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ABSTRACT b

When microbubbles are injected in a turbulent boundary layer,

they promote a reduction of the local skin friction and a sharp

mean velocity gradient between the two microbubble free regions

in the boundary layer, i.e., the outer edge and the near wall

region.

In connection with the apparent stability of the bubbles in

the boundary layer, the stability of a hollow vortex sheet in an i

infinite expanse of fluid as well as in the presence of a wall are

studied. We concluded that the simple hollow vortex sheet is

unconditionally unstable while a stability range was found for a

hollow vortex sheet perturbed in the presence of a wall. In all

cases, however, the computations suggest that the hollow vortex

radius is invariably a destabilizing factor.

Regarding the second asepct of the problem, a heuristic,

but physically sound explanation of the mechanisms of the drag

reduction is proposed. Based on these ideas and using a

phenomenlogical approach, the flat plate boundary layer is

numerically analyzed.
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A = a2  hollow vortex cross section area
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CHAPTER I

INTRODUCTION

1.1 Previous Experimental Work

The idea of reducing the skin friction between water and a

solid by injecting air close to the surface goes back to Froude,

1875. It was hoped that the lower viscosity of the injected

fluid close to the surface would lead to a reduction in the skin

friction. Indeed, from the very beginning experiments validated

this idea. i Even though the mechanisms by which the drag

redutio isbrouht bou arenotvetfully understood, the

phenomenon and its potential applications have lured the

attention of physicists and engineers ever since.

What precludes our full understanding of the problem is that

it occurs in a strictly turbulent flow. Turbulence itself is

included in the category of one of the major unsolved problems of

physics today. With the addition of small bubbles in the boundary

layer, the drag reduction is intimately related to subtle flow

interactions between the bubbles and the carrier fluid in the

viscous and the buffer layers of the boundary layer. Even in the

case of the simple turbulent boundary layer, today's knowledge of

the near wall region is far from complete mainly because of

experimental difficulties in obtaining reliable data close to the

surface. In the case of the turbulent boundary layer with

ricrobubbles, this difficulty is further aggravated because the

thickness of the film of fluid between the bubble layer and the

wall is of the order of micrometers and the bubbles are optically

opaque.*V'

%'%I

-1 Pax % , y V .
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The interest in studying this phenomenon 'as intensified in the

past twenty years mainly as a result of a better physical under-

standing of turbulent flows and of new experimental technicues

developed to study more complex flowfields.

Some researchers [1] chose to generate the microbubbles in the

boundary layer via electrolysis. This approach, however, does not

seem to be the most appropriate if one is interested in studying the

interactions between the bubbles and the mean flow in the boundary

layer because of the presence there of the gas generating wire.

The study of the turbulent boundary layer flow with microbubble

injection was undertaken in a systematic fashion for the first time

in the Soviet Union [2,3,4,51 at the beginning of the last decade.

These researchers, as well as the research group at The Pennsylvania

State University, have become dedicated more recently to the same

problem [6,7,81. In the United States, this group chose to inject

the gaseous fluid in the boundary layer through porous plates.

The results of the work of N. K. Madavan, et al. [8] as well

as those of the Soviet researchers show that the local skin

friction coefficient can be reduced to within 20% of its

undisturbed value. Figure 1.1 illustrates some of these findings.

In this particular work, the boundary laver was observed on a

flat plate at zero pressure gradient. In the absence of micro-

bubbles, the boundary layer exhibited the classical characteristics

% ~ of a fully developed turbulent boundary layer, as is evident from

the data which are reproduced in Figure 1. and Figure 1.3.

V.*,
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Areported in (8], Figure 1.1 indicates that the skin friction

is decreased as soon as the gas starts being injected through the

plate. It is noted also that the amount of the skin friction

reduction generally increases with increased gas flow and decreased

free stream velocity. Indeed, the results suggest that for a given

free stream velocity there is an optimum gas flow rate for which the

skin friction reduction is a maximum. In (8 it is shown that the a

skin friction reduction data can be collapsed on the same curve if

plotted against the ratio of the gas flow to the total flow in the

boundary layer.

Generally, for any gas flow rate, it was observed that the *S

maximum skin friction reduction occurred immediately downstream of

the porous section and that the skin friction gradually recovers

to its undisturbed value in the downstream direction. Madavan,

et al. [6] reports that the skin reduction is felt as far down- --

0
stream as 60 to 70 boundary layer thicknesses. The results shown

in Figure 1.4 and Figure 1.5, taken from this work, are

representative of the conclusions obtained.

Both N. K. Madavan, et al. [6] and G. S. Migirenko, et al.

[7] report that at the higher speed flow regimes the bubble packing

is higher while the bubble mean radius is smaller. The latter

author claims that the highest bubble volumetric concentrations

of the order of 80% are at a location of around 0.15*. In fact,

contrary to the findings of the Soviet researchers in [6), it is

reported that the bubble radius is much more sensitive to the
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9
flow conditions than to the characteristics of the porous materials

through which the gas is injected. This seems to be in line with "

experimental results reported earlier [9].

The recovery of the wall mean velocity gradient was observed to

be associated with the migration of the bubbles away from the

boundary layer. The time scale of the migration is associated with -

the buoyant force and is consequently of longer duration for the

smaller bubbles. The higher packing seems to be directly related

to the extent to which the skin friction reduction persists

downstream.

Another interesting feature reported in both [1] and [2] is .,

that the bubble concentration or, in other words, the void fraction %

dies out as the boundary layer edge is approached. The measurements

of the mean velocity profile in this part of the boundary layer ,

show that it is not affected by the presence of the bubbles in the

boundary layer. The LDA measurements in this region of the %

boundary layer, as presented in [8], are reproduced in Figure 1.6.

Finally, both the American and Soviet researchers report that

the high frequency signals of the shear stress and pressure

fluctuations close to the surface are lost with the injection of

the gas.

1.2 Problem Statement

The problem analyzed in the following chapters has two distinct

aspects, i.e., the stability of the bubble layer in the shear flow

and the drag reduction.

* 
4

V %,-,",

e. ' -A
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1.2.1 The Stability

In light of the brief discussion presented above, we see that

the insertion of the bubble layer in the boundary layer appears to%

give rise to a sharp mean velocity variation across the bubble

layer. The above statement is motivated by the fact that whileS

promoting a decrease in the wall velocity gradient the bubbles do-

not affect the outer region of the boundary layer.

The fact that the bubble layer seems to be stable in theS

turbulent shear flow was to a certain extent surprising because of

Helmholtz's classical result on vortex sheet unconditional

instability.

The question of the stability is looked upon from several

points of view. Given the two-dimensional nature of the

boundary layer flow, the stability of a hollow vortex sheet is

considered in the presence and in the absence of a wall. We

study the problem from both an analytical and numerical point

of view. -

1.2.2 The Drag Reduction

As is clear from the description of the experimental results,

the flowfield is rather complex and the mechanisms by which the

drag reduction is brought about are not entirely clear.

Due to the small size of the bubbles and the two-dimensional

nature of the flow, we adopt a phenomenological approach in

which the fluid is assumed to have spacially varying properties.

The obvious limitations of this model are discussed in

Chapter IV.

%A
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CHAPTER II

STABILITY OF A HOLLOW VORTEX SHEET

2.1 Introduction

Helmholtz's classical result on the unconditional instability

of a plane velocity discontinuity has been re-examined by several

authors from both computational [10,11,121 and analvtical r131

points of view.

In von Karman's classical analysis (see Sir H. Lamb [13]), as

well as in all subsequent works, the plane surface velocitv

discontinuity is modeled by a doubly infinite array of discrete

vortices the circulation of which depends on the velocity jump '4

across the surface. In addition to corroborating Helmholtz's

result, von Karman, in his elegant analysis, showed also that the

presence of a wall has no influence on the vortex sheet so far

as its stability is concerned. p

In the following sections, we try to devise a simple model

that may be representative of the two-phase phenomena observed and

will give us a working base for the study of the stibilitv. -he

- two-dimensional nature of the boundary layer leads one naturally.
J0

to imagine the bubbles as cylinders. In the realm of inviscid

flows, we analyze the problem of the stability of a hollow vortex

sheet from two different points of view.

In the following sections, we take the spirit of von Karman's

work and extend his analysis in order to consider hollow core

vortices instead of point vortices. The main difference becomes

the superposition on the original flowfield of the appropriate

velocity potentials in order to guarantee the existence of

%~ %
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circular sLreamlines centered at each of tb vortices. The

circular streamlines are the surfaces of the cylinders which,

in this two-dimensional framework, represent the bubbles.

2.2 A Simole Hollow Vortex Sheet

Sir Horace Lamb [19] reports that in an infinite expanse of

fluid a vortex sheet moves with a velocity equal to the average

of the velocities above and below the vortex sheet U = + U2/2. •

Furthermore, in [131 it is shown that a plane infinite row of

vortices does not induce a velocity in itself. Similarly, one can

show that a plane infinite row of dipoles iaduces a velocity field 0

2 2
in itself given by D7 /3X , where D is the dipole strength and A is

the spacing between the dipoles.

The circulation of the vortices is uniquely determined by the

average velocity across the vortex sheet U as well as the spacing

of the vortices, A. From symmetry considerations, all the dipoles

in the undisturbed state must have the same strength and

orientation. Since the vortices are being displaced with a

velocity U, and the dipoles create a velocity field given by

2 3Dr /3A , the normal velocity condition at each hollow vortex is

satisfied if,

R2 X 2

D22 (2.2.1)

where R = a/A.

S %

S %=
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We notice that the dipole stren.th will be zero if either R

or U are zero. In the following analysis, we assume that the

small disturbance does not affect the dipole strength and

orientation in a significant way. This assumption is acceptable

because we are only interested in small disturbances.

According to Figure 2.1, the original position of the hollow

vortices is given by (mX,O) while the disturbed state is

identified by (xm + mX, ym), where m is an integer. We now focus

our attention on a typical vortex, say (x° ,y), and investigate how

the velocity field introduced by the disturbance affects the

stability.

It can be easily shown that the velocity field created at a

particular point, say (Xoy) by the displaced system of dipoles

and vortices is given by

dx YO - Ym
d ° = --- - 2 (2.2.2a)d-- I V 27r2 m m

dyo x -x
I, 2 n+ (2.2.2b)

t v 27 m 2 Xi

do 2D xo - xm D (2.2.2c)

dt d X in X ini
m .

..P

and

.

4.'

-,
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dy 0 2D YO - Ym (2.2.3b)

dt d X3 m 3

where, in these expressions, only the first order terms in the

displacements have been kept. Putting these contributions together,
p.

one finds the velocity components at the hollow vortex (xoYo) to

be

p
dx YO - YM 2D x - xo -y7mD 1 X
dt - 2  02 +7- 3 (2.2.4a)

27tA m m A m m

and

y0 x - x YO - Y

dt 2 2 3 (2.2.4b)2A m m 2D m

where our reference system moves with the rigid body velocity of the

vortices and dipoles. '.

Following von Karman, we consider disturbances of the type,

ime im(
xM =x e ;y =ye (2.2.5)

where 0 4 e < 2n. With this the system of equations can be

5* transformed into

dx 0 YYo0 2DxO A(dx = y 2o iAd(e) (2.2.6a) "

dt 2 AvA) 1

4

,, ;%

'. °

, '. . .. ,.. ... -,_. . . . -. -..... .. _-._.,.- ....-...-.- ' v ".- .:. ', .'. .' .' ';€ .': '. 4.':'. '.:':,,';
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dy 0 x 2Dyo
dt2~ + 3 i~A (e) (2.2.6b)

2i~X X

where we have made use of the following series function

representations:

6 1 -Cos me 2 .a"
Av(e) = (2r - 2.= 1 2.7a)

m m

and

ae
2  2) snm

Ad(e) (e - 3e + 272r 3 Sin me (2.2.7b)

m m

Transcribing the system of equations to matrix notation, i.e.,

x - [C][x (2.2.8)

and assuming its solution to be of the form, "r

[X] = [Y]eX (2.2.9)

one finds that the problem is reduced to finding the eigenvalues of

the matrix [C]. These are

0
2 2

yA 2DA

1 =,2 - ( --- ) . (2.2.10)

As expected, we see that in the limit of vanishing core radius

we recover von Karman's result of unconditional instability of a

simple vortex sheet. If we define a nondimensional parameter given

by C yX/27D, then the simple hollow vortex sheet will be stable if

%-



2A

- 0 (2.2.11)
v

is satisfied for all frequencies of the disturbance. We see that

for e = n the stability interval is reduced to zero, thus there

is no range of combinations of circulation, vortex spacing or L

dipole strength that can make the hollow vortex sheet stable.

2.3 A Symmetric Hollow Vortex Sheet

In the realm of potential flow theory, another possible

explanation for the apparent stability of the bubble laver is

presence of the wall. With the same underlying assumptions as

in the last section, we attempt to consider the presence of the

wall. The wall is located at a distance b/2 from the initially

undisturbed hollow vortex sheet. The zero normal wall velocity ";

boundary condition is satisfied by considering the image system

as shown in Figure 2.2.

In the same way that a vortex sheet in the presence of a wall

induces a velocity in itself [13], so does a dipole sheet. "'

Consequently, the hollow vortices in the disturbed system will

be identified by (mX + (U + Ud)t + x, b/2 + v for the upper

row and (nX + (U + U )t + x ,-b/2 + y for the lower row,v d m

where U and U are the velocities induced by the vortex and
v d

dipole systems in themselves, respectively.

t I
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Directing our attention to the hollow vortex ,x, ,V in the -D
0".o

upper row of hollow vortices, one can show after some algebra, %

that the components of the velocity field created bv the lower

row of vortices and dipoles are given by

dxI 2 2

2v h 222ir 22 l>o n 2n2V n (n2, + h n (n X + h-

- ' 2nXb x-(31

n
2- n (n 2X2  + b 2 2  ° - x n ( . .1 ).%!

I".nA +

dyo n2 2 _ b2 ."
22 2

at 2i r 2 2 2- Xn)
v n (X + b

+ T 2 (Yo - Yn)  (2.3.1b)

n (n2X 2 + h2

dx ' 2 22 2= + D 2nXk Xx 3b. :%

d(n b 2  n 2 2 2, o nn+ n ( n X + b

,2
b, 3nV - b (-

2D 3 ' n ....

n2 2 2 vn + b- -

, '.. "

S-

%S



.V,,

and .."-

d 2O  2 2
" = 2D nX(3b2 n2X2 ( ""dt3 0Y - n)',"
d-]d n (n 2 X2 + b2)'- ;

- D b(3n2 X2 -_ b 2
' ";S X (2. 3. 2b)

n nX 2 + b2 ) e:.

respectively. )%

In looking at our typical vortex, which is located in the %

upper row, we also have to take into account the contribution of

', the upper row to the flowfield. This contribution is expressed

~by Eq. (2.2.2) and Eq. (2.2.3), where the vortices have the

Sopposite orientation in order to satisfy the zero normal wall %pp.

velocity boundary condition. Thus, the equations for the velocity v-

components of the hollow vortex identified by (xoo beoe

-V

'-dx r Yo - v 2D x - x dx °  dx ° 1?

- o "rR 7. 2 + 3 + -d- 2 3. a td--T- 2X"m m d v -.

5'.*

and

S.--

5,..

dy°  2 - Y dY dY
0 , (2.3. 3b)"?dt 22 n2  3 3 + d v-

21 3 m - b Md

where the rigid body contributions from the vortices and dipoles

have been subtracted. The rigid body velocity of the system is

given by ".,,,"

N ZAi m A A m "
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_  

. m..

m-

T bb b 7b

3A7 "

coth -) = sf b (2.3.5a)
*2X X 2 2 2 2

and

Tr D 2 7rb n 2nX 2-_b2
-csch Db2 (2.3.5b)
2 cs2h2  2 2

n (n2 X + b2

Again, following von Karman, we define the following %

disturbances,

£imO .me"'

xm =x ; Ym
o 0

- in6 - inO "
Xn x ; Y (2.3.6)

o 0 n 0

for the upper and lower rows, respectively. D

With the function representations of the resulting series

(see Appendix A), we find

dx
Y rA - C D 2D

SF- (e) C (O)j - C () - ix A (e)
dt 0 2 Lv v ~ d' 0 d

2T X X

+ -L-- C (e) + D Cd( )"
0v 3 d~

+ B (9) + D (3 ) B 2.3.'/
a 2 v 3X 2..2%X

,-.:.. -- -.
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dy --

x y r ~L A (8) - Doj d (0) + iv 2D Ade 01dt 0 2- v 3 C -A (

o,3o

Y1----o 2  B (e) + 3 d() (2.3. 7b)

where

?B (8) 7Trcoshk(Tr - 6) Tr-sinhk8 2nksinne (

sinhkT 2 (2.3.8a)sinhk sinh kiT n (n 2  k 2  
...

B(8) 3 coshkr sihk + 2i 2coshk8 + T62 sinhk(n - 8) "
B 36 2 ssinhk +sinh 3k sinh2k sinhkkit

- 2 2
2 3k n sinne (2. 3. Pb)

3 2 22T coshkr '2r sinhke Tr8-coshk(i -,Cd(8) = coshk8 + - 2
sinh kn sinh2kTr sinhkkie

2k(3n2 - k-) cosn6 (2.3.8c)

n n 2 + k 2 ) 0

Aa.

, .,. |
" N:,

"?-

.~-*' *- - ..-. t:.,,:- -

E ~ - a. * --
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7 +coshke - 96sinhk(r - n -kC (e) ==cosn 6 .
v o ~sinhk o.'s inh -k n 2 -• Sn ok+

(2. 3.8d)

and k = b/X.

As in the problem of a simple symmetric vortex sheet there are

two types of solutions for the system of equations (2.2.7), i.e., h

dx D'
d22 0 2(T -2 v [Cd(O) + Cd(e)]}

+ Xoi { B (e) + 3 [Bd(e) - 2Ad(0)11 (2.3.9a)

= { [A ( ) c () + c ()] [D [ (0) CdC6)]l
0 2C( v v 3d }

.1

+ y B() +D [2Ad() + B (2.3.9b)
2 v3 dd)]

a:.,

for x = x andY = - v and

dx
0 dx [Ay(e) - C (0) + C (6)c ( ) ( ,

d =0 2 Lv v v 3 Ld -d

x i 'Bd(e) + 2Ad() ] + B()} , (2.3.10a)
X 21T v

'U""4.,:.

ii. 
1

S,"

...-. .. I .%a, ~~'.'Y'.> a .a ~.
J~l~l................................................
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d y 0'do r- Dr-

dt = A x { Lay(e) - C (0) - C (e) - - C (0) e+ C(e).-o 2 -v v 3 dd..

.:-,,

+ {D 02Ad(6) _ Bd(e)] 2- Bv(e)} (2.3.10b)

for x = - x and v =v o .
0 0 O 0

We realize immediately that if we take away the dipole

contributions the two systems above reduce to those of

von Karman's as reported in [131. Each of the two systems of

equations can be written in matrix form as represented by

Eq. (2.2.8). If a solution of the form of Eq. (2.2.9) is also

assumed, the stability condition, which turns out to be the

same for the systems (2.3.9) and (2.3.10), can be easily found

to be

2 {[A-(e) C (0)] C (e)'} - 24 {Cd(e)C (e)

+ Cd(0) [Ay(e) - C(0)]} + [Cd(0)" - Cd(e) -
4Ad(e) 0

(2.3.11)

where = yX/2TrD.

The stability of the system, which has to be satisfied for

all eE[0,27) depends on the initial wall distance of the vortices

(b/2) as well as the wavelength of the disturbance (,). This

dependency, expressed by the dimensionless parameter k, determines

• / ..-. . . . . %
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the stability envelope given in Figure 2.3. The shape of the

stability curves suggests that the presence or the wqall has a ve ry v

strong stabilizing influence on the hollow vfrtex sheet. 'e aIso

note that the result of unconditional instabilith for a hollow

vortex sheet, obtained in the last section, is recovered just a

few wavelengths away from the wall.
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CHAPTER III ,-

EVOLUTION OF A HOLLOW VORTEX SHEET

3.1 Introduction 0

The results obtained in the last section can be observed

qualitatively from the numerical evolution of the hollow vortex

sheet submitted to an initial disturbance. The numerical results

stem from the consideration of the full nonlinear eauations of

motion. Even though more complex, the following development has

the advantage of looking at the problem from a dynamical point of S

view.

The solution presented below follows the conceptual approach

and the steps of D. Rosenhead [12], who by making use of 0

von Karman's analysis, tried to compute for the first time the

evolution of a vortex sheet. It is known today [10] that

Rosenhead's computations were incorrect. Indeed, some authors _

believe that the discrete vortex representation of a surface

velocity discontinuity may not be appropriate. Nevertheless, this

has been the approach used by C. Y. Chow [11] and R. F. Hama, S

et al, [101 to compute the evolution of the vortex sheet. The

latter authors point out interesting first order vorticitv effects

that had been disregarded in all previous analyses and which S

cannot be accounted for in the vortex representation of the

surface velocity discontinuity. Through a simple model they also

looked at how the background vorticity affects the evolution of 4

the vortex sheet.

,S

"-i-* , * ~~-
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The analysis presented below is suggested in the first chapter -

of a most interesting dissertation by G. R. Baker (151 on vortex

dynamics.

As in the last chapter, we attempt to model the hollow vortices S

by using dipoles. In contrast with Chapter II, however, the

orientation and strength of the dipoles depends on the character-

istics of the flowfield past each of the hollow vortices, vide

Figure 3.1.

There are two characteristic lengths in the problem, i.e., the %

cylinder radius (a) and the wavelength (X). Since the ratio of the

hollow core radius to the wavelength (a = ia/X) is very small, we

will take into account only the first order contribution of the

disturbance to the solution. From Helmholtz's theorems it follows

that to solve the point vortex problem one needs only to take into

account the kinematics of the flowfield. To solve the problem of

the hollow vortices, however, one must consider both the kinematics

and the dynamics of the system of hollow vortices. The forces

created by the flowfield on each of the hollow vortices will

determine their evolution which in turn determines the dipole

strength and orientation.

3.2 The Dipole Strength of the System

Since the flowfield under consideration is a two-dimensional

inviscid and irrotational flow, one can define both a stream--TI

function () and a velocity potential ('). The complex potential

is defined in the usual way,

W(z) = D(x,y) + ix,y) (3.3.1)
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and the complex velocity is obtained by taking the derivative of

W(z) with respect to z. The velocity components then relate to -

the streamfunction and the velocity potential by the Cauchy-

Riemann conditions.

It can be easily shown [16] that the complex potentials of

a dipole and a vortex, located at z, are given by

Wd (z) = D/(z - z (3.3.2a) .

and

W (z) = ir log(z - z (3.3.2b)v 0) f

respectively. In Eq. (3.3.2b), F y/2r and the positive sense is

taken as the counterclockwise. From expression (3.3.2a) we notice

2 2
that the dipole strength D is proportional to a , i.e., D = La2.

The complex potential of a plane infinite row of vortices

can be shown [16] to be given analytically by

W (z) : iF log [sin ! (z - z)] (3.3.3)
V

where z represents the position of the vortex closest to the0

origin and X the distance between vortices, vide Figure 2.1. S

From the application of the Circulation Theorem over one wave-

length of the vortex sheet, we find that F = UX/nN, where N is

the number of hollow vortices contained in one wavelength of the S

disturbance.

If we differentiate Eq. (2.3.2b) and compare it with '-

Eq. (2.3.2a), we conclude that S

dW (z) = v (z) . (3.3.4) ..0

%~i~ % %%%P d Z.ug

%="K
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Since the comp] -x velocity potential of an infinite row of

vortices is obtained by superposing the velocity potentials of

each of the vortices, we can write %

dW (z)

W (z) = iD v - =1 cot - z (3.3.5)
d r dz = T o

Thus, the complex velocity fields created by a plane infinite

row of dipoles and vortices are given in closed analytic form by

dW
V_ ir 7r T z

dz z cot - . - Zo) (3.3.6a)

dWd 2w _ D 2  2 7 r 
"d -X2 csc (Z - Z (3.3.6b)

respectively. W

Since we are working with a potential flowfield, we are

ultimately solving Laplace's equation, for which both the real

and imaginary parts of each of the above complex potentials are

solutions. In this case, the superposition principle is valid

and the complex potential of the whole flowfield will be composed

of contributions of the infinite rows of dipoles and vortices as

well as their images in each of the hollow vortices.

As in the case of the simple point vortex system, the

resulting equations are nonlinear. In order to keep the

analysis within bounds, we are forced to consider only the

leading contribution of the hollow vortices to the flowfield.

To evaluate the order of magnitude of the contribution of the

image system, we invoke Milne and Thomson's Circle Theorem

[171 and look at the image system of a dipole and a vortex in IA
A A ~ M ~ * - ~,-
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the presence of a cylinder. In the two simple cases of a

cylinder located at the origin and a dipole or a vortex located

at z0, we find that the complex velocities can be expressed as

'A.

dW z - D + D + + . . (3.3.7a) -

( z z z z ,?,,.,
0 0 0

and

dW ir i ra- r a "~ = iz ira o + _ + (3.3.7b)
dzl (z - -v zz zz

respectively. ,.

Since the dipole strengths (D) are of order a-, we conclude

that to this order of approximation the image system due to the

dipoles can be neglected while that of the vortices must be

considered. Also, to this order of magnitude, we note that to take

into account the contribution of the vortex image system is the N-

same as to consider a dipole at the origin with a strength given

by ira /Z

gince the flow under consideration satisfies the premises of

the Circle Theorem, the complex potential of the image system of

a plane row of vortices in a cylinder located at z is given by

W 2 ik cot - (z z° .
vk  -

where the function F (Zo depends on the position of all the other
k.

vortices and the index k denotes the row to which these vortices

belong. It can be shown that [141,

Fk(Z) = - cot - ) (3.3.9)
kZ - Z

,:R -. -N
." '"," ""4 %""r '"." " ,V._, .. ,,.' . .'.'. '., . .. ,- ,- -. ,%--- . ,. ,. .- , -, ,. ," .. %,..,,. ,%:% % %. ..'% /. '' f' .L 'S=
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With the above in mind, we recognize fur major contributions £

to the flowfield complex potential: .-

* The complex potential of the infinite row of vortices.

0 The complex potential of the image system of the

vortices in each of the hollow vortices.

o The complex potential of the infinite row of dipoles.

* The complex potential of the flowfield due to the

motion of the hollow vortices. B'

The last contribution is equivalent to the action in each of

the hollow vortices of another dipole the strength of which depends

on the velocity and the diameter of the hollow vortex and is given

by

1) = Ua2  (3.3.10)

where U is a complex number representing the velocity of the hollow

vortex.

In the realm of potential flows, the complex potential of the
'p -B

whole flow field becomes

N S
W(z) = {iF log [sin y(z z Zn)]

n=l

2
+ ra rz z+ G --- cot T - z (3.3.11)

where,

N
G = L + Un - i - cot z -z (3.3.12)
n n n 'n K.

k=l

k n

.. .%-
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The flow velocity at the center of each of the vortices can

be found to be

N 2

L -1 -c o t X ( z - - G n  c s c z I
zm n=n

n:Pm

G 2
[--] m = 1,...,N (3.3.13)

2.

where the last term represents the velocity field created at the

mth hollow vortex by the dipoles in its own row.

In order to satisfy the zero normal velocity boundary

condition at the surface of each of the hollow vortices, we

must require that

__ - L = 0 m = 1,...,N . (3.3.14)

az m

This expression represents a linear system of N equations

and N unknowns, which enables the computation, at each time step,

of the dipole strengths of the system of hollow vortices. For a

better understanding vide Figure 3.1 where the various quantities

involved in the computation of the dipole strengths are shown V

schematically. To a first order of magnitude, the above equation

reduces to

N

L m cot r (zo - z) m = 1,...,N . (3.3.15)

n #m

Thus, to a first order of magnitude, the dipole strengths are

0 determined by the vortex flowfield. This is to be expected since N-

in a two-dimensional flowfield the vortex velocity field vanishes

as 1/z while the dipole velocity field vanishes as 1/z . f.f

L : p>SS~.V.S'f;~ft~... %
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The rate of change of the dipole strengths is given by

dL 2 N
- 7

2  (u U csc 2 T z r z z (3.3.16)dt 2 - n X M n
n=1

n ;m

where again m =N.

a...7

3.3 The Dynamics of the System

In order to track the motion of the hollow vortices, we look

at their equations of motion. In complex variables, this

corresponds to the application of Blasius Theorem [161. It can

be easily shown that, if one neglects the rotation of the

boundary, the generalized form of Blasius Theorem reduces to

aw a W 2

X -i Y m - Z f T dz + ipZ f (--) %

m m

+ 1 + W d A7 +m = 1,...,N (3.3.17)
Z M f- 3z (3..17

where the left hand side is the inertia term in appropriate complex

notation and the right hand side arises from the integration of

Euler's equations around a closed contour enclosing the body's

cross section. In Eq. (3.3.17) Cm represents the contour of the

cross section of the mth hollow vortex. As is shown in Appendix B,

each of the five terms of the above equation is found to give

dG9W 2 dG
1P- ip -2W = - 2irp 32 p (3.3.18a)

Z C t Z dtm 1
a.".

.%.I
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Wd 2 2 N bia fdz - 27ri;) (,!a 7 (C; -G cs z z J
-- 2 u.m2 -rzI -"-t

C n=1 'n~'--..
n*m

+ 2T .r cot (z- z) (3.3.18b)

n=1
n*m

WSip-U - 2Trip U , (3.3. 18c)
ip M f az 2Z m

C 
4.

m %.4

%.4

dU dU

m 7Pa2 im (3.3.18d)
PZA 2. dt

2 dU
X - iY = 7pga (3.3. 18e)

where m = 1,...,N.

Equations (3.3.18a) and (3.3.18d) account for the unsteadiness ,.
0

of the flow and are thus equivalent to the added or virtual mass

term. Equation (3.3.18b) gives both the first and second order

steady state flow contributions. In Eq. (3.3.18c), we recognize

Kutta-Joukowski's Theorem [15).

In the limit of vanishing core radius, we find

N

i - cotcot (z - m = I, N , (3.3.19)
m m o Z n)

n-1
n *M

e2.

0"

' . , , , , . , . , . .I ' , ' , . .
'% ' 'I , ' I "I "l ' 'I ' ' " / 'f- : r " '
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which are exactly the equations of motion of the point vortices

0
in a sheet as given by Sir Horace Lamb [13].

In dimensionless variables, the eauations of motion reduce to

a system of first order ordinary differential equations of the

form

dU2 m2 - S M(U,Z)

m =,...,N , (3.3.20)

dz

dt m

where U and Z represent the velocity and position arrays of the

system of hollow vortices. In arriving at the system of

Eqs. (3.3.20), we used the fact that pg/p0 << 1. After some

algebra, the source term Sm is found to be given by

N
2 27r +

S (U,Z) = a {i + 21m}[ I (U UnCsc 2 T(z Zm

n=l

n*m

N
2  + cot -
N LUrn N M n)]

n=l
n*m

N
+ 4 i~ 2 2 z z

2 a {m}[P (Z)] csc - Z
2- m m i1 )

n=1

M ,(3.3.21)

where

N N

P (Z) = cot Tr(Z z - cot 7(Z z
m m j nj ii=i

j *m itn

o "0



So, from Eq. (3.3.21), we recognize that in the system (3.3.20)

there is actually imbedded the zeroth order problem that represents "..

the motion of the point vortices.

In order to solve the system (3.3.20), given the initial

position of the hollow vortices the zeroth order problem, -.

represented hy Eq. (3.3.19), determines the initial velocity of "'" i

the hollow vortices. With the initial vectors U and Z, the

.. q

corrections to the velocities of the system of vortices are "'

- i..

computed from "..

dSo,- H (U,Z) m we r (3.3.2) %

thr satal i---d-th ert odr rblmthtrerset

where S
N % Jk'

Hposito fth hl i + 21m}[ I (U U)CSC r r oble%

n=il

corcinst h vlcte ofth ysemo vrtcs r

m~

N+mN2 ( m} (z)]cscm = , 2 ..

N .. ' .1 ,

N n=n
n *. -

(3.3.23)

Integrating the second equation of the system (3.3.20) and

using as the source term the result obtained from (3.3.22) one

obtains the corrections for the the positions of system of hollow

vortices. Thus, the new position for the hollow vortex sheet is

described by ,

2
z = z +nz m= 1, ,N , (3.3.24)
m om cm *

where Zcm is obtained as described above and zom is the result of

the integration of (3.3.19) and illustrated for one case in

Figure 3.2.

%.* .
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A fourth order Runge-Kutta solver was used to perform the

computations described above. A flow chart as well as the code

are included in Appendix C. Supporting our previous findings,

comparison of Figures 3.2, 3.4 and 3.5 suggests that the

consideration of the velocity field due to the dipoles is a

destabilizing factor. The results indicate also that the larger

the cylinder radius, the shorter the roll up time. In the two

cases presented, the cylinder diameters make up 25% and 46% of

the wavelength.

3.4 The Image System%%

Since the small disturbance analysis carried out in Chapter II

suggests that the presence of the wall is the stabilizing factor

of the hollow vortex sheet, we introduce an image system as

illustrated in Figure 2.2.

With the complex potentials of a dipole and a vortex, located
40

at zo, given by Eqs. (3.3.2), it is clear that the corresponding

complex potential of the image system in a horizontal plane is

given by U

0

Wd (z) =D/(z -z (3.4.1Ia)
i

and

w , z rlo~ -0 (3.4.1b)

respectively. The bars, of course, mean the complex conjugate

of the quantity.

With an analysis similar to that of the previous sections, one

concludes that the complex potential of the hollow vortex sheet o

with the corresponding image system is given by

-YmU - ~ .
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N
W(z) = 2 {ir log'sin j (z - Z) ] - ir log~sin j (z - z

n=1I

+ G' cot r (Zn + , z G Zn) (3.4.2)
n G'n) -G cot z n)

where %i

N p
-cLo + U - i + z- z tn n n X n n k)

k=1

k<_n
N %-

+ - nn k) "n(3.4.3)

k=1 k•

In the last expression, the last term stems from the image in-'

I. ,

each of the vortices of the wall image system. -.

Enforcing the zero normal velocity boundary condition at the

surface of each of the hollow vortices, as expressed by -.-

' ~Eq. (3.3.14), we find that for the symmetric hollow vortex sheet, .-.

to the first order magnitude, we have-

N .
A . cot z z cot (z " %

Zn ' n
'

mn)

n=1 n=1

n 1--

me

With an argument identical to that of the last section, the i

motion of the hollow vortices in the presence of the wall is stillsyste

governed by Eq. (33.17). Upon integration with the complex .'.

N6 N
12 ~ ~Zm n~ 'm n2

mLL co - - co-I-:x £, .,,", ,,. , .,:,---,: .,.', .,.:.-:':- ,-.. y :.,. ,.... .. , .....-.:,:."..v. :'."n:'.,=.1 n=1,,' ' V .".:.' .'-',:
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potenti"l as defined by Eq. (3.4.2), we conclude that only the term b

corresponding to Eq. (3.3.18b) is modified in the equations of

motion, i.e.,

W2  2 N
ip£ fP _ dz 27Tp r - { I cot j (z - z)2 zXm n

Cn=
m

n *m

N 2 2N I

- cot ( rzm + 2ipP(- { Y (G' +GI)csc (z
L. co A M LA 'm nn

n=l n=1

N
2 "

(G' - Zn} m = 1,...,N (3.4.5)

n=l

The other two integrals are not affected because the new

functional terms added to the complex potential are always .

analytic inside the contour of integration and consequently

vanish. While in the case of the hollow vortex sheet in an

infinite expanse of fluid, the velocity scale is the farstream

induced velocity (U), in this case it is the rigid body velocity

of the hollow vortex sheet (M). Thus, the solution of the problem

with the image system is still obtained through the system

(3.3.20), where now the source term is given by

'r 'r IN r%'.r i"
%....
O0
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N

S (U,L) 27T- 2 ~ (U S 2 ( n 'm
n=1

n #m

N

+ m (TJCS - Ts2 r(z - z S

n=1

N

(Ui UCS CS 7(z z 
F

n=1 '4,

n *m*

N

- li 2 - U mcsc h (z) + P*z) c c27r(

n n1

N
- i)P*z 4. . fT *X~ (Z)Is + p*(z) c - (3..6

m n m ~ n Z%

n= 1 0

fl*m

where

N N W

P (Z) = cot 7r(z -Zk - m zk ~ ,S

k=l k=l

k #m

and m =1,...,N. In the above equation, (A = trI/XV.



The zeroth order of magnitude problem is, of course, dictated

by the complex potential of the symmetric arrangement of vortices.

This complex potential falls out of Eq. (3.4.2) in the limit of

vanishing hollow vortex radius. The corresponding complex velocity

field is given by

N N
U M iW 1 cot T(Z - -n cot 7('z - Z ,1

n=1 n=1

n m

m -1,...,N ,(3.4.7)

where the indices refer to the vortices in the upper row.

The integration procedure for this problem is entirely

identical to that described in the previous section. For

computational convenience, but certainly to the detriment of the

CPU time required, we used in both instances complex notation

in the course of the computations.

The stability range of the symmetric hollow vortex sheet found

in the last chapter imposes restrictions that cannot he satisfied if

the physical dimensions of the cylinders are taken into account.

In order to satisfy these impositions, we have to consider a very

5.. large number of vortices, which renders the computations

impractical. According to Figure 2.3 a stable vortex hollow vortex

sheet can be found farther away from the wall if the hollow vortex

circulation is small enough. once more the computations are

impractical because the hollow cores only introduce a second orderI

unable to corroborate numerically the results found in Section 2.3.

45

-W N l.'
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analysis the small circulation along with the presence of the wall

are the key reasons for the apparent stability of the bubbles in the

shear flow. Other contributing factors, which this analysis

completely disregards, are the effect of viscosity which may be

stabilizing and the presence of other bubble layers.

For illustration purposes, the evolution of a point vortex

sheet in the presence of a wall is given in Figure 3.3. The

pattern, clearly unstable, in support of von Karman 's conclusion

[13], and is suggestive of the mechanism of drag reduction which
?,--

we discuss in the next chapter.

I Z
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CHAPTER IV

THE DRAG REDUCTION -

4.1 Introduction

As mentioned in Chapter I, the promise of substantial skin

friction reduction through boundary layer microbubble injection

excited the interest of many engineers. The obvious potential

applications of this concept of drag reduction led some of these

researchers to attempt to model the boundary layer flow with

microbubbles [18. It should be noted that these attempts were of

a probing nature. The aforementioned researchers claim to have

only assessed the percentage of the drag reduction that can be

attributed to a mean flow density and viscosity variation.

In the following, a more comprehensive attempt is presented.

Like previous works, the direction adopted has shortcomings which %

are imposed by the extreme complexity of the flow with its poorly

understood structure. Even though the modeling concept is

basically the same, we think that if a phenomenlogical approach

is to be adopted, then it should be built upon the rough model

introduced in the following sections.

Some of the major difficulties that have to be dealt with %...

in this problem in order to design a reliable code are:

* the fact that we have two phase flow,

* the large range of variation of the void fraction

of the second phase in the flow,

• the interaction between the second phase in the

flow and the turbulence structure of the carrier

phase,

S:Q'-

.,. . %... -.. - ".. ". -o= ., %. .e ".- ."., o- -..- ,- .£,'.................................................................-.....-....-....p "'- --- -'
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0 the momentum transfer structure between the second

phase and the mean flow in cross stream.

The solution of the above problems represents a major

mathematical, numerical modeling and experimental effort. Part

of this drive, mostly on the experimental side, has been under-

way at The Pennsylvania State University for sometime [6-8].

4.2 The Constitutive Relation

M. Ishii, in a most interesting monograph [191, discusses

from first principles turbulent two phase flows and the

mathematical tools within reach to describe them. From the

complexity of the equations obtained, it is obvious, at least

for the near future, that any hope of modeling these flows lies

in the possibility of representing them as some kind of

continuum single phase flow.

This being the only path open, it assumes the knowledge of 0S

the physical characteristics of the "fluid". This means that an

experimental effort must be undertaken in order to study and

establish a functional relationship between the viscosity of the

"fluid" and the void fraction over large ranges. In other

words, one must first find the appropriate constitutive

relations for the "fluid".

To the author's knowledge, N. K Madavan, et al. [18] in their

numerical study addressed this problem by representing the

viscosity of the "fluid" by Einstein's relation [20,21], i.e.

= (1 + 2-5X) ,(4.2.1)

VS



.%

50

as well as Sibree's viscosity model in order to provide an upper

bound to the effects of density and viscosity variation. The
,

validity of Eq. (4.2.1), which is obtained from theoretical hydro-

dynamic arguments, is restricted to small values of the void

fraction, X. Even in this range, nevertheless, the experimental

work of S. Hinata, et al. [22] suggests that Eq. (4.2.1) is not a

good description of the functional dependence of the viscosity on

the void fraction. The American researchers did not seem to be

aware of this work by their Japanese colleagues. Indeed Figure 4.1

shows that Einstein's model is itself an upper bound fo> the

viscosity when considered as a function of the void fraction. For

this reason and the fact that in [4] the void fraction profiles
V.,

are prescribed arbitrarily, the author thinks that the conclusions
F-

in [4] should be considered at most qualitatively. p

Without delving into the merits of the experimental procedure

used by S. Hinata, et al., we note two important facts: .

The equation proposed by them as a constitutive relation

dependent on the void fraction, i.e.,

-1/6
= X(0.45 + 1.3X)Ta / (4.2.2)

where Ta = z d(du/dy)/a, is based on void fractions that range up

to 0.25. Even though based on this limited range of void fractions,

there is reason to believe that Eq. (4.2.2) is valid in our flow.

Our argument is connected to the coalescence and deformability of
°. -

the bubbles. According to [18] this can be correlated to the non-

dimensional number Ta with the conclusion that if Ta > 0.15,

p

4 , 4* U * * 4 ~ ~ ~ t .' * ~ ~ ~ .~ 4 . . . t.-~ 4.' - U ".
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coalescence and deformabililty are prevalent, Eq. (4.2.2) is not .

valid. For a typical bubble in the present flow [8], we find that

the parameter Ta is of order 102 . Some of their experimental

findings, as well as the empirical relation (4.2.2), are reproduced

in Figure 4.1.

At lower void fractions, the empirical relation (4.2.2)

compares very favorably with Taylor's expression [23], see .-

Figure 4.1,

ij=2.5X (.(4.2.3)

Consequently, Eq. (4.2.2) is used in our computations, even

though we have no knowledge of how good it is at the higher void

fractions of 0.8 reported by the Soviet researchers [2].

4.3 The Mechanisms of the Drag Reduction

Even though the mechanisms of the microbubble drag reduction

are still unclear, we present here a chain of ideas that seems

0
to be physically consistent in light of the experimental data

available. The ideas presented will be used in Section 4.5 to

modify the formulation of the Van Driest wall function.

M. K. Madavan, et al [18] uses, in his numerical studies,

as the main mechanism to achieve the skin friction reduction, a

modified Van Driest equation for the mixing length. The physical

motivation of his expression, however, is obscure and in fact .

it does not capture one of the main characteristics of the drag

j.

%S
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reduction by nmicrobubble injection, i.e., the fact thdt it is a ,..

JI~

localized streamwise phenomenon. This is a consequence of the "":

fact that the void fraction is arbitrarily prescribed in [! J"

and not computed.

The stability results of the past chapters suggest and the -%

'.

experimental results give credence to the idea that the drag

reduction is result of the dynamic interaction of the micro-

bubbles with the macroscale turbulence structure of the boundary

layer. W-

Since, downstream from the place of injection, the skin.,.:,

friction eventually recovers to its undisturbed value, it is 1%'

~~obvious that the mere presence of the bubbles in the boundary .

< ~layer is not responsible for the drag reduction. In fact, the ;

streamwise distane on is a drag reduction is observed

is rather limited [8]. Fur thepast fact that the skin the

friction reduction depends on the volumetric flow rate of the

!.. ~gas being injected supports the last paragraph in two ways.ltwsosre ht[,] i

* The skin friction reduction is very small for small

volumetric flow rates of the gas being injected. ..

The skin friction reduction is partially lost if the cro-
volumetric flow rate of the nas bein injected isbondr

increased beyond a secific quantity that depends

obios hon the free stream Renolds number. In other words,
stramifor a given free stream Reynolds redtion is iserved

an optimum injection volume flow rate for maximum

skin friction reduction. ism

1& .. . ..

o~ Th ski frcto reto is patl los if-the
e- t& ir



These two facts, seeminglv unrelated, have a common connectic7'

In the first case, the lower bubble inertia, the laraer diameter

determines that the bubbles are forced to interchange momentum wit '

the smaller turbulence eddies closer to the wall. Thi14s, allied to

the fact that in this flow regime a fewer number of bubbles is

injected, determines that only a small percentage of the turbulence

energy of the mean flow is used to deflect the bubbles and

eventually convect them. On the other hand, the higher buoyancy

of the bubbles tends to reduce the time in thich they interact

with the boundary layer. The last remark is supported in a larger

context by N. K. Madavan's experiments [8] in which two

gravitational orientations of the boundary layer were studied. it

was observed that when the buoyancy field acts against the escape of

the bubbles from the boundary layer the bubbles become more

Neffective in reducing the skin friction, vide Figures 1.5 and 1.6..N

The above ideas explain why an increase in the injection flow

rate will, in general, lead to a further decrease in the skin

-, friction. The higher inertia of the bubbles allows them to reacn

larger eddies farther out in the boundary layer, while their

smaller diameter and larger number makes them more effective

vehicles of momentum transfer.

The fact that for a given injection flow rate lower skin

friction reductions are observed for higher free stream velocities,

V. vide Figure 1.1, can also be explained by the above reasoning.

At higher free stream velocities, the bubbles are swept away sooner

by the mean flow forcing the momentum interchanges with the mean

flow to occur through smaller eddies closer to the plate. One

A .V ' '
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should keep in mind that the above reasoning assumes a zero pressure
-S

gradient. Obviously the presence of a pressure gradient affects the .

dynamic behavior of the bubbles in the boundary layer. Consequently,

the skin friction reduction has different characteristics from the

flat plate case.

The second experimental fact mentioned above, however, seems

to contradict the preceeding exposition. The answer to the

apparent contradiction lies in the structure of the turbulent

boundary layer [24]. The turbulent energy is supplied to the

boundary layer from the free stream through large scale structures, -,

which through vortex stretching convey the turbulent energy to the

inner regions of the boundary layer.

With this rough picture in mind, we conclude that for a given

free stream flow regime the maximum skin friction reduction is

obtained for the injection volumetric flow rate for which the

bubbles have enough inertia to reach and interact with the larger

scale structures. In this way the bubbles provide a breakdown of

the chain of turbulent energy transmission to the inner region of

the turbulent boundary layer. The fact that the skin friction

starts increasing after the injection flow rate has surpassed its

optimum value is clear because in these circumstances an increasing-.

number of bubbles has sufficient energy to bypass the large scale

structures without interchanging momentum with the turbulent

structure of the boundary layer. Finally, the localized nature

of the phenomenon is also explained by the fact that once bubbles '.

... . , - .
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are brought to the same velocity as the mean flow, they possess

no more energy to interchange with the flow and thus lose their

ability to affect the flow's turbulent structure.

From this picture one perceives four main contributors to the

drag reduction in a boundary layer with microbubbles:

* A decrease of the mean density of the "fluid",

* An increase of the mean viscosity of the "fluid",

* The interchange of linear and angular momentum

between the bubbles and the turbulence structure

of the mean flow, and

* The added mass, or fluid entrainment, of the

bubbles when they are injected.

At the stage of current research on this problem, it is

difficult to identify the main contributors, however, the previous

reasoning suggests that the last two physical phenomena are probably

the most important.

4.4 The System of Equations N-e

The equations to be integrated for laminar flow are, of course,

the steady-state compressible Navier-Stokes equations [251, along

with a transport equation for the second phase,

V * (PvJ 0 , (4.4.1a)

.,pP• 0B Vp LjVx(vxv VUx (7xV) (4.4.1Ib) "''

V • VX = 0 (4.4.1c)

as well as their turbulent counterparts. I

UP % , .. % %4',~w '% . ' . ~ % % % .
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in the system above, ..i the viscosity of the mixture which

is related to EQ-4..~3b

=u(I + U (4.4.2)
spi

5,.

The transport equation (4.4.1c) stems from the assumption -

that the bubbles are convected by tfte main flow. Even thouah

this is not true at the locus of injection, we expect this

equation to capture some of the kinematics associated with the

fact that the bubbles at injection possess some velocity of their A,

own. Besides this, the adoption of Eq. (4.4.1c) introduces in

the system the ability to compute the void fraction profile, as

opposed to its a priori specification as is done in [181. .

Equation (4.4.1c) can be understood as a remanent from the

consideration of a full two phase flow system. Clearly the

local density in the system (4.4.1) is given by

P = p (1 - X) + p X • (4.4.3) N,
.

For a two-dimensional flow, the system (4.4.1) reduces to

au ;v
+ - (4.4.4a)3 x y '"-"

ax +  0 (4.4.4b)

u au. p 2 3u au ;v_+ v = B -- + zV u + - (4.4.4c)
p[u Tv x ax ay ay ;x, r , I

P[ + v = B -_- + WV2v - , (4.4.4d)[ f.
where to obtain E. ( .4.4a), we used E. (4.4.Ah) and Fc. (".4.3).

S,

2e -..
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Since we know very little about the momentum inte-changes

between the bubbles and the carrier phase, we will discard the

body force field terms. In this continuum approach, however, we

still can take into account the buoyancy force field of the bubbles.

Neglecting the other dynamic interactions may not be a very good

approximation since the experimental results summarized in

Chapter I showed the biggest skin friction reduction close to the

region where the bubbles are injected, a fact that may be

associated with momentum interchanges between the bubbles and the

mean flow. Dynamic interactions between the bubbles, which are

probably important in this region due to the high packing and

velocity difference between the two phases, had also to be

disregarded.

By virtue of the fact that

p g/p 1 , (4.4.5) S

the system (4.4.3) can be further reduced to

:.-

au 3vx + - = 0 (4.4.6a)

ax 3v 0 (4.4.6b)
ax 3y

X)[ u au + v p + . 7 2u + I au ;u ;v,
P L~x y ax 0 P ay ~ ;x~

(4.4 .6c)

(1 - X [ v , B ' a.

;v av, v 1 3U (;u _ -__,V
-u + v + V 7-- 7 - %

A 4. d

WV',
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For this problem, the laminar flow regime develops in the
-S

absence of bubbles and thus the system of equations (4.4.6) reduces

to the ubiquitous laminar boundary laver equations. The Prandtl %

hypothesis holds and after appropriate nondimensionalization the
0

equations read

au +v (4.4.7a)
ax Dy

,, 2u
u u + v au (4.4.7b)

ax ay ay

where the streamwise pressure gradient has been omitted because we

are studying the flow on a flat plate with zero pressure gradient.

The primed variables, of course, correspond to the appropriately

scaled boundary layer variables, defined by y = VRe L  ;

v t = VRe v, where the Reynolds number is based on the physical '"

pUL
=%.I*

properties of the carrier fluid, i.e., Re - and L is some %.%
L W

length scale.

4.5 The Turbulent Regime

As is the case in all boundary laver flow calculations,

transition is a crucial step of the computations. Its prediction,

when not known experimentally, is very difficult. '.

Transition depends mainly on the free stream turbulence and

on the pressure gradient. Since we are doing computations on a

flat plate flow, which is usually the first-case problem in fluid

mechanics, the mechanisms and position of the onset of boundary

0?
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layer transition are fairly well understood [261. Nevertheless,

to compute transition itself is a completely different matter

and one has to resort to empirical methods, even in the flat plate %

problem. In our calculations, we make use of Michel's method as

reported by Cebeci, et al. [27]. Michel's transition curve can be ~. *.,

expressed as a function of the leading edge Reynolds number as

Retr = 1.174fl + (22,400/Re )]Re0. 4 6  (4.5.1) ;trx

6 R 40x16for 0.1 x 10 < Re < 40 x 10 which is the usual transition

Reynolds number range for a flat plate in normal conditions.

Having said this, we turn to the study of the system of flow

equations of motion (4.4.6) for turbulent flow. We consider in .

this system the velocity and pressure fields to consist of a ..

mean with a superposed disturbance, i.e,

u u+u , "1.

v =V+v , (4.5.2)

Upon substitution on the system (4.4.6) and after the usual

averaging and subtraction of the equations satisfied by the

disturbances, we find the appropriate Reynolds equations to be

given by '"'.

- + -- 0 (4.5.3a)

ax ;v

ax ax 0, b
U ax + v ay (4 5...

] .

0
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The attentive reader will have noticed that in order to

obtain the equations above, disturbances of the void fraction

distribution were not considered. This avoids one of the major

difficulties in this study, i.e., the simulation of the inter-

action of buoyancy with the turbulent shear stress.

If one now performs an order of magnitude analysis of the

above equations for a thin shear layer, i.e., in the limit of high

Reynolds number one finds that the y-momentum equation reduces

to

1 gx - (I - x) ~2) (4.5.4)

P a 3y

since from Archimedes principle, B = p gX.
Y0

After integration and recognizing the vanishing boundary

fraction, we find

,% .N
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If we differentiate this equation with respect to x and use

the fluctuating counterpart of Eq. (4.5.3b), we find that

1 3P OX ~~~ ~ d

V b

since P constant for a flat plate.

It is important to note that the last term of the equation

above captures, at least in part, the localized nature of the drag

reduction. It is clear that the buoyancy force field will introduce

a source term in the streamwise momentum equation. Furthermore,

the importance of this source term is confined to the region of the

flow where the bubbles are deflected by the freestream flow.

Substitution of (4.5.6) into (4.5.3c) eliminates the pressure

term and gives for the x momentum equation, S

(I X)[U - + V E 1 X) a - )-(1-x I2
ax a y 9V-I--

2 . 3 -ax ~ j 2 1 3 ; _ a t __V

a+ d- f v dy + -7 U + -V

S of .5f.6y (4.5.7) 

y0

term- -9. anIie o h mmnu qain
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If we estimate the order of magnitude of the various terms in LV-

Eq. (4.5.7), we find that in the thin shear layer, high Reynolds

number limit the x-momentum equation reduces to %

r uv + -Lu 
4 1u

(1 X)U 5 + V = - x( - X) U + + 3y 3u

+ g3 f Xd y (4.5.R)

y S

In order to model the turbulent shear stress, we use the .

usual Boussinesq type approximation, i.e.,

0u (4.5.9)(uv) - ay '-' '

where e is the eddy viscosity.

In the inner region of the boundary layer, the eddy viscosity

is modeled by Prandtl's mixing length hypothesis

= 2 a U -"%

X -y , (4.5.10)

where Z, Prandtl's mixing length, is computed from a modified "'

Van Driest expression w..

+ -y A
Z khy {I-e A , (4.5.11) -

with von Karman's constant k = 0.41.
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In this expression, following Launder, et al. [281, we use -.

3/2 *,A ) /26 (1 + 5.9 v , (4.5.12)w w'

an expression that has displayed a better behavior for flows with

boundary layer injection. Through a convenient formulation of the

function h we attempt to capture the local nature of the skin

friction reduction.

As pointed out in Section 4.3, the phenomenon of microbubble

boundary layer drag reduction can be consistently explained if one

thinks of it in terms of momentum interchanges between the bubbles _N_

and the turbulent structure of the mean flow as well as bubble flow P

entrainment. 
W

Under the limitations of the description of the flow adopted

here, we are led to the conclusion that the mixing-length

correction function h should depend on the streamwise gradient of

3v/ay as well as on some nondimensional parameter representative

of the average bubble radius, such as Ta, i.e.,

I+ sp , 2-

h - g -y v (4.5.13) 0

where the dependency on the void fraction results from the non-

dimensionalization of the eddy viscosity with the local Properties

of the "fluid".

The form of the functional dependence of h on the cross-stream

velocity gradient, suggested above, is supported by the mathematical

formulation of the buoyancy effects.

% % % %j
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It is clear if the present direction is adopted then the form

of h requires further intensive study, the first hurdle of

which must be the acquisition of a more comprehensive set of

experimental data on the properties of the mean flow at injection.

For this reason, we are forced to disregard g, even though the

previous reasoning suggests that g affords the most practical way

of capturing the localized nature of the drag reduction.

In the outer or wake region of the boundary layer, the eddy

viscosity model that we adopt is due to Clauser [291,

co = aU.* (4.5.14), •

where a = 0.0168 and 6* is the boundary layer displacement

thickness.

With expression (4.5.9) the momentum equation (4.5.8) becomes

(1 23X)[U LU ) - -U)+ g - y
ax ay ay ay ax

- J (4.515

which along with Eq. (4.5.3a) and Eq. (4.5.3b) constitutes the

svstem to be integrated.

The numerical scheme used to integrate the equations above is

Keller's Box Method [271. The transformation of the above equations .

by the Mangler-Levy-Lees equations is given in Appendix D. The

boundary layer code based on the transformed equations is given in

Appendix E.

S w
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4.6 The Boundary Conditions

V
We know from N. K. Madavan's exDeriments [81 that in the region NO

ON.
of bubble injection the flow is completely turbulent. From the

boundary layer measurements in the test section they estimate the

position of a virtual flat plate leading edge that would have

generated the boundary layer profile observed. It is based on the

location of this virtual flat plate leading edge that we decide the .1

location of bubble injection in the code. Ile,*- ,

Since we are simulating the bubbles by a variable density and

viscosity "fluid", we must establish the boundary conditions not

only for the velocity field but also for the void fraction. So,

if x > 0 is the streamwise independent variable, we set

X(x,0) = CX a,b] (4.6.1a) p

where [a,b] is the interval of injection. The estimation of the

constant C is based on N. K. Madavan's experiments. The laminar

regime boundary condition for the void fraction is given by .

X(O,y) = 0 , (4.6.1b)

since the bubbles are injected in the turbulent flow regime. S

The velocity field boundary conditions at the plate are

determined by a statement of conservation of mass. At the

impervious part of the wall we have S

V =U =0 (4 .6.2a)w w

:-:e
%-S
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~~In the interval of injection, we impose '

i Uw  0 ,(4.6.2b) .

~P Qg V V(b -a)[ p 0 X) + P X] ,•
..

4.7 esuts-

paamnrs the budr ae intervalenc of injection,.e mps

.° -.

An (4.6.2c )'.-
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These results are however not satisfactory because of the lack

of resolution of the wall gradients. The fact that the bubble

injection occurs in the turbulent regime demands the resolution of

the wall gradients. This can be done rather easily in the code

since the positions of the first grid point and the boundary layer

edge can be chosen freely, but judiciously.

With this resolution, the coupling of the momentum and trans-

port equations becomes very delicate because of the high streamwise

near wall void fraction gradients. Several unsuccessful attempts

were made to correct this situation. A refinement of the streamwise

grid at injection as well as a smoother injection void fraction

profile were unable to correct the problem.

The resolution of the wall gradients is essential because

the form of the transformed momentum equation suggests that the

buoyancy effects are important only in the inner region of the

boundary layer where the turbulent shear stresses are either

negligible or of the same order of magnitude as the viscous

stresses.

It was observed that for a rather modest wall void fraction,

the code before the computations collapsed, predicts a skin

* friction reduction of the order of 60%. This fact is not only

encouraging but also points to the possible solution of the

problems that the model has presented.
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CHAPTER V

DISCUSSION AND CONCLUSIONS

5.1 The Stability A.

As was discussed in Chapters II and III, the simple arrangement

of hollow vortices is unconditionably unstable. It was shown,

through an analysis similar to von Karman's, that the instability

is independent from either the size of the cylinaers, as reflected •

by the dipole strength, or the circulation of the vortices.

The evolution of a point hollow vortex sheet was included for

comparison purposes. Even though the time history that we obtained

for this case is different from that presented by Chow [II], the

onset of the rollup is found to have the same pattern. Indeed, from

the evolution of the hollow vortex sheet, one concludes that the V

consideration of the dipole system is a destabilizing factor since

the onset of the rollup comes earlier than for the corresponding

point vortex sheet.

From the point of view of inviscid flows, the apparent

stability of the hollow vortex sheet is associated with its

proximity to the wall. Indeed, as is clear from Figure 2.3, the

stability domain shrinks exponentially away from the wall and,

as expeited, the condition of unconditional instability is .

recovered several disturbance wavelengths away from the wall. -

The results of the small disturbance analysis of the

symmetric hollow vortex sheet presented in Chapter II could not be

corroborated by the computation of its evolution because the CPU

time required renders the attempt impractical. .-.. ,

:,_,

.5' 5 :,
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For the sake of completeness, the evolution of a sinusoidal

wave of point vortices in the presence of a wall was also computed.

Supporting von Karman's work, the arrangement is always unstable.

Indeed, the pattern of evolution, vide Figure 3.3, is suggestive of

the large scale turbulence structures that develop in a turbulent

boundary layer after the breakdown of the Tollrnien-Schlichting

waves.

It's conceivable, and our analysis does not address the issue, 4

that viscous effects also play a role on the stability of the

nature of the boundary layer. A deeper study of this aspect of the

the problem is necessary.

Attempts to correlate, in a very simple minded way [311, the

circulation of the hollow vortices to a velocity gradient%

representative of their position on the boundary layer lead to

meaningless conclusions. However, the fact that the bubbles are0

conveyed by the mean flow, even though not all at the same speed,

renders the analytic treatment of the problem of shear flow

through an array of spheres conceivable.

The problem of low Reynolds number flow through periodic

arrays of spheres and cylinders in several iackina configurations,%

has been studied by other authors. H. Hasirroto [321 studied the
V1

problem of flow-past special cases of cubic lattices. More

recently [33,34), his work has been expanded, in an equally

elegant w.ay, to encompass a wider range of void fractions. The

latter authors derive an asymptotic solution for the high void

fraction flow regime. They provide the connection between their
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solution and Hasimoto's, for the intermediate void fractions,

through the numerical integration of the resulting equations

using spectral methods. .

The extension of this analysis to our problem must resolve the

difficulty introduced by the motion of the spheres convected by the

shear flow, i.e., the unsteadiness. The unsteadiness translates

itself into a time dependency of the solution domain. This is

where the mathematical difficulties arise. '

5.2 Drag Reduction

If not from the title of this dissertation certainly from

Chapter IV, the reader must have realized the monumental task that

it will be to describe this flow even from an engineering point of
.

view. ..

Ahead we try to point out further some more of the

difficulties and suggest, in broad lines, some research that

can lead to a better understanding of the problem. N

The fact that the bubbles are very small is very suggestive

of a phenomenological approach to this problem. On the other 0

hand, the high packing of the bubbles may support arguments in

the opposite direction. Whichever direction one choses, the

challenge is enormous.

If one decides to formulate appropriate constitutive relations

for a bubbly flow (221, then the present experimental techniques

must be improved to allow the measurement of mean flow properties

in regions of high void fraction. To the author's knowledge, very a
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little effort has been conducted in this direction, at least in

connection with this problem. Nevertheless, exciting progress

seems to have been achieved recently by R. van der Welle [351. He

reports the development of ingenious measurement techniques for

bubbly flows with high void fraction that can conceivably be

extended to the study of the present flow.

It is important to notice that any such constitutive relation

will be dependent not only on local properties of the fluid but

also on local properties of the flow [36,37,38]. The latter effect

is dictated by the dynamic interaction between the bubbles and the

carrier flow.

Another very important aspect of an experimental investigation

must be the study of the interaction of the turbulent structure

and the carrier flow with the dynamics of bubbles. This complex

phenomenon seems to be very important at least in the region of

injection of the bubbles. Indeed, the Soviet researchers [2,4]

postulate that this is the most important mechanism of the drag Z..

reduction. If this is indeed the whole picture, it is not clear.

The idea is supported however, by the fact that the drag reduction 0 1.

persists only for a few boundary layer thicknesses downstream

from the place of injection. The way in which this may be

happening was presented in Section 4.3.

One is faced with a major comiutational and modeling effort,

specially in providing appropriate closure models for the resulting .

turbulent flow equations. Attention must be dedicated not only to

the modeling of the buoyancy effects [19,391 but also to the shear

stresses themselves. It is not clear, for example, that the
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normal stresses in the streamwise and cross-stream directions are of

the same order of magnitude as is usually assumed, and is experi-

mentally confirmed in the flat plate turbulent boundary layer.

Another aspect is that, since buoyancy and the void fraction play

such an important role on this flow, it is probably more appropriate

in the averaging of the Reynolds number to use a mass weighed

ensemble average [391.

Also, a mixing length approach in the modeling of the shear

stresses may prove inadequate. The empirical relations used in

this approach depend on particular characteristics of the •

boundary layer which have not yet been confirmed true for the

boundary layer with microbubbles. This suggests interesting

experimental research that could make use of the techniques

mentioned in [35]. The strong interaction of the bubbles with

the turbulence structure may preclude any such approach and force %1

the use of second order closure models [391. It is not clear,

for example, that the intermittency characteristics exhibited by

boundary layers with and without bubbles is the same. Indeed,

the reasoning presented before on the me nhanisms of the drag

reduction suggests that this is not the case. If experiments

ever substantiate this, then an appropriate formulation for the

eddy viscosity in the outer region of the boundary layer is •

necessary.

Either in the approach adopted here or in a complete two

phase flow description, the researcher must be concerned about

the appropriate formulation of the boundary ronditions. The

carrier flow boundary conditions are straightforward, however,

• . • . °,, °,, o ° -°) -. ..- , '. ". . .. -. * " % .•)-0
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it is clear that the wall boundary condition for the void fraction

is itself a function of the injection flow rate. Consequently,

even though the approach adopted here is physically meaningful,

it is rather restricted and must be improved. Once again,

measurement techniques must be perfected in order to allow near.

wall void fraction measurements and determine its correlation with

the injection flowrate.

For the sake of completeness and adding to the complexities

already mentioned, the author must point out that recent results A

from ongoing research in this problem [401 suggests that the

bubbles are bigger than originally thought and the coalescence

is a fact specially downstream from injection.

It is clear from what we presented as well as past work

(2-81 that, at least in the near future, the main effort towards%

understanding this problem must be carried out experimentally.

At the current research stage there are too many gaps in relevant

experimental data. A more complete knowledge of these is needed

if the researcher is to approach the modeling of this flow with a "*.

reasonable degree of confidence.

0 :
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APPENDIX A

THE FOURIER SERIES EXPANSIONS

In order to obtain expressions (2.3.8), several Fourier series

expansions were obtained:

cok inhk2k/""
coshke2 2 sinhk cosn r cosne , (A.1)

Trk n=1 n 2+ k2

101 2(k 2-_n2
e sinhk(7 - e) = -- +-- sinhkr + 2 sinhk7 cosne

k rk n=1 2 22k n (n + k

2k cosno

2 2 cosn , 
(A.2)

n=1 n + k

2n
0 coshk(i - 0) = - 2 cosnr sinhkw sinnO V.

n=1 i(n
2 + k

+ 4kn sinhkT sinne (A.3)

n=1 i(n 2 +k 2

sinhkO=- 2n cosnl sinhkT sinn, (A.4)
2 2

n=1 r(n + k %
0
lo-

2 _2%
e2 sihk( - = 4n3k - sinhki sinne

~8kn
Y" 2 cosn7 sinn6 (A.5) " '

n-1 (n 2 + k

P3

S:
-C-%,

- 8kn cosnr sinO ,(A.5



87

6 coshk6 = - 2 n cosnir coshk7 sinn0

n 
n 2 + k

+ 4nk sinhkn sinne (A.6)

n=1 Tr(n 2 + k 2 )

2 3 1++ ; 4(n2 k 2 cosn- konocoshk(ir Q) = -_ +2_- sinhk 2....... cosne
k irk n=1 (n2 + k2S0-0 2 .. . % 2

+i4k(k2 _ 3n 2j

+ 23 sinhk cosn (A.7)

n=+ k

000

e sinhk hk hkv + 2kcosn coshk7r cosne
irk n=1 n2 + k 2

2 2 
-~ 22 n cosnw sinhkw cosn0 . (A.8)

n=1 2) 
"" 

n

A combination of expressions (A.1) with (A.2) and of (A.3) with

(A.4) leads to Eq. (2.3.8d) and Eq. (2.3.8a), respectively.

Equation (2.3.8d) is obtained from expressions (A.4), (A.5) and (A.6),

while Eq. (2.3.8c) stems from (A.1), (A.7) and (A.8).

jt

% V %
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APPENDIX B

THE CONTOUR INTEGRALS

To integrate Eq. (3.3.17) we use Cauchy's Residue Theorem. In

order to perform the integrations we need the following expressions

N 23W : - -'r -o 7 (z - Zn) - gn(-) 2sc" _ _ ZJ |-

n=l n=1 (B.1)

N dG 2 Sr
aW= n (_a (z n
at L t X - )

n=1 2

2 (-.2a 2 i z - Z ) + F TUn [-  Gn  --  csc -- o z -Z ]},

(B.2)

The integral f dz leads to integrals of the type
CM a

0 if n m -f cot (z - z )dz = (B.3)
C 2A if n =m
m

csc 2  (z - z )dz = 0 n = I,.,N (B.4)
C
M

2.
The integral f (z) dz leads to integrals of tF type

Cm

csc2- (z - Z )c ot (z - z )dz

C

0 if k * m and Z * m

2w
- 2xi csc -z - z if k = m and 2 m

(B.5)
-c - z . if k * m and Z m

0 if k 2. = m --

= •

4 ~ 9"-.9.
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f cot (Z - Z) cot (z z,)dz
Cm

0 if k * m and 2 *m

2Xi cot (Z - zif k * m and 2 = m

(B.6) ..
Sct - zfk = m and Z m.

2 Xi cot Z)

O if k m

The integral f .dz leads to integrals of the type (B.3)
Cm

and (B.4). With these results and taking into consideration the

appropriate coefficients, Eqs. (3.3.8) can be readily obtained.

For the image system, the expressions to integrate in

Eq. (3.3.17) are

N
aw i rwr T iritaw ot ' (z -z ) t "(z -Zn :TZ -X XT co n) A--o X n ..

n=1

2 2 2
Gn( s)  2 z z ) G----a cs c (z- Z

(B.7) .

N dG 2 2

{t'- _L_-dT ) csc (Z n

n=1

dG 2-- - r -

n f=l ,.ra%'

n az L U cot X (Zr
It (z- csac -2 - .n (z -zn. :.

+ cot 2 z + U G csc - z
- n X nnX

T 2 Tr

+ csc 2 (z Zn) (B.8)

n nf n'
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From these expressions it is obvious that in Blasius equations

only Eq. (3.3.18b) generates more terms.

With expression (B.7), Eq. (3.3.18b) produces, in addition P,

to (B.5) and (B.6), integrals of the following type

7T.f cot (Z - zt) cot j (z - )dz = 0 for any 2 or j.
C 11"Sm,

t (Z - z) Cot --)dz
C o t - Z z z , .

Cm

r ..
0 if £ m any ( O-

= , (B.10)

2Ai Cot (Z ) if £= m any j

mS

f Cot (Z z csc (z - zjdz
Cm

0 if Z * m any j , (B.11) -:

2 2  - zj) if Z = m any j

2 d,
f Cot -(z - )csc (z- z.dz
C m

0 if £ m any j
(B.12)2 2 2w

2i Csc w ( - z) if Z = m any j

With these results at hand, Eq. (3.4.5) follows easily. S
.N.

*5*5.5'-'.



APPENDIX C 1_I

THE HOLLOW VORTEX SHEET EVOLUTION CODE

INITIAL
INITIAL POSITIONS VELOCITIES

EQ. (3.3.19)

N E\. T7I v1 E
T= T + AT

0(l) PROBLEM 0 (a2) PROBLE.,,
EQ. (3.3.19) EQ. (3.3.23)

EQ. (3.3.20)

z Zcm .
re1, N me=lN...-..N

,q

NEN POSIEIO

m= ...... N

NElV VELOCITIES-"
E .(3.3.19) -::

YES< IRN F T N

t. v



IMPLICIT REAL*8(A-H,O-.Y)
IMPLICIT COMPLEX*16(Z)
COMMON/BLK1/J ,N,PI b
COMM'ON/BLK2/ZPOS
COMMON/BLK3/ZVEL
COMMON/BLK4/DT
COMMON/BLK5/ZPC
DIMENSION ZPOS(100),ZPOSO(50),ZPOS1(5O)
DIE.NSION ZVEL(100)
PRINT*,'ENTER N,''
READ(5,*) N,M
PRINT*,'ENTER AD,DEL'

N READ(5,*) AD,DEL
N1 -N+ 1

N21-,N2+1 J

DT-1/DFLOAT( 500) '

PI=DACOS (-1. DO)
ZT-DCMPLX( 0.DO,1.DO)
DO 10 I'=1,.N

X-( I-i )/DFLOATCN)
Y=-AD*ZSI!4(2*PI*(X) )
ZPOS (I) =DCMPLXCX, Y)
WRITE(21,*) X,Y

10 CONTINUE
ZVEL (1)-DCMPLX CO. DO, 0. DO)
ZVEL(CN2 ) =DCMPLX( 0.ODO, 0. ODO)
DrO 20 3=2,N2

ZPC-ZPOS C )
ZVEL(J)=Zi*(DCONJG(ZSCOTCJ,ZPOS(J))))/N
ZVEL (N+2-J ) -ZVEL (3)

20 CONTINUE
DO 60 K=i4',,-i

T-T+DT
CALL ORDERO(-ZPOSO)
CALL 0RDERi ( ZP0S1)
DO 30 I=2,N2
ZPO^S(I)=ZPOSO(I)+(DEL**2)*ZPOS1(I)
ZPOS(!4+2-I )-1.DO-ZPOS( I)

430 CONTINUE
DO 40 3=2,,N2
ZPC=ZOS C )
ZVEL (J)-Z I* (DCONJG (ZSCOT (J, ZPOS (Jf))IN
ZVEL C N+2-j ) -ZVEL(J )

40 CONTINUE
IF(MOD(DFLOAT(K) ,40.DO) .EQ.0.DO) THEN
L1-21+K/40
DO 50 I=1,1

X-DREAL(ZPOS(I))
Y-DIMAG(ZPOS(I) )

WRITE(L1,*) X,Y
50 CONTINUE

W4RITE(Ll,*) T
ENDIF

60 CONTINUE



ZPOUT-ZPIN+DCONJG( ZD1+2*ZD2+2*ZD3+ZD4 )/6.D

RETURN
END

SUBROUTINE RUNTA2(DT,ZPIN,ZVIN,ZPOUT)
IMPLICIT REAL*8(A-H,O-Y)
IMPLICIT COMPLEX*1GCZ)

t COMMON/BLKS/ZPC
ZDV1=DT*ZRHS2(ZPIN,ZVIN)
ZDPl=DT*ZRHS3 (ZVIN)
ZPC-ZPIN+DCONJG( ZDP1 )/2 .ODO
ZVC=ZVIN+DCONJG( ZDV1 )/2 .ODO
ZDV2-DT*ZRHS2 (ZPC, ZVC)
ZDP2-DT*ZRHS3( zvC)
ZPC=ZPIN+DCONJG( ZDP2 )/2. ODO
ZVC=ZVIN+DCONJG( ZDV2 )/2. ODO

ZD3D*RS(zPC, Z JC) 0

ZDP3=DT*ZRHS3 (ZVC)
ZPC=ZPIN+DCONJG( ZDP3)
ZVC-ZVIN+DCONJG( ZDV3)
ZDV4-DT*ZRHS2(ZPC,ZVC)
ZDP4=DT*ZRHS3(CZVC)
ZPOUT=ZPIN+DCONJG(ZDP1+~2*ZDP2+2*ZDP3+ZDP4)/6.ODO
RETURN
END

FUNCTION ZRHSI(ZPC)
IMPLICIT REAL*B(A-H,O-~Y)
:I*PLIcIT COM1PLEX*416(Z)
COMMON/BLKJ./J ,N, P1
ZI-DCMPLX( 0.DO,1 .DQ)
ZRHS1--ZI*ZSCOT(3, ZPC )/N
RETURN
END

FUNCTION ZRHS2(ZPC,ZVC) ftC)

IMPLICIT REAL*8(A-H,O-~Y)
* ~IMPLICIT COMPLEX*16(Z)F..-

COMMON/BLK1/J ,N, PI
COMMON/BLK2/ZPOS

/1C BLK3 F 7ET
DIMENSION ZPOS(100),ZVEL(100) s
ZI-DCMPLX( 0 .DO, 1 .D)
ZS1=ZSCOT( J, ZPC)
ZS2-DCMPLX( 0.DO,0.DO)



S TO P
END 0

SUBROUTINE ORDERO (ZPOSO)
IMPLICIT REAL*8(A-H,O-~Y)
IMPLICIT COMPLEX*16(Z)
COMMON/BLK1/J,N,PI
COMMON/BLK2/ZPOS
COMMON/BLK4/DT
COMMON/BLK5/ZPC
DIMENSION ZPOSO(50),ZPOS(100)
N2=N/2
Do 10 J=2,N2

zPc=zP'os C )
CALL RUNI'Al(DT,ZPOS(J) ,ZPOSO(J))

10 CONTINUE
RETURN
END

SUBROUTINE ORDER1(ZPOS1)
IMPLICIT REAL*8(A-H,O-~Y)
IMPLICIT COMPLEX*16(Z)
COMMON/BLK1/J ,N,PT
COMMON/BLK2/ZPOS
COMMON/BLK3/ZVEL
COMMON/BLK4/DT
COMMON/BLKS/ZPC
DIMENSION ZPOS(100),ZPOS1I(5),zvEL(100)
N2-,,N/2
DO 1) J=2,N2

ZPC=ZPOS(J)
CALL RUNTA2(DT..ZPOS(J) ,ZVEL(J) ,ZPOS1(J) )

10 CONTINUE
RETURN
END

SUBROUTINE RUNTA1(DT,ZPIN,ZPOUT)
IMPLICIT REAL*8(A-H,O-~Y)
IMPLICIT COMPLEX*16(Z)
COMMON/BLK5/ZPC
ZD1-DT*ZRHS1(ZPIN)

ZD2-DT*ZRHS1 CZPC)
ZPC-ZPIN+DCONJG( ZD2 )/2. ODO
ZD3-DT*ZRHS1(ZPC)
ZPC-ZPIN+DCONJG(ZD3)



ZS3-DCMPLX (0.DO,0. DO)
DO 10 I=1,N

IF(I.EQ.J) GO TO 10
Z-PI*(ZPC-ZPOS( I))
ZS2-ZS2+s CZS1-ZSCOTC I, ZPOSC I) ))/((CZDSIN(Z) )*2
ZS3=ZS3+(ZVC-ZVEL(I))/((ZDSIN(Z))**2)

10 CONTINUE
ZS2-4*ZI*ZS2/(N**2)
ZS3--2*CZI*ZS3+2*DIMAGCZS3))/N
ZRHS2=PI*(CZS2+ZS3)
RETURN
END

FUNCTION ZRHS3(ZVC)
IMPLICIT REAL*8CA-if,O-Y)
IMPLICIT COMPLEX*16CZ)
ZRHS3=DCONJG (ZVC)
RETURN
END d

FUNCTION ZSCOT(L,ZP)
IMPLICIT REAL*8(A-~H,O-Y)
IMPLICIT COMPLEX*16(Z)
COMMON/BLK1/J ,,PI
COMMON/BLK2/ZPOS .

COMMON/BLK5/ZPC
DIMENSION ZPOS(100)
ZS-DCMPLXC 0.DGO0.DO)
DO 10 I-1,N

IF(I.EQ.L) GO TO 10
IF(I.EQ.J) THEN
zP1=zpc
ELSE
ZP1~ZPOS (I)

ENDI F
Z-PI* CZP-zp1)
ZS-ZS+ZDCOS(CZ )/ZDS INC Z)

10 CONTINUE
ZSCOT=ZS
RETURN
END

FUNCTION ZDSIN(Z) 7
IMPLICIT REAL*8(A.-H,O-Y)
IMPLICIT COMPLEX*16(Z)
ZI-DCMPLX( 0.DO, 1.DO)



XR=DREA-(.

X R-DREAL( Z) I

X-DSIN(XR) *DCOSH(XI)
Y-DCOS(CXR) *DSINH (XI) -
ZDSIN-X+ZI *Y~~-

RETURN
END

FUNCTION ZDCOS(Z)
IMPLICIT REAL*8(A-H,O-Y)
IMPLICIT CCMPLEX*16(Z)
ZI=DCMPLX( 0.DO, 1. DO)
XR=DREAL( Z)
XI-DIMAG( Z)
X=DCOS(XR)*DCOSH(XI) ~
Y-DSIN(XR)*DSINH(XI)
ZDCOS-X-ZI~v
RETURN
END

*4%
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APPENDIX D

THE MANGLER-LEVEL-LEES TRANSFORMATION

In Chapter IV, the system of equations to be integrated is

au av
+ 0v (D.1a)

a x ) + N'--

(Xu) + -L (Xv) = 0 (D.1b)

Wf , o

( X u a au -y[r*-au !l
1 X)[U -L + v X)] (1 - x) -

ax ayay [ve *a-j

+ x f Xdy +*--- (i + u (D. Ic) %,
ax aY sp) -y

where E* = /v.
%

: If we define a stream function according to '

y V x (D.2)

then the continuity equation is identically satisfied.

.'%'

With a Mangler-Levy-Lees type of transformation, defined by

I •S

x) = PU x (D.3a)...-

n(xy)= - (D.3b)

i-5
4

'V V %
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the two remaining equations become

ax ax2 f'K- (f+- = 0 (D.4a) %

n~~s Istt  . - + f ' ]

ref ref

00%

g V 2 [I + 2E - {f Xd;} 0 - X)2Ef'f' -f '']
P U" n

(D.4b)

The corresponding boundary conditions at the wall become

f'(E,0) = 0 , (D.5a)

/f( ,0) U f 1wO (.b

while the farfield boundary condition is

f'(,n) + I as n + (D.5c)
.%,

The volume fraction boundary conditions remain as expressed

in Eq. (4.6.1).

In order to apply Keller's Box Method, we rewrite the system

of equations as

F = f' (D.6a)

G G F =fi, (D.6b) 4

2 FX -(if + 2 f )y o , (D.6c)



z D. + -.) E S.U tS U

Z {i+ )G1c' + (0 -X) { ls ___ + f G}
t ref sptref [I lI

9 -- 2& [1 + 2& Xd }

(1 -X)2&[FF f -fG] ,(D.* 6d)

with the boundary conditions

F = 0 atn=0

F + 1 as rj +

(D.6e)
x= CXD at n =0 ,

f 2 1 XT E2 E at n = 0 0

where D is the interval, in the transformed space (,)

corresponding to [a,bI.

For the sake of completeness we give now, in transformed

variables, the expressions used for the eddy viscosity.

In the inner region we have

+ o 1/2

2+ TK2A w
V ~2& f''n[I e ,(D. 7a)

where

'' Ti /27 2 1/ (D.7h)
U w



*a. ,*

ino

and b

PJT w x= (D.7c)
P Tw I X wf

In the outer region we used
4 .K

a - (1 - (I - X)f'Idn (D.7d)
0  0 

S

Finite differencing the system (D.6) according to Keller's

Method [271, leads to a block tridiagonal system, with 3 x 3 block I

matrices, for the parabolic momentum equation. The volume fraction

equation, a hyperbolic equation, is integrated separately, in each

cycle, by a different solver. The differencing scheme chosen for I. *

this equation is second order accurate.
.'

Since the numerical methods are not the object of this %

dissertation, we decline from including the finite difference

equations that lead to the code presented in Appendix E.
S.. .

-.

S....-4~~ -, .d
,2-L*.,

°'.;•.p

S,,",,
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APPENDIX E

THE BOUNDARY LAYER CODE '1

The code presented in this appendix was designed for the flat

plate boundary layer. It corresponds to the numerical integration

of the system (D.6).

As it is, the code cannot be used for the computation of the

flow around an axisymmetric body. However, the changes to be

introduced are rather straightforward. In this case, the Reynolds

equations expressed in body fitted coordinates should be trans-

formed through the Stokes stream function and the axisymmetric -.-

Manger-Levy-Lees transformation to obtain the self-starting system

of equations [271. The system obtained in the previous appendix

must be the special case of zero pressure gradient. Some entries

of the matrices of the block tridiagonal system will be different,

however, the numerical solver is exactly the same and needs no

modifications. It should be noted that the body shape will also 1.

affect both equations by the definition of the Stokes stream

function and the Mangler-Levy-Lees transformation. "S
Even though confident about the code presented, the author

wants to issue a word of caution. The ability of the code to

resolve high void fraction gradients is limited.

The code uses second order differencing everywherai and is

designed for a variable grid in either the streamwise or the

cross-stream directions.

% 0
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Because the void fraction transport equation introdiuces in

U-.
the flow strong streamwise gradients, there exists the need of a

grid generator in the streamwise direction. This addition can

be appended to the code without any modifications.

J.'
'p

'"

,',

S...-)

'.°

_ -..

,'
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* MAIN PROGRAM *

IMPLICIT REAL*8(A-H,O-Z) l

DIMENSION A( 3,3,101) ,B( 3,3,101) ,C( 3,3,101) ,R( 3,101)
DIMENSION AL(3,3,101) ,BET(3,3,101) ,DETA(101) ,BUOY(101)
DIMENSION Y(3,101) ,Z(3,101) ,ITER(1000) ,ALFA(1000) ,V(3,1)
DIMENSION SFI(101) ,BFI(101) ,GI(101) ,ZI(1000) ,XI1(101)
DIMENSION SFI1(101),BFI1C101),Gl1(101),WKAREA(10)
DIMENSION AHAT(101),BHAT(101),CHAT(101),DHATC11O1)
DIMENSION P(l0l),Q(101),S(101),REX(1000),YDEL(101)
DIMENSION SF12(101) ,BFI2(101) ,GI2(10-1) ,CF(1000) ,XI(101)
DIMENSION THMO(1000) ,XDEL(500) ,QBL(500) ,XI2(101) ,DU(3,3)
DIMENSION UPLUS(101),YPLUS(101),SUM(101),SUM1(101)
DIMENSION SUM2(101),BUOY1(51),SHAPE(1000),ETA(101)
DIMENSION PXL(101),PXL1(101),THBL(1000),SF13(101)
COMMON/BLK1/DETA, CE,N
COMMON/BLK2/ALFA, IS
COMMON/BLK3/SFI ,BFI ,GI
COMMON/BLK4/SFI1 ,BFI1 ,GII
COMMON/BLK5/PRIR, PRTR1 ,PRST, PRST1
COMMON/BLK6/XI ,vI1
COMMON/BLK7/ZI ,ETA
COMMON/BLK8/PXL, PXL1
COMMON/BLK9/ISINJI ,EREF,VISCL,VISCT
COMMON/BLK1 0/GRAy, ROUL ,UE
COMMON/BLK11/SUM, SUM , SUM2
COMMON/BLK12/YPLUS ,USTAR
COMMON/BLK13/SFI2 ,XI2
COMMON/BL K1/BO, BUOY1
STRFAC=DLOG( 10. ODO)
EPS-1 .OD-5
PI-DACOS C-1. ODO)
VISCL'-101OD-6

ROUL-997 .3
ROUG-1 .21
GRAV-9 .81
PRINT*,'ENTER M'
READ(5,*) M

C
C Specification of flow parameters.
C

PRINT*,'ENTER INITIAL POSITION'
READ(5,*) PIIC
PRINT*,'ENTER FINAL POSITION'
READ(5,*) PFIC
PRINT*, 'ENTER VFI,QG' 5
READ(5,*) VFI,QG



PRII T*, 'ENTER UE'
READ(5,*) UE
ISINJI-0
ISINJF=0
POSEND=0. ODO
DZIC- . 0D0/DFLOAT(M)
DZI-DZIC
VISCT=VISCL
PRTR-O. ODO
PRST=l ODO
P05=0. ODO
CE-i. QSDO
IS-i
YDEL( 1)-0. ODO
ALFA(l)-0.ODO

C
C Establishment of the cross stream grid which obeys
C a geometric progression law.
C

ETA( l)-0.ODO
DETA(l1) -0. ODO
DETA( 2 )=0.005
ETA( 2) =DETA( 2)
K- 2

C A

C Determination of the number of grid points across
C the boundary layer.
C

1 DETA(K+l)=DETA(K)*CE
ETA( K+l ) ETA( K) +DETA( K+l)
ETAE-DETA( 2) *(CE**( K-i )-l .ODO )/(CE- . ODO)
IF(ETAE.LE.8.ODO) THEN

N-K '
K=K+l
GO TO 1

ENDIF
NP1=N+l

C
C Specification of the starting parabolic profile.
C

ZI (1 )-O.ODO "
* SFI(l)=0.ODO S

BFI(l)=0.ODO
XI( l)-0.ODO
XIl(1)=0.ODO
GI( l)-2.ODO/ETAE
YDEL(l)-0.ODO

BUOY(l)-0.ODO

SUM(l1)- . ODO
SUMl( l)-0.ODO
SUM2 (1) -0 .ODO
PXL(l1)-0 .ODO 0
PXLl( 1)-0.ODO
SF13(l)-.ODO



N

DO 5 K-2,NPl
IF(ETA(K) .LE. (5.ODO)) IDEL=K
SFI(K)-(ETA(K)**2)*(l.0D0-ETA(K)/ :

>(3*ETAE) )/ETAE
BFI(K)-ETA(K)*(2.OD0.-ETA(K)/ETAE)/ETAE
GI(K)-2*(l.0D0-ETA(K)/ETAE)/ETAE
XI(K)-0.ODO I
XI1(K)=0.ODO -.

BUQYC K)= . ODO
BUOYl(K)=0.OD0
SUM(K)=0.ODQ
StJMl(K)=0 .0D0
SUM2 (K) -0.ODO
PXL(K)-0. ODO
PXL (K )wQ. ODO
SF13(K)-O.ODO
YDEL (K) -BFI (K)

5 CONTINUE
10 IF(IS.EQ.ISINJI) THEN

DO 15 K-l,NP1
SF12(K)-SFI3(K)
SFI1(K)-SFI2(K) 7
SFI( K)=SFI2(K)
BFII(K)-BFI2(K)
BFI (K)=BFI2(1{)

GI1(K)G!2(K)

15 CONTINUE
ENDIF

C
C Computation of the streamwise Reynolds number.
C

POS=?OS+DZI/VISCT
20 IF(IS.EQ.1) THEN

REX(l1)-0. ODO
ELSE
REX(IS)-POS/VISCL

ENDIF
C
C Computation of the transition parameter that switches
C on the turbulence model.
C

IF(REX(IS) .LT.4.D5) THEN 0~
PRTR-0. ODO

C
C Computation of the laminar boundary layer edge
C parameters.
C

PRCF-DSQRT( 2. ODO ) -GI (1)
PRSFI-(SFI(IDEL+1)-SFI(IDEL))/DETA(IDEL)
P RB F I -(B FI( ID EL + 1-BF I (I D EL)/D ETA (I D EL
SFIID-SFI(IDEL)+PRSFI*(5.0DO-ETA(IDEL))
BFIID-BFI(IDEL)+PRBFI*(5.OD0-ETA(IDEL))
PREV--(SFIID-5.0D0*BFIID)/DSQRT(2.0D0)

7p
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ELSE
IF(REX(IS).LE.6.D5) THEN

X-REX( IS)/l.DS
PRTRl-PRTR
X-(X-4.OD)/2. ODO
PRTRw( 1.ODO+DSIN( PI*( X-0. 5D0) )) 000
PRTR-PRTR* *2
ELSE
PRTRl=PRTR
PRTR=l .ODO

ENDI F
ENDIF

C
C Computation of the boundary layer displacement thickness
C and of the boundary layer momentum thickness.
C

IF(IS.GT.2) THE14
CALL BLPR(DELSTR,TETSTR)
THBL(IS-l)=DSQRT(2*ZI(IS-1))*DELSTR/(UE*ROUL)
THMO(IS-l)=DSQRT(2*ZI(IS-1))*TETSTR/CUE*ROUL)

C
C Computation of the boundary layer shape factor.
C

SHAPE( 15-1 )=THBL( 15-1 )/THMO( IS-l)
ENDIF
PRSTl=PRST
POSCl=POSl/( UE*ROUL)
POSC=POS/( UE*ROUL)

C
*C Determination of the final station of injection taking

C into account the influence of the void fraction.

C IF(IS.GT.ISINJF).AND.(ISINJF.NE.0)) THEN

IFCPOSC.LE.PFIC) THEN
ISINJF-IS
ETAREF=ETACNPl)
ELSE

C

-C Comoutation of the position downstream from injection
CC in terms of the boundary layer thickness. ~

XDEL(IS-1)=POSEND/(ETAREF*DSQRT(2*PFI.1)/
-a >(tJE*ROUL))

ENDI F
C ENDIF

-JC

C Determination of the initial station of injection.
C

IF((PIIC.GE.POSCl).AND.(PIIC.LE.POSC)) THEN
IF(ISINJI.NE.0) GO To 30 N7
ISINJI-IS
PIIM-(ZI(IS)+ZI(IS-l) )/2.ODO
POSIN-POSI
DZIIN-DZI
VISCTI-VI SCT



PRTRI-PRTR -.
PRSTI=PRST....

NIN-N".2
c
C Storage of the converged initial injection profile ['
C to restart the computations once the final position
C of injection is determined. -

DO 25 K= ,NP...
SF13(K) SFI2(K)..

SF12(K)=SFI(K)"-,
BF12(K)-BFI(K) _.
G12(K)=GI(K)25 CONTINUE

30 ENDIF -

C

C Determination of the final station of injection.

C .

IF((PFIC.GE.POSCI).AND.(PFIC.LE.POSC)) THEN I
IF(ISINJF.NE.0) GO TO 35

ISINJF=IS
ETAREF=ETA(NPI)
PFIM-ZI(IS)+DZI/2.0D

IS-ISINJI
POS-POSIN 0
DZIC-DZIIN
VISCTF-VISCT .
VISCT=VISCTI
PRTR-PRTRI (K)

PRSTI-PRSTIN-NIN

NPI-N+I
C
C Restart of the computations from the initial position of "C injection. With the final position of injection in the

C transformed space determined, injection and the transport ,
C equation for the void fraction will be turned on.
C '

GO TO 30

35 ENDIF...

~C These commands change the boundary conditions during [[[
' C injection according to a statement of mass conservation.

IF((ZI(IS).GT.PIIM).AND.(ZI(IS).LT.PFIM)) THEN
IRPOS-(FI-IIN)/JO.ODO

PRINJ-ROUG*QG/((PFIM-PIIM)*DSQRT(2.0D0*ZI(iS))) "1
IF(ZI(IS) LE(PIIM+PRPOS)) THEN

XI()-VFI*(ZI(IS)-PIIM)/PRPOS

ELSE 4
IF(ZI(IS).GE.(PFIM-PRPOS)) THEN

XI(1)-VFI-VFI*(ZI(IS)-PFIM+PRPOS)/PRPOS .i.
ELSE :t
XI(1)-VFI ,

N-I



ENDIF
VOLBC=VOLBC+DZI*(l.0D0/(L0DO-XT(l) )+l.ODO/(1.ODO

>-XI1(l) ))/2.ODO
SFIBC--PRINJ *VOLBC

ENDI F
4. IF((ZI(IS).GE.PFIM).AND.(PFIM.NE.0.ODQ)) TFEN4

XIMl)-0.0D0
SFIBC=-VOLBC*ROUG*QG/((PFIII-PIIM)*DSQRT(2*zI(IS)))

ENDIF
C
C initialization of the void fraction profile a: the
C initial station of injection in order to satisfy th-e
C zero wall void fraction gradient condition.
C

IF(IS.EQ.ISINJI) THEN
XI(2)=XI(l)*C-E*(2.ODO+CE-)/((l.ODO+CE)**2)

ENDI F

C Correction of the cross stream wall velocity boundary
C condition.
C

40 SFICOR=SFIBC-SFI(l)

C Computation of the outer region eddy viscosity according
C to Clauser's model.
C

d IF(PPRTR.GT.0.0D0) THEN
EREF=0.0168D0*DSQRT(2.ODO*ZI(IS-l) )*DELSTR/VISCL
VISCT=VISCL*(l.ODO+EREF*PRTR)

ENDIF
C
C Turbulent flow streamwise stretching parameter.
C

PRST'=VI SCL/VI SCT
C
C Computation of the coefficient bDlock matrices.
C

CALL COEFFS (AHAT, BHAT, CHAT, DHAT, S,?, Q)
CALL '-,A(AHAT,BHAT,C'-AT,A)
CALL MB(AHAT,BHAT,DHAT,B)
CALL MC(C)
CALL MR(N, SFICCR,P,Q,S,.)

C
C Computation of the matrices used in the Lower-Upper
C decomposition of the block tridiagonal system.

C
DO 50 1-1,3

Do 45 J-1 ,3
AL( I,J, 1)=A( I,J, 1)

45 CONTINUE
50 CONTINUE

DO 100 K-2,,NP1
DO 75 1=1,2

Do 60 L-1,3

DO 55 l=1,3



= ..

DU(L,J)-AL(J,L,K-I) -
55 CONTINUE
60 CONTINUE

DO 65 J=1,3
V(J,1)-B(I,J,K)

65 CONTINUE
MS-I
NS-3
IA=3
IDGT=0"

C
C IMSL matrix solver.
C S

CALL LEQTIF(DU,MS,NS,IA,V,IDGT,WKAREA,IER)
DO 70 J=1,3

BET( I,J, K)=V(J, 1) . -.-

70 CONTINUE
75 CONTINUE

DO 80 J=1,3
BET(3,J,K)=0.ODO 0

80 CONTINUE
DO 90 I=1,2

DO 85 J=1,3
AL( I, J, K) =A( I, J,K)-BET( I,3, K)*C( 3, J,K-i)

85 CONTINUE
90 CONTINUE 0

DO 95 J=1,3
AL(3,J,K)=A(3,JK)

95 CONTINUE
100 CONTINUE

C
C The backward and forward substitutions of the Lower S
C Upper decomposition of the tridiagonal system. -.

C
CALL FORW(N,BET,R,Y)
CALL BACK(N,Y,C,AL,Z)

C
C Update of the station computations.
C

DO 110 K=,NP1 -,

SFI(K)=SFI(K)+Z(1,K)
BFI (K) =BFI (K) +Z (2, K)
GI(K)-GI(K)+Z(3,K)

110 CONTINUE
C S
C Station convergence test for the momentum equation
C based on both the wall velocity gradient correction
C and the outer edge velocity gradient.
C

IF(DABS(Z(3,i) ) .GT.EPS) THEN
ITER( IS)-ITER( IS)+1
GO TO 40
ELSE
IF(DABS(GI(NPI)).GT.EPS) THEN

C

S.-



P

C Boundary layer extension based on the zero edge
C velocity gradient condition.
C

CALL EXTEND(ETA)
NPl-N+.

C
C Update of the normed cross stream coordinate.
C

DO 120 K=2,NP1
YDEL(K)=ETA(K)/ETA(NPl)

120 CONTINUE
ITER( IS)=ITER(IS)+l
GO TO 40

ENDIF
C
C Computation of the void fraction.
C

IF((IS.GE.ISINJI).AND.(ISINJF.NE.0)) THEN
CALL VOLFRC(XI,XII,ZI)

C
C Computation of the buoyancy force field according
C to Archimedes principle. %
C %

CALL ARCHIE(XI,BUOY)

C Convergence of the iteration procedure of the whole
C system based on the convergence of the wall velocity
C gradient.
C .A'P.."

SYSCON-DABS ( SYSCON-GI (l))
IF(SYSCON.GT.EPS) THEN-.%
SYSCON=DABS(GI(1)) •
ITER( IS)-ITER( IS) +i
GO TO 40

ENDI F
ENDIF
SYSCON-0.ODO

C
C Computation of the skin friction.
C

IF(IS.NE.l) THEN-
CF(IS)-VISCL*GI(1)*DSQRT( 2.ODO/ZI(IS))

ENDIF
C
C Station advance and specification of the corresponding S
C starting solution.
C

IS-I S+l
ITER( IS)-l %.-

DO 130 K-l1 NP1 oil
SFI2(K)-SFI1(K) S
SFI1 (K )-SFI (K)
BFI1(K)-BFI( K)
GI1(K)-GI(K)
X12(K)-XI1 (K) .

V,. %

',, 'P
'P,,
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0

XI 1(K) =XI (K)
SUM2(K)=SUMl(K)

SUMi (K) =SUM (K)
BUQYl (K) =BUOY (K)

C130 CONTINUE 
N.

C Computation of the boundary layer mass flowrate.
C

IF((IS.GT.ISINJI).AND.(ISINJF.NE.0)) THEN I
PRQBL=0. ODO
DO 135 K=2,NP1

CK=(l.ODO-XI(K) )*BFI(K)

PRQBL=PRQBL+( CK+CKl )*DETA( K)
135 CONTINUE

QBL( IS-I )=PRQBL*DSQRT(ZI (IS-i )/2. ODO)
ENDIF

C
C The end of the computations is commanded at 30 boundary
C layer thicknesses downstream from injection.
C

IF(((IS-l).GT.ISINJF).AND.(ISINJF.NE.O)) THEN
POSEND=POSEND+DZI/( UE*ROUL*VISCTF)

ENDIF
IF(XDEL(IS-2).GT.30.ODO) GO TO 150

C
C Update of the streamwise stepsize during transition.
C

IF(CPRTR.GT.0.0D0).AND.(PRTR.LT.1.ODO)) THEN
DZIT=DZIC* (1.ODO-0.5*EREF*PRST*PRTR)
ELSE
IF(PRTR.EQ.0.ODO) THEN
DZI=DZIC
ELSE
DZI=DZIC*( 1.ODO+0.8*EREF)

ENDIF
ENDI F

C
C Update of the streamwise stepsize during injection.
C

IF((ISINJI.NE.0).AND.(:SIN4JF.NE.O)) THEN
DZI-DZI/4.ODO

ENDIF
IF(IS.GE.(ISINJF+20)) THEN
DZI-4*DZI

ENDI F
ZI(IS)-ZI(Is-l)+D zT

C
C Printing statements.
C

LP-IS-ISINJF-1
IF(MOD(DFLA(?),>-.O:O..E :)C' TEN

Li-31+LP/15
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L2=5l+LP/15
L3=7l+LP/15
L4=91+LP/15

WRITE(21,*) XDEL(IS-2)
C
C Computation of the velocity profile in inner variables.
C

DO 140 K=2,NPl
UPLUS (K) =BFI (K )/USTAR
YTRANS=DLOG(YPLUS(K) )/STRFAC
WRITE(L4,*) YTRANS,UPLUS(K)

140 CONTINUE
DO 145 K=1,NPl

VEL=UE*BFI (K)
VELGRD=ROUL*(UE**2)*GI(K)/DSQRT(2*ZI(IS-1l)) J
WRITE(Ll,*) VEL,YDEL(K)
WRITE(L2,*) VELGRD,YDEL(K)
WRITECL3,*) XI(K) ,YDEL(K)

145 CONTINUE
ENDI F

ENDIF
V 50 GO TO 15

10 ISEND=IS-3
DO 155 K=2,ISEND

REXLOG=DLOG( REX( K) )/STRFAC
C r
C Computation of the boundary layer thickness and momentum
C thickness Reynolds numbers.
C

FRICK=1000*CF(K)
RBL=ROUL*UE*THBL( K)/VISCLeJ
RMO=ROUL*UE*THMO( K)/VISCL
RBLLOG=DLOG(CRBL )/STRFAC
RMOLOG=DLOG (RMO )/STRFAC
WRITE(120,*) REXLOG,FRICK

* WRITE(121,*) REXLOG,RBLLOG
N WRITE(122,*) REXLOG,RMOLOG '

WRITE(123,*) REXLOG,SHAPE(K)
IF(K.GE.ISINJF) THEN
QRATIO=ROUG*QG/QBL( K)
WRITE(124,*) XDEL(K) ,QRATIO .

ENDIF
155 CONTINUE

ENDI F
STOP
END
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• SUBROUTINES *.'<

C Subroutine FORW performs the forward substitution of
C the Lower-Upper decomposition of the block tridiagonal

C system. ,
,,'W

V. %

*o "." 0"9

SUBROUTINE FORW(N BET,R,Y)

IMPLICIT REAL*8 (A-H,O-Z)...
DIMENSION Y(3,101) ,R(3,101) ,BET(3,3,101) :?.

NPl-N+I
DO 10 J-1,3

Y(J,I)-R(J,I) .10CONTINUE
DO 40 K-2,NP!DO 30 1-1,2

BI-0.0D0.

DO 20 J=!,3 _
BI=BI+BET(!, J, K)*Y(J, K-i ) ' ,

20 CONT INUE
Y( I, K ) R( IIK)-BI l.-'

30 CONTINUE"' "

Y(3,K)-R(3,K) .
40 CONTINUE

RETURN ).

C -

C Subroutine BACK performs the backward substitution of
C the Lower-Upper decomposition of the block tridiagonal.
C system.

C

SUBROUTINE BACK(N,Y,C,AL,Z)



NilN

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AL(3,3,101),C(3,3,101),Z(3,101) ,Y(3,101)
DIMENSION WKAREA( 10) ,VC 3,1) ,DU( 3,3)
NP 1= Ni-
DO 5 1=1,3

V(1,1 )=Y( I,NPl)
5 CONTINUE

DO 15 I=1,3 .*.

DO 10 3=1,3
DU(1,3) =AL (1,3,NPl)

10 CONTINUE
15 CONTINUE

MS-i
NS =3
IA-3
IDGT=0

C
C IMSL matrix solver.
C

CALL LEQTIF(DU,MS,NqS,IA,V,IDGT,WKAREA, IER)
Do 20 I=1,3

Z (I, NP ) =V( 1,1)
20 CONTINUE

DO 50 K=1,N

* B1=0. ODO
DO 25 J=2,30

B1=B1+C (3,3, NP1-K) *Z(3, NP1+1-K)
25 CONTINUE

Y( 3,NP1-K)=Y(3,NP1-K)-B1
DO 30 1=1,3

V(I,1)=Y( I,NP1-K)
30 CONTINUE

DO 40 I=1,3
DO 35 3=1,3

DU( I,J)-AL(I,J,NP1-K)
35 CONTINUE V
40 CONTINUE

MS=1 l A

NS=3
IA-3
IDGT=0

C
C IMSL matrix solver.
C

CALL LEQT1F(DU,MS,NS, IA,V, IDGT,-WKAREA, IER)
DO 45 1=1,3

Z( I,NPl-K )=V( 1,1)
45 CONTINUE
50 CONTINUE

RETURN
END0
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C SUBROUTINE COEFFS(comptes TCHthe ents o te atics

SUBROUTINE COEF(AHATHTATCHATHATAT01,PQ) BI(01

DIMENSION PC 101) ,Q( 101) ,T( 101) ,S (101) ,CHAT( 101)
DIMENSION SF1l(1Q1),BFI1(l0l),GIl(10l) ,SFI2(l0l)
DIMENSION XI(l0l),XIl(l0l),PXL(l0l),PXLl(1Ol),BUCY(1Ol)
DIMENSION SFI(10l),BUOYl(10l),DETA(l0l),ALFA(l000)
COMMON/BLKl/DETA,CE,.N
COMMON/BLK2/ALFA, IS
COMMON/BLK3/SFI ,BFI ,GI
COMMON/BLK4/SFI 1, BFI 1, GI1
COMMON/BLKS/PRTR, PRTR1 ,PRST, PRSTl 1h
COMMON/BLK6/XI ,XI1
COMMON/BLK8/PXL, PXLl
COMMON/BLK14/BUOY, BUOY I
NP1-N+l
AI=ALFA( IS)

C
C Computation of the mixing length based on the
C latest station update.
C i

IF(PRTR.GT.0.ODO) THEN
CALL MIXLEN(IREF,PRTR)

ENDI F
DO 10 K=2,NP1

C
C Influence coefficient of the inner eddy viscosity.
C

IF(PRTR.GT.0.ODO) THEN
IF((K-1).LE.IREF) THEN

PINFl-2 .ODO :
PINF1=1 .ODO

ENDI F
IF(K.LE.IREF) THEN

PINF-2 . ODO
ELSE *

PINF-1 .ODO
ENDI F

ENDI F
DE-DETA (K)
ASF-(SFI(K)+SFI(K-1))/2.ODO
ASFI-(SFII(K)+SFII(K-1))/2.0D0
ABF-( BFI( K) *BFI( K-i) )/2. ODO
ABF1-(BF11(K)+BFI1(K-1))/2.ODO

%
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AG-(GI(K)+GI(K-1))/2.ODO
AG1=(GI1(K)+GI1(K-1))/2.ODO
AX-(XI(K)+XI(K-1))/2.ODO
AX1=(Xll(K)+XI1(K-1))/2.0D0
AXD=XI (K) -XI (K-i)
AX1D=XI1 (K) -Xli (K-i)
PVFi . ODO-(AX+AXi )/2 .ODO
PVK=1. ODO+( 0 .9+2 .6*XI( K) )*XI( K)
PVKi-i.0D0+(0.9+2.6*XI(K-i))*XI(K-1)
PVIK-i.ODO+(O.9+2.6*Xi(K))*XIi(K)

PLKG-i. ODO+C PINF/(1. ODO-XI( K) ) )*PXL( K)
PLKG1=i.0D0+(PINFi/(i.0D0-XI(K-i)))*PXL(K-i)
PLK=1. ODO+(1. ODO/(1. ODO-XI( K) )) *PXL( K)

PLlK=L ODO+(1. ODO/(1. ODO-XI1( K) ) )*PXLi( K)

P(K)--SFI(K)+DE*ABF+SFI(K-1)
Q(K)--BFI(K)+DE*AG+BFI(K-i)
AHAT( K) -DE*PVF*AI *ABF
BHAT(K)-..DE*PVF*(AG+AI*(AG+AGI))/2.ODO
CHAT(K)=-PVF*DE*(ASF-AI*(ASFi-ASF))/2.0DO-PRST*

>(AX+( I.OD0-AX)*PLKG)*PVK
DHAT(K)--PVF*DE*(ASF-AI*(ASFi-ASF))/2.ODO+PRSTi*

>(AXi+(i.0DO-AXi)*PLKG)*PVKJ
Si=DE*(AI*(ABF**2-ABFI**2+AG*ASFI-ASF*AGi)-(i.0DO+AI)*

>ASF*AG.( 1. ODO-A ) *AGi*ASF1)
S2-AX*PRST*(PVK*GICK)-PVK1*GI(K-1))+

>AX1*PRSTi*(PVlK*GI1(K)-PV1Ki*GI1(K-1))
S3=(l.0D0..AX)*(PVK*PLK*GI(K)-PVK1*PLK1*GI(K-i))*

>FRST+(l.0D0-AXI)*(PViK*PLiK*GI1(K)-PV1Ki*PLIKi*GI1(K-1))
> *PRST1

C
C Computation of the buoyancy generated source term

dC of the momentum equation.
C

S4=DE*(BUOY(K)+BUOYCK-i)+BUCYi(K)+BUOYI(K-i))/2.ODO
S( K)--Si*PVF+S2+S3+S4

10 CONTINUE
RETURN
EN D

C
*C Subroutine MA computes the matrix [A] of the discretized
*C momentum equation.

C

-T 
-
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SUBROUTINE MA(AHAT,BHAT,CHAT,A)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION DETAC1O1),A(3,3,101)
DIMENSION AHAT(101),CHAT(101),BHAT(101)
COMMON/BLK1/DETA, CE, N
NPl-N+1 A
A(12, 1,1 )=1. ODO
A( 2,2,1 )=1. ODO
AC 3,2,2.)=- . ODO
A( 3,3,1 )=-DETA( 2)/2 .ODO
A(1,2,1)=0.ODO
AC 2,1,1)=0. ODO
A( 2,3,1 )= . ODO
A( 1,3,1 )=0. ODO
AC 3,1,1 )= . ODO
DO 10 K=2,N

AC 1,1, K )=1. OD
AC 1,2, K)--DETA( K)/2.ODO
AC 2,1, K) =BHAT( K)
A( 2,2, K) =AHAT( K)
AC 2,3, K) -CHAT( K)
A( 3,1, K )=0.ODO
AC 3 ,2 ,K) --1 .ODO
A( 3,3, K) =-DETAC K+1 )/2 .ODO
A( 1,3, K)=O. ODO

10 CONTINUE
AC 1,1 ,NP1 )=1 .ODO
AC 1,2 ,NP1 )=-DETAC NP1 )/2 .ODO
AC 1,3, NP1 )=0. ODO
A( 2,1 ,NP1)-BHAT(NP1)
AC 2,2, NP1 )=AHAT(CNP1)
A( 2,3, NP1 )=CHATC NP1)
AC 3,1 ,NP1)-0 . ODO
A( 3,2 ,NP1 )= . ODO
AC 3,3 ,NP1 )=0. ODO
RETURN
END

C
C Subroutine MB computes the matrix [B] of the discretized
C momentum equation.
C

SUBROUTINE MB(AHAT,BHAT,DHAT,B)
IMPLICIT REAL*8 CA-H,O-z)
DIMENSION B(3,3,101),DETA(1JI)
DIMENSION AHAT(101),BHAT(101),DHAT(101)
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COMMON/BLK1/DETA, CE, N
NP1=N+l
DO 10 K=2,NP1

B (1,1, K) =-1 ODO
B(1,2,K)=-DETA(K)/2.0D0
B(1,3,K)0O.ODO

2 B(2,1,K)=BHAT(K)
B(2,2,K)=AHAT(K)
B(2,3,K)=DHAT(K)
B (3,1, K)=0. ODO
B( 3,2 ,K)=0.ODO
B( 3, 3,K)=0.0D0

10 CON4TINUE
RETURN
END

CI
C Surouine C cmputs te marix[C) f te dicreize

C

C SUBROUTINE MC comue h arxI) ftedsrtzc
CMLII momentu equation.

SUBROUTINE MC(C

DIMENSION C(3,3,101),DET(101V C(3,1,K)=0.ODO
C(3,2,K)=1.ODO
C (3,3, K) =-.DT( 1)/ D
C(1,1,K)=0.ODO

a C(1,2,K)=0.ODO

C(2,3,K)=0.ODO
10 CONTINUE

RETURN
END

C
C Subroutine MR computes the vector [4)J, the source term
C of the discretized momentum equation.



- --- wrwv

SUBROTINEMR(NSFICRP,,SR

IMPLICIT~.. REL* A-,'

DIMESIO R(,101,P(01)Q(10),S100
NP1=Nal

SROUT)=IE RNFCRpQS)

DIMENSION (3,),(0))Q11 S11

R( 1, )=FICO
RC 2,)= ODO
R( 3,)=Q(Kl )k C-

D0 ON10INUE

R( 1,P)=P(NK)

R( 2,NP1 )=S(NPl) 0
R( 3,NP1)=0.0D0
RETURN
END

C
C Subroutine EXTEND performs the extension of the -

C computational domain when necessary.
C

1..-

SUBROUTINE EXTEND(ETA)
IMPLICIT REAL*8(A.-H,O-Z) 0.
DIMENSION DETA(101) ,SFI(101) ,BFI(101) ,GI(101)
DIMENSION SFI1(101) ,BFI1(101) ,XI(101) ,XI1(101)
DIMENSION PXL(101),PXL1(101),ETA(101),SUM(101)
DIMENSION X12(101),BUOY(101),BUOY1(101)
DIMENSION GI1(101),SUM2(101),SUM1(1J.)
COMMON/BLK1/DETA,CE, N
COMMON/BLK3/SFI ,BFI ,GI a

COMMON/BLK4/SFI1 ,BFI1 ,GI1
COMMON/BLKG/XI ,XI1
COMMON/BLK8/PXL, PXL1
COMMON/BLK11/SUM, SUM , SUM2 a

COMMON/BLK13/SFI2 ,X12
COMMON/BLK1 4/BUOY, BUOY1
NRE F-N
N-N+2
NP1-N+1
NMI-N-1

Ji-L9



watriYWA.c

DO 10 J=NN.

DETAJ)=DTA(J1)*C

ETA(J =ETA(-I)+DTA(J

PXL(J)=PXL(J-1

DO 1 3=NOl

ETA(3 =(ETA(-J)-ETA(RE))(TNl-EARF)

PXFl C ) =PL1 (J-1)DEAJ*BI J) F1J- )/ . O

XlI ( )=XI J1+EAJ*BIJ+FI(l)1 )/2...,.
X12(J)=SF2(J-)+DT()*BIJ+BIJ1)/ .D

SU(J)=0.0D0

SUI(3) =0. ODO

10 CONTINUE
DOE20URNMNl

SEND EAJ-TANE)/EANP)EANE)

~ G~ typ expresso.

* C

C SUBROUTINE MIXLEN(Icomptstewalfncino
IMLII tetrle odl hrug mdiie Vn ris

C IESO tyeepssion.(01,FI10)BF(1
CI E S O 0I1 1 ,T (0 )X (01 ,I (0 )Z (0 0

DIMELICITN REAL*8(A.1),ETAZ

COMMON/BLKl/DETA,CE, N
COMMON/BLK2/ALFA, IS
COMMON/BLK3/SFI ,BFI ,GI
COMMON/BLK4/SF11,BFI1 ,GIl
COMMON/BLK6/XI ,XIl
COMMON/BLK7/ZI ,ETA
COMMON/BLK8/PXL, PXLl
COMMON/BLK9/ISINJI ,EREF,VISCL,VISCT -



COMMON/BLK12/YPLUS ,USTAR
NP1=N+l
DZI=ZI (IS )-ZI (IS-1)
DO 5 K-2,NPl

PXLJ. CK) PXL(CK)
5 CONTINUE

PRZI=DSQRT(2*ZI( IS))
USTAR=DSQRT(DABS(GI(l))*VISCL/PRZI)
VWALL=-VISCT*( SFI( 1) +2*ZI( IS) *( SFI(1) -SFI1(l) )/DZI )/PRZI

c
C wall function injection modification.
c

IF( IS .LE. ISINJI) THEN
ZETA=0.5D0
ELSE
ZETA=l .S 5D,

ENDI F
APLUS='26.0D0/( : ODO+5. 9*VWALL/USTAR)
DO 20 K=2,NPl

RAl=( l.QDO-XI( K) )/(1. 0D0-XI(1))
RA2=(l.ODO+(0.9+2.6*XI(K) )*XI(K) )/

RA3=(1. ODO-XI( K) )/(l. 0D0+( 0. +2 . *XI( K)) *XI(K))
YPLUS(K)=ETA(K)*DSQRT(PRZI*RAl*RA3*DABSCGI(lfl/

>(VISCL*RA2))
POWER=-YPLUS( K)* ( (( RA2/RAl) *DABS (GI( K)/GI(l) ) )**

>ZETA)/APLUS
EII=0.4l*ETA(K)*(l.0D0-DEXPCPOWER))
PXL(K)=PRZI*DABSCGI(K) )*(EII**2)/VISCL

20 CONTINUE
EOI=EREF
DO 25 K=2,NPl

IF(PXL(K).LT.EOI) THEN
IREF=K
ELSE
GO TO 30

ENDI F
25 CONTINUE
30 IREFPl-IREF+l

* DO 40 K-IREFPl,N*,P1
* PXL( K)=EOI

40 CONTINUE
C
C Modification of the mixing length during
C transition.
C

IF( PRTR.LT.1 .ODO) THEN
Do 50 K-2,NPl

PXL(K)-PRTR*PXL(K)
so CONTINUE

ENDIF
RETURN
END

-~~~~1 -. *V*v.i-
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S.u ru ie.,Rcmuesbud r ay ritga

C paameersthebounarylaye diplacmen

C thcknss nd te mmenum tickess

C,.

SURUIEBP(DLTESR

IM LI I RE L 8( -,5

DIMESIONETA 101)DET (101 ,7-I100 ),XI101
DIMESIO SFI101 ,BF (101 ,GI101)XI1101

COMMO/BLX/DETCE,

COMNBK/SIBIG

SBOTBL(DELSTR ,TETSTR

DIMENSION ETA(lKl),DETA0l),ZIBOO0),I(1
DIMENSION FI( 101) ,F(11 G(11 X~(11

COMMN/B K DESTR+A CE, NA(

55** ~ 1 COMNBNUE IBF,

DELSTR=0 DLT/.D
TETSTR-TETS./ODO D
DOE1TURN NP

END-

AKC1 D-I() 1 D-~I()

10 UCNTIUTIE OFCXI Z)

RETURN RAL8A-,OZ
% ~ ~ ~ ~ EDMNINDT(0)X(0)Xl11,LA10)G11

% I E S O F ( 0 ), F ( 0 ) G ( 0)1F 1 1 1 , F 1 1 1

DIE S O F 2 11 ,X 2 l l ,1(0 0

SUBROUNE VOL3/FRCXIXlI



EPS=1. OD-5
NPl-N+l
BI=ZI ( IS)
DZI=ZI (IS )-ZI (IS-i)
DZI1NZI (IS-i )-ZI ( 1-2)
DE=DZ I/DZ Ii

C0
C Computation of the first node of the void
C fraction profile after injection.
C.

IF(IS.GT.ISINJF) THEN
FRI=( 2*DE+ . ODO )/(1. ODO+DE)
PRIl=-(1. ODO+DE)
PR12=(DE**2)/( l.ODO+DE)
DIR=2*BI*DETA(2)*BFI(2)*(PRI1*Xll(2)+PRI2*XI2(2))
COEFl=PRI*SFI(2)+PRIl*SFIl(2)+PRI2*SF12(2)
ESQ=2*BI*DETA( 2) *BFI (2) *PRI-DZI*SFI (2 )-2*BI*COEFl
XI (2) =DIR/ESQ

ENDI F

C Computation of the void fraction profile.
C

5 DO 10 K=3,NPl
BIK=2*DETA( K) *BI*BFI (K)
CIK=DZI*(1. ODO+DE) *SFI (K)+2*BI*( SFI2(K) *DE**2-

>SFIl(K)*(i.ODO+DE)**2+(2*DE+1..ODO)*SFI(K))
COEFl=CIK/( (l.0D0+2*DE)*BIK-CIK)
COEF2=BIK/( (l.0D0+2*DE)*BIK-CIK)
XI(K)=-COEFl*XI(K-l )-COEF2*

>(X12(K)*DE**2-XI1(K)*(l.0DO+DE)**2)
10 CONTINUE

C0
C Convergence procedure of the void fraction profile
C based on the zero wall void fraction gradient.

L C
IF(IS.LE.ISINJF) THEN

PRXI1=-(2.ODO+CE)/(DETA(2)*(CE+1.ODO))
PRX12=(1. ODO+CE)/DETA( 3)
PRX13=-.O.D/DETA(3)*(l.OD0+CE))
XIWGRD=XI (1) *PRxI+XI (2) *PRxI2+xI (3) *PRxI3
IF(DABS(XIWGRD).GT.EPS) THEN
XI(2)=(XI(l)*CE*(2.ODO+CE)+XI(3))/((l.ODO+CE)**2)
GO To 5

ENDIF
ENDI F
RETURN
END

C
C Subroutine ARCHIE computes the source term of the
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C moentm euatin de t thebuoanc fore fiel

C codn oAchmdspicpe

C~

SUBROTINEARCHE(XIBUOY

IMPLCIT EAL*(A-HO'p

DIMESIONSUM101)SUM(101,--TA(II),LFA(OCb
DIMESIO ZI(000,ETA101,XI(01)BUOY101

DIME SION XI1(01),UM2(01'

SUMNBROTINE RHIEXIBUOY)

COMMON/BLK11/ETA,CE ,S

COMMON/BLK7,ZI ,ETA)

DZI-ZI (IS )-Z(IS-

DE-DZ I/DZ Ii
RAX-2*ZI (IS )/DZI
FAC1=( 2*DE+l .ODO )/( 1. D0+DE)
FAC2=-(1. ODO+DE)-
FAC3=(DE**2)/( i.ODO+DE)
FAC4=( 2*CE+i .000)/(l. 0D0+CE)
FACS=- (1.ODO+CE)
FAC6 ( CE *2 )/(1. ODO+CE)
DO 10 K-i,N

SU ( + - ) S M N - ) D T (I-K * X ( + - )
>XI(N+2-K) )/2.000

10 CONTINUE
DISTX=DSQRT(2*ZI(IS) )
FACTOR-DISTX*GRAV/(ROUL*~(UE**3))
BUOY(1)-FACTOR*(SUM(1)+RAX*(SUM(l)*FAC1+SUM1(i)*FACt-
>SUM2(i)*FAC3))
TERM1-SUM(2)-SUM(1)
TERM2-SUM(2)*FAC1+SUM1(2)*FAC2+SUM2(2)*FAC3

N." BUOY(2)-FACTOR*(SUM(2),+RAX*TERM2-TERMl)
DO 20 K-3,NP1

RAY-ETA( K)/DETA( K)
TERMl-SUM(K)*FAC4+SUM(K-i)*FAC5+SUM(K-2)*FAC6
TERM2-SUM (K) *FACi-tSUM1 (K) *AFC2+SUM2 (K) *FAC3
BUOY( K) =SUM( K) +RAX*TERM2-RAY*TERM1
BUOY(K )-BUOY( K) *FACTOR

20 CONTINUE
'p RETURN

END t
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