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CURRENTS INDUCED IN A HUMAN BEING FOR ELECTROMAGNETIC
FIELDS 10KHz - 50 MHz

)

introduction 7,1} .

s

/ -~ We hape/;/ireviously shown {1, 2] that vertically polarized incident plane wa'(res are capable of
inducing 1aiﬁlf significant RF currents in a free-standing human being. Foot currents were found to be
i proponigna/l to the frequency of incident radiation for the frequency band 0-4@-& with values as high as
'\ 12.7 @ﬁt/\/(wm) measured for adult human volunteers at 40 MHz. This work has pointed to the possibility of
p ' large induced currents estimated to be on the order of 627.4 mAvior the ANSI recommended [3] 3-30 MHz
RF safety level -- RMS incident electric lield E = 1897/fiyHz, wigh current values peaking at 780 maA for the
y ! |
) ANSI recommended E = 61.4 V/m (1 mW/cm?2) at 40 MHz.\ Recognizing that the induced current is
divided equally between the two legs on its way to the ground underneath, fairly high current densities

! . result in the various cross sections of the leg with concommitant high rates of energy deposition (SAR). In

; particular, due to the predominantly bony nature of the ankle cross section forcing the RF current to flow in

an effective 9.5 cm2 cross section of the high conductivity tissues, very high current densities (J) and the
resulting SARs are set up. ~Eor the ANSI-recommended electric fields, current densities and SARs
calculated for the ankle section arerz‘\ 1. for 3-30 MHz band, J = 33 mA/cm?, SAR = 182 W/kg and 2. for f =
f 40 MHz, J = 41 mA/cm2, SAR = 243 WIRE" These SARs are aimost two orders of magnitude larger than
the metabolic rates of the tissues and considerably in excess of the ANSI guideline [3]"; 8 W/kg tor any
1 g of tissue.

______ P The two tasks undertaken during the period of this project are: -
-1 Development of a high resolution thermal model of the human leg and its use to estimate
the temperature distribution as a result of the induced high current densities at radio

frequencies.

Development of a high-resolution, anatomically-realistic, inhomogeneous model of man

MHz.
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TEMPERATURE DISTRIBUTIONS IN THE HUMAN LEG FOR
VLF-VHF EXPOSURES AT THE ANSI-RECOMMENDED SAFETY LEVELS

This work is detailed in Appendix A which has been submitted for possible publication to IEEE
Transactions on Biomedical Engineering.

Using a block model of 1,532 cubical cells, temperature distributions are calculated for the lowest
21 cm of the human leg for electric fields recommended in the ANSI RF safety guideline. The thermal
model uses inhomogeneous volume-averaged tissue properties: blood-flow rate, metabolism, thermal
conductivity, specific heat, etc. The SARs are obtained using the impedance method. A modified
method of finite difference technique is used to solve the 3-D heat conduction equation for the thermal
model. Numerical results are obtained for RF currents at 3 and 40 MHz projected for the E-fields
recommended by the ANSI Standard (614 and 61.4 V/m, respectively) and also for power densities one-
tenth of that level. Temperatures as high as 41.6° are obtained for some internal cells for the higher E-
fields while relatively moderate temperatures on the order of 37° C are obtained for the lower E-fields.
Some of the calculated results for the surface temperature have been compared and found to be in good

agreement with the experimental data for initial rates of heating.

AN ANATOMICALLY-BASED MODEL OF MAN AND ITS USE FOR
SAR AND INDUCED CURRENT DISTRIBUTIONS

Similar to references [4] and [5], the inhomogeneous mode! of the human body is based on the
anatomical cross sections given in the book, "A Cross-Section Anatomy,” by Eycleshymer and
Schoemaker [6]). This book contains cross-sectional diagrams of the human body which were obtained by
making cross-sectional cuts at spacings of about one inch in human cadavers. The process for creating
the data base of the man mode! was the following: first of all a quarter-inch grid was taken for each single
cross-sectional diagram and each cell on the grid was assigned a number corresponding to one of the 14
tissue types given in Table 1. Thus the data associated with a particular layer consisted of three numbers
for each square cell: x and y positions relative to same anatomical reference point in this layer, usually the
center of the spinal cored, and an integer indicating which tissue that cell contained. Since the cross-

sectional diagrams available in reference [6] are for somewhat variable separations typically 2.3-2.7 cm, a
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new set of equispaced layers were defined at 1/4" intervals by interpoiating the data onto these layers. ‘j\.
Since the cell size of quarter-inch is too small for tha memory space of present day computers, the "
proportion of each tissue type was calculated next for somewhat larger cells of size one inch by combining k
the data for 4 x 4 x 4 = 64 cells of the smaller dimension. Without changes in the anatomy, this process ';'?:
allows some variability in the height and weight of the body. We have taken the final cell size of 2.62 cm _".'
(rather than 1" or 2.54 cm) to obtain the whole-body weight of 69.6 kg for the model. ’:
The finite-difference tissue-domain method described in our earlier publications [4,5) has been w

used to calculate the internal electric fields (E) for the model of man subjected to vertically-polarized plane ;
waves at frequencies between 20 and 100 MHz. The model is assumed to be nestled in a rectangular ;'.
volume of 38 x 26 x 84 or 82,992 cells of dimensions 2.62 cm on each of the sides. The electromagnetic » ::
fields are calculated using CRAY XMP computer requiring cpu times on the order of 2.5 - 5 minutes, ?
depending upon the frequency. Both isolated and grounded conditions are used for the calculations. :-'I\E
The local SARs are calculated from the relationship SAR = ¢ E’ . E’/zp' where ¢ is the electrical :-
conductivity and p the mass density obtained for the individual cubical cell from the volume-averaged ! :
properties of the respective tissues comained therein. The layer-averaged values of SARs calculated for EE
incident plane waves of power density 1 mWwW/cm?2 (incident E-field of 61.4 V/m) are shown in Figs. 1-10 for :'cﬂ
isolated and grounded conditions for frequencies 20-100 MHz. Lower frequencies have not been used -
for calculations since the SARs are considerably lower at these frequencies. E
The whole-body-averaged SARs for grounded and isolated man models are shown in Fig. 11 for -_:g-
various frequencies. Also shown for comparison is the experimental data by Guy and Chou [7]). Whereas :" ’
these authors have used scaled, homogeneous models with conductivity corresponding to 2/3 that for \
muscle, an anatomically-based inhomogeneous model has been used for the present calculations. It is :
interesting to note that the SARs given by the inhomogeneous model are significantiy higher than those :::
obtained for the homogeneous model. As will be seen later (Figs. 13 - 22) substantia! radio frequency ""
currents are induced in the legs. Because of the large bone content of the legs, an inhomogeneous :
mode! properly accounts for the lower effective conductivities for this region, which therefore results in é )
higher SARs.
Y
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From Figs. 1-10 it may be seen that the highest SARs are calculated for the sections through the o

neck, the knee and the ankle - the former being due to a smaller cross section and the latter two due to the

high bone content as well. The layer-averaged SARs for ankle- , knee-, and neck sections calculated for : ::

grounded and isolated conditions are shown in Fig. 12. ':’

We have used the internal E-fields to calculate the local current densities from the relationship 7- '

' (S + jwe) ? The z-directed currents for any of the layers are obtained by summing up the terms due to the 'f
: individual cells in a given layer as foliows: :E

-
-
-

1-82 3 (o4 k) E 3
. (1 P
LY
p +
4 )
where A2 is the cross sectional area (2.62 x 2.62 cm? ) for each of the cells. f*
5
[ The layer-averaged induced current distributions are shown in Figs. 13-22 for isolated and <
§ grounded conditions for frequencies of 27-90 MHz. Since E-fields of 61.4 V/m have been recommended "
Lot
as safe in the ANSI C95.1 - 1982 RF safety guideline [3] for the frequency band 30-300 MHz, substantial ,“
| RF induced currents are obviously implied from the data given in Figs. 13-22. A comparison is made in -"
L R
‘ o
h Fig. 23 of the foot currents calculated for a grounded model to those that were measured by Gandhi, et al. p’
. )
I!
[

[2] using human subjects. Somewhat lower currents are obtained from the model calculations than were

measrued experimentally [2]. This may be due to the relative crudeness of the present model. Finer

S 8 bt ty

models using smaller cell sizes would provide better representation of reality and may result

b

in giving a better agreement with the measured data.
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Fig. 1. Layer-averaged SAR distributions for a grounded and
isolated man model at 20 MHz. All SARs are the result of

1 Z—% incident plane-wave. The SARs for the isolated
man model have been multiplied by 10.
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1% incident plane-wave. The SARs for the isolated
condition have been multipiied by 10.
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ABSTRACT

Using a Dblock model of 1532 cubical cells, temperature
distributions are calculated for the lowest 2] c» of the human leg for

o'

electric fields recommended in the ANSI RF safety guideline. The

thermal wmodel uses inhomopeneous volume-averaged tissue properties:
blood-flow rate, metadbolism, thermal conductivity, specific heat, etc.
The SARs are obtained using the impedance method. A modified method of
finite difference technique is used to solve the 3-D heat conduction
equation for the thermal rodel. Numerical resuvlts are obtained for RF

currents at 3 and 40 MHz projected for the E-fields recommended by the

ANSI Standard (614 and 6l.4 V/m, respectively) and also for power v
densities one-tenth of that level. Temperatures as high as 41.6° are E:
obtained for some internal cells for the higher E-fields while g;
relatively moderate temperatures on the order of 37°C are obtained for »
the lower E-fields. Some of the calculated results for the surface ;:
temperature have heen corpared and found to be in good agreement with 25

"‘\-

4
L

the experimental data for initial rates of heating.
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1. INTRODUCTION

The present radio frequancy RF radiation standards sugg. sted by
American National Standards Institute (ANSI) and the American Conference
of Goveroment Industrial Hygienists are based on the knowledge of whole~
body-average specific absorption rate (SAR) [1,2]. For the electric
fields recommended in the ANSI C95.1-1982 RF Safety Guide, fairly high
SARs have been projected for the high-water-content tissues of the ankle
section. The SARs are estimated to be on the order of 182 W/kg for the
frequency band 3-30 MHz rising to a value of 243 W/kg at 40 MHz for
E=61.4 V/m. The corresponding current through each of the legs 1is
estimated to be 314 mA and 390 mA, respectively [3,4]. Our present
study determines the temperature distributions of the lowest portion of
the leg wunder these conditions, For this purpose inhomogeneous
electromagnetic and thermal models are developed for the lowest 21 cm of
the human leg.

Temperature distribution in different parts of the human body under
B exposure is of basic interest for radio frequency hazards analyses.
The therral models in existence to date are capable of giving only
averaged temperature over larpge regions of the body. The most useful
and detailed thermoregulatory models used to date are based on a
cylindrical therrmal model described by Stolwijk [5-7]). Later several
modified versions of this model were developed by Wissler [8,9].
Lastly, a 476-block thermal model was developed by Chatterjee and Gandhi
[10). This thermal model used Hagmann's ([11] 180-cell block model of

van for electromagnetic energy deposition. Recently, & 41,000 cell
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wodel of man has been developed for SAR calculations by Sullivan, Gandhi o
and Taflove using finite-difference time-domain technique [12]. 1In this ES
’
study we have used an impedance method for detailed SAR calculations. -
e

The SARs thus determined are used in the thermal block model to find the -
internal temperature distribution. For temperature calculations, the R

lowest 21 cr section of the leg, as shown in the fnsertion in Fig. 2, is

SN

.
s

rodeled by 1532 cubical cells each of size ) x 1 x 1 com.

z . '."ul.\' -~

I1. TYHE ELECTROMAGRETIC MODEL FOR ENERGY
DEPOSITION IN THE LEG SECTION.

The model for calculations of specific absorption rates (SARs) is

developed with 2] transverse sections of 1 em thickness (see the insert

NVITILRL AL W

in Fig. 2). For each section the tissue types are determined with a
resolution of 1 nwz. The individual sections of the model are collected
from the literature on the human anatomy [)3). The model is based on

equipotential concept. Each section is assumed to be an equipotential;

i.e., no lateral flow of current is supposed to exist. This concept can
be justified from the fact that for highly-conducting tissues (at VLF-
VHF freauencies) the potential pradient exists wmainly along the axial

direction of the model. This results in a current primarily along the

axial direction. Also, because of the large wavelength of the radiation R
Ny
no appreciable gradient along the transverse direction of the model -:f
.\:¢
exists. As a result the equivalent impedance for each section 1s ﬁ{
“':ﬂ
composed of parallel combination of the impedances obtained from the ten i\‘
-~
N
tissue types as shown [14,15,16] in Table 1. ;J
N
o \4
Finally, the complete impedance of the model 1s the series :\j
\
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Table 1. Dielectric properties of the
different tissue types.
Tissue types Tissue f =3 MHz f = 40 MHz
type
No.
Dielectric Conductivity | Dielectric Conductivity
constant o S/r constant o S/m
i € i € {
Fat/yellow marrow 1 33.0 0.05} 29.0 0.04
Muscle 2 107.0 0.8 96.0 0.8
Red marrow 3 231.0 0.3 138.2 0.43
Tendon/connective
tisSUe L 605 0-000] 6.5 0~0001
Tendon and fat 5 20.0 0.0195 12.11 0.0259
Bone (3 26.0 0.015 15.47 0.027
Skin 7 108.0 0.62 108.0 0.62
RBlood 8 80.0 1.1 80.0 1.1
Synovial fluid 9 95.0 1.1 95.0 1.1
Periostium 10 95.0 1.1 95.0 1.1
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summation of the individual impedances for each of the sections. The

>
P
5%

electromagnetic energy deposited in different tissues of each section

e

can be obtained from the corresponding impedances and currents. :{a
X
Mathematically this may be done as follows, Qé%
l--ﬂ
ey
2 2 2 i
zij - (o1 - jwti) L/[(oi + w ci)Aij] (1) ol
~
Yij - (ci + Ju e Aij/L 2) ; ‘
h ¥
where e
Zij = Irpedance of the ith tissue in the jth section 3
Y11 = Adrittance of the ith tissue in the jth section
Aﬁ = Area of the ith tissue in the jth section
o, = Conductivity of the ith tissue
€, = Electrical permittivity of the ith tissue
1. = Thickness for each of the sections (assumed to be
10 2 r).
* Re (2 ) o
Power P1j ahsorbed in Zij = lij 11-1 e 14 2;
AT
s
Fe 4
Lo
F:'.r‘
N e
L d
- 1.r 1, o, Aij e
10 10 s
)| ° 1 RO
1o 11 > L S
i=] Tij =) 13 ;?g
10 ®.;
- 3 -
Zoy = U 1 Yy (3) S
i=) -
:_‘d
A
O
For the complete model the total values can also be written: "y
5 " _\"'
- - \".
xﬁb
N,
M,
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-

3 ;

z, = z ;

T >

3= M b

"

* -

Pp = 1. 1. Re [zT] (4) =

\I

vhere, G

I.r = Total current flowing through the leg section,

1 = Current flowing through the ith tissue of the jth section,
P,. = EM energy deposited in the 1ith tissue of the jth section,
z = Total impedance for the jth section,

YA = Total irpedance of the model,

P « Total EM energy deposited in the model.

Total impedance of the model 1s calculated and found to be

104 1 and 85 R at 3 MRz snd 40 MHz, respectively. These results are

consistent with the experimental values [17]. The small discrepancies
in the impedances are because of the discretization of the leg section

into finite segments.

: The electromagnetic energy deposited §s thus calculated in the tf
i individual sections for each of the tissue types. The layer-average Ei
SAPs calculated for the various sections are shown in Fig. 1. The sg
fipure indicates that the highest EM energy is deposited near the ankle S?
region where highly-conducting tissues like periostium, synovial fluid E;

and red marrow are present. It may be noted here that Fig. 1 indicates
the averape SAR values in individual lavers, while in reality very high
SARs (of the order of 150 W/kg) in the conducting tissues in some of the

sections (near the ankle region) are obtained with a resolution of
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1 umz. Finally, the EM energy deposition in the block thermal model is

determined fror the energy absorbed in ten different tissues in each
section of the electromagnetic model. Then the heat conduction equation

is applied to find the temperature distribution.

I11. BLOCK MODEL AND TRE REAT CONDUCTION EQUATION

Even though cylinder models have been used in the past [6], we have
formulated a block model for the heat conduction equation in order to
incorporate the detailed SAR distribution under electromagnetic exposure
conditions. Pue to the fact that Jocalized electromagnetic energy
deposition 1s very difficult to obtain in the cylindrical model, the
block thermal model 1s used to account for such deposition. The
complete block thermal model 1is composed of 1532 cubical cells. The
weight of the model is 1.22 kg. The cells are of dimension 1 em cube
for which the parameters are ohtained from the inhomogeneous volume-
averaged tissue properties like thermal conductivity, specific bheat,
blood-flow rate and metabolic heat production. These parameters are
obtained from the physiological literature (5, 18-21] for 13 different
tissues as shown in Table 2.

The percentage of the different tissue types in each cell of the
rodel is determined from the anatomy handbooks [13,22). The volume-
weighted average values of the physiological parameters in one
centimeter sections are determined by linear interpolation. Total basal
metabolic heat production for the leg model is found to be 0.35 W and
the total blood flow in the model is determined to be 1.988 t/hr. These

values are consistent with the literature [6]).
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Table 2. Different tissue properties for
the thermal model.
Density 3 Specific Thermal Blood | Metabolic
Units of (10 heat conductivity flow rate
kg/m Whr/°C kg W/°Cm rate W/kg
H Tissue tvpe L/min.kg
Air 0.001 0.28 0.00925 0 0
Dry bone and
ligament /tendon/
connective tissue 1.28 0.54 0.69 0.005 «02
Fat/yellow marrow 0.85 0.64 0.21 0.02 0.23
Muscle 1.05 1.05 0.642 0.0275 0.67
Red marrow/brain 1.05 1.03 0.528 0.02 0.32
Tendon/ligament/
connective tissue 1.05 0.64 0.21 0.01 0.004
Dry bone and
yellow marrow 1.2 0.54 0.69 0.0l 0.02
Fat and skin 0.925 0.85 0.275 0.063 0.5
Tendon/ligament/
connective tissue
and muscle 1.05 0.85 0.43 0.019 0.34
Tendon/ligament/
connective tissues
and fat 0.95 0.64 0.21 0.015 0.015
]
I
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The transient heat conduction equation [10] which 1s solved for the

thermal response of the block model 1s given by (5).
T

i
pi €4 ot v (kiv Ti) + hmi + hemi - hei - hradi- hconv:l + Qbi (Tb - Ti)
(5)

The significance of the different parameters 1s discussed in the

appendix. ;
The steady-state temperatures obtained in the peripheral cells of f_

-~

the model are weighted average temperatures over the volumes of the E.i
cells. The peripheral celle contain a substantial amount of air and as !
a result the volume-average thermal conductivities of the cells are :\:
found to be very small which prevented the normal heat flow from the _S
internal section of the model. This is overcome by assuming the thermal {
conductivities of the cell to be averaged over the tissue types of the :-.:‘:
cell. The same approach is adopted for the specific heat of the EE

peripheral cells. The surface area of the thermal block model is larger

a_a

"‘7'.“’.‘

than the Dubois surface area of a standard man. For this reason, some

..
s
LA "y

multiplier factors are 4introduced which account for the larger surface

s
5
»

area of the thermal model by decreasing the effective surface area for »
(9%

the heat ex:hange terms to valuves given in [23,24). For this purpose t
l.'_

o

the model 1s considered In two separate sections, one is the lower 7
\i

section of the ler (up to the ankle) while the other is the foot. The ®.
3
constants are taken as the ratio of the Dubois surface area to the model .\{.:
]
area for each of these sections. :
R

[
b
S
‘3
.‘,,\:
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IV. SOLUTION OF THE HEAT CONDUCTION EQUATION AND RESULTS.

The heat conduction ecuation 1s solved in rectangular coordinates
by 8 wmethod which 1s 8 modification of the Douglas and Rachford [25]
that achieves higher~order accuracy of the Grank-Nicholson
formulation. The unconditionally stable system similar to that of
Douglas and Rachford method had the advantage of using larger time
steps, while the wunknown temperatures are computed explicitly at the
advanced time level, similar to that in the Grank-Nicholson formulation
having higher-order accuracy. As a result with reduced computational
time reasonable accuracy is attained. The SOR method is used for rapid
convergency of the steady-state solution. The equation is solved using
the HPI1000D computer.

For steady-state temperature distributions under basal condition,
sweating is neplected. The calculated layer-average basal temperature
distributions are shown in Fig. 2. Heat transfer at the bottom of the
model 1is assumed to occur through a shoe having high insulation [23].
The lower temperature region near the bottom of the foot is because of
the extrermity. The gradient inversion near the layer 4 in Fig. 2 is
because of the fact that the presence of the shoe is considered up to
the laver 3. Also, this physical dimension of the model near these
sections sharply reduces; as a result, there are more peripheral cells
containing a large percentage of air. At the top section of the model
heat transfer is assumed to occur only through blood at 35.8° C. The

sudden sharp fall in the upper section may be due to the truncated

boundary of the model.
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After obtaining basal temperatures, temperature distributicns under

electromagnetic 2uergy depositions at one-tenth of the ANSI-recommended
pover density levels is determined. The current under this condition is
100 mA at 3 MHz. |Layer-average-temperature rise with respect to the
corresponding basal values is also shown in Fig. 2. Consistent with
some preliminary experiments with a human subject, sweating is neglected
under these conditions as well. It is observed that st 100 mA current
(f=3 MHz) the maximum rise in temperature is found to de 0.6°C near the
ankle region, while st 120 mA current (f=3 MHz) the rise in temperature
is found to be about 1.0°C. The heat balance for a number of RF current
flow conditions is shown in Table 3.

Temperature distributions are also obtained for electromagnetic
energy depositions projected for the present ANSI Standard [1]). The RF
currents projected for each of the legs are 3]4 mA at 3 MHz and 390 mA
at 40 MHz, respectively [3]. For these conditions, sweating is included
for the peripheral cells. Also, the increase in the blood-flow rate and
hasal metabolism is taken into account. The heat loss by sweating in

the ith cell is represented by [6,23,24)

Sw * he Aeff (chl - Pwamb) (6)

h, = Evaporative coefficient of heat transfer

P « Partial pressure of saturated water vapor on clothing.

Wct

Puamp = Partial pressure of water vapor (at S0%/RH at 30° C.)

Also, the increase in blood-flow rate for the internal tissues at

higher temperatures (above 39°C) is given by the linear relation as
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follows [10])

4y %

Qji1ar = B¢ for T,< 39
Qggyac = Be [1+ 0.8 (T, - 39)] for 39°C ¢ 1, < 4ucC
Qg1at = 3 B¢ for T, > 44°C 7
where

YO ‘\"1: % -

Qgy1ar = Increased blood flow &/hr
By = Basal blood flow t/hr

Fror physiological considerations, upper limits have been taken for
both, the heat loss by sweating and the increase in blood-flow rates.
The maximum rate of sweating depends on the water vapor pressure in air,
water vapor pressure at the skin and the rate of convective heat

transfer. The btlood-flow rates in the peripheral cells are assumed to

Ay Ty Ay

saturate at somewhat higher values than the internal tissues and are

)
A
L)

L]
h‘
3

¢
1)
.

A
&
A

taken to be ten times the basal values. To find the saturation values

h)

integrated output from skin, warr and cold receptors are determined [6].

L A

The heat conduction equation is solved after introducing the heat
loss by sweating and increase in blood-flow rate and metabolism. Table
3 indicates that a reasonably good heat balance occurs for all of the
cases that are considered. The average rise in temperature for 314 mA
(at 3 MHz) and 390 mA (at 40 MHz) in each section of the model is shown

in Fig. 3. The figure indicates that for the prescribed currents the

highest average increase in temperature is 3.8°C and 4.85°C for 314 mA

i
and 390 mA, respectively, near the ankle region. It may be mentioned
here that from Fig. 1 the EM energy deposition is found to be highest in o
N
| these sections as well. o
: \i
: N
| ~
| )
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For clarity of presentation, temperature distribution in one of the
sections near the ankle region is shown in Fig. 4(b). For comparison,
the basal temperature in that section is also given in Fig. 4(a). The
hot spots are found to exist in the internal region of the section.
This 1is because of the presence of highly-conducting tissues 1like
synovial fluid, periostium, red marrow (present inside small bones [26])
and muscle which results in high EM energy in these tissues. Because of
the fact that some of these tissues have thermal conductivities which
are not commensurately high (see Table 2) and some are placed in the
interior region (e.g., posterior tibjal muscle in Fig. 4(a,b)), the
generated heat 1s diffused to the surrounding cells at a lower rate.
Therefore, this results in higher temperature under steady-state
condition. Also, a smaller physical cross section for this part of the
mocdel (ankle region) is partially responsible for high SAR values. It
ray be observed that the temperature at the frontal part of the section
in Fig. 4(b) 1is higher than that in the rest of the peripheral area.
This is because this portion of the section is composed of highly-
conducting tissues like periostium (surrounding the tibia and fibula),
svnovial fluid (present between the tibia and fibula), anterior tibial
muscle and red marrow (present inside the bones). As a result, high
SARs are deposited in this part of the section which culeinates in
increased terperature. The high rise in temperature in these sections
causes the blood flow to increase appreciably. The increased blood flow
due to wvasodilation at 314 mA (f = 30 MHz) is shown in Fig. 5. It
indicates that blood flow increases to about six to seven times {its

tasal values in these section.
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Fig. 4. Contours of constant temperature (°C) for Section 10
of the model near the ankle region.
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It is observed from Fig. 3 that the average temperatures for the
lowest sections of the model are slightly less than the basal
temperatures. This is because of the presence of sweating which results
in a drop 1in the skin temperature. This decrease in the skin
temperature as 8 result of sweating has been reported previously in the
literature [27,28]. The curves shown 1in [27] indicate that under
sweating condition the mean-skin-temperature of the subject can drop to

as low as 30°C from a nonsweating temperature of 34.5°C.

IV. TRANSIENT SOLUTION AND COMPARISON WITB EXPERIMENTS

In order to compare the behavior of the model with that of the
recent experiments [29], transient response of the model is determined
at S5 and 40 MHz for three minutes and eight minutes of {rradiation,
respectively. The point taken for comparison is at the front of the leg
at the ankle section (see inserts of Figs. 6 and 7) which corresponds to
the region of maximum superficial heating [29] under conditions of RF
current flow. Since the initial temperature buildup did not produce any
observable sweating, the thermal model also did not consider the
sweating during the first few minutes. Since the experiments of eight
minutes duration (limited in time by physical discomfort) indicates an
initiation of sweating after about seven wminutes [30], we too have
introduced such a loss in our model. A delay in the sweating may be
because the full response of the sweat glands requires a finite time
interval to attain 1ts full activation level. The results of the
calculations under transient conditions are shown in Figs. 6 and 7.

Since the exposure time in Fig. 6 1s less than seven minutes, sweating
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is not considered in the calculations. It may be noticed in Fig. 7 that
the surface temperature attains a maximum value of about 42.6°C, then it
gradually reaches to 1{its steady-state value. The sharp drop in
temperature after about 12 minutes is due to increased blood flow and

sweating.

V. MODEL DRAWBACKS

It should be realized that the model has some deficiencies in
different aspects. The cell size of the thermal model is taken to ] cm
cubes, which indicates the volume average properties of the tissues.
For this reason, some of the tissues such as periostium, synovial fluigd,
skin, which are considered for the electromagnetic model (with 1 rm?
resolution), cannot bhe taken into account properly in the thermal
model. Again, lack of proper modeling of the skin (which is responsible
for the total heat exchange of the model with environment) has
introduced some limitations on the model performance. It is observed
that most of the peripheral cells contained more than 75 percent air
which resulted in lowering of the overall temperature of these cells.
The effect on heat flow because of this deficiency, however, 1is
corrected by taking the values of heat conductivities and specific heats
corresponding only to the volume-averaged properties of the biological
tissues in the peripheral cells. Since we used 1 mmz resolution in the
cross-sectional planes for the electromagnetic model, the detailed SAR
calculations are relatively free from the large cell size problems. As

it {s not possible to obtain the anatomical cross sections with less

than 1 cm spacing, the electromagnetic model is obtained by connecting
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21 equivalent impedances in series with each other. It has been

wentioned earlier that there is a slight variation of the impedance
obtained from this model as compared to the experimental results
obtained by Guy, et al. [l17]. This 1is because of the finite thickness

of the various sections used for the model.

VIIi. DISCUSSION

This paper describes an inhomogeneous block thermal model of the
lowest 2] cm of the human leg consisting of 1532 cells each 1 cubic em
in size. The object of this model 4s to study the temperature
distribution In the lowest part of the leg for conditions of
electromagnetic exposure prescribed by the present ANSI Standard. Two
analyses are performed in particular. These are for 314 mA at 3 MHz,
and 390 mA at 40 MHz - currents that may be set up in the human leg
[3,4] for E-fields recommended by the present ANSI Standard. Fig. 3
indicates that average {increases in temperature for the ankle section
under these conditions are 3.8°C and 4.85°C, respectively. Both
terperature profiles indicate much similarity. The region of high
terperature is near the ankle. The blood-flow rate increases
substantially under these conditions (Fig. 5).

The heat supplied by the blood is found to vary under these
conditions. At 314 mA (f=3 MHz) 0.1 Watt of heat is taken by the blood
in contrast to l.4 Watt heat supplied by the blood under basal
condition. At 390 mA it was observed that 3.0] Watt of heat 1s supplied
to the blood from the leg model under consideration. The increase in

metabolism is also indicated in Table 3. Studies are also made to find
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the temperature distribution of the model with EM power deposition for
incident power densities roughly one tenth of those given by the present
ANS] guideline. As observed by a subject experimentally, sweating is
neglected under these conditions. The RF currents used are 100 mA at
and 120 mA at 3 MHz, respectively. The section-average temperatures
rose about 0.6°C and 1.0°C, respectively, for the ankle region. These
results are in pood agreement with the experimental data [29]. Lower
temperature increases are calculated for the rest of the leg sections.
Transient solutions of the model are compared with the experimental data
for the 1initial increases in temperature near the ankle region.
Numerical results at 399 mA indicate a sharp rise in temperature up to
42.6°C after about 10 minutes of drradiation. The results are
consistent with the experimental data. Increased blood flow and
sweating causes the temperature to eventually attain a steady-state
value of 39.5°C. As the behavior of the sweat glands under transient
conditions is not exactly known, the curve shown in Fig. 7 may have to

be modified somewhat, according to the performance characteristics c*

the sweat glands.
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APPENDIX

v
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The Bioheat Equation

L
.- l.

L e
.
»_.

The transient bioheat equation [10) which is splved for the thermal

o {"'.' RS

response of the block model is given by

Lo 2

aT
1
Py g = VR VI Y 4 b #h = h = h s honeg  (AD)

24

oLt
L 4
o

l, " ‘l..'.. .

®
=
T, = Instantaneous temperature of the cell (°C) w
™
py = Mass density of the ith cell (kg/m3) ::-
N
X
c; = Specific heat of the ith cell [Whr/(°C kg)] o
o .
LR
ki = Thermal conductivity of the cell [W/(°C m)]) I::
e
s
.
hmi = Metabolic heat generation/unit volume (W/m3). (Varies Sx
with the rise of temperature.) ®

oo
y

e
o
Pemi ™ Electromagnetic energy deposition/unit volume (W/m3) -
e
®
hei = Evaporative heat dissipation in the peripheral j.-
cells/unit volume (includes syeating and N
insensible perspiration) (W/m~) RSN
h h = Radiative, convective heat loss from the peripheral =
dai’ n -~
re convy cells/unit volume (U/mg) o
\:,K
.
Opg = Product of mass flow rate, density and specifsc \:\
heat of capillary blood in the tissue [W/(m” °C)] :ﬂ\
L
N
Ty = Temperature of arterial blood entering the tissue e
assumed to he at 35.8°C. !"j
o
.'_:J"
N
L
o
.% L
" o%s
..\.: ]
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It is assumed that heat exchange between blood and tissue occurs in

the capillaries only [5,10].

the peripheral cells by the loss terms as hrags hconv » and h 4.
i

The boundary conditions are introduced in

The

empirical equations for these loss terms have been obtained from studies

given in the following:

radi

convi

PD

mi

cl

ct

by Fanger (23] and Gagge and Nishi [24] for clothed body. These are
= Aers €6 [(T_+ 273) = (1, + 273)*] (X cal/br)  (a-2)

= Ap, f ., b, [Tc!, - T,] (K cal/hr)  (A-3)

= 0.35 Ap, (1.92 Ty - 25.3 - P (X cal/hr) (A-4)

= h o . W/md (A-5)

=T, +F, (Ty - T,) °C (A-6)

=1,/1, + 1) (A-7)

(A-8)

Aett

where,

Aetg =

fetf =

fcl =

hogy =

= fefr g Apu

Effective area of the clothed body.

Ratio of the effective radiation area of the clothed body

to the surface area of the clothed body = 0.65 (for
seated person).

Patio of the surface area of the clothed body to the

nude body.
The Dubois area.

Basal metabolic heat production.
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. h. = Convection coefficient. :
= 2.05 (T , - T )'25- (K cal/m?-hr-°C) 2!

cl a »
6§ = Stefan-Boltzman constant = 5.67 x 168 w 52 ib. 5}
[N

€” = Emissivity of skin = ], -~

\

A

P, = Partial pressure of water vapour in the ambient air. =~

Tcl = (Clothing temperature. o

Typ = Temperature of the ith cell under basal condition. ;‘

'

T, = Artient temperature (30°C). .

P

Y

’l

Fcl = Thermal efficiency factor. :;
)

Io = Thermal resistance of operating environment. r“

“

Icl = Effective insulation of clothing. :;
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