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| /\ ABSTRACT 

The   first Born approximation is   an effective method for the 

prediction of scattering  from rough  interfaces.    This  calculation 

arises   from retaining only the  first  term in  the Neumann series 

of  the   solution of an  inhomogeneous   integral  equation of  the sec- 

ond kind.     This method yields  adequate  results  for some geometries 

and frequencies.     However,   it cannot  account   for the multiple 

scattering which  is expected to occur  at low grazing  angles  for 

sufficiently rough and  appropriately   spaced rough surfaces.     The 

reason  for this   is that multiple scattering  is not included in 

the mathematics  of the  first Born approximation.    However,   second 

and higher order  terms  do allow for   secondary,   tertiary,  etc., 

scattering and  should prove to be a good predictive tool for low 

grazing  angles   for some  geometries and all grazing angles  for 

other  cases.     In the study presented  here,  we  develop a technique 

for calculating higher order Born terms iteratively by a numeric- 

ally efficient method.     The formulation is then used to study the 

effects  of  scattering  from rough  interfaces  for a variety of  in- 

teresting cases   for the  first  two Born terms. 

INTRODUCTION 

i The  rigorous mathematical  study  of acoustic scattering  from 

rough  surfaces  dates as   far back as  J.  W.  S.   Rayleigh   [1].     Much 

of  the  early work was  concerned with   the description of  the  acous- 

tic  field after  a primary   (single)   scattering  event  from a  slight- 

ly rough  surface.    An iterative procedure whereby a reasonable 

first  guess  for  the pressure on the   surface   is used  to calculate 

the  scattered  field which  is  in turn  used as   the second guess  to 

calculate an improved  scattered field,   etc.,   is a well-known   [2] 

lengthy  process   that converges  to the  correct  answer.     More re- 

cently,   researchers have been concentrating on the more difficult 
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problem of multiple scattering from rough surfaces   [3,4,5].     In 
this paper we expand on our earlier  studies   [6,7]  of  using higher 
order Born   (also known as Neumann)   approximations to account for 
sequential  scattering  from rough surfaces.     By judicious formula- 
tion,   as opposed to brute force techniques,   this sequential pro- 
cedure  can be used efficiently to account for secondary scatter- 
ing.     In Section  1,  the theoretical development of the higher 
order Born approximations are given with emphasis on the formulism 
used in  the actual applications.     Section 2 presents   some numeri- 
cal  examples of  the first and second Born approximations,  and Sec- 
tion  3  discusses  the impact of  these  results  and future work. 

1.    THEORY 

For an acoustic wave of frequency w and sound speed c, the 

spatial part of the wave equation reduces to the Helmholtz equa- 

tion 

(V2 + k2)P = 0 (1) 

where k = u/c, and P is the total pressure.  The value of the 

field at some observation point in space due to the sound source 

and the field scattered from an adjacent surface can be obtained 

from Kirchhoff's Integral Theorem [8], i.e., for a sufficiently 

well-behaved function, the value of the field at the observation 

point in space can be expressed as an integral involving the 

function and its normal derivative evaluated on the surface en- 

closing the observation point.  In practice, the enclosing surface 

of integration is taken as the scattering surface of interest plus 

a hemisphere at infinity.  Integration over the hemisphere at in- 

finity is assumed to give zero contribution.  An additional small 

sphere encloses the source so that integration over the enclosed 

source does not produce a discontinuity; integration over this 

small sphere gives the contribution of the direct arrival from the 

source.  Thus, only the integral over the scattering surface is 

required to obtain the scattered field. 

In terms of the Green's function, G, the Helmholtz-Kirchhoff 

integral representation of the field is 

P = Pi +   (PpVG - GVPr)'dS (2) 

where  r  =  r(x/y)   is the  surface  from which the  scattering occurs. 
The Green's  function is  defined by the equation 
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(V2  + k2)G  =   6(R) (3) 

P. is the incident field, and Pp is the field at the scattering 

surface. We will assume in this paper (for illustrative purposes) 

that P. is from a point source with a Gaussian "character," and 

is given by 

Pi = Do exp[-(x
2/(2o2)) - (y2/(2o2))] 

x expUKgMRg + r)]/|Rs + r| (4) 

2     2 
where Ke is the propagation vector from the source, a and o are 

s ^   y 
the variances, and D is a constant. 

o 
The outgoing Green's function is 

G= (1/41T) exp[iKR'(RR - rn/JRj^ - r| (5) 

and the surface scattering element is dS = n dS, where the unit 

normal n is 

n = V(C - z)/|VU - z)| 

=   (i3^/3x  + j3C/3y - k)/[{3C/8x)2  +   OC/3y)2 +  1]1/2        (6) 

In terms of the  rough surface parameter,   C =  ?(X,Y), 

dS =   [(95/3x)2 +   (3C/3y)2 + 1]   dx dy (7) 

Thus,   to what might be termed first order, 

pi15 = P(1) - P. =  (P.VG - GVP.)«dS (8) 
b 1      J      1 1 

where the field and its normal derivative at the surface have 

been assumed to be given by the familiar Kirchhoff approximations 

[2], Pr = RP., and VP -dS = -RVP.'dS.  Here, R is the plane wave 

reflection coefficient. Again, for illustrative purposes, R has 

been taken as unity (i.e., the surface chosen to illustrate the 

technique has R = 1).  In principle, the properties of the medium 

below the surface could be represented by this reflection coeffi- 

cient. 

When some assumption (i.e., some approximation) is made about 

the field at the surface, as has been done in Eq. (8), the result- 

ing integral equation is sometimes commonly referred to as the 

Born approximation (if the integral is over a volume) or the 

Kirchhoff approximation (if the integral is over a surface) [2]. 

For historical reasons, we elect to refer to Eq. (8) as the first 
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order Born approximation although  it  is  a  surface  integral.     Eq. 

(8)   may be written in the  form, 

P*1'   =   J  P.GT'n dx dy (9) 

where 

n = iar/^x + j3r/3y - k (10) 

r = i(Ks - KR) + (1^ - r)/|RR - r|
2 

- (Rs + r)/|Rs + r|
2 - ix/o2 - jy/a2 (11) 

In actual applications, Eq. (9) is more conveniently written in 

the following form: 

P^15 = a J By dx dy (12) 

where 

a  =   Do  exp[iK(Rs  +  RR)]/4TrRsRR (13) 

3  = exp[-(x2/(2o2))   -   (y2/(2a2))] 
x y 

x   exp[iK(Ax + By  - CC(x,y) ) ]/[U(x,y)V(x,y)]1/2 (14) 

Y  =   [iKA  +   {sin eR sin * /(RRU(x,y))1 

+   {sin   's  sin *s/(RsV(x,y))} -  x/(R2U(x,y)) 

- x/(R2V(x,y))   -   x/a2]35/3x +   [iKB 

+   {sin  0E cos  (|)R/(RRU(x,y)) I 

+   {sin  es cos  (t)s/(RsV(x,y) ) }   - y/(R2U(x,y)) 

- y/(R2V(x,y))   - y/o2]9C/3y 
ö y 

+ [iKC + {cos 6R/(RRU(x,y))} + {cos Bg/(RsV(x,y)) 1 

+ ry(R2u(x,y)) + C/(RgV(x,y))] (15) 

and 

A = sin e„ sin ^ - sin 9_ sin (}>,, (16) 

B = sin 8  cos ^    -  sin 6 cos $ (17) 

C = cos 6^ + cos eD (18) 

A successive application of the above technique produces 

what we call the second order Born approximation: 

..jt 
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,(2) (Pr1)v
r.

G - GVrlp{1)).ds (19) 

where 

,(1) (P<0)V  G 
r       r o 

GoVrP<0))-dS (20) 

Go =   (1/4IT)   expdK'Mr"   - T)]/\r'   - r| 

G =   (1/4II)  expLiKjj-d^ - r')]/]^ - r' 

(21) 

(22) 

and Pp       =  Pp     (Rg,r) ,  where r is on the  surface.     K"   is the ref- 

erence wave vector  that propagates  the  scattered  field from the 

first scattering area  increment,   dS,   to the  second  scattering  area 

increment,   dS'.     In  the case of deterministic  surfaces,   the applic- 

able range of  integration in the  secondary scattering calculation 

can be  found from a  straightforward application of  ray tracing. 

This has the added advantage of  including some  shadowing in the 

technique.      (Depending upon the  rough surface,   shadowing can be 

an  important and often neglected mechanism   [3].) 

Eq.   (19)   may be written as: 

.(2) P.(0)GG y'Ü'n'  dx'   dy"   dx dy 
i o 

(23) 

where 

y>   =  r'-n' (24) 

P  =  i(K'  - Ks)   +  (r'   - rj/lr'   - r1 

(Rs + r)/|Rs + r| 
2 2 

ix/ov - jy/o (25) 

and 

-i(KR + K')   +   (RR ■•)/|RR 
..|2 

+ n'/lr'   -  r      +   (r'  - r)/|r, (26) 

In actual applications,   the second order Born approximation is 

more conveniently written  in the following  form: 

,(2) C'-y 'ü-n'  dx'  dy'   dx dy (27) 

where 

Do  exp[iK(Rs  +  RR)]/((4TI)
Z

RSRR) (28) 

(3'  = exp[-(x2/(2a^))   -   (y2/(2ay))]   expliKU'x + B'y - C,C(x,y) 

+ E'x*   + F'y'   + H,Ux,,y,)}]/[U(x,,y,)V(x,y)R0]1/2   (29) 

^>r 
-    »  . ■' -  ,   .       .    .iV v ■■■  •   ■-''■'«•HiNOI.-V-*. 
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R^ =   (x'   - x)2 +   (y1   - y)2 +   (CCxSy')   -  C(x,y)) 

and 

(30) 

A'   =  sin  es   sin $„ >   x'/r1 (31) 

B'  =  sin  9     cos $„  - y'/r' (32) 

C  = cos  es  -  UxVyM/r' (33) 

E'   = x'/r'   -  sin  eR sin <))R (34) 

F'   = y'/r'   -  sin  eD cos  (|i_ (35) 

H'   =  C(x',y')/r'   - cos  eR (36) 

Y'  =   [iK(sin  es  sin ^ -   (x1   - x)/Ro) 

+  sin  es   sin ())s/(RsV(x,y))   +   (x'   -  x)/R2 

- x/(R2V(x,y))   - x/(a2)]3C/3x 

+   [iK(sin  es cos (fig  -   (y'   - y)/R0) 

+  sin  es  cos (})s/(RsV(s,y))   +   (y'   -  y)/Ro 

- y/(R2V{x,y))   - y/(a2)]H/3y 

+  iK(cos  es - C/r)   + cos  es/(RsV{x,y)) 

- (z'   -  z)/R2 +  z/(R2V(x,y)) (37) 

V(x,y)   =   (sin  es  sin ^ - x/Rg)     +   (sin  8g cos *s - y/Rg)2 

+   (cos  Sg - C/Rg)2 (38) 

ü'n'   =   [-iK(sin e_  sin it>n +  (x'   - x)/R  ) 
K K O 

+ sin  eR sin ())R/(RRU(x, ,y')) 

+ (x'   -  x)/R„ - x'/{R2U{x,,y'))]3c(x'.y'j/ax' 

+ [-iK(sin eR cos 4)R +   (y1   -  y)/R0) 

+ sin  eR cos ())R/(RRU(x',y')) 

+ (y'   - y)/R2 = y,/(RRU(x',y'))]9C(x,,y,)/3y' 

+ iK(cos  eR -   (C(x',y,)   -  ^(x^))^2) 

- cos  eR/(RRU(x',y'))   +   (Ux'^') 

+ (C(x',y')   - Ux,y))/R2 (39) 

U(xl,y')   =   (sin 9R sin ^R - x'/Rp)2 

2 
+   (sin eR cos (t)R - y'/Rj^) 

+   (cos  eR -  Ux',y')/RR)2 (40) 
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The  second order Born approximation,  as outlined above,  can 

be used  to account for  a  second scattering event  from an adjacent 

area of  the rough surface.     This procedure can be continued to 

obtain even higher orders  of multiple  scattering   (i.e.,   a third 

scattering event,   fourth  scattering event,   etc.).     In general 

Ps  =P<1)   +P<2)   +   ..•   +P<N)   +   ..- (41) 

where 

p(N)   =  j    (p(N-l)VG  _  Gvpm-D).^ (42) 

and G is the appropriate Green's function.     However,   in actual 

applications where it  is desirable to include  the effects of mul- 

tiple  scattering,   the  second order Born approximation has been 

found to be sufficient,   i.e.,   further higher orders  are  usually 

not needed. 

2.     NUMERICAL   EXAMPLES 

A numerical example was  selected to illustrate  the  use of the 

second order Born approximation and  its ability to account  for 

secondary scatter.     Therefore,   in the example  that  follows,   no 

attempt was made  to rigorously enforce  the  Kirchhoff  approximation 

criterion for deterministic  surfaces   [9,10],   namely, 

2k|R   lsin39     >>   1 (43) 1   c1 g 

where  R    is the  radius  of  curvature of the  surface,   0     is the c g 
local grazing  angle of  the  incident  field,   and k  is  the  acoustic 
wavenumber. 

A  large  scale rough  surface was  simulated by a  rigid   (hard) 
sinusoidally corrugated  surface given by the equation  C  = 
(A)sin (27TX/X) ,   where A and  X  are surface parameters   (in meters). 

This rough surface was ensonified by a low frequency   (100-200 Hz) 
Gaussian-like beam with variances a    =  2,   o     =  2,   and  D    = 100. 
The distance  from the  source to the  rough ensonified  area was  300 

meters  and the  distance   from the rough ensonified area  to the re- 
ceiver was also  300 meters.     The angle made by  the  incident field 
and the  reference  scattering surface was  30°.     Both  the  source 
and receiver were assumed  to be  in water with a  sound  speed of 

1500 meters/second. 
Although the methodology developed here allows  for any piece- 

wise continuous surface,   it is sufficient here to restrict 

■ 
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Fig.   i.     Schematic  showing the coordinate  system and position vec- 
tors for  the  first order Born approximation. 

Fig.   2.     Schematic  showing the coordinate  system and position vec- 
tors  for the  second  order Born approximation. 

calculations  to a  corrugated  sinusoidal  surface.     The  effect of 

shadowing and penetration will be examined  in a  subsequent work, 
the emphasis here  being  on  secondary scattering   from the  surface 
(i.e.,   second Born contributions and  its comparison  to  first order 

contributions).     One  of   the most useful ways  to  investigate  the 
influence of  second Born   is to present calculations of  an incident 

1  ■'"    * -IX'i. .v.- 
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Fig.   3.     Polar plot showing the results of the first order Born 
approximation for a  100  Hz Gaussian beam incident at  a grazing 
angle  of  30°   (indicated by arrow)   and scattered from a  rigid  sinu- 
soidally corrugated  surface  of parameters A =  2 m and  X  =  4 m. 

field and plot the  scattered  field from 0°  to  180°.     We will pre- 
sent results for different surface roughness amplitudes   (A)   and 
displacements   (A)   from the peak  amplitudes.     The  frequencies   for 
the  incident field were  100 Hz  and 200 Hz.     Later we will present 
results as the  frequency varies  from 0  to  1000 Hz.     We do not 

make claims on the validity of  the method in the  lower  frequency 
domain;  we  simply wish to examine  the  first two contributions. 
In principle,   inclusion of  all  order terms  should converge to  the 
exact answer using  this method. 

Figure  3  illustrates the case  for scattering from a surface 
with X = 4 m and A =  2 m  for a  frequency of  100 Hz.     The  region 
of   integration for a     = a     =  2   is  16 by 16  square meters.     This 
guarantees that the  integrand has died off  sufficiently   (due  to 
Gaussian spreading)   to have   included an adequate area.     The method 
used to perform the double  integration on the surface was Gauss- 
Legendre integration with a suitable number of weighting terms  to 
ensure convergence.     Since the  surface amplitude A is  fairly  large 

for this frequency,   the most  significant return  is  in the backward 
direction.     The maximum response  is at approximately 8°  in the 

■   -      -      .: W Mi*. ^,.Vifc' k 
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Fig. 4.  Polar plot showing the results of the second order Born 
approximation for a 100 Hz Gaussian beam incident at a grazing 
angle of 30° and scattered from a rigid sinusoidally corrugated 
surface of parameters A = 2m and A = 4m. 

backward direction with a value of 2.8 * 10 ' (arbitrary units). 

Figure 4 illustrates the case for the second Born contribution. 

The maximum contribution here is down by almost a factor of ten 

over the first order term.  The contribution is primarily in the 

backward direction with a significant component in the forward 

direction and little contribution in the region normal to the sur- 

face.  In fact, this behavior was fairly consistent for all sur- 

faces examined in this study for second Born while rather pro- 

nounced differences were absent for first order contributions. 

One may be tempted to assume that because second order was about 

an order of magnitude smaller than first order, it had little in- 

fluence on the total results.  That, in fact, is not the case 

since the two quantities add coherently leading to a large over- 

all effect as can be seen in Fig. 5.  In particular, the backward 

scattering is increased by 15% and in the most forward direction, 

by over 100%.  (Note that the scales are different in Figs. 3, 4, 

and 5.) 

We now examine an example of a surface of smaller amplitude 

(A = 0.5 m) in which the spacing of the sinusoidal peaks are more 

■:■■...-   •- Tri-i'mrrTi-r-iiiiit vrmiiwftwurmiiriiTiniHi'ifff'ffmntfcgi' 
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High Order Born Approximations 251 

Fig. 5. Polar plot showing the combined results of the first and 
second order Born approximations for a 100 Hz Gaussian beam inci- 
dent at a grazing angle of 30° and scattered from a rigid sinu- 
soidal ly corrugated surface of parameters A = 2m and X = 4m. 

closely spaced. As in the earlier case, the incident field is at 

30° (indicated by the arrow in the figures) and at 100 Hz.  Now, 

however, as shown in Fig. 6, the total response (solid curve) and 

the first order response (dotted curve) are focused in the forward 

direction at an angle slightly above 60° (with respect to the 

horizontal). The second order contribution (dashed curve) appears 

fairly omnidirectional on this scale although it is actually guide 

similar in detail to Fig. 4.  It is clear that the second order 

contribution is quite substantial for this case especially in the 

backward direction.  Indeed, without the second order component, 

the backscattered response would be about a factor of 40 too 

small. Even in the forward direction, where first order leads to 

its largest response, introduction of the second order term en- 

hances the total contribution by over 70%.  It is therefore not 

surprising to find that the Kirchhoff approximation is noted to 

yield inadequate results in the backward direction for cases such 

as this. 

Figure 7 shows the result of scattering from the same rough 

interface as in the example just discussed except at a higher 

tfmimatm  '  ■^i, 
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Fig, 6. Polar plot showing the results of the first, second, and 
combined Born approximations for a 100 Hz Gaussian beam incident 
at a grazing angle of 30° and scattered from a rigid sinusoidally 
corrugated surface of parameters A = 0.5 m and X = 2 m. 

frequency.  The frequency now is at 200 Hz and it is clear from 

the figure that the second order contribution is not as signifi- 

cant as in the lower frequency case.  In this case the incident 

field is again 30° relative to the horizontal and the scattered 

field is just below 60° (relative to the horizontal) in the for- 

ward direction.  Note that the width of the scattered response 

(lobe) is narrower than the 100 Hz case as one would expect as 

higher frequencies are approached.  From the last two examples it 

might be expected that the second order contribution decreases in 

importance relative to first order with increasing frequency. 

However, for particular angles and surfaces, there are situations 

for which second order effects are very important.  Such situa- 

tions can happen when first order contributions are not allowed 

to escape the surface but scatter back into the surface once and 

then proceed outward.  This could happen at higher frequencies 

but it is not likely at lower frequencies. 

Figures 8, 9, and 10 show first order, second order, and 

total scattering, respectively, from a corrugated surface as 
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Fig.   7.     Polar plot showing the  results  of  the  first,   second,   and 
combined Born approximations  for a  200  Hz  Gaussian beam incident 
at a  grazing  angle of  30°  and scattered  from a rigid  sinusoidally 
corrugated  surface of parameters A =  0.5 m and  A  = 2 m. 

Fig.   8.     Plot  of pressure  calculated using  the  first order Born 
versus  frequency for a rigid sinusoidally  corrugated surface. 

frequency varies from 0 to 1000 Hz. Since the surface is periodic 
the first order term approaches a Bragg pattern. The second order 
contribution varies moderately from about 20 Hz to 400 Hz and then 
begins to rise in value, though not smoothly. (The incident angle 
is 30° from the horizontal, and the angle of detection is 30° in 
the  forward direction,   also measured  from  the horizontal.) 

r       .    ■       ■- ■,T,^^^=>^l|^-"^-■*v.:■■■^'i'-■, ■■-•-.- ■--».>    ^'.:i;>:t«iv«VVii.",W**u^ 
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Fig.   9,     Plot of pressure caicuiated using secona oraer Born 
versus  frequency for  a rigid sinusoidally corrugated surface. 

Fig.   10.     Plot of composite pressure  calculated using first and 
second order Born versus  frequency  for  a rigid sinusoidally cor- 
rugated surface. 

Figure  10  illustrates  the coherent sum of the two contributions. 

What  is  interesting is that the  two add constructively out to 

600  Hz  and destructively beyond  600 Hz where second Born begins 

to dominate due to the Bragg scattering effect on the first 

order term.     In general,  we might expect that second order ef- 

fects  "wash out"  the nice Bragg  nulls  observed in the first order 

calculations;  but,  due to the destructive  interference effect  in 

the  frequency region where  second Born becomes  important,   a pro- 

nounced dip is still observed.     This  is probably peculiar to 

this  example.     In general,   it is  expected that second order will 

alter the periodic Bragg pattern. 

3.      SUMMARY 

A technique, the "second order Born approximation," has been 

presented which can account for multiple scattering and some sha- 

dowing.     Scattering integrals are numerically integrated directly, 

Ja* X 
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thereby avoiding many of the approximations used in other ap- 

proaches  to scattering.    The technique  is equally suitable for 

near-field and  far-field calculations.     An illustrative example 

has been presented which shows  that in some cases where large 

scale rough surface scattering occurs,   secondary scattering can 

be  significant;   and failure to include  secondary scattering  can 

lead to erroneous  results. 

The examples presented were  limited due  to the large expense 

in computer costs  in including second Born and because the neg- 

lect of  including shadowing precluded consideration of  lower 

grazing angles.     Future upgrades of  the model will enable  faster 

calculations  that will include both shadowing  and penetration. 

Clearly,   a more  comprehensive numerical  study  including the higher 

frequency  range will be of considerable  interest. 
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