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EK ABSTRACT »
~) A methodology to analyze, model, and evaluate decision-making processes that require :
coordination is presented. The issues of inconsistency of information and synchronization are .
emphasized. Predicate Transition Nets are used as the basic technique for representing et
organizational structures and for characterizing the coordination of processes. Protocols of W
interaction are modeled by transitions for which the rule of enablement is that the ]
decisionmakers, when interacting, must refer to the same state of the environment. Two I
measures of coordination are then introduced: the degree of information consistency and the }::
measure of synchronization. These measures are defined on the basis of the attributes of the py
tokens belonging to the input places of transitions modeling interactions. A recently developed P

simulation system for Predicate Transition Nets is used for investigating the dynamics of
decisionmaking processes requiring coordination. ‘

oy
"'"

X
R

*This work was carried out at the MIT Laboratory for Information and Decision Systems with Cy
support provided by the Office of Naval Research under Contract No. N00014-84-K-0519 .
(NR 649-003). ‘
\J
**Please addrress all correspondence regarding this paper to Dr. Alexander H. Levis, MIT, A

Room 35-410/LIDS, Cambridge, MA 02139, USA.

y
&
08 015

[

3




e

al e
e e L

- .

kg

AL LT LTI P P L L N LAY U LT AL NIRRT Yol Gal tal ok tud Seb B tad vaf 8 Sl ol Vo8 cp all ¢4

INTRODUCTION

The complexity of today's industrial environment - the tempo is fast and the data to be gathered
and analyzed are numerous - imposes severe constraints on the managers who must respond
accurately and in a timely manner to the problems that arise. The distribution of the information
processing tasks among the managers is a necessity in order to reduce each organization
member's workload. Their activities are synergistic; therefore, the decision-making processes
must be coordinated in order to improve the effectiveness of the organization. In this context, it
is important to analyze and evaluate the concept of coordination in decision-making
organizations.

The framework used to address this problem is the quantitative methodology (Levis, 1984) for
the analysis and evaluation of alternative organizational structures. Petri Nets have been used (a)
to show explicitly the interactive structure between decisionmakers and the sequence of
operations within an organizational structure (Tabak and Levis, 1985); and (b) to model
asynchronous and concurrent processes.

In order to provide some insight on the cohesiveness of organizations carrying out well-defined
tasks, a mathematical description of coordination is developed as it relates to decision-making
processes. The Predicate Transition Net formalism (Genrich and Lautenbach, 1981) used in this
paper builds on Petri Net theory (Brams, 1983), but allows the modeling of coordination based
on the attributes of symbolic information carriers in the net. In this model, when decisionmakers
interact, they must have some protocol to recognize that they are exchanging information
pertaining to the same event. Two measures for evaluating coordination are introduced: the
degree of information consistency and the measure of synchronization. The latter measure relates
to the value of information when the decisionmakers actually process it.

PREDICATE TRANSITION NET MODEL OF COORDINATION

The organizations under consideration consist of groups of decisionmakers processing
information originating from a single source and who interact to produce a unique organizational
response for each input that is processed. In terms of Petri Nets, it implies that there exists a
source place, pso, and a sink place, pgy: the source place models the source from where the
inputs originate; the sink place models the place where the organizational response appears at the
end of the process.
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A resource place, pyg, is introduced to model the limited organizational resources. A transition tpar
models the partitioning of the inputs. Furthermore, if several decisionmakers provide responses
that must be fused in order to obtain the organizational response, this stage of response fusion is
modeled by the transition t,s (see Figure 1).
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Fig. 1 Petri Net of Interactions between a Decisionmaking Organization and the Environment

The source generates inputs that arrive sequentially and one at a time: it corresponds to the time
of appearance of a token in the source place pg,. Furthermore, it is assumed that the different
decisionmakers have some means of recognizing that, when they interact, they are referring to
the same input; for example, their protocols of interaction can require that they communicate the
time at which the input they are processing entered the organization.

The task is modeled by the alphabet X = {x,...,x,}. A probability distribution is defined on
X. The probability that the input x is equal to x;, i.c., prob(x=x;), is denoted by prob(x;). The
set of subsets of X is denoted by I1(>¢); then:

I’ (X) =1(X)- (@) )

where @ denotes the empty set.

A clock is assumed to exist. This clock is used to follow the instants at which the process is
observed. In accordance with the formalism of Timed Petri Nets, this clock provides
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non-negative rational numbers. Therefore, the current time is denoted by T, such that T, e Q*
where Q* denotes the set of non-negative rational numbers.

Distinguishability of Tokens

The fundamental assumption of the model is that a decisionmaker can process only one input at a
time in any of his internal stages: it follows that any other input that is ready to be processed by
the same stage waits in memory. Therefore, queues of inputs can build in the system.

At any internal stage of the decision-making process, a decisionmaker can discriminate between
different items of information on the basis of three characteristics:

- the time T, at which the inputs that these items of information represent entered the
organization.
, - the time Tq4 at which the item of information entered the internal stage where it is
" currently located.
- the class C associated with any item of information by the previous processing stage.

The definition of the attributes T,,, T4 and C derives from the following considerations:

b (i) inputs originate from a single source, one at a time. For each token, the attribute T,

ER corresponds to the time at which the input represented by this token entered the organization. In
accordance with the formalism of Timed Petri Nets, the first attribute T, is a non-negative
rational number, i.e., an element of Q*.

(ii) the firing of any token in the net takes an amount of time that is known since it characterizes
the processing time of the corresponding transition. It is thus possible to assign to any token in a
_ place p with the time Ty at which it entered this place. This second attribute Ty is also an element
*, of Q+.

‘ (iii) the task is modeled by the alphabet X = {x;,...,x,}. It is assumed that each place p is
associated with a partitioning D(p) of this alphabet. The number of elements of this partitioning
is denoted by e(p). This partitioning is such that D(p) = {D(p,1),..., D(p,e(p))} where D(p,i)
denotes an element of II"'('X.) . Thus, the third attribute C of each token belongs to a certain
partitioning D(p) of XX , this partitioning depending on the place p where the token is located.
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The different resources that the organization has are assumed to be indistinguishable; this might
not be the case when organizational resources are allocated to different inputs in accordance with
some doctrine. In the same way, the resources that represent the decisionmakers' processing
capacities are not distinguishable.

Consequently, three types of places are defined: Memory places carry information internally
processed by each decisionmaker; structural places carry information exchanged between a
decisionmaker and the environment or other organization members; and resource places that
model the limitation of resources that constrains the processing of information by individual
DMs. Memory and structural places contain tokens that have an identity since they model
information carriers, while resource places contain tokens with no identity since they model
resources.

Each place is associated with one of the variables ¥ or ¢. The variable ¢ takes its values in the set
@ such that @ = {¢}. All the tokens with no identity are denoted by the color ¢. The variable
takes its values in the set X such that X =Q*x Q*x rl*(‘)(,). Each element of X is a color that is
represented by (T, Ty, C). A token with an identity is an individual that is assigned a color.

The marking of PN is defined as follows: For each place p, Z(p) designates the set of
applications from y(p) into N where y(p) designates the set of values where the variable
associated to the place p takes its values and N denotes the set of non-negative integer numbers.
Z, is the set of Z(p) for all p. The marking M of the Petri Net PN is defined as an application
from the set of places, P, into the setZ,;:

M:P->2
p -> M(p) 2)

For each place p, M(p) is an application from y(p) into N. It assigns to each value of the variable
associated with p a non-negative integer number. It represents the number of tokens in the place
that have the corresponding color. If m designates a certain color, M(p)[m] will denote this
number. Since each color m corresponds to a 3-tuple (T}, Ty, C), this number will be also
denoted by M(p)[(Tp, T4, C)). In the case of a resource place, the tokens can have only the color
¢. M(p)[¢] will be denoted by M(p).
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The following example (Figure 2) illustrates these definitions:

P4

Fig. 2 Example of Marking b

In this example, the following relations hold: t
- mpe X,me X.
- M(ppimi]l =2; ¥ me X-{m;}, M(pp)[m] =0. »
- M(pp)[mj] = 1; M(pp)[m2] = 1; V m e X-(m, m3}, M(p2)[m] = 0. o
- M(p3)=3. '{e
- Vme X, M(pg){m] = 0. o

The firing of a transition t, as illustrated in Figure 3, is characterized by the following: 't
- if p'is a resource place, m' is the color ¢.
- if p and p' are memory or structural places, m and m' are elemcnts of X. "

The attribute T, characterizes one and only one input since the source generates one input at a
time. Furthermore, two representatives of the same input cannot stand in the same place. Indeed,
the net is an Event-Graph and, so, each place has only one input transition which produces in
each of its output place only one token per firing.

]
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Proposition 1: A place cannot contain two tokens which have the same attribute Ty,

ot

<, %%

2 s [ o
. L 4




Fig. 3 Firing of a Transition

Protocols of Interaction

One must recall that the set of input places of any transition t can contain a resource place. The

rule according to which the resource place must contain at least a token in order for t to be
enabled will apply. However, since resource places do not constrain the rule of enablement of a
transition, but by requiring the presence of a token, the discussion on enablement that follows
focuses on structural and memory places. The Petri Net model of transitions where fusion of data
is done is shown in Figure 4.

P1

int

Fig. 4 Petri Net Model of Interaction with Fusion of Data

When the fusion of data is performed by a decisionmaker, only one of the places py,..., p;is a

memory place. We denote it by py . Any rule of enablement can be introduced at this point. It can




take explicitly into account the attributes of the tokens in the input places, but this is not

necessary. For example, here are two possible rules. M denotes the marking of the net:

rule 1: tine is enabled, if and only if all its input places contain a token with the
same value of the attribute T},

Vpe Pre(,) . 3(T, T, 0)c Q xQ xI'(X), ME)(T,, T,, O] #0,

nt

VpePret ), p=p,3(T,T,,C)e Q+x Q+x ]'I‘(‘X.) M, T, CH]=0,
T =T"' 3
Rule 1 means that the transition t;;, is enabled if and only if all the places of its preset contain at
least a representation of the same input. Indeed, it results from the fact that memory and
structural places contain only tokens of the (T,, T}, C) type, and that tokens having the same
attribute T, represent the same input. From the organizational standpoint, it means that, when

decisionmakers interact, they must refer to the same input. Rule 1 will hold in the remainder of
the paper. The representation of rule 1 is illustrated in Figure 5.
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Fig. 5 Predicate Transition Net Model of Interaction
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rule 2: tint is enabled if and only if rule 2 applies or there exists a token in the
memory place p; which has been in it for more than d units of time.

(rule 1) or

(3(T, T, O)e Q xQ xII'(X) M()I(T,, T, O1#0, (T.-T)<d) (@)

Rule 2 means that rule 1 applies when a token has been in the memory place for less than d units
of time. This rule models the interactions where decisionmakers wait for information from other
parts of the organization only for a certain amount of time.

In this paper, a transition will be enabled if and only if rule 1 is verified. In the case of internal
transitions, rule 1 is always verified when all its input places have a token since the preset

contains only one place that is not a resource place. Therefore, the rule of enablement can be
expressed formally as:

VG,j) el ..rix{l, .1}, T =T, )
It means that the attributes T,,! of the colors m;, ..., m; must have the same value.
Token Selection
The problem of token selection arises since the tokens are distinguishable. Rules of selection
must be applied to select the tokens that will be fired for any firing of a transition t. These rules
operate on the tokens of the input places that enable the transition t. This is illustrated by the
example of Figure 6 where rule 2 of enablement applies.

In this case, we suppose that:

- my =(T,l, Tgl, C); my' = (Tyl, Tl, C1) 5 my" = Ty}, T'g!, C').
- my = (T2, T2, C2); my' = (Tp2, T'g? C2) s my" = (Tp2, T2, C'2),
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Fig. 6 Token Selection

Since the enabling condition is (5), it follows that the transition t is enabled by the set
{mj;,m,',m;"} and by the set {mjy,m;',my"}. Therefore, a rule must decide what tokens will
be removed by the next firing of transition t.

It is assumed that this rule works as follows: it selects a token in a certain place p of the preset of
transition t ; then the set of tokens removed is the one to which the token selected belongs. It is
will be shown in Proposition 2 that a token can belong to one and only one such set. Therefore,
before applying the rule to the place p, it is necessary to decide in which place p the selection will
be done. One can see on the example of Figure 6 that p;, p; and p3 contain each two tokens that
enable transition t. This means that the selection of the tokens that will be fired next can be done
in place p, or place p, or place p3. Thus, a choice must be made to decide if the token selection
rule will apply on p, or p; or p3.

Different strategies can be applied to choose the place on which the token selection rule will
operate; for example:

- the decisionmaker considers only his own information in order to discriminate
between the various items of information that he can continue to process. In such a
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case, the token selection rule would apply to the memory place.

- the decisionmaker relies more on the information sent by another member, and,
therefore, chooses the next piece of information to process on the basis of the data
that he receives from this decisionmaker.

In this paper, the choice of the place on which the token selection rule will apply is done
according to some well-known rule PS(t), for each transition t, given the state of the system.
Once the rule PS(t) has been applied, the place p on which the token selection rule will apply is
determined. Then, the selection of a token in this place determines an attribute T,. The
knowledge of this attribute allows to select the corresponding tokens in the other places. In the
example above, if PS(t) selects py, the token selection rule must discriminate between m; and m,
and mj3. If m, is selected, then my' and my" are automatically selected in places p; and p;.

Proposition 2: The selection in the place p of a token among the tokens that can be fired by
transition t determines uniquely the tokens that will be fired in the other places. Once a
token has been selected in the place p, its attribute T;, corresponds to one and only one
token in any other place of the preset of the transition t.

Thus, it must be decided what will be the possible strategies that the decisionmakers will use in
order to choose between the several pieces of information that they can continue to process in a
given stage. Four types of rules of selection can be thought of:

(1) rules that discriminate with respect to the attribute T},
(ii) rules that discriminate with respect to the attribute Tj.
(iii) rules that discriminate with respect to the attribute C.
(iv) rules that combine different rules of the previous types.

Some example of possible rules are the following:

1/FIFO: the decisionmaker can decide to process first the inputs that entered the organization
first. In this case, the token with the lowest T, is selected.

2/LIFO: the decisionmaker decides to process first the inputs that entered the organization
last. Then, the token with the highest T, is selected.

3/ LOCAL FIFO (LFIFO): the decisionmaker decides to process first the inputs that entered the
internal stage where they currently are first. The token with the lowest Ty is selected.

11
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4/ LOCAL LIFO (LLIFO): the decisionmaker processes first the inputs that entered the internal
stage where they currently are last. The token with the highest T is selected.

5/PRIORITY: the decisionmaker can assign priorities to certain classes of inputs, i.e., can set
priorities on the basis of the attribute C. He selects first the items of information with
the highest prionty.

6/ MIXED: if several pieces of information have the same highest priority, the decisionmaker can
then decide to apply some rule of the type (i) to (iv) to discriminate between them.

PREDICATE TRANSITION NET CHARACTERIZATION OF COORDINATION

In accordance with the considerations developed in the previous section, the coordination of
different decisionmakers that shows the extent to which their activities are synchronized and the
information that they exchange is consistent can be evaluated.

The Petri Net representation of the transitions considered in this section is shown in Figure 4.
The characterization of the coordination for an interaction t;y,, using the Predicate Transition Net
model introduced in the previous section, derives from the definition of an order relation on the
set of tokens fired by transition t;;,. The following binary relations are defined:

¥, is a binary relation defined on Q+x Q*x IT*(%) by :
(xy, ¥ (x\y, 7))o (x=x)and(y <¥)) (6)
¥, is a binary relation defined on Q*x Q+x IT*(X) by :

((x,y, ¥, (x,y, 2))e ((x=x)and(z=2)) (7)

W5 is a binary relation defined on Q*x Q*x IT*(X) by :
((xy, ¥, (x,y, 2)) & ((x,y. ¥ .y, 2)) ad ((x,y. ) ¥, (x",¥",2)))
®)

The relation W3 defines an order relation on the set X = Q*x Q+x IT*(%¢). It derives from the
fact that the relation < defines an order relation on the set Q*. We denote by m,, ..., m, the
elements of X which represent the colors of the r tokens removed respectively from places

12
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P1 ---» Pr by transition t;;,. my denotes the color of the token removed from the memory place
Px. Furthermore, each color m; corresponds to (Ty}, T4l, Cl), element of Q+x Q+x IT*(X).

S M e m e .-

The firing of t;y, is synchronized if, and only if: h
| Vi e{l,.r) (o Ty C)Y, (T, Ty, €9 © 4

‘ This definition allows to discriminate between firings that are synchronized and firings where iy
one or several tokens m; arrive in their respective places later than my in py. The measure of the g,
degradation of synchronization in the latter cases will be evaluated in the next section. In the

same way, the data fused by DM, are consistent, if they correspond to the same class C. It leads N
to the following definition:

The firing of t;,, is consistent if, and only if:

; Ve (1 o1 x (1, o 1), (To, T CY W, (Th, T, ©) (10)

() PSS L AT L

On this basis, the following definition for the coordination of an interaction is obtained: The
firing of t;,, is coordinated if, and only if, it is synchronized and consistent. “)

It is possible now to characterize a coordinated transition firing by the order of arrival of the

P T

tokens in the places of its preset.

Proposition 3: When the firing of m;,..., m; by t;,, is coordinated, the relation W3 induces
an order relation on the set {m;,..., m;} for which my, token of the memory place, is
the unique greatest element.

1 A u_" -

The definition of coordination applies to a single interaction. The definitions of the coordination
of a single task, i.c., for a sequence of interactions concerning the same input, as well as for all
tasks executed are derived as follows.

AT

Pls

The execution of a task is coordinated if, and only if, it is coordinated for all interactions

that occur during the task. The execution of a Petri Net PN is coordinated if, and only if, it
is coordinated for all the tasks performed.

- vp_8_*
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DEGREE OF INFORMATION CONSISTENCY

Given an interaction stage, t;;,, denotes the interactional transition that models this stage in the
Petri Net representation, as shown in Figure 4. At each transition t;y,, the decisionmaker DMy,
associates a class CD to each input x;. In this section, this class is denoted by Ch(x;, t;5,). This
class belongs to D(py,), a partition of the alphabet X, that the designer defines a priori.

In order to achieve a higher consistency, the designer has to ensure that the r decisionmakers
who interact in the stage are provided with the same set of classes; therefore, it is assumed that:

Va, pe (1, ...rpx {1, ..., 1}, D(pi)=D(pj) 11)

If my, ..., m, designate the colors of the tokens in the preset of t;y, that correspond to input x;
and that are fired by t;,,, then CY(x;,tin),.-.» CF(X;, tiny) denote their attribute C. Let V(x;, t;n,)
designate the vector (Cl(x;, tin), .--» C'(Xjs ting)), element of [IT*(X)]r. Let
prob(C1(x;, tiny)s ---» CT(X;, t;n;)) denote the probability of having tokens with attribute
CI(x;, ting )» ---r C(X;, tiny) for the input x; at the stage t;,, in places py, ..., p;. It will be
written as prob(V(x;, tin)). If z(V(x;, tin)) is the number of subsets of two elements
{Ca(x;, ting)> CO(Xj, tin)) of {C (X tiny), -or CT(X;s tiny)}, We have:

o
2V(x, t. ) = [5) Ty 12)

where n(V(x;, t;n)) is the number of subsets of two elements {C2(x;, tin )» CO(X;,tiny)} Of
{CH(X;,tings--» CF(Xj, tiny)) such that CA(x;, tin, ) = CO(x;,tip,). Finally, we have:

The degree of information consistency for stage t;,, and input x; is:

d(x,t )= 3, probVix, t. ) RV i .
Lt )= x,t —_—
P Vint W& lﬁ)pr ontt (V(x, t. )

i’ int

For example, consider the case depicted in Figure 6:
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Fig. 6 Example of Degree of Information Consistency

We assume that the set of classes is {C!, C2, C3) for all three places, i.e. :
- D(Pl) = {Cl, C2, C3}
- D(py =(C1, C2 C3)
- D(py) = {CL, C2,C3)

Furthermore, consider the five colors, elements of X:
- ml = (Tn, le, Cl)
- my = (Tp, T42, C2)
- m= (Tn, Td3’ C3)
- my= (T, Td4’ Cl)
- mg= (T, Tg%, C1)

If M designates the marking, the three following cases are considered:

- casel:  M(pplmy] = 1; M(py)[my] = 1; M(p3)[m3] = 1.
- case2:  M(ppIm;] =1; M(pp)img] = 1; M(p3)m3] = 1.
- case3:  M(p))m;] = 1; M(py)imy) = 1; M(p3)[ms] = 1.

Following relation (13), in case 1, the degree of information consistency is zero. In case 2, it is
1/3. In case 3, the degree of information consistency is 1. By adding the degrees of information

15
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consistency d(x;, tiny) for each organizational interaction tj, and each input x; and weighing by
the probability of having the input, one can measure the organizational degree of information
consistency for the task at hand.

The organizational degree of information consistency, D, is defined by:

} D= Y prob(x) . dx; t,.) (14)
xi le.

This measure varies between 0 and 1, the value 1 corresponding to ideal information consistency
of all interactions for the whole task. The next section introduces a measure of performance for
synchronization.

s A MEASURE OF SYNCHRONIZATION

-

When a decisionmaker processes an item of information, the total processing time of this item for

7 e o o

decisionmaker DM,; consists of two distinct parts: (i) the total time T;! during which the

. A
PN

decisionmaker actually operates on the information, i.e., the total time spent by the information in
the decisionmaker's algorithms; and (ii) the total time T;P spent by the information in memory
without being processed.

Y The time T;P is due to two factors: (i) Information can remain in the memory of the
decisionmaker until he decides to process it with the relevant algorithm. Since an algorithm

:; cannot process two inputs at the same time, some inputs will have to remain unprocessed in

Py memory for a certain amount of time until the relevant algorithm is available. (ii) Information can

! also remain in memory because the decisionmaker waits to receive data from another organization
member.

3 An organization is not well synchronized when the decisionmakers have to wait for long periods
before receiving the information that they need in order to continue their processing. Conversely,
the organization is well synchronized when these lags are small.

Mgl

The sojourn time Th(x; t...) of the token my, representing the input x; in the place py, of the
s Xisling h» T€P put x; place py,

preset of transition t;,,, measures the amount of time spent by the token in the place before it is

fired:
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TG ) =T, - T, (15)
This quantity is zero when the firing occurs at the same time the token enters the place.
Conversely, it differs from zero when the firing cannot be initiated at the same time the token
enters the place. The following quantity can now be introduced:

st - T

1 mt

Sto) (16)

i’ Vint i int

SPx,t )= Thx

The quantity Sy hi(x;, t;,) measures the difference between the sojourn times of the tokens
representing X; in py and p;, i.e., the difference between the lengths of time that the information
sent by DMy, and DM; to DMy remained inactive before being processed.

When py represents the memory place, Sy Ki(x;, tjp,) Will be computed for each structural place
p;. If it is positive, it implies that the token my has spent more time in py than the token m; in p;.
¥ If it is negative, the opposite is true. In the latter case, there is no degradation of synchronization,
K because DM;, is not ready to process the next task.

Let F(x) denote the function defined on the set of rational numbers, Q, by:

‘ VxeQ (x20) = (Fx)=x)
(x<0) = (Fx)=0) a7

. Let INT(tjn¢) denote the set of indices h for the structural places py, of Pre(t;,,). Then the total lag
for the transition t;,, in processing input x; can now be defined as follows.

The total lag for transition t;, and the input x;, S(X;, tip,), is such that:

! S(x,t, )= max ( F[S{(x,t)]) (18)
: h e INT(t,,)
' or, from (16),
: S(x; ty) = max ( F[T:(xi’ tim)‘T:("i' L 1) (19)
h e INT(t,)
17
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Thus, S(x;, tjn;) measures the maximum of all the lags during which the decisionmaker has to
wait before having all the information he needs to continue his processing. The measure S does
not take into consideration the items of information for which the decisionmaker does not wait.

For instance, in the example illustrated in Figure 6, if p; denotes the memory place, we have:

- casel:  S(X; tin) = max(F(T42 - Tq!), F(T4?- Tg3))
- case2: S(Xi, tim) = max(F(Td“ - le ), F(Td4 - Td3))
- case3:  S(xj, tin) = max(F(T4? - Ty, F(T4? - T45))

On the basis of this definition, it is possible to define two measures. First, we denote by A the
set of all interactional transitions. Furthermore, A (k) denotes the set of all interactional
transitions executed by decisionmaker DMy.

The measure of synchronization between decisionmaker DMy and the rest of the organization,
Sy is defined as:

S = z prob(x)) Z S(x; t,) (20)
X; 1, € AK)

It is the expected value of the sum of the maximum lags for the interaction stages executed by
decisionmaker DM, for the inputs x;.

The measure of synchronization for the organization, S, is given by:

ST= 2 prob(xi) 2 S(xi, tim) 21)
X; tu€A

It is the expected value of the sum of the maximum lags over the overall decision-making process
for the inputs x;.

On the one hand, the measures Sy, for each k, and St achieve their best values when they are
zero. On the other hand, there is no upper bound on the values taken by these measures; they
grow to infinity if a deadlock occurs. Since each interactional transition t;,, belongs to one
decisionmaker, and one only, the following relation holds:

18
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Thus, one can compute the contribution of each individual decisionmaker DMy to the total
synchronization measure St for the organization by taking the ratio S;/St.

Example: Consider the two-person hierarchical organization shown in Figure 7. We assume
that the processing times of the various stages are independent of the input x;. Therefore, Sj (x;,
tiny is written S (tin). The parameters T¢?, T3, TO, and T8 denote the sojourn times of tokens

in places py, Ps, Pg and pg respectively. The internal transitions IF; and CI; have only two input
places. It follows that:

DM,

Fig. 7 Synchronization of Two-Person Organization

- SL(tpy) = F(TS - TS)
- Sp(ten) = F(TA - T )

Then, the measures of synchronization St, S; and S are:

- 8;=Si(tcy) = F(T# - T )
- $2=S.(tp) = F(Ts6 - Tss)
- St= S () + SL(tcny) = F(TS - TS) + F(T 4 - T,8)

Let f(t) denote the firing time of transition t for all inputs. Then two cases are considered:

L) { A ") -
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case 1: f(tSAl) =2, f(tSAZ) =1, f(llpz) =2, f(tRSZ) =2, f(tC“) =2, f(tRSl) =2
case 2: f(tga)) = 2, ftga2) = 2, f(Fy) =2, f(trsy) = 2, f(icyy) = 2, f(tggy) =2

The results for the measures S;, S; and St are:
- casel, St=5 §; =1 §;=4.
- case2, St=4; S§; =0, S=4.

When the processing times of SA; and SA, are not equal (case 1), the synchronization measure
Stis worse than when they have equal processing times (case 2). It should also be noted that the
processing delays in the two cases are equal, i.e., T = 10, where T is the total delay. It follows
that if DM, takes more time to process an input, synchronization is improved without affecting
the total processing delay.

In this exampl. the measure of synchronization can be zero if, and only if, SA; and SA; have
the same processing times, and IF, and RS, have zero processing times. The latter conditions are
not realistic, which implies that the synchronization will never be zero.

APPLICATION

In this section, an example is presented where the lack of coordination between the different
decisionmakers leads to a degradation of the organizational performance. This degradation can
have various causes, but they all relate to the concept of a team. A team has been defined as being
a group of persons who have a common goal, have the same interests and beliefs, and have
activities that must be coordinated (Grevet, 1988). The fact that different decisionmakers have
distinct interests or beliefs can lead them to adopt activities that are not coordinated with respect
to the task at hand.

The organization consists of two decisionmakers who receive information for a common task.
The commander DM, assesses the data that he receives from the environment by using always
the same algorithm. In the saine way, the subordinate DM, assesses the input from the
environment with one algorithm. Then, he sends some information resulting from this
assessment to his commander. The latter fuses his own result with this information and, on this
basis, produces a command by using always the same algorithm. In turn, this command is sent
to the subordinate DM;. Eventually, DM, is responsible for producing a response on the basis of
the command that he receives and of the results of his own assessment. The Petri Net model of
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this organization has already been presented in Figure 7. It is shown in Figure 8 with the
' resource places present.

Since both decisionmakers have only one algorithm in each stage of their process, there is only
one organizational strategy. Thus, the information can follow only one flow path. Each
decisionmaker needs the information sent by the other in order to complete his processing. In
; accordance with the model of coordination developed in this study, the Information Fusion and
B Command Interpretation stages require that the data fused originate from the same input. The
organization will be perfectly synchronized if DM, and DM, never wait for the information from
* the other decisionmaker in these stages.

: 3
o Pt P3 ~
Ky 01 par
; O
iz SA2 P¢ IEZ Pg RS 2_\

DM
2

g —(Ox
o P13

Fig.8 Petri Net Model of Two-person Organization with Resource Places

) It will be assumed that, in all stages but the SA stage, the decisionmakers select the data with the
" LFIFO rule with priority given to the items of information that are in their memory places. Thus,
for IF,, RS,, CI;, and RS}, tokens are fired in the order with which they enter the memory place
of their preset. However, different conditions for the SA stages will be considered. Before
X having assessed any of the inputs that they have received and that they must process, the
! decisionmakers may have to discriminate between them because they cannot perform their
assessment on all of them at the same time; only one input can be assessed at a time.
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Depending on the characteristics of the data that they receive from the environment, the
decisionmakers can use different rules to perform this selection: two cases will be investigated:

. - the inputs have not been preprocessed by any decision-aid: in this case, the

;Efl“' decisionmakers have no information concerning the nature of the inputs and

oy must use rules that are based on attributes independent from the characteristics

of the inputs, e.g., time of entry in the organization.

R - the inputs have been preprocessed by a decision-aid that aggregates them in classes,
R or zones of indifference (Chyen and Levis, 1985). In this case, the decisionmakers
have some information concerning the nature of the inputs and can use rules that
assign priorities to these different classes.

o The processing times, measured in some time unit, of the various stages are presented below;

o, tpar denotes the partitioning stage, as introduced in Figure 1.
R
"
o tar SA; SA, (I IF, RS; RS,
i Time: 1 10 10 10 10 10 10
:',::: The scenario corresponds to the infinite queue of inputs, i.e., to the case where the organization

always uses all its resources.

iy

Ei:: case 1:  The initial marking of the resource places is:

g MO(py1) = 4; MOp12) = 2 MO(py3) = 2.

iy Both SA; and SA; use the LFIFO rule.

¥

:t: case 2: The initial marking of the resource places is:

K MO(py) = 4; MO(pp) =2, MU(p;3) = 2.

3 SA, uses the LFIFO rule whereas SA, uses the LLIFO rule.

W

:.: case 3:  The initial marking of the resource places is:

,:f:: MO(py1) = 4; MO(py2) = 2; MO(py3) = 2.

W SA| uses the LLIFO rule; SA, uses the LFIFO rule.

;;;Z'; case 4:  The initial marking of the resource places is:

,“l

o MO(py) = 4; MO(py2) = 2; MO(p;3) = 2.

i Both SA and SA, use the LLIFO rule.
"T |
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The time of entry of an input in the organization, T, is the time at which the sensors begin to
process it, i.e., in Petri Net formalism, the time at which the transition tpar fires. The time of
leaving from the organization, T, is the time at which the organizational response is obtained,
i.e., in Petri Net formalism, the time at which a token appears in the sink place. The delay, T, is
the difference T,-T;. The measure of synchronization S is obtained for each token; it is the sum
of the values of the measure for transitions IF, and CI;. The values were obtained using the
simulation system MIT/SIM (Grevet et al., 1988). The results for T; , Ty, T as well as for the
synchronization S for the first ten inputs which enter the net in each of these four cases are
shown in Table 1.

TABLE 1. Synchronization and Delay - Cases 1 to 4

input # case 1 case 2 case 3 case 4

Ti'I;)TS”[}ToTS'I;TOTSTiTOTS
1 0O 51 51 20 O 51 51 20 O S1 51 20f O 51 5120
2 |1 616021 - - -11 - - - 1 - - -
3 2 101 99 40 2 101 99 40| 2 101 99 20} 2 101 99 40
4 3 111108 40] 3 151148110 3 131128 90f 3 61 58 20
5 51 151100 40| 51 201150 90f 51 161110 30| 61 151 90 40
6 61 161100 40}101 251150 90}101 191 90 30|101 201 100 40
7 J101 201100 40{151 301150 90131 221 90 30|151 251100 40
8 |11 211100 40{201 351150 90161 251 90 30|201 301 100 40
9 |151 251100 40{251 401150 90[191 281 90 30|251 351100 40
10 |161 261 100 40{301 451 150 90221 311 90 30|301 401 100 40

The results obtained in case 1 are the same as in the case where the tokens have no identity. The
steady-state of the process is K-periodic (Hillion and Levis, 1987) with a period of one. It is
reached after the sixth input and is characterized by a constant delay and synchronization. The
same conclusions can be drawn in case 2, case 3 and case 4: all three processes are K-periodic
with a period of one. In case 2, the steady-state is reached after the fifth input whereas it is
reached after the sixth input in case 3 and case 4. one can see that the three tokens with attribute
Tn =1 are blocked in places p3, p4 and ps, respectively. The processing of the corresponding
input is blocked as shown in Table 1. This happens because there are always two tokens in the
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input places of SA and SA; where the LFIFO and LLIFO rules are used.

In the steady-state, the delays for each input are identical in case 1 and case 4. In case 2, this
delay increases by SO percent. In case 3, the delay is reduced by 10 percent. However, since in
the situations where a LLIFO rule is used the processing of one input is blocked, the delay for

this input is infinite and the organization can use only three resources out of four for the other

inputs. Thus, the thoughput rates decrease . Moreover, for the organizations under consideration
in this study, a response must be given to each input in a timely manner. Thus, when the input
represents a threat for which a response must be provided in a certain window of opportunity
(Cothier and Levis, 1986), the LLIFO rule will degrade considerably the accuracy and timeliness
of the organization.

In case 1, the synchronization of the organization is equal to 40 units of time in the steady-state.
In case 2, it is equal to 90 and, so, degrades considerably. In case 3, the synchronization is equal
to 30 units of time in the steady-state. It represents therefore an improvement with respect to case
1. In case 4, the synchronization in the steady-state is the same as in case 1.

Nevertheless, one must consider also the individual tokens that are blocked during the
processing. In case 2 and case 3, the synchronization for the second token degrades considerably
with respect 0 case 1. Indeed, if DM, uses the LFIFO rule and DM, the LLIFO rule, the item of
information for which the process is blocked is in the input place of the SA stage of the latter,
whereas it has been assessed by DM, and is in the memory place of his CI stage. Thus, the
measure S for this input is infinite. The same situation occurs when DM, uses the LLIFO rule
and DM; the LFIFO rule but, in this case, the degradation of the synchronization is due to the
fact that DM, waits indefinitely in the IF stage for the data from DM, to arrive. In case 4, the
second input is also blocked, but the two corresponding tokens remain in the input places of SA;
and SAj: it implies that none of the decisionmakers will wait for the data from the other member
for this input. From this standpoint, the synchronization of the activities for this input does not
degrade.

The processing of the inputs in these four cases took place for a configuration in which there
were four organizational resources and two resources for each decisionmaker. The following
cases examine a situation in which the organizational resources are increased by one unit. The
scenario still corresponds to the infinite queue of inputs and the processing times of the protocols
are not changed.
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case 1': The initial marking of the resource places is:
MO(p;1) = 5; MO(py2) = 2, MO(p3) = 2.
Both SA; and SA; use the LFIFO rule.

: case 2': The initdal marking of the resource places is:
’ MO(p;1) = 5; MO(p12) = 2; MO(py3) = 2.
SA| uses the LFIFO rule whereas SA; uses the LLIFO rule.

- 1A
-

case 3': The initial marking of the resource places is:
MO(py ) = 5; MO(py2) = 2; MO(py3) = 2.
SA; uses the LLIFO rule whereas SA; uses the LFIFO rule.

o Te
-

case 4': The initial marking of the resource places is: 4
* MO(pyy) = 5; MO(p;) = 2; MO(p;3) = 2. '
Both SA; and SA; use the LLIFO rule.
Table 2 provides the results for T; , T, and T as well as for the synchronization S for the first

N ten inputs which enter the net in each of these four cases.
. TABLE 2 Synchronization and Delay - Cases 1'to 4'
" ‘
;: input # case I' case 2' case 3' case 4' ;
! :
T T T S|T T, TS|T T, TS|T T TS
’ 1 0 s1 5120 0 5151 2] 0 51 51200 0 51 5120 .
2 1 e16020f 1 - - |1 - - |1 .- - . 4
3 2100 940 2 - - -} 2 - - | 2 - . . :
’: 4 311110840 3 - - |3 - - -| 3101 9820 3
; 5 4 151147 40| 4 - - -l 4 - - .| 4 61 5740 ]
) 6 51 161110 40f 51 - - -] 51 - - -] 61151 90 40 ]
V 7 |61 201140 40 101 201 100 40
8 [101 211110 40 151 251 100 40
9 111 251140 40 201 301 100 40
: 10 [151 261110 40 251 351 100 40
25
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In case 1, the process is K-periodic of period 2. In the steady-state, the thoughput rate and the
synchronization are identical to case 1. In case 4', the process has a period equal to one. The
synchronization and thoughput rate are identical to case 4. However, the second and third inputs
remain blocked in the input places of the SA transitions. Thus, the organization can use only
three out of its five resources to process the remaining inputs.

In case 2' and case 3', the performance of the organization is totally degraded by the fact that the
whole process is blocked. The execution has reached a deadlock, i.e., no transition can fire. As
it is shown in Table 2, five inputs remain in the organization which cannot produce a response
for any of them. Because DM, and DM, do not use the same strategies, the two items of
information sent by DM, to DM, after the Situation Assessment stage do not correspond to the

inputs that DM, is processing.

Thus, since DM, has to wait for the information that he needs in order to proceed and since DM,
has to wait for the commands from DM to arrive, the activities of both decisionmakers are
blocked. This illustrates a situation where the lack of coordination leads to a severe degradation
of the effectiveness of the organization.

Figure 9 shows the Petri Net representation of the state of the organization when the deadlock

X

occurs. Places ps and pg contain tokens that do not have the same attribute Ty, and consequently, Y
-
rule 1 of enablement of transition IF, is not satisfied. Since the resource places py; and py3 are ::-:
> o

k g

empty, transitions SA | and SA, cannot fire and the tokens that have the same attribute T, as the

P
P

el

tokens in pg are blocked in p,.

.,
4

This type of situation would never occur if SA; and SA, used the LFIFO rule for the sequencing

h
s

<

of the inputs: indeed, the interactional transitions would always fire as soon as the places of their

Yy
P4

)l

preset contain a token since these tokens would necessarily have the same attribute Tp,.

XN
2

CONCLUSIONS

K=

The purpose of this study was to investigate the concept of coordination in information

-
"'.l

processing and decision-making organizations. The framework of the research is a quantitative
methodology for evaluating alternative organizational structures. The concept of coordination
: was defined as relating to the extent to which the decisionmakers constitute a team; to the

4

=\

4 l, [’ e )

AN
PR

consistency of the information exchanged by the different organization members; and the

synchronization of the various activities. The latter bears directly on the dynamics of the

26

. - I T e Y

T AT AT TR A LR P D6 i T LT T W ~
A A, L OIS AN NCS, £ S ORI CL O, (RN (LG N




b e gpt (a0 @it dat Bat gad at Bav faf v @0 gan Janged AN & . R FEATRX T X YT S A A N Y L VR W Y I LR LY

y P12 DM,
P2 N34y Py ;1 >8 RS Y P10

. ' 2

o —~

o P

R psb 8 O<

.’1'- p t p
; o O A OA—O—
V'SAy pg TF) P SPAN

:
]
it
;5‘,'

]
i P13

s
Y : N o
._;:; Fig.9 Two-Person Hierarchical Organization with Deadlock
w

1,0

¢ . . . L. . . .

el decision-making process. A decision-making organization is perfectly synchronized for the task
w at hand if none of its members waits for the information that he needs at any stage of the process.
’. . - . - 3 3
‘§:: If it is not the case, the value of information when it is actually processed may have decreased,
:{." leading to a degradation of the organizational effectiveness. The consistency of information
s shows the extent to which different pieces of information can be fused without contradiction.

XY

f:: The modeling of processes that require coordination has been developed using the basic model
ot . . . . . -
ft’(s of the single interacting decisionmaker refined through the use of the Predicate Transition Net
, .‘ - 3 » - 3 . .
o formalism. In particular, tokens representing symbolic information carriers have been
- differentiated on the basis of three attributes which account for characteristics that
Kj
::' decisionmakers can use to discriminate between various data.
;

)
" The protocols of interactions between organization members model the fact that they must refer to
,;. the same input when they fuse data. Different strategies for selecting the information to process
N . .
B have been introduced, e.g., FIFO or priority order between classes of data.
:::'
‘Q;.

W The evaluation of the coordination is based on a characterization of the firing of interactional

: transitions in the Predicate Transition Net model developed. Furthermore, two measures are
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introduced in order to perform a quantitative evaluation of the coordination of decision-making
processes, i.e., the degree of information consistency and the measure of synchronization.

A simulation system for Petri Nets has been developed. Ordinary Petri Nets, Timed Petri Nets
and Predicate Transition Nets can be simulated. The dynamics of different decision-making
processes can be investigated by simulating the execution of the corresponding Petri Net models.
Quantitative results concerning the processing delays and the synchronization of the activities
4 have been obtained.
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