOT

"' The module PLOTOV permits to link Variables or memory loca-
tions specified by absolute addresses to one of the eight Plot

* Channels. An approach similar to the one used in DEBUGO is
applied to separate Variable and address inputs; Variables
must be in INTEGER*2 format in order to be displayed, whereas
this format is implicitly assumed for memory locations speci-
fied by their absolute addresses. PLOTOV scans the input
string for name/address and channel information, and requests
data if applicable. Further processing of the PLOT command is
done by the Command Executor to which a pertinent message is
dispatched.

5.3.1.3.21 Overlay CZOV21 - Module CLEARO - Command CLEAR

Two versions of the CLEAR command are supported by CLEARO,namely, the Unconditional, and the Selective Clear. CLEARO

scans the input line for the name of a Variable, and assumes
that an Unconditional Clear is issued if no Variable name is
found. An operator reconfirmation is requested, and a prompt

• for a Variable name is issued if the operator indicates he did
not want an Unconditional Clear. The Variable name is pro-
cessed as usual (with FINDAD), and a command message is sent
to the Command Executor when the operator acknowledges his
entries.

. 262 -

5.3 The High-Level Growth Controller Software

5.3.1.4 The Command Executor - Task CMMDEX

The Command Executor receives command messages from two
sources, namely, from the Command Interpreter, and from the

S Command File Input Task (compare Fig. 17). The special FOR-
,. ' TRAN-iRMX-80 Interface Routines used (compare chapters 5.2.1.1

and 5.2.1.2) automatically advance these messages to the Com-
q •mand File Output Task which eventually records them in the

.. Command Output file. The Command Executor's commission is to
process each command message, and to execute several otherprocedures which have do be run in regular intervals.

CMMDEX runs once every second; its timing is indirectly de-
rived from the Timer Task FXTIME. The first action of CMMDEX
after it performed a few initialization subroutine calls (but
not the first action after it starts running every second) is
to receive a command message if there is one. In most cases,
there will be none; the approach of using command messages
has, however, the advantage that these messages will be queued
by the operating system in the order in which they were issued
if more of them are generated than can be processed. There-
fore, it is possible to have CMMDEX process only one command
message every second without losing commands; in the worst
case, the command execution may be delayed by a few seconds.

5.3.1.4.1 Command Message Processing

CMMDEX first decodes a command message if one was received.
The first byte of each command message holds a command code
which consists of a major Mode (corresponding to "SET" or
"DEBUG") in the high four bits of the byte, and a Switch
(e.g., for "SL" or "Continuously") in the low four bits.
These values are separated, and control is vectored to the
proper processing sequences.

Mode = 1 and 2 - SET and CHANGE Internal parameter

Mode values of 1 and 2 correspond to SET and CHANGE commands,
respectively, which apply to Internal parameters. CMMDEX
first determines the address where the specified setpoint is
to be stored: There are two arrays for the setpoints of the

* Internal parameters, STPNTO and STPNT1, which correspond to
the left and right setpoint columns displayed on the console
screen. STPNTO always holds the setpoint values which are
actually used by the various controller routines, and which
are the ones which are normally ramped by CMMDEX. There is,
however, an important exception to this rule if an Internal

-263 -

VW

5.3 The High-Level Growth Controller Software

parameter is controlled, e.g. , the heater temperatures in
diameter controlled operation modes. In this case, CMMDEX
stores the output of its ramping generator in STPNT1 rather
then in STPNTO; the LOGICAL Function CNTRL (which is actually
an assembly language subroutine) returns ".TRUE." in this
case. CMMDEX sets a memory location according to the (set-

* . point) variable type (all Internal parameters are two-byte
integers) and enters a sequence of code which is also used for
SET and CHANGE commands applying to Variables, and by the
Conditional Command Executor algorithms. A f lag (L) is used
to branch to the Conditional Command Executor code after the
common sequence; although this approach is certainly not con-

V sistent with structural programming techniques, it is the most
efficient way with regard to the large number of local memory
locations whose contents are used inside and outside the com-
mon code.

Having issued a warning if a SET or CHANGE command was entered
while the CGCS is in monitoring mode, i.e., not controlling
the puller, CMMDEX determines the current contents of the

* target locations, and converts them to floating-point format
if necessary. For CHANGE commands (Modes 2 or 10) , a new
final value is calculated by adding the message input value to
the current target location contents; for SET commands, it is
directly derived from the value passed with the command mes-
sage. The magnitude of the resulting value is checked if it
has to be stored to integer locations which have a limited
numeric range; the result is set to the permitted maximum with
the correct sign, and an error message is issued, if an over-
flow is detected. Similarly, diameter, temperature, and power
limit setpoints are checked for negative values; the above
result is set to zero and an error message ensues if any of
these setpoint values is found to be negative.

The processing of all SET and CHANGE commands continues in a
Command Executor code sequence called Ramping Preparation:
The CGCS is able to ramp up to twenty independent parameters;
all ramping control structures are therefore arrays with twen-

*ty elements each. Each channel holds an address, a variable
type, and starting, final, increment, and breakpoint values;
the latter four in floating-point notation to guarantee the
necessary resolution and dynamic range. CMMDEX assigns a
ramping channel according to availability to a parameter or
Variable which is to be ramped; only the Variable address
indicates which datum is handled in which channel. In order
to prevent confusions if a SET or CHANGE command was issued
for data which are currently being ramped, CMMDEX checks first
whether the address passed is already used by one of the
ramping channels, in which case this particular channel is
updated. Otherwise, CMMDEX searches for an unused ramping

-264-

5.3 The High-Level Growth Controller Software

channel (unless all channels are used or a transition time of
zero was entered, in which cases ramping is bypassed, and the
final value is stored immediately at the target address). The
status of a ramping channel is determined by RMPFLG which is
zero if a channel is not used. It is set to the number of an
Internal parameter (1 to 9), or to -1 if a Variable is
ramped. The Ramping Preparation code stores the current and
final values of the parameter to be ramped; an increment value
is calculated by dividing the difference between the initial
and the final values by the ramping time in seconds, and a
breakpoint, by multiplying the absolute value of the increment
by 1.1 and adding a small number. Finally, CMMDEX stores the
final values of Internal parameter setpoints in the corre-
sponding array (unless the parameter is being controlled), and
continues with the Ramping Executor sequence.

Mode = 3 - Macro command, Unconditional CLEAR

A Mode value of 3 indicates either a Macro command (Switch-
0), or an Unconditional CLEAR command (Switch = 1).

The Macro name passed with a Macro command message is expanded
into a full Macro file name (i.e., ".CMD" is appended). A
possibly active Macro command is preempted (with a QUITCM
call), and a pertinent message is issued. CMMDEX tries to
open the Macro file; the QUITCM call is repeated if the old
Macro file was not yet closed by the Command File Input Task

. .or if the file could not be opened due to a temporary shortage
of pool memory (which may happen under adverse conditions).
An explicit error message ("Macro ... doesn't exist") is gen-
erated if the new file was not found, and the internal disk
error message is output in case of any other error. CMMDEX
reads the first 16 bytes of the new Macro command file and
checks whether the first two bytes hold zeros, and the ne>-t
two, the version code of the currently used system. The Macro
command is cancelled if the first condition is not met, and a
message referring to a "restricted command set" is issued if

0 the system versions do not match. The flag DEBUGE is set in
this case; it indicates to the Command File Input Task that
all commands which refer to absolute memory locations, i.e.,
all commands with a command Mode value greater than 7, must be
discarded (compare chapter 5.3.1.6). In any case, IOFLAG(4)

' ~.is set to indicate to the Command File Input task that there
*~ is an active Macro file, and the flag RUNTIM activates the

alarm clock timer. An internal counter, MACPRO, is set to a
starting value of 4. This value will be decremented by
during each of the subsequent passes of CMMDEX, once ever.
second, until it finally reaches zero; the checking of Cond:-
tional commands is inhibited while MACPRO is not zero (cocrr-i7

- 265 -

5.3 The High-Level Growth Controller Software

chapter 5.3.1.4.5). Finally, CMMDEX writes the name of the
Macro command into the top line of the output screen, and
generates a message which indicates that the execution of this
Macro was started.

The Unconditional CLEAR command is processed very straightfor-
wardly: The eight Conditional Command flags and the Condi-
tional Command counter are reset, and a pertinent message is
issued.

Mode = 4 - MODE

CMMDEX outputs a "New mode:" message upon receipt of a MODE
command, and triggers a Data Dump in the Documentation Output.
Subsequently, it checks for the following mode changes which
require special initialization:

(1) Change from "Monitoring" to any controlled mode: In order
to avoid transients when the CGCS takes over from the

*_ analog system, all measured values of the Internal parame-
ters have to be duplicated to the corresponding setpoint
locations in STPNTO. Simultaneously, all ramping flags
and the ramping counter are reset. It is therefore not
possible to transfer a constant or ramped Internal parame-
ter setpoint from uncontrolled to controlled mode.

(2) Change from not diameter controlled modes ("Monitoring",
"Manual") to any diameter controlled mode: CMMDEX checks
in this case whether the Diameter setpoint is currently
being ramped, stops its ramping if it is, and copies the
current actual Diameter value to both Diameter setpoint
locations.

(3) Changes between modes in which certain Internal parameters
are controlled: All twenty ramping channels are scanned
to find a ramped Internal parameter which was not control-

led in the previous mode but is controlled in the new
mode, or vice versa. In the first case, the output of the
Ramping Generator is directed to the second setpoint array
STPNT1 rather than to the first one, STPNTO, and the cur-
rent value of the affected element in STPNTO is copied to
STPNT1 in order to avoid transients; in the second case,
the ramping is stopped.

CMMDEX finally sets the Mode flag used by the remainder of the
system, and ju-ips to a sequence in the Ramping Executor which
outputs the Mode information in the "fixed" part of the con-
sole screen.

M - 266 -

5.3 The High-Level Growth Controller Software

Mode = 7 - RESET

A RESET command is processed by a simple call to the subrou-
tine RESET which is part of the assembly language module SHAPE
(compare chapter 5.3.2.2).

Mode = 9 and 10 - SET and CMAGE Variable

Essentially, the algorithms described for Mode =1 and 2 are
used in treating Variables.

p.

Mode = 11 - IF and Selective CLEAR

A SWITCH value of 0 represents a Conditional (IF) command, a
value of 1, a Selective CLEAR.

CMMDEX can handle up to eight Conditional Macro commands;
Conditional commands which are issued while already eight
commands are pending are ignored, and a pertinent error mes-
sage is issued. After a free storage location was found for

%P the new command, the two relation code values and the Variable
type information are extracted from the command message byte
in which they were stored, and the comparison value, the Vari-
able address, and the name of the Macro command which is to be
executed conditionally are written to the proper locations for
use by the Conditional Command Executor.

In case of a Selective CLEAR command, CMMDEX compares the
Variable addresses stored for all currently active Conditional
Command Channels to the Variable address passed with the com-
mand message. A channel is deactivated (by resetting its
status flag) , and a "Conditional Macro cleared" message is
issued if matching values are detected. (This may happen more

~ than once if several Conditional commands referred to the same
Variable.)

Mode = 14- PLOT

CMMDEX stores the address passed with the command message in
the element of an address array which is determined by the

PIP Plot Channel number specified with the command.

0P

-267-

S5

5.3 The High-Level Growth Controller Software

Mode = 15 - DEBUG

The DEBUG command uses a Switch value which can have the val-
ues 2 through 5. Upon a DEBUG Continuously command (Switch =
2), the variable address and type are stored in locations of
the pertinent Debug arrays whose index is determined by the
Debug Channel number (1 to 4). The DEBUG Modify command
(Switch = 3) is processed by storing the correct number of
bytes at the specified address. The DEBUG Resume and Suspend
commands, finally, are executed by calls to the proper inter-
face routines.

5.3.1.4.2 The Ramping Executor

This part of the Command Executor is accessed after the treat-
ment of any command, and if no command was received at all.
The first commission of the Ramping Executor has nothing to do
with ramping yet: CMMDEX tests the flag RESTDO(2), and writes

* the operation mode to the "fixed" part of the console screen
whenever RESTDO(2) is found set, resetting the flag simultane-
ously. (This flag is set within the routine FRAME to enforce
data output to the console screen after it was cleared; com-
pare chapter 5.3.1.3.8.)

CMMDEX waits subsequently for a Flag Interrupt which is trig-
. gered once every second when a flag is set by the Analog Con-

troller Task ANACNT which, in turn, is triggered directly by
the Timer Task FXTIME. (The tructure of the FORTRAN-iRMX-80
Interface software prohibits chat several tasks be triggered
in parallel by the Timer output.) The subsequent parameter
ramping is therefore done in relatively regular intervals of
one second, no matter how long the processing of input data
took.

For each active ramping channel (ramping flag not equal to
zero), CMMDEX tests whether the absolute value of the differ-

*ence between the current setpoint and the final value is al-
ready less than the breakpoint value which was determined
during the ramping preparation. The current setpoint is set
to the final value in this case, and ramping of this channel
is disabled. Otherwise, the increment is added to the current
setpoint, and the current setpoint is stored in memory in the

0., proper format in either case.

- 268 -

'5.3 The High-Level Growth Controller Software

5.3.1.4.3 Floatina-Point Conversion of Measured Data

All measured analog data are primarily stored and processed as
two-byte integers. Unfortunately, these values are hardly
suitable for use in Conditional Macro commands because they
have to be scaled to be meaningful. This is done by the Com-
mand Executor during each pass.

I~.

5.3.1.4.4 DEBUG Data Retrieval

During each pass, CMMDEX reads four bytes at the addresses
specified with each active DEBUG Continuously command, and
stores them in an array from which they will eventually be
output by the Measured Data Output Task.

5.3.1.4.5 Conditional Command Executor

The Conditional Command Executor sequence within CMMDEX is
executed only if the internal counter MACPRO holds zero.

. MACPRO is preset whenever a new (Conditional or unconditional)
Macro command has been started (compare chapter 5.3.1.4.1),
and is reset to zero within several seconds. (The timing of
CMMDEX is slightly corrupted when a Macro command is being
activated, due to the relatively time-consuming disk accesses

:. involved in this process. It is therefore not possible to
specify the exact duration of the delay enforced with MACPRO.)
Disabling Conditional command checking temporarily while a new
Macro is being started guarantees that at least the first

Pcommand of the new Macro can be executed (provided its rela-
tive time is zero or 1 seconds) without being preempted by a
possibly concurrently activated Conditional command. (The
first command in each file which must not be preempted prema-
turely should therefore be a CLEAR command at a relative time
of 0 or 1.)

For each of the eight potentially pending Conditional Macro
commands, the value stored at the specified Variable address
is read (using the algorithm of the SET/CHANGE commands, com-
pare chapter 5.3.1.4.1) and compared to the constant passed
with the command. If the result of the comparison matches the

*specified relation(s), the Macro command is invoked using the
code sequence of the Macro command processing described in
chapter 5.3.1.4.1. The message "Conditional Macro started" is
output before control is transferred to the standard Macro

d. command processing. This results in a possibly confusing

- 269 -

Uh

5.3 The High-Level Growth Controller Software

sequence of messages if the Conditional Macro preempts an ac-
tive Macro command:

"Conditional Macro started" - output by the Conditional Corn-
mand Executor.

"Command Macro preempted" - refers to the old Macro.

"Executing Macro ... "-gives the name of the new Conditional

Macro started.

5.3.1.4.6 Data Dump to the Documentation File

Data dumps are generated by the subroutine DUMPDT which is
invoked by the Command Executor's main routine CMMDEX. DUMPDT
continues execution if either the Dump Flag DUMPFL is set, in-
dicating a Data Dump request, or if the number of one-minute
Flag Interrupts has been encountered which was specified as a
Dump interval when the Documentation file was opened. DUMPDT
generates three output lines which contain 21, essentially
measured, system parameters identified by two-character mne-
monics (compare chapter 4.6). A pointer array is used to
assign data from the (floating-point) array REALDT to the
proper output locations, and output is written to a buffer
which is pre-loaded with the identification text frame when
the CGCS is read into memory. The three buffers each of which
outputs seven parameter values are written in turn to line 24
of the console screen (which is, in fact, not usable for
permanent display since it is cleared during each console
input request), using the standard Console/ Documentation file
output routines STROUJT (compare chapter 5.2.2.9). In this
case, it is not the output on the CRT screen we are interested
in, but its duplicate, tagged with the time information, in
the Documentation output. (Line 24 of the CRT screen is
cleared by a concluding line of spaces to keep the console
screen tidy.) Finally, DUMPFL is reset in any case in order

0 to be ready to accept a new Dump request.

The FORTRAN module which holds DUMPDT contains, in addition, a
4: small routine DUMP which can be called by any task which wants

to trigger a Data Dump. In addition to setting DUMPFL to
".TRUE.", this routine also sets the flag byte TIMINT which is

0. normally set by the Timer Task FXTIME after the interval spec-
if ied when the Data file was opened, triggering the output of

NI", a data record to the Data file. Therefore, an additional rec-
%irk ord is entered into the Data file when DUMP is called. (The

status of TIMINT does not matter if no Data file is open and
active.)

-270 -

F i, M. .- po tow " a - - - - - - - - - - --
a ' . s '

5.3 The High-Level Growth Controller Software

5.3.1.4.7 Analog Output to a Chart Recorder

The subroutine PLOTPR which is called next by the Command
-" Executor Task CMMDEX prepares data for analog output. PLOTPR

does not output these data, though; the latter commission is
- done by the Analog Data Controller ANACNT.

First, PLOTPR calculates the "expanded" temperature, growth
rate, and diameter and crucible position errors which were
specially provided for chart recorder output. This procedure
involves, in general, proper scaling, limiting to maximum and

i .: minimum values, and adding of an offset if required. Next,
PLOTPR retrieves the contents of the eight locations pointed
to by the Plot Channel address array elements. It calculates
the absolute values of these data, and provides a message on
the console (and in the Documentation output) if a Plot Chan-
nel changed its sign since the last pass of PLOTPR. The re-
sulting eight INTEGER*2 values are stored with interrupts
disabled in order to prevent problems caused by the real-time

I environment; the (assembly language) subroutines DISINT and
ENINT disable and enable interrupts, respectively.

5.3.1.4.8 Program Code Integrity Check

In order to improve the chances to detect inadvertent modifi-
cations of the CGCS program code - due to hardware failures or

41 to software problems -, the routine MEMCHK is called at the
end of the CMMDEX code, before the task resumes its infinite
loop. MEMCHK calculates a signature byte for each 256 byte
page within the main CGCS program code, and compares it to the
signature obtained during the previous pass. An error message
is issued if the two signatures are found to be different,
i.e., if one of the 256 bytes checked changed its contents,
and the signature byte kept in memory is updated to the new
value. The output of error messages is suppressed during the
first pass of MEMCHK, immediately after the CGCS was loaded,
to permit the array of signature bytes to be initialized
properly. With each call of MEMCHK, five (5) 256-byte pages
are processed; MEMCHK loops to the beginning of its surveil-
lance area after it arrived at its end. The about 150 memory
pages which are monitored by MEMCHK are therefore tested once
every 30 seconds. The memory check comprises the entire CGCS
resident code area; for obvious reasons, it could neither
include the data locations nor the overlay area. Still, the
memory check encompasses about 70 percent of the entire memory
area, and it is easily possible that MEMCHK might detect a
damaged program code byte before it has been executed (with

S- conceivably disastrous results).

- 271 -

ut

.' p

5.3 The High-Level Growth Controller Software

5.3.1.5 The Measured Data Output Task - Task MEASDO

The task MEASDO provides all periodically updated output to
the console. It is not synchronized to any other system task
but loops continuously through its code. In order to prevent

VMEASDO from monopolizing the system (which would have the
effect that tasks with a lower priority could never be exe-
cuted), there are deliberate waits built into the task: At
eight roughly equidistant locations within MEASDO, the task
calls the subroutine WTOUTP which, in turn, executes a wait
operation for a specifiable number of iRMX-80 time units. (One
iRMX-80 time unit is 50 ms.) The number of time units for
which WTOUTP waits is kept in the system Variable INTRVL which
can be modified with SET, CHANGE, or DEBUG Modify commands.
The smaller this number is, the faster runs MEASDO obviously;
the minimum value of INTRVL is 1. (An INTRVL value of 0 halts
MEASDO indefinitely and irreversibly.) The current default
INTRVL value is 10; this value gives satisfactory response
during normal system operations. It is, however, recommend-
able to reduce the INTRVL value during adjustments of the
analog data acquisition hardware. The INTRVL value should be
restored to its standard value when full growth control is
required, in order to protect the system from being over-
loaded.

The infinite task loop of MEASDO is entered after two initial-
ization calls to FORTRAN-iRMX-80 Interface routines; it starts
with a check of the flag RESTDO(3) which "short-circuits" the
task if it is set, thus inhibiting data output. Next, MEASDO
copies all data which are to be output into internal memory
locations. This is necessary because most of the data loca-
tions are protected by software interlocks to prevent them
from simultaneous accesses by several tasks. MEASDO would

V. unduly block the data locations and, in consequence, all tasks
which also attempt to access them if it monopolized them
during the lengthy output operations; on the other hand, re-
peated access and release operations would impose an unaccept-
able overhead. The approach for copying the data locations

S. one by one, rather than using a program loop, may bewilder
'i experienced FORTRAN programmers. For the given number of

items, however, the technique chosen is faster and more code
efficient than a loop.

The actual output operations follow one standard approach:
[. The current (integer) data value to be output is compared to

the value of the same item during the previous pass of MEASDO.
The integer value is multiplied by its scaling factor and
written to the console only if the two values are different,
thus preventing the repeated output of constant data. In
order to enforce the data output regardless of whether an item

-272-

5.3 The High-Level Growth Controller Software

was updated or not, a loop is provided which sets all items of
the "old" array to the contents of the corresponding items in
the "current" array, plus 1, if the flag RESTDO(1) is set.
Evidently, the two arrays will hold different values for each
output item after this procedure.

After having output all items, MEASDO sets the "old" output
-R data array to the contents of the "current" data, and tests

whether output is required for DEBUG Continuously commands.
The scrolled output area is limited to four lines (18 through
21), and line 17 is cleared if Debug output was activated
since the last pass; the scrolled area is set to five lines
(17 through 21) if Debug output was deactivated. MEASDO
writes the address and the memory contents for each active
Debug channel into line 17; prior to the actual data output,
the screen area corresponding to the respective channel is

- . cleared (overwritten with spaces) if the Debug output mode was
changed. This procedure clears channels which are deactivat-

' 'ed, and it removes the previous output completely if the in-
•0 terpretation of Debug data and therefore the number of dis-

played digits was changed.

5.3.1.6 The Command File Invut Task - Task CMFINP

The Command File Input Task CMFINP reads commands from a Macro
file and sends them with the proper timing to the Command
Executor.

Each command in a Macro file is tagged with the time at which

the particular command is to be executed, relative to the time
of the call to the Macro command. This is accomplished by a
combined action of the Command File Input and the Timer Tasks:

The Command Executor sets the flag RUNTIM after each call to
" an existing Macro command file, which indicates to the Timer

Task that the seconds counter #2 is to be started (compare
chapter 5.2.4.1). The contents of this counter are compared

S..by the Timer Task to an "alarm clock" value once every second,
and a flag is set if the counter value is equal to or greater
than the "alarm clock" setpoint. The "alarm clock" value is
set by the Command File Input task according to the relative
time of the next command which is to be processed; CMFINP is,

O. in turn, triggered by the "alarm clock" flag.

VThe task loop of CMFINP starts with a wait for an "alarm
clock" flag interrupt. Since CMFINP sets the initial "alarm"
value to zero, such an interrupt will happen immediately when
the timer is enabled by CMMDEX upon a Macro command. CMFINP

-273-

5.3 The High-Level Growth Controller Software

reads one record from the Macro command file. The task
branches if a disk error occurred, if the end of the file was
encountered, or if a command which refers to absolute memory
locations was read from a Macro file generated under a dif-
ferent system version. In the first two cases, an "End of
Macro command file" message is output, the input from the file
is disabled (IOFLAG(4) is reset), the Macro file is closed,
the Macro name in the first line of the console screen is de-
leted, and the timer #2 is disabled by resetting RUNTIM (which
is called INPACT in CMFINP). CMFINP reports "Macro command
not executable" and reads the next command if the third excep-
tion condition was detected. For all valid commands, CMFINP
sets the "alarm clock" to the execution time of the next
command, and loops back to the initial wait. The command
message is dispatched to the Command Executor immediately
after the "alarm clock" interrupt.

This handling of Macro command files accounts for possibly
confusing sequences of system messages: CMFINP reads the next
command immediately after having sent the preceding one to the
Command Executor. CMFINP messages may therefore appear on the
screen even before the last command was processed by the Com-
mand Executor.

5.3.1.7 The Command File Output Task - Task CMFOUT

The Command File Output Task CMFOUT receives command messages
from the Command Executor. It appends the relative time of
the command, i.e., the difference between the current value of
the (first) seconds counter in the Timer Task FXTIME (compare
chapter 5.2.4.1) and the value which this counter had when the
START command was issued. This time information is stored in
the first two bytes of a 16 bytes record, followed by the
command message proper. CMFOUT traps Macro commands which are
not recorded on purpose (compare chapter 4.5), writes the
record to the Command Output file, and disables itself if the
command was an END command.

5.3.1.8 The Disk Output Task - Task DSKOUT

The task DSKOUT which resides in the FORTRAN module DSKDAT is

in charge of output to the Data file. DSKOUT collects all
data in a buffer which are to be recorded, and writes this
buffer to the disk.

-274 -

V % 5- V %

or

5.3 The High-Level Growth Controller Software

5.3.2 The Process Controller

5.3.2.1 The PID Controller Routine FRPIDC

The actual process control approach used in the digital CGCS
S-. is, to a large degree, based on approaches used with conven-

tional analog techniques. In particular, the system uses PID
* (Proportional-Integral-Derivative) controllers for the closed-

loop control of various parameters. In contrast to an analog
system, however, where separate controller hardware is re-
quired for every control loop, the CGCS contains only one ge-
neric PID controller routine which performs (with different
parameters) the following functions (compare chapter 4.1.2):

(1) Motor Speed Control: The outputs which determine the
speeds of the four puller motors (seed and crucible lift
and rotation) are controlled according to the differences
between the corresponding setpoints and the actual speed

. values. This approach permits to compensate for motor
controller imperfections such as nonlinearities or off-
sets.

. (2) Temperature Control: The power output by the heater(s) is
controlled to maintain the heater temperature setpoint(s).

(3) Diameter Control: The heater temperature setpoints are
adjusted to provide a minimum diameter error.

(4) Crucible Position Control: The lift speed of the crucible
-.is controlled to reduce to zero the difference between a

calculated crucible position setpoint and the pertinent
actual value.

The PID Controller routine is, indeed, part of the FORTRAN-
iRMX-80 Interface programs, and is linked with the CGCS code
from the library FXUTIL.LIB. It is discussed here, though,
because of its great impact on the operation of the controller
routines proper.

*. FRPIDC is based upon high-speed integer algorithms. Its out-

put is calculated in several steps: Within the first step,
8 .the error E is derived from the setpoint S and the actual

value A by:

SE = S - A ()
I,

' ;. Subsequently, an intermediate result X is calculated according
to the following algorithm:

" "8* X = E.P/256 + (IE.I)/IS + DE.D/256 (2),

- 275 -

O.~2

-4 _ _ -P_ ~dy' _ _ _~

5.3 The High-Level Growth Controller Software

with P, I, and D, the proportional, integral, and derivative
multipliers, respectively. IE represents the error integral,
i.e. , the sum of all error values encountered since the PID
controller went into operation; IS is a scaling factor which
can be either equal to 256 or to 65536 (28 and 216, respec-
tively), depending on the value of a control flag. DE, final-
ly, is the difference to the preceding error:

IE'-I = E0'-I + El1 1 + ... + En-I (3)

4.,DE =En -n..l (4)

N The three terms in (2) are scaled by 256 (or by 65536) in
order to permit effective proportional, integral, and deriva-
tive multipliers with an absolute magnitude of less than one.
(The above values of the scaling factors were chosen because a
multiplication or division by a power of two imposes the least
time and code overhead.)

The integral component is calculated by accumulating the sum
0 of the error values, each multiplied by the integral multi-

plier, in a four byte (32 bit) memory location. (This ap-
proach is less sensitive to abrupt changes of the integral
multiplier I which may happen during the tuning of the system,
compared to accumulating the error sum and multiplying it by
the integral multiplier.) Depending on the magnitude of the
integral scaling divisor IS, either the least significant
byte, byte 0 (for IS = 256), or the two least significant
bytes, bytes 0 and 1 (for IS = 65536), of this internal sum
are discarded when the integral component of X is determined.
The integral component of X is the value of the next two
bytes, 2 and 1, or 3 and 2, respectively, which is rounded
according to the most significant bit of the discarded
byte(s), and set to the maximum positive or negative value if
IS = 256 was chosen and the accumulation of the integral ex-
tended into the fourth byte (byte 3). Optionally, the result-
ing~ two byte integral component may be compared to a limit
value; the entire four byte integral is modified to return an

* integral component which is exactly equal to the limit value
(with the sign of the four byte error integral) if the inte-
gral component would otherwise exceed the limit.

4 The intermediate result X is calculated by first adding the
J proportional and the derivative components, and finally, the

integral component. X may be limited to any arbitrary range
if the user chooses so; for a given limit L, X results in

X = -(L + 1) if X < -(L + 1)
X =L if X >L (5)
x =x otherwise

0. - 276-

5.3 The High-Level Growth Controller Software

This limiting operation is independent from the limiting of
the integral component although the same limit parameter is
used. A default value for L is assumed in either case (with
L = 32767) if either no limit was specified, or if a negative
limit value was given.

In order to improve the dynamic response of the PID routine, a
m "wind-up protection" feature was included. This feature pre-

% vents the error integral IE from overflowing when a limit con-
dition i.s incurred. Without "wind-up protection", the error
integral would continue accumulating in this case, which might
become particularly disturbing if a scaling factor IS of 256
is used and the integral extends into the highest byte. The
error integral would subsequently require a very long time to
recover from the previous condition even if the error already
changed its sign, which might obviously lead to control insta-
bilities. The "wind-up protection" can be explicitly activ-
ated by the user; it becomes only effective when a limit con-

*dition is incurred. In this case, the internally stored four
byte error integral can be adjusted in either one of two ways:
it can either be set to a value resulting in a (two byte)
integral component equal to the difference between the limit
value and the sum of the proportional and the derivative com-
ponents (mode A), or it may be adjusted to return an integral
component equal to the positive or negative limit value, as
demanded by the error integral's sign (mode B). Thus, the PIDK, controller is forced to remain in its active operation area;
the intermediate result X reacts immediately or almost immedi-

S. ~ ately to a decrease of the error rather than after the delay
otherwise inherent with the reduction of the error integral.
Activating the "wind-up protection" overrides the integral
component limiting function. The dynamic behavior of the PID
controller under its various operation modes is discussed in
more detail in Appendix 14.

Finally, the intermediate result is submitted to two additio-
nal adjustments: First, it is multiplied by a factor which is
a (positive or negative) power of two, and second, a bias
value B is added:

M =B + 2G . X (6)

The result, M, is output at last. The scaling factor 2G was
provided to permit an adjustment of the controller's output to
various devices. Some devices require, e.g., less than 16 bit
signed data, in which case a negative G value can be used to
dispose of the least significant G bits. It could also be
used for restricting the output signal to a certain range. A
positive G could increase the overall gain of the controller;

~ ;.'with regard to accuracy, this is, however, not recommended.

-277 -

'.45

-,-

5.3 The High-Level Growth Controller Software

The bias input, finally, centers the output of the PID con-
troller around the bias value B.

This handling of the bias value permits to introduce a non-
linear PID controller response by means of two stacked PID
controllers. The setpoint and actual data inputs of both

" controllers are connected in parallel; the output of the first
is used as a bias input for the second. Single controller
operation can be achieved by setting all multipliers of one of
the two stacked controllers to zero. (Which one does not
matter since they are exchangeable.) Nonlinear control is
possible if different parameters are attributed to both con-
trollers, and the output limit L is set to a value considerab-
ly less than 32767 for one of them. For an error resulting in
an intermediate signal X of the output limited controller less
than ±L, the output of the two controllers is the sum of the
outputs of either controller, and the resulting P, I, and D
values are the arithmetic sums of the corresponding parameters
of both controllers. In the output limited mode, the limited
controller contributes only its limit value whereas the other

[controller continues operating in its linear range; the P, I,
and D parameters of the two-controller system are thus equal

•- .to the parameters of the controller remaining active. It
seems, however, advisable to introduce some kind of wind-up

-- . protection at least for the output-limited controller in order
to permit a fast response of the system to sudden error
changes. Similarly, two stacked controllers can be operated
with different limit values and properly chosen P, I, and D
multipliers in order to provide, for example, integral control

- -.. with a wider limit margin than the faster proportional and
derivative components, which may contribute to an improved
reliability of the controller under noisy conditions.

The CGCS features the stacked PID controller approach for its
three diameter control loops, and for crucible position con-
trol. Particularly for diameter control, the second approach
mentioned above - different limits for the slow integral and
for the fast proportional and derivative controller components
- proved advantageous because it can very effectively prohibit
large and fast excursions of the heater temperature setpoints
due to the inevitable noise superimposed on the calculated
diameter value.

Essentially, the operation of the digital PID controller rou-
tine is akin to any analog PID controller. The time constants
in the integral and derivative parts of the controller func-
tion are determined by the frequency 1/T with which the con-
troller runs. In the linear region of the controller (no
limit incurred), eqs. (2) through (6) may be re-written as:

-278-

00 ,'f v e.MC

5.3 The High-Level Growth Controller Software

T

M B + 2G P'[E + I'/(P'.T) f Edt + (D'.T)/P'.dE/dt] (7)

0

with P', I', and D', the proportional, integral, and deriva-
tive multipliers of eq. (2) times their appropriate scaling
factors.

The parameters for the PID controller are kept in a 12 byte
array. The first two bytes of this array must be accessed

Sfrom FORTRAN as INTEGER*l locations (one byte integers), the
remainder, as INTEGER*2. The following data are kept in this
array:

-. I Byte 0: Gain Multiplier Exponent G

Byte 1: Control Byte, containing switches
for:

Integral Component Scaling: 0 ... IS = 256
1 ... IS = 65536

* Output Limit: 0 ... No Explicit Output Limit
1 ... Output Limit = +/- L

Wind-Up Protection: 0 ... Off
1 ... On

Wind-Up Protection Mode: 0 ... Integral set to L-(P+D)
1 ... Integral set to ±L

Integral Component Limiting: 0 ... Off
1 ... On

I Byte 2+3: Bias Value B

I I I Byte 4+5: Proportional Multiplier P

.i I I Byte 6+7: Integral Multiplier I

"I 1 Byte 8+9: Derivative Multiplier D

I Byte 10+11: Limit Value L

The control byte permits to set the operation mode of the PID
routine, namely, the scaling of the integral component, the
output limiting operations, and the wind-up protection. The
decimal values of the control byte listed below correspond
therefore to the following operations:

- 279 -

53The HighLevel. Growth Controller Sfwr

CNTL is Limit Wind-Up Prot. Integr.Lim.

0 256 ±32767 OFF ±32767
1 65536 ±32767 OFF ±32767
2 256 ±L OFF ±32767
3 65536 ±L OFF ±32767

4 256 ±32767 ON Mode A ±32767
5 65536 ±32767 ON Mode A ±32767
6 256 ±L ON Mode A ±32767
7 65536 ±L ON Mode A ±32767

8 5 326.FF±26

8 56 ±32767 OFF ±32767

10 256 ±L OFF ±32767
11 65536 ±L OFF ±32767

12 256 ±32767 ON Mode B ±32767
13 65536 ±32767 ON Mode B ±32767
14 256 ±L ON Mode B ±32767

015 65536 ±L ON Mode B ±32767

16 256 ±32767 OFF ±L
*17 65536 ±32767 OFF ±L

18 256 ±L OFF ±
19 65536 ±L OFF ±L

20 256 ±32767 ON Mode A*
21 65536 ±32767 ON Mode A*
22 256 ±L ON Mode A*
23 65536 ±L ON Mode A*

24 256 ±32767 OFF ±L
25 65536 ±32767 OFF ±L
26 256 ±L OFF ±L
27 65536 ±L OFF ±L

28 256 ±32767 ON Mode B*
029 65536 ±32767 ON Mode B*

30 256 ±L ON Mode B*
31 65536 ±L ON Mode B*

* Wind-up protection overrides integral limiting.

Wind-up Protection mode A entails that the integral component
is set to the limit value minus the sum of the proportional
and the derivative components if the output exceeds the limit;
in mode B, the integral component is set to the positive or
negative limit value, as appropriate. Compare Appendix 14 for
a detailed discussion of the operation modes of FRPIDC.

-280 -

5.3 The High-Level Growth Controller Software

ROUTINE FRPIDC:

Routine Type: Assembly language subroutine; reentrant.

: :<' Initialization: none

Routine Call:

CALL FRPIDC (data, parameter)

with: data: Name of a 6*INTEGER*2 array holding:
1. The actual measured value (I).
2. The setpoint (I).
3. The controller output value (0).
4. The previous error (*).
5. and
6. The error integral (*).

Data marked "*" are set by FRPIDC and
should not be changed.

param.: Name of a 6*INTEGER*2 array holding:
1.(low) The gain multiplier exponent (I).
1.(high) A flag byte (I).
2. The bias value (I).
3. The proportional multiplier (I).
4. The integral multiplier (I).
5. The derivative multiplier (I).
6. The limit value (I).

- Required Stack: 22 bytes.

5.3.2.2 The Diameter Controller - Task DIACNT

5.3.2.2.1 The Diameter Controller Routine Proper - Module
DIACNT

The FORTRAN module DIACNT constitutes the main routine of the

Diameter Controller Task. This task is triggered every ten

seconds by a "flag interrupt" generated by the Timer Task
FXTIME (compare chapter 5.2.4.1).

DIACNT uses a command message of its own in order to perform
automatic RESET and MODE commands. The commands issued by
DIACNT are not recorded in the Control Output file, and the
command message issued by DIACNT is returned to this task
after having been processed by the Command Executor. This im-
plies that DIACNT has to retrieve this message from its res-
ponse exchange before it is permitted to use it again. The

- 281 -

hr

IX

5.3 The High-Level Growth Controller Software

FXACPT call at the beginning of the infinite loop in DIACNT
serves exactly this purpose.

. A sequence immediately following this subroutine call checks
for changes into diameter controlled mode while the Diameter
Evaluation routines have not been reset yet. The following
steps ensue if such a condition is detected:

(1) DIACNT issues a RESET command which sets the weight and
crystal length grown locations to zero, and generates a
pertinent message.

(2) It stores the current MODE value (which can be 2, 3, or 4)
in an auxiliary location INTMOD, sets the operation mode
to Manual, and marks this condition with a SHSTOL value of
-3. The remainder of the task loop is skipped.

k This procedure triggers a Reset operation when the Command
Executor runs the next time. The actual diameter value is
still meaningless because the Diameter Evaluation routine

0 runs only after a Reset; it will be ignored because the
operation mode is still set to Manual.

(3) During its next pass, ten seconds later, DIACNT will set
the MODE value back to the value saved in INTMOD; it will
duly execute the Diameter Evaluation routines which will
return a meaningful diameter value now, but it will skip
the Diameter Control sequence.

The Command Executor runs only after DIACNT has finished
(because its priority is much lower), and it will find a
meaningful Actual Diameter value which it can copy to the
Diameter Setpoint locations (because of the change to
diameter controlled mode).

(4) Only at the third pass, twenty seconds after a change to
diameter controlled mode without preceding Reset was
detected, DIACNT will resume its standard operation.

Under regular operating conditions, DIACNT copies the opera-
tion mode value into a local location in order to avoid con-
fusions if the mode is changed while this task is running.

Subsequently, DIACNT retrieves from the array of analog input
data the Crucible Position and the Differential Weight values,
and converts the latter into floating-point notation, scaling
it with the proper scaling factor. This datum is first sub-
mitted to the subroutine ANOMAL (compare chapter 5.3.2.2.2)
which performs an anomaly compensation if required, and subse-
quently, to the function SHAPE (compare chapter 5.3.2.2.3).

- 282 -

.4-...

.4.

5.3 The High-Level Growth Controller Software

SHAPE calculates a Diameter value (returned in DIAMET), and,
in addition, the Length grown (scaled with the same factor as
the Seed Position input data), and a Crucible Position set-
point (in SCRUCP) which is in the same format as the Crucible
Position input data. (Several other auxiliary values are
returned by SHAPE which are primarily intended for testing and
debugging purposes.) SHAPE provides a status value in SHSTAT
which is evaluated after its execution; corresponding (error)
messages are issued the first time a new SHSTAT value is re-
turned, and the operation mode is set to Manual if either a
Zero Seed Lift Speed or a Speed Overflow error was detected.
With the exception of changes to or from a Zero Seed Lift

a! iSpeed condition and of an Oxide Height Overflow, a data dump
to the Documentation output and an additional record in the
Data file are triggered. (The data dump is omitted on purpose
in the two cases mentioned because either error may be report-
ed repeatedly although the state of the process did not change
significantly; a data dump at each of these occasions would

* have been a waste of paper and/or disk space.) DIACNT tries
to re-activate SHAPE after a Speed Overflow error with a call
to the subroutine REACTV which is part of the assembly lan-

- guage module holding SHAPE; after six succeeding unsuccessful
attempts, DIACNT decides that the problem is too serious to
deal with it on its own, and disables SHAPE permanently (until
a RESET command is issued again).

KFinally, DIACNT enters the actual diameter controller se-
quence: While in Monitoring or in Manual mode, DIACNT has
nothing to control. The routine resets, however, the Error
Integral locations of the PID Data arrays and the Previous
Error values (compare chapter 5.3.2.1) to zero. This is done
to provide a defined environment when diameter control is
activated.

In any one of the diameter controlled modes (Diameter, Diame-
ter/ASC, and Automatic, compare chapters 4.1.1 and 4.3.3),
DIACNT has to generate three Heater Temperature setpoints.
Each of these setpoints is obtained from two stacked PID con-
trollers which permit to obtain a non-linear control response
(compare chapter 5.3.2.1). The first PID controller receives
the proper current Heater Temperature setpoint (i.e., the val-
ue obtained from operator or Macro commands) from the STPNT1
array as a Bias value; its output is used as a Bias for the
second PID controller. All six diameter controllers use the
actual Diameter and the Diameter setpoint as inputs. The out-
put of the second PID controller of each Heater channel is

" 4.stored in the setpoint array STPNTO.

An additional control loop is executed in Automatic mode: The
" crucible lift speed is controlled according to the difference

-283 -

-u . - -, '. r - y - - -' - v. w b _ .W w-v r rr - rs - ? a , s n 'V - r Ir r r r - - ra r - . -

'4

5.3 The High-Level Growth Controller Software

between the actual Crucible Position and the pertinent set-
point calculated by SHAPE. Two stacked controllers are used
for this commission, too; similar to the diameter controllers,
the Crucible Lift Speed setpoint input by the operator (or

'A from a Macro file) is used as a Bias value for the first con-
troller, whose output is fed to the Bias input of the second
controller. The second controller's output is stored as an
actual Crucible Lift setpoint.

The approach chosen for the PID controllers in DIACNT, namely,
passing the "manual" setpoint through the controller routines
via the Bias inputs, has various advantages: Since the "manu-
al" setpoint can be chosen to lie close to the actually re-
quired controller output, the PID controllers need only make
small modifications to the "manual" setpoint, which improves
the accuracy and the dynamic response of these routines.
Furthermore, it is possible to limit the output of the con-
trollers to lie within a relatively small range around the
Bias value. This prevents, for example, the Diameter control-
ler from totally turning off the heater if the actual crystal

* diameter seems to be much smaller than the pertinent setpoint,
which may easily happen particularly during cone growth. In

• -fact, a smooth transition from manual to diameter controlled
growth may be obtained if the controllers' PID parameters are
ramped from zero to their final values, or if the Limit values
are initially set to zero and slowly ramped to their intended
final values. There is, indeed, hardly any limit set to the
control schemes which may be obtained from dynamically modify-
ing the parameters of the controllers provided.

5.3.2.2.2 Anomaly ComRensation - Routine ANOLY

Prior to the evaluation of the diameter, the Differential
Weight value derived from the A/D converter can optionally be
submitted to a compensation for anomaly effects. According to
the conventional anomaly compensation approach, a corrected

* Differential Weight X can be calculated from the "raw" weight
Y by solving the differential equation

X = (Y - b.X')' (8)

where X' is the first derivative of X with respect to time.
Equation (8) can be re-written as

b-X" + X = Y' (9).

In the CGCS, we expanded the above approach to:

- 284 -

.". 5.3 The High-Level Growth Controller Software

b-X" + a-X' + X = Y' (10)

Numerically, the above differentiations have to be replaced by
differences. With X0 , the current Differential Weight, Xl, the

4' .previous value, and X2 , the previous but one, we can write:

X0 ' = X0 - X1

X1 ' = X 1 - X 2 (11)

X0" = X0 ' - XI ' = X0 - 2.X1 + X2

Substituting eqs. (11) into eq. (10) results in a linear equa-
tion for X0 which can be solved as:

4. Y' + (a + 2.b).X 1 - b-X2
Xo= (12)

- . l+a+b

- 4The "raw" Differential Weight Y' is input directly from the
analog differentiator circuitry. A corrected Differential
Weight X0 can be calculated from the "raw" value Y and the
previous results X1 and X2 according to (12). The FORTRAN
subroutine ANOMAL evaluates X0 from eq. (12) if the Mode value
is gi-ater than 2 (i.e., in Diameter/ASC and Automatic modes;
compare chapters 4.1.1 and 4.3.3); otherwise, it sets X0 equal
to V. In addition, ANOMAL stores its X1 value in X2 , and the

-X 0 value thus determined, in X1 , in order to have proper
previous results for the next pass.

--

5.3.2.2.3 Diameter Evaluation Algorithms - Routine SHAPE

The assembly language routine SHAPE constitutes the heart of
the diameter evaluation algorithms. SHAPE calculates the fol-
lowing data:

4 (1) A crystal Diameter value which is derived from the Differ-
-"ential Weight which previously may have been submitted to

anomaly compensation. SHAPE takes into account the buoy-
ancy in the boric oxide melt.

(2) The current height of the boric oxide melt in the cruci-
ble.

(3) The Crystal Length grown.

(4) A Crucible Position setpoint which is used for determining
the crucible lift speed in Automatic mode.

- 285 -

5.3 The High-Level Growth Controller Software

.CRYSTAL V
*.1

OXIDE 6 X b

*1L I 6

SEMICOND. 1 6'x

MELT

CRUCIBLE - _

I: r2 . r, -i R

Fig. 18: Growth of a crystal partially immersed in an oxide
encapsulant melt.

When the length of a crystal grown increases by Sx, a portion
of the crystal whose length is Sy emerges from the boric oxide
melt. The two differential lengths are not necessarily equal
since the height h of the boric oxide melt may have been
changed by Sh due to a change of the crystal volume immersed
(compare Fig. 18). We can write:

Sy = Sx - Sh (13)

* The height h of the oxide melt can be determined from the
oxide melt volume Vm and the volume Vi of the immersed part of
the crystal, with R, the radius of the crucible:

Vm + Vi = R
2 .- h (14)

4 During the major part of a crystal growth run, Vm is constant.
Towards the end of the run, however, the semiconductor melt
starts retracting from the crucible wall, resulting in a disk
of molten gallium arsenide in the center of the crucible. The
height of this disk remains roughly constant but its diameter
decreases. The gap between this disk and the crucible is

-286-

4

- =[5.3 The High-Level Growth Controller Software

filled by boric oxide, causing the effective oxide volume
[S (i.e., the volume measured from the extension of the top sur-

face of the semiconductor melt disk upwards) to decrease.
Differentiation of eq. (14) results in:

sVm + 8Vi = R2 "7'Sh (15),

* with

6Vm = - e'SV 2 " (dx/dxm) (16)

and

SVi = 8V2 - 8V1 (17),

where

SV2 = r2 -. Sx (18)

t" and

8V1 = rl2..7rSy (19).

The parameter e in eq. (16) is equal to zero during regular
growth, and equal to 1 if the melt contraction described above
has reached its full extent, i.e., if the surface of the semi-
conductor melt does not drop any more. The effective boric
oxide volume is reduced in this case by the volume of semicon-

' ductor melt required to grow the differential cylinder SV?;
d.m and dx stand for the densities of molten and solid semi-
conductor material, and r, and r2 are the radii of the crystalpat the oxide surface and the melt-crystal interface, respec-

Ptively. With do, the density of the boric oxide melt, the
change of the crystal's weight 8W can be written as:

6W = 8V2 .(dx - do) - 8Vl.(dx - do) + Vl-dx -

= 8V2 .(dx - do) + SV1 -do (20),

The differential cylinder close to the semiconductor meltcontributes to the weight only with the difference of the

crystal and oxide densities, due to buoyancy; the differential
cylinder which emerged from the oxide melt had previously a
weight proportional to (dx - do) which is now proportional to
dx only.

With eqs. (13) and (15) to (19), we can express Sy as a func-
tion of &x:

-287-

O-

5.3 The High-Level Growth Controller Software

• o R2 _ -.r2 2

= -1x (21),

with

= 1 - E.(dx/dxm) (22).

Note that 8 is equal to 1 during regular growth, and it ap-
proaches 0 when the melt recession starts (because the ratio
of densities is close to 1). With eq. (21), we can re-write
eq. (20):

W6X r22"(dx - d o - O'da) + R2 "da (23),

with an "adjusted oxide density" da
r12 1

•d a = do *- r1 do .• (24).

R 2 - r1
2 (R2/rl 2) - 1

Eq. (23) permits to calculate the square of r2 :

"W R2 .d

r22 dx - do - P.da

With the Differential Weight (&W/&t) and the Growth Rate

v = sx/st (26),

we finally can write for eq. (25):

(SWS.L - .da
2- r .v - (27)r2 dx - d o - .da

The Growth Rate v is determined by the combined effects of the
Seed Lift Speed v s and the speed vd with which the gallium
arsenide melt drops:

. v = vs + vd (28).

.. For a length Sx of crystal grown, the semiconductor melt in
the crucible will drop by 6z in order to provide the crystal
mass solidified while the crystal is within the regular growth

regime. The melt level will hardly drop any more when the
melt contraction towards the end of the growth run started.
Since the total mass must be constant, we can write:

- 288 -

.. S

5.3 The High-Level Growth Controller Software

R2 -rdxm.6z = r2
2 .lr.dx •(Sx + 5z - Vc-6t) (29),

with dxm and dx, the densities of the semiconductor melt and
the solid crystal, respectively, and vc, the actual Crucible

" Lift Speed. We can solve eq. (29) for 6z and can, finally,
S-. obtain:

V = (30).
r2

2 .dx

R2 dxM

The constant a is equal to 1 if (30) is obtained as an exact
solution of eq. (29). In a heuristic way, however, assigning
values different from 1 to a can help to compensate for non-
ideal effects caused by the crucible shape and/or surface
tension. Values of a greater than 1 can compensate for a de-

* crease of the crucible diameter close to its bottom; in con-
trast, a can be set to values less than 1 to take into account
the receding of the gallium arsenide melt during the final
stages of the growth process, an effect which obviously more
than compensates for the beveling of the crucible. The sur-
face of the melt does, in effect, hardly drop any more when
the semiconductor melt starts receding from the crucible walls
because the material used up by the growing crystal is mainly
supplied by reducing the diameter of the melt disk rather than
its height. This corresponds to a crucible with infinite

-. -. diameter, or to an a value of 0. At the end of the body
. -growth, a may simply be ramped down to 0, starting at the

point when melt recession usually begins. (A Variable named
ALPHA is provided for this purpose. It is initialized with
the value 1 but may be modified with the standard SET or
CHANGE commands.)

N The constant e defined in eq. (16) follows exactly the op-
posite behavior, compared to a: it is equal to zero during
the regular growth, and assumes a value of 1 at the end of the

i- process. It appeared therefore to be a reasonable approach to
set

E = 1 - a (31)

within the SHAPE software.

Substituting v from eq. 2(30) into eq. (27), and solving the
"- resulting equation for r2

2 , results in
o.

;-

- 289 -

IY,

5.3 The High-Level Growth Controller Software

dW/dt _ R2 daI d - O .d(+v5 vs - c) R z d9

r2" ..(Vs -)dW/dt ..a dx (32)
dx d- Pda + - Vc) R dx

Obviously, the currently grown crystal diameter can be deter-
mined as twice the square root of the left side of eq. (32).
The result obtained from solving eq. (32) is submitted to two
correction steps which confine the effects of possible numeric
errors due to non-ideal input signals: Negative values of the
result are trapped and converted to zero (because the square
of a real magnitude like the crystal diameter cannot become
negative), and values which exceed the maximum permitted crys-
tal diameter (100 millimeters) are limited to the maximum.
The latter is accomplished with a small FORTRAN module DIALIM,
which is actually part of the main Diameter Controller task,

*- DIACNT, and which is called from the assembly language routine
SHAPE. SHAPE returns an INTEGER*2 diameter value in the Vari-
able IDIAMT; this value is converted to floating-point nota-

* tion, scaled properly, and stored in the Variable DIAMET by
the Command Executor.

The evaluation of eq. (32) implies a division by the differ-
ence of the seed and crucible lift speeds, vs and vc, respec-
tively. Obviously, this value must not be equal to zero to
permit a valid calculation of the diameter. SHAPE checks
therefore this difference right at the beginning of its opera-
tions; it skips the remainder of its code and sets an error
flag if it detects a zero value. The error flag is monitored
by DIACNT; suitable action is taken, and an appropriate mes-
sage is output in the case of an error (compare chapter
5.3.2.2.1).

In order to solve eq. (32), the square of the radius of the

crystal at the surface of the oxide melt, r1
2 , has to be

known. This entails that the actual height of the boric oxide
melt, h, and the total volume of the crystal immersed in the

*boric oxide, Vi, are also known; the latter parameters are
required for calculating the optimum crucible position. SHAPE
determines these data by keeping a table of crystal diameter
squares in an array DIATAB. (In fact, SHAPE operates with
diameter rather than radius squares; with the exception of a
factor of 4 in the denominator of the first term in the numer-
ator of eq. (32) and in the corresponding term in the denomin-

-v ator of eq. (32), the algorithms within SHAPE are identical to
those above. We used radii rather than diameters in the above
derivation in order to avoid naming confusions with the densi-
ties.)

- 290 -

!"

-II

*'

5.3 The High-Level Growth Controller Software

Since SHAPE can only store the shape (i.e., the diameter) of
the crystal at discrete length positions, an interpolation
approach had to be developed which permits an approximate
evaluation of the crystal's diameter at any arbitrary posi-

- tion. An obvious method would have been a linear interpola-
. tion between the stored diameter values. For the application

in mind (where the squares of diameter values are more often
required than the plain diameters), a linear interpolation of

- the squares of the diameter data proved to be considerably
more efficient. Assuming that the square of the diameter or
the radius is a linear function of the position x within the
crystal, we can write

r 2 = k.(x + xo) (33),

with k and xo, constants determined by the crystal's shape.
(We return again to radii rather than diameters in order to
match the above nomenclature.)

''
rr

XI N

'..Fig. 19: Volume of a paraboloid section.

Equation (33) means that a section of the crystal is approx-
imated by a section of a paraboloid. Figure 19 depicts the
radius r' of a section with the height hs; the radius at the

.291

SOWN

S5.3 The High-Level Growth Controller Software

bottom of the section is r6, and on top of the section, ri.
Applying eq. (33) to x = 0 and x = hs, respectively, permits
to replace the constants k and xo with r6, rj, and hs:

r12 - r62k =h (34)
h

x = hs - r62 (35).

r12 - r62

The volume V of the paraboloid section obtained from rotation
of the shaded area in Fig. 19 around the x axis can be calcu-
lated as:

z hs

V = 7r . r2 .dx (36)

0

With (33) through (36), we obtain finally:

7 -. hs
v = h (r62 + rj2) (37)

2

During regular crystal growth, SHAPE accumulates the volume
within one "slice" of the crystal by adding the volumes of
"differential" cylinders with the diameter of the crystal
calculated in the previous pass and with a height determined
by the difference of the crystal length values for the current
and the previous pass. This volume increment may be negative
during meltback conditions, or if the new length value was
less than the previous one due to noise superimposed on the
seed and crucible position signals. A "slice" boundary is
detected when the two byte integer representation of the crys-
tal length exceeds a multiple of 64, which corresponds to a

* •length difference of approximately 1.17 mm. A new "slice" is
added to SHAPE's image of the crystal in memory which is kept
in DIATAB, a 64 element floating-point array of squares of
diameters, calculating the square of the diameter of a cylin-
der with a height equal to the distance from the previous
slice boundary, and a volume equal to the sum of "differen-

,' 1? tial" volumes accumulated since then. (Due to noise and the
limited resolution of the crystal length, the height of this
cylinder may be slightly greater than 64 length counts.) (An
earlier approach to approximate the crystal by slices of para-
boloids proved to be unstable because errors of the previously
calculated diameter squares propagated into the newly calcul-

-292-

St%

4 L

* ".' 5.3 The High-Level Growth Controller Software

ated data when eq. (37) was solved.) All entries in DIATAB
are shifted up one step, and the new diameter square is stored
as the crystal's bottom diameter. The top entry is lost.

In order to prevent erratic diameter square average values
from being entered in the table and from eventually corrupting
the diameter calculation when the slice in question arrives at

i Mthe encapsulant surface, the FORTRAN subroutine CHKDTB was
provided which is part of the module DIACNT but called from
SHAPE. CHKDTB compares the absolute value of the difference
between the preceding and the current squares, and adjusts the
new value to differ by not more than the specified limit
(which is kept in the Variable XTLSHP) from its predecessor.
This approach allows for greater absolute and relative diame-
ter fluctuations in stages where the crystal diameter is small

: i (e.g., in the early cone sections) and where such fluctuations
are quite normal; it is more restrictive within the full-dia-
meter crystal body. The data stored in DIATAB are in square
millimeters; XTLSHP must therefore be set to the maximum per-

i ' mitted difference between the squares of the diameters (in
millimeters) of two adjoining crystal sections.

During meltback conditions, i.e., when the crystal length
decreases rather than increases with time, the entries in the
array of diameter squares are shifted down one step when a
slice boundary is reached; the top entry is reduplicated.

A subroutine of SHAPE, CALCSD, uses the entries in DIATAB to
calculate the square of the diameter of the crystal at the
surface of the boric oxide melt (corresponding to r1

2 in our
calculations). Since the position of the oxide melt surface
relative to the crystal depends on the total height of the
oxide melt, which is, in turn, a function of the total crystal
volume immersed in the boric oxide, the melt height and the
immersed volume must be re-calculated in each pass of CALCSD.
The following procedure is used in CALCSD (compare Fig. 20):

The portion of the crystal immersed in the boric oxide melt is
- divided into slices of uniform height hs whose radii (or

rather, diameter squares) are stored in DIATAB. The top and
bottom slices are obviously exceptions to this rule. The
bottom slice is the portion of the crystal grown since the
last slice boundary was encountered; the height of the topslice is determined by the position of the oxide surface.

In order to determine r1
2 , CALCSD assumes that the encapsulant

S:.melt height did not change since the last pass. CALCSD first
checks whether the boric oxide height is less than 75 milli-

-" meters, i.e., less than the length of the portion of the crys-
tal whose diameter squares are stored in DIATAB. The oxide

S- 293-

'

O *

5.3 The High-Level Growth Controller Software

height is limited to the maximum permitted value, and an error
output is triggered if this is not the case. In order to
prevent the "Oxide Height Overflow" error from either being
reported every ten seconds, or from eventually hiding any
other error condition which is flagged by the same parameter
of SHAPE, SHSTAT, a counter byte is incremented for every
occurrence of this error; SHSTAT, in contrast, is set to indi-
cate the problem only when the counter wraps around to zero
after 256 increments. Depending on the number of iterations
required in CALCSD, this may happen every 5 to 20 minutes if
the condition persists continuously.

r4 h -x h,2

h2

S4-------------

r, t, hJ

-- - - - -- - - - - --- - -- ----AA

* .% t

- ----r ---- -- -- -- - --- - - ---

'.

[Fig. 20: Interpolation algorithm for the evaluation of the

crystal diameter at the boric oxide encapsulant
f, surface, and of the volume immersed.

eh

-- r;

-- -- --- 294 - -- -- - - -- - -

r

5.3 The High-Level Growth Controller Software

Having checked the oxide height, CALCSD subtracts the height
of the bottom slice, ho, from the previous melt height h and
determines by a simple modulo operation the distance x the
melt surface lies above the center of the last slice which is
immersed to more than 50 percent of its height. The square of
rI is obtained from a linear interpolation of the two adjacent
entries in the table (in Fig. 20, from the squares of rA and
r), i.e., by an interpolation which assumes a paraboloid
shape of the current section. Using the centers of the slices
rather than the slice boundaries as top and bottom surfaces of
a paraboloid section guarantees a better accuracy.

The melt height h, however, may have changed since the previ-

ous pass if the volume added at the growth zone was not equal
to the volume withdrawn from the boric oxide. In order to
determine the current value of h from eq. (14), the immersed
crystal volume Vi must be known. For a crystal with n slices
covered by the oxide melt to at least 50 percent of their
height, we can calculate Vi according to:

V i = V' + r.hs.[r6 2 + rj 2 +

- + rn. 1 r,2/2] + n'x'(rA2 + r1
2)/2 (38).

(V' is the volume of the currently grown section of the crys-
tal with the height ho .)

Equation (14) permits now to calculate a new melt height value
(assuming the oxide volume Vm and the crucible radius R are

. known) which is compared to the previous height. CALCSD re-
turns if both values differed for less than one height unit in

- INTEGER representation (approximately 0.02 mm); otherwise, the
procedure is repeated from the calculation of rI on. CALCSD
is left, though, if a certain number of iterations (currently,
5) was not sufficient, which constitutes a protection against
"freezing" in the case of bad convergence.

During the major part of the growth run, the oxide volume Vm
in eq. (14) is, indeed, known and constant. Towards the end
of the run, however, the active boric oxide volume starts de-
creasing as the semiconductor melt recedes from the crucible
wall, and the resulting gap is filled with boric oxide.
Therefore, Vm has to be corrected after each pass in this
regime for the apparent oxide volume loss SVm according to eq.
(16):

Vo + Z 6Vm = Vm - (ESV2.dx/dxm) (39),F IVm Vmo + 6 m = mo
where Vmo is the initial boric oxide melt volume.

295-

,o

~!

-O

5.3 The High-Level Growth Controller Software

One more task of SHAPE is the evaluation of a Crucible Posi-
tion setpoint which also enters into the calculation of the
Length Grown. The apparent weight of the growing crystal, W,
can be written as

W = W O + Wx - (Vi - Vio).d o (40),

where Wo is the measured initial weight at the beginning of
the growth run, and Wx, the actual weight of the crystal
grown. The last term in eq. (40) takes into account the buoy-
ancy in the boric oxide melt. The mass Wx has been withdrawn
from the contents of the crucible, essentially by lowering the
surface of the semiconductor melt. Towards the end of the
growth run, however, the semiconductor melt volume required to
grow the crystal is supplied by shrinking the diameter rather
than the height of the semiconductor melt. The volume thus
obtained is identical to the boric oxide volume lost according

A to eqs. (16) and (39). The crucible must be raised by a dis-
tance z in order to keep the semiconductor melt surface at the
same location within the puller:

" Wx R 2 .zdxm - Z Vm.dxm (41)

- (Note that SVm is negative; the contribution of the right term

. in eq. (41) is therefore either zero - during regular growth -
or positive.)

The density of the melt, dx , is different from the density of
the crystal, dx. The crucible position setpoint, zs, can be
calculated from eqs. (40) and (41) with the initial crucible
position zo:

zs = zo + z =

. W + Vi.do - (Wo + Vio-do) + E 6Vm-dxm
= zO + (42)R2 -i.dxm

* We may substitute with eqs. (14) and (39) for the immersed
volumes Vi and Vio, and we obtain with the melt height ho at
the beginning of the growth run:

Wdo E Vm doW ZS~
0~Zs = + h-- + .(l) +

R2 . r•dxm dxm R2 .7r dxm
[do Wo

+ (zo - ho -) (43)
dxm R2*•r d

-296-

'--I.Q

r.4S#J. '.9j - pp

5.3 The High-Level Growth Controller Software

The term in the second line of eq. (43) is an initialization
constant. The calculated Crucible Position setpoint is re-
turned by SHAPE in the INTEGER*2 Variable SCRUCP.

-. The actual position za of the crucible as obtained from the

'. :- Crucible Position potentiometer may be different from zs; with
the initial and actual seed position values xo and Xa, respec-
tively, the length 1 of the crystal can be calculated as:

- = (xa - Xo) + (zs - Za) (44).

An accordingly determined Crystal Length value is returned by
SHAPE in the Variable ILENGT (in INTEGER*2 notation); it is
eventually converted to floating-point format and scaled by
the Command Executor and stored as LENGTH.

Note that different approaches are used for the calculation of
the actual Growth Rate and of the Crucible Position setpoint
and Length Grown values. In the first case, the Growth rate
is derived from (measured) speed values, while the Crucible

*_ Position setpoint calculation is based on the weight of the
S.crystal. Although this approach may appear redundant, it was
"- indispensable in order to obtain an acceptable accuracy of the

results. (In general, it is preferable to use an input value
-" which constitutes already an integral magnitude (such as the

crystal weight), rather than calculating an integral; similar
considerations apply to derivative data such as speeds.)

4". A Meltback condition is indicated by SHAPE and subsequently

.*.. reported by DIACNT if the Crystal Length value calculated was
decreased by more than one "slice", i.e., by more than 1 mm.
This may be due to any effect which reduces the distance be-
tween the seed and the semiconductor melt surface, whether it
was caused by a movement of the seed, or of the crucible. A
"Regular growth resumed" message is similarly issued after a
RESET command, upon the detection of a non-zero Seed Lift
speed after a "Zero seed lift speed" error, or if the Crystal
Length was increased again by more than one "slice" after a

4Meltback condition.

SHAPE is called as an INTEGER*l Function from FORTRAN; the
44 Differential Weight is passed to it as a parameter. It re-
V turns an integer flag which indicates the status of its opera-

tion. The following values are currently defined:

-297-

.11

5.3 The High-Level Growth Controller Software

*3 . Oxide Height overflow.
2 ... Seed Lift speed is zero - no diameter calculated.
I ... Meitback.
0 ... Regular growth.

-1 ... Speed overflow - RESET or REACTV call required.
-2 ... SHAPE is not yet initialized - RESET required.

All other parameters are passed to and from SHAPE via memory
locations in COMMON blocks most of which can be accessed as
Variables.

5.3.2.2.4 The Initialization of the Routine SHAPE - Routine
RESET

Although the subroutine RESET is logically part of the Command
* Executor Task CMMDEX, it is kept in one assembly language

module together with SHAPE, and it is discussed here. The
essential commission of RESET is to prepare SHAPE for its
operations. RESET has to be called before usable Diameter,
Length grown, and Crucible Position setpoint values can be
obtained from SHAPE if the status value returned by SHAPE is
negative (compare chapter 5.3.2.2.3). This value is negative

(a) After the start of the system, before RESET was called the
first time, and

(b) After a "Speed overflow" error which happens if SHAPE is
no more able to update its stack of crystal "slices". This
is the case if less than one diameter value per "slice" is
available, corresponding to speeds in excess of 400 mm/h.

(In the latter case, a call to the subroutine REACTV may be
sufficient to re-establish proper operation of SHAPE; compare
chapter 5.3.2.2.5.)

The following items are initialized by RESET:

(1) The initial values of the crystal Weight, the Seed, and
the Crucible Positions.

(2) The Diameter Square Table DIATAB is filled assuming a
cylindrical crystal with a diameter equal to the Seed

* Diameter which was specified with the INITIALIZE func-
tion. The initial immersed crystal volure is calculated
accordingly.

-298-

%

5.3 The High-Level Growth Controller Software

(3) The initial melt height is derived from the Melt Weight
and Density values obtained from INITIALIZE, and from the
above initial immersed volume.

-' . (4) The parameter ALPHA (compare chapter 5.3.2.2.3) is set to
~-: :~1, and the encapsulant volume "lost" by melt recession

(compare eq. (16)) is reset to zero.
F-

5.3.2.2.5 The Re-Activation of SHAPE - Routine REACTV

The subroutine REACTV is kept in one module together with
SHAPE. It permits to safely resume the operation of SHAPE
after a Speed Overflow error which was not likely to have
caused significant changes to the volume of the crystal im-
mersed in the boric oxide melt. REACTV simply resets the
internal location which is used to accumulate the volume of
the crystal "slice" grown since the last pass of SHAPE, and it
activates SHAPE again by resetting its status byte.

5.3.2.3 The Analog Data Controller - Task ANACNT

5.3.2.3.1 The Analog Controller Routine Prover - Module
ANACNT

The main part of the Analog Data Controller task is kept in
the FORTRAN module ANACNT. The following operations are done
by the Analog Data Controller task:

1 (1) ANACNT requests from the A/D Converter board the A/D con-
' verted values for 25 analog input channels, and it pre-

processes the Weight value by subtracting the offset
weight determined by RESET.

(2) It controls the power output for three heaters, running
* •PID controller routines with the Heater Temperature set-

points and actual values as inputs.

(3) It generates similarly the control output to the four mo-
-o tors.

O (4) It provides input from and output to the Motor Direction
* .relay circuitry, and it takes care of the Controller Se-
. lection output.

O.2

5.3 The High-Level Growth Controller Software

(5) It writes the control data determined above and the Plot
data collected by the Command Executor (compare chapter
5.3.1.4.7) to the D/A Converter hardware.

ANACNT runs once every second, being triggered directly by the
Timer task FXTIME (compare chapter 5.2.4.1). Immediately
after having been re-activated, it sets an auxiliary seconds
flag, SECFLG, which, in turn, sets to work the Command Ex-
ecutor.

The first major operation of ANACNT is obtaining input data
from the A/D Converter board. This is done within the assem-
bly language subroutine ANAINP (compare chapter 5.3.2.3.2).
The ANAINP call is skipped if the flag TEST is set to -1 (com-
pare chapter 4.7.2). ANAINP returns the input from the Con-
verter hardware in the 25 element array ANALOG, as two-byte
integer data. (The contents of this array may be patched with
arbitrary simulation data which can even be ramped if required
if ANAINP was disabled with TEST.)

Having read the input data, ANACNT prepares the data and par-
ameter locations for the seven PID controllers which are run
by this task. The three Temperature controllers (one for each
zone of a three-zone heater) use the pertinent Heater Tempera-
ture setpoints and actual values as input data; the Power
Limit setpoint serves as a common Limit value for all three
controllers. The controllers' Bias values are kept at zero.

A totally different approach is used for the Motor Speed con-
trollers: On principle, the motor controller hardware could
be driven directly by the D/A converted speed setpoints. Due
to nonlinearities and offset errors within the motor control-
ler hardware, this approach would result in unsightly differ-
ences between the speed setpoints and the actual speeds. Inorder to alleviate this problem, PID controllers were provided

for each of the four motor channels which determine the actual
output signals which are eventually fed to the analog motor
drivers after their D/A conversion. Due to the potentially

0 conflicting requirements imposed upon these controllers, a
special approach was taken: For operation modes where the
absolute accuracy of the motor speeds is less demanding but a
fast reaction to speed setpoint changes is required, a feed-

V forward can be provided via the Bias input which is set to the
pertinent speed setpoint in this case. A correction of the
offset between the speed setpoints and the actual motor speeds
may be introduced by appropriate programming of the PID con-
troller's parameters. While this mode can be advantageously
used during the heating and dipping stages, it may offer in-
sufficient stability during the growth process proper where
hardly any motor speed rchanges are required but where speeds

- 300 -

5.3 The High-Level Growth Controller Software

should be kept as stable as possible. The feed-forward func-
tion which is liable for possible control oscillations can be
disabled in this regime either totally or partly by setting a
factor e (i.e., the proper element of the array THETA) to a
sufficiently small value. THETA is introduced into the four
motor speed controllers according to

M = e.B/256 + 2G-X (45),

where M is the final output of the PID controller, B, its Bias
%value (in this particular case, the proper speed setpoint), G,

the Gain Multiplier Exponent, and X, the output of the PID
routine proper (compare chapter 5.3.2.1, eq. (6)). Setting
THETA equal to 256 provides therefore full feed-forward, while

• .~a THETA value of 0 results in plain PID operation. The con-
troller is inherently slower in this mode but can more easily
be tuned for a stable operation. (The scaling by 256 was
chosen because of the same reasons as for the PID parameters,
namely, in order to provide a multiplication by a factor less
than 1 with INTEGER arithmetics. The INTEGER multiplication
is done with the subroutine IMULT which is called by ANACNT.)

ANACNT prepares the inputs to the PID routines in any case; it
runs the PID controllers only if the CGCS is in charge of the
puller. In contrast, it resets the Previous Error and Error
Integral locations of all controllers while the system is in
Monitoring mode, and it provides the motor speed setpoints for
output by the D/A Converter board. (This provision was made
in order to permit an easier test of the output hardware. The
motor speed control signals are thus available at the outputs
of the digital controller in any case.)

A special treatment is required for the motor speeds: Due to
the offset usually introduced by the PID controllers, a non-
zero output signal results even if the corresponding setpoint

..* was actually set to zero. Although this non-zero output sig-
nal might only compensate for an opposite offset of the hard-
ware, it would prevent the Motor Direction Relay controller

* routine MOTDIR (compare chapter 5.3.2.3.3) from switching the
motors actually off. ANACNT branches therefore according to
the motor speed setpoint values, and provides a zero output
explicitly when required.

Having trapped possibly negative Temperature Controller output
* values (there is no negative heater power), ANACNT copies the

internal array of analog input data, ANALOG, to the array
ANADAT, shifting the contents of the ANALOG array by one ele-
ment. This was done to guarantee that the important input
data (i.e., the first 17 elements of ANADAT) are actually

. sampled at the same time. The first element in ANALOG was

- 301 -

- . -

5.3 The High-Level Growth Controller Software

measured at the end of the previous call to the Analog Data
Input routine ANAINP (compare chapter 5.3.2.3.2), and it is
therefore approximately one second older.

Finally, ANACNT calls the Motor Direction Relay controller
routine MOTDIR (compare chapter 5.3.2.3.3), and writes the
fifteen Analog Output values in the array ANAOUT (three tem-
peratures, four motors, and eight chart recorder output chan-
nels) to the D/A Converter board, calling the Analog Data
Output routine ANAOPT (compare chapter 5.3.2.3.4). Both
operations are skipped if TEST is set to -1.

5.3.2.3.2 The Analog Data Input Routine ANAINP
ANAINP is an assembly language routine which reads data from

the A/D Converter board in a random access mode, and submits
the values obtained to digital low-pass filtering.

S In order to permit random input of data from the hardware,
ANAINP uses a special parameter array ANIPAR which consists of
two bytes for each channel. It is, therefore, very easy to
connect a logical data channel within the CGCS to an arbitrary
hardware channel and to modify the gain and filtering parame-
ters of any channel by changing the contents of ANIPAR. In
addition, the number of input channels actually read is not
built into ANAINP but derived from the parameter array ANIPAR:
The operation of ANAINP is terminated, and the routine returns
to the calling task, when the most significant bit of an odd
element of ANIPAR is set, corresponding to any negative value.
(The remainder of the parameter byte does not matter.) It is
therefore essential that at least one negative value is pro-
vided in ANIPAR lest ANAINP might indefinitely continue read-
ing data; since the output is stored in an array which is
specified as the second parameter of ANAINP, this data input
would exceed the boundaries of the array and eventually over-
write important data. The two parameter bytes per channel in
ANIPAR hold the following information:

S . .

- 302 -

go

.5.

5.3 The High-Level Growth Controller Software

ANIPAR (2n + 1): (n = 0, 1, 2, 3 ...)

Bit 7 6 5 4 3 2 1 0

A/D Converter Channel (0 ... 31)
Gain:
0 0 = 1
0 1 = 2
1 0 = 4
1 1 = 8

0 ... Active input channel
1 ... Last entry in ANIPAR; bits 0 to 6 don't matter

. ANIPAR (2n + 2): (n = 0, 1, 2, 3 ...)

r! - Low-pass filter flag, determines the cut-off frequency of the
digital low-pass filter routine:

. Value Cut-Off Frequency (Hz)
0 infinite
1 0.1150
2 0.0461
3 0.0213
4 0.0103

ANAINP supposes that a valid result is held by the A/D Conver-
ter hardware for the first input channel. Correspondingly,
the last action of ANAINP prior to its return, and one of the
actions of the initialization routine for ANAINP, ANAINI, is
to prepare and trigger the conversion of the first input chan-
nel. Since approximately one second passes between the return
from ANAINP and the next call to this routine, this datum is
already slightly outdated when it is retrieved at the begin-
ning of the next pass of ANAINP, which may or may not matter.
Each input value is immediately submitted to the digital low-
pass filter routine in LOWPAS which corresponds to a first
order analog low-pass (compare chapter 5.3.2.3.5). LOWPAS

. needs the previous data value of each analog channel which it
deposited in the output array ANALOG; the contents of this
array may, therefore, be read only but not modified. (This is
no more true if ANAINP which calls LOWPAS is disabled alto-
gether with the TEST flag.) Prior to calling LOWPAS, ANAINP
prepares the A/D Converter board for the input of the next
channel, programming the input multiplexer accordingly. The
set-up time required by the multiplexer, i.e., the time whichr. must pass before valid data can be submitted to the A/D Con-
verter proper, is approximately equal to the execution time of
LOWPAS. The A/D Converter hardware will therefore be ready

-303-

w-J' J, A .

0

5.3 The High-Level Growth Controller Software

for the next step when LOWPAS has finished its job. ANAINP
triggers the conversion proper when the A/D Converter board's
hardware indicates that the board is ready; the routine waits
in a loop until converted data are available. (The synchroni-
zation with the hardware is done with polling loops rather
than with interrupts. This approach was preferable because
each interrupt processed involves a considerable system over-
head which takes several hundred microseconds. The A/D con-
version is even faster than the processing of an interrupt,
and the time required by the hardware for channel switching is
used within ANAINP for the low-pass routine call.) Emergency
timeouts were provided for either loop in oraer to avoid a
total blockage of the system if the A/D Converter does not
respond properly. (It turned out that the system is blocked,
though, if no A/D Converter board is installed, and ANAINP is
not disabled with TEST.)

5.3.2.3.3 The Relay Controller Routine MOTDIR

This assembly language routine provides the input from and the
output to the digital (relay) interface. It has the following

*tasks:

(1) Provide output to the Controller Selection relay which
must not be energized in Monitoring mode 0, and energized
if the CGCS is in charge of the puller (i.e., in operation
modes 1 through 4).

(2) Read the current status of the Motor Direction relays, and
set the Motor Speed input values to zero if the correspon-
ding motor is switched off.

(3) Check the sign of the Motor Speed output values, and pro-

vide the proper Motor Direction relay output.

(4) Determine the absolute value of the Motor Speed output for
0 the D/A Converter.

A special approach had to be chosen for the Controller Selec-
tion relay output: Using just one output bit for turning on
and off the relay would have been impeded by the fact that the
status of the output port used may be undefined when the CGCS

O. is not in charge of the controller computer. Furthermore, the
PPI (Peripheral Parallel Interface) hardware comes up with all
I/O lines in high impedance after a system reset, which would
result in all relays either turned on or off. Therefore,
three bits, namely bits 0 through 2 of one output byte, have
to be set to defined values in order to actually permit con-

Ot
- 304 -

0N'N

e ^., ,.- % §

5.3 The High-Level Growth Controller Software

trol of the Controller Selection relay, and hence of all other
relays: Bit 0 represents the Controller Selection output; it
has to be high to switch control to the CGCS and to activate
the Motor Direction relays, and it is low in Monitoring mode.
In addition, bit 1 must be low, and bit 2, high, to enable the
relays.

pThe Cambridge Motor Controller uses three relays for Motor Up/
Clockwise, Motor Stop, and Motor Down/Counterclockwise, re-
spectively. The CGCS is therefore connected to the puller by
three relay control lines for each motor; these lines are
energized by the Cambridge console if the analog circuitry is
controlling the puller, and by the CGCS, if the CGCS is in
charge. The status of the relay control lines is monitored by

S -* MOTDIR, and MOTDIR provides output to them when required.
Since exactly one of the Motor Control relays must be ener-
gized for each channel, the status of the three lines may be
represented by two bits:

• Output: Motor Status: Speed Value: Input:

0 0 Stop 0 0 0
1 0 Up/Clockwise + 1 0
0 1 Down/Counterclockwise - 0 1
1 1 Stop 0 00

a MOTDIR uses two relays for the Motor Direction output whose
contacts are wired to result in the above signals, i.e., the
Stop line is energized if either no relay or both of them are
on.

First, MOTDIR reads the current Motor Direction status, and
resets the Motor Speed input value to zero if the Stop relay
is on. This step prevents noise and offset errors within the
analog circuitry from disturbing the Motor Speed output on the
CGCS's console. The four times two Direction input bits are
read and internally stored as one byte. Next, MOTDIR checks
the Motor Speed setpoint values, and determines a relay set-

* ting according to the magnitude and sign of each setpoint.
These four times two bits are also assembled in one byte. The
input and output bytes are now "or"-ed, which sets all bits in
the output byte which are set in one of the two input bytes,

". .or in both. The two bits corresponding to one particular
motor are forced to zero if a zero speed value was submitted

Sas a setpoint. The resulting byte is output to the Motor
Direction relays in any case. Actual output to the control
lines is, however, only generated if the CGCS is in charge of
the puller.

-305-

% N0%

% % _%"

* 5.3 The High-Level Growth Controller Software

The chosen approach may appear unnecessarily complicated but
it is, in fact, indispensable to guarantee valid Motor Direc-
tion signals. The combination of the output data with the
previous input data has no effect if the direction of the

, setpoint speed is the same as the actual speed; the current
motor direction will be maintained. The puller requires,
however, a few tenths of a second in "Motor Stop" position if
the rotation direction of a motor is to be reversed. This is
automatically accomplished by the chosen approach: Both bits
corresponding to one motor are set if the actual Motor Speed
and the pertinent setpoint have different signs, which ener-
gizes the "Stop" control line. At the next pass of MOTDIR,
one second later, two zero bits are input accordingly, and the
Motor Direction output will be determined by the sign of the
setpoint. A one second "Motor Stop" is therefore guaranteed
in any case.

5.3.2.3.4 The Analog Data Output Routine ANAOPT

7.. The Analog Data Output routine uses a similar approach as
ANAINP for providing easily programmable output to random
hardware channels of the D/A Converter board: The channel
numbers are kept in an array ANOPAR whose size is not limited
by ANAOPT. Output values are read from an array in the order
in which they are stored; there is no limit to this array
either. ANAOPT returns to the calling routine when a negative
channel number is detected in the parameter array.

ANAOPT has to scale the data submitted to it by a factor of 8
since the D/A Converter board supports only a 12 bit unipolar
data range. Round-off is provided according to the magnitude
of the highest-order bit which has to be discarded. Negative
output values are trapped and replaced by zero.

SIncidentally, the (assembly language) routine ANAOPT is kept
in the Data rather than in the Code area of the CGCS. This

* was necessary because ANAOPT "patches" its own program code
according to the analog channel which is currently in use.
This approach is, however, incompatible with the memory check-
ing done by the Command Executor (compare chapter 5.3.1.4.8).
(Although patching program code is legitimately considered a
bad programming technique it was indispensable in this case
because the 8085 processor used does not allow otherwise to
access I/O port addresses which have been calculated before.)

- 306 -

",or
A2V

4/%¢

5.3 The High-Level Growth Controller Software

*5.3.2.3.5 The Low-Pass Filter Routine LOWPAS

* - The algorithm used by LOWPAS is very simple and efficient:
With xk, the current input value, and Yk and Yk-l, the current
and the previous output values, respectively, LOWPAS calcu-
lates:

Yk -- a'xk + b'yk- 1 (46),

with

a = 2-n (47),

and

b = 1 - a =1 - 2-n (48),

where k and n are positive integers (0, 1, 2, ..). The re-
striction of eq. (47) permits a very fast evaluation of eq.

4 (46). Eq. (48) guarantees an overall gain of 1 for constant
(DC) signals. We can re-write eq. (46) to:

" yk-l) + (1 - b) k a'xk (49)b-(" - "k1 =Y x

Eq. (49) can be divided by T, the time interval between two
runs of LOWPAS:

Yk - Yk-i 1 - b a
+ "yk = - "Xk (50)

T b.T b-T

The difference in the left term in eq. (50) can be approxi-
mated by a differential, transforming eq. (50) to the dif-
ferential equation:

S+ 1 -b a (1

st b-T y= bT x51)

This is evidently the response of a simple first-order (R-C)
low-pass filter. Eq. (50) is an approximation, though, which
is only valid for very slowly changing input values xk. A
more accurate analysis of the filter's frequency response must
be based on the theory of digital filters: The complex fre-
quency response H(n.T), with

n = 2"w.f (52),

where f is the input signal frequency and T the time interval
between two sampling points, can be obtained by a z-transfor-
mation of the filter's response to a single pulse with the

- 307 -

o ~-

5.3 The High-Level Growth Controller Software

amplitude 1. It can easily be seen from eq. (46) that, for an
input signal

1 for k = 0
Sk 0 for k > 0 (53),

the output signal hk will be:

k = 0 1 2 3 m (54)
hk = a a-b a.b 2 a-b 3 ... a.bm

With the definition of H(n.T)

H(n.T) = Z hk .[exp (j.n.T)]-k (55),
k=0

and the summation formula for an infinite geometric series

1 + x + x 2 + x 3 + 1 (56),
S1 - x

we can obtain the complex frequency response

H(l.T) = 1 - b.exp (-j-n.T) (57).

Since we are not interested in the phase but only in the am-
plitude response, we derive the absolute value IH(n-T) I from
eq. (57):

aIH(f-T) i = (8(1 + b 2 - 2.b-cos (n.T))1/2 (58)

The cut-off frequency

no = 2.7.fo (59)

of a low-pass filter is defined as the point where the ampli-
tude response drops to 1/,2 of its DC value:

IH(%*T) I = 1 (60)
JH(0)j 727S,,

With eqs. (58) and (60), we can write:

N cos (no'T) = 1 - (1 - b)2 (61)
2-b

-308 -

2 b(1

O,

5.3 The High-Level Growth Controller Software

The cut-off frequency values listed in chapter 5.3.2.3.2 were
obtained from eq. (61), with a sampling point interval T equal
to 1 second.

- 309 -

LI4: wI I IV.

6. CGCS Software Configuration

6. CGCS Software Configuration

The CGCS consists of a number of FORTRAN and assembly language
program source modules each of which holds one or several
routines. These modules must first be converted into object
machine code, which is done by a Compiler and Assembler pro-
gram, respectively. The resulting object program files must
be linked together by a special Linker utility which also
resolves mutual references; the output of the Linker which
still does not refer to absolute memory locations must be
modified to do so by a Locate program. A special Configura-
tion Module must be provided for the iRMX-80 operating system;
this module may either be written in assembly language, or it
can be prepared much more comfortably with a special Interac-
tive Configuration Utility for iRMX-80, ICU-80. (All the
development software mentioned is supplied by Intel.)

The actual configuration process is, however, much more com-
plicated, due to the overlay structure chosen, and due to the

4 fact that certain memory locations have to be "tied" together.

The configuration procedure starts with combining all assembly
language and FORTRAN modules, respectively, which constitute
the main body of the CGCS (i.e., the permanently resident
code). These routines refer extensively to FORTRAN-iRMX-80
Interface, FORTRAN, and iRMX-80 library routines which are
linked with the combined assembly language and FORTRAN code in
the next step, together with two ICU-80-created modules. A
dummy module, TRVMOD, included with the assembly language
code, provides references which would be made by overlay rou-
tines otherwise; this permits to keep all support routines
within the resident code. The following items are linked
together in the order listed below:

FIRSTM.OBJ (an auxiliary module required for the Program
Code Integrity Check routines; compare chapter
5.3.1.4.8).

The iRMX-80 Configuration Module.
'All assembly language modules.

All FORTRAN modules.
FXUTIL.LIB (compare chapter 5.2.4).
FIORMX.LIB (compare chapter 5.2.2).

d FXDISK.LIB (compare chapter 5.2.3).
FRXMOD.LIB (compare chapter 5.2.1).
FORTIO.LIB (compare chapter 5.2.2.6).

RXIPUB.LIB (compare chapter 3.4.2.3).
FP8231.LIB (compare chapter 5.2.5).
LOD824.LIB (iRMX-80 Loaded Systems library).
F80RUN.LIB (FORTRAN-80 Runtime library).
F80NIO.LIB (dummy FORTRAN I/O library).

3~- 310 -

6. CGCS Software Configuration

FPEF.LIB (FORTRAN Intrinsic Functions library).
FPSFTX.LIB (FORTRAN software floating-point library).
FSONTH.LIB (dummy FORTRAN I/O library).
DFSDIR.LIB (iRMX-80 High-Level Disk I/O library).
DFSUNR.LIB (dummy iRMX-80 library).
An ICU-80-generated disk interface module.
TSK820.LIB (iRMX-80 Free Space Manager).
RMX824.LIB (main iRMX-80 library).
BOTUNR.LIB (dummy iRMX-80 library).
UNRSLV.LIB (dummy iRMX-80 library).
PLM80.LIB (integer arithmetics library).
LSTRAM.OBJ (an auxiliary module required for the Program

Code Integrity Check routines; compare chapter
5.3.1.4.8).

(The various dummy libraries have essentially the purpose to
"tie away" any unresolved references to unused external rou-
tines.) After this procedure, all references to external rou-
tines should be satisfied, with the exception of those referr-
ing to the routines which constitute Command Interpreter over-
lays. Despite these missing external references, the resident
code is located to absolute memory addresses.

Next, the overlay routines (i.e., one or more program modules
per overlay) are linked separately to one module for each
overlay, combining them with the PUBLIC addresses of the
resident CGCS code which were defined in the above locating
step in order to satisfy their external references to routines
which are part of the "body" of the CGCS. Since no overlay
may directly refer to another overlay, no unresolved refer-
ences may remain in the overlays, and the overlay code can be

*located to reside in the reserved overlay area.

The last phase, finally, entails linking the resident CGCS
code to the PUBLIC start addresses of all Command Interpreter
overlays, which satisfies the last yet open external referen-
ces in the CGCS body. In addition, the Initialization code of
the Command Interpreter which was prepared separately like an
overlay (and which, indeed, resides in the memory area re-
served for overlays) is linked to the resident CGCS code in
its entirety. The resulting modules still contain a vast
overhead of information which was required for linking and
which is used by various debugging approaches. These referen-
ces are not required for the execution of the program and
would only unduly consume disk space and loading time; they

.- . are, therefore, stripped in the final step of software prepar-
ation.

A special technique is required to process the FORTRAN COMMON
blocks properly: The ISIS-II LOCATE program places by default

-311-

6. CGCS Software Configuration

COMMON blocks in an arbitrary order, at arbitrary memory loca-
tions. These locations must not only coincide for all over-
lays and for the program body to permit regular program opera-
tion, they must, at least in some cases, even be "tied" to
locations used by assembly language programs. This entails

-.[that each of the 24 program modules which have to be prepared
. separately (i.e., the body of the CGCS, the Initialization

code, the 21 Command Interpreter overlays, and the Data over-
lay) requires an explicit specification of the starting loca-
tion of each COMMON block it uses when it is processed by
LOCATE. Although this task can be automated by using appro-
priate SUBMIT (i.e., batch) files, it is very cumbersome to

,- prepare these files, particularly because every additional
COMMON block or every change of the size of a COMMON block
requires the editing of 24 SUBMIT files. (Since Intel's
LOCATE program prohibits the declaration of start addresses
for COMMON blocks which are not present in the module current-
ly processed, it is not possible to use generic SUBMIT files
either.)

0 In order to facilitate the maintenance of the SUBMIT files
which call LOCATE, a BASIC program, CSUBMT.BAS, was specially
written. This program requires a source file (whose file name
extension must be different from "CSD") which contains all
information to be included in the SUBMIT file, except the yet
undetermined addresses. The latter information must be sup-
plied in a "dictionary file". CSUBMT.BAS replaces all lines
in the source file whose first character is a "@" by the line
in the dictionary file whose beginning is identical to the
remainder of the line within the source file. Lines without a
leading "@" remain unchanged. The program creates an output
file with the same name as the source file but the extension
"CSD" (which is Intel's reserved SUBMIT file extension).
Since the address information is contained in the dictionary
file only, changes of COMMON block locations require changes
within one disk file (i.e., within the dictionary file) only;

* the probability of errors is thus greatly reduced. A small
example shall show how CSUBMT.BAS works:

Suppose the LOCATE command should read:

LOCATE CZOV01.LNK TO CZOV01.LOC CODE(05400H) MEMORY(05COOH) &
<.- STACKSIZE(O) &

/OVRLAY/ (0299AH) &
0. /OVLNMl/ (02994H) &

/COMMEX/ (028ACH) &
/COMMFL/ (028B6H) &
/SCALE/ (03571H) &
/SETPTO/ (02B9BH) &
MAP PRINT(CZOV01.LOM) PUBLICS SYMBOLS COLUMNS(3)

Y. - 312 -

% %

6. CGCS Software Configuration

The pertaining source file for CSUBMT.BAS would be:

LOCATE CZOV01.LNK TO CZOV01.LOC CODE(05400H) MEMORY(05COOH) &
STACKSIZE(O) &
@/OVRLAY/
@/OVLNMl/
@/COMMEX/
@/COMMFL/

,,, @/SCALE/
S@/SETPT0/

MAP PRINT(CZOV01.LOM) PUBLICS SYMBOLS COLUMNS(3)

(There should not be any spaces following the contents of
lines beginning with '@", i.e., these lines should be ter-

S.minated immediately after the second "/" by a carriage--
' '.. return.)

The above common block locations are extracted from the fol-
* ~lowing dictionary file (which may, by the way, contain ar-

bitrary comment lines):

/CNDCNT/ (028ABH) &
/COMMEX/ (028ACH) &
/COMMFL/ (028B6H) &
/CONLIM/ (028CoH) &

/MODE/ (02993H) &
. /OVLNMl/ (02994H) &

/OVRLAY/ (0299AH) &
/PLOTAD/ (0299BH) &

/SECFLG/ (02B9AH) &
/SETPTO/ (02B9BH) &
/SETPT1/ (02BBCH) &

.. /LENGTH/ (0356FH) &
/SCALE/ (03571H) &
/AUXDIA/ (035B9H) &

The dictionary file may contain up to 100 replacement lines;
only the items required for a particular SUBMIT file are
selected.

A slightly different approach is chosen for the body of the
CGCS program which accesses virtually all COMMON blocks. The
start locations of all COMMON blocks which are accessed by
FORTRAN modules only and which, therefore, need not be tied to
locations defined by assembly language modules, can be defined

- 313 -

-%,

6. CGCS Software Configuration

automatically by LOCATE; the addresses thus obtained must be
"manually" copied to the dictionary file, though.

.' In addition to the main resident CGCS module CZOCHR.BIN and
* the 21 Command Interpreter overlay modules CZOV01 through

S-- CZOV21, plus the Data module CZOOVD, two more files are re-
quired on a CGCS system disk: The file CZOMEN holds a spe-
cially formatted Help menu which is displayed upon a HELP
command (compare chapter 5.3.1.3.4); this file needs no spe-
cial attention if a new system version is being generated,
unless significant modifications of the command structure were
made. A special treatment is, in contrast, required for the
CZONAM file which holds the list of Variable addresses (com-
pare chapter 4.7 and Appendices 11 and 12). This file must
hold the current version code in its file name extension
(CZONAM.V24 refers, for example, to version 2.4 of the CGCS),
and it must be generated from a source file which may have
required updating due to a possible shift of the addresses of
some Variables because of software modifications. This source
file is converted into the special CZONAM format (compare

0 Appendix 12) by means of the auxiliary program CONVAD. CONVAD
is designed to run under ISIS-II; it could also be executed
under RXISIS-II but that will hardly be necessary.

The last step in preparing a work disk for a new CGCS versionis, finally, up to the operator: All Macro command files

which were used under a previous version and which are still
required must be converted to the new system version using the
facilities of the Macro Command Editor COMMED (compare chapter

7.2).

p.

-314-

r W,

7.1 Data File Display Utility SHODAT

7. SuPRortinQ Programs for the CGCS

7.1 Data File Display Utility SHODAT

7.1.1 General Remarks

The program SHODAT allows to browse through Data files created
*by the Czochralski Growth Control System (CGCS) (compare

chapter 4.6 and Appendix 12.4), and to dump the contents of

selected records to a printer. Accesses to data records are
permitted in a random mode, which allows to step back and
forth through the growth data as required.

The CGCS creates three types of data records:

(1) Regular Data Output: Sets of all important system parame-
ters - measured data, setpoints, controller outputs, cal-
culated crystal diameter and length, and the four DEBUG
Continuously channels, plus time and operation mode - are
written to the disk in regular intervals as defined during
the initialization of the Data file (with the CGCS's DATA
or FILES command).

(2) Extra Data Output: Additional data sets with exactly the

same format as the regular ones are written to the Data
file upon each DUMP command, and at operation mode chan-
ges. (Note that the regular periodic data dumps to the
Documentation output do not trigger output to the Data

*.: file.)

(3) Comments: Comments entered with the CGCS's COMMENT com-
mand are embedded between the data records in the Data
file. Since the Data file is made up of equally sized
records and most of a comment record is reserved for the
storage of text, only a few system parameters - the time,
the operation mode, and the crystal length - are recorded
together with a comment.

SHODAT is designed to give a proper display of either record
type. A CRT screen layout similar to the CGCS console screen
is used for data display. Optional printer output is for-
matted in uniformly sized blocks five of which fit onto a
printout page. A layout different from the one used for the
CRT display had to be chosen in order to conserve paper.

Note: System parameters displayed on the CRT screen together
t,. ". with a comment line are, with the exception of the time, mode,

and length grown information, leftovers from the record dis-
played immediately before. They may or may not have been

4 - 31.5 -

7.1 Data File Display Utility SHODAT

valid at the time the comment was recorded. There is no such
ambiguity for the printer output of comments, though.

Time is recorded as an unsigned two-byte integer seconds
count. Since the greatest unsigned integer which can be held
in 16 bits is 65535 (216 - 1), the system time "wraps around"
to zero after 65536 seconds, i.e., after 18 hours, 12 minutes,
and 16 seconds. The time information can be corrected by
specifying a "Time Frame" number which indicates the multiple
of 65536 seconds within which the system time lies. (The time

-~ display is, however, limited to 95 hours, 59 minutes and 59
seconds, after which time it starts again from zero.) SHODAT
assumes that the first record of a Data file was recorded in
Time Frame 1, i.e., at a system time between 0 and 18:20:11,
and makes an intelligent guess at the correct time frame of

*later records. The first assumption may not be correct,
though, if a Data file was started at an advanced stage of the
growth run, and SHODAT's time evaluation may be incorrect if
many extra data and comment records are inserted between the
regular ones. Under worst case conditions, i.e., for a data
record interval of 255 seconds, the minimum number of extra
records which confuses SHODAT is 256; for shorter intervals,
many more extra records are tolerated. Since even the minimum
extra record count of 256 will hardly be attained under normal
circumstances, the time displayed by SHODAT is fairly reliable
if the proper starting time frame was chosen. Anyway, the
time frame number can be interactively corrected by the opera-
tor with SHODAT's 'T" command.

* From release 2.0 of the CGCS software on, information is
provided in the Data file about the display formats used for
the four DEBUG Continuously output channels. This permits
SHODAT to adapt its DEBUG output automatically to the proper
format, or to blank the DEBUG data (but not the address infor-
mation) if a DEBUG channel is inactive. The default format as
supplied by the CGCS may be overridden, though, with SHODAT's
I'D" command; the new display format remains active until it is
either replaced with a new one, or until the default format is

*restored with another I'D" command. Data files generated with
CGCS releases earlier than 2.0 can be displayed with SHODAT,
too; SHODAT defaults to a four bytes hexadecimal DEBUG display
format in this case (which provides the most complete informa-
tion); the proper DEBUG Continuously format has to be entered
manually.

dNote: Parameters are recorded in unscaled two-byte integer
format in the Data file, which entails that they must be
scaled within SHODAT before they can be displayed. Modifica-
tions of the scaling factors within the CGCS may therefore
result in invalid data displayed by SHODAT. The current

V - 316-

,V
0.J

7.1 Data File Display Utility SHODAT

versions of the CGCS and SHODAT require that SHODAT is partly
re-compiled to allow for scaling factor corrections. Since
adjustments of the scaling factors within the CGCS also affect
the proper operation of the Macro Command Editor and Display

. programs COMMED and READCM (compare chapter 7.2), input and
output signals of the CGCS should be calibrated in any case by
means of the analog input and output hardware, rather than by
a change of their respective scaling factors.

7.1.2 RunninQ SEODAT

SHODAT is available in an RXISIS-II and an ISIS-II version; it
can therefore be executed either on the CGCS computer, or on
an Intellec Series II Development System. It behaves identi-
cally on both systems but the program codes are different and
not exchangeable. (SHODAT's performance under RXISIS-II is,
however, superior to the ISIS-II version, due to the optimized

* console screen output and the high-speed floating-point arith-
metics on the CGCS machine.) In either case, SHODAT is in-
voked by its name, without parameters.

Printer output is directed to the first serial port on an In-
tellec Development system (:TO:); this port must be properly
initialized to the baud rate used by the printer before SHODAT
is started.

SHODAT comes up with a sign-on message and a question refer-
ring to a "properly initialized and selected" printer. Any
answer other than "Y(es)" (upper- or lowercase) disables

*SHODAT's "P(rint)" function and permits to run SHODAT safely
on a system which is not connected to a printer. (SHODAT can
be run as well with enabled Print functions on such a system.
Any inadvertent "P" command would, however, cause the program
to "freeze".)

Having requested the name of the Data file which is to be
displayed, SHODAT reads its header record. Error messages are
issued if the file does not have the proper format (or is no
Data file altogether); otherwise, the header information and
the file size are displayed. Answering the "OK?" question
with "N(o)" permits to back out of SHODAT, while any other in-
put leads on to the display of the first Data file record.

SHODAT displays the contents of the Data file on a screen
similar to the CGCS's (compare Fig. 9), with the exception of
the following differences:

0.

- 317 -

V,

IL-.

7.1 Data File Display Utility SHODAT

(1) The actual time, the Macro command being executed, the
number of parameters being "ramped", and the number of
pending Conditional Macro commands are not available on

, the Data file. SHODAT displays, in the respective loca-
tions, the CGCS system version under which the Data file
was created, the number of the current record in the Data
file, the interval between Data records (in seconds), and
the Time Frame number.

(2) One screen line (the same as in the CGCS) is permanently
reserved for DEBUG output. The addresses linked to the
four DEBUG Continuously channels are always displayed,
even if the corresponding channels are inactive. The data
area of the DEBUG display is, however, blanked for inac-
tive channels if the Data file was created with CGCS
release 2.0 or later. (An inactive channel maintains the
address and data values last output on this channel.) A
list of Variable names like the one in Appendix 11.3 can
be used for translating the absolute hexadecimal addresses
displayed by SHODAT into the pertinent Variable names.

(3) Immediately beneath the DEBUG display, the signals of the
eight spare analog channels are displayed, scaled for a
range from zero to ±100.

(4) A line of dashes separating the display of the spare ana-
log channels from the command menu line is eventually re-
placed by the contents of a comment record.

(5) The last line but one on the screen holds a menu of the
permitted commands.

The following command entries (in upper- or lowercase charac-

. -. ters) are allowed in SHODAT; entries must be terminated with
"Return":

" . <Return> Advance to the next record.

• <unsigned integer> Display specified record.

+ <integer> Advance by specified number of records.

-<integer> Step backwards by specified number of
records.

In either of the above cases, output is limited to record
numbers in the range from 1 to the total number of records in
the file. Jumping to an "impossible" record number (e.g.,
9999) displays the last record in the file.

- 318 -

* N

7.1 Data File Display Utility SHODAT

.P Print record. Printer output generation
halts SHODAT for a few seconds. Five
records are printed to one output page.

T [<integer>] Change Time Frame. A Time Frame number
S"may be entered together with the "T" com-

mand; otherwise, it is explicitly request-
ed. The Time Frame specified is taken as
a base for subsequent time evaluation and
remains effective until another "T" com-
mand is issued, or until a Time Frame
number less than 1 would result, in which
case the Time Frame number is reset to 1.

D Specify a DEBUG Continuously display for-
mat. SHODAT requests the number of the
DEBUG channel. If a Data file created
under CGCS release 2.0 or later is under
display, SHODAT asks "Override default

4 Debug output mode?"; answering with "N(o)"
restores the output mode to the one speci-
fied in the Data file. Modes entered with
the 'D" command remain in effect even if
the mode defined by the Data file was
changed subsequently; it requires another
I"D" command to modify them again.

E Exit SHODAT.

11

- 319 -

N-p

1-

7.2 Macro Command Editing and Displaying

7.2 Macro Command Editing and Displaying - Programs COMMED
and READCM

7.2.1 General Remarks

The Macro Command Editor COMMED and the Macro Command File
Display Program READCM support the Czochralski Growth Control
System's Macro Command feature, i.e., the possibility to issue
a series of timed Internal commands as defined by a disk file.
Macro Commands are executed by reading and processing special-
ly formatted encoded (tokenized) disk files which contain, in
addition to the command code and the necessary parameters, a
time tag. Each command recorded in a Macro Command file is
executed with a particular time offset after the Macro Command
was invoked which is specified in the Macro file (compare
chapters 4.1.1 and 4.5).

There are, in general, two ways to create Macro Command files:

(1) By recording the commands actually issued during a growth
6 run, and

(2) by using the Macro Command Editor COMMED which is totally
independent from the Czochralski Growth Control System.

The Macro Command '1ditor COMMED and the Macro Command File
Display Program READCM can be executed under RXISIS-II on the
CGCS computer or, under ISIS-II, on an Intellec Series II
Development System.

COMMED allows to generate Macro Command files, either from
operator input on the console, from a genuine Macro Command
file, or from a disk file whose format is compatible with
files created with READCM. It permits to enter all commands
which can be recorded on a Macro file, together with the
command execution time, and it allows to edit old Macro Com-
mand files. COMMED generates a Macro file for the latest
program version of the CGCS which resides on the specified

O target disk. (Macro Command files can only be generated on
disks which hold a Variable name file CZONAM.Vmn, where m and
n are integers representing the CGCS release version; compare
chapter 6 and Appendix 12.1.)

READCM is a relatively simple program which permits to convert
encoded Macro Command files into legible form; its output may
be directed to a printer for documentation purposes, or to a
disk file which, in turn, may be used as an input to COMMED.

Note: Values of primary CGCS parameters - diameter, heater
temperature(s) , motor speeds, and power limit - which are

- 320 -

7.2 Macro Command Editing and Displaying

specified with SET or CHANGE commands are stored in the Macro
command file with the i. ternal two-byte integer representation
used by the CGCS. It is essential that the scaling factors
used by COMMED and READCM for these parameters are identical
to those applied by the CGCS. The inconsiderate modification
of scaling factors within the CGCS will, therefore, result in
discrepancies between the commands as seen by COMMED and
READCM, and as executed by the CGCS!

7.2.2 The Macro Command File Editor COMMED

COMMED is primarily designed for interactive use although it
can be run under the control of a SUBMIT file (under ISIS-II
only). The Macro Command Editor uses all available memory as
a buffer for building and chronologically sorting the Macro
Command file to be edited; hence, the number of Internal
commands within a Macro Command file is limited. (The limit

4 lies between 600 and 800 commands, depending on the environ-
ment and the COMMED version used, which is probably more than
sufficient for all practical purposes. The maximum permitted
number of commands is displayed by COMMED as part of its sign-
on message.)

COMMED can either be used to create Macro files from scratch,
or to edit existing files. In the first case, input is ex-
clusively retrieved from the keyboard, in the second, from an
existing Macro file. COMMED permits to read genuine Macro
Command files, and Macro List files which may have been creat-
ed during a previous pass of COMMED, or with READCM. Macro
Command files which are used as an input for COMMED are first
automatically translated into List file format; COMMED uses
the Variable name file CZONAM for the CGCS version under which
the source Macro file was generated in order to convert ab-
solute memory references into symbolic Variable names. (COM-
MED terminates immediately if the correct CZONAM file is not
found on the disk which contains the source Macro.) The
output file created by COMMED may be stored under the same

"name as the source file if a Macro Command file is used as a
source; COMMED issues a warning in this case, though, that an
existing file is to be overwritten. No file name extension
need be specified if Macro Command file names are entered;
COMMED appends ".CMD" automatically. COMMED searches the disk
on which the output Macro file is to be stored for the latest
version of the Variable name file CZONAM; it exits with an
error message if no such file is found. Since CONNED creates
its output files always for the latest CGCS version available
on the target disk but allows to read Macro files for ar-
bitrary CGCS releases if the proper CZONAM files are found on

- 321 -

-4

I .

7.2 Macro Command Editing and Displaying

the source disk, it automatically translates Macro files for
use with the latest CGCS version. (Since the addresses of
Variables may have changed due to modifications of the CGCS
software, the CGCS prohibits the execution of commands refer-
ring to absolute addresses if a Macro file was created under
or for a different CGCS version; compare chapter 4.5.)

Before COMMED enters the actual file editing sequence, it
permits the definition of a Macro List file to which it will
direct a listing of the commands within the Macro file in
single line format (compare chapter 4.3.2). The List output
may be directed to a disk file, or to a printer (if the proper
device - "1:LP:"1 or ":TO:" - is specified). Aside from docu-
mentation purposes, such a List file can be used as an input
for future COMMED runs. It is not possible, though, to re-
direct the List output to a List file which is currently used
for input.

In order to optimize the efficiency of COMMED for the various
* applications for which it may be used - creation of a new

Macro Command file, editing of an existing file, translation
of a Macro file for a new CGCS version, or generation of a
List file only (for which purpose READCM is the better choice,
though) -, the actual command editing features of COMMED can
optionally be disabled. If editing was declined by the user,
COMMED simply processes its input file command line by command
line, and requires operator input only if it detects a pos-
sible command error. This operation mode is obviously best
suited for the translation of Macro Command files; it should
be noted, though, that only references to Variables which are
def ined in the source and in the target CGCS version can be
resolved automatically. COMMED skips the current command if
it does not find the name of a Variable in the target CZONAM
file; commands referring to locations which were specified by
their absolute addresses in the source file (e.g., in a DEBUG
or PLOT command) will be copied into the target file unmodi-

; . ~ fied. since potentially disastrous problems might arise from
referring to an absolute address which may be incorrect in the

* new CGCS version, the use of absolute addresses within Macro
Command files is strongly discouraged.

If editing is activated, each command line of the input file
is displayed (if there is an input file) , and the user may
accept, delete, or replace it, or insert a command in front of
it. The execution time as defined by the source file is
displayed together with the command line; it cannot be edited,
but an optional offset may be subtracted from the relative
time of each command. This feature permits to "break" a
lengthy Command Output file created by the CGCS into a number
of Macro Command files each of which starts at time 0 (or

-322-

7.2 Macro Command Editing and Displaying

approximately at time 0). COMMED discards all commands which
would get a time tag of less than 1 after it subtracted the
time offset. (The default time offset is, of course, 0.)

* ~The following commands may be legally entered in COMMED; all
*[other CGCS commands will result in a (non-fatal) error:

CHANGE
CLEAR
DEBUG Continuously
DEBUG Modify
DEBUG Off
DEBUG Resume
DEBUG Suspend
END

'A HELP or ?
IF
MODE
PLOT

4 ~RESET
SET
Macro Command names

Command entry is equivalent to the CGCS (compare chapters
-. 4.3.2 and 4.3.3) (with the exception that a few commands may

be entered in one line with COMMED which require several input
lines in the CGCS, e.g.,the MODE command). Each command must
be preceded by the relative time of its execution; COMMED

"" proposes a value which may be accepted (with "Return") or
replaced by an arbitrary positive execution time value. Com-
mands need not be entered in chronological order; once a com-qmand was entered, though, it cannot be modified or removed
during the current pass of COMMED. In general, the command
entry dialogue of the CGCS is duplicated by COMMED, except in
cases where this is not possible (since COMMED obviously
cannot know, e.g., the actual value of a parameter to be SET

- or CHANGEd at the time the Macro Command is executed). COMMED
checks for the existence of Macro command files, though, whose
names are specified in Conditional or unconditional Macro

.2 commands, and issues a warning if no such file was found on
, the target disk.

After command entry was terminated (with "<EOF>" instead of a
command execution time), COMMED sorts all commands chronologi-
cally, and displays them on the console and writes them to the

2. List file in their final sequence. A count of errors (which
- generally result in the cancellation of the command affected)

is displayed, and COMMED allows the user to continue with
editing another file without having to re-load COMMED (which
is rather time-consuming, due to COMMED's large size).

I3 3~- 323 -

A ,

.. .~7.2 Macro Command Editing and Displaying

7.2.3 The Macro Command File Display Utility READCM

READCM provides a subset of the functions offered by COMMED.
Its purpose is restricted to the conversion of Macro Command
files into Macro List files; requiring less code and setup
operations, READCM is faster and easier to use than COMMED.

Similar to COMMED, READCM scans the disk which holds the
source Macro Command file for the proper Variable name file
CZONAM. Unlike COMMED, however, it does not quit its opera-
tion if no such file exists but simply displays the absolute
hexadecimal addresses of all non-primary parameters, even for
commands which operate on Variables only (i.e., CHANGE, CLEAR,
DEBUG, IF, PLOT, and SET). The resulting output file cannot
be used with COMMED in this case, but it contains still the
full information of the source file.

The Macro List file generated by READCM may be routed to a
disk file or directly to a printer; it is displayed on the
console screen only, if no output file is specified. Each
line of the List file holds one command (in single-line for-
mat; compare chapter 4.3.2), preceded by the time (in seconds)
relative to the start of the Macro command. (COMMED uses
exactly the same format for its List output.) Macro List
files created by READCM or COMMED can be further processed
with COMMED; they may also be edited with any suitable text
editor (e.g., Intel's CREDIT; compare chapter 3.4.1.2.1) prior
to be submitted to COMMED again.

-x324

V % 4

O. .

A1 d le

"Appendix 1: Additional Documentation

Appendix 1: Additional Documentation

iRMX-801 User's Guide; Intel Corporation 1979, 1980; Manual
Order No 9800522-05:

. ," General information about iRMX-80.

iSBC 80-24 Sinqle Board Computer Hardware Reference Manual;
Intel Corporation, 1980; Manual Order No 142648-001:
Hardware reference manual.

iSBX 331 Fixed/ Floating-Point Math Multimodule Board HardwareiReference Manual; Intel Corporation, 1980; Manual Order No
142668-001:
Hardware reference manual.

.V iSBC 016A/032A/064A/028A/056A RAM Board Hardware Reference
Manual; Intel Corporation, 1981; Manual Order No 143572-
001:
Hardware reference manual.

" iSBC 517 I/O Expansion Board Hardware Reference Manual; Intel
Corporation, 1977, 1979; Manual Order No 9800388-01:
Hardware reference manual.

i iSBC 204 Flexible Diskette Controller Hardware Reference Manu-
al, Intel Corporation, 1978; Manual Order No 9800568A:
Hardware reference manual.

User Manual for DT772 Series Analog Input Systems for MULTIBUS
Computers; Data Translation, 1984; Document UM-02829-A:
Hardware reference manual.

The Alternative Loader Task - Library ROLOAD.LIB; Karl
Riedling, September 1984:

,. Information within this documentation complements and- - replaces information in the iRMX-80T M User's Guide. *

The Alternative Terminal Handler - Library ATHxxx.LIB; Karl
Riedling, February 1985:
Information within this documentation complements and
replaces information in the iRMX-80TM User's Guide. *)

'. - RXISIS-II User's Guide; Karl Riedling, April 1987:
- AGeneral information about RXISIS-II and its supporting

Iroutines, the RXISIS-II Monitor, and the RXISIS-II Confi-
p dence Test. Short overview over utility software avail-

able under RXISIS-II. *)

- 325 -

LLA

.1*A.

Appendix 1: Additional Documentation

ISIS-II User's Guide. Intel Corporation, various issues and
order numbers:
Documentation of Intel supplied utility software which is
also available under RXISIS-II.

Additional System Programs for Intel Development Systems; Karl
Riedling, March 1981:
Documentation of additional utility routines; all programs
listed are compatible with RXISIS-II. *)

Fortran - RMX-80 Interface Proaram Packacre; Karl Riedling, May
1987 (Issue 4):
Extensive documentation of all Interface routines used in
the CGCS, containing also discussions of various program-
ming approaches and of the system configuration. *)

Additional Fortran Numeric Routines; Karl Riedling, 1985:
Documentation of alternative Fortran floating-point system
routines which use the 8231 Numeric Processor. *)

0/ Czochralski GaAs Crystal Growth Controller - Short Reference;
Karl Riedling, December 1986 (Issue 4):
User's reference manual for the CGCS. *)

Czochralski GaAs Crystal Growth Controller - Operator's Manu-
al; Karl Riedling, December 1986:
Operation guide for RXISIS-II and the CGCS. (Subset of
the Short Reference and Digital Controller Emergency
Procedures manuals.)

Czochralski Growth Control System - Digital Controller Emer-
gency Procedures; Karl Riedling, December 1986:
Procedures for emergencies caused by the CGCS hardware or
software. (Part of the Operator's Manual.)

Czochralski Growth Control System Macro Command Editor COMMED;
Karl Riedling, April 1986:
User's reference manual for the Macro Command Editor pro-

0 grams COMMED and READCM. *)

Program SHODAT - Short Reference; Karl Riedling, May 1986
(Issue 2):
User's reference manual for the Data file display utility
SHODAT. *)

*) Essential parts of these documentations have been merged
into the present Czochralski Growth Control System Refer-
ence Manual.

e
.'z - 326 -

Apedx2 adae eu n etn

Appendix 2: Hardware Setup and Testing

This Appendix is structured as follows:

A: Defines an action in the setup procedure.
R: Specifies the result to be expected.
F: Suggests failure mechanisms if the system failed to produce

IP the results under R:.

A: Install the four RXISIS-II EPROMs in the correct order on
.~- ~the iSBC 80-24 board. Connect a CRT terminal to the RS232

interface on the iSBC 80-24 board, and a printer to the
iSBC 517's RS232 connector. Switch the terminal and the
printer on, set the printer to on-line, and wait for the

~..terminal to warm up. Insert a write-enabled scratch disk
in each disk drive. (Data on these disks will be destroyed
during the confidence test!) Switch the disk drives and
subsequently the computer on.

R: A flashing display of zeros and ones should appear in the
top left corner of the console CRT, indicating the Memory

* .. Confidence Test, and three "beeps" should be issued, one,
fractions of a second after power-on, and, after an inter-
val of several seconds, two more within fractions of a
second. After the third "beep", the display of zeros and
ones should be overwritten by the sign-on message of the
RXISIS Monitor.

F: No display at all, processor not running - check hardware.

No display, processor running - check RS232 connection andp terminal.

Processor runs and halts with display of zeros and ones -
* ROM or RAM failure - check the Confidence Test documenta-

tion in chapter 3.3.2. You can restart the system with a
Reset; the Confidence Test will be skipped, and you can
enter the Monitor for inspection of the memory. (The
memory page in which a RAM error was detected is indicated
by the binary data displayed; the actual location can be

~: determined by inspecting the memory with the Monitor's "'D"
command. It is the location where the RAM contents change
to a different value.)

A: Press the space bar to enter the Monitor, and invoke the
Confidence Test with the "IZ" command. Run the Confidence

.~ . Test (see chapter 3.3.2). (If you want to test I/0 ports
there is a more comfortable routine in the Monitor. You

-327 -

% %

TVwI"%

Appendix 2: Hardware Setup and Testing

may therefore skip the Confidence Test's I/O Port Test.)
The Confidence Test returns to the Monitor, and you may
invoke it repeatedly.

R: You should obtain an error-free operation through the
entire Confidence Test. (Overrun errors detected during
the CRT Console Test are due to a too fast entry on the
keyboard. You cannot blame the system for them.)

F: System halts within the Memory Test - see above.

Parity errors during CRT Console Test - check terminal.

Printer does not print - check printer and its interface.

Errors during Floppy Disk Test:

NOTE: The test routine and the ROM resident iRMX-80 Disk
File System routines have been configured for Shugart

*800/801 drives. Different drives need not neces-
sarily work properly with the software supplied.

"Drive not ready" - check jumper configuration on the disk
drive.

Any other disk error - possibly a problem with the drive
and/or the scratch disk used.

A: Enter the Monitor again. Try a few Monitor commands (see
chapter 3.3.1). Command "P1"1 to duplicate the console
output to the printer. Command "ID4000,8000"1 (or any other
memory range which is large enough to make the output
generated by the Monitor completely fill the printer's
internal buffer). Check the printer output for missing
data.

R: No data should be missing even if the output on the console
* (which is linked to the printer output) is temporarily

halted. If the printer buffer is so large that emptying it
requires more than approximately 12 seconds, a message
"PRINTER TIMEOUT"1 may be issued; the printer output is de-
activated in this case. Set the printer buffer to a
smaller size if this happens and if it is feasible. (A

~ -u"PRINTER TIMEOUT"1 condition at this stage does not con-
stitute a problem for the operation of the CGCS, though.)

F: Missing data indicates a problem with the handshaking be-
tween the printer and its interface. Check the cabling and
the printer configuration.

-328-

e 0.ld ,r ' W If r r .

,v* %

0"

Appendix 2: Hardware Setup and Testing

A: Keep the printer in on-line mode. Insert the disk labeled
"I/O AND 8231 APU TEST" in Drive 0. Enter "Q" (for "quit")
while in the Monitor, and answer with "Y(es)".

R: The disk will be accessed, and after a few seconds of load-
ing, the CRT screen will be erased (not necessarily if the
CRT terminal uses control codes different from those for
which the software was config-red, which imposes, however,
only a minor problem). A prompt line "Enter two floating-
point numbers:" will appear. The CPU will enter a "Halt"
state (there are no CPU "Halts" in the Monitor and in the

'Confidence Test, except in the case of a memory error
'." ~detected).

7" . F: The operation of the disk-loaded test program is based upon
-iRMX-80 and therefore on interrupts, in contrast to the

-. '- Confidence Test and Monitor which operate with polling
loops. All functions which did work under the Confidence
Test and/or the Monitor but do not work under iRMX-80 indi-

:- cate a hardware problem related to the interrupts.

A: Type in two arbitrary numbers, followed by "Return" after
the second number.

R: The program performs a number of arithmetic operations with
the standard floating-point algorithms of FORTRAN, and with
the 8231 APU on the iSBX 331 Multimodule Board. The re-
sults of both operations are compared, and the absolute and
relative differences are displayed. The results obtained
from either source should match one another reasonably;
except in the case of singularities, the relative errors
ought to lie in the order of 1.E-6 or less. The output on
the console CRT screen is duplicated on the printer.

:-, ": F: In case of arithmetic errors or of a catastrophic program
. malfunction, check the iSBX 331 board. If "PRINTER NOT

READY" messages are output although the printer is ready
and worked properly under the Monitor, the most likely
reason is that the Printer USART interrupts are not proper-
ly recognized.

A: You can disable the printer output at any time with "Cntl-
" V". A second "Cntl-V" enables it again.

Press the "Break" key on the console terminal or the "In-

terrupt" switch on the cardcage. In either case, a Monitor
sign-on message is displayed. You can return to the test
program with the Monitor's "G(o)" command.

-329-

%

W% 41'

O

Appendix 2: Hardware Setup and Testing

You can invoke the iRMX-80 Debugger with "Cntl-C" while in
the iRMX-80-based test program (a full active Debugger is
included with the test routines). A return from the Debug-
ger can be effected with "Q" or with "Cntl-A".

Finally, you can replace the I/O Test disk by an RXISIS-II
or CGCS system disk, enter the Monitor (via a "Break" or an
RST5.5 interrupt) and load RXISIS-II (with the Monitor's
"Q(uit)" command). Alternatively, you can bootload RXISIS-
II with a system reset followed by a "Return". Try to dis-
play the disk directory (with the "DIR" command), to format
a blank disk in drive 1 (with "FORMAT :Fl:<diskname>"), and
to copy the contents of the system disk to the disk in
drive 1 (with "CPYDSK :FO: TO :F1:"). No error messages
should be displayed at this stage any more.

33

45.

..?,
1/. -- "

Appendix 3: operating System Memory Allocation

Appendix 3: Operating System Memory Allocation

ROM Resident Program Code:

Restart Vectors: ROM 0000 - 003F
RXISIS-II MEMTOP: ROM BKl 0004 - 0005
Checksums: ROM 0020 - 0023

I Confidence Test: ROM BKO 0040 - OFFF
Mcnitor: ROM BKO 1000 - IFF7
iRMX-80 Nucleus: ROM BKl 0040 - 1FF7
Monitor Return Code: ROM lFF8 - 1FFF

Data Areas for ROM Resident Code:

• * Confidence Test/Monitor: RAM 2000 - 200F
Vector to R?RST5HD: RAM 2010 - 2012
iRMX-80 Nucleus: RAM 2018 - 27CF
Cursor Positioning: RAM 27D0 - 27FF

O ROM Linkage Version RAM FEAE - FEAF
Controller Buffer RAM FEBO - FEFF
Loader Buffer RQLBUF: RAM FF00 - FFFF

Program and Data Area for Applications:

Available RAM: RAM 2800 - FEAD

RXISIS-II:

'' RXISIS-II Subroutines + Data RAM C800 - F6FF
RXISIS-II Internal Buffer RAM F700 - F7FF
RXISIS-II Main Body RAM F800 - FEAB
RXISIS-II Version Code RAM FEAC - FEAD

RXISIS. CLI RAM 3002 - 3FFF

RXISIS-II Linkage Version RAM 3000 - 3001

BOTLOD (System Bootloader) RAM 3400 - 3402

iRMX-80 Debugger under RXISIS-II RAM 9300 - C7FF

Application Program Area RAM 2800 - C7FF
(with Debugger: RAM 2800 - 92FF)

O. iRMX-80 BASIC:

BASIC RAM 2800 - AFFF
Workspace RAM BOOO - FEAD
ROM Linkage Version RAM FEAE - FEAF

- 331 -

Appendix 3: Operating System Memory Allocation

Entry Points in Both ROM Banks:

OOOOH Entry Point for System Reset (RST 0)
0008H Entry Point for RXISIS Re-Boot (RST 1)
OOOFH Entry Point for Excess Returns from Routines

Executed Under the Monitor
0010H Main Entry Point to the Monitor (RST 2)
0018H Auxiliary Monitor Entry Point (RST 3)

Monitor Interrupt: RST 5.5
lFF8H Return from Monitor Sequence

Entry Points in ROM Bank #0:

0040H Coldstart Confidence Test
0043H Extended Confidence Test

1000H Regular Monitor Entry Point
1003H Auxiliary Entry Point
1006H Monitor Initialization Routine

0 1009H Disk I/O Error Message Output

Entry Points in ROM Bank #1:

0040H Vector to ISIS-II Emulator Routines
0043H Vector to RXISIS-II Start and Bootloader Routines
0046H Vector to Bootloader for Modules Other than RXISIS

B+C must hold the address of the file name block of
the file to be bootloaded

0080H iRMX-80 Nucleus Start Module

Entry Points in RAM:

2010H Entry Point from RST5 - can be overwritten by jump to
R?RST5HD if the debugger is included

27DOH Vector to Cursor Positioning Routine
27D3H Vector to Line Clearing Routine

Entry Points to ISIS-II Emulator RXISIS-II:

F800H ISIS
le 1% F803H CI

F806H Not Implemented (RI)
F809H CO
F8OCH Not Implemented (PO)
F80FH LO

- 332 -

0
o. ~.

Appendix 3: Operating System Memory Allocation

F812H CSTS
F815H Not Implemented (IOCHK)
F818H Not Implemented (IOSET)
F8lBH MEMCHK
F8lEH Not Implemented (IODEF)

41 F826H Not Implemented (UI)
F829H Not Implemented (UO)
F82CH Not Implemented (UPPS)

i- - Entry Points to Command Line Interpreter:

3002H Bootloader for Non-RXISIS-II Systems

Monitor/Confidence Test Memory Locations:

2000H Coldstart Check Byte
2001H Monitor Status Byte
2002H Breakpoint #1 Address
2004H Breakpoint #1 Data
2005H Breakpoint #2 Address
2007H Breakpoint #2 Data
2008H Exit Code Pointer
200AH Space for "IN" Machine Code Instruction Byte

- 200BH Input Port Address
200CH Space for "RET" Machine Code Instruction Byte
200DH Space for "OUT" Machine Code Instruction Byte
200EH Output Port Address
200FH Space for "RET" Machine Code Instruction Byte

27D6H Cursor Up Code
27D8H Cursor Down Code
27DAH Cursor Left Code

% A27DCH Cursor Right Code
27DEH Cursor Home Code

27EOH Clear Entire Screen Code
27E2H Clear Line Code

FFF2H Storage of PSW
FFF4H B+C
FFF6H D+E

FFF8H H+L
1. Il FFFAH PC

% FFFCH Stackpointer

0..

- 333 -

NN

0-

Appendix 4: Disk Error Codes

Appendix 4: Disk Error Codes

RXISIS-II and the CGCS return a numeric error code in the case
of a disk error. The error codes are the same in either en-
vironment for a given error condition. Although some error
messages are trapped by application programs (under RXISIS-II)
or by the CGCS, and replaced by more detailed message text,
many errors are displayed by the generic error message gene-
ration routines which provide the error code only, without an
explanation. The CGCS returns, for example, a message

***** DISK ERROR xxx yy (TASK tsknam, LOC hexl) ****

which is accompanied by a "beep". In the above message, "xxx"
is replaced by the major, and "yy", by the minor error codes;
"tsknam" stands for the name of the task which detected the
error, and "hexl" represents the absolute program code address
where the error was recognized.

The task name displayed with the disk error message indicates
0which CGCS file was involved in the error:

General System Operations:
RXIROM - Overlay or auxiliary file handling.

Macro Command File:
RXIROM - (Conditional) Macro call from console.
CMMDEX - (Conditional) Macro call from console or Macro

file.
CMFINP - Macro command execution.

Print File:
RXIROM - At all times.
CMMDEX - (Error) message output.
CMFINP - (Error) message output.
DIACNT - (Error) message output.

Data File:
* RXIROM - During opening and closing and upon a COMMENT

command.
DSKOUT - During regular operation.

Control Output File:
RXIROM - During opening and closing.

0O. CMFOUT - During regular operation.

- 334 -

LOAk

Appendix 4: Disk Error Codes

The following error codes are returned by RXISIS-II and by the
CGCS:

2 Invalid file number
3 Attempt to open more than 6 files simultaneously *)

," 4 Illegal file name
5 Illegal device name
6 Attempt to write to a file open for input
7 Disk is full +)

. 8 Attempt to read from a file open for output
9 Disk directory is full

-.-. 10 Different disks in RENAME call
11 File name is already in use
12 File is already open
13 No such file
14 Attempt to write to a write protected file
15 Attempt to load into protected memory area +)
16 Incorrect object program format +)
17 Attempt to access a non-disk file

S'18 Unrecognized message type or system call +)
19 Attempt to seek on a non-disk file
20 Attempt to seek in front of beginning of a file
22 Illegal access parameter in OPEN call
24 Disk I/O (hardware) error +)
26 Illegal attribute parameter in ATTRIB call
27 Illegal mode parameter in SEEK call
28 Missing file name extension *)
29 End of console file
30 Disk drive not ready +)
31 Attempt to seek on a file open for output
32 Attempt to delete an open file

33 Illegal system call parameter @)
35 Attempt to seek past end of file open for input
40 Request sent to wrong exchange
41 Insufficient free memory to open file

S 42 Drive not in configuration table
[J ~43 Drive timeout

44 Seek request with seek not present in system #)
100 Disk overlay does not match ROM system version *) +)
101 Missing entry point in disk overlay *) +)
102 Illegal system call *) +)
120 Insufficient memory to open new file #)
121 Attempt to load a main program #)
218 Unallocated disk file block prior to EOF +)

@) ISIS-II only
S *) RXISIS-II only

#) CGCS only
+) Fatal error under RXISIS-II

- 335 -

V
PL -e

Appendix 4: Disk Error Codes

Minor error code information is only displayed in case ojr an
error 24 (Disk I/0 error):

01 Deleted record
02 Cyclic redundancy check error (data field)
03 Invalid address mark
04 Seek error
08 Address error
OA Cyclic redundancy check error (ID field)
OE N'o address mark
OF Incorrect data address mark
10 Data overrun or underrun
20 Disk is write protected
40 Write error
80 Not ready

'S.

'336

- Z. Appendix 5: Command Line Editing and Control Characters

Appendix 5: Command Line Editing and Control Characters under

RXISIS-II and the CGCS

(1) Line Termination Codes:

The following codes terminate an input line and advance
the input buffer to the routine requesting input. In
general, the termination characters are appended to the

p . input data unless there is no more enough room in the
buffer.

CR Carriage Return: Converted to a CR-LF pair and
< written to the buffer and echoed as CR-LF.

LF Line Feed: Treated identically to Carriage Re-
. "c< turn.

*- ESC Escape: Appended to the buffer, echoed as "$"+
CR-LF (no "$" if entered in type-ahead mode). The
RXISIS-II Command Line Interpreter and the RXISIS-
II applications listed in chapter 3.4 and in Ap-
pendix 6 interpret Escape as a line termination
and input character (analogous to Carriage Re-
turn), in contrast to the CGCS and the CGCS-re-
lated utilities (SHODAT, COMMED, READCM) which are
based upon the I/O Interface Routines discussed in
chapter 5.2.2; these routines use Escape as an
input line clearing command (similar but not
totally equivalent to Cntl-X).

Cntl-Z Control-Z: Deletes all buffer contents, transmits
an empty buffer. Echoed as a CR-LF pair. In
type-ahead mode, Cntl-Z may be used to delete the

N last, yet unterminated, line entered, without
affecting the contents of preceding input lines.

p (Due to system timing problems which could be
overcome only with a great expenditure of code
and/or processing time, an input line entered into
the type-ahead buffer immediately after one or
more Cntl-Z characters may not be echoed although
it is regularly advanced to the task requesting
input.) Control-Z is interpreted as a program
termination code by some auxiliary programs (e.g.,
the Macro Command Editor) running under RXISIS-II.

337

Appendix 5: Command Line Editing and Control Characters

(2) Line Editing Codes:

RO Rubout: Deletes the last character in the input
buffer and on the screen. (It is, however, impos-
sible to remove a character in the last column of
the CRT screen from the display if the terminal
used does not permit a "scroll-back" of the cursor
from the leftmost position of a line into the last
position of the preceding line. Nevertheless, the
erased character is removed from the input buffer;
a correct display can be obtained with Cntl-R.)

Cntl-X Control-X: Deletes the buffer and the type-ahead
buffer completely. Appends a "#" to the input
line echo and advances to the next line on the
screen (not in type-ahead mode).

(3) Miscellaneous Control Codes:

S Cntl-P Control-P: The character following Cntl-P is in-
put literally even if it is a control character.

Cntl-R Control-R: Restores the input line echo on the
console CRT. No visible effect if input line does
not extend over two physical CRT screen lines.
Can be used if characters were deleted in an input
line extending over two CRT lines and the cursor
did not move up to the upper echo line.

Cntl-S Control-S: Suspends regular console output. The
tasks requesting regular output are halted. Does
not affect output sent to the RQALRM exchange.
Suspending output already suspended has no effect.

Cntl-Q Control-Q: Resumes output suspended with Cntl-S.
Resuming output not suspended has no effect.

Cntl-O Control-O: Regular output is deleted if Cntl-O
was entered. The routines or tasks generating
output keep running; their output is lost. Regu-
lar output can be restored if Cntl-O is entered a
second time.

S. Cntl-E Control-E: Suspends printer output. Tasks re-
questing printer output are halted. Suspending
printer output which is already suspended has no
effect.

- 338 -

?6 ' &

Appendix 5: Command Line Editing and Control Characters

Cntl-F Control-F: Resumes printer output suspended with
Cntl-E. Resuming output not suspended has no ef-
fect.

Cntl-V Control-V: Printer output is deleted if Cntl-V
was entered. Tasks requesting printer output keep
running; their output is lost. Printer output can

qbe resumed if Cntl-V is entered a second time.

Cntl-C Control-C: This control is only effective if the
Debug Enable Flag RQDBEN is set, if the regular
input exchange RQINPX is active, and if a request
message waits at RQDBUG. In this case, all con-
sole input is directed to the request messages
waiting at RQDBUG, and RQINPX is no more serviced.
In addition, a message is sent to the exchange
RQWAKE unless there is a message already waiting
there. The regular input mode is restored and the
Mode Changed Flag RQTHMC set to OFFH if a message

4of LASTRDTYPE (10) is sent to RQDBUG. The type-
ahead buffer is cleared. (Control-C is used by

. the iRMX-80 Debugger, and by iRMX-80 BASIC. It
has no effect whatsoever in the CGCS.)

* - Cntl-A Control-A: Cancels the effect of Cntl-C; all
input is directed to the regular input exchange
RQINPX. Cntl-A is only active if RQDBEN is set
and RQINPX was not serviced (i.e., in Debug mode).
The Mode Changed Flag RQTHMC is set to OFFH, and

"2 > the type-ahead buffer is cleared. (Control-A is
used in conjunction with the iRMX-80 Debuggerp only; it has no effect whatsoever in the CGCS.)

- 339 -

% % %

% % %

Appendix 6: Utility Programs Under RXISIS-II

Appendix 6: Utility ProQrams Under RXISIS-II

-A In addition to the standard ISIS-II utility programs (compare
"ISIS-II User's Guide"), the following utilities are available
on the CGCS computer under RXISIS-II:

Appendix 6.1: File Attribute Modification Utility ATTSET

This program modifies the file attributes either of all files
on a disk, or of a number of files specified by a selection
list. The latter feature constitutes its major advantage over
the ISIS-II system program "ATTRIB". All files handled and
their attributes after the execution of "ATTSET" are listed on
the console. Upon program termination, the total number of
files processed is displayed and, if applicable, a warning
that files specified by the selection file have not been
found.

PROGRAM CALL: ATTSET :F<n>: [switches]

. A valid disk drive must be explicitly specified (even for
:FO:).

[switches] may be any arbitrary optional sequence of one or
more of the following commands in upper- or lowercase charac-
ters, separated by at least one space:

C <select-file>: Only the files listed in <select-file> are
processed. (Note that all files are processed if the
"C" switch is not specified.) <select-file> may be
any valid ISIS-II disk file or input device name. The
selection file may contain any number of file names
without drive specifications in arbitrary order. The
file names must be separated by one or more of the
following characters:

• Spaces
* Carriage-return - line feed pairs
* "Escape" characters
* TABs
* Any other control characters

O If a file listed in the selection file is not found on
the disk, an appropriate error message is output; exe-

cution is continued for the next submitted file name.
. No "wild card" filenames ("*.SRC") are permitted.

- 340 -

1W * .
l p

-) *~Appendix 6: Utility Programs Under RXISIS-II

I(011): This switch resets (0) or sets (1) the "invisible" at-
tribute of the specified files. Either "0" or "1"
must immediately follow the "I".

C ,. S(011: This switch resets (0) or sets (1) the "system" attri-
bute of the specified files. Either "0" or "i" must
immediately follow the "S".

W(0ll}: This switch resets (0) or sets (1) the "write protect"
attribute of the specified files. Either "0" or "i"
must immediately follow the "W".

REMARKS:

Attributes not specified in the program call are not affected.

If none of the attribute switches (I, S, or W) has been enter-
ed, the current attributes are displayed without being modi-
fied.

"ATTSET" does not permit any modification of the "format"
" ("F") attribute, nor does it allow any access to a file with

the "F" attribute set. This feature was provided in order to
protect the ISIS-II programs from accidental deletion.

The names of the files to be processed may be entered directly
on the console if "ATTSET" is invoked with the switch "C:CI:".
This is particularly advantageous if only a few files with
totally different names have to be processed (and if therefore

- there is no possibility of using the "wild card" feature of
"ATTRIB"). Note: The execution of "ATTSET" is started only
after the file names input on the console were actually enter-
ed (by pressing "Return" or "Escape"). Several file names may
be specified within one input line, and the number of input
lines is unlimited. The execution must be terminated by
entering "CNTL-Z" after all files were processed.

A selection disk file may be generated from scratch with

"CREDIT" or "CREATE". It is probably more convenient to
generate a suitably formatted copy of the disk directory by a
"DIRFIL" call and to edit this file with CREDIT if a large
number of the files on one disk are to be processed. The same
file can be used for all file selecting programs within this
package ("ATTSET", "CMPDSK", and "CPYDSK"), no matter on which
drive the disk to be processed is mounted. (This is why the
selection file must not contain any drive references.)

A multiple specification of a file name within the selection
file does not matter.

- 341 -

V ~.

Appendix 6: Utility Programs Under RXISIS-II

In the case of multiple but contradictive switch definitions
within one program call, the last definition entered is con-
sidered valid. Multiple entries of the "C" switch, however,
cause a fatal command error.

Appendix 6.2: Disk Comparison Utility CMPDSK

This program compares either all files on a disk or a number
of files specified by a selection list to the corresponding
files with the same names on a second disk. The results of
the comparison (performed on a byte-by-byte basis) are dis-
played on the console for each file pair. The program execu-
tion is terminated by summarizing the total numbers of identi-
cal file pairs, of different file pairs, and of files contain-
ed on the first but not on the second disk. If applicable, a
warning is issued that files specified by the selection file
have not been found on the first disk. The comparison al-
gorithms and the messages are identical to those used within

0 "COMP"; for further information, see the corresponding para-
graph.

PROGRAM CALL: CMPDSK :F<m>: TO :F<n>: CC <select-file>]

Two different existing disk drives must be specified in any
case.

C <select-file>: Only the files on the first disk which are
listed in <select-file> are compared to the corres-
ponding files on the second disk. (Note that all
files on the first disk are processed if the "C"
switch is not entered.) <select-file> may be any
valid ISIS-II disk file or input device name. The

* selection file may contain any number of file names
/ without drive specifications in arbitrary order. The

file names must be separated by one or more of the
following characters:

* Spaces
* Carriage-return line feed pairs
* "Escape" characters
* TABs

0. * Any other control characters

If a file specified by the selection file is not found
on the first disk, an appropriate error message is
output; execution is continued for the next submitted

- 342 -

%

II

Appendix 6: Utility Programs Under RXISIS-II

file name. No "wild card" file names ("*.SRC") are
*permitted.

REMARKS:

"CMPDSK" does not allow access to a file with the "F" attri-
p bute.

The names of the files to be processed may be entered directly
on the console if "CMPDSK" is invoked with the switch "C:CI:".
This is particularly advantageous if only a few files have to
be handled. Note that the execution of "CMPDSK" is started
only after the file names input on the console were actually
entered (by pressing "Return" or "Escape"). Several file
names may be specified within one input line, and the number
of input lines is unlimited. The execution must be terminated
by entering "CNTL-Z" after all files were processed.

A selection disk file may be generated from scratch with
"CREDIT" or "CREATE". It is probably more convenient to
generate a suitably formatted copy of the disk directory by a
"DIRFIL" call and to edit this file with CREDIT if a large
number of the files on one disk are to be processed. The same
file can be used for all file selecting programs within this
package ("ATTSET", "CMPDSK", and "CPYDSK"), no matter on which
drive the disk to be processed is mounted. (This is why the
selection file must not contain any drive references.)

A multiple specification of a file name within the selection
file does not matter. If the "C" command is issued multiplely
within the command line, all selection file definitions except
the first one are ignored.

Appendix 6.3: File Comparison Utility COMP

This program compares two disk files on a byte-by-byte basis.

The result is one of the following three messages output on
the console:

FILES ARE IDENTICAL:
Each byte of one file is identical to the correspond-

* ing byte of the other file.

FILES ARE DIFFERENT:
One byte differing from the corresponding byte in the
other file was discovered; execution was terminated.
(Note that "1COMPI does not continue checking the files

a
-343 -

% 1%%

*1z

Appendix 6: Utility Programs Under RXISIS-II

after it detected two different bytes. The message
is, accordingly, the same no matter if only one byte
is different or if totally different files were com-

* pared.)

FILES HAVE DIFFERENT SIZES:
"COMP" reads blocks of up to 16 Kbytes from each file.
For files whose sizes exceed the buffer length of 16
KBytes, a difference in file size is only detected and
reported when the last pair of buffers is read.
"COMP" terminates its operation immediately in this
case. Since "COMP" may have been preempted due to
differing file contents before it could read the end
of the two files to be compared, a "FILES ARE DIF-
FERENT" message may have been issued although a "DIF-

, FERENT SIZES" message would have been more appropri-
ate.

The messages referring to differences between the two files
are preceded by the string "#####" which is very conspicuous
on a CRT console. In addition, a "beep" is output.

PROGRAM CALL: COMP <disk file 1> TO <disk file 2>

- I Both file names must indicate disk files; the files may reside

on the same or on different disks. Any attempt to compare a
file to itself ("COMP MYFILE.EXT TO MYFILE.EXT") causes a fa-
tal error and abortion of 'COMP". No "wild card" characters
are permitted.

The following program calls are permitted:

COMP :F<n>:<filel> TO :F<m>:<file2>
Standard call; any disk drives and file names may be
specified.

COMP <filel> TO <file2>
* A default device name ":F0:" is assumed if no device

is specified.

COMP :F<n>:<filel> TO :F<m>:
The file <filel> on disk <n> is compared to a file
with the same name on disk <m>. An omitted device
specification is interpreted as ":F0:".

COMP :F<n>:<filel>
The file <filel> on disk <n> is compared to the file
<filel> on disk 0. Note: "COMP <filel>" is not per-
mitted as the file would be compared to itself.

a % -344 -

0'.
* -.

4'

Appendix 6: Utility Programs Under RXISIS-II

Appendix 6.4: Enhanced File Copy Utility COPYCP

This program combines a COPY action with the action of "COMP".
The input file is copied to an output file, and both files are
compared by means of the algorithms used in "COMP". There-

". .. fore, this program guarantees that the copied file is actually
identical to the source file, and that there are no disk de-
fects which would prevent the copy from being read. "COPYCP"
reports its current status and the results of the comparison
on the console. In the (most probable) case that there were
no problems, its output reads:

"<filel> COPIED TO <file2> -- > FILES ARE IDENTICAL"

The first part of this message is output after the input file
was copied, the second part (following the arrow) after the
comparison. This second part is replaced by one of the mes-
sages issued by "COMP" if some kind of read-write error hap-
pened.

Note: If a not write protected file with the name specified
for the output file already exists on the specified output

. -,, drive, it is deleted without further notice and replaced by a
copy of the input file. A fatal error occurs, and the execu-
tion of "COPYCP" is aborted, if this file has its write pro-
tect attribute set. "COPYCP" does not transfer the attributes
of the input file to the output file.

PROGRAM CALL: COPYCP <inputfile> TO <outputfile>

Both file names must be valid ISIS-II disk file names. No
"wild card" characters may be used.

The following program calls are permitted:

COPYCP :F<n>:<filel> TO :F<m>:<file2>
Standard call; any disk drives and file names may be
specified.

COPYCP <filel> TO <file2>
A default device name ":FO:" is assumed if no device
is specified.

4 COPYCP :F<n>:<filel> TO :F<m>:
" o.The file <filel> on disk <n> is copied to a file with

the same name on disk <m>. An omitted device specifi-
cation is interpreted as ":F0:".

- 345 -

Ii

%-

Appendix 6: Utility Programs Under RXISIS-II

COPYCP :F<n>:<filel>
The file <filel> on disk <n> is copied to the file
<filel> on disk 0. Note: "COPYCP <filel>" is not
permitted since the file would be copied to itself.

Appendix 6.5: Disk Copy Utility CPYDSK

This program copies either all files on the first disk speci-
fied in the program call to the second disk, or a number of
files on this disk whose names are contained in a selection
list. The latter feature constitutes its major advantage over
the ISIS-II system program "COPY", aside from the fact that
"CPYDSK" compares each copy to the pertinent source file. The

" .~algorithms and messages employed by CPYDSK are identical to
those used in "COPYCP". In addition, the file attributes of
the source files may either be transferred to the output disk,
or be modified arbitrarily. All files copied and the resultsof the subsequent comparison are listed on the console. In

case of a copy error, i.e., if an output file differs from its
source file, execution is immediately aborted. A not write
protected file on the output disk is replaced without further
notice by a copy of a file on the input disk which has the
same name; if the file on the output disk is write protected,
however, an appropriate message is output on the console, and
"CPYDSK" proceeds to the next file, not affecting the write
protected file. Upon program termination, the total numbers
of files copied and of write protected files encountered on
the output disk are displayed, and, if applicable, a warning
that files specified by the selection file have not been found
on the input disk.

PROGRAM CALL: CPYDSK :F<m> TO :F<n>: (switches]

Two different valid disk drives must be specified in any case.
The fi';t drive (:F<m>:' contains the input disk, the second

-• (:F<n>:), the output disk.

[switches] may be any arbitrary optional sequence of one or
more of the following commands in upper- or lowercase, separ-
ated by at least one space:

0 A: All files on the input disk are to be copied to the
output disk. They are re-arranged, however, in al-
phabetical order on the output disk.

- 346 -

% %

Appendix 6: Utility Programs Under RXISIS-II

C <select-file>: Only the files specified within <select-file>
are processed. (The entire input disk is copied if
the "C" switch is not used.) <select-file> may be any
valid ISIS-II disk file or input device name. The

'a1. selection file may contain any number of file names
without drive specifications in arbitrary order. The
order of the files specified by a selection file

* overrides their order on the source disk or an "A"
switch. The file names in the selection file must be
separated by one or more of the following characters:

* Spaces
* Carriage-return line feed pairs
* "Escape" characters
* TABs
* Any other control characters

If a file listed in the selection file is not found on
the input disk, an appropriate error message is is-

* sued; no further action takes place, and the execution
. continues with the next submitted file name. Note

that no output file is opened on the output disk in
this case. The missing file will be added at the end
of the disk directory rather than in the position
specified by the selection file if it is later copied
from another input disk. No "wild card" file names
("*.SRC") are permitted in the selection file.

, N: The attributes of the files of the input disk are ig-
, ~.'nored; only attributes explicitly set by one or more

of the following switches are set on the output files:

I(011): This switch resets (0) or sets (1) the "invisible"
attribute of the copied files. Either "0" or "1" must
immediately follow the "I".

S{0I}: This switch resets (0) or sets (1) the "system" at-

tribute of the copied files. Either "0" or "1" must
immediately follow the "S".

. W{0J.): This switch resets (0) or sets (1) the "write protect"

attribute of the copied files. Either "0" or "I" must
immediately follow the "W".

REMARKS:

Attributes which are explicitly set or reset with the "CPYDSK"
call are valid for all files of the output disk, no matter
what their state on the input disk was. The "N" switch is

- 347 -

_40 J

Appendix 6: Utility Programs Under RXISIS-II

equivalent to the sequence "WO SO 10". The attributes of the
files generated on the output disk are otherwise set identi-
cally to those of the corresponding source files if none of

,. the attribute switches was specified.

"CPYDSK" does not permit any modification of the "format"
("F") attribute, nor does it allow any access to a file with
the "F" attribute set. This feature was provided in order to
protect the ISIS-II system files from accidental deletion.

The names of the files to be processed may be entered directly
on the console if "CPYDSK" is invoked with the switch "C:CI:".
This is particularly advantageous if only a few files with
totally different names have to be copied (and therefore there
is no possibility of using the "wild card" feature of "COPY")
but if the generation of a disk file would not pay. Note: The
execution of "CPYDSK" is started only after the file names
input on the console were actually entered (either by "Return"
or by "Escape"). Several file names may be specified within
one input line, and the number of input lines is unlimited.
The execution must be terminated by entering "CNTL-Z" after
all files were processed.

A selection disk file may be generated from scratch with
"CREDIT" or "CREATE". It is probably more convenient to
generate a suitably formatted copy of the disk directory by a
"DIRFIL" call and to edit this file with CREDIT if a large
number of the files on one disk are to be processed. The same
file can be used for all file selecting programs within this
package ("ATTSET", "CMPDSK", and "CPYDSK"), no matter on which
drive the disk to be processed is mounted. (This is why the
selection file must not contain any drive references.)

A multiple specification of a file name within the selection
file does not matter. In the case of multiple but contradic-
tive switch definitions within one program call, the last
definition entered is considered valid. However, a multiple
specification of the "C" switch is prohibited and will cause a
fatal command error.

Appendix 6.6: File Generation Utility CREATE

• The program "CREATE" permits the generation of new disk files.
It was written in order to overcome the large time overhead
inherent with the execution of "CREDIT", Intel's CRT textr.. editor, which is particularly inconvenient if only short disk
files are to be created. Any text entered on the console is
copied to the output file specified with the "CREATE" call.

-348 -

C%0 N_

* .Appendix 6: Utility Programs Under RXISIS-II

Utilizing the line editing features provided by ISIS-II or
RXISIS-II, "CREATE" allows still corrections of the input
line. The input line is added to the output file only when
the "Return" or the "Escape" key is pressed. No subsequent
editing is possible within "CREATE". "CREATE" terminates if
"CNTL-Z" is entered on the console.

p
.-PROGRAM CALL: CREATE <filename>

.5

REMARKS:

Any valid ISIS-II file or device name (not necessarily a disk
file) may be used with "CREATE". An already existing disk
file with the specified name is deleted without notice if it
is not write protected. The execution of "CREATE" is aborted
if an existing target file is write protected.

4The echo output provided by RXISIS-II (and utilized by "CRE-
ATE") may differ from the echo output generated by "CREDIT".
TAB characters, for example, are not properly displayed on the

- .~console CRT although they are correctly entered into the
output file. (Note that control characters like a TAB must be
preceded by CNTL-P under RXISIS-II in order to be accepted by
the Terminal Handler.)

The line termination characters (carriage-return plus one line
~.[feed added by the system, or "Escape") are entered into the

* output file. The use of "Escape" as a line termination code
should be avoided, though.

Warning: Entering "CNTL-Z" in order to terminate the "CREATE"
session deletes the contents of the line editing input buffer.
Be sure to provide a "Return" (or an "Escape") at the end of
the last input line before entering "CNTL-Z"!

Appendix 6.7: Disk Directory List Utility DIRFIL

This program permits the generation of a list of the files
contained in a disk directory. The file generated by "DIRFIL"
may be used immediately as a selection file for "ATTSET",
"CMPDSK", or "CPYDSK", or it may be edited before with CREDIT.
Each file name is left-adjusted within a separate output line
which is terminated by a carriage-return - line feed pair.

- 349 -

IQ'N

Appendix 6: Utility Programs Under RXISIS-II

PROGRAM CALL: DIRFIL :F<n>: [TO <outputfile>] [A]

The command must indicate an existing disk drive; the direc-
tory of the disk mounted on this drive is processed by "DIR-
FIL". Note: Even drive 0 must be specified explicitly as
11: FO :"!

<outputfile> may be any valid ISIS file or device name; the
-.. console output is assumed as a default if the output file

specification is omitted.

"A" is an optional switch. "DIRFIL" lists the directory
contents in their original order if the "A" switch is not set;
this list is sorted alphabetically if "A" is specified.

V REMARKS:

Files which have the "format" ("F") attribute set are ignored
* by "DIRFIL".

ARendix 6.8: File Conversion Utility HEXCHK

"HEXCHK" converts any arbitrary file into a legible and print-
able representation. It generates an output in three columns
which may be optionally routed to a disk file; the default
output device is the console. The first output column con-
tains a (decimal) line number with up to five digits. Within
the second column, eight bytes per line are converted into
their hexadecimal representation (00 through FF for each

byte). Within the third column, the same eight bytes are
interpreted as ASCII-coded characters. If the code does not

- correspond to a printable character, the following conversions
are performed:

CONTROL CHARACTERS (< 20H): "^" + CHARACTER
S RUBOUT (7FH): RO
,. .~ NON-ASCII CHARACTERS:

(7FH < BYTE < AOH): "$" + CHARACTER
(9FH < BYTE < FFH): "#" + CHARACTER
(FFH): FF

: 350 -

e,

Appendix 6: Utility Programs Under RXISIS-II

EXAMPLES:

BYTE: OUTPUT:
OOH
OAH (CNTL-J) J
1BH (ESCAPE) [
61H a
81H $A

AlH #A
ElH #a
FFH FF

The parallel output of hexadecimal and ASCII representation
was provided in order to improve clearness, particularly for
object program files which contain not only hexadecimal code

but also ASCII-coded strings.

PROGRAM CALL: HEXCHK <inputfile> (TO <outputfile>]

Any valid ISIS file or device name may be specified for <in-
putfile> and <outputfile>. The output is routed to the con-
sole if <outputfile> is omitted.

REMARKS:

Any type of file may be processed with "HEXCHK". No restric-
tions apply to the code accepted by "HEXCHK"; each byte of the
input file is processed no matter what its value is.

Appendix 6.9: File Listing Utility LIST

"LIST" is a program primarily intended for the generation of
printer listings of ASCII-coded source files. Still, its
output can be routed to any arbitrary ISIS-II file (including
disk files and the console). Its main advantages compared to
the "COPY" command are:

* Shorter calling sequence.

* TABs embedded in the input file are correctly processed.

* Page headers including the input file name and a page
number and form feeds can be generated if required.

- 351 -

Appendix 6: Utility Programs Under RXISIS-II

PROGRAM CALL: LIST <inputfile> [TO <outputfile>] [N]

<inputfile>: any correct ISIS-II file name (no "wild card"
characters ("*.SRC") are permitted).

<outputfile>: any correct ISIS-II file name; must not be
identical to <inputfile>. Default output file: :TO:
(line printer).

N: optional switch; suppresses header and form feed genera-
tion.

REMARKS:

The program call may be entered as well in uppercase as in
lowercase letters; the input file name in the page header is
always output in uppercase letters.

If the switch "N" has not been specified, a form feed is is-
sued prior to the output file generation. Therefore, the

oq printer need not be adjusted to its top of form position prior
to printing any file generated with "LIST".

- Form feed characters (CNTL-L) embedded in the source file
cause the output of a new page in either (header or no header)
mode.

No restrictions apply to the lengths of the input lines;
still, output lines are subdivided into two or more lines if
their lengths exceed 122 characters.

Pages are numbered beginning with " 1"; page numbers up to
"999" are possible. The thousands are omitted if more than
999 output pages are generated (therefore: "998", "999",. "000"1, "1001",

EXAMPLES:

*, LIST :Fl:MYFILE.SRC
The file "MYFILE.SRC" on disk 1 is printed on the line
printer with page header and form feed generation.

LIST FILE.SRC TO FILE.LST N
The file "FILE.SRC" on disk 0 is copied to a file

."FILE.LST" on the same disk. All TABs in the source
file are replaced by an appropriate number of spaces.
Due to the switch "N", no headers are generated.

- 352

'Ailiiii1111 MW

Appendix 6: Utility Programs Under RXISIS-II

LIST :CI: N
This command permits the use of the printer in direct
"typewriter" mode. Any text input from the console is

printed as soon as the line is terminated by a "car-
riage-return" (or if its length exceeds the maximum
console input line length of 122 characters). The
input text is also echoed to the console CRT; the
usual line editing features are maintained. Program
execution must be terminated by entering "CNTL-Z" on
the console keyboard. This command permits the addi-
tion of comments, etc., to the printer output without
the need of first generating a disk file.

LIST MYFILE.SRC TO :CO: N
This command produces a program listing on the console
device. For this purpose, however, the program "SHOW"
or the RXISIS-II function "@" are better suited.

Appendix 6.10: File Display Utility SHOW

This program is provided for a quick check of ASCII files on
the console CRT. It provides, in contrast to "COPY", correct
TAB processing and marks additional lines which have been3 generated by the subdivision of too long input lines.

PROGRAM CALL: SHOW <filename>

<filename> can be any valid ISIS filename designating a file
or device capable for input to the system. No "wild
card" characters are permitted.

REMARKS:

The output on the console CRT can be interrupted at any time
by entering "CNTL-S" on the console keyboard. It is resumed
without loss of information as soon as "CNTL-Q" is entered.

Input lines with excessive lengths are subdivided into two or
more output lines which fit onto the CRT screen. Each addi-

* tional output line generated in this way is marked by an arrow
("--->") at the left margin and is indented by 8 characters.

The functions of "SHOW" have been integrated into the RXISIS-
II Command Line Interpreter. "SHOW" has therefore effectively
been replaced by the RXISIS-II command "@". (A similar func-

Vtion is now also available with version 4.3 of ISIS-II.)

- 353 -

.1~

it

-" Appendix 7: CGCS Memory and I/O Maps
4.

Appendix 7: CGCS Memory and I/O Mavs

Appendix 7.1: Memory May

FFFFH
Loader Buffer, Disk I/O Stack

FEBOH
System Version Code (2x)

FEACH
RXIROM (COMINT) Stack

FE34H
Disk Buffer Area

FD30H
Memory Pool Area

:.zF6AOH *
Resident CGCS Program Code

5COOH
COMINT Overlay Program Code + Data

5400H
* Resident CGCS Data

2DOOH
44, COMMON Blocks

2800H
Data of ROM Resident System

2000H
ROM Resident Program Code

.4. OOOOH

* This boundary is most subject to changes due to
.I program modifications. The value given applies to

Version 2.4.

Appendix 7.2: I/O May

20H ... A/D Converter Control/Status Register, low byte
* 21H ... A/D Converter Control/Status Register, high byte

24H ... A/D Converter Multiplexer Address Register
26H ... A/D Converter Output Data Register, low byte
27H ... A/D Converter Output Data Register, high byte

40H ... D/A Converter Channel 0, low byte
41H ... D/A Converter Channel 0, high byte

.4 42H ... D/A Converter Channel 1, low byte
43H ... D/A Converter Channel 1, high byte

. 5EH ... D/A Converter Channel 15, low byte
5FH ... D/A Converter Channel 15, high byte

- 354 -

6

'

. . Appendix 7: CGCS Memory and I/O Maps

BOH ... I/O Expansion Board Base Address

.o.
B4H ... Motor Direction Relay InputB5H ... Motor Direction Relay Output

, B6H ... Controller Selection Relay Output

COH - FFH ... CPU Board I/O Addresses

Various I/O ports on the iSBC 80-24 CPU and iSBC 517 I/O Ex-
pansion boards are used by system routines, e.g., by the Ter-
minal Handler and the alternative FORTRAN floating-point rou-
tines.

.3..5

N'

S

S.5

5).. - 355 -
/ " %

Appendix 8: System Tasks

AApendix 8: System Tasks

Appendix 8 lists all primary tasks within the system; it does
not include tasks which are dynamically created at runtime by
any primary task. SUSPEND information is given for the genu-
ine CGCS tasks; it indicates whether a task may be suspended
with the DEBUG Suspend command. It is generally prohibited to
suspend any iRMX-80 System or Interface task!

Appendix 8.1: ROM Resident System Tasks

Task RXIROM: ROM resident root of RXISIS-II and the CGCS
Command Interpreter.

Entry Point: RXIROM
Stack Length: 50, extended to 120 by the

CGCS
Priority: 250

* Task Descriptor: RXIRTD
Extra: 20

Task RQTHDI: Alternative Input Terminal Handler.

Entry Point: RQTHDI
Stack Length: 40
Priority: 97
Task Descriptor: THDITD
Extra: 0

Task RQTHDO: Alternative Output Terminal Handler.

Entry Point: RQTHDO
Stack Length: 40
Priority: 113
Task Descriptor: THDOTD
Extra: 0

Task RQLOAD: Alternative Loader Task.

Entry Point: RQLOAD
Stack Length: 60
Priority: 140
Task Descriptor: LOADTD
Extra: 0

- 356 -

I

Appendix 8: System Tasks

Task DISKIO: iRMX-80 Disk 1/0 Task.

Entry Point: RQPDSK
Stack Length: 48
Priority: 129
Task Descriptor: RQDIOD
Extra: 0

Task : Unnamed Disk Controller Task.

Entry Point: RQHD4
Stack Length: 80
Priority: 33
Task Descriptor: CNTLTD
Extra: 0

Appendix 8.2: iRMX-80 System Tasks in the CGCS

Task RQFMGR: Free Space Manager.

Entry Point: RQFMGR
Stack Length: 40
Priority: 50
Task Descriptor: RQFSMD

Extra: 0

Task DIRSVC: Disk Directory Services.

Entry Point: RQPDIR
Stack Length: 48
Priority: 200
Task Descriptor: RQDRSD
Extra: 0

Appendix 8.3: FORTRAN - iRMX-80 Interface Tasks

Task FXCFLG: Flag Interrupt Generation Task.

Entry Point: FXCFLG
Stack Length: 36
Priority: 149
Task Descriptor: FXCFTD
Extra: 0

-357-

Appendix 8: System Tasks

Task INDATX: Input Interface Task.

Entry Point: FXINTI
Stack Length: 184
Priority: 134
Task Descriptor: INDTTD
Extra: 18

Task OUTDTX: Output Interface Task.

Entry Point: FXINTO
Stack Length: 200
Priority: 135
Task Descriptor: OUTDTD
Extra: 18

Task FXDISK: Disk I/O Interface Task.

Entry Point: FXDISK
Stack Length: 38
Priority: 133
Task Descriptor: DISKTD
Extra: 0

* Task FXTIME: System Timer Task.

Entry Point: FXTIME
Stack Length: 34
Priority: 34
Task Descriptor: TIMETD
Extra: 0

Appendix 8.4: Controller Tasks

Task CMMDEX: Command Executor Task.

* Entry Point: CMMDEX
Stack Length: 120
Priority: 240
Task Descriptor: CMEXTD
Extra: 20

Suspend: no

. 358 -

4,

- - - - -

Appendix 8: System Tasks

Task MEASDO: Measured Data Output Task.

Entry Point: MEASDO
Stack Length: 120
Priority: 220
Task Descriptor: MEASTD
Extra: 20

Suspend: yes

Task CMFINP: Command File Input Task.

Entry Point: CMFINP

Stack Length: 50
, Priority: 230

Task Descriptor: CMFITD
Extra: 20

Suspend: yes

Task CMFOUT: Command File Output Task.

Entry Point: CMFOUT
Stack Length: 50
Priority: 251
Task Descriptor: CMFOTD
Extra: 20

Suspend: yes; for short time only

Task DSKOUT: Data Disk File Output Task.

Entry Point: DSKOUT
Stack Length: 50
Priority: 180
Task Descriptor: DSKOTD
Extra: 20

Suspend: yes

Task DIACNT: Diameter Controller Task.

Entry Point: DIACNT
Stack Length: 120
Priority: 160
Task Descriptor: DIACTD
Extra: 20

Suspend: yes

- 359 -

O.

Appendix 8: System Tasks

Task ANACNT: Analog Data Controller Task.

Entry Point: ANACNT
Stack Length: 60
Priority: 150
Task Descriptor: ANACTD
Extra: 0

Suspend: no

"A

- 360 -

so

Appendix 9: Routine Names

Appendix 9: Routine Names

Appendix 9.1: FORTRAN-iRMX-80 Interface Routine Names

iRMX-80 Control Routines - Library FRXMOD.LIB

NAME TYPE FUNCTION CHAPTER

FXSEND subr non-reentrant msg. sending rout. 5.2.1.1
FXWAIT subr non-reentr. msg. receiving rout.
FXACPT subr non-reentr. msg. receiving rout.

FRSEND subr reentrant message sending rout. 5.2.1.2
FRWAIT subr reentr. message receiving rout.
FRACPT subr reentr. message receiving rout.
FRINIT subr initialization routine
FRCRSP func check for response message

FRCXCH subr exchange creation routine 5.2.1.3
- FRDLVL subr interrupt level disabling rout.

FRDTSK subr task deletion routine
FRDXCH subr exchange deletion routine
FRELVL subr interrupt level enabling routine
FRRESM subr task execution resuming routine
FRSUSP subr task execution suspending rout.

.. FRACTV func task descriptor of running task

FXCFLG task flag interrupt creation task 5.2.1.4
FXCRFE subr create flag interrupt exchange
FXDLFE subr disable flag interrupt exchange

FRACCS subr access common resources 5.2.1.5
- FRRELS subr release common resources

- FRINAR subr create an access control exch.

7 FXSYSE subr system error reporting routine 5.2.1.6

FRIFSM subr Free Space Manager initializ. 5.2.1.7

I

- 361 -

Al

Appendix 9: Routine Names

Console, Printer, and Buffer Input/Output Routines - Libraries
FIORMX.LIB, FIOISS.LIB, FIORXI.LIB. and FIORXR.LIB

NAME FUNCTION CHAPTER

FRIOST initialization routine for I/O funct. 5.2.2.1

FRDATI data input routine (from console) 5.2.2.2
FRSTRI character string input routine (cons.)
FRDTBI data input routine (from user buffer)
FRSTBI character string input routine (buffer)

FRDATO data output routine (to console) 5.2.2.3
FRSTRO char. string output routine (to cons.)
FRDTPR data output routine (to printer)
FRSTPR char. string output routine (to print.)
FRDTBO data output routine (to user buffer)
FRSTBO char. string output routine (to buffer)

FRINMD input mode selection routine 5.2.2.4
FROUTM output mode selection routine (console)
FRPRMD printer mode selection routine
FRINPR input prompt string modification
FRCLRO CRT screen clearing routine
FRSPTO printer timeout setting routine
FRMCHG LOGICAL*1 function: output mode changed

FRCSTR control string building routine 5.2.2.5

FRSTHX conversion ASCII-INTEGER*I 5.2.2.6
FRFXIN conversion ASCII-INTEGER*2
FXFLIN conversion ASCII-REAL
FRHXOT conversion to hexadecimal ASCII string
FRFXOT conversion INTEGER-ASCII
FXFLOT conversion REAL-ASCII

I3

I

- 362 -

I

Appendix 9: Routine Names

Disk Interface Routines - Libraries FXDISK.LIB and FXDSKI.LIB

NAME TYPE FUNCTION CHAPTER

FROPEN subr disk file opening routine 5.2.3.1

FRREAD subr read data from disk file 5.2.3.2

FRWRTE subr write data to disk file 5.2.3.3

A FRSEEK subr perform SEEK operation 5.2.3.4

FRCLSE subr disk file closing routine 5.2.3.5

FRLOAD subr load code from disk file 5.2.3.6

FRATTR subr disk file attribute setting 5.2.3.7
FRDELT subr disk file deleting routine
FRRNME subr disk file renaming routine

FREXIT subr exit to operating system 5.2.3.8

FRDSTA func check the status of a disk I/O 5.2.3.9
operation

FXDSKE subr disk error message generation 5.2.3.10

. .p

O.,

,-. .:'.

S.

~- 363 -

° *..V. ~ ~ ~ .* :~;b~ ' J V 'V~

Appendix 9: Routine Names

General Utility Routines - Library FXUTIL.LIB

NAME TYPE FUNCTION CHAPTER

FXTIME task timer task 5.2.4.1
FRSETT subr reset timer

FXOCNS subr open console file 5.2.4.2
FXRCNS subr read from console file
FXCCNS subr close console file

FRCMPS func string comparison routine 5.2.4.3
FRCVUC subr string conversion to uppercase

FRPOKE subr transfer of data to memory 5.2.4.4
FRPEEK subr transfer of data from memory
FRADDR func returns address of parameter

o FRADD subr overflow-protected addition rout. 5.2.4.5
FRMULT subr overflow-protected multiplication
FRSHFT subr scaling by powers of 2

FRPIDC subr PID controller routine 5.3.2.1

[0.

- 364 -

0W

" _ I *IM

Appendix 9: Routine Names

Appendix 9.2: Controller Routine Names

The following table lists the names of all routines which do
not belong to iRMX-80 or Interface libraries. The name of the
source file which holds the routine is either equal to the

, routine's name, plus the extension ".SRC", or it is equally
derived from the name given in parentheses. The main chapter
in this documentation where references to a particular routine
occur is specified, too. The following abbreviations were
used:

A ... Assembly language module.
B ... (FORTRAN) BLOCKDATA program.
D ... Data module.
F ... FORTRAN module.
R ... Subroutine or FORTRAN FUNCTION.
T ... Task or main routine of a task.

ANACNT T-F Analog Data Controller Task (5.3.2.3.1)
* ANAINI R-A Analog Data Input Initialization routine (ANAINP)

(5.3.2.2)
ANAINP R-A Analog Data Input routine (5.3.2.2.2)
ANAOPT R-A Analog Data Output routine (5.3.2.2.4)

, ANOMAL R-F Anomaly Compensation routine (5.3.2.2.2)
BEEP R-F Beeping Routine (AUXCOM) (5.3.1.2)
BITCNT R-A Bit Counting routine (5.3.1.3.17)
BLKDTA B-F CZOOVD Data Initialization BLOCKDATA program

.'. (5.3.1.3)CALCUL R-F Calculator Utility routine (5.3.1.3.11)

CHKANI R-F Operator Answer Checking routine (MENOUT)
A (5.3.1.3.4)

CHKANS R-F Operator Answer Checking routine (AUXCOM)
(5.3.1.2)

CHKDTB R-F Check Diameter Table routine (DIACNT) (5.3.2.2.3)
CHKFNM R-A File Name Checking routine (5.3.1.3, 5.3.1.4.1)
CLEARO R-F Conditional Command Clearing overlay routine

?. ~ (5.3.1.3.21)
CLIPRL R-F Input Line Clearing Routine (AUXCOM) (5.3.1.2)

. -
' CLRBUF R-F Buffer Clearing routine

CLRSCR R-F Scrolled Screen Area Clearing routine (5.3.1.3.4)
CLSFIL R-F File Closing Routine (AUXCOM) (5.3.1.3)
CMFINP T-F Command File Input Task (5.3.1.6)

*CMFOUT T- Command File Output Task (5.3.1.7)
~'CMMDEX T-F Command Executor Task (5.3.1.4)

0CNTRL R-A Control Mode Determining routine (5.3.1.4)
COMINT T-F Command Interpreter (5.3.1.3)
COMNEN R-F Comment Entry routine (5.3.1.3.3)
CONDIT R-F Conditional Command Entry routine (5.3.1.3.14)
CREATE R-A CGCS System Creation routine (CZINIT) (5.3.1.3)
CZINIT R-A CGCS Initialization Routine (5.3.1.3)

-365-

JN.

Appendix 9: Routine Names

CZOV01 B-F Overlay Identification BLOCKDATA module (SETPAR)
CZOV02 B-F Overlay Identification BLOCKDATA module (SETVAR)
CZOV03 B-F Overlay Identification BLOCKDATA module (COMMEN)
CZOV04 B-F Overlay Identification BLOCKDATA module (MENOUT)
CZOV05 B-F Overlay Identification BLOCKDATA module (OPMODE)

- CZOV06 B-F Overlay Identification BLOCKDATA module (DEBUGO)
CZOV07 B-F Overlay Identification BLOCKDATA module (DEBUG1)
CZOVO8 B-F Overlay Identification BLOCKDATA module (FRAME)
CZOV09 B-F Overlay Identification BLOCKDATA module (FILES)
CZOV10 B-F Overlay Identification BLOCKDATA module (REQCMF)

" CZOVll B-F Overlay Identification BLOCKDATA module (CALCUL)
CZOV12 B-F Overlay Identification BLOCKDATA module (DATAFI)
CZOV13 B-F Overlay Identification BLOCKDATA module (EXICZO)
CZOV14 B-F Overlay Identification BLOCKDATA module (CONDIT)
CZOV15 B-F Overlay Identification BLOCKDATA module (DISPLY)
CZOV16 B-F Overlay Identification BLOCKDATA module (DOCUMT)
CZOV17 B-F Overlay Identification BLOCKDATA module (DIRECT)
CZOV18 B-F Overlay Identification BLOCKDATA module (RESOVL)
CZOV19 B-F Overlay Identification BLOCKDATA module (INIDAT)
CZOV20 B-F Overlay Identification BLOCKDATA module (PLOTOV)

0 CZOV2l B-F Overlay Identification BLOCKDATA module (CLEARO)
CZOVER D-A System Version code
DASHES R-F Half Line Of Dashes Generating routine (FRAME)

(5.3.1.3.8)
DASHLN R-F Full Line Of Dashes Generating routine (FRAME)

(5.3.1.3.8)
DATAFI R-F Data File Maintenance routine (5.3.1.3.12)
DATIN R-A Special Input Interface routine (DATOUT)

(5.2.2.9)
DATOUT R-A Special Output Interface routine (5.2.2.9)
DEBUGO R-F DEBUG routines, part 1 (5.3.1.3.6)
DEBUG1 R-F DEBUG routines, part 2 (5.3.1.3.7)
DIACNT T-F Diameter Controller Task (5.3.2.2.1)
DIALIM R-F Diameter Square Limiting Routine (DIACNT)

D(5.3.2.2.1)
DIRECT R-F Disk Directory Display routine (5.3.1.3.17)
DISINT R-A Interrupt Disabling Routine (AUXASM) (5.3.1.4.7)
DISPLY R-F Variable Display routine (5.3.1.3.15)

• DOCUMT R-F Documentation File Maintenance routine
(5.3.1.3.16)

DSKOUT T-F Data File Output Task (DSKDAT) (5.3.1.8)
DUMP R-F Data Dump Triggering routine (DUMPDT) (5.3.1.4.6)
DUMPDT R-F Data Dump Generation routine (5.3.1.4.6)
ENINT R-A Interrupt Enabling Routine (AUXASM) (5.3.1.4.7)

S ERRMSG R-A Error Message Output routine (AUXASM) (5.3.1.2)
EXICZO R-F CGCS Exit routine (5.3.1.3.13)
FILES R-F Output File Status Display routine (5.3.1.3.9)
FINDAD R-A Variable Address Finding routine (5.3.1.3.2)
FIRSTM R-A First module in Code area - used by MEMCHK

(5.3.1.4.8)

-366-

,05,

Appendix 9: Routine Names

FRAME R-F Console Output Mask Generation routine
(5.3.1.3.8)

FRPIDC R-A Generic PID Controller routine (5.3.2.1)
FXUSIN R-F Initialization routine (INIT) (5.3.1.3)

* IMULT R-A INTEGER multiplication routine (5.3.2.3)
INIDAT R-F Initial Data Input routine (5.3.1.3.16)
INIDTA B-F Built-In Data Initialization BLOCKDATA program

(5.3.1.3)
INIPRT R-A Special Output Interface routine (DATOUT)

(5.2.2.9)
LOVLAY R-F Overlay Loading routine (AUXCOM) (5.3.1.3)
LOWPAS R-A Low-Pass Filtering routine (5.3.2.2.5)

.0 LSTRAM D-A Dummy routine: Last program code module
MAKEFN R-A File Name Building routine (AUXASM) (5.3.1.3)
MEASDO T-F Measured Data Output Task (5.3.1.5)
MEMCHK R-A Code Memory Checking routine (LSTRAM) (5.3.1.4.8)
MENOUT R-F Help Menu Output routine (5.3.1.3.4)
MESSGE R-A Message Output routine (AUXASM) (5.3.1.2)

4. MOTDIR R-A Motor Direction Output routine (5.3.2.2.3)
OPMODE R-F Operation Mode Entry routine (5.3.1.3.5)
OPNFIL R-F File Opening Routine (AUXCOM) (5.3.1.3)

- PEEKDW R-A Data Retrieval routine (AUXASM) (5.3.1.3.1)
* PLOTOV R-F Data Plotting Setup Overlay (5.3.1.3.20)

PLOTPR R-F Plot Data Collecting Routine (5.3.1.4.7)
PRETTA R-A Auxiliary Command Interpreter routine (AUXASM)

(5.3.1.2)
PROMPT R-A Command Prompt Generation routine (AUXASM)

(5.3.1.2)
QUITCM R-F Macro Command Quitting routine (5.3.1.3)4.

REACTV R-A Diameter Evaluation Reactivating routine (SHAPE)
(5.3.2.2.5)

REQCMF R-F Command Output File Maintenance routine
(5.3.1.3.10)

RESET R-A Diameter Controller Resetting routine (SHAPE)
ES L(5.3.2.2.4)

RESOVL R-F RESET Command Processing routine (5.3.1.3.18)
SETPAR R-F Parameter Setpoint Entry routine (5.3.1.3.1)
SETVAR R-F Variable Setpoint Entry routine (5.3.1.3.2)
SHAPE R-A Diameter Controller routine (5.3.2.2.3)
SHIFTB R-F Buffer Left Shifting routine (DEBUGO) (5.3.1.3.6)
SHIFTB R-F Buffer Left Shifting routine (PLOTOV)

(5.3.1.3.20)
SPLITM R-A Mode Code Splitting routine (AUXASM) (5.3.1.4.1)
STARTP R-A Special Output Interface routine (DATOUT)

(5.2.2.9)
STODAT R-A Data Storage routine (AUXASM) (5.3.1.4.1)STRIN R-A Special Input Interface routine (DATOUT)

*(5.2.2.9)

STRIPN R-F Strip Binary Zeros routine (DIRECT) (5.3.1.3.17)

- 367 -

',

z

.- x i~ i -TL . j . .= 7 . ,- i 'T • .. , - U . - ... - ,*.-

U,

'" Appendix 9: Routine Names

STROUT R-A Special Output Interface routine (DATOUT)
(5.2.2.9)

TESTHD R-A Hardware Testing routine (CZINIT) (5.3.1.3)
TIMLIN R-F Top Of Screen Line Output routine (5.3.1.3,

5.3.1.3.8)
TRVMOD D-A Trivial Module; needed for system configuration
VARNMI B-F Auxiliary DEBUG COMMON Block Initialization

(DEBUGO) (5.3.1.3.6)
WTOUTP R-F MEASDO Delaying routine (MEASDO) (5.3.1.5)
XCHDSK R-F Disk Exchange routine (AUXCOM) (5.3.1.3)

'A-,

A'A "

S-368

b',"U,,

PA,.

Appendix 10: COMMON Blocks

Appendix 10: COMMON Blocks

The following table shows the Fortran COMMON blocks used in
the CGCS, arranged in increasing address order. For each
block, its size and the names of the routines referencing it

% are specified.

LOCATED IN THE MAIN COMMON AREA:

/ANAOUT/ (32) CMMDEX, PLOTPR, MEASDO, DSKOUT, ANACNT,
INIDTA

/ANIPAR/ (52) ANACNT, INIDTA, BLKDTA

/ANOMLY/ (8) ANOMAL, BLXDTA

/ANOPAR/ (17) ANACNT, INIDTA, BLXDTA

/AUXILD/ (62) PLOTPR, INIDTA, BLKDTA

/CNDCNT/ (1) CIINDEX, MEASDO, INIDTA

z/COMMEX/ (10) FXUSIN, COMINT, SETPAR, SETVAR, OPHODE,
DEBUGO, DEBUG1, EXICZO, CONDIT, RESOVL,

-PLOTOV, CLEARO, CMMDEX, CMFINP, DIACNT

/COMMFL/ (10) FXUSIN, COMINT, SETPAR, SETVAR, OPMODE,
DEBUGO, DEBUGi, EXICZO, CONDIT, RESOVL,

-.- PLOTOV, CLEARO, CMFINP, CMFOUT

/CONLIM/ (2) MEASDO, INIDTA, BLKDTA

/CRUCOP/ (12) DIACNT, INIDTA, BLKDTA

/CRUC1P/ (12) DIACNT, INIDTA, BLXDTA

S/DEBUG/ (43) FXUSIN, CMMDEX, MEASDO, DSKOUT, INIDTA

/DEBUGE/ (1) COMINT, CMMDEX, CMFINP, INIOTA

/DIAlOP/ (12) DIACNT, INIDTA, BLXDTA

/DIAl1P/ (12) DIACNT, INIDTA, BLXDTA

I/DIA2OP/ (12) DIACNT, INIDTA, BLXDTA

/DIA21P/ (12) DIACNT, INIDTA, BLKDTA

/DIA3OP/ (12) DIACNT, INIDTA, BLXDTA

- 369-

4IN

Appendix 10: COMMON Blocks

/DIA3lP/ (12) DIACNT, INIDTA, BLKDTA

/DISKFN/ (56) OPNFIL, TIMLIN, FILES, REQCMF, DATAFI,
DOCUNT, CMMDEX, INIDTA

/DOUTEX/ (10) FXUSIN, DSKOUT

/ENDBGO/ (1) MENOUT, OPMODE, FRAME, DIRECT, MEASDO, INIDTA

/INTRVL/ (2) EXICZO, WTOUTP, INIDTA, BLKDTA

/MODE/ (1) COMMEN, OPMODE, EXICZO, RESOVL, CMMDEX,
MEASDO, DSKOUT, DIACNT, ANACNT, INIDTA

/OVLNMl/ (6) LOVLAY, CZOVxx, INIDTA, BLKDTA

/OVRLAY/ (1) COMINT, CZOVxx, FILES, INIDTA

/PLOTAD/ (16) CMMDEX, PLOTPR

0/REALDT/ (88) CMMDEX, DUMPDT, PLOTPR, DIACNT, INIDTA

/RLECORD/ (3) COMINT, FILES, REQCMF, CMFOUT, INIDTA

*/RESTDO/ (3) FXUSIN, FRAME, EXICZO, CMMDEX, MEASDO, INIDTA

/RMPPAR/ (401) EXICZO, CMMDEX, MEASDO, INIDTA

/SECFLG/ (1) CMMDEX, ANACNT

/SETPTO/ (33) FXUSIN, SETPAR, EXICZO, INIDAT, CMMDEX,
PLOTPR, MEASDO, DSKOUT, DIACNT, ANACNT,
INI DTA

/SETPTl/ (33) FXUSIN, INIDAT, CMMDEX, MEASDO, DSKOUT,
DIACNT, INIDTA

/TEMP1P/ (12) ANACNT, INIDTA, BLKDTA

/TEMP2P/ (12) ANACNT, INIDTA, BLXDTA

/TEMP3P/ (12) ANACNT, INIDTA, BLKDTA

/TEST/ (1) FXUSIN, ANACNT

/WAITEX/ (10) FXUSIN, QUITCM, EXICZO, INIDAT, WTOUTP

/XTDCNT/ (48) ANACNT, BLKDTA

/XTDDAT/ (2) EXICZO, DOCUMT, DUMPDT, DUMP, INIDTA

VI -370-

* %. Appendix 10: COM4MON Blocks

/XTLSHP/ (4) CHKDTB, BLKDTA

/XTRADT/ (8) ANACNT, INIDTA, BLKDTA

16, TIED TO THE DATA AREA (USED BY ASSEMBLY LANGUAGE MODULES)j:

MODULE FXTIME:

)/FOTIME/ (65) FXUSIN, COMINT, QUITCM, COMMEN, DATAFI,
EXICZO, CMMDEX, DUMPDT, DUMP, CMFINP, CMFOUT,
DSKOUT, DIACNT, ANACNT

MODULE DATOUT:

/IOFLAG/ (4) FXUSIN, COMINT, CLSFIL, OPNFIL, QUITCM,
COMMEN, TIMLIN, FILES, REQCMF, DATAFI,

' .EXICZO, DOCUMT, CMMDEX, DUMPDT, CMFINP,
CMFOUT, DSKOUT, INIDTA

-'/DISKLC/ (4) CLSFIL, OPNFIL, FILES, REQCMF, DATAFI,
DOCUMT, DIRECT, INIDTA

/DATE/ (8) FXUSIN, CLIPRL, TIMLIN, DATAFI

/RUNID/ (20) FXUSIN, TIMLIN, DATAFI

MODULE SHAPE:

/ANADAT/ (65) FXUSIN, RESOVL, CMMDEX, PLOTPR, MEASDO,
DSKOUT, DIACNT, ANACNT, INIDTA

/DIAMET/ (2) CMMDEX, PLOTPR, MEASDO, DSKOUT, DIACNT,
INI DTA

/LENGTH/ (2) COMMEN, RESOVL, CMMDEX, MEASDO, DSKOUT,
INIDTA

/SCALE/ (72) SETPAR, INIDAT, RESOVL, CM'MDEX, PLOTPR,
MEASDO, DIACNT, INIDTA, BLXDTA

/AUXDIA/ (26) INIDAT, PLOTPR, DIACNT, BLKDTA

/ZEROWT/ (2) ANACNT

/GROWTH/ (4) PLOTPR

/DIATAB/ (256) CHKDTB

* - 371 -

AALLI7

Appendix 10: COMMON Blocks

LOCATED ON TOP OF THE COMMAND INTERPRETER OVERLAY AREA:

/DBGCOM/ (21) DEBUGO, VARNM1, DEBUG1

/SCONDT/ (8) FXUSIN, BLKDTA

LOCATED CLOSE TO THE HIGH ADDRESS END OF THE RAM AREA (IN
CONTROLLER ADDRESSABLE MEMORY)

/DSKBUF/ (128) DSKOUT, INIDTA

-7

?..

.0 7

o;'.

Appendix 11: Variable Names

Appendix 11: Variable Names

Apendix 11.1: Most Important Variables

Name Type Size Meaning

Raw Analog Input Data (2 Byte Int.)

ITEMPI * 12 1 Heater #1 Temperature
ITEMP2 * 12 1 Heater #2 Temperature
ITEMP3 * 12 1 Heater #3 Temperature
ISEEDL * 12 1 Seed Lift
ICRUCL * -2 1 Crucible Lift
ISEEDR * 12 1 Seed Rotation
ICRUCR * 12 1 Crucible Rotation
IPOUTI * 12 1 Power Output #.
IPOUT2 * 12 1 Power Output #2
IPOUT3 * 12 1 Power Output #3
IWEIGH * 12 1 Weight

* IDWGHT * 12 1 Diff. Weight
ISEEDP * 12 1 Seed Position
ICRUCP * 12 1 Crucible Position
IBASET * 12 1 Base Temperature
IGASPR * 12 1 Gas Pressure
CONTAC * 12 1 Contact Device
ANALOG * 12 8 Spare Analog Channels

Measured Analog Data (2 Byte Int.)

MTEMP1 + 12 1 Heater #1 Temperature
MTEMP2 + 12 1 Heater #2 Temperature
MTEMP3 + 12 1 Heater #3 Temperature
MSEEDL + 12 1 Seed Lift
MCRUCL + 12 1 Crucible Lift
MSEEDR + 12 1 Seed Rotation
MCRUCR + 12 1 Crucible Rotation
MPOUT1 + 12 1 Power Output #1
MPOUT2 + 12 1 Power Output #2
MPOUT3 + 12 1 Power Output #3

"' MWEIGH + 12 1 Weight
MDWGHT + 12 1 Diff. Weight
MSEEDP + 12 1 Seed Position

, . MCRUCP + 12 1 Crucible Position
MBASET + 12 1 Base Temperature
MGASPR + 12 1 Gas Pressure

* MCONTC + 12 1 Contact Device
MANALG + 12 8 Spare Analog Channels

- 373-

S->

-0.
...

Appendix 11: Variable Names

Raw Analoa Output Data (2Bvte Int.)

PWRlIN * 12 1 Input Power (to SCR Controller) #1
• PWR2IN * 12 1 Input Power (to SCR Controller) #2
4, PWR3IN * 12 1 Input Power (to SCR Controller) #3

SEEDLO * 12 1 Seed Lift
", CRUCLO * 12 1 Crucible Lift

SEEDRO * 12 1 Seed Rotation
CRUCRO * 12 1 Crucible Rotation

Processed Analog Data (REAL)

DIAMET * R 1 Crystal Diameter
TEMPI * R 1 Heater #1 Temperature
TEMP2 * R 1 Heater #2 Temperature
TEMP3 * R 1 Heater #3 Temperature
SEEDL * R 1 Seed Lift
CRUCL * R 1 Crucible Lift
SEEDR R 1 Seed Rotation
CRUCR * R 1 Crucible Rotation

0 POWER1 * R 1 Power Output #14RPp POWER2 * R 1 Power Output #2.. '' POWER3 * R 1 Power Output #3
WEIGHT * R 1 Weight
DWGHT * R 1 Diff. Weight
SEEDP * R 1 Seed Position
CRUCP * R 1 Crucible Position
BASTMP * R 1 Base Temperature
GASPR * R 1 Gas Pressure
PWRIN1 * R 1 Power Input (to SCR Controller) #1

• PWRIN2 * R 1 Power Input (to SCR Controller) #2
o PWRIN3 * R 1 Power Input (to SCR Controller) #3

LENGTH * R 1 Crystal Length Grown
ADJDW * R 1 Anomaly Adjusted Diff. Weight

-, Current Setpoints (2 Byte Int.)

STDIAM * 12 1 Diameter
STTMPI * 12 1 Heater #1 Temperature
STTMP2 * 12 1 Heater #2 Temperature
STTMP3 * 12 1 Heater #3 Temperature
SETSL * 12 1 Seed Lift
SETCL * 12 1 Crucible Lift
SETSR * 12 1 Seed Rotation
SETCR * 12 1 Crucible Rotation
STPWRL * 12 1 Power Limit

-374 -

Appendix 11: Variable Names

PID Controller Parameters:

Seed Lift Motor

SLGAIN Il 1 Gain
SLCNTL Il 1 Control
SLPROP 12 1 Proportional Multiplier
SLINT 12 1 Integral Multiplier
SLDIFF 12 1 Differential Multiplier
SLLIM 12 1 Limit
SLTHET 12 1 THETA value

Crucible Lift Motor

CLGAIN II 1 Gain
- CLCNTL Il 1 Control

CLPROP 12 1 Proportional Multiplier
CLINT 12 1 Integral Multiplier
CLDIFF 12 1 Differential Multiplier
CLLIM 12 1 Limit
CLTHET 12 1 THETA value

Seed Rotation Motor

SRGAIN Il 1 Gain
SRCNTL Il 1 Control
SRPROP 12 1 Proportional Multiplier
SRINT 12 1 Integral Multiplier
SRDIFF 12 1 Differential Multiplier
SRLIM 12 1 Limit
SRTHET 12 1 THETA value

Crucible Rotation Motor

CRGAIN Il 1 Gain
* CRCNTL Il 1 Control
OY CRPROP 12 1 Proportional Multiplier

CRINT 12 1 Integral Multiplier
CRDIFF 12 1 Differential Multiplier
CRLIM 12 1 Limit
CRTHET 12 1 THETA value

Temperature #1
(#2 and #3 analogously)

TIGAIN Il 1 Gain
T1CNTL Il 1 Control
TIPROP 12 1 Proportional Multiplier
TlINT 12 1 Integral Multiplier
TIDIFF 12 1 Differential Multiplier

- 375 -

'S.,

p

Appendix 11: Variable Names

TILIM 12 1 Limit Value

Diameter #i (controls Temp. #1)
(#3 analogously)

Main Controller

GAIN10 Il 1 Gain
CNTL10 Ii 1 Control

• PROP10 12 1 Proportional Multiplier
INT10 12 1 Integral Multiplier
DIFF10 12 1 Differential Multiplier
LIM10 12 1 Limit Value

Auxiliary Controller

GAIN11 Il 1 Gain
CNTLII Ii 1 Control
PROP11 12 1 Proportional Multiplier

* INTll 12 1 Integral Multiplier
DIFFII 12 1 Differential Multiplier
LIM11 12 1 Limit Value5,..

Diameter #2 (controls Temp. #2)
(#3 analogously)

Main Controller

GAIN20 Il 1 Gain
CNTL20 Il 1 Control
PROP20 12 1 Proportional Multiplier
INT20 12 1 Integral Multiplier
DIFF20 12 1 Differential Multiplier
LIM20 12 1 Limit Value

Auxiliary Controller

GAIN21 Il 1 Gain
CNTL21 Il 1 Control
PROP21 12 1 Proportional Multiplier
INT21 12 1 Integral Multiplier
DIFF21 12 1 Differential Multiplier
LIM21 12 1 Limit Value

Crucible Lift

Main Controller

COGAIN Il 1 Gain
COCNTL Il 1 Control

- 376 -

, Appendix 11: Variable Names

COPROP 12 1 Proportional Multiplier
COINT 12 1 Integral Multiplier
CODIFF 12 1 Differential MultiplierCOLIM 12 1 Limit Value

Auxiliary Controller

CIGAIN Il 1 Gain
C1CNTL I1 1 Control
C'PROP 12 1 Proportional Multiplier
ClINT 12 1 Integral Multiplier
ClDIFF 12 1 Differential Multiplier
CILIM 12 1 Limit Value

Low-Pass Filter Values (0 ... 4)

ANIPAR(4) Ii Heater #1 Temperature
ANIPAR(6) Il Heater #2 Temperature
ANIPAR(8) Il Heater #3 Temperature
ANIPAR(10) Ii Seed Lift
ANIPAR(12) Il Crucible Lift
ANIPAR(14) Ii Seed Rotation
ANIPAR(16) Il Crucible Rotation
ANIPAR(18) Il Power Output #1
ANIPAR(20) Il Power Output #2
ANIPAR(22) Ii Power Output #3
ANIPAR(24) Ii Weight
ANIPAR(26) Ii Diff. Weight
ANIPAR(28) Ii Seed Position
ANIPAR(30) Il Crucible Position
ANIPAR(32) Ii Base Temperature
ANIPAR(34) II Gas Pressure
ANIPAR(36) Il Contact Device
ANIPAR(38) Il Spare Channel #1
ANIPAR(40) Il Spare Channel #2
ANIPAR(42) II Spare Channel #3

' -, ANIPAR(44) Il Spare Channel #4
ANIPAR(46) Il Spare Channel #5
ANIPAR(48) Il Spare Channel #6
ANIPAR(50) Il Spare Channel #7
ANIPAR(2) Il Spare Channel #8

Other System Control Parameters

ANOMLY R 2 Anomaly Compensation Factors

- 377 -
* .

Appendix 11: Variable Names

Shape Controller

ALPHA R 1 Diameter Evaluation Mode Parameter
XTLSHP R 1 Crystal Shape Smoothing Parameter
CDIASQ * R 1 Square of Crucible Diameter
SDIASQ * R 1 Square of Seed Diameter
OXWGHT * R 1 Oxide Weight
RHOXTL * R 1 Crystal Spec. Weight (scaled)
RHOMLT * R 1 Melt Spec. Weight (scaled)
RHOOXI * R 1 Oxide Melt Spec. Weight (scaled)
SCRUCP * 12 1 Setpoint for Crucible Position
HEIGHT * R 1 Boric Oxide Melt Height in Crucible
GROWTH * R 1 Actual Growth Rate

Chart Recorder Output

EXTMP1 * 12 1 Expanded Temperature 1
EXTMP2 * 12 1 Expanded Temperature 2
EXTMP3 * 12 1 Expanded Temperature 3
EXTMPB * 12 1 Expanded Base Temperature
OFFST R 1 Offset for Temperature 1 Expansion
OFFST2 R 1 Offset for Temperature 2 Expansion
OFFST3 R 1 Offset for Temperature 3 Expansion
OFFSTB R 1 Offset for Base Temperature Exp.
RANGT1 R 1 Range for Temperature 1 Expansion
RANGT2 R 1 Range for Temperature 2 Expansion
RANGT3 R 1 Range for Temperature 3 Expansion
RANGTB R 1 Range for Base Temperature Exp.
GRRATE * 12 1 Expanded Growth Rate
DIAERR * 12 1 Expanded Diameter Error
CRPERR * 12 1 Expanded Crucible Position Error
ZERO 12 1 Location Holding Zero

Miscellaneous System Parameters

TEST Il 1 Test Mode Flag
INTRVL Il 1 Wait Interval for Data Display (>0)
DUMPIN Il 1 Interval between Data Dumps

* DUMPFL Il 1 Data Dump Request Flag
DIASTA Il 1 Diameter Evaluation Routine Status
CONLIM Il 1 Limit Value for Contact Device
TIME * 12 1 System Time (Seconds Counter)
RAMPNG * Il 1 Number of Parameters Ramped
CNDCNT * Il 1 Number of Conditional Commands

0. DUMMY 12 8 Scratchpad Locations

.1 * Read-only parameter, do not change!
+ Parameters can only be changed in Test mode.

S- 378-

S..
46

Appendix 11: Variable Names

Appendix 11.2: Complete List of Variables, Sorted by Address

ZERO 12 LOCATION HOLDING ZERO
DISKIO T TD FOR TASK DISKIO

. RQTHDI T TD FOR TASK RQTHDI
RQTHDO T TD FOR TASK RQTHDO
RQLOAD T TD FOR TASK RQLOAD
COMINT T TD FOR TASK COMINT = RXIROM
RXIROM T
PWRlIN 12 INTEGER: POWER INPUT (TO SCR MODULE)
PWR2IN 12
PWR3IN 12
SEEDLO 12 INTEGER: SEED LIFT OUTPUT
CRUCLO 12 INTEGER: CRUCIBLE LIFT OUTPUT
SEEDRO 12 INTEGER: SEED ROTATION OUTPUT
CRUCRO 12 INTEGER: CRUCIBLE ROTATION OUTPUT
PLOTDT 12 8 INTEGER: CHART RECORDER OUTPUT DATA
ANAOUT 12 16 ARRAY OF INTEGER OUTPUT DATA
ANIPAR Il 52 PARAMETER ARRAY FOR ANALOG INPUT ROUTINE
ANOMLY R 2 ANOMALY CORRECTION PARAMETERS (TWO REAL)
ANOPAR Il 17 PARAMETER ARRAY FOR ANALOG OUTPUT ROUTINE
OFFST1 R TEMPERATURE OFFSET - HEATER TEMPERATURE I

* OFFST2 R HEATER TEMPERATURE II
OFFST3 R HEATER TEMPERATURE III
OFFSTB R BASE TEMPERATURE
RANGTI R TEMPERATURE CHART RECORDER OUTPUT RANGE - T I
RANGT2 R HEATER TEMPERATURE II
RANGT3 R HEATER TEMPERATURE III

- RANGTB R BASE TEMPERATURE
'. i EXTMP1 12 EXPANDED HEATER TEMPERATURE I

EXTMP2 12 EXPANDED HEATER TEMPERATURE II
EXTMP3 12 EXPANDED HEATER TEMPERATURE III
EXTMPB 12 EXPANDED BASE TEMPERATURE
DIAERR 12 EXPANDED DIAMETER ERROR
CRPERR 12 EXPANDED CRUCIBLE POSITION ERROR
GRRATE 12 EXPANDED GROWTH RATE
DUMMY 12 8 EIGHT DUMMY LOCATIONS
CNDCNT Ii COUNTER FOR CONDITIONAL COMMANDS

* CONLIM 12 INTEGER: LIMIT VALUE FOR CONTACT DEVICE
COGAIN Ii CRUCIBLE LIFT CONTROLLER ARRAY: GAIN
COCNTL Ii CONTROL BYTE
COPROP 12 PROP. MULTIPL.
COINT 12 INT. MULTIP.
CODIFF 12 DIFF. MULTIP.

0. COLIM 12 LIMIT
CRUCOP 12 6 CRUCIBLE LIFT CONTROLLER ARRAY
CIGAIN Ii AUXILIARY CRUC. LIFT CONTROLLER: GAIN
C1CNTL Il CONTROL BYTE
CIPROP 12 PROP. MULTIPL.
ClINT 12 INT. MULTIPL.

0.

Appendix 11: Variable Names

CIDIFF 12 DIFF. MULTIPL.
CILIM 12 LIMIT
CRUCIP 12 6 AUXILIARY CRUCIBLE LIFT CONTROLLER
GAIN10 Ii MAIN DIAM. CNTL. I: GAIN
CNTL10 Ii CONTROL BYTE
PROP10 12 PROP. MULTIPL.
INT10 12 INT. MULTIPL.
DIFF10 12 DIFF. MULTIPL.
LIM10 12 LIMIT
DIA1OP 12 6 MAIN DIAMETER CONTROLLER I
GAIN11 Ii AUX. DIAM. CNTL. I: GAIN
CNTLll I CONTROL BYTE
PROP11 12 PROP. MULTIPL.
INTII 12 INT. MULTIPL.
DIFFI 12 DIFF. MULTIPL.
LIMI 12 LIMIT
DIAIIP 12 6 AUXILIARY DIAMETER CONTROLLER I

V, GAIN20 Ii MAIN DIAM. CNTL. II: GAIN
CNTL20 Ii CONTROL BYTE
PROP20 12 PROP. MULTIPL.
INT20 12 INT. MULTIPL.
DIFF20 12 DIFF. MULTIPL.
LIM20 12 LIMIT
DIA20P 12 6 MAIN DIAMETER CONTROLLER II
GAIN21 II AUX. DIAM. CNTL. II: GAIN
CNTL21. Il CONTROL BYTE
PROP21 12 PROP. MULTIPL.
INT21 12 INT. MULTIPL.
DIFF21 12 DIFF. MULTIPL.
LIM21 12 LIMIT
DIA21P 12 6 AUXILIARY DIAMETER CONTROLLER II
GAIN30 Ii MAIN DIAM. CNTL. III: GAIN
CNTL30 Ii CONTROL BYTE
PROP30 12 PROP. MULTIPL.
INT30 12 INT. MULTIPL.

. DIFF30 12 DIFF. MULTIPL.
LIM30 12 LIMIT
DIA30P 12 6 MAIN DIAMETER CONTROLLER III

* GAIN31 II AUX. DIAM. CNTL. III: GAIN
CNTL31 Il CONTROL BYTE
PROP31 12 PROP. MULTIPL.
INT31 12 INT. MULTIPL.
DIFF31 12 DIFF. MULTIPL.
LIM31 12 LIMIT

0. DIA31P 12 6 AUXILIARY DIAMETER CONTROLLER III
INTRVL 12 INTERVAL FOR MEASURED DATA OUTPUT
PLOTAD 12 8 ADDRESSES OF VARIABLES SUBMITTED TO PLOT OUTPUT
DIAMET R MEASURED DATA (REAL): DIAMETER

, TEMPI R TEMPERATURE
TEMP2 R

- 380 -

"" ""Appendix 11: Variable Names

TEMP3 R
SEEDL R SEED LIFT
CRUCL R CRUCIBLE LIFT
SEEDR R SEED ROTATION
CRUCR R CRUCIBLE ROTATION
POWER1 R OUTPUT POWER (FROM SCR)
POWER2 R
POWER3 R
WEIGHT R WEIGHT
DWGHT R DIFF. WEIGHT
SEEDP R SEED POSITION
CRUCP R CRUCIBLE POSITION

7 BASTMP R BASE TEMPERATURE
GASPR R GAS PRESSURE
PWRINl R POWER INPUT (TO SCR)
PWRIN2 R
PWRIN3 R
LENGTH R LENGTH GROWN
ADJDW R ADJUSTED DIFF. WEIGHT
REALDT R 22 MEASURED DATA ARRAY (REAL)
RAMPNG Ii NUMBER OF VARIABLES RAMPING
STDIAM 12 CURRENT SETPOINT: DIAMETER

. STTMPI 12 TEMPERATURE
STTMP2 12
STTMP: 12
SETSL 12 SEED LIFT
SETCL 12 CRUCIBLE LIFT
SETSR 12 SEED ROTATION
SETCR 12 CRUCIBLE ROTATION
STPWRL 12 POWER LIMIT
SETPTO 12 9 CURRENT SETPOINT ARRAY (INTEGER)
TIGAIN II TEMP. CNTL. I: GAIN
T1CNTL Ii CONTROL BYTE
TIPROP 12 PROP. MULTIPL.
T1INT 12 INT. MULTIPL.
TIDIFF 12 DIFF. MULTIPL.
TILIM 12 LIMIT
TEMPIP 12 6 TEMPERATURE CONTROLLER I
T2GAIN II TEMP. CNTL. II: GAIN

. T2CNTL Ii CONTROL BYTE
J' T2PROP 12 PROP. MULTIPL.

T2INT 12 INT. MULTIPL.
T2DIFF 12 DIFF. MULTIPL.

.4 T2LIM 12 LIMIT
TEMP2P 12 6 TEMPERATURE CONTROLLER II
T3GAIN Ii TEMP. CNTL. III: GAIN
T3CNTL Ii CONTROL BYTE

. T3PROP 12 PROP. MULTIPL.
p' T3INT 12 INT. MULTIPL.
* T3DIFF 12 DIFF. MULTIPL.
.3

-- ' ' . i)- 381 -

Appendix 11: Variable Names

T2LIM 12 LIMIT
TEMP3P 12 6 TEMPERATURE CONTROLLER III
TEST Ii TEST MODE FLAG
SLGAIN Ii SEED LIFT CNTL.: GAIN
3LCNTL Ii CONTROL BYTE
SLPROP 12 PROP. MULTIPL.
SLINT 12 INT. MULTIPL.
SLDIFF 12 DIFF. MULTIPL.
SLLIM 12 LIMIT
SEEDLP 12 6 SEED LIFT CONTROLLER
CLGAIN II CRUC. LIFT CNTL.: GAIN

CLCNTL Ii CONTROL BYTE
CLPROP 12 PROP. MULTIPL.
CLINT 12 INT. MULTIPL.
CLDIFF 12 DIFF. MULTIPL.
CLLIM 12 LIMIT
CRUCLP 12 6 CRUC. LIFT CONTROLLER
SRGAIN II SEED ROT. CNTL.: GAIN
SRCNTL Ii CONTROL BYTE
SRPROP 12 PROP. MULTIPL.

0 SRINT 12 INT. MULTIPL.
SRDIFF 12 DIFF. MULTIPL.
SRLIM 12 LIMIT
SEEDRP 12 6 SEED ROT CONTROLLER
CRGAIN I CRUC. ROT. CNTL.: GAIN
CRCNTL Ii CONTROL BYTE
CRPROP 12 PROP. MULTIPL.
CRINT 12 INT. MULTIPL.
CRDIFF 12 DIFF. MULTIPL.
CRLIM 12 LIMIT
CRUCRP 12 6 CRUC. ROT. CONTROLLER
DUMPIN Ii INTERVAL FOR DATA DUMPS
DUMPFL Ii DUMP FLAG
XTLSHP R CRYSTAL SHAPE PARAMETER
SLTHET 12 THETA VALUES: SEED LIFT
CLTHET 12 CRUCIBLE LIFT
SRTHET 12 SEED ROTATION
CRTHET 12 CRUCIBLE ROTATION
CMMDEX T TD FOR CMMDEX
MEASDO T TD FOR MEASDO
CMFINP T TD FOR CMFINP
CMFOUT T TD FOR CMFOUT
DSKOUT T TD FOR DISKOUT
DIACNT T TD FOR DIACNT
ANACNT T TD FOR ANACNT
ALARMF Ii ALARM TIMER INTERRUPT FLAG
TIME 12 SYSTEM TIME (INTEGER)
DIFFTM 12 DIFFERENTIAL TIME FOR MACRO EXECUTION
DTINTV Ii DATA FILE UPDATING INTERVAL
TIMSET 12 SETPOINT FOR ALARM TIMER (MACRO EXECUTION)

- 382-
dO

df'

Appendix 11: Variable Names

IOFLAG II 4 I/O FLAG ARRAY
ITEMPI 12 MEASURED DATA (INTEGER): TEMPERATURE
ITEMP2 12
ITEMP3 12
ISEEDL 12 SEED LIFT SPEED
ICRUCL 12 CRUCIBLE LIFT SPEED
ISEEDR 12 SEED ROTATION
ICRUCR 12 CRUCIBLE ROTATION
IPOUTI 12 POWER OUTPUT (FROM SCR)
IPOUT2 12
IPOUT3 12
IWEIGH 12 WEIGHT
IDWGHT 12 DIFF. WEIGHT
ISEEDP 12 SEED POSITION
ICRUCP 12 CRUCIBLE POSITION

'." IBASET 12 BASE TEMPERATURE
IGASPR 12 GAS PRESSURE
CONTAC 12 CONTACT

* ANALOG 12 8 EIGHT SPARE ANALOG CHANNELS (INTEGER)
ANADAT 12 25 COMPLETE ARRAY OF ANALOG DATA (INTEGER)
IDIAMT 12 CRYSTAL DIAMETER (INTEGER)
ILENGT 12 LENGTH GROWN (INTEGER)
SCADIA R SCALING FACTORS: DIAMETER
SCATMP R 3 TEMPERATURES
SCAMOT R 4 MOTORS
SCAPWO R 3 POWER OUTPUT
SCAWGT R WEIGHT
SCADWT R DIFFERENTIAL WEIGHT
SCAPOS R 2 POSITION
SCABST R BASE TEMPERATURE
SCAGAS R GAS PRESSURE
SCAPWR R POWER INPUT AND LIMIT
SCALE R 18 ARRAY OF SCALING FACTORS
CDIASQ R SQUARE OF CRUCIBLE DIAMETER
SDIASQ R SQUARE OF SEED DIAMETER

. OXWGHT R BORIC OXIDE WEIGHT
RHOXTL R DENSITY: CRYSTAL
RHOMLT R MELT
RHOOXI R OXIDE
SCRUCP 12 SETPOINT FOR CRUC. POSITION (INTEGER)
ZEROWT 12 WEIGHT ZEROING OFFSET

GROWTH R ACTUAL GROWTH RATE
ALPHA R CORRECTION FACTOR FOR GROWTH RATE
DIATAB R 64 DIAMETER SQUARES TABLE
IHEIGH 12 MELT HEIGHT (SCALED AS LENGTH)

7 OLDLEN 12 LENGTH AT LAST SLICE BOUNDARY
1 DIFFLG 12 HEIGHT OF CURRENT SLICE

RDWGHT R (ADJUSTED) DIFFERENTIAL WEIGHT (FLOATING-POINT)
RHOOXA R ADJUSTED OXIDE DENSITY

M DIAISQ R SQUARE OF DIAMETER AT OXIDE SURFACE

- 383 -

I' % % % .' 'j ' ' ' ' " - ' " - -% .- ' - ' '

Appendix 11: Variable Names

DIA2SQ R SQUARE OF DIAMETER AT MELT SURFACE
HEIGHT R BORIC OXIDE HEIGHT IN CRUCIBLE (REAL)
RCRSET R CRUCIBLE POSITION SETPOINT (REAL)
VOLSUM R SUM OF VOLUMES IN CURRENT SLICE (UNSCALED)
OXIVOL R VOLUME OF BORIC OXIDE MELT
CORRVL R OXIDE VOLUME CORRECTION
BETA R CORRECTION FACTOR
RDLIFT R SEED - CRUCIBLE LIFT SPEEDS
RLNGTH R UNSCALED LENGTH
PRLNGT R UNSCALED LENGTH DURING PREVIOUS PASS
INICRP R CRUCIBLE POSITION AT RESET
ADJLEN R LENGTH ADJUSTMENT PARAMETER
DIASTA I)i DIAMETER CONTROLLER STATUS
LOOPCT II LOOP COUNTER LOCATION
OXOVFL Ii OXIDE HEIGHT OVERFLOW FLAG
MTEMP1 12 PRIMARY MEASURED DATA (INTEGER): TEMPERATURE
MTEMP2 12
MTEMP3 12
MSEEDL 12 SEED LIFT SPEED
MCRUCL 12 CRUCIBLE LIFT SPEED
MSEEDR 12 SEED ROTATION
MCRUCR 12 CRUCIBLE ROTATION
MPOUT1 12 POWER OUTPUT (FROM SCR)
MPOUT2 12
MPOUT3 12
MWEIGH 12 WEIGHT
MDWGHT 12 DIFF. WEIGHT
MSEEDP 12 SEED POSITION
MCRUCP 12 CRUCIBLE POSITION
MBASET 12 BASE TEMPERATURE
MGASPR 12 GAS PRESSURE
MCONTC 12 CONTACT
MANALG 12 25 ANALOG DATA INPUT ARRAY

.
A

0

Appendix 11: Variable Names

Appendix 11.3: Variable Addresses for CGCS Versions 2.0 - 2.4

v2.0 v2.1 v2.2 V2.3 V2.4

1FF6 1FF6 1FF6 1FF6 1FF6 ZERO 12 LOCATION HOLDING ZERO

2136 2136 2136 2136 2136 DISKIO T TD FOR TASK DISKIO

214A 214A 214A 214A 214A RQTHDI T TD FOR TASK ROTHDI
215E 215E 215E 215E 215E RQTHDO T TD FOR TASK RQTHDO

2172 2172 2172 2172 2172 ROLOAD T TD FOR TASK RQLOAD

2186 2186 2186 2186 2186 COMINT T TD FOR TASK COMINT = RXIROM

2186 2186 2186 2186 2186 RXIROM T

__V 2800 2800 2800 2800 2800 PWRIIN 12 INTEGER: POWER INPUT (TO SCR MODULE)

, 2802 2802 2802 2802 2802 PWR21N 12

2804 2804 2804 2804 2804 PWR31N 12
2806 2806 2806 2806 2806 SEEDLO 12 INTEGER: SEED LIFT OUTPUT

" 2808 2808 2808 2808 2808 CRUCLO 12 INTEGER: CRUCIBLE LIFT OUTPUT

280A 280A 280A 280A 280A SEEDRO 12 INTEGER: SEED ROTATION OUTPUT

280C 280C 280C 280C 280C CRUCRO 12 INTEGER: CRUCIBLE ROTATION OUTPUT

280E 28OE 280E 280E 280E PLOTDT 12 8 INTEGER: OUTPUT TO CHART RECORDER

2800 2800 2800 2800 2800 ANAOUT 12 16 ARRAY OF INTEGER OUTPUT DATA

2820 2820 2820 2820 2820 ANIPAR 11 52 PARAMETER ARRAY FOR ANALOG INPUT
, 2854 2854 2854 2854 2854 ANOMLY R 2 ANOMALY CORRECTION PARAMETERS (REAL)

"., 285C 285C 285C 285C 285C ANOPAR 11 17 PARAMETER ARRAY FOR ANALOG OUTPUT

2860 286D 286D 286D 286D OFFST1 R TEMPERATURE OFFSET - HEATER TEMP I

2871 2871 2871 2871 2871 OFFST2 R HEATER TEMPERATURE II

2875 2875 2875 2875 2875 OFFST3 R HEATER TEMPERATURE III
2879 2879 2879 2879 2879 OFFSTB R BASE TEMPERATURE
.... 287D 287D 2870 287D RANGT1 R TEMP. CHART RECORDER OUTPUT RANGE I
---- 2881 2881 2881 2881 RANGT2 R HEATER TEMPERATURE 1I
.. 2885 2885 2885 2885 RANGT3 R HEATER TEMPERATURE III
.... 2889 2889 2889 2889 RANGTB R BASE TEMPERATURE

287D 288D 288D 288D 288D EXTMP1 12 EXPANDED HEATER I TEMPERATURE

287F 288F 288F 288F 288F EXTMP2 12 HEATER II
2881 2891 2891 2891 2891 EXTMP3 12 HEATER III
2883 2893 2893 2893 2893 EXTMP9 12 BASE

2885 2895 2895 2895 2895 DIAERR 12 DIAMETER ERROR (FOR PLOT)

2887 2897 2897 2897 2897 CRPERR 12 CRUCIBLE POSITION ERROR (FOR PLOT)

2889 2899 2899 2899 2899 GRRATE 12 GROWTH RATE (FOR PLOT)

2888 2898 2898 2898 2898 DUMMY 12 8 EIGHT DUMMY LOCATIONS

2898 28AB 28AB 28AB 28AB CNDCNT 11 COUNTER FOR CONDITIONAL COMMANDS

2880 28C0 28C0 28C0 28C0 CONLIM 12 INTEGER: LIMIT VALUE FOR CONTACT DEV.
2882 28C2 28C2 28C2 28C2 COGAIN 11 CRUCIBLE LIFT CONTROLLER ARRAY: GAIN

- 2883 28C3 28C3 28C3 28C3 COCNTL 11 CONTROL BYTE

2886 28C6 28C6 28C6 28C6 COPROP 12 PROP. MULTIPL.

2888 28C8 28C8 28C8 28C8 COINT 12 INT. MULTIP.

288A 28CA 28CA 28CA 28CA CODIFF 12 DIFF. MULTIP.

288C 28CC 28CC 28CC 28CC COLIM 12 LIMIT

2882 28C2 28C2 28C2 28C2 CRUCOP 12 6 CRUCIBLE LIFT CONTROLLER ARRAY

28BE 28CE 28CE 28CE 28CE ClGAIN 11 AUXILIARY CRUC. LIFT CONTROLLER: GAIN

288F 28CF 28CF 28CF 28CF C1CNTL 11 CONTROL BYTE

- 385 -

Appendix 11: Variable Names

28C2 2802 2802 2802 2802 CIPROP 12 PROP. MULTIPL.
28C4 28D4 2804 2804 28D4 ClINT 12 INT. MULTIPL.
28C6 2806 28D6 28D6 28D6 CIDIFF 12 DIFF. MULTIPL.
28C8 28D8 2808 2808 28D8 ClLIM 12 LIMIT
28BE 28CE 28CE 28CE 28CE CRUC1P 12 6 AUXILIARY CRUCIBLE LIFT CONTROLLER
28F6 2906 2906 2906 2906 GAINIO I1 MAIN DIAM. CNTL. I GAIN
28F7 2907 2907 2907 2907 CNTLIO 11 CONTROL BYTE
28FA 290A 290A 290A 290A PROP1O 12 PROP. MULTIPL.
28FC 290C 290C 290C 290C INTIO 12 INT. MULTIPL.

28FE 290E 290E 290E 290E DIFF1O 12 DIFF. MULTIPL.
2900 2910 2910 2910 2910 LIM1O 12 LIMIT
28F6 2906 2906 2906 2906 DIA1OP 12 6 MAIN DIAMETER CONTROLLER I
2902 2912 2912 2912 2912 GAIN11 11 AUX. DIAM. CNTL. I GAIN
2903 2913 2913 2913 2913 CNTL11 11 CONTROL BYTE
2906 2916 2916 2916 2916 PROP11 12 PROP. MULTIPL.
2908 2918 2918 2918 2918 INT11 12 INT. MULTIPL.
290A 291A 291A 291A 291A DIFF11 12 DIFF. MULTIPL.
290C 291C 291C 291C 291C LIM11 12 LIMIT

. 2902 2912 2912 2912 2912 DIA11P 12 6 AUXILIARY DIAMETER CONTROLLER I
290E 291E 291E 291E 291E GAIN20 11 MAIN DIAM. CNTL. II GAIN
290F 291F 291F 291F 291F CNTL20 11 CONTROL BYTE
2912 2922 2922 2922 2922 PROP20 12 PROP. MULTIPL.
2914 2924 2924 2924 2924 INT20 12 INT. MULTIPL.
2916 2926 2926 2926 2926 DIFF20 12 DIFF. MULTIPL.
2918 2928 2928 2928 2928 LIM20 12 LIMIT
290E 291E 291E 291E 291E DIA20P 12 6 MAIN DIAMETER CONTROLLER II
291A 292A 292A 292A 292A GAIN21 11 AUX. DIAM. CNTL. II GAIN
2918 2928 2928 2926 2921 CNTL21 11 CONTROL BYTE
291E 292E 292E 292E 292E PROP21 12 PROP. MULTIPL.
2920 2930 2930 2930 2930 INT21 12 INT. MULTIPL.
2922 2932 2932 2932 2932 DIFF21 12 DIFF. MULTIPL.
2924 2934 2934 2934 2934 LIM21 12 LIMIT
291A 292A 292A 292A 292A DIA21P 12 6 AUXILIARY DIAMETER CONTROLLER II
2926 2936 2936 2936 2936 GAIN30 I MAIN DIAM. CNTL. III GAIN

2927 2937 2937 2937 2937 CNTL30 11 CONTROL BYTE
292A 293A 293A 293A 293A PROP30 12 PROP. MULTIPL.
292C 293C 293C 293C 293C INT30 12 INT. MULTIPL.
292E 293E 293E 293E 293E DIFF30 12 DIFF. MULTIPL.

* 2930 2940 2940 2940 2940 LIM30 12 LIMIT
2926 2936 2936 2936 2936 DIA30P 12 6 MAIN DIAMETER CONTROLLER III
2932 2942 2942 2942 2942 GAIN31 11 AUX. DIAM. CNTL. III GAIN
2933 2943 2943 2943 2943 CNTL31 11 CONTROL BYTE
2936 2946 2946 2946 2946 PROP31 12 PROP. MULTIPL.
2938 2948 2948 2948 2948 INT31 12 INT. MULTIPL.
293A 294A 294A 294A 294A DIFF31 12 DIFF. MULTIPL.
293C 294C 294C 294C 294C LIM31 12 LIMIT
2932 2942 2942 2942 2942 DIA31P 12 6 AUXILIARY DIAMETER CONTROLLER III
2985 2991 2991 2991 2991 INTRVL 12 INTERVAL FOR MEASUREMENT DATA OUTPUT
298F 2999 2998 2998 2998 PLOTAD 12 8 ADDRESSES OF CHART RECORDER OUTPUT
299F 29AB 29AB 29AB 29AB DIAMET R MEASURED DATA (REAL): DIAMETER

- 386 -

N

I *Ia

5

Appendix 11: Variable Names

29A3 29AF 29AF 29AF 29AF TEMP1 R TEMPERATURE

29A7 2983 2963 2983 2983 TEMP2 R

29AB 2967 2967 2967 2967 TEMP3 R

29AF 2966 2966 2966 2966 SEEDL R SEED LIFT

" 29B3 29BF 29BF 298F 298F CRUCL R CRUCIBLE LIFT

2967 29C3 29C3 29C3 29C3 SEEDR R SEED ROTATION

2988 29C7 29C7 29C7 29C7 CRUCR R CRUCIBLE ROTATION

29BF 29CB 29CB 29CB 29CB POWERI R OUTPUT POWER (FROM SCR)

29C3 29CF 29CF 29CF 29CF POWER2 R

29C7 2903 29D3 29D3 2903 POWER3 R

29C8 29D7 29D7 29D7 29D7 WEIGHT R WEIGHT

29CF 29DB 29DB 29DB 29DB DWGHT R DIFFERENTIAL WEIGHT

2903 290F 29DF 29DF 29DF SEEDP R SEED POSITION

29D7 29E3 29E3 29E3 29E3 CRUCP R CRUCIBLE POSITION

2908 29E7 29E7 29E7 29E7 BASTMP R BASE TEMPERATURE

290F 29EB 29EB 29EB 29EB GASPR R GAS PRESSURE

29E3 29EF 29EF 29EF 29EF PWRINI R POWER INPUT (TO SCR)

29E7 29F3 29F3 29F3 29F3 PWR!N2 R

29EB 29F7 29F7 29F7 29F7 PWRIN3 R

29EF 29FB 29FB 29FB 29FB LENGTH R LENGTH GROWN

29F3 29FF 29FF 29FF 29FF ADJDW R ADJUSTED DIFF. WEIGHT

299F 29AB 29AB 29AB 29AB REALDT R 22 MEASURED DATA ARRAY (REAL)

29FD 2A09 2A09 2A09 2A09 RAMPNG I1 NUMBER OF VARIABLES RAMPING

2B9E 2BAA 2BAA 2BAA 2BAA STDIAM 12 CURRENT SETPOINT DIAMETER

2BA0 2BAC 2BAC 23AC 2BAC STTMP1 12 TEMPERATURE

2BA2 2BAE 2BAE 2BAE 2BAE STTMP2 12

2BA4 2BBO 2660 2660 2BBO STTMP3 12

28A6 2BB2 2962 2BB2 2662 SETSL 12 SEED LIFT

2BA8 2664 2BB4 2664 2664 SETCL 12 CRUCIBLE LIFT

2BAA 2BB6 2666 2666 2666 SETSR 12 SEED ROTATION

2BAC 2668 2968 2688 2668 SETCR 12 CRUCIBLE ROTATION

2BAE 288A 2BBA 288A 2BBA STPWRL 12 POWER LIMIT

2B9E 2BAA 2BAA 2BAA 2BAA SETPTO 12 9 CURRENT SETPOINT ARRAY (INTEGER)

2601 26DD 29DD 26DD 2BDD TIGAIN 11 TEMP. CNTL. I GAIN

2BD2 28DE 2BDE 29DE 2BDE T1CNTL I1 CONTROL BYTE

2BD5 2BE1 2BE1 2BE1 2BE1 TIPROP 12 PROP. MULTIPL.

- 2B07 2BE3 28E3 2BE3 2BE3 TlINT 12 INT. MULTIPL.

2BD9 2BE5 28E5 2BE5 2BE5 TIDIFF 12 DIFF. MULTIPL.

4 26DB 2BE7 2BE7 29E7 2BE7 TILIM 12 LIMIT

2B01 26DD 290O 26DD 2900 TEMPIP 12 6 TEMPERATURE CONTROLLER I

2DD 2BE9 2BE9 2BE9 2BE9 T2GAIN 11 TEMP. CNTL. II GAIN

28DE 2BEA 2BEA 2BEA 28EA T2CNTL I1 CONTROL BYTE

2BE1 2BED 2BED 26ED 29ED T2PROP 12 PROP. MULTIPL.

2BE3 2BEF 2BEF 2BEF 2BEF T2INT 12 INT. MULTIPL.

2BE5 28F1 2BF1 2BF1 2BF1 T2DIFF 12 DIFF. MULTIPL.

2BE7 28F3 2BF3 2BF3 2BF3 T2LIM 12 LIMIT

26DD 2BE9 2BE9 2BE9 2BE9 TEMP2P 12 6 TEMPERATURE CONTROLLER II

2BE9 2BF5 2BF5 2BF5 28F5 T3GAIN 11 TEMP. CNTL. III GAIN

2BEA 2BF6 2BF6 2BF6 2BF6 T3CNTL 11 CONTROL BYTE

. 2BED 2BF9 2BF9 29F9 2BF9
T
3PROP 12 PROP. MULTIPL.

- 387 -

N %.

%.

9

S. VVi"* .N S

Appendix 11: Variable Names

2BEF 28FB 2BFB 28FB 28FB T31NT 12 INT. MULTIPL.

2BF1 2BFD 2BFD 28FD 2BFD T3DIFF 12 01FF. MULTIPL.

2BF3 29FF 29FF 2BFF 29FF T2LIM 12 LIMIT

2BE9 2BF5 2BF5 2SF5 2BF5 1EMP3P 12 6 TEMPERATURE CONTROLLER III

2BF5 2CO1 2CO1 2CO1 2C01 TEST 11 TEST MODE FLAG

2C00 2COC 2COC 2COC 2COC SLGAIN 11 SEED LIFT CNTL.: GAIN

2C01 2COD 2COD 2COD 2COD SLCNTL 11 CNTL

2C04 2C10 2C10 2C10 2C10 SLPROP 12 PROP. MULTIPLIER

2C06 2C12 2C12 2C12 2C12 SLINT 12 INT. MULTIPL.

2C08 2C14 2C14 2C14 2C14 SLDIFF 12 DIFF. MULTIPL.

2COA 2C16 2C16 2C16 2C16 SLLIM 12 LIMIT

2C00 2COC 2COC 2COC 2COC SEEDLP 12 6 SEED LIFT CONTROLLER

2COC 2C18 2C18 2C18 2C18 CLGAIN 11 CRUC LIFT CNTL.: GAIN

2COD 2C19 2C19 2C19 2C19 CLCNTL 11 CNTL

2C10 2C1C 2C1C 2C1C 2C1C CLPROP 12 PROP. MULTIPLIER

2C12 2C1E 2C1E 2C1E 2C1E CLINT 12 INT. MULTIPL.

2C14 2C20 2C20 2C20 2C20 CLDIFF 12 DIFF. MULTIPL.

2C16 2C22 2C22 2C22 2C22 CLLIM 12 LIMIT

2COC 2C18 2C18 2C18 2C18 CRUCLP 12 6 CRUC LIFT CONTROLLER

2C18 2C24 2C24 2C24 2C24 SRGAIN 11 SEED ROT CNTL.: GAIN

2C19 2C25 2C25 2C25 2C25 SRCNTL I1 CNTL

2C1C 2C28 2C28 2C28 2C28 SRPROP 12 PROP. MULTIPLIER

2C1E 2C2A 2C2A 2C2A 2C2A SRINT 12 INT. MULTIPL.

, 2C20 2C2C 2C2C 2C2C 2C2C SRDIFF 12 DIFF. MULTIPL.

2C22 2C2E 2C2E 2C2E 2C2E SRLIM 12 LIMIT

2C18 2C24 2C24 2C24 2C24 SEEDRP 12 6 SEED ROT CONTROLLER

2C24 2C30 2C30 2C30 2C30 CRGAIN 11 CRUC ROT CNTL.: GAIN

2C25 2C31 2C31 2C31 2C31 CRCNTL I1 CNTL

-. 2C28 2C34 2C34 2C34 2C34 CRPROP 12 PROP. MULTIPLIER

- 2C2A 2C36 2C36 2C36 2C36 CRINT 12 INT. MULTIPL.

2C2C 2C38 2C38 2C38 2C38 CRDIFF 12 DIFF. MULTIPL.

2C2E 2C3A 2C3A 2C3A 2C3A CRLIM 12 LIMIT

2C24 2C30 2C30 2C30 2C30 CRUCRP 12 6 CRUC ROT CONTROLLER

2C30 2C3C 2C3C 2C3C 2C3C DUMPIN 11 INTERVAL FOR DATA DUMPS

if. 2C31 2C3D 2C3D 2C3D 2C3D DUMPFL 11 DUMP FLAG

* - -. 2C3E 2C3E 2C3E XTLSHP R CRYSTAL SHAPE PARAMETER

' 2C42 SLTHET 12 THETA VALUES: SEED LIFT

.... 2C44 CLTHET 12 CRUCIBLE LIFT

" 2C46 SRTHET 12 SEED ROTATION

... 2C48 CRTHET 12 CRUCIBLE ROTATION

3152 3152 3120 3120 3120 CMMDEX T TD FOR CMMDEX

317A 317A 3148 3148 3148 MEASDO T TO FOR MEASDO

31A2 31A2 3170 3170 3170 CMFINP T TO FOR CMFINP

31CA 31CA 3198 3198 3198 CMFOUT T TD FOR CMFOUT

31F2 31F2 DISKO0 T TO FOR DISKOO

3206 3206 DISKO1 T TO FOR DISKO

. .. -... 31C0 31C0 31C0 DSKOUT T TD FOR DSKOUT

322E 322E 31E8 31E8 31E8 DIACNT T TO FOR DIACNT
3256 3256 3210 3210 3210 ANACNT T TO FOR ANACNT

3387 3387 3341 3341 3341 ALARMF 11 ALARM TIMER INTERRUPT FLAG

-388-

Appendix 11: Variable Names

3388 3388 3342 3342 3342 TIME 12 SYSTEM TIME (INTEGER)

338A 338A 3344 3344 3344 DIFFTM 12 DIFFERENTIAL TIME FOR MACRO EXECUTION

33A4 33A4 335E 335E 335E DTINTV 11 DATA FILE UPDATING INTERVAL
33A6 33A6 3360 3360 3360 TIMSET 12 SETPOINT FOR ALARM TIMER (MACRO EXE.)

* 3443 3443 33FD 33FD 33FD IOFLAG 11 4 1/0 FLAG ARRAY

34FD 3581 3538 3538 3538 ITEMPI 12 MEASURED DATA (INTEGER): TEMPERATURE

34FF 3583 353D 353D 3530 ITEMP2 12

3501 3585 353F 353F 353F ITEMP3 12

3503 3587 3541 3541 3541 ISEEDL 12 SEED LIFT SPEED

3505 3589 3543 3543 3543 ICRUCL 12 CRUCIBLE LIFT SPEED

3507 3588 3545 3545 3545 ISEEDR 12 SEED ROTATION

3509 358D 3547 3547 3547 ICRUCR 12 CRUCIBLE ROTATION

3508 358F 3549 3549 3549 IPOUT1 12 POWER OUTPUT (FROM SCR)

350D 3591 3548 3548 3548 IPOUT2 12

350F 3593 354D 3540 3540 IPOUT3 12

3511 3595 354F 354F 354F IWEIGH 12 WEIGHT

3513 3597 3551 3551 3551 IDWGHT 12 DIFF. WEIGHT

3515 3599 3553 3553 3553 ISEEDP 12 SEED POSITION
3517 3598 3555 3555 3555 ICRUCP 12 CRUCIBLE POSITION

3519 359D 3557 3557 3557 IBASET 12 BASE TEMPERATURE

3518 359F 3559 3559 3559 IGASPR 12 GAS PRESSURE

351D 35A1 3558 3558 3558 CONTAC 12 CONTACT
351F 35A3 3550 3550 355D ANALOG 12 8 EIGHT SPARE ANALOG CHANNELS (INTEGER)

34FD 3581 3538 3538 3538 ANADAT 12 25 COMPLETE ARRAY OF ANALOG DATA (INT.)

352F 3583 3560 3560 3560 IDIAMT 12 CRYSTAL DIAMETER (INTEGER)
3531 3585 356F 356F 356F ILENGT 12 LENGTH GROWN (INTEGER)

3533 3587 3571 3571 3571 SCADIA R SCALING FACTORS: DIAMETER

3537 3588 3575 3575 3575 SCATMP R 3 TEMPERATURES

3543 35C7 3581 3581 3581 SCAMOT R 4 MOTORS

3553 3507 3591 3591 3591 SCAPWO R 3 POWER OUTPUT

355F 35E3 359D 3590 3590 SCAWGT R WEIGHT

3563 35E7 35A1 35A1 35A1 SCADWT R DIFFERENTIAL WEIGHT

3567 35EB 35A5 35A5 35A5 SCAPOS R 2 POSITION

356F 35F3 35AD 35AD 35AD SCABST R BASE TEMPERATURE
3573 35F7 3581 35B1 35B1 SCAGAS R GAS PRESSURE

3577 35FB 35B5 3585 3585 SCAPWR R POWER INPUT AND LIMIT

5 3533 3587 3571 3571 3571 SCALE R 18 ARRAY OF SCALING FACTORS

3578 35FF 3589 3589 3589 CDIASQ R SQUARE OF CRUCIBLE DIAMETER
357F 3603 3580 3580D 3580 SDIASO R SQUARE OF SEED DIAMETER

* 3583 3607 35Cl 35C1 35C1 OXWGHT R BORIC OXIDE WEIGHT

3587 3608 35C5 35C5 35C5 RHOXTL R DENSITY: CRYSTAL

3588 360F 35C9 35C9 35C9 RHOMLT R MELT

- 358F 3613 35CD 35CD 35CD RHOOXI R OXIDE

3593 3617 3501 35D1 3501 SCRUCP 12 SETPOINT FOR CRUC. POSITION (INTEGER)

3595 3619 3503 3503 3503 ZEROWT 12 WEIGHT ZEROING VALUE

3597 3618 35D5 3505 3505 GROWTH R ACTUAL GROWTH RATE

3598 RHEIGH R MELT HEIGHT IN CRUCIBLE (REAL)

359F INICRP R INITIAL CRUCIBLE POSITION (AT RESET)

35A3 INIWGT R INITIAL CRYSTAL WEIGHT (AT RESET)C35A7- - - RCRSET R SETPOINT FOR CRUC. POSITION (REAL)

- 389 -

S 55 -I

I

Appendix 11: Variable Names

35AB ADJLEN R LENGTH ADJUSTMENT (REAL)

35AF DIATAB R 64 TABLE OF CRYSTAL DIAMETERS

3681 DIASTA 11 DIAMETER CONTROLLER STATUS

3686 --- HEIGHT 12 MELT HEIGHT (SCALED AS LENGTH)

3688 RHOOXA R ADJUSTED OXIDE DENSITY

36BC .. . -- -- DIA1SQ R SQUARE OF DIAMETER AT OXIDE SURFACE

36C0 DIA2SQ R SQUARE OF DIAMETER AT MELT SURFACE

36C6 POINTS 12 NUMBER OF DATA POINTS IN SUMMATION

36C8 DIA1SM R SUM OF DIAMETER SO. AT OXIDE SURFACE

36CC DIA2SM R SUM OF DIAMETER SQ. AT MELT SURFACE

3604 STEP R STEP FOR MELT HEIGHT EVALUATION

-.... GROWTH R ACTUAL GROWTH RATE

36D8 RSEEDL R SEED LIFT SPEED (FLOATING-POINT)

36DC RCRUCL R CRUCIBLE LIFT SPEED (FLOATING-POINT)

.... 361F 35D9 3509 3509 ALPHA R CORRECTION FACTOR FOR GROWTH RATE

... 350D 350D 35DD DIATAB R 64 DIAMETER SQUARES TABLE

r.,.." 3623 36DD 360D 360D IHEIGH 12 MELT HEIGHT (SCALED AS LENGTH)

.... 3625 36DF 360F 360F OLDLEN 12 LENGTH AT LAST SLICE BOUNDARY

...." 3627 36E1 36E1 36E1 DIFFLG 12 HEIGHT OF CURRENT SLICE

-- - ----.... 36E5 36E5 RDWGHT R (ADJUSTED) DIFFERENTIAL WEIGHT

.-.- 362F 36E9 36E9 36E9 RHOOXA R ADJUSTED OXIDE DENSITY

---- 3633 36ED 36ED 36ED DIAISQ R SQUARE OF DIAMETER AT OXIDE SURFACE

- - - 3637 36F1 36F1 36F1 DIA2SQ R SQUARE OF DIAMETER AT MELT SURFACE

.... 3638 36F5 36F5 36F5 HEIGHT R BORIC OXIDE HEIGHT IN CRUCIBLE (REAL)
S.. . ---- 36F9 36F9 36F9 RCRSET R CRUCIBLE POSITION SETPOINT (REAL)

..-. 363F 36FD 36FD 36FD VOLSUM R SUM OF VOLUMES IN CURRENT SLICE
- - 3643 3701 3701 3701 OXIVOL R VOLUME OF BORIC OXIDE MELT

... 3705 3705 3705 CORRVL R OXIDE VOLUME CORRECTION

.... 3709 3709 3709 BETA R CORRECTION FACTOR

---- 3647 370D 370D 3700 RDLIFT R SEED - CRUCIBLE LIFT SPEEDS

-. 3649 3711 3711 3711 RLNGTH R UNSCALED LENGTH
..." 364F 3715 3715 3715 PRLNGT R UNSCALED LENGTH DURING PREVIOUS PASS

"".. 3657 371D 371D 3719 INICRP R CRUCIBLE POSITION AT RESET

.... 3658 RCRSET R CRUCIBLE POSITION SETPOINT (REAL)

.... 365F 3721 3721 371D ADJLEN R LENGTH ADJUSTMENT PARAMETER

.... 3663 DIATAB R 64 DIAMETER SQUARES TABLE

.... 3765 3727 3727 3723 DIASTA I1 DIAMETER CONTROLLER STATUS

.... 3766 3728 3728 3724 LOOPCT 11 LOOP COUNTER LOCATION

.... 3729 3729 3725 OXOVFL 1i OXIDE HEIGHT OVERFLOW FLAG

.... 3726 SHELP R SHAPE AUXILIARY LOCATIONS

.... 372A SHELPI R

.... 372E SHELP2 R

4164 41EB 4133 4179 4183 MTEMP1 12 ANALOG MEASUREMENT DATA: TEMPERATURE I

4166 41ED 4135 4179 4185 MTEMP2 12 TEMPERATURE II

4168 41EF 4137 417D 4187 MTEMP3 12 TEMPERATURE III

416A 41F1 4139 417F 4189 MSEEDL 12 SEED LIFT

416C 41F3 4139 4181 418B MCRUCL 12 CRUCIBLE LIFT

416E 41F5 4130 4183 4180 MSEEDR 12 SEED ROTATION

* 4170 41F7 413F 4185 418F MCRUCR 12 CRUCIBLE ROTATION

4172 41F9 4141 4187 4191 MPOUT1 12 POWER OUTPUT (FROM SCR)

-390 -

IU

LA,2 ** ~

qi-

Appendix 11: Variable Names

4174 41FB 4143 4189 4193 MPOUT2 12
4176 41FD 4145 4188 4195 MPOUT3 12
4178 41FF 4147 418D 4197 MWEIGH 12 WEIGHT
417A 4201 4149 418F 4199 MDWGHT 12 DIFFERENTIAL WEIGHT
417C 4203 414B 4191 4198 MSEEDP 12 SEED POSITION
417E 4205 414D 4193 419D MCRUCP 12 CRUCIBLE POSITION
4180 4207 414F 4195 419F MBASET 12 BASE TEMPERATURE
4182 4209 4151 4197 41A1 MGASPR 12 GAS PRESSURE
4184 4208 4153 4199 41A3 MCONTC 12 CONTACT DEVICE
4162 41E9 4131 4177 4181 MANALG 12 25 ANALOG DATA INPUT ARRAY

_.+ .,*

5..

-5.

5% j

5. - 391.

5".. .

t

5.5,

Appendix 12: CGCS File Formats

Appendix 12: CGCS File Formats

Appendix 12.1: Variable Name File CZONAM.Vmn

The file name extension of the Variable Name file has to hold
the major and minor version codes of the CGCS system release
to which the file refers. (CZONAM.V24 is, for example, the
Variable Name file for CGCS Version 2.4.) The file is built
of records of 128 bytes, each of which holds 14 entries of 9

- . bytes each; each record is terminated by a Carriage-Return -
Line Feed pair.

Each entry contains:

Bytes 1 - 6: Variable name (1 - 6 uppercase characters,
left justified, right filled with spaces.

Byte 7: Variable type and array size, encoded as
(type number + (array size - 1) * 4),
where "array size" is the number of array
elements (1 to 64). The following "type"
values are defined:

type = 0 ... iRMX-80 control structure
type = 1 ... one-byte integer (INTEGER*l)
type = 2 ... two-byte integer (INTEGER*2)
type = 3 ... floating-point number (REAL)

Bytes 8 - 9: (Start) address of the specified variable.

Appendix 12.2: Variable Name Source File

The source file which holds the Variable names and which is
eventually converted to a CZONAM file with the utility program
CONVAD does not recire very strict formatting but must follow
the subsequent rules:

(1) Each entry must be held in a separate line in the follow-
ing order:

(a) Address (in hexadecimal notation, with or without
trailing "H").

(b) Variable name (in capitals), 1 to 6 characters.

(c) Variable type number (0 through 3; see Appendix 12.1).

3..'9

O:

Appendix 12: CGCS File Formats

(d) Number of array elements (optional); a missing number
is interpreted as "11".

(e) Comment (optional); the comment field should not con-
- tain digits lest they could be interpreted as an array

size.

(2) Items within a line must be separated from one another by
one or more blanks (spaces, TAB characters, etc.).

Appendix 12.3: Macro Command Files

- .-. Macro files (and therefore also the Command Output files) are
built of records of 16 bytes each. They consist of one header
record and an arbitrary number (including zero) of data rec-
ords.

Header Record:

. .~Bytes 1 -2: Zero.

%Byte 3: Minor CGCS Version code.
Byte 4: Major CGCS Version code.

.~.Bytes 5 -16: Reserved.

Data Records:

Bytes 1 - 2: Relative time of command as unsigned two-
byte integer seconds count (0 - 65535).

*Byte 3: Command code byte.
Bytes 4 - 16: Depend on command code; see below.

a-Command Codes:

11H Set Diameter
12H Set Heater Temperature #1
13H Set Heater Temperature #2
14H Set Heater Temperature #3
15H Set Seed Lift speed
16H Set Crucible Lift speed
17H Set Seed Rotation speed
18H Set Crucible Rotation speed
19H Set Power Limit

21H Modify Diameter
22H Modify Heater Temperature #1

4,23H Modify Heater Temperature #2

* - 393 -

*~ %?

Appendix 12: CGCS File Formats

24H Modify Heater Temperature #3
25H Modify Seed Lift speed
26H Modify Crucible Lift speed
27H Modify Seed Rotation speed
28H Modify Crucible Rotation speed
29H Modify Power Limit

Bytes 4 - 5: New setpoint or setpoint change
(INTEGER*2).

Bytes 6 - 9: Transition time in seconds (REAL).
Bytes 10 - 16: Reserved.

30H Macro Command

, Bytes 4 - 9: Macro Command name (left justified,
right filled with spaces).

.J Bytes 10 - 16: Reserved.

31H Clear Conditional Macros Unconditionally

Bytes 4 - 16: Reserved.

40H Mode = Monitoring
41H Mode = Manual
42H Mode = Diameter
43H Mode = Diameter/ASC
44H Mode = Automatic

Bytes 4 - 16: Reserved.

70H Reset

Bytes 4 - 5: New weight (INTEGER*2).
Bytes 6 - 7: New length (INTEGER*2).

* Bytes 8 - 16: Reserved.

7FH End of Command Record

Bytes 4 - 16: Reserved.

O.3
') -'- 394 -

e,

"V

Appendix 12: CGCS File Formats

90H Set Variable
AOH Change Variable

Byte 4: Variable type:
2 ... INTEGER*1
4 ... INTEGER*2
6 ... REAL

Bytes 5 - 6: Variable address (INTEGER*2).
Bytes 7 - 10: New setpoint or change value (REAL).
Bytes 11 - 14: Transition time in seconds (REAL).
Bytes 15 - 16: Reserved.

BOH Conditional Command

* Byte 4: Variable type + 16 * Relation code #2
+ 64 * Relation code #1, with:
Variable type:

2 ... INTEGER*1
4 ... INTEGER*2

6 ... REAL
Relation code:

""' 1 to ..

2 ...
3 ... t>It

Bytes 5 - 6: Variable address (INTEGER*2).
Bytes 7 - 10: Comparison value (REAL).
Bytes 11 - 16: Macro Command name.

BIH Clear Conditional Commands Selectively

Byte 4: Reserved.
Bytes 5 - 6: Variable address (INTEGER*2).
Bytes 7 - 16: Reserved.

EOH Assign Plot Channel

Byte 4: Plot channel number (1 - 8)
Bytes 5 - 6: Variable address (INTEGER*2).
Bytes 7 - 16: Reserved.

F2H Debug Continuously
F3H Debug Modify
F4H Debug Resume
F5H Debug Suspend

39
- 395 -

"Appendix 12: CGCS File Formats

Byte 4: Variable type + 16 * Output location,
with:
Variable type:

1 ... ASCII (1 character)
2 ... INTEGER*I
3 ... one-byte hexadecimal
4 ... INTEGER*2
5 ... two-byte hexadecimal

.1 ,1 6 ... REAL
• 7 ... four-byte hexadecimal

Output location: 1 - 4
Bytes 5 - 6: Variable address (INTEGER*2).
Bytes 7 - 10: New value.
Bytes 11 - 16: Reserved.

(Most Debug commands need only part of the informa-
tion in bytes 4 - 10)

S."

The contents of a command message are identical to those of
* the corresponding command record bytes 3 through 16.

Appendix 12.4: Data Files

A Data file is made up of records of 128 bytes each. It con-
sists of one Header record and an arbitrary number of Data and
Comment records. With the exception of the first two bytes,
Data records are built of two-byte words, i.e., 64 words per
record. All data are in INTEGER*2 format unless noted other-
wise.

Header Record:

Bytes 1 - 8: Date (8 ASCII characters).
Bytes 9 - 28: Run Identification (20 ASCII characters).
Bytes 29 - 30: Record interval (two hexadecimal digits).

* Byte 31: Major CGCS system version code.
Byte 32: Minor CGCS system version code.
Bytes 33 - 128: Contents of bytes 1 - 32 repeated three

times.

Data Record:

Byte 1: Always 0.
Byte 2: Operation Mode (INTEGER*1).

Word 2: System time.

Word 3: Length grown.

- 396-

SW,

Appendix 12: CGCS File Formats

Word 4: Temperature #1. (Measured Data)
Word 5: Temperature #2.
Word 6: Temperature #3.

*Word 7: Seed Lift.
Word 8: Crucible Lift.
Word 9: Seed Rotation.
Word 10: Crucible Rotation.

Word 11: Power Output 41.
Word 12: Power Output #2.
Word 13: Power Output #3.

Word 14: Weight.
Word 15: Differential Weight.
Word 16: Seed Position.
Word 17: Crucible Position.

Word 18: Base Temperature.
Word 19: Gas Pressure.
Word 20: Contact Device. (Measured Data)

Words 21 -28: Eight Spare Analog Input Channels.

Word 29: Power Input #1. (Control Output)
Word 30: Power Input #2.1
Word 31: Power Input #3. (Control Output)

Word 32: Diameter. (Current Setpoints)

Word 33: Temperature #1.
Word 34: Temperature #2.

Word 35: Temperature #3.

Word 36: Seed Lift.
Word 37: Crucible Lift.
Word 38: Seed Rotation.
Word 39: Crucible Rotation.

Word 40: Power Limit. (Current Setpoints)

Word 41: Diameter. (Final Setpoints)

Word 42: Temperature #1.
Word 43: Temperature #2.
Word 44: Temperature 43.

5Word 45: Seed Lift.

Word 46: Crucible Lift.
Word 47: Seed Rotation.

-397 -

Appendix 12: CGCS File Formats

. Word 48: Crucible Rotation. I

Word 49: Power Limit. (Final Setpoints)

Word 50: Debug Continuously Address #1.
Wozds 51 - 52: Debug Continuously Data #1 (4 bytes).
Word 53: Debug Continuously Address #2.
Words 54 - 55: Debug Continuously Data #2 (4 bytes).
Word 56: Debug Continuously Address #3.
Words 57 - 58: Debug Continuously Data #3 (4 bytes).
Word 59: Debug Continuously Address #4.
Words 60 - 61: Debug Continuously Data #4 (4 bytes).

Word 62: Diameter (Calculated Value).

Word 63: Spare.

Word 64: Debug Continuously Type Flags (compare
Appendix 12.3, Debug Variable types:)

0 •TYPE(l) + 16*TYPE(2) + 256*TYPE(3) +
4096*TYPE (4)

Comment Records:

Byte 1: Always -1.
Bytes 2 - 6: as in Data Records.
Bytes 7 - 128: Comment input (122 ASCII characters; only

the first 79 are displayed by SHODAT).

L[, - 398 -

0.%

"t-p

Sk:

b 7 W ~ '~P ~ r vs. F -. : r r r WT - ~ -.'W W W r'r rJ W 4 pr.- -- . -

Appendix 13: Czochralski Growth Control System Messages

Appendix 13: Czochralski Growth Control System Messages

I! In addition to immediate responses to operator commands, the
CGCS may issue messages to the console and to a Documentation
output (if activated) which need not obviously be triggered by
operator entries. For reasons of brevity, only the messages
which are not generated by the Command Interpreter are listed

P4 below in alphabetical order. (The Command Interpreter respon-
ses are self-explanatory and always immediately related to an
operator entry.) In general, messages beginning with **"

have informational character only, whereas "#####" may indi-
cate a genuine error condition. The latter messages are, in
general, accompanied by a "beep". (Exceptions to this rule
are the Disk, Input, Output, Printer, and System error messa-
ges which are tagged with asterisks. They are generated by
the FORTRAN-iRMX-80 Interface Routines (compare chapters
5.2.1.6, 5.2.2.2, 5.2.2.3, and 5.2.3.10) and are displayed on
the console only.)

***All Conditional Macros cleared **

An Unconditional CLEAR command (i.e., a CLEAR command
without any parameter) was entered from the console or
from a Macro Command file.

***Automatic RESET executed - automatic Mode changes will
follow **

The operation mode was changed into a Diameter control-
led mode while the Diameter Evaluation routines were not
yet initialized with a RESET command. The system takes
care of this situation on its own in a somewhat compli-
cated procedure.

~ #Can't calculate diameter with zero seed lift speed

The actual seed lift speed was still zero when RESET was
commanded, or it is set to zero while the Diameter Eval-
uation routines are active.

z=;i# Can't control system

The operator or a Macro Command attempted to SET or
CHANGE a parameter or Variable while in Monitoring
mode. The command is executed, though, but it may

-399-

F e

Appendix 13: Czochralski Growth Control System Messages

become ineffective in the case of a change to any con-
trolled mode.

4#### Can't ramp parameter

The maximum number of parameters or Variables (20) were
already being ramped when a SET or CHANGE coutnand with
non-zero transition time was issued. The change is
effected immediately, without ramping.

#4### Command Macro call ignored

A specified Macro was not found, or a disk error occur-
red while the Macro file header was read.

***** Command Macro preempted *

A Macro Command was activated, either from a pending
Conditional command, or through an unconditional Macro
Command, while another Macro was active.

***** Conditional Macro cleared *****

A Selective CLEAR command has removed one ConditionalMacro from the Conditional Command queue. This message

is repeated for each Conditional Command cancelled with
a Selective CLEAR; it may therefore appear multiplely.

Conditional Macro Command ignored

C.5 A Conditional Macro Command was encountered while al-
ready the maximum number of Macro Commands (8) were
pending.

***** Conditional Macro started *

The condition specified with a Conditional Macro command
was found to be met; the Conditional Macro Command is

*° activated.

40.- 400 -

I? d
C.

*4

- Appendix 13: Czochralski Growth Control System Messages

-. 4# Continued speed overflow - RESET required

The system cannot automatically recover from a serious
problem.

[""44 Crystal shape adjusted

U The calculated diameter value changed faster than per-
mitted. The diameter value stored in memory for the
diameter and crucible position evaluation is corrected
to differ exactly by the permitted maximum from the
value stored before. Crystal shape adjustments may
cause minor transients in the calculated diameter and/or
crucible position setpoint.

•**** DISK ERROR xxx yy (TASK tsknam, LOC hexl) *

Disk error message provided by the FORTRAN-iRMX-80
Interface routines (compare chapter 5.2.3.10 and Appen-
dix 4).

•**** End of Macro command file *

The end of a Macro file was reached, or a disk error

prohibited its further execution.

***** Executing Macro MACNAM *

I The Command file with the name MACNAM was started either
" from an unconditional Macro Command, or from a Condi-

tional Macro Command whose condition was met.

=44## Illegal command file format

A Macro Command file has an improper format and cannot
be processed.

-~i " ._ ***** INPUT ERROR *****6

Error message generated by the FORTRAN-iRMX-80 Interface
routines, most likely due to illegal data entry on the
console (compare chapter 5.2.2.2). This message should
hardly appear, though.

- 401 -

.I.

*- .

r Vu rr r J .Wwu WW W . w- w. w - V WV - : . - v u Wr W .. X

Appendix 13: Czochralski Growth Control System Messages

?"" ##### Macro command not executable

A command referring to a Variable or absolute memory
location was encountered in a Macro Command file gener-
ated for a different CGCS version. The command is

,- ignored.

Macro MACNAM doesn't exist

The Macro Command with the name MACNAM was supposed to
be executed either from an unconditional or from a
Conditional Macro Command but the file MACNAM.CMD was
not found on drive 0. The command is ignored.

Meltback detected

The crystal's length was reduced by more than approxima-
tely 1.2 mm since an earlier pass of the Diameter Evalu-

* ation routines. The Diameter Evaluation routines con-
tinue operating normally.

Mode automatically set to Manual

A zero seed lift speed or a speed overflow error was
detected by the Diameter Evaluation routines.

***** New Mode: MODE NAME

The CGCS operation mode was set to the mode indicated,
either from the operator console, from a Macro Command,
or, automatically, in case of a diameter evaluation
error.

0 ### Non-matching Command Macro system version - restricted
,command set

A Macro Command file generated under or for a different
CGCS version was invoked. All commands referring to
Variables or absolute hexadecimal addresses will be
skipped.

- 402 -

Appendix 13: Czochralski Growth Control System Messages

***** OUTPUT ERROR *****

Error message generated by the FORTRAN-iRMX-80 Interface
routines (compare chapter 5.2.2.3). This message should
never be encountered!

##4# Overflow - result limited to permitted maximum

*As a result of a SET or CHANGE command, a parameter or
Variable would have been set to a value exceeding the
permitted range for the particular location.

Oxide height overflow - Diameter may be incorrect
The height of the boric oxide melt exceeded the permit-

ted maximum of ca. 75 mm. The maximum melt height is
used for diameter and crucible position setpoint evalua-
tion. These data may therefore be incorrect.

4 ### Parameter can't be negative

A SET or CHANGE command attempted to set a diameter,

temperature, or power limit setpoint to a negative
value. The setpoint is set to zero instead.

• * **** PRINTER NOT READY *****

*Error message generated by the FORTRAN-iRMX-80 Interface
routines (compare chapter 5.2.2.3). The printer was in
off-line mode while the system attempted to transfer
data to it.

44444 PROGRAM CODE DAMAGED AT xxxxH #####I

At least one byte within the memory page (= 256 bytes)
starting at the address specified in the message was
changed since the last pass of the code checking rou-
tine, approximately 30 seconds ago. This message should
never appear! Preserve all data of the run if it does
happen, and report it immediately.

-403-

[..-" Appendix 13: Czochralski Growth Control System Messages

***** Recorder channel N is negative ****
***** Recorder channel N is posLtive *****

The output to the chart recorder channel N (N is an
" integer between 1 and 8) changed its sign. Initially,

the output data of all channels is supposed to be posi-
- tive.

***** Regular growth resumed *****

A meltback, zero seed lift speed, or speed overflow,'2 condition has been terminated; the Diameter Evaluation

routines can resume correct operation.

4#### Speed overflow

The calculated length of the crystal was increased or
decreased by more than 2 mm during the last 10 seconds.

i This may be due to a very fast seed lift, or to an
abrupt change of the crystal's weight. The system tries
to recover automatically from such a condition.

***** SYSTEM ERROR (TASK tsknam, LOC hexl) *****

This error message is issued by the FORTRAN-iRMX-80
Interface routines (compare chapter 5.2.1.6); it should
never appear. Preserve all data of the run if it does
happen, and report it immediately.

,' *p0

9".-

re.,
[: - 404 -

Appendix 14: Dynamic Behavior of the PID Controller Routine

Appvendix 14: Dynamic Behavior of the PID Controller Routine

Simulations of the PID controller's response were performed
for the most important operation modes in order to compare

V ~ their dynamic response to various shapes of the error signal.
For all simulations shown in the subsequent illustrations, the
following parameters were used:

Proportional Multiplier P = 256
Integral Multiplier I = 64

-~Derivative Multiplier D = 256
, Limit L =25

Integral Scaling Factor IS= 256
Bias B= 0

' ~ The setpoint S was kept at 0, and the Actual signal A was set
to follow the function depicted in Fig. Al.

80- 1'1 1 1

60-

40-

A 20-

-20

.p.- -40 -

-60-

-80F-
* .~0 10 20 30 40 50 60 70 80 90

Fig. Al: "Actual" input signal used for the simulations.

The first part of this simulation, consisting of two series of
S25 passes of FRPIDC with A equal to +10 and -10, respectively,

was chosen to represent a small but persistent error for which
the proportional (plus derivative) components of the output

fC signal are well below a limit value (if one was chosen). Dur-

- 405-

Appendix 14: Dynamic Behavior of the PID Controller Routine

ing the next part of the simulation, A was increased to ±20
units for 5 passes each; for the ensuing error, the limit is
to be incurred essentially due to the proportional and deriva-

""S.-)tive components. The simulation is concluded with two single-
pass pulses of A with a magnitude of ±50 units which were
provided to represent the behavior of the controller for large
transients.

: CNTL =0
60L-

40

20-
...

0 0

"S..

0 10 20 30 40 50 60 70 80 90

Fig. A2: Controller output signal (full line) and error inte-
gral (broken line) for unlimited operation with no
option active.

In Fig. A2, the controller's response is shown for a CNTL
S value of 0, i.e., for no limiting and anti-windup operation.

Note that, according to eq. (1) in chapter 5.3.2.1, the sign
of the controller's output is opposite to the sign of the
input value A. (This approach results in positive controller
parameters for most applications.) During the first part of
the simulation, the response of the controller is essentially

0 determined by the integral component; the proportional and
derivative components are only superimposed. Note that it
takes a long time after the error reversed its sign until the
controller's output signal (full line) changes its sign. The

A. dynamic response is improved during part 2 of the simulation
since the proportional and derivative components dominate

-406 -

Appendix 14: Dynamic Behavior of the PID Controller Routine

there. The concluding single error pulses result in a strong
output signal in the proper direction, followed by the op-

" '-posite overshoot caused by the reaction of the derivative
component to the trailing edge of the pulse. Since the con-
troller is linear and the input signal symmetrical, the error
integral returns to zero after each part of the test.

- CNTL 2

60C-
%,_ - , ._

40F --

0 L4o0.

-60

0 10 20 30 40 50 60 70 80 90

Fig. A3: Controller output signal (full line) and error inte-
gral (broken line) for output signal limiting with
no anti-windup.

This is also true for the second set of control flags tested,
namely, for CNTL equal to 2 (Fig. A3). In this case, the

W .controller's output is limited to ±25, but aside from this
- limiting, the controller is still linear. The major drawback

of simple output limiting can be seen in the first part of the
controller's response curve, where there is no indication in
the output signal that the error went to zero, and eventually

IN changed its sign. (Note that, due to internal programming
*reasons, the output signal is limited to -26 units rather than

-25. This fact is very unlikely to matter in actual applica-
tions, though, considering an output signal range of thecontroller of ±32767 units.) Similarly, the controller goes

into saturation immediately at the beginning of the second
part of the test, and remains there, although the error drops

- 407 -

__ -2 r -- J _. - -.r

Appendix 14: Dynamic Behavior of the PID Controller Routine

back to zero, aside from a short spike caused by the deriva-
tive component. It requires a considerable error with the
opposite sign to obtain an output signal with the expected
direction. Output limiting also strongly affects the response
to large transients: The controller's output bounces back and
forth between its negative and positive limits. Since trans-
ients of this kind are most likely artifacts which better
should not be regarded by the controller at all, output signal
limiting obviously contributes to a suppression of these short
pulses; the positive and negative spikes will cancel their
effects mutually in most applications.

- CNTL= 6
Wo

M - - -

-8 0 , , , , , , !
0 10 20 30 40 50 60 70 80 90

Fig. A4: Controller output signal (full line) and error inte-
gral (b'-oken line) for output signal limiting with

*anti-windup mode A.

In order to improve the dynamic response, particularly, to
long-term error conditions where the integral component pre-
dominates, the anti-windup function mode A was provided in
FRPIDC. Fig. A4 shows the response of the controller with
this feature activated in addition to output signal limiting
(CNTL = 6). Indeed, the transition of A from 10 to 0 units
has a clear influence upon the output signal, and a response
with the expected sign is almost immediately obtained when A
changes from 0 to -10 units. There is also a reasonable

- 408 -

N%

*. Appendix 14: Dynamic Behavior of the PID Controller Routine

response to the larger error pulses in the second part of the
test; in fact, the response is very similar to the one ob-
tained for no output limit, but, for anti-windup mode A, the
output signal is better centered around zero independent from
the preceding history of the controller. However, mode A
fails totally for the large transients of the third part of
the test. While there is only a small effect of a transient
on the steady-state signal after the transient in the opera-
tion modes discussed above, mode A sets the error integral to
a large value whose sign depends on the relative magnitude of
the proportional and the derivative multipliers and the previ-
ous history of the controller; in fact, any output value be-

tween the positive and the negative maximum may ensue after a
larger transient.

In order to counteract this not very desirable behavior, anti-
*windup mode B was developed where the error integral is not

set to a value depending on the proportional and derivative
" components if the output exceeds the limit as it was in mode

A; in contrast, the error integral is clamped to the positive
or negative limit value, depending on the sign of the total
controller output. The response in mode B (CNTL = 14) is
shown in Fig. A5. There is no big difference between modes A
and B for small long-term errors, although mode B reacts more
slowly to changes of the controller's input than mode A does.
The end of the first part of the test sequence, and, even more
pronounced, the end of the second part shows, however, the
main drawback of this mode: The error integral tends to "get
stuck" at either of the controller's limits, and positive
action (i.e., an input signal which eventually will reverse
the error integral's sign) is required to remove it from
there. Furthermore, some anomalies may also happen in mode B
when large error transients are encountered. More or less the
expected result is returned for the first spike: The output
signal (and the error integral) bounces from the positive to
the negative limit, and returns to the positive limit. The
treatment of the second spike is less obvious. There is no
visible response to the leading slope of the spike because the
positive output which would have resulted from it is clipped
off by the limiting operation. During the trailing slope,
however, the derivative component determines the output sig-
nal. Incidentally, an output signal resulted in our simul-
ations which was next to the negative limit but, from the

controller's point of view, not beyond the limit. The inte-
gral component was therefore not modified but remained at its
positive limit. (Had we used a pulse amplitude of 51 rather
than 50 units, we would have obtained a reversal of the inte-
gral component's sign.)

- 409 -

N Appendix 14: Dynamic Behavior of the PID Controller Routine

80 -I ' I , i ,l I ' i , tI , _

CNTL =14
. 6 0 L

- 20I1J. h-"

4- 40_

- 6 0-

• ~~-80, I ,,,^ I I I I I I f I f IL

0 10 20 30 40 50 60 70 80 90
Fig. A5: Controller output signal (full line) and error inte-

gral (broken line) for output signal limiting with
anti-windup mode B.

0 II T

6 CNTL =16

-0E

10 20 30 40 50 60 70 80 90

Fig. A6: Controller output signal (full line) and error inte-
gral (broken line) for integral limiting but no
output signal limiting.

- 410 -

01

Appendix 14: Dynamic Behavior of the PID Controller Routine

The final two simulations (Figs. A6 and A7) were based upona
different approach: Rather than modifying the error integral
when the output signal exceeds a limit, the error integralitself is kept within the bounds of a limit, no matter what
may be used with or without limiting of the final controller
output. (The same limit value must be used, though, in both
cases.) A simulation without output limiting (CNTL = 16) is
shown in Fig. A6, while Fig. A7 shows the effects of output
limiting (CNTL = 18). Again, the behavior of the controller
suffers from the nonlinear response of the error integral

-7.. which does not return to zero when an error condition occurred
although the input signal is symmetric. (It is questionable,
however, how representative the test signals chosen here are
with respect to actual operating conditions.) Indeed, the
response shown in Fig. A7 for integral an output limiting is
very similar to the one obtained with anti-windup mode B in
Fig. A5. The only differences occur for the handling of the
large transients in the third part of the test. In this case,
integral limiting seems to render more consistent and reason-
able results, compared to the anti-windup schemes.

60-

40k-

0

0 10 20 30 40 50 60 70 80 90

Fig. A7: Controller output signal (full line) and error inte-
gral (broken line) for integral and output signal

* limiting.

-411-

Appendix 14: Dynamic Behavior of the PID Controller Routine

Changing the integral scaling factor IS from 256 to 65536 has
no effect on the behavior of the controller except that the
integral reacts by a factor of 256 slower. Setting IS to
65536 and I to 16384 (64*256) resulted in exactly the same
responses as discussed above.

Note that the PID controller routine checks for an output
signal overflow after it calculated (and possibly limited) the
error integral. In general, there is no point to keep inte-
gral limiting and any of the anti-windup schemes active at the
same time because the anti-windup algorithms will override
(and overwrite) the results of the integral limiter, except
for some extremely weird operating conditions where an error
reduces its magnitude at a rate fast enough to have the pro-
portional component of the controller output overcompensated
by the derivative component, without the error changing its
sign. In this case, limiting of the error integral might
occur without the output signal exceeding the limit. For
obvious reasons, this case was not investigated; for all
practical purposes, operation modes 20 through 23 and 28
through 31 are identical to the corresponding modes 4 through
7 and 12 through 15.

141

