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1. Introduction -
A major part of database research over several years has been the design and analysis of algorithms to 5:_\,
maintain consistent data in the face of interleaved accesses, aborts of operations, replication of
information and failures of system components. The most popular and simple protocol is two phase a;‘,
locking with separate read and write locks; other methods include arbitrary conflict-based locking, i\t
timestamp-based techniques, and locking that uses special structure of the data (e.g. a hierarchical f':
arrangement) [Gr,T,KS,Ko,We|. A powerful theory has been developed to prove the correctness of these £
algorithms, based on the idea that a protocol is correct if it ensures that all executions are equivalent to ;
serial executions [EGLT,P,BG]. This theory proves serializability by showing that a precedence graph -::
contains no cycles. ‘::'."
o . 3
Recently, some ideas in database system design and more general distributed system design have led oy
several research groups to study the possibility of giving more structure to the transactions that are the f:
basic unit of atomicity. When a transaction can contain concurrent operations that are to be performed _fs
atomically, or operations which can be aborted independently, we say that the operations form ;::‘
subtransactions of the original transaction. Thus we consider a system where transactions can be nested. _!
This idea was first suggested by Davies under the name spheres of control [D]. A primitive example of _:
this concept is implemented in System R, where a recovery block can be aborted and the transaction :-::_
restarted at the last savepoint. In general distributed systems like Argus [LiS,LHILSW] or Clouds |A], the E_"
| basic services are often provided by Remote Procedure Calls which, at their best ("At Most Once® "~
i semantics), are atomic. Since providing a service will often require using other services, the transactions ':::
; that implement services ought to be nested. r'
The implementation of a nested transaction system requires extending the algorithms that have P ‘
previously been considered for concurrency control, recovery and replication. The work of Reed [R] ::
extended multi-version timestamp concurrency control to provide nested transaction data management. :\,
Moss [Mo| extended two phase locking with separate read and write locks to handle nesting, and this '.'t
algorithm is the basis of data management in the Argus system implemented at MIT. .-
R
This paper is part of a major research effort to offer clean, readable descriptions of algorithms for 3‘
managing data in a nested transaction system, together with rigorous proofs of the correctness of these ::‘_'-'
-

algorithms. Other parts of the project include studying replicated data management algorithms, orphan r

1

elimination algorithms and general atomicity of abstract objects. All this work is based on a simple model

. . . : oo
of concurrent systems using //O automata and an operational style of reasoning about their schedules. 0
The first fruits of this program are detailed in [LM], which proves the correctness of exclusive locking, - -- ——-_...
and provides a basic framework for presenting the ideas of this paper. — —-,."-

Siutritotions




This paper’s contribution is threefold. First, it proves for the first time the correctness of Moss'
algorithm, an algorithm which has been used in practice. Our discussion covers both concurrency control
and recovery from aborts. However, we do not consider all the failure cases that the real system must
deal with, as our model does not yet include crashes that compromise the system state. Second, we
provide technical definitions (for equieffectiveness and tranaparency) that seem to capture exactly those
properties of read operations depended on by the algorithm. Third, this paper provides another example
of the power and value of the basic model of serial correctness first proposed in [LM], and of the

operational style of reasoning with 1/O automata.

In this paper we first review the I/O automaton model of computation. This is very similar to models
like Communicating Sequential Processes [Ho|, in that automata interact by synchrenizing on shared
operations. The main difference from other models is that we distinguish the input and output operations
of each automaton. Any operation shared between components of a system can be an output of at most
one component, and that component is in control of the operation, because no automaton is allowed to
refuse to execute an input. Though automata have states as well as operations, we concentrate our
analysis on the sequence of operations performed (the schedule of the system) - this operational mode of
reasoning is quite different from assertional invariant methods used elsewhere in reasoning about

distributed systems, but we find it very powerful and yet siinple for the set of problems we consider.

Next, we show how to use I/O automata to model the parts of a nested transaction system. Each
transaction is represented by an automaton, as is each data object. The actions of calling a
subtransaction, invoking an access to an object, and returning a result are each split into two operations,
one requesting the action and one delivering the request to the recipient. The request operation is an
output of the caller and an input to the scheduler (which acts as a communication system) while the
delivery operation is an output of the scheduler and an input of the recipient. Thus, each transaction
(and each object) shares operations only with the scheduler. A serial system is the result of composing
transaction and object automata with a serial scheduler, which runs the subtransactions of any
transaction sequentially (with no concurrency between siblings) and only aborts transactions before they
start running. The serial scheduler is very simple to understand and is used as the basis of our correctness

condition.

We then introduce a RAV Locking system to model a system using Moss™ locking algorithm to manage
data. We use a new sort of I/O automaton called a R W Locking object, which is like the ohject
automaton of the serial system. but which maintains lork tables and versions of the ohjert so that it can
respond correctly when aborts occur. Tt also delays operations until it = permitted to respond by the
locking rules. We also use a new sort of scheduler called a generic scheduler. which transmits requests to

the appropriate recipient with arbitrary delay, allowing siblings to run conenrrenthy r to aborc alter
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performing some work. A R/W Locking system is the result of composing the transaction automata,

R/W Locking objects and genrric scheduler

A R/W Locking system allows more concurrency than a serial system, but it is correct in the sense (first
suggested in [LM]) that each transaction that does not have an aborted ancestor is unable to tell whether

it is running in a R/W Locking system or in a serial system. The proof of this correctness condition is

the main result of this paper.

The proof proceeds by taking an arbitrary schedule of a R/W Locking system (a concurrent schedule)
and explicitly showing how to rearrange the operations to get a schedule of the serial system. The
permitted rearrangements (which do not alter the sequence of events at any transaction) are those that

are write-equivalent to the original sequence.

A key contribution of this paper is in identifying exactly the properties of read and write accesses that
are required to guarantee correctness of Moss’ algorithm. Write accesses require no special properties.
However, it is necessary that read accesses leave the object in "essentially® the same state as they found
it. We define equieffective schedules to be those that leave the object in "essentially® the same staie,
where “"essentially® means "as far as later operations can detect®. Then an object schedule with a read

access appended is required to be equieffective to the same schedule without the read access.

There have been several other attempts to provide rigorous proofs of the correctness of algorithms for
data management in nested transaction systems. The first was [Ly], which presented a model that
successfully handled exclusive locking, but which proved difficult to extend to more ~omplicated problems
such as orphan elimination [Go|. The main deficiencies of this earlier model seem to be the lack of
distinction between inputs and outputs, and the lack of explicit representations for transactions and their
interfaces. These deficiencies were remedied in [LM], where the operational model discussed above was
defined; this paper again proved correctness of exclusive locking. This paper continues the work of [LM]
by dealing with an algorithm with separate read and write locks. (T’ = result of this paper imp'ss a main
result of [LM], since when no accesses are distinguished as read accesscs, Moss’ algorithm degenerates into
exclusive locking.) A different program to study concurrency control in nested transaction systems has
been offered in [BBGLS,BBG], where a major motivation is to analyze protocols that operate on data at
different levels of abstraction, but where recovery is not considered. The argument for the correctness of
Moss’ algorithm in [BBG] considers only the locking rules and not the state maintenance methods, so
correctness is proved only in the absence of aborts. Concurrency control and recovery algorithms are also

analyzed in [MGG], but [MGG] is also concerned mainly with levels of abstraction.

This paper uses many concepts from [LM!, but we have repeated everything needed to make it self-

contained, and indicated where definitions or details differ. In Section 2, we review the model of 1,0
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automata of [LT,LM|. In Section 3, we define the automata that make up the serial system, namely the
transaction automata, the basic object automata and the serial scheduler. In Section 4, we specify the
semantic conditions that read accesses must satisfy, using the technical notion of equieffective schedules.
In Section 5 we define the automata of the R/W Locking system, namely the R/W Locking objects (which
have code based directly on the algorithm of [Mo]) and the generic scheduler, and prove the main lemmas
| that relate the schedules of R/W Locking objects to the schedules of the basic objects. Finally in Section
6 we prove that R/W Locking systems are serially correct at transactions no ancestor of which has

| aborted, and in particular at the root transaction which represents the external environment.

2. I/0O Automata

The following is a brief introduction to a model which is described in [LM] and developed at length,

with =xtensions to express infinite behavior, in [LT].

All components in our systems, transactions, objects and schedulers, will be modelled by //O automata.

’

L4
«
-
-
”
”

An I/0 automaton A has a set of states, some of which are designated as initial statcs. It has operations.

each classified as either an input operation or an ouiput operation. Finally, it has a transition relation,

which is a set of triples of the form (s’,7,s), where s’ and s are states, and 7 is an operation. This triple

7’7

means that in state s’, the automaton can atomically do operation 7 and change to state s. An element of

o o

the transition relation is called a step of the automaton. The output operations are intended to mode] the

Sy TPy y

actions that are triggered by the automaton itsell, while the input operations model the actions that are

‘e N
RS

triggered by the environment of the automaton.

Given a state s’ and an operation 7, we say that r is enabled in =° il there is a state s for which {s",7 s} is
a step. We require the following condition.
Input Condition: Each input operation = is enabled in each state s’.

This condition says that an [/O automaton must be prepared to receive any input operation at any time

An execution of A is an finite alternating sequence s_m , s & TS, of states and operations of

(VAR R R |

beginning and ending with a state. Furthermore, s_ is a start state of <, and cach triple (=" 7.} which

0
occurs as a consecutive subsequence is a step of 4. From any execution, we can extract the schedule,
which is the subsequence of the execution consisting of operations only. Because transitions to different
states may have the same operation, different executions may have the same schedule  We sav that 4*
schedule a of A can leave A in state s if there is some execution of 4 with schedule o and final state s
We say that an operation 7 is enabled after a schedule « of = if tiiere vxists a state s such that o can

leave 4 in state s and r is enabled in s. Since the same operation may oceur several times in an execution

or schedule, we refer to a single occurrence of an operation as an event.
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We describe systems as consisting of interacting components, each of which is an I/O automaton. It is
convenient and natural to view systems as 1/0 automata, also Thus. we define a composition operation
for I/O automata, to yield a new I/O automaton. A set of I/O automata may be composed to create a
system S, if the sets of output operations of the various automata are pairwise disjoint. (Thus, every
output operation in § will be triggered by exactly one component.) A state of the composed automaton is
a tuple of states, one for each component, and the start states are tuples consisting of start states of the
components. The operations of the composed automaton are those of the component automata. Thus,
each operation of the composed automaton is an operation of a subset of the set of component automata.
An operation is an output of the composed automaton exactly if it is an output of some component. (The
output operations of a system are intended to be exactly those that are triggered by components of the
system, while the input operations of a system are those that are triggered by the system’s environment.)
During an operation 7 of a composed automaton, each of the components which has operation = carries

out the operation, while the remainder stay in the same state.

An ezecution or schedule of a system is defined to be an execution or schedule of the automaton
composed of the individual automata of the system. If o is a schedule of a system with component A,

then we denote by a|A the subsequence of « containing all the operations of A. Clearly, a|4 is a schedule
of A.

The following lemma from [LM] expresses formally the idea that an operation is under the control of the
component of which it is an output.

Lemma 1: Let a’ be a schedule of a system S, and let a = a’m, where 7 is an output
operation of component A. If a|A is a schedule of A, then a is a schedule of §.

Proof: Since a|A is a schedule of 4, there is an execution A of A with schedule a]4. Let 8’
be the execution of A consisting of all but the last step of 4. Similarly, since a’ is a schedule
of §, there is an execution v of S with schedule a’. It is possible that A has an execution in ~
which is different from 3, since different executions may have the same schedule. But it is
easy to show, by induction on the length of «, that there is another execution 4’ of S in which
component A has execution 3’, and which is otherwise identical to 4. The schedule of ~' is a’.
Since 7 is not an output operation of any other component, = is defined from the state reached
at the end of 4’, so that a = a’ris a schedule of S. O

We say that automaton A preserves a property P of schedules of A if @ = a’rx satisfies P whenever a 1s

a schedule 4, a’ satisfies P and = is an output of 4.

3. Serial Systems

In this paper we define two kinds of systems: "serial systems® and “R/W Locking systems®. Serial
systems describe serial execution of transactions. They are defined for the purpose of giving a correctness
condition for other systems, namely that the schedules of another system should look like schedules of the

serial system to the transactions. As with serial executions of single-level transaction systems, serial
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systems are too inefficient to use in practice. Thus, we will define R/W Locking systems, which allow
transactions to run concurrently or abort after performing some work; these systems use Moss’ algorithm

to maintain locks and enough information to restore the states of objects after aborts occur.

In this section of the paper we define serial systems, which consist of transactions and basic objects
communicating with a serial scheduler. Transactions and basic objects describe user programs and data,
respectively. The serial scheduler controls communication between the other components, and thereby
controls the orders in which the transactions create children or access data. All the system components
are modelled as I/O automata. Most of this section is taken from [LMj, with slight modifications to

accomodate slight changes in definitions.

We represent the pattern of transaction nesting by a system (ype, which is a set of transaction names.
The transaction names are organized into a tree by the mapping "parent()*, with T, as the root. In
referring to this tree, we use traditional terminology, such as child, leaf, least common ancestor (lca),
ancestor and descendant. (A transaction is its own ancestor and descendant.) The leaves of this tree are
called accesses. The accesses are partitioned, where each element of the partition contains the accesses to
a particular object. The partition, including the names of the objects, is part of the system type. The
tree structure can be thought of as a predefined naming scheme for all possible transactions that might
ever be invoked. In any particular execution, however, only some of these transactions will actually take
steps. We imagine that the tree structure is known in advance by all components of a system. The tree

will, in general, be an infinite structure with infinite branching.

The classical transactions of concurrency control theory (without nesting) appear in our model as the
children of a “mythical® transaction, T, the root of the transaction tree. (In work on nested
transactions, such as Argus, the children of T, arc often called *top-level® transactions.) It is very
convenient to introduce the new root transaction to model the environment in which the rest of the
transaction system runs. Transaction To has operations that describe the invocation and return of the
classical transactions. It is natural to reason about T(\ in the same way as about all of the other
transactions. The only transactions which actually access data are the leaves of the transaction tree, and

thus they are distinguished as "accesses®. The internal nodes of the tree model transactions whose

function is to create and manage subtransactions, but not to access data directly.

We also assume that a system type includes a designated set V of values=, to be used as return values of

transactions.

A serial system of a given system type is the composition of a set of I O automata. This set contains a
transaction automaton for each intcrnal (i.e. non-feaf, non-access) node of the transaction tree. a basic

object automaton for each object, and a serial scheduler. These automata are described tielow,
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3.1. Transactions

This paper differs from other work such as [BBG| in that we model the transactions explicitly. A non-

access transaction T is modelled as an I/O automaton, with the following operations.

. -r

Input operations:
CREATE(T)

Ll

REPORT _ COMMIT(T’,v), for T’ a child of T, and v a value -\
REPORT _ ABORT(T’), for T’ a child of T :
Output operations: L
REQUEST _ CREATE(T’), for T’ a child of T =
REQUEST _ COMMIT(T,v), for v a value L

-

The CREATE input operation *wakes up® the transaction. The REQUEST _CREATE output

[N N

operation is a request by T to create a particular child transaction.® The REPORT _ COMMIT input
operation reports to T the successful completion of one of its children, and returns a value recording the
results of that child’s execution. The REPORT _ ABORT input operation reports to T the unsuccessful
completion of one of its children, without returning any other information. We call
REPORT _ COMMIT(T’,v), for any v, and REPORT _ ABORT(T’) report operations for transaction T’.
The REQUEST _ COMMIT operation is an announcement by T that it has finished its work, and includes

a value recording the results of that work.

It is convenient to use two separate operations, REQUEST _ CREATE and CREATE, to describe what
takes place when a subtransaction is activated. The REQUEST _CREATE is an operation of the
transaction’s parent, while the actual CREATE takes place at the subtransaction itself. In actual systems
such as Argus, this separation does occur, and the distinction will be important in our results and proofs.
Similarly, we distinguish between a subtransaction's REQUEST _ COMMIT, the actual COMMIT (which
is internal to the scheduler, see Section 3.3), and the REPORT_ COMMIT operation of the parent
transaction.” We leave the executions of particular transaction automata largely unspecified; the choice
of which children to create, and what value to return, will depend on the particular implementation. For

the purposes of the schedulers studied here, the transactions (and in large part, the objects) are “black

.

boxes.® Nevertheless, it is convenient to assume that schedules of transaction automata obey certain '-_
™~

. . . . &
syntactic constraints. We therefore require that all transaction automata preserve well-formedness, as -
-~

-,

-,

’

[} W

Note that there is no provision for T to pass information to its child in this request. In a programming language, T might be )
permitted to pass parameter values to a subtransaction. Although this may be a convenient descriptive aid, it is not necessary to \"_
include it in the underlying formal model. Instead, we consider transactions that have different input parameters to be different o
. “~
transactions. o
-.-

7Note that we do not include a REQUEST _ ABORT operation for a transaction: we do not model the situation in which a
transaction decides that its own existence is a mistake. Rather, we assign decisions to abort transactions to another component of
the system, the scheduler. In practice, the scheduler must have some power to decide to abort transsctions, as when it detects
deadlocks or failures. In Argus, transactions are permitted to request to abort; we regard this request simply as & *hint® to the
scheduler, to restrict its allowable executions in a particular way.
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|:.. defined in the next paragraph. We do not constrain the operation of a transaction automaton after
]
":': schedules that violate well-formedness, but we will prove later that, when placed in any of the systems we
1q¥
't consider, a transaction generates only well-formed schedules.
D -
't.: We recursively define well-formedness for sequences of operations of transaction T. Namely, the empty
;:" schedule is well-formed. Also, if @ = a’r is a sequence of operations of T, where 7 is a single event, then
s
":'. a is well-formed provided that a’ is well-formed, and the following hold.
) o If m is CREATE(T), then
o, (i) there is no CREATE(T) event in a’.
N
) o If mis REPORT _ COMMIT({T’,v) for a child T of T, then
X (i) REQUEST _ CREATE(T’) appears in o’ and
B (i1) there is no REPORT _ ABORT(T’) event in a' and
. (iii) there is no REPORT _ COMMIT(T’,v’) event with v's4v in o’
)0
l“
:0: o If r is REPORT _ ABORT(T") for a child T” of T, then
\|:\ (i) REQUEST _ CREATE(T’) appears in o’ and
;;:‘ (ii) there is no REPORT _ COMMIT event for T in a’.
"
i o If 7 is REQUEST _ CREATE(T’) for a child T’ of T, then
4 (i) there is no REQUEST _ CREATE(T’) event in a’ and
'ﬁ (ii) there is no REQUEST __ COMMIT event for T in o’ and
.ﬂ (iii) CREATE(T) appears in a’.
o If 7 is REQUEST _ COMMIT(T,v) for a value v, then
2 (i) there i1s no REQUEST _ COMMIT event for T in o' and
:. (i1) CREATE(T) appears in a’.
"
-, These restrictions are very basic; they simply say that a transaction does not get created more than
once, does not receive conflicting information about the fates of its children, and does not receive
o information about the fate of any child whose creation it has not requested; also. a transaction does not
3 perform any output operations before it has been created or after it has requested to commit, and does
" not request the creation of the same child more than once. Except for these minimal conditions, there are
U .
no a priori restrictions on allowable transaction behavior.
) The following easy lemma summarizes the properties of well-formed sequences of transaction operations.
! Lemma 2: Let o be a well-formed sequence of operations of transaction T Then the
following conditions hold.
* 1. The first event in « is a CREATE(T) event, and there are no other CREATE events
! 2. 1If a REQUEST _ COMMIT event for T occurs in a. then there are no later outpu .
:\'; events of T in a.
: 3. There is at most one REQUEST _CREATE('T) event for each chuld 17 of T a. .:
. 4. There are not two different report operations in a for any child T of T (However. -
N there may be several events which are repeated instance~ of 4 single report operation) 4
5. Any report event for a child T' of T i< preceded by REQUEST  CREATET ) i -
e, Conversely, any sequence of operations of I satisfying these conditions is well-Tormed -
: :
»
& o
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3.2. Basic Objects

Recall that I/O automata are associated with non-access transactions only. Since access transactions
model abstract operations on shared data objects, we associate a single I/O automaton with each object,
rather than one for each access. The operations for each object are just the CREATE and
REQUEST _ COMMIT operations for all the corresponding access transactions. Although we give these
operations the same names as the operations of non-access transactions, it is helpful to think of the
operations of access transactions in other terms also: a CREATE corresponds to an invocation of an
operation on the object, while a REQUEST _ COMMIT corresponds to a response by the object to an
invocation.  Actually, these CREATE and REQUEST _COMMIT operations generalize the usual
invocations and responses in that our operations carry with them a designation of the position of the
access in the transaction tree. Thus, a basic object X is modelled as an automaton, with the following

operations.

Input operations:
CREATE(T), for T an access to X
Output operations:
REQUEST _ COMMIT(T,v), for T an access to X

As with transactions, while specific objects are left largely unspecified, it is convenient to require that
schedules of basic objects satisfy certain syntactic conditions. We recursively define well-formedness for
sequences of operations of basic objects. Namely, the empty schedule is well-formed. Also. if a = a'7 is
a sequence of operations of basic object X, where 7 is a single event, then « is well-formed provided that

a’ is well-formed, and the following hold.

o If 7 is CREATE(T), then
(i) there is no CREATE(T) event in a’.

o If 7 is REQUEST _ COMMIT(T,v) for a value v, then
(i) there is no REQUEST _ COMMIT event for T in o', and
(i1) CREATE(T) appears in a’.

These restrictions simply say that the same access does not get created more than once, and that a basic
object does not respond more than once to any access, and only responds to accesses that have previously
been created. These requirements constrain the environment of the object slightly less than those in [LM];
the added freedom makes some of the arguments slightly simpler. We require that every basic object

preserve well-formedness (this is a simple syntactic condition). The following easy lemma summarizes the

=~

:

f
P

.
e

l“
lrl

properties of well-formed sequences of basic object operations. ;-;
Lemma 3: Let o be a well-formed sequence of operations of basic object X. Then for any .:
access T to X, a contains one of the following
(i) no CREATE(T) and no REQUEST _ COMMIT(T,v) events, or -
(ii) one CREATE(T) and no REQUEST _ COMMIT(T,v) events, or -
(1ii) one CREATE(T) event and following that one REQUEST _ COMMIT(T.v) event for some -
V. :‘?
)
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Conversely, any a satisfying this condition is well-formed.

If « is a well-formed sequence of operations of X and T is an access to N «u:l. that o contains
CREATE(T) but no REQUEST _ COMMIT(T,v), we say that T is pending in a.

The following lemmas explore the conditions under which we can deduce that an extension of a well-

formed sequence is itself well-formed.

Lemma 4: Suppose a, 3, and v are all well-formed sequences of operations of basic object X
such that the events in B are a subset of the events in a (though not necessarily in the same
order) and the events in ~ are a subset of the events in 3 Let ¢ be a sequence of operations of
X such that both a¢ and 4¢ are well-formed. Then B3¢ is well-formed.

Proof: Since 8 is well-formed we need only check for each event = in ¢ the presence and
absence of certain operations preceding # in Jé. Any operation whose presence is needed is
present in ¢ since ¢ is well-formed, and hence is present in 3¢, while similarly any operation
whose absence is required is absent in a¢ and thus in 3¢. O

Lemma 5: Suppose a and § are well-formed sequences of operations of basic object X which
contain the same events (perhaps in different orders). Let ¢ be a sequence of operations of
X. Then if a¢ is well-formed so is 8¢.

Lemma 6: Suppose a, 8 and « are sequences of operations of basic object X such that a3 is
well-formed, and the set of accesses whose operations occur in v is disjoint from the set of
accesses whose operations occur in 8. Then af~ is well-formed if and only if ay is well-formed.

3.3. Serial Scheduler

The third kind of component in a serial system is the serial scheduler. The serial scheduler is also
modelied as an automaton. Whereas the transactions and basic objects have been specified to be any 1 '0
automata whose operations and behavior satisfy simple syntactic restrictions, the serial scheduler is a
fully specified automaton, particular to each system type. It runs transactions according to a depth-first
traversal of the transaction tree. The serial scheduler can choose nondeterministically to abort anv
transaction after its parent has requested its creation, as long as the transaction has not actually been
created. In the context of this scheduler, the *semantics® of an ABORT(T) operation are that
transaction T was never created. Each child of T whose creation was requested must be either aborted or
run to commitment with no siblings overlapping its execution, before T can commit. The operations of

the serial scheduler are as follows.

Input Operations:
REQUEST _ CREATE(T)
REQUEST _ COMMIT(T,v)

Output Operations:

CREATE(T)
COMMIT(T), T # T,
ABORT(T), T # T,
REPORT _COMMIT(T,v), T % T
REPORT _ABORT(T), T # T,

0
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The REQUEST _ CREATE and REQUEST _ COMMIT inputs are intended to be identified with the 3‘
corresponding ontputs of transaction and object automata, and correspondingly for the CREATE, ;’.
REPORT _COMMIT and REPORT _ABORT output operations. = The COMMIT and ABORT d
operations are internal, marking the point in time where the decision on the fate of the transaction is k
irrevocable. We call COMMIT(T) and ABORT(T) return operations for T. :

Each state s of the serial scheduler consists of six sets, named with record notation: s.create _requested,
s.created, s.commit _requested, s.committed, s.aborted and s.returned. The set s.commit_requested is a
set of (transaction,value) pairs. The others are sets of transactions. There is exactly one initial state, in

which the set create__requested is {T}, and the other sets are empty.

The transition relation consists of exactly those triples (s’,n,s) satisfying the pre- and postconditions
below, where 7 is the indicated operation. For brevity, we include in the postconditions only those
conditions on the state s which may change with the operation. If a component of s is not mentioned in

the postcondition, it is implicit that the set is the same in s’ and s.

REQUEST _ CREATE(T)
Postcondition:
s.create _requested = s’.create _ requested U {T}

REQUEST _ COMMIT(T,v)
Postcondition:
s.commit _requested = s’.commit _requested U {(T,v)}

CREATE(T)
Precondition:
T € s’.create _requested - (s’.created U s’.aborted)
siblings(T) N s’.created C s’.returned
Postcondition:
s.created = s’.created U {T}

COMMIT(T), T ## T,
Precondition:

(T,v) € s’.commit _requested for some v

T & s’.returned

children(T) M s’.create __requested C s’.returned
Postcondition:

s.committed = s’.committed U {T}

s.returned = s’.returned U {T} R

Ctetaw

ABORT(T), T # T
Precondition:
T € s'.create _requested - (s’.created U s'.aborted)
siblings(T) N s’.created C s’.returned
Postcondition:
s.aborted = s’.aborted U {T}
s.returned = s’.returned U {T} '
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REPORT _ABORT(T), T £ T0
Precondition:
T € s’.aborted

REPORT _ COMMIT(T v}, T % T,
Precondition:

T € s’.committed

(T,v) € s’.commit__requested

The input operations, REQUEST _CREATE and REQUEST _ COMMIT, simply result in the request
being recorded. A CREATE operation can only occu: if a corresponding REQUEST _ CREATE has
occurred and the CREATE has not already occurred. The second precondition on the CREATE
operation says that the serial scheduler does not create a transaction until all 1ts previously created sibling
transactions have returned. That is, siblings are run sequentially. The precondition on the COMMIT
operation says that the scheduler does not allow a transaction to commit until its children have returned.
The precondition on the ABORT operation says that the scheduler does not abort a transaction while any

of its siblings are active. That is, aborted transactions are dealt with sequentially with respect to their

siblings. The result of a transaction can be reported to its parent at any time after the {purely internal)

‘_:,, commit or abort has occurred. In particular, siblings might run in one order and be reported to their
Z,
‘ j parent in the opposite order.
-‘
One significant difference between our serial scheduler and the one in [LM' is that there the return
, operation and the report to the parent of the return are combined as a single operation, giving the parent
;;’ the extra information of the order in which its children are run.
The next lemma relates a schedule of the serial scheduler to the state which results from applying that
schedule.
Lemma 7: Let o be a schedule of the serial scheduler, and let s be a state which can result
~ from applying o to the initial state. Then the following conditions are true.
N 1. T is in s.create__requested exactly if T = T, or a contains a REQUEST _ CREATE(T)
’,
r event.

e

T is in s.created exactly if a contains a CREATE(T) event.

(T,v) is in s.commit_requested exactly if « contains a REQUEST _ CONMMIT(T.v)
event.

T is in s.committed exactly if & contains a COMMIT(T) event.

T is in s.aborted exactly if a contains an ABORT(T) event.

s.returned = s.committed U s.aborted.

s.committed N s.aborted = @.

had

f IS S

N o s

AN



3.4. Serial Systems and Serial Schedules

provided that its projection at every transaction and basic object is well-formed.

Lemma 8: Let a be a serial schedule. Then a is well-formed.

Proof: By induction on the length of schedules. The base, length = 0, is trivial. Suppose
that ar is a serial schedule, and assume that a is well-formed. If 7 is an output of a basic
object or non-access transaction P, then an|P is well-formed because P preserves well-
formedness, and so ar is well-formed. So assume that 7 is an input to a basic object or non-
access transaction P. It suffices to show that an|P is well-formed. There are three cases.

(1) = is CREATE(T) for some transaction T.
The scheduler preconditions and Lemma 7 ensure that CREATE(T) does not appear in a.

(2) » is REPORT _ COMMIT(T,v) for some transaction T and value v.

Then = is an input to transaction parent(T) = T’. The scheduler preconditions and Lemma 7
imply that o contains REQUEST _ COMMIT(T,v). Well-formedness of o at the non-access
transaction T (or at basic object X, if T is an access to X) implies that o contains
CREATE(T), and the scheduler preconditions and Lemma 7 then require that a contains
REQUEST _ CREATE(T). Also, scheduler preconditions and Lemma 7 imply that
COMMIT(T) ocecurs in a, and thus no ABORT(T) occurs in «. Thus no
REPORT _ ABORT(T) occurs in a, by the scheduler preconditions. Well-formedness at T (or
at X, if T is an access to X) implies that no REQUEST _ COMMIT(T,v’) with v’ 5 v, occurs
in a, and therefore by the scheduler preconditions, no REPORT __COMMIT(T,v’), v % v
occurs in a.

(3) m is REPORT _ ABORT(T) for some transaction T.
Then 7 is an input to transaction parent(T) = T’. The scheduler preconditions and Lemma 7
imply that a contains ABORT(T) and hence contains REQUEST _CREATE(T) but no
CREATE(T). The analysis above shows that this is incompatible with the presence of any
REPORT _ COMMIT event for T. O

If o is a sequence of serial operations and T is a transaction such that a contains CREATE(T) but no

return event for T, we say that T is live in a. The following are useful observations:

Lemmsa 9: Let o be a serial schedule, T a transaction live in o and T’ an ancestor of
T. Then T’ is live in a.

Lemma 10: Let o be a serial schedule, and T and T’ distinct sibling transactions. If T is
live in «, then T’ is not live in a.

A consequence of the two previous lemmas is the following, which states that only related transactions

can be live concurrently, in a serial schedule.

Lemma 11: Let a be a serial schedule, and T and T’ transactions each of which is live in a.
Then either T is an ancestor of T’ or T’ is an ancestor of T.

The composition of transactions with basic objects and the serial scheduler for a given system type is
called a serial system, and its operations and schedules are called serial operations and serial schedules,
respectively. We note that every serial operation is an operation of the serial scheduler, and of at most

one other component of the serial system. A sequence a of serial operations is said to be well- formed
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In order to talk about schedules, we introduce some terms to describe the fate of trausactions. Let a be
any sequence of operations. (We will use these same terms later for schedules of R+ W Locking systems, so
we make the definitions for general sequences.) If T is a transaction and T’ an ancestor of T, we say that
T is committed to T’ in a if COMMIT(U) occurs in a for every U which is an ancestor of T and a proper
descendant of T'. If T and T’ are transactions we say that T is visible to T’ in a if T is committed to
lca(T,T’). Uf x is one of the operations CREATE(T), REQUEST _CREATE(T’), COMMIT(T’),
ABORT(T’), REPORT__COMMIT(T’,v’}), REPORT _ABORT(T'.v’}) or REQUEST_ COMMIT(T.v)
where T’ is a child of T, then we define transaction(r) to be T. If T is a non-access transaction then the
operations 7 with transaction{n) = T are the operations of the automaton T together with the return
operations for children of T. We denote by visible(a,T) the subsequence of o consisting of events 7 with

transaction() visible to T in a. Notice that every operation occurring in visible(a,T) is a serial operation.

We collect here some straightforward consequences of these definitions:
Lemma 12: Let o be a sequence of operations, and T, T’ and T’ transactions.
1. If T is an ancestor of T’, then T is visible to T’ in a.
2. T’ is visible to T in «a if and only if T’ is visible to lca(T,T’) in a.
3. If T” is visible to T’ in & and T’ is visible to T in «, then T is visible to T in a.
4. If T’ is a proper descendant of T, T” is visible to T’ in «, but T" is not visible to T in
a, then T” is a descendant of the child of T which is an ancestor of T'.
Lemma 13: Let a and § be sequences of operations, such that 8 consists of a subset of the
events of a.
1. If transaction T is visible to transaction T’ in 8, then T is visible to T in a.
2. if event = is in visible(8,T), then 7 is in visible{a,T).
Lemma 14: Let a be a sequence of operations, and let T and T’ be transactions. Then
visible(a,T)|T’ is equal to a|T’ if T’ is visible to T in «, and is equal to the empty sequence
otherwise.

Lemma 15: Let a be a sequence of operations. Let T, T’ and T be transactions such that
T" is visible to T’ and to T in a. Then T is visible to T" in visible(a,T)
Lemma 16: Let T be a transaction, and let amr be a sequence of operations, where 7 is a
single event.
1. If transaction(n) is not visible to T in an, then visible(an,T) == visible(a .T).
g 2. If transaction(r) is visible to T in am and if 7 is not a COMMIT event, then
visible(am,T) = visible(a,T)r.
3. If transaction(n) is visible to T in am and x is COMMIT(U)} then the events in

23 visible(am,T) are those visible in a to either T or U, together with = itself.

) Lemma 17: Let a be a well-formed sequence, and T any tran-action. Then visihle(a.T) is

= well-formed.

~

y The next two lemmas are taken from LM . (There, they are proved with shghtly different definitions
« but essentially the same proofs work here.)

2, Lemma 18: Let a be a serial schedule and T a transaction. Then visible{a T} i~ a ~erial

e
'i._ schedule.

Lemma 19: Let a be a serial schedule and T a transaction. Let 3 .= visible(a, T). Then 5
= B(a - B) is a serial schedule.
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Let o be any sequence of operations. If T is a transaction we say T is an orphan in a if ABORT(U)
ocenrs in a for some ancestor U of T. The following lemmas are straightforward.

Lemma 20: Let o and S be sequences of operations such that 8 consists of a subset of the
events in a. If a transaction T is not an orphan in o then T is not an orphan in 3.

Lemma 21: Let a is a sequence of operations. If T is a transaction that is not an orphan in
a and T’ is an ancestor of T, then T’ is not an orphan in a.

3.5. Serial Correctness

We use serial schedules as the basis of our correctness definition, which was first given in [LM..
Namely, we say that a sequence of operations is serially correct for a transaction T provided that its
projection on T is identical to the projection on T of some serial schedule. That is, the sequence “looks
like® a serial schedule to T. Later in this paper we will define “R/W Locking systems® and show that
their schedules are serially correct for every non-orphan transaction, and in particular that these schedules

are serially correct for the root transaction To’

Motivation for our use of serial schedules to define correctness derives from the simple behavior of the
serial scheduler, which determines the sequence of interactions between the transactions and objects. We
believe the depth-first traversal of the transaction tree to be a natural notion of correctness which
corresponds precisely to the intuition of how nested transaction systems ought to behave. Furthermore, it
is a natural generalization of serializability, the correctness condition generally chosen for classical
transaction systems. Serial correctness for T is a condition which guarantees to implementors of T that
their code will encounter only situations which can arise in serial executions. Correctness for T0 is a
special case which guarantees that the external world will encounter only situations which can arise in

serial executions.

It would be best if every transaction (whether an orphan or not) saw data consistent with a serial
execution. Ensuring this requires a much more intricate scheduler than the simple R/W Locking systems
we describe. In [HLMW], we describe and prove correctness of several algorithms for mainintaining

correctness for orphan transactions.

Our approach is an example of a general technique for studying system algorithms. A simple, intuitive
and inefficient algorithm (automaton) is used to specify an acceptable collection of schedules for the
system component. The actual system component is more efficient or robust, but provides the same user
interface. The user is guaranteed that applications (transactions, in our work) which work well when run

with the simple algorithm will work the same way when run with the actual system.
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oy 4. Semantic Conditions
e . . . . . . .
'.|°'. : In the serial systems to be considered in this paper, accesses are classified as either read or write
M)
o accesses. In this section, we state the properties which these accesses are required to satisfy. First, we
A . define the fundamental concept of “equieffectiveness® of schedules which is in turn used to define
N . L . .
:.::. - “transparency® of operations; an operation is said to be transparent if later accesses to the same object
’
:,. return values which are the same as in the situation where the operation did not occur. We then prove
o . . . . ..
. certain consequences of these definitions, which will be used in th: ensuiag proofs. Finally. we use the

notion of transparency to specify the precise semantic conditions which read and write accesses must

Sy satisfy.
)
: .

$ 4.1. Equieffective Schedules
. We introduce the concept of equieffective schedules of a basic object X. in order to Jefine precisely what
:‘::: schedules we will regard as "essentially* the same. Intuitively, these are schedules which leave the
,:':‘:', automaton in states which are the same. However, we are really interested in observable behavior. not
;2:’ states, so it is enough that they be indistinguishable by later operations. Formally, given two well-formed
- sequences a and 6(' operations of X, we say that a is equieffective to 3 if for every sequence ¢ of
" operations of X such that both agp and 86 are well-formed, a¢ is a schedule of X if and only if 8¢ is a
: schedule of X. Notice that if neither a nor 8 is a schedule of X, then o is trivially equieffective to 3.
t‘: : Also, notice that if a is equieffective to 8 and 3 is a schedule of X, then a is a schedule of X. In the sense
i of semantic theory, equieffective schedules pass the same tests, where a test involves determining if a
.-:j given sequence of operations cah occur after the sequence being tested. We limit the tests to sequences
E: which do not violate well-formedness, for technical reasons, because we have not required the objects to

»
«

behave sensibly if the inputs violate well-formedness. Clearly, a is equieffective to 3 if and only if 3 is

equieffective to o and in this case we say that a and 3 are equieffective sequences. We have a restricted

“"l form of transitivity:

::n. Lemma 22: Let a, 4 and ~ be well-formed sequences of operations of X such that the events

R in 3 are a subset of the events in a and the events in 7 are a subset of the events in 3 (perhaps :
K, in different orders). If a and 3 are equieffective and also .3 and ~ are equieffective, then a and \

~ are equieffective.

N Proof: Straightforward, using Lemma 1. [ i
i
-
.‘l
Y , {
3 We also have two extension results. '
' .
~' Lemma 23: If o and 3 are equieffective well- formul sequences of operations of X, and o is a '
) sequence of operations of X such that a¢ and Jo are well-formed, then né and 3o are :
';v, equieffective. .
1 L. . . L . ‘
':l Proof: This is immediate, since well-formed extensions oif aeo are well-formed extensions of .
,l' a. O .
h . . . . :
:4' Lemma 24: If o and 8 are equicffective well-formed sequences of operations of X that |
% contain the same events, and & is a sequence of operations of N =uch that oo is a well-formed ,
q f ;
- schedule of X, then #¢ is a well-formed schedule of N that 15 cquieffective to ao. .
Y '
[ .
»
p
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Proof: Straightforward, by Lemma 5 and Lemma 23, and the definition of equieffective. O E ‘

Ny '

We say that an operation 7 of basic object X is transparent if for any well-formed schedule ar of X, arn “"

is equieffective to @. Thus, later operations that do not violate well-formedness cannot detect whether = :‘ ,
happened. (Notice that we only require 7 to be undetectable in situations where it can occur, i.e. when ;::
am is a well-formed schedule.) E
¥

The following consequences of the definitions above show that certain rearrangements of an object’s 4

schedules are themselves schedules, and are “observably® the same.
Lemma 25: Let af be a well-formed schedule of basic object X, where every operation in 3
is transparent. Let ~ be a sequence of operations of X such that the set of accesses with .
operations in < is disjoint from the set of accesses with operations in 8, and such that af3v is S
well-formed. Then ay and afy are equieffective, and also a+ is a schedule of X if and only if ’
afv is a schedule of X. -
Proof: We use induction on the length of 8. The base case where 8 is empty is trivial. -'5.
Suppose then that 8 has length k£ and that the lemma is true for all shorter 8. Write f=f'r, ::;
where 3’ has length k-1. Now, 7 is transparent so aff= af’n is equieffective to a8’ (since a §'n :.4-
is a schedule of X). Since a8’y is well-formed and no operations occurring in - involve the it
access of which 7 is an operation, we have that a8’y is well-formed by Lemma 6. By Lemma !
23, a8’y is equieffective to afy. Also, the definition of equieffective allows us to conclude that .
af3y is a schedule of X if and only if a@’y is a schedule. The induction hypothesis says that a~y "‘»
is equieffective to af’y, and that a8’y is a schedule of X if and only if a~ is a schedule. Thus ;
a~ is a schedule if and only if a8~ is, and Lemma 22 implies that they are equieffective. O :-"
Lemma 28: Let a be a well-formed schedule of basic object X, and S a set of accesses to X il
such that any operation of a transaction in S that occurs in « is transparent. Let 3 be the P
subsequence of a obtained by removing all the operations of accesses in S. Then 3 is a well- 0
formed schedule of X that is equieffective to a. :: \
Proof: Repeatedly apply Lemma 25.0 ::"
~
)
4.2. Reordering and Combining Serial Schedules 3-.
In this subsection, we describe ways in which serial schedules can be modified and combined to yield _.:
other serial schedules. These lemmas are used in the proof of Lemma 48, in Section 6.3. The first :J:
generalizes a lemma in [LM], taking into account the special properties of transparent operations. The ¢
second is essentially the same as a lemma of [LM]. The proofs are straightforward. N
Lemma 27: Let af, COMMIT(T’) and af, be two serial schedules and T, T’ and T" three :'
transactions such that the following conditions hold: "
1. T’ is a child of T” and T is a descendant of T but not of T’, -~
2. af = visible(aﬂl,T’), .
3. aﬂ2 = visible(aﬂz,T), Y
4. o = visible(aB,,T") = visible(a8,,T") and o
5.if any basic object has an output operation in ﬂ2 then all its operations in 8, are _
transparent. =~
Then af, COMMIT(T’)B, is a serial schedule. =
Proof: Note first that if T = T", then 3, is empty and the result is trivial. So assume that .
=)
N
~

41,_4':
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T 94 T”. Then T is a descendant of a child U of T, and U £ T.

Any event = in aﬂl, for which transaction(r) is not a descendant of T . must be in
visible(aﬂl,T”) by Lemma 12. Similarly, any event in af, having transaction which is not a
descendant of U, must be in visible(aﬂ2,T”). Thus, B, and B, contain only operations having
transactions which are descendants of T’ and U, respectively. Since T’ and U are distinct

siblings, and any operation of a transaction P has transaction equal to P, it follows that no
transaction has operations occurring in both ﬁl and 52.

We proceed by induction on prefixes of a,’ilCOMMIT(T’),‘J,‘,. Let a'¢ be a prefix of
a3 COMMIT(T’)8,, with o’ a serial schedule and ¢ an event. We use af, COMMIT(T’) as the
basis, since af,COMMIT(T’) is a serial schedule by assumption. So assume that a’ =
QBICOMNIIT(T’)ﬂ’ for some prefix 8’ of ﬂ2. There are three cases, depending on whether ¢ is
an output of a basic object, of a non-access transaction, or of the serial scheduler.

Suppose that ¢ is an output of a basic object X. By assumption, every operation of EIIX is
transparent, and since COMMIT(T') does not occur at X. so is every operation of
B,COMMIT(T’)[X. We saw above that the set of accesses with operations in 3, and the set of
accesses with operations in /92 are disjoint (being respectively descendants of T’ and of U). By
Lemma 6, aﬁlCOMMIT(T’),@’qle is well-formed, and we may deduce by Lemma 25 that
aﬂlCON[MIT(T’)ﬂ’d)lX is a schedule of X, since af’¢|X is a schedule. Now the result follows
by Lemma 1.

Suppose that ¢ is an output operation of a non-access transaction P. Then !91CO.\L\IIT(T‘)
contains no operations of P. Thus, a’'¢|P = af'$|P, which is a prefix of a8 [P, which is a
schedule of P since aﬂ2 is a serial schedule. Thus, a’#|P is a schedule of P. Th; result follows
by Lemma 1.

Finally, suppose ¢ is an output of the serial scheduler. Then ¢ has transaction V for some
descendant V of U. Let s be the (uniquely defined) state of the serial scheduler after a'. and let
s’ be the state of the serial scheduler after a;3’. Then the following relationships hold between
s and 8",

1.V € s'.create_requested - (s’.created U s’.aborted) iff V € s.create _requested -
(s.created U s.aborted)
children(V) N s’.create _requested C s’.returned iff children(\') N s.create _requested C
s.returned
(V,v) € s’.commit__requested iff (V,v} € s.commit_ requested
V € s’.commited iff V € s.commited.
V € s’.aborted iff V € s.aborted
V ¢ s'.returned iff V ¢ s.returned
. siblings(V) N &’ .created C s’.returned iff siblings(\) N s.created C s.returned
Since any event in Bl has transaction equal to some descendant of T’ and the operations
REQUEST _ CREATE(V]), CREATE(V). ABORT(V), REQUEST _COMMIT(V v),
COMMIT(V), and REQUEST _ CREATE(\V'}, ABORT(V"), COMMIT(\) for V" a child of V|
all have transaction equal to V or parent(V), neither of which is a descendant of T', the first
six biconditionals are immediate from Lemma 7. If V is a proper descendant of U, the last
biconditional also follows. It remains to show that siblings{U'}) N ~".created C s'.returned iff
siblings(U} N s.created C s.returned  But any sibling of U created in a3 s created in o’ and
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13
;: the only sibling of U created in a’ and not a8’ is T’, and T' € s.returned. Thus, the claims
) are true.
"
(]
Since ¢ is enabled in s’, the claims above imply that ¢ is also enabled in s. The result
' follows by Lemma 1. O
1
" Lemma 28: Let c ABORT(T’) and af be two serial schedules, and let T, T’ and T" be
:: transactions, such that the following conditions hold:
Y
:3' 1. T’ is a child of T” and T is a descendant of T”’ but not of T,
2. aff = visible(ad,T), and
:'. 3. & == visible{a,T”’) = visible(a8,T"").
5 Then «ABORT(T’)3 is a serial schedule.
K,
’ 4.3. Semantics of Read Accesses
R Finally, we are ready to state the conditions to be satisfied by read and write accesses. Namely, we
\
: require that each basic object X satisfy the following conditions.
::, Semantic Conditions:
)
by (i) Every CREATE(T) operation is transparent.
Y (i) For any a, and a, for which o, CREATE(T)a, and a,a,CREATE(T) are both well-formed schedules
K of X, they are equieffective schedules.
::: (iii) Every REQUEST _ COMMIT(T,v) operation, for T a read access, is transparent.
Condition (i) means that whether or not an access was created is invisible to other accesses. Condition
(ii) means that later operations cannot detect when an access was created. Condition (iii) means that
«'- later operations cannot determine whether or not a REQUEST _ COMMIT operation for a read access has
L occurred. The third condition captures the fundamental feature of read accesses that allows Moss’
“ algorithm, as given in the construction of R/W Locking objects in Section 5.1, to work. In contrast, the
iy first two conditions are a convenience, used to avoid explicitly reordering schedules of the R/W locking
b objects. Note that we make no assumption about the semantics of REQUEST _ COMMIT operations for
Iy write accesses, and so it is legitimate to designate all accesses as writes. If this is done, Moss’ algorithm
‘ as given in this paper degenerates into exclusive locking.
)
y
‘ An example of a basic object satisfying these conditions would have as its state a set of transactions,
: called "pending”, and an instance of an abstract data type. The input operation CREATE(T) would
)
simply add T to pending. At any time, a transaction T in pending could be chosen, and the
» corresponding function applied to the instance of the abstract data type, yielding return value v, and a
¥ possibly altered instance of the abstract type. T would be removed from pending, the new instance would
o
§ replace the old one in the state of the basic object, and REQUEST _ COMMIT(T,v) would occur. (The
whole sequence from choosing T to the output is an atomic step of the basic object.)
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The following lemma combines all the information in the semantic conditions to give a simple sufficicut

condition for proving that schedules are equieffective. This test is used throughout this paper Given a
sequence a of operations of X, define write(a) to be the subsequence of a consisting of the
REQUEST _ COMMIT(T,v) events for write accesses T. If a and 3 are sequences of operations of X an
write(a) = write(f) then we say that a and B are write-equal. This is clearly an equivalence relation on
sequences of operations of X.

Lemma 29: Let o and 8 be well-formed schedules of X that are write-equal. Then a and 4
are equieffective.

Proof: Suppose ¢ is a sequence of operations of X such that a¢ and J¢é are both well-
formed. We must prove that (¢ is a schedule of X if and only if a¢ is a schedule of
X. Consider the set A of accesses to X that is the union of the set of write accesses for which a
REQUEST _ COMMIT operation occurs in a (and so also in #) and the set of accesses that are
pending in both a and B. Let a’ denote the subsequence of a consisting of the events of
accesses in A. Similarly let 3’ denote the subsequence of ;3 consisting of the events of accesses
in A. Since o' is obtained from a by removing all the operations of accesses not in A, and all
such operations are transparent (by conditions (i) and (iii)), by Lemma 26. we deduce that o’ is
a well-formed schedule of X equieffective to a. Similarly 8’ is a well-formed schedule
equieffective to 4. Also, since a’ can be formed from #’ by moving CREATE events, we deduce
from condition (ii), Lemma 24 and Lemma 22 that o’ and 8 are equieffective. Since both ao
and f¢ are well-formed, by Lemma 3 any event in ¢ must be either an operation of an access
with no operations in « or 8, or else a REQUEST _ COMMIT for an access that is pending in
both a and 8. In any case, a’¢ and f’¢ must be well-formed. Therefore a¢ is a schedule of X

if and only if a’¢ is a schedule, which is true if and only if 8’¢ is a schedule and so if and only
if B¢ is a schedule of X. O

5. R/W Locking Systems

A R/W Locking system of a given system type is composed of transactions, a generic scheduler, and
R/W Locking objects. The non-access transactions are modelled by the same automata as in the serial
system, but the generic scheduler has much more freedom in scheduling transactions than the serial
scheduler, and R/W Locking objects follow the algorithm of [Mo! in maintaining locking and state

restoration data that basic objects do not need.

5.1. R/W Locking objects

In this section, we define, for each basic object X, a R/W Locking object M(X), which provides a
resilient lock-managing variant of X. It receives operation invocations and responds like X. and also
receives information about the fate of transactions so that it can maintain its locking and state
restoration data. A R/W Locking object combines the features of the resilient object and the lock
manager of [LM], where, as in many database management systems. the recovery and concurrency control
are performed separately. Combining these features, as we do here. climinates some redundancy in

maintaining information about the fate of transactions.

M(X) has the following operations.
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Input Operations:
CREATE(T), for T an access to X
INFORM _ COMMIT _AT(X)OK(T), T 5 T
INFORM _ ABORT _ AT(X)OF(T), T # T,
Output Operations:
REQUEST _ COMMIT(T,v), for T an access to X

We give a recursive definition for well-formedness of schedules of object M(X). Namely, the empty
schedule is well-formed. Also, if @ = a’r is a sequence of operations of object X, then a is well-formed

provided that «’ is well-formed and the following hold.

o If mis CREATE(T), then
(i) there is no CREATE(T) event in «’.

o If is a REQUEST _ COMMIT for T, then
(i) there is no REQUEST _ COMMIT event for T in a’, and
(ii)) CREATE(T) occurs in a’.

o If 7 is INFORM __ COMMIT _ AT(X)OF(T), then
(i) there is no INFORM _ ABORT __ AT(X)OF(T) event in a’, and
(ii) if T is an access to X, then a REQUEST _ COMMIT event for T occurs in a’.

o If 7 is INFORM _ ABORT _ AT(X)OF(T), then N
(i) there is no INFORM _ COMMIT _ AT(X)OF(T) event in a’. N

3

A state s of M(X) consists of the following five components: s.write-lockholders, s.read-lockholders, .

s.create __requested, and s.run, which are sets of transactions, and s.map, which is a function from write-

“‘.

A

lockholders to states of the basic object X. We say that a transaction in write-lockholders holds a N
write-lock, and similarly that a transaction in read-lockholders holds a read-lock. We say two locks ::
Oy

conflict if they are held by different transactions and at least one is a write-lock. The initial states of

(5

M(X) are those in which write-lockholders == {T } and map(T,) is an initial state of the basic object X,

.
e s a w4

and the other components are empty. The transition relation of M(X) is given by all triples (s',m.s)

satisfying the following pre- and postconditions, given separately for each 7. As before, any component of

'R

s

s not mentioned in the postconditions is the same in s as in s’.

CREATE(T), T an access to X
Postcondition:
s.create __requested = s’.create _requested U {T}

P T T
i By BV

INFORM _ COMMIT _AT(X)OF(T), T # T, y
Postcondition: >
if T € s’.write-lockholders then N

begin j
s.write-lockholders = (s’.write-lockholders - {T}) U {parent(T)} X

s.map(U) = s’.map(U) for U € s.write-lockholders - {parent(T)} 1

s.map(parent{T)) = s’.map(T)
end
if T € s’.read-lockholders then

9
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begin
s.read-lockholders = (s'.read-lockholders - {T}) U {parent(T})}
end

INFORM _ABORT _AT(X)OF(T), T % T,

Postcondition:
s.write-lockholders = s’.write-lockholders - descendants(T)
s.read-lockholders = s’.read-lockholders - descendants(T)
s.map(U) = s’.map(U) for all U € s.write-lockholders

REQUEST _ COMMIT(T,v) for T a write access to X
Precondition:
T € s’.create _requested - s’.run
s’ write-lockholders U s’.read-lockholders C ancestors(T)
there are states t, t’ of basic object X so that
(s’ .map(least(s’.write-lockholders)), CREATE(T) t)
and (t,REQUEST _ COMMIT(T,v),t’)
are in the transition relation of basic object X
Postcondition:
s.run = s’.run U {T}
s.write-lockholders = s’.write-lockholders U {T}
s.map(U) = s’.map(U) for all U € s.write-lockholders - {T}
s.map(T) = ¢’

REQUEST _ COMMIT(T,v) for T a read access to X
Precondition:
T € s’.create_requested - s’.run
s’.write-lockholders C ancestors(T)
there are states t, t’ of basic object X so that
(s’.map(least(s’.write-lockholders)),CREATE(T),t)
and (t, REQUEST _ COMMIT(T,v),t’)
are in the transition relation of basic object X
Postcondition:
s.run = s’.run U {T}
s.read-lockholders = s’.read-lockholders U {T}

It is clear that a R/W Locking object preserves well-formedness. !

The operation of a R/W Locking object should be clear from the pre- and posteonditions above
Indeed, we feel that the clarity and lack of ambiguity in describing the algorithm in this wav 1~ a

significant feature of our method, since informal descriptions of algorithms often omit significant details

When an access transaction is created, it is added to the set create-requested A\ response contaning
return value v to an access T can be returned only if the access has been requested but not yer responded
to, every holder of a conflicting lock is an ancestor of T, and v is a value that can be returned by hasie

object X in the response to T from a state obtained by performing CREATUITY in the <tate that 1= the
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value of map at the least member of write-lockholders. When a response is given, the access transaction
is added to run and granted the appropriate lock, and if the transaction is a write access, the resulting

state is stored as map(T). If the transaction is a read access, no change is made to the stored state of the

basic object X, i.e. to map.

When a R/W Locking object is informed of the abort of a transaction, it removes all locks held by
descendants of the transaction. When it is informed of a commit, it passes any locks held by the

transaction to the parent, and also passes the version stored in map, if there is one.8

We introduce some terms to describe what M(X) knows about commits and aborts of transactions. If a
is a sequence of operations of M(X), T is an access to X, and T’ is an ancestor of T, we say that T is
X to T in a if «a consisting of an
INFORM _ COMMIT _ AT(X)OF(U) event for every U that is an ancestor of T and a proper descendant
of T’, arranged in ascending order (so the INFORM _ COMMIT for parent(U) is preceded by that for U).

commiltted al contains a subsequence A

If a is a well-formed sequence of operations of M(X), T is an access to X, and T is any transaction, we
say that T is visible at X to T’ in a if T is committed at X to lca(T.T’). We denote by \'isiblex(a,T) the
subsequence of a that consists of operations of X whose transactions are visible at X to T in a. It is clear
that visiblex(a,T) is a well-formed sequence of operations of basic object X. We say that a transaction T

is an orphan at X in o if INFORM _ ABORT _ AT(X)OF(U) occurs in a for some ancestor U of T.

v e

We collect here some obvious facts about visibility at X of transactions.

Lemma 30: Let o be a sequence of operations of M(X) and J a sequence consisting of a
subset of the events of a. Let T be an access to X and T’ a transaction. If T is visible at X to
T’ in B then T is visible at X to T’ in a.

Lemma 31: Let a be a sequence of operations of M(X), and let T and T be accesses to X,
and T a transaction. If T is visible at X to T’ in a, and T’ is visible at X to T in a, then T
1s visible at X to T in a.

Lemma 32: Let a be a well-formed sequence of operations of M(X), and let T be an access

to X and T’ a transaction. If T is visible at X to T’ in a, and T’ is not an orphan at X in a,
then T is not an orphan at X in a.

R

Lemma 33: Let o = a’r be a well-formed sequence of operations of M{X)}.
1.1f m is a CREATE(T’) or REQUEST _ COMMIT(T’.v) event, and T 3 T, then
visible, (o, T) = visibley(a’,T).
2.If mis a CREATE(T) or REQUEST _COMMIT(T v} event, then visible (o T) =
visiblex(a’,T)n.
3.If m is INFORM _COMMIT _ AT(X)OF(T’) with parent(T’) an ancestor of T, then

visible, (o, T) consists of the events of a’ that are visible at X to either ['or T"in a’.

8" the reader wishes to compare our version of the algorithm with that in |Mo], the foliowing may te useful: Moss gives the name
*the associated state® for object X and transaction T to what we call s.map(T') where T' is the least ancestor of T in s.write-
lockholders, and he calls s.map(least(s.write-lockholders)) “the current state® of X. Also. he retnnves a read-lork when the owner also
holds a write-lock (this is an optimization that does not affect the correctness proof). Moss also allows internal tran<actions to
directly access objects, whereas we only allow leal transactions perform data access.
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§ 4. If n 1s INFORM _ COMMIT _ AT(X)OF(T’) with parent(1”} not an ancester of T, or if
t m is INFORM _ ABORT _ AT(X)OF(T"’), then visible (a,T) = visibley(o",T)
Here are some simple facts about the state of M(X) after a schedule a.
Lemma 34: Let o be a schedule of M(X), and s a state of M(X) reached by applying a to an
initial state. Suppose T € s.write-lockholders and T’ € s.read-lockholders U s.write-lockholders.
Then either T is an ancestor of T’ or else T’ is an ancestor of T.
Lemma 85: Let a be a well-formed schedule of M(X), and s a state of M(X) reached by

applying a to an initial state. Let T be an access to X such that REQUEST _ COMMIT(T,v)
occurs in a and T is not an orphan at X in «, and let T" be the highest ancestor of T such that
T is committed at X to T’ in a. Then if T is a write access. T must be a member of s.write-
lockholders, while if T is a read access, T’ must be a member of s.read-lockholders.

Given any well-formed sequence § of operations of M(X) let essence(3) denote the sequence obtained
from write(8) by placing a CREATE(U) event immediately preceding a REQUEST _ COMMIT(U u)
event. Since § is well-formed, essence(d) consists of a subset of the events of 3 and is wel!-formed. Clearly

. B and essence() are write-equal.

The following lemma shows how the results of operations visible at X to T are recorded in the state of
M(X).
Lemma 36: Let a be a well-formed schedule of M(X) and s a state of M(X) reached by

applying a to an initial state. If T is a transaction that is not an orphan at X in a, then 3 =
essence(visiblex(a,T)) is a well-formed schedule of the basic object X. Furthermore. when J is

applied to an initial state of X, it can leave X in the state s.map(T’) where T  is the least
ancestor of T such that T’ € s.write-lockholders.

Proof: We use induction on the length of a. The basis case is trivial, so let a == a'r. Let s
denote a state of M(X) after applying a’ such that (s’,7,s) is a step of M(X). There are five
cases.

(1) » is CREATE(U) for an access U to X.
If U =T then Visiblex(a,T) = visiblex(a’,T)ﬂ, while otherwise visible, (o, T} = visible (2" T).
In either case § = essence(visibley(a,T)) = essence(visible (a’.T)). Also <’.write-lockholders
= s.write-lockholders and s’map = s.map, so the induction hypothesis implies that 3 is a

well-formed schedule of X that can leave X in state s’map(T") - s.map(T') when applied to
an initial state.

P

(2) » is REQUEST _ COMMIT(U,v) for U a read access to X.
If U = T then visible (o, T) == visiblei(a’,T)r, while otherwise visible (a,T}) == visible {a".T).

A
In either case 3 = essenco(visiblex(a,l')) = essence(Visible (" T)). - Also s write-lockholders -
= s.write-lockholders and s’.map --: s.map, so the induction hypothesis implies that 3 i~ a ';.-
well-formed schedule of X that can leave X in state s".map(T") s.map(T") when applicd 1o ~"'
an initial state. :::
(3) 7 is REQUEST _ COMMIT(U,v) for U a write access to X. &
We consider separately the cases U == T and Ul 5% T X
If U= T then T € s wiite-lochholders so T T Lee T denote the Teast ancestor of ' n ?-".
s’.write-lockholders. Let 3" - essence(visibleg(a ). By the mduction hypothesisc 4715 a ::
Y
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well-formed schedule of X that can leave X in the state s’.map(T’') when applied to an initial
state. Now 8 = B'CREATE(U)r: by the definition of M(X), 8’CREATE(U)r is a (well-
formed) schedule of X, and applied to an initial state of X it can leave X in the state s.map(T).
If U T, s’.write-lockholders = s.write-lockholders - {U}, so T' is also the least ancestor of T
in s’.write-lockholders, and s”.map(T’) = s.map(T’). Also, visible,(a,T) = visibley(a’,T) so 3
= essence(visiblex(a,T)) = essence(visiblex(a’,T)). The desired result follows immediately
from the inductive hypothesis.

(4) = is INFORM _ COMMIT _ AT(X)OF(U)
The discussion is divided into subcases, depending on the relation of T and U in the
transaction tree.

(i) U is an ancestor of T.
Now visibley(a,T) = visible,(a’,T), so § = essence(visibley(a’,T)). If U is the least ancestor of
T in s’.write-lockholders then by the definition of M(X), T’ must be parent(U) and s.map(T’)
= s’.map(U), while if U is not the least ancestor of T in s’.write-lockholders then T’ must be
the least ancestor of T in s’.write-lockholders and s.map(T’) = s’.map(T’). In either case,
s.map(T’) is s’.map(T"’), where T’ is the least ancestor of T in s’.write-lockholders. The
desired result follows immediately from the inductive hypothesis.

(ii) U is not an ancestor of T, but parent{U) is an ancestor of T.

Here we give separate arguments, depending on whether U is in s’.write-lockholders or not. If
U € s’.write-lockholders then Lemma 34 implies that no ancestor of T that is a strict
descendant of parent(U) can be in s’.write-lockholders. The definition of M(X) therefore shows
that T’ = parent(U) and that s.map(T’) = s’.map(U). Also we note that visibley(a’,U) is
write-equal to visibley(c,T), since any write access (for which a REQUEST _COMMIT event
occurs in «a) that is committed at X to an ancestor of T in a’ must be committed at X to
parent(U) in a’ and thus visible at X to U in o (otherwise by Lemma 35 some ancestor of T
that is a proper descendant of parent(U) would be in s’.write-lockholders). Thus 8 =
essence(visible,(,T)) = essence(visibley(a’,U)). By the induction hypothesis, § is a well-
formed schedule of X which, when applied to an initial state of X, can leave X in state
s’map(U) = s.map(T’). On the other hand, if U ¢ s’.write-lockholders then s write-
lockholders = s’.write-lockholders and s.map = s’.map. Also visiblex(a’,T) is write-equal to
visiblex(a,T). This is true because any operation visible at X to T in o is either visible at X to
T in a’ or else is an operation of an access that is committed at X to U in a’, and any write
access (for which a REQUEST _ COMMIT event occurs in a’) that is committed at X to U in
a’ must be committed at X to parent(U) (and hence visible at X to T) in a’, by Lemma 35 and
the assumption that U ¢ s’.write-lockholders. Thus A = essence(visible (a,T)) =
essence(visible,(a’,T)). By the induction hypothesis, 8 is a well-formed schedule of X that,
when applied to an initial state of X, can leave X in the state s’.map(T’) = s.map(T’).

(iii) parent(U) is not an ancestor of T.
Then visibley(a,T) = visibley(a’T), s0 # = essence(visible, (a’,T). Also T' is the least
ancestor of T in s'.write-lockholders and s’.map(T') = s.map(T’). The desired result follows
immediately from the inductive hypothesis.

(5) = is INFORM _ABORT _ AT(X)OF(U).
Then visibley(a.T) = visibley(a’,T), so f = essence(visibley(a,T)) = essence(visible (a’,T)).
Also since T is not an orphan at X, U is not an ancestor of T. Thus T’ is the least ancestor of
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T in ¢’.write-lockholders and s’.map(T’) = s.map(T’). The desired result foliows immediately
from the inductive hypothesis. O

A consequence of this is the following lemma, which explains a sense in which M(X) is a resilient variant

of the basic object X.

A=rels L=l

Lemma 37: Let a be a well-formed schedule of M(X) and T a transaction that is not an
orphan at X in . Then visiblex(a,’l‘) is a well-formed schedule of the basic object X.

Prooft We prove that visibley(a,T) is a schedule of X by induction on the prefixes of
visiblex(a,T). The base case is trivial. So consider an event 7 in visiblex(a,T), and the prefix
3 of visiblex(a,T) ending with 7. Let 3 = #’x. By the inductive hypothesis 3’ is a well-formed
schedule of X. We must show that 8 is well-formed and that it is a schedule of X. Since n is
visible at X to T in a, so is any operation of the same access. Since a is well-formed. it follows
that all the requirements of operations’ presence or absence in 3 are satisfied, to permit us to
deduce that 8 is well-formed from Lemma 3. 1 7 is a CREATE event it follows from the
Input Condition on all I/O automata that = is enabled after 8', and thus that 3 is a schedule
of X, so suppose that m is REQUEST _ COMMIT(U,u). Consider visibley (7', U) where v = '
is the prefix of a ending with 7. Let s’ denote the state of M(X) immediately before 7 occurs,
and let U’ denote the least ancestor of U in s’.write-lockholders. By Lemma 36, ¢ =
essence(visibley(7’,U)) is a well-formed schedule of X that can leave X in the state s’.map(L")
when applied to an initial state. By the preconditions for the operation 7 of M(X),
¢CREATE(U)r is a schedule of X, which is well-formed since no operations of the access U
occur in the well-formed sequence ¢.

-

We now show that §' and ¢CREATE(U) are equieffective. Since each is a well-formed
schedule of X, it suffices by Lemma 29 to show that they are write-equal. Now $CREATE(U)
and visiblex('y’,U) are write-equal, so we need only show that visiblex(v’,U) and §' are write-
equal. Since U is visible at X to T in a, any access visible at X to U in 4’ must be visible at X
to T in a, so the events in visiblex(q’,U) are a subset of the events in 4. Now, by the
preconditions for 7 as an operation of M(X} every element of s'.write-lockholders is an ancestor
of U. So if REQUEST _ COMMIT(V,v) occurs in 3" for a write access V to X, then Lemma 35
implies that V must be committed at X to lea{V V1) in ~ {since V i« not an orphan at X in -,
as it is visible at X to T in a). Thus V is visible at X to U in . so
REQUEST _ COMMIT(V,v) occurs in visible (7", U).  Also all REQUEST _ COMMIT events
for write accesses in visiblex(q',U) occur in the same order as in a, and similarly the
REQUEST _ COMMIT events for write accesses in 4" occur in the same order as in a. Thus :
visiblex('y’,U) and @’ are write-equal, completing the proof that ¢CREATE(LU) and J° are i
equieffective.

Since ¢CREATE(U)r is a well-formed schedule of X and 3 - d'r is well-formed. the

definition of equieffective implies that 8 is a well-formed schedule of X, as required. Thus, by ::
induction, visibley(a,T) is a well-formed schedule of X. O -

~

-

6.2, Generic Scheduler N

The generic scheduler is a very nondeterministic automaton. It passes requests for the creation of suh-

.
Al

transactions or accesses to the appropriate recipient, passes responses back to the caller and informs

: . . ~

nhyects of the fate of transactions, but it may deln) such messages for arbitrary lengths of time or =

rl

k)

-

»

.

“d

T4

T4

- “J
. - -~ - -

3 " ] o A T T I I A T LI I Sl IO A IR UL S RN S Py S S Y i e S

2#':1'3_4";"';" :’: :’:P" :ﬁ.ﬂ:} e :",'\."A.‘f\"\.‘G\:‘:\.’._n.f&':\."_\‘:\':s':;.':-.‘._\"\J‘\' Attt el At A A tata e N Y L PP LW AR




\-(‘,_-I'__..' 4 Ry ./'\J‘ I'.'-r‘\-"_'fl.J' .r_‘.‘

unilaterally decide to abort a subtransaction which has been created. Moss [Mo] devotes considerable

effort to describing a distributed implementation of the scheduler that copes with communication failures
and loss of system information due to crashes, yet still commits a subtransaction whenever possible. These
concerns are orthogonal to the correctness of the data management algorithms and we do not address

them here.®

The generic scheduler has nine operations:

Input Operations:
REQUEST _ CREATE(T)
REQUEST _ COMMIT(T,v)

Output Operations:
CREATE(T)
COMMIT(T), T 5 To
ABORT(T), T # T0
REPORT _ COMMIT(T,v), T # To
REPORT _ ABORT(T), T T0
INFORM _ COMMIT _AT(X)OF(T), T # To
INFORM_ ABORT _ AT(X)OF(T), T # T0

These play the same roles as in the serial scheduler, except for the INFORM_ COMMIT and
INFORM _ ABORT operations, which pass information about the fate of transactions to the R/W

Locking objects.

Each state s of the generic scheduler consists of six sets: s.create requested, s.created,
s.commit _requested, s.committed, s.aborted and s.returned. The set s.commit_requested is a set of
(transaction,value) pairs, and the others are sets of transactions. All are empty in the initial state except

for create _requested, which is {T}.

The operations are defined by pre- and postconditions as follows:

REQUEST _ CREATE(T)
Postcondition:
s.create _requested = s’.create _requested U {T}

REQUEST _ COMMIT(T,v)
Postcondition:
s.commit_requested = s’.commit_ requested U {(T,v)}

CREATE(T), T a transaction
Precondition:

T € s’.create _requested - s’.created
Postcondition:

9’I‘he generic scheduler is very similar to the weak concurrent controller of [LM]. 1t differs slightly in the names of its operations,
in the separation of return and report operations, and in the conditions under which CREATE operations are permitted to occur.
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s.created = s’.created U {T}

COMMIT(T), T 5 T,
Precondition:

(T,v) € 8’.commit __requested for some v

T & s’.returned

children(T) N s’.create __requested C s’.returned
Postcondition:

s.committed = 8’.committed U {T}

s.returned = s’.returned U {T}

ABORT(T), T # T,
Precondition:
T € s’.create-requested - s’.returned
Postcondition:
s.aborted = s’.aborted U {T}
s.returned = s’.returned U {T}

REPORT _ COMMIT(T v), T ## T,
Precondition.

T € s’.committed

(T,v) € s’.commit _ requested

REPORT _ ABORT(T), T T0
Precondition:
T € s’.aborted

INFORM _ COMMIT _ AT{X)OF(T), T To
Precondition:
T € s’.committed

INFORM _ABORT _AT(X)OF(T). T # T0
Preconiition-
T € =".aborted

The followii.; lemma relates the state of the generic scheduler to its sehiedule.

Lemma 38: Let a be a schedule of the generic schieduler, and let s be a state which can
result from applying a to the initial state s, Then the following conditions are true

1. T is in s.create _requested exactly if a contains a REQUEST _CREATE(T) event.

2. T is in s.created exactly if a contains a CREATE(T) event

3. (T,v) is in s.commit_requested exactly if o contains a REQUEST CONNMIT(T v)
event.

4. T is in s.committed exactly if a contains a CONMMIT(T) event,

5. T is in s.aborted exactly if a contains an ABORT{T) event

6. s.returned = s.committed U s.aborted

7. s.committed N s.aborted @

An obvious but important property of the generic scheduler is given by the next lemma.

Lemma 30: If a 1~ a schedule of the generte scheduler then o contams it most one returu
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event for each transaction T.

5.3. R/W Locking Systems

The composition of transactions with R/W Locking objects and the generic scheduler is called a R W

Locking system, and its operations and schedules are called concurrent operations and concurrent
schedules, respectively.lo A sequence a of concurrent operations is said to be well-formed provided that
its projection at every transaction and R/W Locking object is well-formed. The following lemma is

proved in the same way as Lemma 8.

Lemma 40: If a is a concurrent schedule, then a is well-formed.

The following lemma is straightforward.

Lemma 41: Let a be a concurrent schedule. If T is a transaction that is not an orphan in o
and T’ is visible to T in o, then T’ is not an orphan in a.

Note that if a is a concurrent schedule then any INFORM _ COMMIT _ AT(X)OF(T) is preceded by a
COMMIT(T) event (by the scheduler preconditions) and similarly any INFORM _ ABORT _ AT(X)OF(T)
is preceded by ABORT(T). Thus, if T is visible at X to T’ in o then T is visible to T' in a, and if T is an

orphan at X in o then T is an orphan in a. Thus, visible,(,T) is a subsequence of visible(a,T)|X when

a is a concurrent schedule.

Two important properties of R/W Locking systems are given next.

Lemma 42: Let a = o’r be a concurrent schedule where = is REQUEST _ CREATE(T’),
COMMIT(T’) or ABORT(T’) for a child T’ of T. Then a’ does not contain a CONMMIT(T)
event.

Lemma 43: Let o be a concurrent schedule, T a transaction that is not an orphan in a and
M(X) a R/W Locking object. Then visible(ar,T)|X is a well-formed schedule of basic object X.

Proof: Let S denote the set of transactions with COMMIT events in a. Construct a
sequence § by appending to a a sequence of INFORM_ COMMIT _ AT(X)OF(U) events, where
the U give a post-order traversal of S. Since a contains a COMMIT(U) event for each Uin S, 8
is a concurrent sciiedule, and by LLemma 37 visiblex(ﬂ,T) is a well-formed schedule of X. Since
the INFORM _ COMMIT _ AT(X)OF(U) events at the end of g are in ascending order, and
occur for every U that has committed to T in B, visible (4. T) —= visible(4,T)|X. Also
visible(3,T) = visible{a,T) since INFORM _ COMMIT operations have no influence on what
transactions are visible to T. Thus visible(a,T)|X is a well-formed schedule of X. O

1000t that this usage differs from that in [LM].
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8. The Proof of Serial Correctness

We prove that a R/W Locking system generates schedules that are serially correct for each non-orphan
trarsaction T, by taking a concurrent schedule «, extracting the subsequence visibie{ct,T} of events whose
effects might have been detected by T, and then rearranging the operations in this to give a serial
schedule 8. The rearrangements permitted are those that transform one sequence into a write-equivalent!

one,

6.1. Write-Equivalence

Two sequence- of serial operations, v and +', are write-equivalent if
1. they contain the same events,
2. for each transaction U, 4|U = «'|U, and
3. for each basic object X, 4|X and +'|X are write-equal sequences of operations of X.

Thus, the rearrangements allowed include interchanging the order of two events of different transactions
or objects, and also interchanging the order of events of a single object, provided that they are not both
REQUEST _ COMMITs for write accesses. By the semantic conditions of Section 4.3, such
rearrangements at objects are such that the difference between the orders is not detectable by any later

operations of that object. This property is expressed by the following lemma.

Lemma 44: If a and 7 are write-equivalent sequences, and a]X and ,3|X are well-formed
schedules of X for each basic object X, then a|X and 8|X are e quieffective sequences.

When we use this lemma, a and # will each be either a serial schedule or the subsequence of a
concurrent schedule visible to a transaction, and so the hypothesis that afX and 3|X are well-formed

schedules of X will be satisfied for all basic objects X, by Lemmas & and 43.

Write-equivalence is obviously an equivalence relation  We have ome straightforward results

Lemma 45: If a and 7 are sequences of operations that are write-equivalent, then Jo is
write-equivalent to a¢ for any sequence ¢ of operations.

Lemma 486: If a and S are serial schedules that are write-equivalent and a¢ 1s a serial
schedule then 8¢ is a serial schedule.

Proof: From Lemma 45 we see that for any non-access transaction U, go|U == aoU which
is a schedule of U, since a¢ is a serial schedule. For each basic object X, by Lemma 44 o|N s
equ ~ffective to B|X, so B¢|X is equieffective to ao|X, and since a »{X is a schedule of X, =0 1«
A¢|X. Thus, we need only show that 8¢ is a schedule of the serial scheduler. For 3 this is a
hypothesis of the lemma, and events in ¢ are enabled at the serial scheduler. because by
Lemma 7 the preconditions of operations of the serial scheduler depend only on the presence or
absence of operations in the preceding schedule. not on the order of those events. T

ti L
this notion is a generalization of e puivairnse as defined 1 LM

- A SO St e o o SUHASEAR W
N IO A0 A M A N A A A A N R U A RN B LI T VR YR, WA, A W WS AL L TRV LA VA L DL AR

a

1
N
N
L)

SN

AR

P4 {l/‘l ’




,!"’ RO KU 0 a0 a2 0% 870 S 24 fta Bt AR E R it b At s m et i tat deh ek et S Al BR LR At SA G AR Lg R LA R A RA LEL L LA LA EL UL I SR LA
)
’
K

31
il
t
[
e
;. 8.2. A Technical Lemma
'
' In this subsection, we prove a re<olt csimilar to l.emma 19, for use in the proof of Lemma 48 in Section
" 8.3
:i Lemma 47: Let a be a concurrent schedule, and let T and T' be two non-orphan
o'. transactions with T> visible to T in «. Let 8 and /31 be serial schedules such that 3 is write-
o equivalent to visible(a,T) and B, is write-equivalent to visible(a,T"). Then v = 5,(3- 3,) is a
K serial schedule that is write-equivalent to visible(a,T).
’ Proof: First we prove that §’ = visible(8,T’) is write-equivalent to ﬂl. By Lemma 15 and
R Lemma 13, 8’ and ﬂl contain the same events. For any basic object X, write(,3’|X) -
" write(f, |X) since REQUEST _ COMMIT events for write accesses to X occur in J' in the same
"" order as they occur in 3, which is the same as the order they occur in a, which is the same as
b the order they occur in ﬂl. For any transaction U that is visible to T" in o {and hence in J).
i B|U = B|U = a|U, by Lemma 14 and write-equivalence, and similarly 8,[U = o[l On the
K other hand, if U is not visible to T’ in «, #'|U and BI\U are both empty.
;‘ By Lemma 19, 8'(8 - 8’) is a serial schedule. Since 3- 8" = 3 - dl (as 8" and 3, contain the
:: same events) and S’ is write-equivalent to ﬂl, we deduce from Lemma 46 that ~ is a serial
: schedule.
2 Next, we prove that write(visible{a,T’)|X) is a prefix of write(visible{a,T)|X} for any obhject
f- X. Suppose that visible(a,T) contains a REQUEST _ COMMIT(U u) event for a write access U
'’ to X that is not in visible(a,T’). Let REQUEST _COMMIT(L ,u’) be a subsequent event,
4

\ where U’ is a write access to X that is visible to T in a. We must show that U’ is not visible to
T’ in a. Consider the prefix é§ of a that precedes the REQUEST COMMIT(U" u'}, and let s
denote the state of the R/W Locking object M(X) after 6. If we denote by U™ the highest

7 ancestor of U to which U has committed in o, then U” is a proper descendant of lca(U' . T"},
' since U is not visible to T’ in a. Then the highest ancestor of U to which U is committed at X
' in § must be a descendant of U”, and so by Lemma 35 some descendant of L is in s.write-
" lockholders. By the preconditions for the operation REQUEST _ COMMIT(U"u’) of M(X}), U”
must be a descendant of U”, and therefore U’ is not committed in a to lca(lU"". T} — lca(U”.T")
. = lca(U,T’). Therefore U’ is not visible to T’ in a, establishing that write(visible(a T")|X) is a K
< prefix of write(visible(a,T)|X). D
4
.; Now we show that ~ is write-equivalent to 4. They clearly contain the same event<. since ‘;
< ' every event of ﬂl occurs in 3 (because any operation visible to T" 1a a 1s also visible to T 1n a o
by Lemma 12). If P is a basic object, wriLe(Bl]P) write(visible{a T7)|P’) 18 a prefix of j
7 write(visible(a,T)|P) == write(3|P). so that write(+|P) = (write(ﬁ‘|P))(wrile(di}’) - write .4l|l’)) 1
$ = write(J|P). If P is a transaction that is visible to T" in a then 3 P’ visible(a TP :;
f alP = visible(a,T)|P = S|P, so 7[P = (3,[P)(3IP - 8,|P) - S|P Ou the other hand (f ' 1s a ff
o transaction not visible to T’ in o then ,’il|P is empty, so trivially 5] 3P ‘
1
) Since ~ is write-equivalent to A, it is write-equivalent to visible(aT) (7 -
. g
X
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6.3. The Main Results
We are now ready to prove that R/W Locking systems are serially correct for every transaction that is

not an orphan. We actually state a stronger property that carries useful invariants through the

induction.

Lemma 48: Let a be a concurrent schedule, and T any transaction that is not an orphan in
a. Then there is a serial schedule § that is write-equivalent to visible{a,T).

Proof: The proof follows the outlines of that of the main theorem of [LM'. We proceed by
induction on the length of a. As before, let a = a'wr. We must show that there is a serial
schedule 8 that is write-equivalent to visible(a,T). We can assume that transaction(r) is
visible to T in a. There are seven cases, and in each we relate visitle(a,T) to visible{a’.U) for
one or more transactions U, and build 3 from serial schedules write-equivalent to visible(a"U).

{1} = is an output operation of a non-access transaction T’
Since T is not an orphan in a’, the inductive hypothesis implies the existence of a serial
schedule 8’ that is write-equivalent to visible{a’.T). Let 8 = A'wr. We will show that Jis a
serial schedule that is write-equivalent to visible(a T}. By Lemma 1. to check that 3 is a serial
schedule we need only check that 8'»|T’ is a schedule of T’. However 3'|T’ = visible(a” T){1"
= o’|T’ by Lemma 14 (since T' is visible to T). Thus #'m|T’ = a'x|T’ = a|T’, which is a
schedule of T’. Thus, 3 is a serial schedule.

s

N

By Lemma 18, visible(a,T) = visible(a’, T)r and since 3 is write-equivalent to visible(a’ T), t.
we may apply Lemma 45 to deduce that g is write-equivalent to visible{a . T). :';
\-
(2) » 15 an output operation of a R/W Locking object M(X). 3;
Since T is not an orphan in o’ the inductive hypothesis implies the existence of a serial ’
schedule 3' that 1s write-equivalent to visible{a',T). Let 3 = ,3°m. We will show that 3 is a o
serial schedule that is write-equivalent to visible{a,T). By Lemma I, to check that 3 is a serial :z-‘
schedule we need only check that #'w|X is a schedule of X. However, Lemma 44 implies that ::
3'IX is equieffective to and contains the same events as visible(a’, T)|X. Now visible(a’, T)n|X S

= visible{a’® T)|X = visible{a,T}|X, which is a schedule of X by Lemma 43. Thus by Lemma

=

‘-l

24, 8'miX is a schedule of X Thus # is a serial schedule. r
-

S

Since visible(a,T) = visible(a’T)r, 8 = 3'r. a+d I3 is write-equivalent to visible{(a'T), we -~
may apply Lemma 45 1o deduce that 3 is write-equivalent to visible{a,T). -

"'

s
Ipas
A

(3) » 18 a CREATE(T’) operation.
Then transaction(r) = T’ and so T 1s visible to T in o By well-formedness and the
~cheduler preconditions, any operation of a proper descendant of T must he preceded Ly a
REQUEST _ CREATE for a child of T, and by well-formedness any operation of T7 must

i

follow CREATE(T') Thus, m s the first event whose transaction 1s a descendant of T7, «o 17 -

T By Lemma 21. parent(T) is not an orphan in a, and hence i a’. ~o the inductive o
hypothesis implies the existence of a serial schedule 37 that = writesequivalent 1o iy
visible{a ' ,parent{T)). Let J A'r We will show that 3 15 a serial schedule that s wigte-

equivalent to visible{n, T).

RS
..' :':‘ *

‘Ll
LAY

To show that 3 s a senial schedule, we need only check that 3'w is a schedule of the servil
scheduler If <" 15 the state of the senal scheduler after an execution with operation sequence .37,
we will show that 7 s enabled 1n s We note that © was enabled in the state 57
scheduler that arose fron the execution with operation sequence
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preconditions for « in the generic scheduler and from Lemma 38 we see that a’ must contain
REQUEST _ CREATE(T) but not CREATE(T), and since T is not an orphan in a, no
ABORT(T) event occurs in a'. These conclusions also hold for visible(a',parent(T)) since
REQUEST _ CREATE(T) occurs at parent(T) and any operation absent in a’ must be absent
from its subsequence visible(a’,parent(T)). Since 8’ is write-equivalent to visible(a’,parent(T))
it contains the same events, and so 3’ contains REQUEST _ CREATE(T) but no CREATE(T)
or ABORT(T) event, and Lemma 7 shows that T € s’.create-requested - (s'.created U
s’.aborted). Also for any U € sibling(T), if U € s’.created then CREATE(U) occurs in 3 and
hence in visible(a’,parent(T)), so U must be visible to parent(T) in a’, so COMMIT(U)) must
occur in o’ and thus in visible(a’,parent(T)) (as it has transaction parent(U) = parent(T)). and
so COMMIT(U) occurs in §’. By Lemma 7, U € s’.returned, establishing that sibling(T) N
s’.created C s’.returned. Thus we have checked that 7 is enabled in s’, and therefore 8 = 3’
1s a serial schedule.

Since visible(a,T) = visible(a’,parent(T))r, 8 = pA'm and B is write-equivalent to
visible(a’,parent(T)), we may deduce from Lemma 45 that 3 is write-equivalent to visible(a,T).

(4) = is a COMMIT(T") operation.
Then T’ = parent(T’) is visible to T in a, since transaction(r) = T”. Lemma 42 says that
no COMMIT(T") occurs in a’, and so T must be a descendant of T (since T is visible to T).
Also, by Lemma 41, T” is not an orphan in « and so also T is not an orphan in a’. From
this and Lemma 39, we deduce that T’ is not an orphan in a’. We distinguish two cases,
depending on whether T is a descendant of T’ or not.

Assume first that T is a descendant of T’. Then visible(a,T) = visible(a’,T)r, and by the
induction hypothesis there is a 8’ that is serial and write-equivalent to visible(a’,T). Let 3 =
#'w. We show that 8 is a serial schedule that is write-equivalent 1o visible{a,T). To show that
B is serial, we must show that n is enabled at the serial scheduler after 3’. The serial scheduler
preconditions and Lemma 7 show that we must prove that REQUEST _ COMMIT(T’,v) occurs
in ', that no return for T' occurs in 3', and that for every child U of T' with a
REQUEST _ CREATE(U) in 8’ there is a return event in 4’. Since 7 is enabled in the generic
scheduler after a’, each of these is true with a’ replacing #’. Since all these operations are
visible to T in a’, all these statements are also true of visible(a’,T) and thus of the write-
equivalent sequence §’, as required. Now we note that Lemma 45 proves that 3 = 3’1 is write-
equivalent to visible(a,T) = visible(a’,T)r.

In the other case, when T is not a descendant of T’ the inductive hypothesis yields three
serial schedules, 8’, #’' and 4, that are write-equivalent to visible(a’,T’), visible{a'’T) and
visible(a’,T”’) respectively. Let B, =208 -~vand B, = 3" -~ Let 8= 78,73, We show that
A is a serial schedule that is write-equivalent to visible(a,T). That 3 is serial follows from
Lemma 27, provided we can show that:

(4.a) qﬂln is a serial schedule,

(4.b) 7ﬂ2 is a serial schedule,

(4.c) '7/3l = visible(qﬂl,T'),

(4.d) 8, = visible(7B2,T),

(4.e)y= visible(’yﬂl,T”) = visible(-y;i,‘,,’l‘”) and

{4.f) if any basic object X has an output operation in [3,2 then every operation in BlIX 1s
transparent.

(4.a) By Lemma 47, 78, is a serial schedule (and is write-equivalent to visible(a’,T")). We
must therefore show that 7 is enabled at the serial scheduler after '7,’31. The serial scheduler
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34
preconditions and Lemma 7 show that we must prove that REQUEST _ COMMIT(T’.v) occurs
in '1ﬂl {or some v, that no return for T’ occurs in 7;3[, and that for every child U of T with a
REQUEST _ CREATE(U) in 7B, there is a return event in 78, Since m is enabled in the
generic scheduler after a’, each of these is true with a’ replacing '7/91, Since all these operations
are visible to T’ in a’, all these statements are also true of visible(a’,T") and thus of the write-
equivalent sequence 7ﬂl, as required. Thus 7ﬁl7r 1s a serial schedule. We also note that Lemma
45 proves that Y8, 7 is write-equivalent to visible(a,T") = visible(a’, T’)x.
(4.b) By Lemma 47, 78, is serial (and write-equivalent to visible(a’,T)).

’ Parts (4.c)-(4.¢) are immediate.

N
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\: (4.f) We prove that if a basic object X has an output operation in 3, then no event in 3, X is

. 2

a REQUEST _ COMMIT for a write access. Suppose this were false. Then 3, contains a
REQUEST_CONIMIT(VI,VI) for V| a write access to X, and B, contains a
REQUEST_COMNHT(VTVQ) for V,‘2 an access to X. Since V| is visible in a to T’ but not to
T, Vl must be a descendant of T’, and not an orphan in a, and \’1 must not be committed at
X to T” in a. By Lemma 35, some descendant of T’ is in s.write-lockholders, where s is a state
of M(X) after applying a. Similarly V2 must be a descendant of some sibling U of T’ but not
committed at X to T” in «, so by Lemma 35, some descendant of U is in s.readlockholders U
s.write-lockholders. But these two statements about lockholders contradict Lemma 34.

Now we must prove that 3 is write-equivalent to visible(a,T). Since any transaction visible
to T in o is either visible to T in o’ or visible to T’ in a’ and if both then it is visible to T” in
a’, it is clear that 8 and visible(or,T) contain the same events. If P is a basic object, either 3
contains no output operations of P or else no operation in ﬂl[P is a REQUEST _CONMMIT for
a write access. In the first case write(ﬂzlf’) is empty, and since write('yﬁlnlf’) =
write(visible(a’,T’)[P), we have write(8|P) = write(visible(a,T)|P). In the second case
write(8, [P) is empty, and since write(18,[P) = write(visible(a".T)|P), we again have write( 3P
= write(visible(a,T)|P). If P is a non-access transaction that is not visible to T in a. then no
operations occur at P in either 8 or visible(a,T). For P any non-access transaction that is
visible to T in a, either P is visible to T in a’ or P is visible to T’ in a’. In the first case, 3,|pP
is empty so S|P = —7,31#]P = visible(a,T"})|P since we saw above that 78,7 and \-isible(u.:l")
are write-equivalent, and visible(a,T’)|]P == a|l> = visible(a,T)|P. Similarly in the second case
ﬂlrrlP is empty and S|P = ’732|P = visible(a’ T)|P = visible(a.T}[{P>. In every case, we have
checked that 8|P = visible{a,T)|P. Thus 8 and visible(a.T) are write-equivalent.
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(5) m is an ABORT(T’) operation. _;
Then T = parent(T’) is visible to T in «a, since transaction(r) T Lemma 42 savx that 4
COMMIT(T) does not occur in a’ and so T must be a descendant of T (since T is visible 10 j
T). Also by Lemma 41, T is not an orphan in a and so also T"" is not an orphan in a’. Since '
T is not an orphan in a, T is not a descendant of T". Thu~ the inductive hypothesis vields two -
serial schedules, 8’ and +, that are write-equivalent to visiblela'T) and visible(a 1) i’
respectively. Let Bl = 3" - 4 Let 3 =— 7”31‘ We show that 3 i« a serial sehedule that -
write-equivalent to visible(a,T). That 3 is serial follows from Lemma 2% provided we ean “:'
show that: -
(5.a) vy is a serial schedule, -

(5.b) 43, is a serial schedule. K
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(5.) 48, = visible(+8,,T),
(5.d) v = visible(~,T") — visible(‘yﬂl,T”)

(5.a) Since ~ is a serial schedule, we must show that = is enabled at the serial scheduler after
7. The serial scheduler preconditions and Lemma 7 show that we must prove that
REQUEST _ CREATE(T’) occurs in ~, and that no CREATE(T’) or ABORT(T") occurs in 7.
Since 7 is enabled in the generic scheduler after a’, a’ contains a REQUEST _ CREATE(T")
event, and since transaction(REQUEST _CREATE(T’)) = T”, REQUEST _ CREATE(T") is
in visible(a’,T”) and hence in 4. By Lemma 39, T’ is not committed in a’, so that any
CREATE(T’) event in a’ is not visible to T”, and so does not occur in visible(a’, T”) and
hence does not occur in v. By Lemma 39, there is no ABORT(T’) event in a’, so ABORT(T")
does not occur in 4. Thus 47 is a serial schedule. We also note that Lemma 45 proves that yr
is write-equivalent to visible(a,T") = visible(a’, T"}x, since 4 and visible(a’, T’) are write-
equivalent.

(5.b) By Lemma 47, 44, is a serial schedule (and it is write-equivalent to visible(a’,T)).
Parts (5.c) and (5.d) are immediate.

Now we must prove that g is write-equivalent to visible(a,T). Since any transaction visible
to T in a is visible to T in o', and either visible to T in a' or not, it is clear that 3 and
visible(a,T) contain the same events. If P is a basic object, since write(’yﬁllp) =
write(visible(a’, T’)|[P) we have write(3|P) = write(visible(a,T)[P). For P any non-access
transaction, S|P = 78, [P = visible(a’,T)|P = visible(a,T)|P, since x|P is empty and 78, and
visible(a’,T) are write-equivalent. This completes the demonstration that 8 and visible(a,T)
are write-equivalent.

(68) mis REPORT _ COMMIT(T,v)

Since T is not an orphan in a’ there is a serial schedule 8’ that is write-equivalent to
visible(a’,T). Put 8 = #’r. By the preconditions of the generic scheduler and Lemma 38,
REQUEST _ COMMIT(T’,v) and COMMIT(T’) occur in a’. Since the report is in
visible(a’,T), parent(T’) is visible to T in a’; thus, COMMIT(T’), and hence
REQUEST _ COMMIT(T’,v), are in  visible(a’,T). So COMMIT(T') and
REQUEST _ COMMIT(T" ,v) occur in #’. The serial scheduler preconditions and Lemma 7
imply that = is enabled after 3’ at the serial scheduler, and so by Lemma 1 and Lemma 45, 3
is a serial schedule that is write-equivalent to visible{a,T) = visible(a".T}r.

(7) = is REPORT _ABORT(T")
This is just like case (8).

Thus in every case we have produced a serial schedule J that is wre-equivalent to
visible(a,T). O

Theorem 49: Every concurrent schedule is serially correct for every non-orphan non-access
transaction.

Proof: Let T be a transaction that is not an orphan in the concurrent schedule o By
Lemma 48 there is a serial schedule 8 that is write-equivalent to visible(n. T)  Then o T
visible(e,T)|T by Lemma 14, and by write-equivalence, visible(a . T)IT  3|T O

In particular, the external environment, modelled by TO, receives responses from transactions that are

consistent with a serial exccution.
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Corollary 50: Every concurrent schedule is serially correct for T, ~%

-
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7. Conclusions and Further Work °

We have used /O automata to provide clear formal description: of all the components of a nested :.‘;
transaction system that uses Moss's algorithm to manage data. We have shown how to take any schedul« ::_’
of such a system, extract a subsequence (including all the operations of a given non-orphan transaction). :

and rearrange the events in the subsequence to give a write-equivalent serial schedule. Thus we have
demonstrated that any schedule of a R/W locking system is serially correct for every non-orphan

transaction.

This work by no means exhausts the topic of concurrency control and recovery in nested transaction
systems. Work is currently underway on a number of issues orthogonal to the locking techniques
considered in this paper, for example replication [GL| and orphan elimination [HLMW .. We also hope to

extend the results of this paper in several ways. One natural extension is to locking protocols for abstract

D
data types that allow more concurrency than R/W locking by using more semantic information about the ':
operations. Such protocols have been studied in transaction systems without nesting \Wej. In generalizing A
these protocols to handle nested transactions, it appears that equieffectiveness can be used to provide a :-:.,.
natural definition of commutativity (or non-conflict) between operations, which can then be used to prove ~
[* %

v S

the correctness of an algorithm that generalizes conflict-based locking to nested systems.

e
Other aspects of real systems that we have not addressed in this paper, but expect to study in the '5"
future, are liveness properties and resilience to system crashes. We have proved that any response to a ‘.’-:’
R/W locking system is correct, but for a practical system we also need to know that a response will be 2‘:
produced {and, we hope, rapidly produced.) Lynch and Tuttle LT, discuss how to express liveness results ..‘
in terms of I/O automata, but phenomena such as deadlock in transaction systems make it difficult to ‘_:::'
3N

s ' s

guarantee strong liveness properties. At best, any guarantees that progress can be made will he

[
N
[ .

probabilistic. System crashes that cause information to be lost {such as lock tables) are also a reality of
practical systems. We plan to extend the model presented in this paper to describe crashes. and to

analyze algorithms that ensure resilience to crashes.
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