
RD-RI91 961 NEESTED TRANSACTIONS AMl READ/WRITE LOCKINO(U) 1",
MASSACHUSETTS INST OF TECH CANSRID6E LAS FOR COMPUTER
SCIENCE A FEICETE ET AL. APR 6? MIT/LCS/TM-324

UNCLSSIFIED N465-iC-SIBF/O 12/5 NL

EEmsonhnhmmhEEEEmhmhhnnhnE
nnmElmnEl

I jlll E o13', 28

1.8*

1-25 L-

OilC fILE CAU'

LABORATORY FOR MASSACHUSETTS OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-324

NESTED TRANSACTIONS AND
READ/WRITE LOCKING

.

'.

ALAN FEKETE
NANCY LYNCH

MICHAEL MERRITT
WMLIAM WE IL

OTIC
.drtELECTED "-"

~~APREL 1987 .
II

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

- - • , - , - ", : " " , ." ... : , . .. : ' , ' .- " : ,..,...-..

A m ove for ub.5

Dwx~uti' u td 3 1 10

SEUI MCASFICATION OF T HIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATIONDOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-324 N00014-85-K-0168 and N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

8c. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO NO NO ACCESSION NO

11. TITLE (include Security Classification)

NESTED TRANSACTIONS AND READ/WRITE LOCKING

12 PERSONAL AUTHOR(S)

Fekte. Alan Lynch. Nancy, Merritt, Michael, and Weihl, William

13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Technical FROM _TO 1987 April 38

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP J- nested transactions, atomic actions, concurrency control,

recovery, databases, serializability, readlocks, write-

locks
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We give a clear yet rigorous correctness proof for Moss's algorithm for managing data

in a nested transaction system. The algorithm, which is the basis of concurrency control

and recovery in the Argus system, uses read- and write-locks and a stack of versions of

each object to ensure the serializability and recoverability of transactions accessing the

data. Our proof extends earlier work on exclusive locking to prove that Moss's algorithm

generates serially correct executions in the presence of concurrency and transaction

aborts. The key contribution is the identification of a simple property of read opera-

tions, called transparency, that permits shared locks to he used for read operations.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
G UNCLASSIFIED/UNLIMITEO 0 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAG
All other editions are obsolete

*US. a~ in *1111111111 0111111111 111111WIS 4 0

Unclassified

a " =q r wr * =
' .

• L ' " • . ". % -".

'.,

Nested Transactions and Read/Write Locking

Alan Feketel I

Nancy Lynch 3

Michael Merritt4

William Weihl-

Abstract: We give a clear yet rigorous correctness proof for Moss's algorithm for managing data in a

nested transaction system. The algorithm, which is the basis of concurrency control and recovery in the 4

Argus system, uses read- and write-locks and a stack of versions of each object to ensure the serializability S

and recoverability of transactions accessing the data. Our proof extends earlier work on exclusive locking

to prove that Moss's algorithm generates serially correct executions in the presence of concurrency and

transaction aborts. The key contribution is the identification of a simple property of read operations,

called transparency, that permits shared locks to be used for read operations. p

Keywords: nested transactions, atomic actions, concurrency control, recovery, databases, serializability,

readlocks, writelocks.

March 5, 1987

Q 1987 Massachusetts Institute of Technology, Cambridge, MA 02139

.

-,.

A preliminary version of this work appeared in the Pro-eedings of the 6th ACM Symposium on Principles of Database Systems.
The work of the second author was supported in part by the Office of Naval Research under Contract N00014-85-K-0168, by the
Office of Army Research under contract DAAG29-84-K-0058, by the National Science Foundation under Grants MCS-8306854,
DCR-83-02391, and CCR-8611442, and by the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-83-K-0125. The work of the fourth author was supported in part by the National Science Foundation under Grant 5
DCR-8510014, and by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

2 Department of Mathematics, Harvard University, Cambridge, Mass.

3 Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mass.

4 AT&T Bell Laboratories, Murray Hill, New Frsey. I

5Laboratory for Computer Science, Massa,'husetts Institute of Technology, Cambridge, Mass.
p.,

l¢.K ,,, '," '. '" "' ,,
€-

2_,d'""- .,. ,,...,... .. • ,,,' . ,,,. .. , ,'.,. , .',.-.. ,,,.- ,.. _.-.. ., % --..-.. , ,,-..-.,. .. .- ,. ' ,

* -h

1. Introduction
A major part of database research over several years has been the design and analysis of algorithms to

maintain consistent data in the face of interleaved accesses, aborts of operations, replication of

information and failures of system components. The most popular and simple protocol is two phase JA

locking with separate read and write locks; other methods include arbitrary conflict-based locking,

timestamp-based techniques, and locking that uses special structure of the data (e.g. a hierarchical

arrangement) [Gr,T,KS,Ko,\Ve]. A powerful theory has been developed to prove the correctness of these

algorithms, based on the idea that a protocol is correct if it ensures that all executions are equivalent to

serial executions [EGLT,P,BG]. This theory proves serializability by showing that a precedence graph

contains no cycles.

Recently, some ideas in database system design and more general distributed system design have led

several research groups to study the possibility of giving more structure to the transactions that are the I.N
J.'

basic unit of atomicity. When a transaction can contain concurrent operations that are to be performed

atomically, or operations which can be aborted independently, we say that the operations form

subtransactions of the original transaction. Thus we consider a system where transactions can be nested.

This idea was first suggested by Davies under the name spheres of control [D]. A primitive example of

this concept is implemented in System R, where a recovery block can be aborted and the transaction

restarted at the last savepoint. In general distributed systems like Argus [LiS,LHJLSW] or Clouds Aj, the N

basic services are often provided by Remote Procedure Calls which, at their best ("At Most Once" P.
semantics), are atomic. Since providing a service will often require using other services, the transactions

that implement services ought to be nested.

The implementation of a nested transaction system requires extending the algorithms that have

previously been considered for concurrency control, recovery and replication. The work of Reed [R]

extended multi-version timestamp concurrency control to provide nested transaction data management.

Moss [Mol extended two phase locking with separate read and write locks to handle nesting, and this %

algorithm is the basis of data management in the Argus system implemented at MIT. 0

This paper is part of a major research effort to offer clean, readable descriptions of algorithms for 55

managing data in a nested transaction system, together with rigorous proofs of the correctness of these

algorithms. Other parts of the project include studying replicated data management algorithms, orphan r

elimination algorithms and general atomicity of abstract objects. All this work is based on s simple model

of concurrent systems using I110 automata and an operational style of reasoning about their schedul-s.

The first fruits of this program are detailed in JLM1, which proves the correctness of exclusive locking,

and provides a basic framework for presenting the ideas of this paper.

I I (-t *1 I

2

This paper's contribution is threefold. First, it proves for the first tine the coriectness of Moss'

algorithm, an algorithm which has been used in practice. Our discussion covers both concurrency control

and recovery from aborts. However, we do not consider all the failure cases that the real system must

deal with, as our model does not yet include crashes that compromise the system state. Second, we

provide technical definitions (for equieffectiveness and transparency) that seem to capture exactly those

properties of read operations depended on by the algorithm. Third, this paper provides another example

of the power and value of the basic model of serial correctness first proposed in [LM!, and of the

operational style of reasoning with I/O automata.

In this paper we first review the I/O automaton model of computation. This is very similar to models

like Communicating Sequential Processes [IHo, in that automata interac' by synl'hlcnizing on shared

operations. The main difference from other models is that we distinguish the input and output operations

oi each automaton. Any operation shared between components of a system can be an output of at most

one component, and that component is in control of the operation, because no automaton is allowed to

refuse to execute an input. Though automata have states as well as operations, we concentrate our

analysis on the sequence of operations performed (the schedule of the system) - this operational mode of

reasoning is quite different from assertional invariant methods used elsewhere in reasoning about

distributed systems, but we find it very powerful and yet simple for the set of problems we consider.

Next, we show how to use I/O automata to model the parts of a nested transaction system. Each

transaction is represented by an automaton, as is each data object. The actions of calling a

subtransaction, invoking an access to an object, and returning a result are each split into two operations,

one requesting the action and one delivering the request to the recipient. The request operation is an

output of the caller and an input to the scheduler (which acts as a communication system) while the

delivery operation is an output of the scheduler and an input of the recipient. Thus, each transaction

(and each object) shares operations only with the scheduler. A serial system is the result of composing

transaction and object automata with a serial scheduler, which runs the subtransactions of any

transaction sequentially (with no concurrency between sibling,,) and only aborts transactios before they

start running. The serial scheduler is very simple to understand and is , as the basis of our correctness

condition.

We then introduce a R,4V Locking systfm to model a system using Moss' locking algorithm to tnanage

data. We use a new sort of I/0 automaton called a I1 Locking Ajct, hich is like the object

automaton of the serial system. but which maintains h,,k t:d,les and 'erion,. of the ohi,.,-t so that it can

respond correctly when aborts occur. It also delays operati,,s until it v- 1wrimited to r-, pojit b. the
locking rules. We also use a new sort of scheduler called a gcneric .chdulr. %hich transmits requests to

the appropriate recipient Aith arbitrary delay, allowing sibling to run ,oncuri,.ntl) , . ,oit tfter

It

m l IF *1

3

performing some work. A RiW Locking system is the result of composing the transaction automata,

R/W Locking objects and generic scheduler

A R/W Locking system allows more concurrency than a serial system, but it is correct in the sense (first

suggested in [LM]) that each transaction that does not have an aborted ancestor is unable to tell whether

it is running in a R/W Locking system or in a serial system. The proof of this correctness condition is

the main result of this paper.

The proof proceeds by taking an arbitrary schedule of a R/W Locking system (a concurrent schedule)

and explicitly showing how to rearrange the operations to get a schedule of the serial system. The

permitted rearrangements (which do not alter the sequence of events at any transaction) are those that

are write-equivalent to the original sequence.

A key contribution of this paper is in identifying exactly the properties of read and write accesses that

are required to guarantee correctness of Moss' algorithm. Write accesses require no special properties.

However, it is necessary that read accesses leave the object in "essentially" the same state as they found

it. We define equieffective schedules to be those that leave the object in "essentially" the same state,

where "essentially" means "as far as later operations can detect". Then an object schedule with a read

access appended is required to be equieffective to the same schedule without the read access.

There have been several other attempts to provide rigorous proofs of the correctness of algorithms for

data management in nested transaction systems. The first was [Ly], which presented a model that

successfully handled exclusive locking, but which proved difficult to extend to more complicated problems

such as orphan elimination [Go]. The main deficiencies of this earlier model seem to be the lack of

distinction between inputs and outputs, and the lack of explicit representations for transactions and their

interfaces. These deficiencies were remedied in ILM], where the operational model discussed above was

defined; this paper again proved correctness of exclusive locking. This paper continues the work of [LM)

by dealing with an algorithm with separate read and write locks. (T e result of this paper impls a main

result of [LM], since when no accesses are dbtinguished as read accesses, Moss' algorithm degenerates into

exclusive locking.) A different program to study concurrency control in nested transaction systems has
been offered in [BBGLS,BBG], where a major motivation is to analyze protocols that operate on data at

different levels of abstraction, but where recovery is not considered. The argument for the correctness of

Moss' algorithm in [BBGJ considers only the locking rules and not the state maintenance methods, so

correctness is proved only in the absence of aborts. Concurrency control and recovery algorithms are also

analyzed in [MGG], but [NIGG! is also concerned mainly with levels of abstraction.

This paper uses many concepts from [LMI, but we have repeated everything needed to make it self-

contained, and indicated where definitions or details differ. In Section 2, we review the model of 1/O

P

*r 'r % - * 5 " S ". .

4

.,,

automata of [LT,LMI. In Section 3, we define the automata that make up the serial system, namely the

transaction automata, the basic object automata and the serial scheduler. In Section 4, we specify the

semantic conditions that read accesses must satisfy, using the technical notion of equieffective schedules.

In Section 5 we define the automata of the R/W Locking system, namely the R/W Locking objects (whirl

have code based directly on the algorithm of [Mo]) and the generic scheduler, and prove the main lemmas

that relate the schedules of R/W Locking objects to the schedules of the basic objects. Finally in Section

6 we prove that R/W Locking systems are serially correct at, tran-actions no ancestor of which has

aborted, and in particular at the root transaction which represents the external environment.

2. I/O Automata .'

The following is a brief introduction to a model which is described in [LM] and developed at length,

with -xtensions to express infinite behavior, in [,T].

All components in our systems, transactions, objects and schedulers, will be modelled by !/O automata.

An I/O automaton A has a set of state8, some of which are designated as initial states. It has opcrations, e

each classified as either an input operation or an output operation. Finally, it has a transition relation,

which is a set of triples of the form (s',wr,s), where s' and s are states, and 7r is an operation. This triple

means that in state s', the automaton can atomically do operation 7r and change to state s. An element of

the transition relation is called a step of the automaton. The output operations are intended to model the

actions that are triggered by the automaton itself, while the input operations model the actions that are

triggered by the environment of the automaton.

Given a state s' and an operation 7r, we say that ir is enabled in s' if there is a state s for which (s',y,,s) is

a step. We require the following condition.

Input Condition: Each input operation ir is enabled in each state s'.

This condition says that an I/O automaton must be prepared to receve any input operation at any tile

An execution of A is an finite alternating sequence s0, , r, 7I,s,, of state.s and oper'ilon- of

beginning and ending with a state. Furthermore, so is a start state of -, and each triple (<-.,,) which

occurs as a consecutive subsequence is a step of A. From any execuition, we can extract the sChidilth.

which is the subsequence of the execution consisting of operations only. Because tratiitiotis to different

states may have the same operation, different executions may have the saite schedule \Ve '..v th:t :i

schedule a of .A can leave A in state s if there is some execution of 7 %%ith schedule ,I and final state

We qay that an operation , is enablcd after a schedule , of i: If tiere .xo,>t a st;,tr s ouch t hat c:i

leave A; in state s and i" is enabled in s. Since the same operation may occur several times in an execution

or schedule, we refer to a single occurrence of an operation as an event.

a. %. % %,* %~*~*-

We describe systems as consisting of interacting components, each of which is an I/0 automaton. It is

convenient and natural to view systems as 1/0 automata, also Thus, we define a composition operation

for I/0 automata, to yield a new 1/0 automaton. A set of 1/0 automata may be composed to create a

sys~tem S, if the sets of output operations of the various automata are pairwise disjoint. (Thus, every

output operation in S will be triggered by exactly one component.) A state of the composed automaton is

a tuple of states, one for each component, and the start states are tuples consisting of start states of the

components. The operations of the composed automaton are those of the component automata. Thus,

each operation of the composed automaton is an operation of a subset of the set of component automata.

An operation is an output of the composed automaton exactly if it is an output of some component. (Thee

output operations of a system are intended to be exactly those that are triggered by components of the

system, while the input operations of a system are those that are triggered by the system's environment.)

During an operation 7r of a composed automaton, each of the components which has operation 7r carries

out the operation, while the remainder stay in the same state.

Am execution or schedule of a system is defined to be an execution or schedule of the automaton

composed of the individual automata of the system. If a is a schedule of a system with component A,

then we denote by alA4 the subsequence of a containing all the operations of .A. Clearly, alA is a schedule

of ..

The following lemma from [LMI expresses formally the idea that an operation is under the control of the
component of which it is an output.

Lemma 1: Let a' be a schedule of a system S, and let a = a'7r, where if is an output
operation of component A4. If a IA is a schedule of -A, then a is a schedule of S.N

Proof: Since alAi is a schedule of A4, there is an execution #3 of A with schedule alA. Let /'
be the execution of A consisting of all but the last step of /3. Similarly, since a' is a schedule
of S, there is an execution Iy of S with schedule a'. It is possible that A has an execution in Iy
which is different from IT, since different executions may have the same schedule. But it is
easy to show, by induiction on the length of -t, that there is another execution -y' of S in which
component -A has execution 13', and which is otherwise identical to -Y. The schedule of -Y' is a'.
Since 7r is not an output operation of any other component, 7r is defined from the state reached
at the end of -I', so that a a'7r is a schedule of S. 0

We say that automaton A preserves a property P of schedules of A if a =a'7r satisfies P whenever a is

a schedule A, a' satisfies P and if is an output of ..

3. Serial Systems
In this paper we define two kinds of systems: *serial systemns* and OR,'W Locking systems". Serial

systems describe serial execution of transactions. They are defined for the purpose of giving a correctness

condition for other systems, namely that the schedules of another system should look like schedules of the

serial system to the transactions. As with serial executions of single-level transaction systems, serial

4..

6

systems are too inefficient to use in practice. Thus, we will define R/W Locking systems, which allow ,

transactions to run concurrently or abort after performing some work; these system- use Moss' algorithm

to maintain locks and enough information to restore the states of objects after aborts occur.

In this section of the paper we define serial systems, which consist of transactions and basic objects

communicating with a serial acheduler. Transactions and basic objects describe u_;cr programs and data,

respectively. The serial scheduler controls communication between the other components, and thereby

controls the orders in which the transactions create children or access data. All the system components

are modelled as I/O automata. Most of this section is taken from ILMJ. with slight modifications to

accomodate slight changes in definitions.

We represent the pattern of transaction nesting by a systcin type, which is a set of transaction names.

The transaction names are organized into a tree by the mapping "parent)', with T as the root. In

referring to this tree, we use traditional terminology, such as child, leaf, least common ancestor (Ica),

ancestor and descendant. (A transaction is its own ancestor and descendant.) The leaves of this tree are

called accesses. The accesses are partitioned, where each element of the partition contains the accesses to

a particular object. The partition, including the names of the objects, is part of the system type. The "

tree structure can be thought of as a predefined naming scheme for all po-;sible transactions that might

ever be invoked. In any particular execution, however, only some of these transactions will actually take

steps. We imagine that the tree structure is known in advance by all components of a system. The tree

will, in general, be an infinite structure with infinite branching. 5%

The classical transactions of concurrency control theory (without nesting) appear in our model as the

children of a omythicalo transaction, T., the root of the transaction tree. (In work on nested

transactions, such as Argus, the children of T are often called "top-level" transactions.) It is very
04.

convenient to introduce the new root transaction to model the environment in which the rest of the
-.

transaction system runs. Transaction T O has operations that describe the invocation and return of the
0"

classical transactions. It is natural to reason about T in thc same way as about all of the othr

transactions. The only transactions which actually access data are the leav-s of the transaction tree, and

thus they are distinguished as accesseso. The internal nodes of the tree model transa(tions whose

function is to create and manage subtransactions, but not to access data directly.

We also assume that a system type includes a designated set V of val irs, to be used as return values of

transactions.

A serial system of a given system type is the composition of a set of 1 0 automata. This set contains a

transaction automaton for each inhrnal (i.e. non-leaf, non-access) node of the transaction tree, a ba.,ic

object automaton for each object, and a serial scheduler. These automata are described hvloA.

V--

7 p

3.1. Transactions

This paper differs from other work such as BRG] in that we model the transactions explicitly. A non-

access transaction T is modelled as an I/O automaton, with the following operations.

Input operations:
CREATE(T)
REPORT_ COMMIT(T',v), for T' a child of T, and v a value

REPORT ABORT(T'), for T' a child of T
Output operations:

REQUEST_ CREATE(T'), for T' a child of T

REQUEST_COMMIT(T,v), for v a value

The CREATE input operation "wakes up" the transaction. The REQUEST_CREATE output

operation is a request by T to create a particular child transaction." The REPORT COMMIT input

operation reports to T the successful completion of one of its children, and returns a value recording the

results of that child's execution. The REPORTABORT input operation reports to T the unsuccessful

completion of one of its children, without returning any other information. We call

REPORT_COMMIT(T',v), for any v, and REPORTABORT(T') report operations for transaction T'.

The REQUESTCOMMIT operation is an announcement by T that it has finished its work, and includes

a value recording the results of that work.

It is convenient to use two separate operations, REQUESTCREATE and CREATE, to describe what

takes place when a subtransaction is activated. The REQUEST CREATE is an operation of the

transaction's parent, while the actual CREATE takes place at the subtransaction itself. In actual systems

such as Argus, this separation does occur, and the distinction will be important in our results and proofs.

Similarly, we distinguish between a subtransaction's REQUEST_COMMIT, the actual COMMIT (which

is internal to the scheduler, see Section 3.3), and the REPORT_ COMMIT operation of the parent

transaction. 7 We leave the executions of particular transaction automata largely unspecified; the choice

of which children to create, and what value to return, will depend on the particular implementation. For

the purposes of the schedulers studied here, the transactions (and in large part, the objects) are "black

boxes." Nevertheless, it is convenient to assume that schedules of transaction automata obey certain

syntactic constraints. We therefore require that all transaction automata preserve well-formedness, as

6 Note that there is no provision for T to pass information to its child in this request. In a programming language, T might be
permitted to pass parameter values to a subtransaction. Although this may be a convenient descriptive aid, it is not necessary to
include it in the underlying formal model. Instead, we consider transactions that have different input parameters to be different
transactions. %

7 Note that we do not include a REQUESTABORT operation for a transaction: we do not model the situation in which a
transaction decides that its own existence is a mistake. Rather, we assign decisions to abort transactions to another component of
the system, the scheduler. In practice, the scheduler must have some power to decide to abort transactions, as when it detects
deadlocks or failures. In Argus, transactions are permitted to request to abort; we regard this request simply as a 'hint' to the
scheduler, to restrict its allowable executions in a particular way.

8

defined in the next paragraph. We do not constrain the operation of a transactioa automaton after

schedules that violate well-formedness, but we will prove later that, when placed in any of the systems we

consider, a transaction generates only well-formed schedules.

We recursively define well-formedne8s for sequences of operations of transaction T. Namely, the empty

schedule is well-formed. Also, if a = a'7r is a sequence of operations of T, where 7r is a single event, then

a is well-formed provided that a' is well-formed, and the following hold.

" If 7r is CREATE(T), then
(i) there is no CREATE(T) event in a'.

" If wt is REPORT _COMMIT(T',v) for a child T' of T, then
(i) REQUEST_ CREATE(T') appears in a' and
(ii) there is no REPORT _ABORT(T') event in a' and
(iii) there is no REPORT_ COMMIT(T',v') event with v'3v in o'.

" If ir is REPORTABORT(T') for a child T' of T, then
(i) REQUEST_ CREATE(T') appears in a' and
(ii) there is no REPORTCOMMI0T event for T' in o'.

* If 7r is REQUEST_ CREATE(T') for a child T' of T, then
(i) there is no REQUEST_ CREATE(T') event in a' and
(ii) there is no REQUEST_ COMMIT event for T in a' and
(iii) CREATE(T) appears in a'.

" If ir is REQUEST COMfIT(Tv) for a value v, then
(i) there is no REQUEST_ COMMIT event for T in a' and
(ii) CREATE(T) appears in a'.

Thcse restrictions are very basic; they simply say that a transaction does not get created more than

once, does not receive conflicting information about the fates of its children, and does not receive

information about the fate of any child whose creation it has not requested, also. a transaction does not

perform any output operations before it has been created or after it has requested to commit. and does

not request the creation of the same child more than once. Except for these minimal conditions, there are

no a priori restrictions on allowable transaction behavior.

The following easy lemma summarizes the properties of well-foriied sctqiences of transaction op'.ratiotn.. I
Lemma 2: Let a be a well-formed sequence of operationis of transaction T Thu the

following conditions hold.

1. The first event in a is a CREATE(T) event, and there are no other ('IT'IC eve.tvw
2. If a REQUEST COMiIT event for T occurs in o. Ih(. t hre are no I1 ,r output

events of T in a.
3. There is at most one REQ EST _CIHEATI(T'I') ,,t for vwh ihihd T' of T. i 0.
4. There are not. two different report operations in t for an\ child T' (if ' (Ilowoe,.r

there may be several events which are repeated instanc of : single report op,ration)

5. Any report event for a child T' of T i precd, h,\ I0II.T 1 'nI'(T V tF I,
Conversely, any sequence of operations of ' satisfyitig (h,.e c(moiit ion i willI,ri,.J

"10'

3n y -7 -

9

3.2. Basic Objects

Recall that I/O automata are associated with non-access transactions only. Since access transactions

model abstract operations on shared data objects, we associate a single I/O automaton with each object,

rather than one for each access. The operations for each object are just the CREATE and

REQUEST-COMMIT operations for all the corresponding access transactions. Although we give these

operations the same names as the operations of non-access transactions, it is helpful to think of the

operations of access transactions in other terms also: a CREATE corresponds to an invocation of an

operation on the object, while a REQUEST COMMIT corresponds to a response by the object to an

invocation. Actually, these CREATE and REQUEST_ COMMIT operations generalize the usual

invocations and responses in that our operations carry with them a designation of the position of the Z

access in the transaction tree. Thus, a basic object X is modelled as an automaton, with the following

operations. r
P

Input operations:
CREATE(T), for T an access to X

Output operations:
REQUESTCOMMIT(T,v), for T an access to X

As with transactions, while specific objects are left largely unspecified, it is convenient to require that

schedules of basic objects satisfy certain syntactic conditions. We recursively define well-formedne8s for

sequences of operations of basic objects. Namely, the empty schedule is well-formed. Also, if a = a'ir is .

a sequence of operations of basic object X, where ir is a single event, then a is well-formed provided that

a' is well-formed, and the following hold.

* If ir is CREATE(T), then -.

(i) there is no CREATE(T) event in a'.

" If r is REQUEST_ COMMIT(T,v) for a value v, then
(i) there is no REQUEST _COMIT event for T in a', and
(ii) CREATE(T) appears in a'.

These restrictions simply say that the same access does not get created more than once, and that a basic

object does not respond more than once to any access, and only responds to accesses that have previously

been created. These requirements constrain the environment of the object slightly less than those in ILM];

the added freedom makes some of the arguments slightly simpler. We require that every basic object

preserve well-formedness (this is a simple syntactic condition). The following easy lemma summarizes the

properties of well-formed sequences of basic object operations. J

Lemma 3: Let a be a well-formed sequence of operations of basic object X. Then for any
access T to X, a contains one of the following
(i) no CREATE(T) and no REQUEST COMMIT(T,v) events, or ..4
(ii) one CREATE(T) and no REQUEST_ COMMIT(T,v) events, or
(iii) one CREATE(T) event and following that one REQUESTCOMMIT(T,v) event for some

V.

p-I,

°

¢',, ' .,.,_,". . ,." ,
"

,". %'.. ," *"" p " ".*.** -. -'-"- - /. . , "" . " . " "" " " "" ¢ """ , ' " :o

'

10"to '

Conversely, any f satisfying this condition is well-formed.

If a is a well-formed sequence of operations of X and T is an access tO X -T-1., that o contains'

CREATE(T) but no REQUEST_ COMMIT(T,v), we say that T is pending in a.
-.4

The following lemmas explore the conditions under which we can deduce that an extension of a well-

formed sequence is itself well-formed.

Lemma 4: Suppose a, 0, and -y are all well-formed sequences of operations of basic object X
such that the events in /3 are a subset of the events in ot (though itot necessarily in the same
order) and the events in -' are a subset of the events in 3 Let 0 be a sequence of operations of
X such that both aO and -10 are well-formed. Then 00 is well-formed.

Proof: Since /0 is well-formed we need only check for each event r in 6 the presence and
absence of certain operations preceding ir in 0, . Any operation %Nhose presence is needed is
present in -0 since -t0 is well-formed, and hence is present in 30, while similarly any operation
whose absence is required is absent in a4 and thus in /30. 0

Lemma 5 Suppose a and /3 are well-formed sequences of operations of basic object X which
contain the same events (perhaps in different orders). Let 0 be a sequence of operations of
X. Then if ao is well-formed so is 80.

Lemma 6: Suppose a, / and -y are sequences of operations of basic object X such that aS is
well-formed, and the set of accesses whose operations occur in -1 is disjoint from the set of
accesses whose operations occur in /. Then a13-7 is well-formed if and only if a-1 is well-formed.

3.3. Serial Scheduler

The third kind of component in a serial system is the serial scheduler The serial scheduler is also

modelled as an automaton. Whereas the transactions and basic objects have been specified to be any 1 '0

automata whose operations and behavior satisfy simple syntactic restrictions, the serial scheduler is a

fully specified automaton, particular to each system type. It runs transactions according to a depth-first

traversal of the transaction tree. The serial scheduler can choose nondeteruinistically to abort any

transaction after its parent has requested its creation, as long as the transaction has not actually been

created. In the context of this scheduler, the *semantics" of an ABORT(T) operation are that

transction T was never created. Each child of T whose creation wa,; requested must be either aborted or

run to commitment with no siblings overlapping its execution, before T can commit. The operations of

the serial scheduler are as follows.

Input Operations:
REQUEST_CREATE(T)
REQUEST _ COMT(T,v)

Output Operations:

CREATE(T)
COMMIT(T), T # T o

ABORT(T), T # T0

REPORT_ COMMIT(T), T T o

REPORT ABORT(T), T :p T o

" ¢hV'Wc)C¢C, "r'tr' ', "€':, ":" "
' ' ' :' ?

"::'"":"'":":":"'"':"":':':::'"'::':':'::'2 '2".."--:'"'-" ": ':':":-':"':"."!:!

11

The REQUEST_CREATE and REQUEST_ COMMIT inputs are intended to be identified with the

corresponding outputs of transaction and nbjert automata. nnd correspondingly for the CREATE,

REPORTCOMMIT and REPORTABORT output operations. The COMMIT and ABORT

operations are internal, marking the point in time where the decision on the fate of the transaction is

irrevocable. We call COMMIT(T) and ABORT(T) return operations for T.

Each state s of the serial scheduler consists of six sets, named with record notation: s.create requested,

s.created, s.commit requested, s.committed, s.aborted and s.returned. The set s.commit_ requested is a

set of (transaction,value) pairs. The others are sets of transactions. There is exactly one initial state, in

which the set create requested is {TO}, and the other sets are empty.

The transition relation consists of exactly those triples (s',fr,s) satisfying the pre- and postconditions

below, where 7r is the indicated operation. For brevity, we include in the postconditions only those

conditions on the st-ate s which may change with the operation. If a component of s is not mentioned in

the postcondition, it is implicit that the set is the same in s' and s.

REQUEST_ CREATE(T)
Postcondition:

s.create_ requested = s'.create_ requested U {T}

REQUEST - COMMIT(T,v)
Postcondition:

s.commit_ requested = s'.commit_ requested u {(T,v)}

CREATE(T)
Precondition:

T C s'.create requested - (s'.created U s'.aborted)
siblings(T) l s'.created C s'.returned

Postcondition:
s.created = s'.created U {T}

COMMIT(T), T 7 T

Precondition:
(T,v) E s'.commit_ requested for some v
T 0 s'.returned
children(T) n s'.create requested C s'.returned

Postcondition:
s.committed = s'.committed U {T}
s.returned = s'.returned U {T}

% ABORT(T), T 7 TO

Precondition:
T E s'.create requested - (s'.created U s'.aborted)
siblings(T) n s'.created C s'.returned

Postcondition:
s.aborted = s'.aborted U (T}
s.returned - s'.returned U {T}

S. ,

REPORT_ABORT(T), T 7 T o

Precondition:
T e u'.aborted

REPORT_COMMIT(T,v), T T O

Precondition:
T E s'.comrnitted

(T,v) E s'.commit_ requested

The input operations, REQUESTCREATE and REQUEST _COMMIT, simply result in the request

being recorded. A CREATE operation can only occu. if a corresponding REQUEST _CRE.-TE has

occurred and the CREATE has not already occurred. The second precondition on the CREATE

operation says that the serial scheduler does not create a transaction until all its previously created sibling

transactions have returned. That is, siblings are run sequentially. The precondition on the COMMIIT

operation says that the scheduler does not allow a transaction to commit until its children have returned.

The precondition on the ABORT operation says that the scheduler does not abort a transaction while any
of its siblings are active. That is, aborted transactions are dealt with sequentially with respect to their

siblings. The result of a transaction can be reported to its parent at any time after the (purely internal)

commit or abort has occurred. In particular, siblings might, run in one order and be reported to their

parent in the opposite order.

One significant difference between our serial scheduler and the one in LM.1 is that there the return

operation and the report to the parent of the return are combined as a single operation, giving the parent

the extra information of the order in which its children are run.

The next lemma relates a schedule of the serial scheduler to the state which results from applying that,

schedule.
Lemma 7: Let a be a schedule of the serial scheduler, and let s bc a state which can result

from applying ar to the initial state. Then the following conditions ire true.
1. T is in s.create requested exactly if T T. or a contains a REQUEST -CREATE(T)

event.
2. T is in screated exactly if a contains a CREATE(T) event.
3. (T,v) is in s.commit _requested exactly if a contains a |I':[EST_-CO.N.RtIT(T.v)

event.
4. T is in s.committed exactly if a contains a COMMIT(T) event.

5. T is in s.aborted exactly if a contains an ABORT(T) event.
6. s.returned = s.committed U s.aborted.

7. s.committed l s.aborted 0.

4k.!

~ ~KV '.'~VV~.~ U U~~ -:~ ' '- %~~V Fu %%.%V!

13
Np

3.4. Serial Systems and Serial Schedules

The composition of transactions with basic objects and the serial scheduler for a given system type is %.

called a serial system, and its operations and schedules are called serial operations and serial schedules,

respectively. We note that every serial operation is an operation of the serial scheduler, and of at most "

one other component of the serial system. A sequence a of serial operations is said to be well-formed

provided that its projection at every transaction and basic object is well-formed. ;

Lemma 8: Let a be a serial schedule. Then a is well-formed.
Proof: By induction on the length of schedules. The base, length 0 0, is trivial. Suppose

that a7r is a serial schedule, and assume that a is well-formed. If 7r is an output of a basic
object or non-access transaction P, then airiP is well-formed because P preserves well-
formedness, and so air is well-formed. So assume that 7r is an input to a basic object or non-
access transaction P. It suffices to show that amrP is well-formed. There are three cases. 'p

(1) 7r is CREATE(T) for some transaction T.
The scheduler preconditions and Lemma 7 ensure that CREATE(T) does not appear in a.

(2) 7r is REPORTCOMMIT(T,v) for some transaction T and value v.
Then 7r is an input to transaction parent(T) T'. The scheduler preconditions and Lemma 7
imply that a contains REQUEST COMMIT(T,v). Well-formedness of a at the non-access
transaction T (or at basic object X, if T is an access to X) implies that a contains
CREATE(T), and the scheduler preconditions and Lemma 7 then require that a contains
REQUEST_CREATE(T). Also, scheduler preconditions and Lemma 7 imply that
COMMIT(T) occurs in a, and thus no ABORT(T) occurs in a. Thus no
REPORTABORT(T) occurs in a, by the scheduler preconditions. Well-formedness at T (or
at X, if T is an access to X) implies that no REQUEST_ COMMIT(T,v') with v' 3 v, occurs
in a, and therefore by the scheduler preconditions, no REPORT_ COMMIT(T,v'), v 3 v
occurs in a.

(3) ir is REPORTABORT(T) for some transaction T.
Then 7r is an input to transaction parent(T) -= T'. The scheduler preconditions and Lemma 7
imply that a contains ABORT(T) and hence contains REQUESTCREATE(T) but no N-
CREATE(T). The analysis above shows that this is incompatible with the presence of any
REPORTCOMMIT event for T. 0

If a is a sequence of serial operations and T is a transaction such that a contains CREATE(T) but no

return event for T, we say that T is live in a. The following are useful observations:

Lemma 9: Let a be a serial schedule, T a transaction live in a and T' an ancestor of
T. Then T' is live in a.

Lemma 10: Let a be a serial schedule, and T and T' distinct sibling transactions. If T is "
live in cv, then T' is not live in a.

A consequence of the two previous lemmas is the following, which states that only related transactions

can be live concurrently, in a serial schedule.

Lemma 11: Let a be a serial schedule, and T and T' transactions each of which is live in a.
Then either T is an ancestor of T' or T' is an ancestor of T.

Vr _r
:.- #" r ,+" . ,,- ,+'..," .r ..q+_ _,,.,,_,,'u.'..'--¢+..-- '. ' .¢..,', '... ¢ . .'. .". %" . "'."..". ".+. .". ' "% .+. -.."- ",,"%" ,..' ,,'' ,..".-.°' " "" ",.+' " .I

14

In order to talk about schedules, we introduce some terms to describe the fate of transactions. Let a be

any sequence of operations. (We will use these same terms later for schedules of R, %V Locking systems, so

we make the definitions for general sequences.) If T L; a transaction and T' an ancestor of T, we say that

T is committed to T' in a if COMMIT(U) occurs in a for every U which is an ancestor of T and a proper

descendant of T'. If T and T' are transactions we say that T is visible to T' in a if T is committed to

lca(T,T'). If jr is one of the operations CREATE(T), REQUEST_CREATE(T'), COMMIT(T'),

ABORT(T'), REPORTCOMMIT(T',v'), REPORTABORT(T'.v) or REQUESTCOMMIT(T,v)

where T' is a child of T, then we define transaction(r) to be T. If T is a non-access transaction then the

operations 7r with transaction(r) - T are the operations of the automaton T together with the return

operations for children of T. We denote by visible(a,T) the subsequence of ry consisting of events 7r with

transaction(7r) visible to T in a. Notice that every operation occurring in visible(a,T) is a serial operation.

e collect here some straightforward consequences of these definitions:

Lemma 12s Let a be a sequence of operations, and T, T' and T" transactions.
1. If T is an ancestor of T', then T is visible to T' in a.
2. T' is visible to T in a if and only if T' is visible to lca(T,T') in a.
3. If T" is visible to T' in a and T' is visible to T in a, then T" is visible to T in a.
4. If T' is a proper descendant of T, T" is visible to T' in a, but T" is not visible to T in

a, then T" is a descendant of the child of T which is an ancestor of T'.
Lemma 13: Let a and 8 be sequences of operations, such that ,8 consists of a subset of the

events of a.
1. If transaction T is visible to transaction T' in 0, then T is visible to T' in a.
2. If event w is in visible(d,T), then r is in visible(ar).

Lemma 14: Let a be a sequence of operations, and let T and T' be transactions. Then
visible(a,T)IT' is equal to aiT' if T' is visible to T in a, and is equal to the empty sequence
otherwise.

Lemma 15: Let a be a sequence of operations. Let T, T' and T" be transactions such that
T" is visible to T' and to T in a. Then T" is visible to T' in visible(na,T)

Lemma 18: Let T be a transaction, and let oar be a sequence of operations, where 7r is a
single event.

1. If transaction(ir) is not visible to T in oir, then visiblc(r.T) == visible(OIT).
2. If transaction(7r) is visible to T in air and if ir Is not a COMMIT event, then

visible(ar,T) = visible(a,T)r.
3. If transaction(r) is visible to T in air, and r is (C'ONIMIT(U) then the events in

visible(afr,T) are those visible in a to either T or U, together with r itself.

Lemma 17: Let a be a well-formed sequence, and T any tranaction. Then visill(o.T) is
well-formed.

The next two lemmas are taken from 'L I,. (There, they are proved with slightly different dfiiition-

but. essentially the same proofs work here.)

Lemma 18: Let a be a serial schedule and T a transaction. Then 'isille(, TI i- a .erial
schedule.

Lemma 19: Let a be a serial schedule and T a transaction. Let .q visible(oV). Thn -
8(a - S) is a serial schedule.

15

Let a be any sequence of operations. If T is a transaction we say T is an orphan in a if ABORT(U)

occurs in a for some ancestor U of T. The following lemmas~ are Rtrsight-forward.

Lemma 20: Let ar and 3~ be sequences of operations such that $ consists of a subset of the
events in a. If a transaction T is not an orphan in a then T is not an orphan in 3.

Lemma 21: Let ar is a sequence of operations. If T is a transaction that is not an orphan in
a and T' is an ancestor of T, then T' is not an orphan in a.

3.5. Serial Correctness

We use serial schedules as the basis of our correctness definition, which was first given in [LNM'.

Namely, we say that a sequence of operations is serially correct for a transaction T provided that its

projection on T is identical to the projection on T of some serial schedule. That is, the sequence "looks

like* a serial schedule to T. Later in this paper we will define "R/W Locking systems" and show that

their schedules are serially correct for every non-orphan transaction, and in particular that these schedules

are serially correct for the root transaction To*

Motivation for our use of serial schedules to define correctness derives from the simple behavior of the

serial scheduler, which determines the sequence of interactions between the transactions and objects. We

believe the depth-first traversal of the transaction tree to be a natural notion of correctness which

* corresponds precisely to the intuition of how nested transaction systems ought to behave. Furthermore, it

is a natural generalization of serializability, the correctness condition generally chosen for classical

transaction systems. Serial correctness for T is a condition which guarantees to impiementors of T that

their code will encounter only situations which can arise in serial executions. Correctness for T 0 is a

special case which guarantees that the external world will encounter only situations which can arise in

serial executions.

It would be best if every transaction (whether an orphan or not) saw data consistent with a serial

execution. Ensuring this requires a much more intricate scheduler than the simple R/W Locking systems

we describe. In [HILMWI, we describe and prove correctness of several algorithms for mainintaining

correctness for orphan transact ions.

*Our approach is an example of a general technique for studying system algorithms. A simple, intuitive

and inefficient algorithm (automaton) is used to specify an acceptable collection of schedules for the

system component. The actual system component is more efficient or robust, but provides the same user

interface. The user is guaranteed that applications (transactions, in our work) which work well when run

with the simple algorithm will work the same way when run with the actual system.%

16

4. Semantic Conditions
In the serial systems to be considered in this paper, accesses are classified a. either read or write

accesses. In this section, we state the properties which these accesses are required to satisfy. First, we

define the fundamental concept of "equieffectiveness" of schedule- which is in turn used to define

"transparency" of operations; an operation is said to be transparent if later accesses to the same object

return values which are the same as in the situation where the operation did not occur. We then prove

certain consequences of these definitions, which will be used in th, ensui-g proof-. Finally. we use the

notion of transparency to specify the precise semantic conditions which read and write accesses must

satisfy.

4.1. Equieffective Schedules

We introduce the concept of equieffective schedules of a basic object X. in order to define precisely what

schedules we will regard as Nessentially" the same. Intuitively, these are schedules which leave the

automaton in states which are the same. However, we are really interested in observable behavior, not

states, so it is enough that they be indistinguishable by later operations. Formally, given two well-formed

sequences a and /3 of operations of X, we say that a is equieffective to 3 if for every sequence 0 of

operations of X such that both ao and 06 are well-formed, o6 is a schedule of X if and only if 06 is a

schedule of X. Notice that if neither a nor /9 is a schedule of X, then a is trivially equieffective to 3.

Also, notice that if a is equieffective to 8 and 3 is a schedule of X, then a is a schedule of X. In the sense

of semantic theory, equieffective schedules pass the same tests, Ahere a test involves determining if a

given sequence of operations can occur after the sequence being tested. We limit the tests to sequences

which do not violate well-formedness, for technical reasons, because we have not required the objects to

behave sensibly if the inputs violate well-formedness. Clearly, a is equieffective to 3 if and only if 3 is

iquieffective to a and in this case we say that a and 13 are eqtiieffective sequences. We have a restricted

form of transitivity:

Lemma 22: Let a, 8 and ' be well-formed sequences of operations of X such that the events
in / are a subset of the events in a and the events in -1 are a subset of the events in 3 (perhaps
in different orders). If a and 3 are equieffective and also 3 and -1 are equieffective, then a and
-y are equieffective.

Proof: Straightforward, using Lemma 4. 0

We also have two extension results.

Lemma 23: If a and 3 are equieffective well-formed .equences of operations of X, zinl o is a
sequence of operations of X such that a6 and 3o are wll-formed, thti (o1 and io are
equieffective.

Proof: This is immediate, since well-formed ext,.i,-ion. oi' ao are well-formed ,'xten~ions of
ay. 0

Lemma 24: If a and 0 are equieffective well-formned sequncfs of oprations of X that
contain the same events, and 6 is a sequence of operalion of \ -uh that ,v,:, is a w,,l-fomoi
schedule of X, then 30 is a w'll-forled 6chedule of X tit I., ,,nitff''ct I% ,' to CL

L%

17

Proof. Straightforward, by Lemma 5 and Lemma 23, and the definition of equieffective. 0

We say that an operation 7r of basic object X is transparent if for any well-formed schedule air of X, ar

is equieffective to a. Thus, later operations that do not violate well-formedness cannot detect whether 7r

happened. (Notice that we only require ir to be undetectable in situations where it can occur, i.e. when

air is a well-formed schedule.)

The following consequences of the definitions above show that certain rearrangements of an object's

schedules are themselves schedules, and are "observably* the same.

Lemma 25: Let a/3 be a well-formed schedule of basic object X, where every operation in /3
is transparent. Let -y be a sequence of operations of X such that the set of accesses with
operations in -1 is disjoint from the set of accesses with operations in /8, and such that a/3'Y is
well-formed. Then a-y and a/#y are equieffective, and also a- is a schedule of X if and only if

a/#- is a schedule of X.

Proof: We use induction on the length of /f. The base case where 8 is empty is trivial.
Suppose then that / has length k and that the lemma is true for all shorter 3. Write /8/#'7r,

where)9' has length k-1. Now, 7r is transparent so a/# a 'r is equieffective to a/3' (since a /'ir
is a schedule of X). Since a'wr- is well-formed and no operations occurring in -Y involve the
access of which 7r is an operation, we have that a/'-y is well-formed by Lemma 6. By Lemma
23, a#'"y is equieffective to a#-t. Also, the definition of equieffective allows us to conclude that
a/6-y is a schedule of X if and only if a3'-y is a schedule. The induction hypothesis says that a-1
is equieffective to a/'ty, and that a/3'-y is a schedule of X if and only if aY is a schedule. Thus
a-y is a schedule if and only if a/o-y is, and Lemma 22 implies that they are equieffective. 0

Lemma 28: Let a be a well-formed schedule of basic object X, and S a set of accesses to X
such that any operation of a transaction in S that occurs in a is transparent. Let 0 be the
subsequence of a obtained by removing all the operations of accesses in S. Then /a is a well-
formed schedule of X that is equieffective to a.

Proof: Repeatedly apply Lemma 25.0

4.2. Reordering and Combining Serial Schedules

In this subsection, we describe ways in which serial schedules can be modified and combined to yield

other serial schedules. These lemmas are used in the proof of Lemma 48, in Section 6.3. The first

generalizes a lemma in [LMI, taking into account the special properties of transparent operations. The

second is essentially the same as a lemma of [LM]. The proofs are straightforward.

Lemma 27: Let a3 1COMMIT(T') and a/32 be two serial schedules and T, T' and T" three

transactions such that the following conditions hold:
1. T' is a child of T" and T is a descendant of T" but not of T',

2. a3 1 = visible(a/,3,T'),

3. a/32 - visible(a/ 2,T),

4. a = visible(a31 ,T") = visible(a J2 ,T") and

5. if any basic object has an output operation in 6 then all its operations in 8 are

transparent.
Then a/3 1COMMIT(T')3 2 is a serial schedule.

Proof: Note first that if T T", then 3 is empty and the result is trivial. So assume that

V5,

'h '/ : 5,.'., . , .o.-o2,'--' .-,'o, ..-. '.. .',.., .-;.-" ,-f...- - , -. ...-.-.-. ...-.- .- .--.,..--.% _,- ,--, ,. % .%--, ,. ,-..5,

T 1 T". Then T is a descendant of a child U of T", and U , T'.

Any event ir in a#11 for which transaction(r) is not a descendant of T', must be in
visible(a#PT") by Lemma 12. Similarly, any event in a02 having transaction which is not a
descendant of U, must be in visible(a 2 ,T"). Thus, d and 82 contain only operations having
transactions which are descendants of T' and U, respectively. Since T' and U are distinct
siblings, and any operation of a transaction P has transaction equal to P, it follows that no
transaction has operations occurring in both 61 and 8 2.

We proceed by induction on prefixes of a,3ICONlMIT(T'), o3. Let o'o be a prefix of
a,31COMMIT(T')0 2, with a' a serial schedule and 4 an event. Ve use af31COVMIT(T') as the
basis, since a#,COMMIT(T') is a serial schedule by assumption. So assume that a' =

a3 1 COMMfT(T')#' for some prefix #' of #2. There are three cases, depending on whether o is
an output of a basic object, of a non-access transaction, or of the serial scheduler.

Suppose that 4 is an output of a basic object X. By assumption, every operation of ;31IX is
transparent, and since COMMIT(T') does not occur at X. so is every operation of

ICOMMIT(T')IX. We saw above that the set of accesses with operations in 1 and the set of
accesses with operations in $2 are disjoint (being respectively descendants of T' and of U). By
Lemma 6, aOBCOMN1,lT(T')3'OJX is well-formed, and we may deduce by Lemma 25 that
a# COMMIT(T')O'OIX is a schedule of X, since atr'OIX is a schedule. Now the result follows
by Lemma 1.

Suppose that 0 is an output operation of a non-access transaction P. Then 31COMIT(T')
contains no operations of P. Thus, a'ObP = a8'6P, which is a prefix of a3.))P, which is a
schedule of P since a0 2 is a serial schedule. Thus, a'OIP is a schedule of P. The result follows
by Lemma 1.

Finally, suppose 0 is an output of the serial scheduler. Then 6 has transaction V for some
descendant V of U. Let s be the (uniquely defined) state of the serial scheduler after a'. and let
s' be the state of the serial scheduler after r,3. Then the following relationship; hold bet ween
s and s'.

1. V E s'.create_ requested - (s'.created U s'.aborted) itf V E s.create requested -

(s.created U s.aborted)
2. children(V) n s'.create -requested C s'.returned iff children(V) s.create_ requested C

s.returned
3. (V,v) E s'.commit _requested iff (V,v) E s.coinmit -requested
4. V E s'.commited iff V E s.commited.
5. V E s'.aborted iff V E s.aborted
6. V 0 s'.returned iff V 0 s.returned
7. siblings(V) nl s'.created C s'.returned iff siblings(V) n s.created C s.returned

Since any event in 0, has transaction equal to some descendant of T', and the operations
REQUEST CREATE(V), CREATE(V). ABORT(V), P EQUEST CO.MMIT(V,v),
CONJIlT(V), and REQUEST_ CREATE(V'), Ai\0IT("), CONIMIT(V') for V a child of V,
all have transaction equal to V or parent(V), neither of which is a desceindant of T', the first
six biconditionals are immediate from Lemma 7. If V is a proper descendant of U, the li.-t
biconditional also follows. It remains to show that siblings(I') fn .created C s'.returned iff
siblings(U) n s.creatcd C -retiriaed mut am. ,i li. g r V cret .t (i ,Y if (r1 ' tj in o", ai.,

%5%

19

the only sibling of U created in a' and not a,6' is T', and T' E s.returned. Thus, the claims
are true.

Since 4 is enabled in s', the claims above imply that 4. is also enabled in s. The result

follows by Lemma 1. 0

Lemma 28: Let oABORT(T') and a/ be two serial schedules, and let T, T' and T" be

transactions, such that the following conditions hold:

1. T' is a child of T" and T is a descendant of T" but not of T',
2. ao = visible(aof,T), and
3. a = visible(a,T") = visible(a,,T").

Then aABORT(T')3 is a serial schedule.

4.3. Semantics of Read Accesses

Finally, we are ready to state the conditions to be satisfied by read and write accesses. Namely, we

require that each basic object X satisfy the following conditions.

Semantic Conditions:

(i) Every CREATE(T) operation is transparent.

(ii) For any aI and a 2 for which a ICREATE(T)a 2 and aa 2CREATE(T) are both well-formed schedules

of X, they are equieffective schedules.

(iii) Every REQUESTCOMMIT(T,v) operation, for T a read access, is transparent.

Condition (i) means that whether or not an access was created is invisible to other accesses. Condition

(ii) means that later operations cannot detect when an access was created. Condition (iii) means that

later operations cannot determine whether or not a REQUESTCOMMIT operation for a read access has

occurred. The third condition captures the fundamental feature of read accesses that allows Moss'

algorithm, as given in the construction of R/W Locking objects in Section 5.1, to work. In contrast, the

first two conditions are a convenience, used to avoid explicitly reordering schedules of the R/W locking

*objects. Note that we make no assumption about the semantics of REQUESTCOMMIT operations for

write accesses, and so it is legitimate to designate all accesses as writes. If this is done, Moss' algorithm

as given in this paper degenerates into exclusive locking.

An example of a basic object satisfying these conditions would have as its state a set of transactions,

called "pendingu, and an instance of an abstract data type. The input operation CREATE(T) would

simply add T to pending. At any time, a transaction T in pending could be chosen, and the

corresponding function applied to the instance of the abstract data type, yielding return value v, and a

possibly altered instance of the ab-tract type. T would be removed from pending, the new instance would

replace the old one in the state of the basic object, and REQUESTCOMMIT(T,v) would occur. (The

whole sequence from choosing T to the output is an atomic step of the basic object.)

'~ a~ . ~ * ~~~- ~~~'Ja..

LWK1..XK -z 7 ~C , . -. z. 77- . %- ,7 -.. ''

20

The following lemma combines all the information in the semantic conditions to give a simple sufficient

condition for proving that schedules are equieffective. This test is used throughout this paper (;iven a

sequence a of operations of X, define write(a) to be the subsequence of a consisting of the

REQUEST_ COMMIT(T,v) events for write accesses T. If a and 3 are sequences of operations of X an,]

write(a) - write(f) then we say that a and 3 are write-equal. This is clearly an equivalence relation on

sequences of operations of X.

Lemma 29: Let ar and ft be well-formed schedules of X that are write-equal. Then a and I ~ t
are equieffective.

Proof: Suppose 0 is a sequence of operations of X such that aoe and 3o are both well-
formed. We must prove that 00 is a schedule of X if and only if no is a schedule of
X. Consider the set A of accesses to X that is the union of the set of write accesses for uhich a
REQUEST _COMMIT operation occurs in a (and so also iii ') and the set of accesses that are
pending in both a and 0. Let a' denote the subsequence of a consisting of the events of
accesses in A. Similarly let ' denote the subsequence of i3 consisting of the events of accesses
in A. Since a' is obtained from a by removing all the operations of accesses not in A, and all %
such operations are transparent (by conditions (i) and (iii)), by Lemma 26, we deduce that a' is
a well-formed schedule of X equieffective to a. Similarly 3' is a well-formed schedule
equieffective to $. Also, since a' can be formed from 0' by moving CREATE events, we deduce
from condition (ii), Lemma 24 and Lemma 22 that a' and ' are equieffective. Since both o0
and 80 are well-formed, by Lemma 3 any event in 4 must be either an operation of an access -

with no operations in a or , or else a REQUEST _ COMMIT for an access that is pending in
both a and 6. In any case, a'o and f'o must be well-formed. Therefore o€ is a schedule of X
if and only if a'.0 is a schedule, which is true if and only if $'0 is a schedule and so if and only
if $0 is a schedule of X. 0-

@

5. R/W Locking Systems
A R/W Locking system of a given system type is composed of transactions, a generic scheduler, and"

R/W Locking objects. The non-access transactions are modelled by the same automata as in the serial
S

system, but the generic scheduler has much more freedom in scheduling transactions than the -,rial

scheduler, and R/W Locking objects follow the algorithm of [Mo' in maintaining locking and state

restoration data that basic objects do not need. .d.

5.1. R/W Locking objects .

In this section, we define, for each basic object X, a R/\V Locking object Nl(X), which provides a " "

resilient lock-managing variant of X. It receives operation invocations and responds like X and also

receives information about the fate of transactions so that it, can maintain its locking and state

restoration data. A R/W Locking object combines the features of the resilient object and the lock

manager of [LM], where, as in many database management, systems, the recovery and concurrency control

are performed separately. Combining these features, as we do here. ,'liminate, sone redundancy in

maintaining information about the fate of transactions.

M(X) has the following operations.

%..

21

Input Operations:
CREATE(T), for T an access to X
INFORMCOMMITAT(X)Oi(T), T y Tr.

INFORMABORT_ AT(X)OF(T), T 3 T o

Output Operations:
REQUEST_COMMIT(T,v), for T an access to X

We give a recursive definition for well-forinednes8 of schedules of object M(X). Namely. the empty

schedule is well-formed. Also, if a = a'7r is a sequence of operations of object X, then a iq well-formed

provided that a' is well-formed and the following hold.

" If 7r is CREATE(T), then
(i) there is no CREATE(T) event in a'.

* If ir is a REQUEST_ COMMIT for T, then
(i) there is no REQUEST _ COMMIT event for T in a', and
(ii) CREATE(T) occurs in a'.

* If 7r is INFORMCOMMITAT(X)OF(T), then
(i) there is no INFORMABORT AT(X)OF(T) event in a', and
(ii) if T is an access to X, then a REQUEST- COMLNIT event for T occurs in a'.

* If 7r is INFORM ABORTAT(X)OF(T), then
(i) there is no INFORMCOMMIT_AT(X)OF(T) event in a'.

A state s of M(X) consists of the following five components: s.write-lockholders, s.read-lockholders,

s.create requested, and s.run, which are sets of transactions, and s.map, which is a function from write-

lockholders to states of the basic object X. We say that a transaction in write-lockholders holds a

write-lock, and similarly that a transaction in read-lockholders holds a read-lock. We say two locks

conflict if they are held by different transactions and at least one is a write-lock. The initial states of

M(X) are those in which write-lockholders = {To} and map(T0) is an initial state of the basic object X,

and the other components are empty. The transition relation of M(X) is given by all triples (s',n,s)

satisfying the following pre- and postconditions, given separately for each 7r. As before, any component of

s not mentioned in the postconditions is the same in s as in s'.

CREATE(T), T an access to X
Postcondition:

s.create requested = s'.create requested U {T}

INFORMCOMMIT _AT(X)OF(T), T 3 T o

Postcondition:
if T E s'.write-lockholders then

begin
s.write-lockholders (s'.write-lockholders - {T}) U {parent(T)}
s.map(U) s'.map(U) for U E s.write-lockholders - {parent(T)}
.s.map(parent(T)) =s'.map(T)

end
if T E s'.read-lockholders then

U t,

U

-, ~ -. - ~ ~ ,..V.,.J '~. 1 - --. P- 4 * -

22

begin
s-read-lockholders (s'.read-lockholders - {T)) u {parent(l))

end

INFORM_-ABORT_-AT(X)OF(T), T 4 T
Postcondition:

s.wrjte-lockholders =s'.write-lockholders - descendants(T)
s.read-lockbolders =s'.read-lockholders - descendants(T)
s.map(U) = s'.map(U) for all U E s.w rite-Iloc kholders

REQUEST -CONMT(T,v) for T a write access to X
9% Precondition:

T E s'.create requested - s'.run
swrit e-lockholders U s'.read-lockholders C ancest ors(T)

there are states t, t' of basic object X so that
(s' map(teast(a'.write-ockholders) ,CREATE(T ,tI
and (t,REQUEST_COMMIT(T,v),t')
are in the transition relation of basic object X

Postcondition:
srun = s'.run U f{T}
s.write-lockholders = s'.write-lockholders U {T)
S.map(U) = s'.map(U) for all U E s.write-lockholders - {T}
s.map(T) = t

REQUEST_ COMMIT(T,v) for T a read access to X
Precondition:

T E s'.create -requested - s'.run
s' .write-lockholders C ancestors(T)
there are states t, t' of basic object X so that

(s'. map(least(s'. write-lock holders)), CREATE(T), t)
4and (t,REQUEST _ COMMNIT(T,v),t')

are in the transition relation of basic object X
Postcondit ion:

.,run =s'.run U {T}
s. read- lockholders = s'.read-lockholders U IT}

It is clear that a R/W Locking object preserves well-forinedness.

The operation of a R/W Locking object should le clear front the prc- and pootrconditioni above

Indeed, we feel that the clarity and lack of ambiguity in describing the algorithm in this \%:I\ ,

significant feature of our method, since informal description., of algorit linis often ornit significant 4et ailk

WVhen an access transaction is created, it is added to the slet create-re.Itiesled r tonst cont aitit

'p. retturn valuie v to an access T can be returnied only if tili, awces has been reust nt r iot N.

to, every holder of a conflicting lock is an ancestor of T, aind v Is a %alme that -itt I-,, i-tirw l hme I I Ii-

object X in the response to T from a state obtained by perfornilng ('10'. V11('F mo 0hw -iaiv ih-oit

23 I

A'.

value of map at the least member of write-lockholders. When a response is given, the access transaction

is added to run and granted the appropriate Iock, and if the tranvnition iq a write access, the resulting

state is stored as map(T). If the transaction is a read access, no change is made to the stored state of the 0

basic object X, i.e. to map. S.

When a R/W Locking object is informed of the abort of a transaction, it removes all locks held by

descendants of the transaction. When it is informed of a commit, it passes any locks held by the

transaction to the parent, and also passes the version stored in map, if there is one.8 .5

5-.
-,.

We introduce some terms to describe what M(X) knows about commits and aborts of transactions. If a ,

is a sequence of operations of M(X), T is an access to X, and T' is an ancestor of T. we say that T is

committed at X to T' in a if a contains a subsequence 03 consisting of an -

INFORM COMMIT AT(X)OF(U) event for every U that is an ancestor of T and a proper descendant

of T, arranged in ascending order (so the INTORM CO\MIIT for parent(U) is preceded by that for U).

If a is a well-formed sequence of operations of M(X), T is an access to X, and T' is arny transaction, we

say that T is visible at X to T' in a if T is committed at X to lca(T,T'). We denote by visiblex(a,T) the

subsequence of a that consists of operations of X whose transactions are visible at X to T in a. It is clear *55

that visiblex(a,T) is a well-formed sequence of operations of basic object X. We say that a transaction T

is an orphan at X in a if INFORM _ABORT_AT(X)OF(U) occurs in a for some ancestor U of T.
1

We collect here some obvious facts about visibility at X of transactions.

Lemma 30: Let a be a sequence of operations of M(X) and 3 a sequence consisting of a
subset of the events of a. Let T be an access to X and T' a transaction. If T is visible at X to
T' in 0 then T is visible at X to T' in a.
Lermma 31: Let a be a sequence of operations of M(X), and let T and T' be accesses to X,

and T" a transaction. If T is visible at X to T' in a, and T' is visible at X to T" in a, then T -
is visible at X to T" in a.

Lemma 32: Let a be a well-formed sequence of operations of M(X), and let T be an access ".
to X and T' a transaction. If T is visible at X to T' in a, and T' is not an orphan at X in a,
then T is not an orphan at X in a. '-

Lemma 33: Let a = a'7r be a well-formed sequence of operations of M(X).
1. If 7r is a CREATE(T') or REQUEST -COMNMIT(T'.v) event, and T z T', then %

visiblex(a,T) = visiblex(a',T).

2. If 7r is a CREATE(T) or REQUEST CONMIT(T,v) event, then visiblex(o,T)

visiblex(a',T)r.

3. If r is INFORM _ CONLMITAT(X)OF(T') with parent(T') an ances t or of T, then I
visiblex(a,T) consists of the events of a' that are visible at X to either [or T' in a'.

8 ir the reader wishes to compare our version of the algorithm with that in iMo , the rollowing may ile useful: Moss gives the name
•th, associated state* for object X and transaction T to what we call s mat,(T') where T' is the least ancest(,r or T in s.write-
lockholders, and he calls s map(least(s.write-lockholders)) 'the current state" of X. Also, he rem,)ves a read-lo,'k when the owner also ;
holds a write-lock (this is an optimization that does not affect the correctness proof) Moss also allows internal transactions to
directly access objects, whereas we only allow lea transactions perform data acces.

I

I24
4. If xis INFORM _ COMMIT -AT(X)OF'(T') with parent(TV) riot an ancestcr of T, or if

ir is INFORM_-ABORT -AT(X)OF(T'), then visiblex(aT) -visibleX(oa','I).

Here are some simple facts about the state of NI(X) after a schedule a.

Lemma 34t Let a be a schedule of M(X), and s a state of Nl(X) reached by applying a to an

initial state. Suppose T E s.write-lockholders and T' E s.read- lock holders J s.write-lockholders.

Then either T is an ancestor of T' or else T' is an ancestor of TI.
Lemma 35: Let a be a well-formed schedule of M(X), and s a state of NI(X) reached bN

applying a to an initial state. Let T be an access to X such that. REQUEST _ COMMIlT(T,v)
occurs in a and T is not an orphan at X in a, and let T' be the highest ancestor of T such that
T is committed at X to T' in a. Then if T is a write access. T' must be a member of s.write-
lockholders, while if T is a read access, T' must be a member of s. read-lock hold ers.

Given any well-formed sequence ~3 of operations of M(X) let essence(i3) denote the sequence obtained I
I-

from write($) by placing a CREATE(U) event immediately preceding a REQUEST_ COMLMIT(U,u)

event. Since 3 is well-formed, essence(13) consists of a subset of the events of i3 and is well-formed. Clearly

* ~ and essence(,S) are write-equal.

The following lemma shows how the results of operations visible at X to T are recorded in the state of

m(X).
Lemma 38: Let a be a well-formed schedule of M(X) and s a state of NI(X) reached by

a applying a to an initial state. If T is a transaction that is not an orphan at X in a, then 3
* essence(visible,(a,T)) is a well-formed schedule of the basic object X. Furthermore. when 3 is

applied to an initial state of X, it can leave X in the state s-map(T') where T' is the least
ancestor of T such that T' E s.write-lockholders.

Proof: We use induction on the length of a. The basis case is trivial, so let a -- nY. Let S,
denote a state of M(X) after applying a' such that (s,n',s) is a step of M(X). There are five
cases.

(1) ;r Is CREATE(T) for an access Ui to N.
If U T then visiblex(a,T) visiblex(a',T)r, while otherwise visibleX(a,'T) visiblex~rk.T).

In either case essence(visiblex(a,T)) essence(visible,(a',T)). Also s'.write-lockholders

s.write-lockholders and s'.map = smap, so the induction hypothesis implies that 3 is a
well-formed schedule of X that can leave X in state s'.rnap(T) -- s.map(T') when applied to

an initial state.

(2) 7r is REQUEST _COMMXIT(U,v) for 11 a read access to X.

If U =T then visiblex(a,T) visibleX(a',T)r, while otherwise visible\(akT) vshe(

In either case 0 essence(visiblex(a ,T)) eseievhe(I).Also '.%vritc-lockhohlors

=s.write-lockholders anl s'.nmap - smap, so the indluct ion in pollhesis i InIIles that 3 i :t

well-formed schedule of X that can leave X in state s'.niap() ri(T') when ;ipphiwl to
an initial state.

(3) 7r is REQUEST _COM1NIIT(UJ,v) for I; a write access to N.
We consider separately the cases U' T and IT 4 '1.

If U =T then T E it~ok~le~s ' TI l~I', dejti lit, tilt to vii of FI II

s'. write-lockholders. Let j3' -. essence(visihle,(o ')). lHv lhe 1i i iit ion hivpot hieis. a

% '.f F

25 I'!1
well-formed schedule of X that can leave X in the state s'.map(T") when applied to an initial
state. Now / S - /'CREATE(IT)r: by the definition of M(X), 8'CREATE(U)r is a (well-
formed) schedule of X, and applied to an initial state of X it can leave X in the state s.map(T).
If U 3 T, s'.write-lockholders s.write-lockholders - {U}, so T' is also the least ancestor of T

in s'.write-lockholders, and s'.map(T') s.map(T'). Also, visiblex(a,T) = visiblex(a',T) so

essence(visiblex(a,T)) - essence(visiblex(a',T)). The desired result follows immediately

from the inductive hypothesis.

(4) ir is INFORM_ COMMIT_ AT(X)OF(U)
The discussion is divided into subcases, depending on the relation of T and U in the
transaction tree.

(i) U is an ancestor of T.
Now visiblex(a,T) = visiblex(a',T), so / = essence(visiblex(a',T)). If U is the least ancestor of

T in s'.write-lockholders then by the definition of M(X), T' must be parent(U) and s.map(T')
s .map(U), while if U is not the least ancestor of T in s'.write-lockholders then T' must be

the least ancestor of T in s'.write-lockholders and s.map(T') = s'.map(T'). In either case, %

s.map(T') is s'.map(T"), where T" is the least ancestor of T in s'.write-lockholders. The -:

desired result follows immediately from the inductive hypothesis.

(ii) U is not an ancestor of T, but parent(U) is an ancestor of T.
Here we give separate arguments, depending on whether U is in s'.write-lockholders or not. If
U E s'.write-lockholders then Lemma 34 implies that no ancestor of T that is a strict
descendant of parent(U) can be in s'.write-lockholders. The definition of M(X) therefore shows

that T' = parent(U) and that s.map(T') s'.map(U). Also we note that visiblex(a',U) is .,

write-equal to visiblex(a,T), since any write access (for which a REQUEST _COMMIT event

occurs in a) that is committed at X to an ancestor of T in a' must be committed at X to .,,

parent(U) in a' and thus visible at X to U in a (otherwise by Lemma 35 some ancestor of T 4,

that is a proper descendant of parent(U) would be in s'.write-lockholders). Thus /.
essence(visiblex(a,T)) = essence(visiblex(a',U)). By the induction hypothesis, 0 is a well-

formed schedule of X which, when applied to an initial state of X, can leave X in state
s'.map(U) s.map(T'). On the other hand, if U 0 s'.write-lockholders then s.write-
lockholders s'.write-lockholders and s.map = s'.map. Also visiblex(a',T) is write-equal to

visiblex(a,T). This is true because any operation visible at X to T in a is either visible at X to

T in a' or else is an operation of an access that is committed at X to U in a', and any write
access (for which a REQUEST_ COMMIT event occurs in a') that is committed at X to U in %

a' must be committed at X to parent(U) (and hence visible at X to T) in a', by Lemma 35 and
the assumption that U 0 s'.write-lockholders. Thus / 3- essence(visiblex(a,T))

essence(visiblex(a',T)). By the induction hypothesis, 0 is a well-formed schedule of X that,

when applied to an initial state of X, can leave X in the state s'.map(T') = s.map(T').

(iii) parent(U) is not an ancestor of T.
Then visiblex(a,T) = visiblex(a',T), so / 3 essence(visiblex(a',T). Also T' is the least

ancestor of T in s'.write-lockholders and s'.map(T') = s.map(T'). The desired result follows

immediately from the inductive hypothesis.

(5) ir is INFORM_ABORTAT(X)OF(U).y
Thei, visiblex(a.T) = visiblex(a',T), so /3 essence(visiblex(a,T)) = essence(visiblex(a',T)).

Also since T is not an orphan at X, U is not an ancestor of T. Thus T' is the least ancestor of

.

r. -* ° • _..- . •- . .• .° • " °, .. . • ". % ". . o= " _'. %__... '..- ' ,%. % ," . ." .% ".. ¢. .. " ' ' .p" '%."¢°"..'.""a"" €"

T in s'.write-lockholders and s'.map(T') = s.map(T'). The desired result folio% s immediately
from the inductive hypothesis. D]

A consequence of this is the following lemma, which explains a sense in which M(X) is a resilient variant

of the basic object X.
Lemma 37: Let a be a well-formed schedule of M(X) and T a transaction that is not an

orphan at X in cr. Then visiblex(a,T) is a well-formed schedule of the basic object X.

Pro~oft We prove that visiblex(a,T) is a schedule of X by induction on the prefixes of
visiblex(a,T), The base case is trivial. So consider an event 7r in visibleX(ct,T), and the prefix

0 of visiblex(aT) ending with 7r. Let 8-'r. By the inductive hypothesis 3' is a well-formed

schedule of X. We must show that /0 is well-formed and that it is a schedule of X. Since r is
visible at X to T in a, so is any operation of the same access. Since a is well-formed, it follows
that all the requirements of operations' presence or absence in 3 are satisfied, to permit us to
deduce that fi is well-formed from Lemma 3. If ir is a CREATE event it follows from the
Input Condition on all I/O automata that ir is enabled after e3', and thus that 0 is a schedule
of X, so suppose that 7r is REQUEST_ COMMIT(lI,u). Consider visiblex(1',U) where -y -1'ir
is the prefix of a ending with r. Let s' denote the state of NI(X) immediately before 7r occurs,
and let U' denote the least ancestor of U in s'.write-lockholders. By Lemma 36, € =

essence(visiblex(-I',U)) is a well-formed schedule of X that can leave X in the state s'.map(U')
when applied to an initial state. By the preconditions for the operation 7r of \I(X),
OCREATE(U)ir is a schedule of X, which is well-formed since no operations of the access U
occur in the well-formed sequence 0.

We now show that ' and OCREATE(U) are equieffective. Since each is a well-formed
schedule of X, it suffices by Lemma 29 to show that they are write-equal. Now 6CREATE(UI
and visiblex(-Y',U) are write-equal, so we need only show that visiblex(y7',U) and /3' are write-

equal. Since U is visible at X to T in a, any access visible at X to U in -y' must be visible at X
to T in a, so the events in visible,(Qy',U) are a subset of the events in 3'. Now, by the
preconditions for 7r as an operation of M(X) every element of s'.write-lockholders is an ancestor
of U. So if REQUEST _ COMMIT(V,v) occurs in 3' for a write access V to X, then Lemma 35
implies that V must be committed at X to lca(V,V) in -' (since V is not an orphan at X in ;'.
as it is visible at X to T in a). Thus V is visible at X to U in -)', so
REQUEST_ COMMIT(V,v) occurs in visible,(-I',U). Also all REQUEST _ COMMIT events

for write accesses in visiblex(y',U) occur in the same order as in a. and similarly the
REQUEST_ COMMIT events for write accesses in 3' occur in the same order as in a. Thus
visiblex(y',U) and /0' are write-equal, completing the proof that OCREATE(U) and 3' are

equieffective.

Since 4'CREATE(U)7r is a well-formed schedule of X and 3 - 3'ir is well-formed, the

definition of equieffective implies that $3 is a well-formed schedule of X. as required. Thus, by
induction, visiblex(a,T) is a well-formed schedule of X. 0

5.2. Generic Scheduler

The generic scheduler is a very nondeterministic automaton. It pase, requests for the creation of >Ilb-

transactions or accesses to the appropriate recipient, passes responses l'a k to the caller and inforin,

h,.-ts of the fate of trab tei'n>, but it may detl+' .uch mvs.sage" for ahit rar lengths of ti me or

'M

27

unilaterally decide to abort a subtransaction which has been created. Moss [Mo devotes considerable

effort to describing a distributed implementation of the scheduler that copes with communication failures

and loss of system information due to crashes, yet still commits a subtransaction whenever possible. These

concerns are orthogonal to the correctness of the data management algorithms and we do not address

them here.

The generic scheduler has nine operations:

Input Operations:
REQUEST_CREATE(T)
REQUEST_COMMIT(T,v)

Output Operations:
CREATE(T)
COMMIT(T), T - To

ABORT(T), T 3 TO

REPORTCOMMIT(T,v), T 5 T o

REPORTABORT(T), T AT o

INFORMCOMMIT _AT(X)OF(T), T 3 T O

INFORMABORT_ AT(X)OF(T), T # To

These play the same roles as in the serial scheduler, except for the INFORM _COMMIT and

INFORM-ABORT operations, which pass information about the fate of transactions to the R/W

Locking objects.

Each state s of the generic scheduler consists of six sets: s.create_ requested, s.created,

s.commit_ requested, s.committed, s.aborted and s.returned. The set s.commit requested is a set of

(transaction,value) pairs, and the others are sets of transactions. All are empty in the initial state except

for create_ requested, which is {TO}.

The operations are defined by pre- and postconditions as follows:
REQUEST CREATE(T)

Postcondition:
s.create_ requested = s'.create requested U {T}

REQUEST COMMIT(T,v)
Postcondition:

s.commit _requested s'.commitrequested U {(T,v)}

CREATE(T), T a transaction
Precondition:

T E s'.create requested - s'.created
Postcondition:

The generic scheduler is very similar to the weak concurrent controller of [LMI. It differs slightly in the names of its operations,
in the separation of return and report operations, and in the conditions under which CREATE operations are permitted to occur,

%I

28

s.created =s'.created U IT)

COMM4IT(T), T 34T
Precondition:

(T,v) E s'.commit__ requested for some v
T V- s'.returned
children(T) nl s'. create_ requested C s'.returned

Posicondition:
s.cornmitted = s'.committed U {T)
s.returned = s'.returned U {T)

ABORT(T), T 34

Precondition:
* TE s'. create- requested - s'.returned

Postcondition:
saborted =s'.aborted u IT)
s.returned = s'.returned U IT)

REPORT_ COMMNIT(T,v), T 34 To0
Precondition.

T E s'.committed
(Tv) E s'.comrnit - requested

REPORT_ ABORT(T), T 74

Precondition:
T E s'.aborted

INTORMCOMMITAT(X)OF(T), T 74T
Precondition:

T E s'.committed

INTOR H _ ABORT -AT(X)OF(T), T 34T
Precon iltioi,

T E <'aborted

The followii.,; lemma relates the state of the generic schediler to its schedule.%

Lemma 38: Let a be a schedlule. of the geweric scht-duler, anid let s be a state x- liich cain
result from applying a to the initijal t ate t niin t he folloW ug Cond it ions itre t rue

I1. T is in screate requested exactly if a contaiins a REOT 'ES' CPCATE(T) event.

2. T is in screated exactly if a cont ainis a (PFI.ATE(1) event
3. (Tv) is in scommit _requested exactlY if (Y contains a HOIS OII1(v

event.
4. T is in scommitted exactlyv if (k cont.-ins a (()\IT1(T)e.u

5. T is lit saborted exactly if a conitains ,in AlBOUT1) F)venrt
6 sreturned = s.coniitted U saborted

scommitted ni sahorted 0

An obvious hut important propert v of thei generic- sclied id er I., givyen 1lY the next lernniia.

Lemma 39: If ak is a scheltiile- of thec genelfric shit-dili I Itit'ii t (Jillajiu ;0 1lost one i liIt

eel-

- '

29

event for each transaction T. r

5.3. R/W Locking Systems

The composition of transactions with R/W Locking objects and the generic scheduler is called a R14' ,

Locking system, and its operations and schedules are called concurrent operations and concurrent

schedules, respectively. 10 A sequence a of concurrent operations is said to be well-formed provided that

its projection at every transaction and R/W Locking object is well-formed. The following lemma is

proved in the same way as Lemma 8.
Lemma 40: If a is a concurrent schedule, then a is well-formed.

The following lemma is straightforward.

Lemma 41: Let a be a concurrent schedule. If T is a transaction that is not an orphan in o

and T' is visible to T in a, then T' is not an orphan in a.

Note that if a is a concurrent schedule then any INFORM_ CONMT AT(X)OF(T) is preceded by a

COMMIT(T) event (by the scheduler preconditions) and similarly any INFORM_ ABORT _AT(X)OF(T)

is preceded by ABORT(T). Thus, if T is visible at X to T' in a then T is visible to T' in a, and if T is an

orphan at X in a then T is an orphan in a. Thus, visiblex(aT) is a subsequence of visible(o,T)IX when

a is a concurrent schedule.

Two important properties of R/W Locking systems are given next.

Lemma 42: Let a - a'r be a concurrent schedule where 7r is REQUEST _CREATE(T'),

COMMIT(T') or ABORT(T') for a child T' of T. Then a' does not contain a COMMIT(T)
event.

Lemma 43: Let a be a concurrent schedule, T a transaction that is not an orphan in a and
M(X) a R/W Locking object. Then visible(a,T)IX is a well-formed schedule of basic object X.

Proof: Let S denote the set of transactions with COMMIT events in a. Construct a

sequence 3 by appending to a a sequence of INFORM _COMMIT AT(X)OF(U) events, where
the U give a post-order traversal of S. Since a contains a COMMIT(U) event for each U in S, 0

is a concurrent sc:iedule, and by Lemma 37 visible,(/3,T) is a well-formed schedule of X. Since

the INFORM _ COMMIT _ AT(X)OF(U) events at the end of 0 are in ascending order, and
occur for every U that has committed to T in 0, visibleX(3,T) visible(3,T)IX. Also

visible(/3,T) visible(a,T) since INFORM COMMIT operations have no influence on what

transactions are visible to T. Thus visible(a,T)IX is a well-formed schedule of X. 0

S0 Note that this usage differs rroin that in JLMt.

30

6. The Proof of Serial Correctness
We prove that a R/W Locking system generates schedules that are serially correct. for each non-orphan

transaction T, by taking a concurrent schedule a, extracting the subsequence visibie(ct,T) of events whose

effects might have been detected by T, and then rearranging the operations in this to give a serial

schedule 0. The rearrangements permitted are those that transform one sequence into a write-equivalent1 1

one.

6.1. Write-Equivalence

Two sequence- of serial operations, -y and -y', are write-equivalent if
I. they contain the same events,

2. for each transaction U, -11U = -yIU, and
3. for each basic object X, -IIX and -y'IX are write-equal sequences of operations of X.

Thus, the rearrangements allowed include interchanging the order of two events of different transactions

or objects, and also interchanging the order of events of a single object. provided that they are not both

REQUESTCOMMITs for write accesses. By the semantic conditions of Section 4.3, such

rearrangements at objects are such that the difference between the orders is not detectable by any later~p
operations of that object. This property is expressed by the following lemma.

* Lemma 44: If a and 1 are write-equivalent sequences, and oX and ,1X are well-formed
schedules of X for each basic object X, then aIX and 31X are elutieffective sequences.

When we use this lemma, a and 0 will each be either a serial schedule or the subsequence of a

concurrent schedule visible to a transaction, and so the hypothe.i. that crjX and OIX are well-fornied

schedules of X will be satisfied for all basic objects X, by Lemnias 8 and 13.

Write-equivalence is obviously an equivalence relation We ha%. ;one st r.ightforwkard result,

Lemma 45: If a and 1 are sequences of operations that are write-equivalent, then .o is
write-equivalent to aO for any sequence 0 of operations.

Lemma 46s If a and 8 are serial schedules that are write-equivalent and ao is a serial
schedule then 00 is a serial schedule.

Proof: From Lemma 45 we see that for any non-access transaction V, jtotk" -- oV,)I" which
is a schedule of U, since ao is a serial schedule. For each basic object X. by Lemma 41 o X is
equ'-ffective to SIX, so 3OIX is equieffective to -io.X, atid since o .IX is a schedule of X. so 1,
fiOIX. Thus, we need only show that 196 is a schedule of the serial scheduler. For 3 this is A
hypothesis of the lemma, and events in 0 are enabled at the serial scbeduler. hiecais, Iy

Lemma 7 the preconditions of operations of the serial scheduler depend only on the presncv or
absence of operations in the preceding schedule, not on the ordcr of those events.

f his notion is a generalization of P.4,.v ., .. .' . ,.i i I.t

-... . ,:-, '. .. '% ,,,",

31

5.2. A Technical Lemma

In this subsection, we prove a r-nit Rimilar to Lemma 19, for lisp in the proof of Lemma 48 in Section

6.3.

Lemma 47: Let a be a concurrent schedule, and let T and T' be two non-orphan
transactions with T' visible to T in a. Let 3 and 0, be serial schedules such that /3 is write-

equivalent to visible(a,T) and /31 is write-equivalent to visible(a,T'). Then - 01(;3 - ,3) is a

serial schedule that is write-equivalent to visible(a,T).

Proof: First we prove that 3' = visible(fT') is write-equivalent to 3 1. By Lemma 15 and

Lemma 13, #' and 3, contain the same events. For any basic object X. write(3'jX)

write(311X) since REQUESTCOMMIT events for write accesses to X occur in 3' in the same

order as they occur in 0, which is the same as the order they occur in a, which is the same as
the order they occur in 81. For any transaction U that is visible to T' in a (and hence in 3),

#'JU= /38U aIU, by Lemma 14 and write-equivalence, and similarly /311" , li On the

other hand, if U is not visible to T' in a, j3'JU and /31U are both empty.

By Lemma 19, 3'(,3 - 3') is a serial schedule. Since d - 9' -- 3 - 3 1 (as 3' and ., contain the

same events) and 83' is write-equivalent to 31, we deduce from Lemma 46 that -" is a serial

schedule.

Next, we prove that write(visible(a,T')IX) is a prefix of write(visible(a,T)IX) for any object
X. Suppose that visible(a,T) contains a REQUEST_ COMMIT(Utu) event for a write access U'

to X that is not in visible(a,T'). Let REQUEST _COMMIT(U',u') be a subsequent event,
where U' is a write access to X that is visible to T in a. We must show that U" is not visible to
T' in a. Consider the prefix 6 of a that precedes the REQUEST _COMMIT(U' ,u'), and let s
denote the state of the R/W Locking object M(X) after 6. If we denote by U- the highest
ancestor of U to which U has committed in a, then U" is a proper descendant of lca(UT'),
since U is not visible to T' in a. Then the highest ancestor of U to which U is committed at X
in 6 must be a descendant of U", and so by Lemma 35 some descendant of U" is in s.write-
lockholders. By the preconditions for the operation REQUEST_COMMIT(U',u') of NI(X), U'
must be a descendant of U", and therefore U' is not committed in a to lca(hi.T') - lca('".T')
= Ica(U,T'). Therefore U' is not visible to T' in a, establishing that write(vlsihle(a.T')X) is a
prefix of write(visible(a,T)jX).

, Now we show that -7 is write-equivalent to /3. They clearly contain the same e-vonti. since

every event of 0 1 occurs in 3 (because any operation visible to T' IW n is also visible to T in a

by Lemma 12). If P is a basic object, write(131 iP) write(visible(o!,T')Il') is a prefix of

write(visible(a,T)IP) m write(Oill'). so that write(y+P) = (write(,3q IP))(write(31') - wrute(.4 I'))

= write(/3iP). If P is a transaction that is visible to T' in t then .1,11' visil'(o 1' I'

alP = visible(a,T)IP = 01P, so "ylP = (;3wP)(llP - 31IP) - Pll On th le other hand, if I' is a

transaction not visible to T' in a then 311P is empty, so trivially -111' 3iP

Since -1 is write-equivalent to /3, it is write-equivalent to islible(o,T) D.

Io
I ~ W ~U~~ *,~ W&If.U**j~ ~ ,,'J~d ~ . .

6.3. The Main Resulta

We are now ready to prove that R/W Locking systems are serially correct for every transaction that is

not art orphan. We actually state a stronger property that carries useful invariants through the I

induction.

Lemma 48: Let a be a concurrent schedule, and T any transaction that is not an orphan in
a. Then there is a serial schedule 8 that is write-equivalent to visible(a,T).

Proof: The proof follows the outlines of that of the main theorem of [LN'. We proceed by
induction on the length of a. As before, let a a'r. We must show that there is a serial
schedule $ that is write-equivalent to visible(aT). We can assume that transaction(7r) is ,.
visible to T in a. There are seven cases, and in each we relate visible(o,T) to visible(a',') for

one or more transactions U, and build 3 from serial schedules write-equivalent to visible(a',U).

(t w is an output operation of a non-access transaction T'.
Since T is not an orphan in or', the inductive hypothesis implies the existence of a serial
schedule $' that is write-equivalent to visible(a',T). Let = 0'rL We will show that 3 is a
serial schedule that is write-equivalent to visible(ckT). By Lemma I. to check that 3 is a serial

schedule we need only check that O'xrlT' is a schedule of T'. However 3'IT' - visihle(n',T)[IT" %

a'IT' by Lemma 14 (since T' is visible to T). Thus 3'irIT' = a'irIT' - crIT', which is a
schedule of T'. Thus, 3 is a serial schedule.

By Lemma 16, vistble(a,T) visible(a',T)ir and since 3' is write-equivalent to visibh(o',T), %

we may apply Lemma 45 to deduce that 3 is write-equivalent to visible(o.T).

(21 ?r is an output operation of a R/W Locking object M(X). ,
Since T is not an orphan in a', the inductive hypothesis implies the existence of a serial p
shedule 3' that is write-equivalent to visible(a',T). Let 3 =- 3'7r. We will show that 3 is a
serial schedule that is write-equivalent to visible(a,T). By Lemma 1, to check that 3 is a serial P
schedule we need only check that 9'irIX is a schedule of X. However, Lemma 44 implies that
X'jX is equieffective to and contains the same events as visible(a',T)IX. Now visible(a',T)7rX
= visible(a'irT)IX - visible(a,T)JX, which is a schedule of X by Lemma 43. Thus by Lemma
24, 3'w)X is a schedule of X Thus /3 is a serial schedule.

Since visible(aT) = visible(a'.T)Yr, $ / 3'7r. a', 1 is write-equivalent to visible(o',T), %%e -
may apply Lemma 45 to deduce that /3 is write-equivalent to visible(a,T).

(3) ?r is a (REATE(T') operation.
Then transaction(-) T'. and so T' is v isibl" to ' I o lly well-for rnd ne-s au (lie

-,-heduler preconditions, any opertion of a pro,,'r des(endajit (,f F" in hie prhevidd Ih a

RIEQUEST CREATE fo, a child of T', and h well-forruedness any oprration of T 'ut .I..

follow ('REATE(T') Thus, in is the first event whose transaction i. a descendant of T', so T

T Hy Lemma 21. parent(T) is not an orphan in o. and hence in ,o', -o the indl,--

hypothesis implies the existence of a serial schedule X that i "Ilte-etquivaleit to

visible(a',parentT)) Let 3 rT' We will show that .3 i a serial ,chol e that i. \ i it,-

equivalent to visible(n,,T) % -r

To show that 3 is a serial s'hedile, we need only check that j'3r is a schedul, of lhe -c'ml
scheduler If s' is the state of ith serial scheduhlr after an execution with operation sequence, .1', %

we will show that in is enabled ii s'. We note hat ir wa,, enabled in the state s" of the generic
,.scheduler that atru. froia, the ext,. iii i' it h oteratwnl u ., ., r 'ilhw- rrlum i,

.%

33 S

preconditions for 7r in the generic scheduler and from Lemma 38 we see that a' must contain

REQUEST_CREATE(T) but not CREATE(T), and since T is not an orphan in a, no
ABORT(T) event occurs in a'. These conclusions also hold for visible(a',parent(T)) since
REQUEST_CREATE(T) occurs at parent(T) and any operation absent in a' must be absent

from its subsequence visible(a',parent(T)). Since /3' is write-equivalent to visible(o',parent(T))

it contains the same events, and so /3' contains REQUESTCREATE(T) but no CREATE(T)
or ABORT(T) event, and Lemma 7 shows that T E s'.create-requested - (s'.created U
s'.aborted). Also for any U E sibling(T), if U E s'.created then CREATE(U) occurs in '3' and
hence in visible(a',parent(T)), so U must be visible to parent(T) in a', so COMMIT(U) must
occur in a' and thus in visible(a',parent(T)) (as it has transaction parent(U) = parent(T)), and
so COMMIT(U) occurs in /3'. By Lemma 7, U E s'.returned, establishing that sibling(T) n
s'.created C s'.returned. Thus we have checked that 7r is enabled in s', and therefore / -- 3'7r
is a serial schedule.

Since visible(a,T) = visible(a',parent(T))r, /3 = /3'r and 3' is write-equivwilent to
visible(a',parent(T)), we may deduce from Lemma 45 that 13 is write-equivalent to visible(a.T).

(4) 7r is a COMMIT(T') operation.

Then T" = parent(T') is visible to T in a, since transaction(7r) = T". Lemma 42 says that
no COMMIT(T") occurs in a', and so T must be a descendant of T" (since T" is visible to T).
Also, by Lemma 41, T" is not an orphan in a and so also T" is not an orphan in a'. From
this and Lemma 39, we deduce that T' is not an orphan in o'. We distinguish two cases,

depending on whether T is a descendant of T' or not.

Assume first that T is a descendant of T'. Then visible(aT) visible(a',T)ir, and by the
induction hypothesis there is a 8' that is serial and write-equivalent to visible(a',T). Let 83
$'i. We show that $ is a serial schedule that is write-equivalent to visible(a,T). To show that
B is serial, we must show that 7r is enabled at the serial scheduler after /3'. The serial scheduler
preconditions and Lemma 7 show that we must prove that IRLQUEST_ COMEMIT(T',v) occurs
in /3', that no return for T' occurs in /3', and that for every child U of T' with a
REQUEST_ CREATE(U) in 0' there is a return event in 3'. Since 7r is enabled in the generic
scheduler after a', each of these is true with a' replacing /3'. Since all these operations are
visible to T in a', all these statements are also true of visible(a',T) and thus of the write-
equivalent sequence $', as required. Now we note that Lemma 45 proves that 3 = 3'7r is write-
equivalent to visible(a,T) = visible(a',T)r.

In the other case, when T is not a descendant of T', the inductive hypothesis yields three

serial schedules, /3', 3" and -y, that are write-equivalent to visible(a',T'), visible(n',T) and
visible(a',T") respectively. Let = 8' - -y and /0 = /" - -y. Let 8 = -3Wr.3,. We show that

/ is a serial schedule that is write-equivalent to visible(a,T). That 3 is serial follows from
Lemma 27, provided we can show that:

(4.a) -y/31I
r is a serial schedule,

(4.b) "y02 is a serial schedule,

(4.c) -/31 = visible(-1/ 1,T'),

(4.d) 'y/32 = visible(y/8 2 T),

(4.e) "-y visible(-y8 1,T") = visible(-7;3.,,T") and

(4.f) if any basic object X has an output operation in 0., then every operation in 3,IX is

transparent.
(4.a) By Lemma 47, -y/31 is a serial schedule (and is write-equivalent to visible(o',T')). We

must therefore show that ir is enabled at the serial scheduler after y/81 . The serial scheduler I

p34
preconditions and Lemma 7 show that we must prove that REQLUEST_ CON\L\IT(T',v) occurs
in Y,,for some Y, that no return for T' occurs in -,3V and that for every child t.' of T' with a
REQUEST _CREATE(U) in -1,61 there is a return event in -13 Since ir is enabled in the
generic scheduler after a', each of these is true with a' replacing -to3 f Since all these operations
are visible to T' in a', all these statements are also true of visible(a',T') and thus of the Write-
equivalent sequence -y9, as required. Thus -yI3,7r is a serial schedule. We also note that Lemma
45 proves that -,6 ir is write-equivalent to visible(a,T') =visible(a',T')r.

(4.b) By Lemma 47, 'yt 2 is serial (and write-equivalent to visible(a',T)).

Parts (4.c}-(4e) are immediate.

Vp (41f) We prove that if a basic object X has an output operation in ;3 theni no event in 211lX is
a REQUEST _COMMIT for a write access. Suppose this ,Aere false. Then 31 contains a
REQUEST -COMMIT(V 1 l,) for V, a write access to X, and 3 contains a
REQU EST COMMIT(V 2 ',v0 for V 2 an access to X. Since V1I is visible in or to T' but not to
T", V1I must be a descendant of T', and not an orphan in a, and V1I must not be committed at
X to T" in a. By Lemma 35, same descendant of T' is in s.write-lockholders, where s is a state
of M(X) after applying a. Similarly V2 must be a descendant of same sibling U of T' but not
committed at X to T" in a, so by Lemma 35, some descendant of U is in s. read lockholders U
s. write-loc kholders. But these two statements about lockholders contradict Lemma 34.

Now we must prove that 3 is write-equivalent to visible(a,T). Since any transaction visible
to T in a is either visible to T in a' or visible to T' in a' and if both then it is visible to T" in
a', it is clear that 6 and visible(a,T) contain the same events. If P is a basic object, either ,
contains no output operations of P or else no operation in 311P is a REQUEST - COM MIT for -

a write access. In the first case write($.,IP) is empty, and since write(-13 I rif')
write(visible(a',T')IP), we have write(0IP) = write(visible(a,T)IP). In the second case
write(,31 IP) is empty, and since write(3 2 P write(visihle(or',T)IP), we again have Arite(31')

=write(visible(ar,T)IP). if P is a non-access transaction that i- not visible to T inl a, then no
operations occur at P in either 0 or visible(a,T). For P any non-access, tran .action that is
visible to T in a, either P is visible to T in a' or P is visible to T' in a'. In the first case, 3.1P

is empty so 61P = - 1 1xP - visible(a,T')IP since we saw above that -Y8, i and visible(o .T)

are w rite- equivalent, and visible(a,T')IP -ajll' visible(a,T)IP. Similar]ly ini the second case
0 rPis empty and $1P = y13,P = visible(a',T)jP = visibiek'i.). in, every case, we- have

9 ~checked that 61P = visible(aT)IP. Thus 9 and visible(oT) are write-equivalent.

(5) 7r is an ABORT(T') operation.
Then T''= parent(T') is visible to T in a, since transac; ioii(r) TI", Lemmna 412 saN that
COMMIT(T'') does not occur in a' and so T must be a de~cendant of 'I... (since I... is vlilv to
T). Also by Lemma 41, T'' is not an orphan in o andl so also 'r' is not an orphian inl a' '-itir
T is not an orphan in a, T is not a descendiant of T'. Thti' lie inridIive y~o i.i ell,' N

* ~serial schedules, 3' and ',that are writ e-equ ivalent to iileaT)and vi.~ible(oi F.
respectively. Let $ 3' - . Let 3 ==-)r3. We show that 3 is a serial _rl,.lqe t~li 1i,
write-equivalent to visible(a,T). That.3 is ,erial follows from 1

.,ii ma 28 , 1 ,;ovj(Icd c~ ar
show that:

(5.a) -pr is a serial schedule,
(5.b) -p3 l is a serial sch, dule.

1P

-V6%JW.-%w - - -- ' 'X-'

35

(5.c) = visible(-y,8,T),
(5.d) -y - isible(-y,T")-- visihle(-fl,,T")

(5.a) Since -y is a serial schedule, we must show that 7r is enabled at the serial scheduler after
-. The serial scheduler preconditions and Lemma 7 show that we must prove that

REQUEST _CREATE(T') occurs in 1, and that no CREATE(T') or ABORT(T') occurs in -1.
Since r is enabled in the generic scheduler after a', a' contains a REQUEST_ CREATE(T')
event, and since transaction(REQUESTCREATE(T')) = T", REQUEST_ CREATE(T') is
in visible(a',T") and hence in -y. By Lemma 39, T' is not committed in a', so that any
CREATE(T') event in a' is not visible to T", and so does not occur in visible(a',T") and
hence does not occur in -1. By Lemma 39, there is no ABORT(T') event in a', so ABORT(T')
does not occur in -y. Thus -y/r is a serial schedule. We also note that Lemma 45 proves that yr
is write-equivalent to visible(a,T') = visible(a',T')r, since -, and visible(ce',T') are write-
equivalent.

(5.b) By Lemma 47, -11 is a serial schedule (and it is write-equivalent to visible(a',T)).

Parts (5.c) and (5.d) are immediate.

Now we must prove that 3 is write-equivalent to visible(a,T). Since any transaction visible
to T in a is visible to T in a', and either visible to T" in a' or not, it, is clear that 3 and
visible(a,T) contain the same events. If P is a basic object, since write(-y3 1lP) =

write(visible(a',T')IP) we have write(,3P) = write(visible(a,T)IP). For P any non-access
transaction, /3lP = l -1 -= visible(a',T)IP = visible(a,T)IP, since 7riP is empty and -Yo and
visible(a',T) are write-equivalent. This completes the demonstration that / and visible(o,T)
are write-equivalent.

(6) 7r is REPORT_GOMMIT(T',v)
Since T is not an orphan in a' there is a serial schedule 9' that is write-equivalent to
visible(a',T). Put /3 = 8'7r. By the preconditions of the generic scheduler and Lemma 38,
REQUEST_ COMMIT(T',v) and COMMIT(T') occur in a'. Since the report is in
visible(a',T), parent(T') is visible to T in ,'; thus, COMIT(T'), and hence
REQUEST_ COMMIT(T',v), are in visible(a',T). So CONLIIT(T') and
REQUEST _ COMMIT(T',v) occur in #'. The serial scheduler preconditions and Lemma 7
imply that 7r is enabled after 3' at the serial scheduler, and so by Lemma 1 and Lemma 45, 13
is a serial schedule that is write-equivalent to visible(a,T) = visible(o'.T)7r.

(7) 7r is REPORT_ABORT(T')
This is just like case (6).

Thus in every case we have produced a serial schedule ,3 that is wr 'e-equivalent to
visible(a,T). 0

Theorem 49: Every concurrent schedule is serially correct for ,.very no-orphan n(,n-access
transaction.

Proof: Let T be a transaction that is not an orphan in the concurrent %chelule o li
Lemma 48 there is a serial schedule 0 that is write-equivalent to vnbl.(,k.T) "l'h,.r , 1I
visible(a,T)IT by Lemma 14, and by write-equivalence, visiEl(,'l')lT .3VT

In particular, the external environment, modelled by T0, receives responses from t ransactions hat ar,-

consistent with a serial execution.

% -
t,'t

36

Corollary 60: Every concurrent schedule is serially correct for T0.

7. Conclusions and Further Work b
'%.e,

We hare used I/O automata to provide clear formal description, of all the components of a nested :%.

transaction system that uses Moss's algorithm to manage data. We have shown how to take any schedul-

of such a system, extract a subsequence (including all the operations of a given non-orphan transaction),

and rearrange the events in the subsequence to give a write-equivalent serial shedule. Thus we have A

demonstrated that any schedule of a R/W locking system is serially correct for ever), non-orphan

transaction.

'his work by no means exhausts the topic of concurrency control and recovery in nested transaction

systems. Work is currently underway on a number of issues orthogonal to the locking techniques

considered in this paper, for example replication [GL] and orphan elimination jHL-LM'. We also hope to

extend the results of this paper in several ways. One natural extension is to locking protocols for abstract

data types that allow more concurrency than R/W locking by using more semantic information about the

operations. Such protocols have been studied in transaction systems without nesting rWe> In generalizing

these protocols to handle nested transactions, it appears that equieffectiveness can be used to provide a

natural definition of commutativity (or non-conflict) between operations, which can then be used to prove %

the correctness of an algorithm that generalizes conflict-based locking to nested systems.

Other aspects of real systems that we have not addressed in this paper, but expect to study in the

future, are liveness properties and resilience to system crashes. We have proved that any response to a

R/W locking system is correct. but for a practical system we also need to know that a response will be

produced (and, we hope, rapidly produced.) Lynch and Tuttle 'LT. discuss how to express liveness reult,

in terms of 1/O automata, but phenomena such as deadlock in transaction systems make it diffirult t

guarantee strong liveness properties. At best, any guarantees that progress can be made will he

probabilistic. System crashes that cause information to be lost (such as lock table.) are also a ralit% of

practical systems. We plan to extend the model presented in this paper to describe cras4iws and to 0.

analyze algorithms that ensure resilience to crashes. %

8. Acknowledgements '1
We thank the members of the Theory of Distriblted Svstens i.lminar at \l' for niai. helpful 0

suggestions.

.

%S
Ai

37

9. References
Allchin, J.E., ".'\I Architecture for Reliable Decentralized Systeis". PhD. Thss.

School of Info. and Comp. Sci., Georgia Institute of Technology, September 1983.

[BBG] Beeri, C., Bernstein, P. A., and Goodman, N., "A Model for Concurrency in Nested
Transaction Systems," Technical Report, Wang Institute TR-86-03. \lirch 198l6.

[I3BGLS] Beeri, C., Bernstein, P. A., Goodman, N.. Lai, NI. Y., and Shasha, D. E. "A
Concurrency Control Theory for Nested Transactions," Proc. 1988 Sccond Annual
ACM Symposium on Principle8 of Distributed Computiny. Montreal. Quebec
Canada, August 17-19, 1983, pp. 45-62.

[BG1 Bernstein, P. A., and Goodman, N., "Concurrency Control in Distributed Databa.e
Systems." ACA Computing Surveys 13,2 (June 1981), pp. 185-221.

~i Davies, C. T., "Recovery Semantics for a DB/DC System," Poc. AC.\ .Vational
Conference 28, 1973, pp. 136-141.

'EGLT Eswaren, K. P., Gray, J. N., Lorie, R. A., and Traiger, 1. L., "The Notions of
Consistency and Predicate Locks in Database Systems," Communica tions of the ACI,
Vol. 19, No. 11, November 1976, pp. 624-633.

[GLI Goldman, K., and Lynch, L., "Quorum Consensus in Nested Transaction Systems," in
progress.

IGo' Goree, J., "Internal Consistency Of A Distributed Transaction System With Orphan
Detection," MS Thesis, TR-286, Laboratory for Computer Science, MIT. January 1983.

[Gr] Gray, J., "Notes on Database Operating Systems," in Bayer, R.. Graham. R. and
Seegmuller, G. (eds), Operating Systems: an Advanced Course, leeture Notes inI
Computer Science, Vol. 60, Springer-Verlag, 1978.

[ItLmw] Herlihy, M., Lynch, N., Merritt, M., and Weihl, W., "On the Correctness (of Orphan
Elimination Algorithms," submitted for publication.

f[Ho] Iloare, C. A. R., "Communicating Sequential Processes," Prentice Hall International.
1985.

[Ko] Korth, If. F., "Deadlock Freedom Using Edge Locks," ACMXI Tran. on Databng
Systems, Vol. 7, No. 4, December 1982, pp. 632-652.

{KS i Kedem, Z., and Silberschatz, A., "Non-two phase locking protocols with shared and
exclusive locks," Proc. Int. Conference on lery Large Data Bases, 19S0. pp. 309-320.

IHJISWI Liskov, B., lerlihy, M., Johnson, P., Leavens, G., Scheifler, R.. and Weihl, NV
"Preliminary Argus Reference Manual," Programming Methodology Group Memo 39,
October 1983.

[11i Liskov, B., and Scheifler, R., "Guardians and Actions: Linguistic Support for Robust.

38

Distributed Programs", ACM Transactions on Programming I, agiujee und Systems
Vol. 5, No. 3, July 1983, pp. 381-404.

ILMI Lynch, N., and Merritt, M., "Introduction to the Theory of Nested Transactions."
Technical Report MIT/LCS/TR-367, MIT Laboratory for Computer Science

Cambridge, MA., July 1986.

[LT' Lynch, N., and Tuttle, M., "Hierarchical Correctness Proofs for Distributed
Algorithms,O in progress.

[Ly] Lynch, N. A., "Concurrency Control For Resilient Nested Transactions," Advances in
Computing Research 3, 1986, pp. 335-373.

IMGG] Moss, J. E. B., Griffeth, N. D., and Graham, M. H., "Abstraction in Concurrency
Control and Recovery Management" Technical Report 86-20, COINS University of
Massachussetts, Amherst, MA., May 1986.

[MoI Moss, J. E. B., "Nested Transactions: An Approach To Reliable Distributed
Computing,0 Ph.D. Thesis, Technical Report MIT/LCS/TR-260, MIT Laboratory for
Computer Science, Cambridge, MA., April 1981. Also, published by MIT Press, March
1985.

[P) Papadimitriou, C. H., *The Serializability of Concurrent Database Updates," J.ACM
Vol. 26, No. 4, October 1979, pp.631-653.

[R] Reed, D. P., "Naming and Synchronization in a Decentralized Computer System,"
Ph.D Thesis, Technical Report MIT/LCS/TR-205, MIT Laboratory for Computer
Science, Cambridge, MA 1978.

IT] Thomas, R. H., "A Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases," ACM Trans. on Database Systems, Vol. 4, No. 2, June 1979, pp.
180-209.

[We] Weihl, W. E., "Specification and Implementation of Atomic Data Types," Ph.D Thesis.
Technical Report/MIT/LCS/TR-314, MIT Laboratory for Computer Science.
Cambridge, MA., March 1984.

'
'

U",

%

%d .Z r

'I ,, - , - - . .- . ., -. . -, -.-; , ..: -.-, . ". , : ,- . ? . . , " -'- , ' y - ¢ '-" -

OFFICIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209 -

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

'N

National Science Foundation 2 Copies
Office of Comuutina Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

*1

A

'~ w*

JA

5%

- S. **~

'S

p

~J.

S

S..,
5 ~5

V
-S

a

0
.5

~5.

~ S..

____________ *
U *55 ~5
- - S.
* ID ~

S

V

S.,

S
'-5

.5%

S..

*555*S

-5-

S* ~ -.

5'.

