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ABSTRACT

Variable structure organizations are defined as decisionmaking organizations in which the

pattern of interactions between decisionmakers can vary. A quantitative methodology is

developed to evaluate their Effectiveness in the achievement of their mission. A model of

these organizations using Predicate Transition Nets is presented, in which the decisionmakers

are treated as an ordinary resource. The decisionmakers are modeled )y tokens that move

from one pattern of interactions to the other, depending on designer defined protocols. An

example of a three member variable structure organization carrying out an air defense task is

presented. In that organization, the Headquarters sets the pattern of interactions of the Field

Units according to the characteristics of the incoming signals. Ranges of mission

requirements are computed in which this variable organization is the most effective, when

compared to corresponding organizations with a fixed structure of interactions.

Thesis Supervisor. Dr. Alexander H. Levis
Title: Senior Research Scientist.
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CHAPTER I

INTRODUCTION

1.1 PROBLEM DEFINITION

Most of the developments in decision and control theory have addressed the problem of

analyzing the performance of a given organizational form, or of designing an organization

whose performance would meet some specific set of requirements. The models of

organization which had been then obtained had always had a fixed structure. Some changes

in the topology of the interactions between their components may have been proposed, but

they have always remained incremental.

There is indeed a need to investigate the whole set that the variable decisionmaking

organizations constitute. They are organizations in which the interactions between the

decisionmakers can change, or which can process the same task with different combination

of resources. Variable structure organizations could be a possible design solution when no

fixed structure organization can meet the requirements of the mission. The concept of

variability in such a context could also lead, later on, to the investigation of properties such as

robustness or survivability. The modeling of variability in organizations constitutes then

another step towards the representation of more realistic decisionmaking organizations.

Three main problems need to be addressed in order to fully assess the property of

variability.

First, a framework needs to be developed which will specify the class of organizations

under consideration, and which will allow the mathematical formulation of the problem of the

comparison of organizational designs. Such a framework should include both fixed and

variable structure organizations.

Second, the concept of variability has to be sharpened; a distinction between different

types of variability should be made based on which parts of the organization vary, and which

do not, and on when they do so. The evaluation tools have then to be adapted to each kind of

variability.

15
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Third, a modeling tool needs to be developed to represent variable organizations. It
should have high enough modeling power to account for significant features of the

organizations, but also convenient enough to provide models that are easy to understand, and

figures that are easy to interpret. A compromise between modeling power and illustrative

power has therefore to be found.

1.2 THEORETICAL BACKGROUND

A quantitative methodology for the modeling, evaluation, and design of decisionmaking

organizations has been developed at the MIT Laboratory for Information and Decision
Systems (Boettcher and Levis, 1982; Andreadakis and Levis, 1987; Remy et al, 1987).
The organization has been depicted as a system performing a task in order to achieve a
mission. The extent to which it does so is assessed by using the formalism of the System

Effectiveness Analysis (SEA) methodology (Martin and Levis, 1987).

From a structural point of view, the processing of the task is achieved through the

execution of procedures or algorithms that the decisionmakers have. These algorithms are

connected together with a relation of precedence which is conveniently represented with Petri
Nets (Tabak and Levis, 1985). The internal processing of a given decisionmaker is modeled

so that it has a four stage structure, which allows to differentiate the types of interactions that

two decisionmakers can have.

The mathematical formulation of the problem of the modeling of variable structure

organizations is based on the theory of Predicate Transition Nets, which is an extension of
the Petri Net Theory using the language of first order predicate logic (Genrich and

Lautenbach, 1981).

1.3 GOALS AND CONTRIBUTION

In this Thesis, the Predicate Transition Net formalism as presented in Genrich and

Lautenbach (1981) is adapted to account for the particularities of variable structure
organizations: their resources, their patterns of interactions, and their switching protocols. In
particular, the connectors are defined in an original manner as sets of combinations of
individual tokens, instead of a formal sum of variables. A new formulation of the conflict

resolution rules is also proposed, and then applied in the context of the modeling of variable

16
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organizations.

The decisionmaking organizations are then viewed from a new perspective. The types of

interactions which can exist between the decisionmakers are first considered without taking

into account the identity of the decisionmakers themselves. The latter are represented by

individual tokens (instead of subnets of a Petri Net) moving from one interaction to the other,

and as such, are treated in the same manner as any other resources needed for the processing

of a task. Interactions, resources, and tasks are then modeled independently, and this new

way of describing decision making organizations allows the development of a modeling

methodology with a modular architecture. By modular is meant that the representation of the

basic components of the information processing (interactions, resources, and tasks) is done

separately in separate modules, and that modifications in one module can be made without

affecting the others.

The System Effectiveness Analysis is extended in order to be applicable to variable

structure organizations. The concept of variability is made specific by distinguishing

different types of variability, depending on whether the organization adapts its pattern of

interactions to changes in the tasks it processes, or in the environment, or in the nature of its

components. A Measure of Effectiveness for variable organization is then defined for each

case.

The overall procedure is illustrated by an example of a three member decisionmaking

organization carrying out an air defense task.

1.4 THE THESIS IN OUTLINE

The Thesis is organized as follows: chapter II defines what is meant by decisionmaking

organization and limits the scope of the Thesis. It reviews the main features of System

Effectiveness Analysis, and gives to it a mathematical formulation. It adapts these concepts

to the case of variable mucture organizations.

Chapter III and chapter IV develop the Predicate Transition Net formalism so that it can

be used for quantitative modeling. The first of these two chapters presents the primitives

used in that formalism, whereas the second one addresses some more advanced topics, such

as the problem of conflict resolution, and the linear algebra representation.

17

Lk



Chapter V first illustrates the problems associated with the modeling of variable

organizations with Petri Nets with switches, and then integrates the concepts of the previous

chapters by developing a modular methodology for the modeling of variable structure

organizations. Chapter VI provides illustrative examples of the application of the

methodology.

Chapter VII illustrates the whole procedure with an example of a set of three design

candidates for a given mission, one of which is variable. It develops a convenient

representation of the effectiveness of these candidates, which allows to select the most

effective candidate for a specific mission.

Finally, chapter VIII concludes the Thesis by summarizing the results and suggesting

some developments for further research.

As it befits a Thesis on organizations with variable structure, an illustration of the

articulation of this Thesis in different chapters is provided in Figure 1.1. In accordance with

conventions used in such representations, a line from chapter A to chapter B means that

chapter A has to be read before chapter B.

I t~ha1)er III1 tertr~ V hpe I

Figure 1.I1 Structure of the Thesis.
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CHAPTER II

EVALUATION OF VARIABLE STRUCTURE ORGANIZATIONS

This chapter provides a review of the methodology used for the evaluation of

decisionmaking organizations (DMO's). First it defines the class of organizations which are

considered in this Thesis. The concept of variability in organizations is then introduced,

and three different types of variability are distinguished, depending on what feature of the

organization varies. A relation is established between these three types of variability and the
poperties of flexibility, reconfigurabilty, and survivability that an organization may exhibit.

Finally, the methodology for assessing the effectiveness of DMO's is adapted to the class of

variable DMO's.

2.1 DECISIONMAKING ORGANIZATIONS

2.1.1 The System

The concepts which characterize DMO's are introduced in this section.

A system (from the Greek 'standing together') is a 'set of objects together with the

relationships between them, and between them and the environment, so as to form a whole'.

A set refers here to a well-defined collection of elements where it is possible to tell beyond

doubt whether a given object belongs to the set.

The objects are the components of the system. They are considered from a static

viewpoint. They are the physical, technological or human components which receive,

manipulate, generate, and transmit information. They include the decisionmakers, the

physical communication links and the related devices, the computers, displays and other

decision-aids.

The relationships are the links which tie the objects together. They can be of different

kinds, such as symbiotic, if the connected parts of the system can not continue to function

separately; they can be synergistic, if the cooperative action produces a greater output than the

sum of the outputs of the separate parts alone; they can be redundant when they simply are a

19



duplication of existing links. These relationships can be thought at three different levels: they

may address the physical arrangements of the components, or the relations linking the

components, or the rules and protocols describing the interactions between the components.
The demarcation line between the relationships and the components is sometimes difficult to
sketch: the chips in a computer are an example of that; they are components like any other
element of hardware, but they may work like pieces of software and interact with the

relationships between components.

The system forms a whole because of these relationships, and also because it carries out a

function. In the case of an organization (conceived as a system with human components),
the extent to which it carries out that function depends mainly on the commonality of goals of

its decision makers, or in other words, on the extent to which they constitute a team.

A boundary must be drawn which defines what is to be included in the system, and
what is to be excluded. It sets the limits of the part of the world which has to be structured.

Outside the boundary lie the environment and the context. The system is included in an

environment, which in turn is part of a context. The environment can act upon the system,
and the system has some effect on the environment. The context denotes the set of
conditions and assumptions within which system and environment exist (Bouthonnier and
Levis, 1982) (Fig. 2.1). Drawing the boundaries of the system may mean to isolate it, but
certainly not to ignore what lies beyond. The environment is also modeled in the sense that
the system has its own representation of it.

Context

r__nvironment

System

I-_

Figure 2.1 System, Environment and Context.
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The interface between the system and the environment is composed of the sensors and

of the effectors. The sensors sense the environment and send information as inputs to the

systm. Their dual parts, the effectors, achieve the responses that the system has selected for

the inputs it has processed, and in doing so, may modify the environment by transforming

these responses into real and tangible actions. There is in fact no precise distinction between

sensors and effectors, except when they are simple devices; but when they are themselves

complex subsystems such as aircraft or submarines they may be sensors or effectors

depending on the mission they have been assigned. The question of including the sensors

and the effectors inside the boundaries of the system is mission-dependent as well. This ".

issue is still debatable and must be considered in each particular case. I

2.1.2 Decisionmaking Organizations

The organizations under consideration in this Thesis are restricted to the class of teams of

boundedly rational decisionmakers (DM's) (Boettcher and Levis, 1982). Each DM is well

trained and memo yless. He processes the information he receives with his algorithms which

are deterministic, ie., their output is a deterministic function of their input.

A DM may possess a set of alternatives, i.e., a set of algorithms among which he

chooses one to process his input. In that case, he has knowledge, in a probabilistic sense, of

the decision ruling the choice among these algorithms. The probability distribution of that

choice is the DM's strategy; it can be conditioned on the input he processes. Each DM's

strategy is called an individual strategy.

The organization functions in a hostile environment where the tempo of operations is fast.

The DM's have therefore to perform under time pressure. Inputs or observations are

generated independently and repetitively, to which the DMO is supposed to respond in a

timely manner. Typical examples of such DMO's can be found in the C3 (Command,

Control, and Communications) area, such as a fire support system or an air defense

organization.
"p

The organization is described with a set of parameters, which are independent

quantities specifying the system. For example, system parameters can be communication

delays between components, failure probabilities associated with the links or with the I,
elements of the organization, or characteristics of sensors and effectors.

21



The DMO is performing a mission which is also specified by a set of parameters; these

parameters can be the tempo of operations, or the type of threats.

2.1.3 Measures of Performance

Measures of Performance (MOP's) are quantities which describe the system

properties. In the military environment, an attempt has been made (Rona, 1977) to develop a

unified conceptual framework for the evaluation of C3 systems; under the transformation of

these systems into a so-called canonical form, where sensors, decisionmaking units,

effectors and boundaries are clearly distinguished, a set of MOP's can be proposed, allowing

these systems to be compared, and eventually improved. This unification of the

interpretation of the basic concepts (as stated in sections 2.1.1 and 2.1.2) is indeed the basis

of the evaluation process for the DMO's.

The MOP's are functions of the system parameters and of the organizational strategy

adopted by the organization. If we denote by

(parj) j the system parameters,

D the organizational sategy,

then m MOP's can be defined as Or

MOPi = fi(D , parl,-, Parp), for i -1...m. :

Two MOP's will be considered in this Thesis, namely Accuracy and Timeliness.

Accuracy, denoted by J, is a measure of lhe degree to which the actual response of the

organization to a given input matches the ideal response for that same input.

If we denote by

X the alphabet of inputs xi: X - (xl, x2, ... , Xn),

Y the alphabet of outputs yj: Y={YI,Y2,...,yq),

p(xi) the probability of occurence of the input xi, with p(xi) = 1,

yd(xi) the ideal (or desired) response to xi,
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yaj(xi), j =1,-.-,q, the response that the DM0 actually produces,

C(Yd, Ya) the cost of the discrepancy between the ideal and the actual
responses,

then a measure of Accuracy of the DMO is:

J = p(xi) I C(yd(xi), Y3j(Xi)) .P(Y~(xi) I Xd.(2)
i=1 j-1

J is therefore the expected value of the Accuracy measure, and its expression as stated

above will be retained in the sequeL

Timeliness, denoted as T, is the ability to respond to the input with a time delay Td 5

which is within the allotted time [Tmi,TmaI, called the window of opportunity.

If we denote by

Td(xi) the average processing delay of xi, '

1lQ the characteristic function on the set ~

then a measure of 7Tuneliness of the DM0 is:

T= p(x. I~ Tmn 7&] (d(Xi)). (2.2)%
5%

The underlying assumption here is that the window of opportunity is independent of the

input xi. In fact, for practical reasons, the expected value of the processing delay will be
chosen instead, as a measure of Timeliness, in the sequel:

23



- 4 a FUR

n

T= P(xi) Td(xi). (2.3)
i--I

2.1.4. Measures of Effectiveness

The allowable values of the system parameters are defined as a set P in the parameter

space fp. The allowable organizational strategies are defined the same way as a set S in the

strategy space Clst. Consequently, when ((pi), D) varies over its allowable range,

x = (T, J) describes a locus in the MOP space aMOP called the system locus Ls.
Symmetrically, and independently, the mission requirements are translated in terms of

requirements on the MOP's, generating the mission locus Lm. The comparison of Ls and Lm

leads to Measures of Effectiveness (MOE's).

The parameters are usually held constant. The system locus is therefore parametrized by

the strategies (Fig. 2.2). Since a given point in Ls can be reached for more than one

organizational strategy, the values of the MOP's are not equally probable. A probability

distribution f on Ls has to be defined in the MOP space, as

f: Ls -- [0,1]

x --+ f(x), where x = (T, J).

We recall the following elementary notation:

f: 2 -+ Q, an application from a to Q'. .,
4'

L(92), the set of subsets of C.
V A e L(Q), f(A) = {y es I' IV x e A, f(x) = y).
V Be L(Q'), f' 1(B) = {x e Q I f(x) e B).
V(A), the volume of A subset of a: V(A) = fa 1 A dc,

where dt is the elementary volume in the set Q.

Then the application f: Ls -- [0,1] defined above is characterized by the following

property.

-4

'
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V Ae L(L), f(A) = V(f (A)) (2.4)
V(f _(L))

The MOE which will be used throughout this Thesis is defined as follows:

E f f(x) dx. (2.5) "

LrmLL rl)

In the example of Fig. 2.2, a given organizational strategy is described by a pair (uI, u2)

in [0, 1] x [0, 1], which constitutes the strategy space ist. The function

9: (ul, u2 ) - x(uI, u2), where x(ul, u2 ) = (T(u l , u2), J(ul, u2)),

realizes a mapping from the strategy space to the system locus in the MOP space. In this

example, Tmin has been set equal to 0, for convenience.

The methodology developed above can be applied then for the explicit computation of the

MOE E (eqs. 2.4 and 2.5). For a given mission described in terms of a Timeliness

requirement T and an Accuracy requirement J% E is computed by evaluating the volume of
't

the strategy space which is mapped into the part of the system locus which meets these

requirements, i.e., LsriLm. .

The mathematical expression yielding E is therefore:

E (J, T) = J f(x). I[0.. l X (OJXt(x) dx (2.6)

"ft

which gives the following when the integration is done in the strategy space:
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E W, )) (2.7)

dcu

E defines the degree of coverage of the mission requirements by the system capabilities.

E does not discriminate between two system loci having the same intersection with Lm (and

same probability distribution of this intersection), but different shapes outside Lm (Fig. 2.3).
This inconvenience is overcome when the variations of E are investigated when the mission

requirements (T < T, J < J) vary. What is obtained then is a three-dimensional locus
(T', J, E(T*, J')) called the diagram of consistency of the organization. This type of

diagram serves as an ultimate tool to evaluate the different organizations which are

considered.

2L

s

J.L

0 • u 0
0 1 1 0 T" T

sI

Strategy Space System and Mission Loci

Figure 2.2 System and Mission Loci (for Jmin 0 and Tmin = 0). 'S
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0 0 T
0 0

DMO#1 DMON2

Figure 2.3 Two different System Loci but with identical Ls n Lm.

2.2 VARIABLE STRUCrURE ORGANIZATIONS

2.2.1 Definitions

A variable structure decisionmaking organization (VDMO) is a DM0 for which

the topology of interactions between the components can vary. Symmetrically, a DM0

which has a constant pattern of interactions between its components, i.e., a fixed structure, is

called aFDMO.

The relationships which tie the components together have been defined (in section 2. 1.1)
as being of three different levels: physical arrangements, links between components, and

protocols ruling the arrangements of these links. The architecture of the organization allows

simply the topology of interactions to vary. The way it does vary is implemented in the

protocols themselves, but no matter what structure of interactions is chosen, it is still the

same organizaton.

The rules setting the interactions can be of any kind. We distinguish three types of

variability, each corresponding to characteristic properties that a VDMO may exhibit. These

* proper ties are dealt with separately in the present section, so that the concept appear clearly.
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However, a VDMO may very well have these properties (to some extent) together and

simultaneously.

* Type I variability: The VDMO adapts its structure of interactions to the input it

processes. Admittedly, some patterns of interactions may be more suitable for the

processing of a given input than others. A VDMO which sets its structure of interactions

to the one which fits the best for each input is likely to achieve a higher performance.

* Type 2 variability: The VDMO adapts its structure of interactions to the

environment. The MOP's and the locus which have been obtained depend strongly on

the characteristics of the environment as perceived by the organization. In particular, for

an air defense organization, the type of threats, and their probabilities of occurence have

been set to specific values. Now, if the probability distribution of the occurence of the

inputs is modified, then the MOP's and the system locus change, and the organization

(with the interactions set as before the changes in the environment) may not meet the

mission requirements anymore. Other types of interactions may fit better. A VDMO

which can adapt to changes in the environment may then have better performance over

the possible changes.

* Type 3 variability: The VDMO adapts its structure of interactions to the

system's parameters. The performance of a system degrades strongly when

individual components are affected by physical destruction of nodes or sensors, or

electronic interference such as jamming of communications. For example, the removal

of a link in a DMO with a fixed structure may very well mean that deadlock will occur in

the flow of information within the DMO. The organization has ceased to function. A

VDMO which is able to adopt a pattern of interactions between the components which

remain, after changes in the system parameters, can still have a non-empty system locus.

The possibility of adapting the interactions to these kinds of changes works both ways.

In other words, the performance can also degrade when a resource or a link is added to

the organization, for instance in leading to longer delays or decrease of Accuracy

through ihconsistency of information.

These three different types of variability can be related to the properties of Flexibility

and Reconfigurability, and to Survivability. Survivability is a goal, or a requirement

set by the designer of the organization. A DMO is survivable when it can still perform its
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missions, under some wide range of changes either in the environment, or in the

characteristics of the organization, or in the mission itself. The way to evaluate quantitatively

Survivability is outside the scope of the present Thesis. Nevertheless, the requirement that a

DMO be survivable can show in the extent to which it is flexible, and in the extent to which

it is reconfigurable. Flexibility means that the DMO may adapt to the tasks it has to process,

or to their relative frequency. Reconfigurability means that it can adapt to changes in its

resources or in its mission(s). Both properties overlap, and their quantitative evaluation

clearly falls outside the scope of this work. We will now adopt the framework of the three

kinds of variability and investigate the ways to evaluate the extent to which they lead to an

improvement of the effectiveness of the DMO, or the extent to which they do not.

2.2.2 DMO's with Type 1 Variability

Recall that a type 1 variable DMO is a VDMO which adapts its interactions, and hence its

functionality, to the input it is processing. The set of inputs X is partitioned in classes

(Xi)i~l,...,r , each of which corresponds to a specific pattern of interactions, called Int#i.

Int#i is associated with FDMO#i. The partition of X has the usual properties of a partition,

which are stated as follows:

r
x = xi.

1=1

V (i,j) {.... r) x{1.... r}, (i j) => (Xin Xj = 0).

Let us assume that the set of inputs that the organization has to process is already

partitioned before its processing, for example by a preprocessor. Each input xi has attached a

parameter which indicates which pattern of interactions is required for its processing. xi

becomes (xi, Int(xi)), where Int(xi) is an integer in ( 1,..., r}. In that case, there is a one to

one mapping between the set of classes of inputs Qc, = {X1,..., Xr}, and the set of possible

interactions flin t = {Int#1,..., Int#r}. In other words, since Int(x) has a constant value

when x describes X i, the function Int can be also considered as an application from Kcl to

Dint.The assumption taken simply means that the function Int is bijective.

The FDMO#i's and the corresponding VDMO are all candidates to achieve a mission

defined in the MOP space by its mission locus. Their system loci are first computed and
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depicted in the MOP space (Fig. 2.4). Then the diagram of consistency for each design
candidate is constructed. These diagrams allow to evaluate the extent to which each

organization fulfills the requirements of its mission, over the possible ranges of these
requirements. Finally, for each set of mission requirements, the candidate with the highest

effectiveness is selected. Each candidate has therefore associated a range of mission
requirements, i.e., a subset of the MOP space, in which it is the most effective design of all
the considered candidates. The representation of this partition of the MOP space gives then a
convenient tool to select the most effective organization for any set of mission requirements.

* 1*

LL

L L
m m

0 -- 'T 0 T
0 r 0 r

FDMO's (1 and 2) VDMO

Figure 2.4 Loci for FDMO's and VDMO.

2.2.3 DMO's with Type 2 Variability

As stated in section 2.2.1, a type 2 variable DMO is a VDMO which adapts its structure
of interactions to the environment. The changes in the environment are limited here to
changes in the probability distribution of occurence of the inputs (i.e., p(xi), for xi e X).
We take as an assumption that the DMO has a way to perceive these changes in the

environment, which happen on a much larger time scale than the inter-arrival times of the

inputs.

The system locus and, as a result, the effectiveness of the DMO are function of this
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probability distribution (p(xi)). For a given mission, when (p(xi)) varies over its possible

range, the effectiveness E of the DMO changes. If we denote by f~env the set of possible

modeled environments, i.e., the set of the n-dimensional vector of probabilities:

p = (p(xi))i-l,..., n ,

and Ofeas the subset of Qenv encompassing the environments which are actually considered,

then the effectiveness E. of a DMO in a changing environment is defined as the minimum

effectiveness of the organization over the possible changes of environment. In formal

language, it can be writen as:

= Inf E(p) (2.8)
p e Ofew

where E(p) is the effectiveness of the DMO for an environment characterized by its

probability distribution p.

Consider now a set of r DMO's, labelled (DMO#i)i-1 .. ,r. We define the upper bound of

the effectiveness EsuP(p) as the maximum of the effectiveness El(p) which can be realized by

all of the r organizations in the accomplishment of the same mission, for a given p. In other

words, this maximum effectiveness EsuP(p) is the following:

E5W(p) = Sup E(p) (2.9)
i - ,.,

where Ej(p) is the effectiveness of DMO#i in the environment p. Since the number r of

DMO's is finite, for any environment p, ESIP(p) is actually reached by at least one DM0. If

it is reached by several DMO's from the set (DMO#i)i=l,.... r , then by convention only the

DMO with the lowest index is retained. This index is noted i(p). We select therefore for

every environment p the organization DMO#i(p) which has the highest effectiveness:

E '(p) = Eitp)(p) (2.10)

This definition partitions i~ in subsets (!-env,i)i=1,...r, each corresponding to a specific
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DMO. The intersection of any two f~envi is the empty set, and the DMO which corresponds

to f2env, is DMO#i(p). In other words:

' (i, j) e {, .. , r}x{ ... r), (i * j) = (f')env i r fenvj 0).

V p eflenv, V i {1...r, ( p e fenv,i) (i(p) = i).

Some subsets Q.1evi may of course be empty.

Consider now a VDMO which would adopt the pattern of interaction of DMO#i whenever

the environment p lies within fenv i. This VDMO would be of Type 2, and its global

effectiveness in a changing environment could then be defined as the minimum of its local

effectiveness (i.e., its effectiveness for each environment p) when p describes K-4nv:

E (VDMO)= Inf elP(p) = Inf Sup E-(p) (2.11)
CDV e Q

P Qenv P • fenv i=I.. -.

Clearly enough, no other DMO has a higher global effectiveness than the VDMO which

has been so defined and constructed.

If the alphabet of inputs is too large, the selection process described above may very well

be intractable. In that case, the alphabet of inputs X is partitioned in R classes (Xi)i=l,...,R .

The probability of occurence of a class Xi is simply the sum of the probability of occurence

of the elements of X i.This probability is denoted by p(Xi). The approach described above

is then carried out for changes in (p(Xi)), instead of in (p(xi)). The results which it provides

can be illustrated in a very convenient way for R = 2 and for R = 3.

Partitioning of X in two classes

When R = 2, only two classes of inputs make the partition of X, namely X1 and X2.

Changes in the environment are then modeled as changes in (p1, P2), where PI+P2 = 1. The

set of possible DMO's is, say, (DMO#I, DMO#2, DMO#3), generically called DMO#i. The

System Locus, and as a result the Effectiveness of each of these organizations depend on the -

environment in which it functions (Fig. 2.5). The function Ep) is thcn plotted (t:ig. 2.6),
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which allows to select the organization with the highest effectiveness for any value of Pl,

i.e., for any value of the parameters (PI, P2) describing the environment.

: J" j J"

0 0 T 0 T" T

pl=a pl=b pl=c

Figure 2.5 Loci for changing environments.

E

DM01

c / DMO3
E (VDMO)
c

b P

0 a 1

Figure 2.6 Comparative Effectiveness.

Then, assuming that it has a way to perceive these changes in the environment, a variable

DMO, adapting to any environment p the pattern of interactions of the DMO#i which is the

most effective, would be type 2 variable.
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In this example, the most effective DMO's are the following:

0 p 1 c : DMO#1. a < p 1 5 5: DMO#2. <P 1 : DMO#3.

Partitioning of X in three classes

When R = 3, i.e., when the set of inputs X has been partitioned in three classes X1, X2 ,

and X3 , then the environment has its changes modeled by the values taken by the triplet

P = (PI, P2, P3), with PI + P2 + P3 1 .

The effectiveness E of the different DMO's is then evaluated, for every possible

environment p. The design with the highest Effectiveness is then selected, as a function of p.

A convenient way to represent the results of this analysis is to use the barycentric

coordinates of a point inside a triangle. A given environment p is represented in a

3-dimensional space by a point M of coordinates (Pl, P2, P3). Since P, + P2 + P3 = 1, the

locus of M is a triangle (A, B, C) (Fig. 2.7). The triangle (A, B, C) can be represented in a

2-dimensional space, in which the environment p is represented by a point M of barycentric

coordinates (Pl p2, p3) inside the triangle.

C p 3
3

1 . C1. C l

DMOI

'

AA

DMO#3 p1

Figure 2.7 Comparative Effectiveness.
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The triangle represents the set of possible environments Denv- The selection of the most

effective design leads to the definition of the zones L. nv within the triangle Ue, . In other

words, for any environment p in Qwv, the candidate DMO#i is the most effective among the

candidates functioning in that environment.

Then a variable DMO, which for any environment p = (Pl, p2, P3 ) adopts the pattern of

interactions of DMO#i if p e Qv., would be type 2 variable.

2.2.4 DMO's with Type 3 Variability
b

Recall that a type 3 variable DMO is a VDMO which adapts the structure of its

interactions to changes in the system parameters. Many of these parameters may be actually

required to describe the decisionmaking process, and it seems unrealistic indeed to investigate

the impact of each of them on the Effectiveness of a given DMO. There is a need therefore to

identify some generic parameter types for which a tool for assessing the impact on the

Effectiveness of the organization has to be developed.

Two main types of pameters are selected.

- those that describe the characteristics of the communications between the DM's, or

between the DM's and the environment, or between the DM's and the decision-aids

that they may use in their processing of the task

- and those that characteristize the components of the organization, such as the sensors

and effectors, the decision-aids, the decisionmakers themselves, or any other

resource used by the organization.

Characteristcs of the cmmunicazwns

Two groups of characteristics (or attributes) can be defined, one addressing the time

delay induced by the communications, and the others addressing the reliability of the

information they carry (Boudxonnicr, 1982).

The time delays of the communication links can be critical for the Timeliness of the DMO.

They can be affected by the environment, or by the limited capacity of the links.
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The delay to transmit a message can be modeled by associating a transmission time to any
communication link and multiplying it by a factor k defined as the following:

k= 11(1 -a)

where a is the degree of jamming (Andreadakis and Levis, 1987). The degree of jamming

varies between 0 and 1. When a is equal to 0, there is no jamming in the communication -

links. When a is equal to 0.5, for example, there is a twofold increase in the communication

delay. When a is equal to 1, no message can be transmitted through the corresponding link.
When a particular link is too jammed, the organization may achieve higher Effectiveness by

reconfiguring and performing with a pattern of interactions where the use of that link is

minimnized.

The same remarks apply to the reliability of the links. It can be affected by the

environment (aging, weather) or by the enemy through his electronic warfare capability. If a

given link gives unreliable information, the organization may have a higher Effectiveness by

changing the pattern of its interactions.

Consider a set of DMO's (DMO#i)i=l,... achieving the same mission. We select a set '-

QCo m of communication attributes which are considered to affect the Effectiveness of the
organization the most, or the most likely to vary. The current element of icom is denoted as

q. As in section 2.2.3, the maximum effectiveness Es"P(q) is defined as the upper bound of

the Effectiveness which can be realized by all the r DMO's for a given set q of attributes of
the communication links. ,wm is partitioned in subsets Qcom,i which correspond to ranges
of the communication attributes for which DMO#i achieve the highest Effectiveness.

I1

A variable DMO which adopts the pattern of interactions of DMO#i when q is in Qcom,i is-"

type 3 variable, and its global effectiveness can be evaluated as the minimum of EsUP(q) when

q describes the set Q of allowable attributes.

Characterisdcs of de canponents
We consider in this section the attributes which describe the type of resources used by the

organization, and in particular the decisionmakers themselves. A decisionmaker can be

associated with a set of attributes that determine his identity as far as the model of the
organization is concerned. In other words, two DM's with the same attributes could be
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interchangable. The same argument holds for the characteristics of the resources used by the

organization. The impact of variations of these attributes on the Effectiveness of an

organization can be treated in the same manner as in the previous section.

Now the removal of a resource (or of a decisionmaker) from the organization is not

gradual, as the variations of the attributes already described. The same methodology

(partition of set of allowable values for the attributes) is not appropriate in that case, but

these changes are still included in type 3 variability.

In the two last sections, a methodology for the evaluation of the effectiveness of variable

DMQ's has been addressed. The issue of when changes in the environment or changes in the

system parameters occur, however, has not been addressed. We assume that the

organization can determine such changes, and then trigger the reconfiguration of its

interactions. What is of interest here is only the evaluation of such variable DMO's.

However, before being evaluated, they need to be modeled; the mathematical tools used to

model them are developed in the next two chapters.
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CHAPTER III

PREDICATE TRANSITION NETS

Petri Nets are a very convenient tool to model and analyse concurrent and asynchronous

processes. Since the information processing in a DMO exhibits these properties, Petri Nets

have been used for their modeling (Tabak and Levis, 1985). They can show explicitly the

structure of interactions between DM's, and allow their study at different levels of

aggregation. This chapter reviews the basic definitions of the Petri Net formalism. More

introductory material can be found in Peterson (1981), Brams (1983) and Reisig (1985).

The Ordinary Petri Net formalism, however, is unable to treat large nets in a simple way, nor

can it represent nets with changing structure. Its grammar has to be extended. One possible

extension is the Predicate Transition Net formalism (PrTN). Since this formalism has been

presented and developed in the literature under several different forms, all with the same

basic ideas, we have chosen a particular approach called High Level Petri Nets (Genrich and

Lautenbach, 1981), which seems the most intuitive. This chapter provides an introduction to

these nets, but the motivation for their use in the modeling of variable DMO's (VDMO's) will

appear in chapter V. Introductory material on the general theory of PrTN's can be found in

Brains (1983).

3.1 PETRI NET REVIEW

3.1.1 Basic Definitions

Petri Net

A Petri Net is a bipartite directed graph represented by PN - (P, T, 1, 0), where:

P = {PI, P2,.... Pn) is a finite set of n places.

T = {t1 , t2,..., ti} is a finite set of m transitions.

I is a mapping from PxT to {0, 1}, corresponding to the set of directed arcs

from places to transitions. l(p, t) = I means that the place p is connected to the

transition t, in the sense that there exists a directed connector from p to t.
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0 is a mapping from TxP to (0, 1) corresponding to the set of directed arcs

from transitions to places. 0(t, p) = 1 means that place p is an output place of

transition t.

An example of a Petri Net is shown in Fig. 3. 1.

Figure 3.1 Petri Net PN1

In the case of PNl,we have: -'

P = (P IP2,P3, P4),
T = (tj, t2 , t3 ),

and:

I(p, t1)= I Rp2 t) = 0 I(p3 , ti) = 0 I(P4 , tI)= 0

I(pI, t2 ) =0 I(p 2, t2 ) =1 I(p 3, t2 ) =0 I(P4 , t2) =O

I(PI' t3 ) = 0 I(P2. t3) = 0 I(p3, t3 ) = 1 I(P 4, t3 ) = 0

0(t1 , P1) = 0 00t2, PI) =0 04t3 , P1I) = 1

00t1 , P2) =1 04t2 , P2) 04 3 , P2)= 0

00t1, P3) = 1 04t2 , P3) =0 04t3 , P3) = 0

00t1, P4 = 0 00t2, P4) =1 04t3 , P4 = 1
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A Node is either a place or a transition.

A Petri Net is Ordinary when the mappings I and 0 take their values in { 0, 1 ). All the

Petri Nets we consider in this Thesis are Ordinary.

A Petri Net is Pure if and only if it has no self loop, i.e., no place can be both an input

and an output of the same transition. PN1 is pure.

We will denote throughout this Thesis the set of integers by Z, and the set of

non-negative integers by N.

Marking

A Marking of a Petri Net PN is a mapping M from P to N which assigns a non-negative

number of tokens to each place of the net. M is represented as a (nxl)-vector of non-negative

integers.

In the example of Fig. 3.1, since none of the places of PN1 contains any token, the

marking of PN1 is:

0

0
M 0 =

0

-0

Firing

A transition t of a Petri Net PN is enabled for a marking M if and only if for each place JP

of the net, we have: M(p) > I(p, t). In other words, each input place of t must contain at

least one token.

When a transition t is enabled, it can fire, removing one token from each of its input

places, and adding one in each of its output places. The new marking M' reached after the

firing of t is defined as follows:

41
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Vp4E P, M'(p) = M(p) + O(t, p) - I(p, t) (3.1)

Reachability set

The sequential firing of transitions til, tj2, ..., tis is denoted:

aS = tis ti(s-1) til.

The set of all the firing sequences which are feasible in PN, with M0 as an original

marking, is called T*(MO). When a transition t is involved in a firing sequence a, it is

denoted as:

t e a.

The marking M of the net after the firing of a sequence ar from the original marking M0 is

equal to M = o(M0 ). Then, given a Petri Net PN with an initial marking M0 , we call

reachability set of M0 the set of all possible markings of PN reachable from M0 by some

sequence a of allowable firings of transitions:

R(M0) = {M 1 3 a eT*(MO), a(M0 ) = MI. (3.2)

If the initial marking of PN1 is: MO (0, 1, 0, 0)T, then the reachability set of M0 is:

R(M0 ) = {MO, MI), where M1 = (0, 0,0, )T.

3.1.2 Linear Algebra Results

Incidence matrix

The structure of a pure ordinary Petri Net can be represented by an integer matrix C,

called the incidence matrix, whose elements Cij are:

Cij = O( tj, Pi) -I( Pi, tj), for 1: i < n, 1< j < m. (3.3)

C can therefore only take the values 0, 1, and -1.

We call C+ and C- the following integer matrices: C+ = (C+ij) = (O(tj,pi)), and
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C " = (C ij) = (I(Pi,tj)). %

The relation between C, C+, and C- is then obviously: C = C+ - C.

The incidence matrix of PN 1 is indicated as follows.

-1 0 1

1 -1 0

C(PN1) = 0,1 0 -1 ;

0 1 1

Firing a transition

The new marking M' reached from M after the firing of a transition tj enabled by M is:

M'=M+C Nj (3.4)

where Nj is the (mxl)-furing vector (Sjk)k=.... m and 8, the Kronecker symbol.

In the example of PN1, with M0 = (0, 1, 0, O)T, if we consider the firing vector

N1 = (0, 1, O)T, then we have:

0 -1 0 1 0

1 1 -1 0 0

M1-M0+C(PN).N,= 0 + 1 0 -1 0

0~ 0 1 1 _0 1

S- invariants

A S-invariant is a n-dimensional non-negative integer vector X of the null-space of CT,

i.e., such that:

CT X=O.
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Support
The set of places whose corresponding components in X are strictly positive is the

support of the invariant, noted <X>. The support of an invariant is minimal if it does not

contain the support of any other invariant but itself and the empty set.

S- components
The S-component associated with an S-invariant X is the subnet of PN whose places

are the places of X and whose transitions are the input and output transitions of the places of
X.

Theorem

X is a S-invariant of PN iff for any initial marking M0 and for any marking M reachable

from MO, we have:

X' M = X' Mo . (3.5)

The proof is straightforward, when Eq. (3.4) is invoked.

3.1.3 Properties of Petri Nets
1.

Two properties that Petri Nets can have and which will be relevant in the further

development of this Thesis are Boundedness and Liveness.

Boundedness
A marking M0 is bounded if and only if there exists an integer k which bounds the

number of tokens of any place of the net for any marking in the reachability set of M0 , or, in

other words, if:

3 k e N, V M e R(M), V p P, M(p) < k. (3.6)

A Petri Net is structurally bounded iff it is bounded for any initial marking'M 0 .

PN1 is not bounded since for: M0 = (1, 0, 0, 0)T, the number of tokens in P4 can be

arbitrarily high.

VIV V.



Liveness

A marking M0 is live (or deadlock free) if and only if for any marking M in the

reachability set of M0 , there is at least one transition t which is enabled:

VMe R(M),3 t e T, 3a T*(M), tG e. (3.7)

A Petri Net is structurally live iff it is live for any initial marking M0 .

PN1 is live for M0 = (1, 0, 0, O)T, but is not live for M0 = (0, 1, 0, 0)T.

3.1.4 Petri Nets with Switches

The grammar of ordinary Petin Nets has been extended to take into account the possibility

of alternatives in the firing of a transition (Levis, 1984). A new kind of transition is defined,

called a switch. A switch is a node of the Petri Net which can only be connected to places,
which is enabled whenever there is at least a token is each of its input places, and when it
fires, puts a token in only one of its output places. The output places of the switch are called

the branches of the switch.

For example, the switch sI in the Petri Net PN2 (Fig. 3.2) has two branches pI and P2.

VI
Pl tl1

3

Figure 3.2 Petri Net with switch, PN2.
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The decision rules which determine the branch of the switch which is activated in the

firing process can be virtually anything. They can be deterministic functions of the input of

the switch, or stochastic, i.e., defined as a probability distribution over the set of branches of

the switch. They can also be dependent on the state of the entire net.

Petri Nets with switches are represented analytically by an incidence matrix which is

(nx(m+s)) dimensional, where n is the number of places in the net, m, the number of

transitions, and s, the number of switches.

The Petri Net with switch PN2 (Fig. 3.2) has then the following incidence matrix:

0 0 1 -1 P0

-1 0 0 1 P1
C(PN2) = o -1 0 1 p2  .

1 1 -1 0 P3 .

t t3 S1

The incidence matrix accounts only for the topological structure of the net It does not tell

anything about the nature of the decision rules of the switches.

3.2 PREDICATE TRANSITION NETS: PRIMITIVES

As stated in the introduction of this chapter, we shall call Predicate Transition Nets

(PrTN's) the formalism introduced by its original authors (Genrich and Lautenbach, 1981)

under the name of High Level Petri Nets. The formalism developed in the present

Thesis is slightly different from the one of High Level Petri Nets, as described in the

literature. Some specific features, such as the meaning of the connectors, have been added to

suit better the systems these nets will be used to model. .|

In PrTN's, the tokens have an identity: they are objects of more generic classes called

variables. They are thus individual tokens, and as such, are the arguments of Predicates,

which are associated with places, and of the formulas, which are associated with transitions.

The transitions fire according to their built-in formulas.
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These nets have a fixed part and a variable part, which are represented separately. The
fixed part is an ordinary relational structure, comparable to that of Ordinary Petri Nets. It is

called the support of the net. The variable part consists of the annotations of the net. The

variable relations between individual tokens appear at the places of the net: they are

Predicates, or relation symbols. The variable functions, according to which the individual

tokens operate, appear at the transitions of the net: the transitions have attached an operator

(or formula), or function symbol. Relation and function symbols are formally described in

terms of the language of first order predicate logic. This section, however, will not enter in

much detail into the formalism, but will describe the relevant concepts at their intuitive level.

PrTN's are then very convenient for the treatment of processes which involve tokens

with an identity, distinguish among them, and establish variable relations between them.

3.2.1 Tokens

Definidon

Each token may have an identity. If it is the case, it is called individual token. The

set of individual tokens of the net is partitioned in classes called variables. A given variable

can also receive different names.

Exai.ple

For example, we define the variable x as a variable which can take the identities a, b, or

c. In other words, the allowable alphabet of the variable x is the set x:

= a, b, c).

The variable x can only take one of these three distinct identities. If a, b, and c are

themselves variables, then there would exist some instances in which they could have the

same identities. However, as far as x is concerned, they are distinct individual tokens, and

are treated that way. Though x has been defined as being allowed to take its identities only

from the set I a, b, c), more than one instance of a given individual token can coexist in the
net, or even at the same place in the net.

The variable x can also be called y, or z:

%%
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x= -z-= (a, b,c}.

Unary and n-ary variables

Variables like x are called unary. They are variables which consist of only one

component. Unary variables can be aggregated in n-ary variables which are then

represented as follows:

==z= {a, b, c.

<x&> = {<aa>, <a,13>, <b,y>, <c,8>).

<S, > = (<a,b>, <a,a>, <ac>).

<x,u> is a 2-ary (or binary) variable made up with the unary variables x and u. Although

x and u have had their respective identities defined as elements of sets, the identities that

<x,u> can actually take are restricted to the indicated set. Finally, x can be aggregated with

itself, in which case two different names for x have to be used.

Note that had the alphabet of <x,u> been restricted to { <a,a>, <b,b>, <c,c> }, <x,x>

would have been an acceptable notation. Note also that <x,u> * <u,x>.

The reason why tokens can be aggregated together according to some predefined rules is

that a means is provided for relating individual tokens and for making them move together

within the net in the firing process. Then tokens of different kinds can stay in the same

place, and be the arguments of the same predicate. (see section 3.2.2, Places).

The tokens which have no identity, i.e., are indistinguishable, are labeled € (for "no

color"). Such tokens are considered as elements of a 0-ary variable.

3.2.2 Places

Definition

A place p of a PrTN is associated with a n-ary variable x. It may also be associated with

a Predicate H, which in that case is n-ary as well. The predicate H(x) is a proposition with

changing truth value whose arguments are the components of the variable x. A place p can

only host individual tokens of the same variable x attached to p.
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For example, a place p allowing tokens of variable <x,u> is associated with a predicate

H(x, u). This Predicate is a relation symbol, which states a property that individual tokens

of variables x and u have when they stand together at that particular place. If p contains only

one individual token <a, a>, then H(a, a) is true, but H(x, u) is false for any <x,u> such

that (x * a) and (t * a). If p contains two tokens, namely <a,a.> and <a,3>, then H(x, u)

is true for each of these two identities of <x,u>, and only for them.

'

Example

An example of what the predicates can be is the following. Assume that in the formalism

of modeling the decision process in a DMO with a Petri Net, the tokens have an identity: they

are elements of the alphabet &. If the information process is modeled by a Petri Net

(Fig. 3.3) whose two transitions are respectively labeled as the Situation Assessment stage

and the Response Selection stage, then its three places, which can all carry tokens of variable

x, are associated with the following predicates:

p t pt
1 t P2  2 P3

(SA) (RS)

Figure 3.3 Predicates in PrTN

P,: Hl(x) = The input x is ready to be processed in the SA stage'.

p2: H2 (x) = 'The input x is ready to be processed in the RS stage'.

P3: H3 (x) = The input x has been processed completely'.

If p, contains a token a, then HI(a) is true: the input represented by the token a is ready to

be processed by an algorithm in the SA stage.

Places supporting indistinguishable tokens o are just like usual places in an ordinary Petri

Net (Fig. 3.4). For completeness, these places are associated with 0-ary predicate; a 0-ary

predicate H in a place p has no argument like a variable. H is true whenever there is at least
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one token € in p.

Places need not be associated with any predicate at all. The predicates translate the
relations between tokens in terms of what these tokens represent and of what the net is '

modeling. When the structure and behavior of the net are the only concerns, they can be left
aside in the analysis of the net.

Marking

The marking of a PrTN with n places and m transitions is a n-dimensional vector whose

components are the formal sum of the individual tokens present in the places.

For example, a place p of the net containing the individual tokens a and b would have the

following marking:

M(p) = a + b.

Formally, the Marking M(p) of a place is an application from x (i.e., the alphabet of
the variable x) to N, which associates to each element of the alphabet (i.e., each individual
token of x) a positive integer.

If = {a, b, c, d), then the application M(p) is defined as follows:

M(p) : -- N, such that: a ---+ 1, b -- 1, c ---) 0, d --- 0,

but M(p) is denoted, for convenience, as the symbolic sum M(p) = a + b. For completeness,
the marking of a place p which does not contain any token is denoted as being 0:

M(p) = 0.

The Marking of the net is then a n-dimensional vector whose components are the

M(p)'s:

T
M(PN) (M(pi))i = 1'....

"N
50 ""I"



The Marking of a PrTN is therefore an application M from (.)i=,...,n to N, such that:

V i e{ 1...n, V xi  , M: xi --- M(i)(xi).

IS

a'

M(p) =2 M(p) = a M(p) = 2a + b M(p) =<a,b>

Figure 3.4 Places and Marking of Places.

3.2.3 Connectors

Definition

A connector is labeled with a formal sum of variables, which indicates the kind of tokens

it can carry. It can only support individual tokens of the same given variable.

With the examples of variables and individual tokens which have been defined in section

3.2.1, we have the following possibilities for a label:

"a' The connector carries only individual tokens a, and one at a time.

x" The connector can carry any individual token of variable x, one at a time.

T2x The connector can carry two instances of variable x, i.e., two individual tokens

at a time provided that they have the same identity. For example, {a, a), or

(b, b} are acceptable. It cannot carry only one individual token.

"x+a" The connector can carry two individual tokens of x, one of which has to be a.

It cannot carry a alone.

"x+y" The connector can carry two individual tokens of x without restriction on their
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identity whatsoever. For example, (a, a) or (a, b].

"x+2y" The same as above, with three tokens, two being identical. For example,

(a, b, b).

Carries tokens without identity.

"x+¢", and "x+u", are not valid expressions.

The labels of the connectors have a formal definition. In order to state it, let us first

introduce some notation:
'S.

x: the alphabet of the variable x; 2 is assumed to be finite.

X: an application from x to Z.

X( = {n E N 13 xi re x n = .(xi).L

L+(x): the set of all the applications X from X to N. I-

conn: generic name for a connector from a node to another node. I

An element X of L+(x) can also be represented with a symbolic sum (as for a Marking)

where the non-negative weighting coefficients are the X(x)'s (Eq. 3.8):

X= ZX(xi). x. (3.8)

Xm e

The label of a connector conn is a set Lconn of elements X of L+(x) such that any X in
-com uses in its symbolic sum representation the same set of weighting coefficients.

The support of an element X of Lconn, noted supp(.), is the set of individual tokens to
which it corresponds. Throughout the Thesis, the term label is either designating Lconn or its

aggregated symbolic sum representation (for instance x+y), if it exists.

Examples

A possible label for a connector is the following, where x={a, b. c. d :
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.:x- N, a --+ 1, b --+ 2, c --+ 0, d -+- 0.

X can be expressed as the symbolic sum: X = a + 2b. It carries two instances of the

individual tokens b together with the individual token a:

a+2b

The support of X is then (a, b, b).

Let us consider the following connectors: X = a + 2b, X' = 2a + b, and X" = a + b. Since X

and ' use the same set of weighting coefficients (1, 2) in their symbolic representation,

they can be elements of the same set .conn. However X," uses a different set of coefficients,

(1, 1 ), and can not belong to the same Lconn as X or V.

Now if Xa, Xb, Xc, Xd are the following applications:

X'a: x--)> N, a --+ 1, b --+ 0, c --> 0, d --4 0.

X b: x -..+ N , a - -O, b --> l, c ---0 , d --O.

).C: I --+ N, a --+ 0, b --4 0, c --> 1, d -- 0.

Xd: x--N,a--0,b-O,c--O,d-- 1.

then the set {)a, Xb, 'c, Xd) is the label of a connector which has an aggregated

representation, called x:

x

For completeness, the label of uncolored connectors is also defined within the same

formalism: L+(¢) = N. The label of such a connector is an element m of N (X = m or,

equivalendy, X = m 0).

A place p associated with a predicate whose n arguments are the components of a n-ary

variable x is related to its input and output transitions with connectors labeled by subsets of

L+(x). In the example (a) of Fig. 3.5, the place is of an ordinary Petri Net: the connectors
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are labeled o, and can only carry one uncolored token at a time. The label is an element of N,

namely 1, since € has been matched to 1.

In example (b), the place is associated with a predicate whose argument is the variable x.

The input connector is labeled x: it can carry any individual token of variable x. If , =
(a, b, c, d), as in the example above, then the input connector is labeled by the subset

{Xa, Xb, X,, Xd} of L+(x). However, the output connector is labeled by the subset {Xal of

L+(x), since only the individual token a can leave the place through this connector.

X x

(a) (b)
a

b
x 2~

<b,Z <ab <x,y> b x+a

a a+bx (e)

(c) (d)

Figure 3.5 Places and Connectors.

In example (c), the place is associated with a binary variable <x,y>. If a predicate is also
attached to the place, it is binary as well and its arguments are the components x and y of the
binary variable. The marking of the place is <a,b>; as depicted in Fig. 3.5, the input
connector can only carry individual tokens <a,b>. However, any kind of individual token of

.-

the variable <xy> can leave the place.

In example (d), the variable associated with the place is x. One input connector can only

carry individual tokens a, whereas the other labeled x can carry any individual token of
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variable x. The output connector labeled a+b carries only couples of individual tokens equal

to (a, b). The connector labeled x+a supports couples of individual tokens of variable x,

one which has to be a. Finally, the connector labeled 2x+y caries 3-uples of individual

tokens, two of which are the same, for instance (a, a, b}. If the marking of the place is

(a, b), these two tokens can leave the place either through the connector a+b or the one

labeled x+a.

Finally, in example (e), the place is associated with the variable x, and has two input

connectors labeled x. For instance, an individual token a can be added to the place through

one of them, and another token b can be added to the place through the other. These two

individual tokens can leave the place together through the output connector x+y, which

carries any couple of individual tokens of variable x.

3.2.4 Transitions

Definition

The transitions may have attached a logical formula, built from operations or relations

on the components of the variables and on the identities of the components of the individual

tokens which are involved in the labels of the input connectors. The formula has a truth

value which depends on the tokens present in the input places of the transition. When the -

truth value is True, the transition is enabled.

Example

The transition t1 shown in Fig. 3.6 has only one input connector, which is labeled x.

The logical formula attached to tj has therefore x and the identities that x can have as its ".

arguments. In the case of Fig. 3.6, the formula is the following:

tl: (3 x e pl, x * a).

If there is no token in Pl, or if there is a token a in Pl, then

t I = False. 'S'.A'

If there is one token in P, different from a, then "

55

-~- , w r



t I = True,

and the transition t I is enabled.

If there are several tokens in Pl which are different from a, then there is a conflict in

knowing for which token the transition tj is enabled. This problem will be deferred until

section 4.2 on Conflict Resolution.

x

p"1

x

x

Figure 3.6 Operator associated with a transition.

Operator
The formula indicated in the transition is only a part P of the actual operator, the part

which ignores the quantifiers. It has the form of P((Xi)i), where the expression P((Xi)i) is a '-
logical statement whose arguments are the terms of the symbolic sum indicated in i, element

of L+(xi). Its truth value depends on the A.'s. The whole logical formula is then restated

with the knowledge of the allowed variables and of the label of the input places of the

transition. Before developing the way this is done, a further definition is needed:

Let X and V' be two elements of L+(92), which is the set of applications from a finite set

Q to N. Then X < X' (resp. X < X') if and only if we have:

V co e X, (o) 5 X'(a). (resp. X(io) < k(o)).

We denote by:
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t: a transition of the net.

P~: the part of the operator associated with t which is indicated in it.

I(t): the number of input places Oft.

pj: the input places of t, for i I,.. (t).

xj: the variables (argument) of the predicates Hi(xi) associated with pi.

conn(i): the connector from pi to L.
A: operator AND.
v: operator OR.

Then the complete logical formula is the following:

(A (3 X, 6E '-onn(i)' X, 5 M(pi)) A (P (Xlj,...,XI(t)). (3.9)

- i-i

which says that each input place pi of t has a set supp(Xj) of individual tokens, such that the

formula P be true.

This chapter has presented a review of the fundamental concepts of the Petri Net

formalism. Predicate Transition Nets have been introduced, and their primitives have been

described. This modeling tool was adapted from those found in the literature to suit the

problem of this Thesis, which is the modeling of VDMO's. The tokens of a PrTN can be

distinguished, and are the arguments of predicates associated with the places which host

them. These predicates have their meaning derived from the real system that the net models.

The transitions have attached a formula which allows the processes of the individual tokens

in the net to be different, depending on their identity. The next chapter will deal with more

advanced topics, and in particular with the way the transitions fire, and how the conflicts

which may arise during that firing process are solved.

5.
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CHAPTER IV 4-

PREDICATE TRANSITION NETS:

ADVANCED TOPICS

The development in the preceding section bas introduced the primitives of Predicate

Transition Nets, namely the concepts of individual tokens and variables, places and
Predicates, connectors and Labels, transitions and Operators. In this chapter, these concepts
are extended to the study of the firing process: the way the individual tokens are removed
from or added to the places is developed; the conditions of enablement of a transition which
have already been established in section 3.2.4 are recalled; the rules which are used to solve
the conflicts during the firing process are then described. The representation of both the
structure and the behavior of the net using the linear algebra formalism is proposed. These
ideas can be applied to a very convenient modeling of the switches, as introduced in section
3.1.4, and to the folding of nets, which is a methodology leading to an aggregated

representation of large nets exhibiting some symmetry. These two applications will be
extensively used in the development of the Thesis. Finally, the concept of time in PrTN's is

introduced.

4.1 FIRING PROCESS

4.1.1 Definition

In PrTN's, transitions behave like rules of an inference net, i.e., their generic form is the

following:

if (Statement 1)

then

do (statement 2)

(Statementl) determines the conditions of enablement of the transition and has been

investigated in the previous chapter it is the complete logical formula (3.9) associated with
the transition.
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Now (Statement 2) can be anything indeed: it can be just a simple removal and addition of 0

tokens, taking place in the input and output places of the transition, with no change of

identity. It can also do so while changing the identity of the tokens involved in that firing

process according to some arbitrary rules. At this point, it seems important to narrow the

scope and to consider only cases for which changes of identity of tokens are dictated by the

labels of the output connectors. In other words, the only statement which appears in a

transition is the part of the operator which corresponds to the left-hand side of the rule

described above (i.e., statement 1), without quantifiers (these latter can be deduced from the

labels of the input connectors). The right-hand side of the rule embodied in the transition is

not shown either (i.e., statement 2), since we make the assumption that it can be inferred

from the labels of the output connectors in the course of a matching process which is

described in this section.

Let us consider a transition t with a logical formula attached to it, with I(t) input places Pi,

and O(t) output places pj. If the logical formula (i.e., the left-hand side of the rule) has a

truth value equal to True for some combination of Xi, i e (1 ..., I(t)), then t is enabled. We

suppose that all conflicts have been solved in this selection process (see section 4.2), and that

only one Xi is selected for each pi. The extension of the methodology to the case of several
connectors Xi (i.e., several combinations of individual tokens) being selected simultaneously,

does not require new concepts or tools, only cumbersome notation. Then the individual -

tokens corresponding to the support of the Xi's are removed from th- input places whereas

other individual tokens are added to the output places of t, according to the labels of its output

connectors.

Let X and ' be two applications from Q to N, i.e., two elements of L+(Q ). We define '

the following operations on L+(Q): j
V (,X') e L(Q)2,V o e , (X + X')(o) = X(C) + %(O). .4.

V z e N, (z.X)(cO) = z.A(o).

If any two elements X and X' in L+(x) are such that: X < X' (see section 3.2.4), then the
operation subtraction of X from X' can be defined as:

V c • ',,(X' - X,) ((0) =- X ,(CO - %M¢o.

The application X" = V' - X is also an element of L+(x).
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%f the net be M' MX7 is equal to £vI'7W'1

When the transition t fires, the marking M of the net becomes M'. M'(p) is equal to M(p)
if and only if p is neither an input place, nor an output place of t. If p is an input place of t,
M'(p) is deduced from M(p) by the removal of the support of the connector (see section
3.2.3) which has been selected. For:

t, I(t), pi, xi, cona(i), Xi

as previously defined, we have:

V i {1 1..., I(t)}, M'(Pi) = M(pi) - Xi. (4.1)

We denote then by:

O(t) the number of output places of t.

pj the output places of t, for j =1 ... O(t).
xj the variables (arguments) of the predicates Hj associated with pj, i.e., Hj(xj).

conn(j) the connectors from t to pj.

The components of the variables involved in the labels of the input connectors are then

matched to those of the output connectors conn(j). Their identities, which have been selected
in the enablement process, are transferred to the components of the output variables.

The information carried by the components of the individual tokens which are not
matched, and therefore not transferred, is lost. The transition t acts for them as a sink.

Conversely, the terms of the output variables which are not matched have their identities
generated as indicated in the label of the connector. In that case, t behaves like a source of

information.

The matching process allows to select an element X, in Lconnj), for any j = 1..., O(t).

Then the corresponding individual tokens in supp(j) are added to the output place pj of t,4,
according to the following relation:

Vj e {1,.... 0(t)), M'(pi) = M(Pi) + xj. (4.2)
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4.1.2 Examples

Some examples of transitions, places, and connectors are shown in Fig. 4. 1.

P11 a a p21 a p2  p3  <b,c>
bb c

y 2

t x *a t 2  x < =xt

3 yx a

0xy

p p p p
13( 246 32 33

(a) (b) (c)

Figure 4.1 Firing Process: examples.

Ewnple (a)

In example (a), the complete logical formula associated with tj is displayed as follows:

t (3 xe P11) (3 Y e P12) ((y = a) A (x~ea)

The initial marking MO of the net is such that: MO(p 11I) =a + b, MO(p 12 ) =a, and

MO(p 1 3) =0. We denote also by:.4

conn(l), the connector from p I1 to tj,
conn(2), the connector from P12 to I
conn(3), the connector from t1 to P13,
and= I a, b,c, d).
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The label of the connector conn(l) is the set {ka, Xb, kc, Xd}, whose elements are the

following:

- a : x N ,a - -€l, b -- ->0, c -4 0 , d - ->0.
Xb: x-4N, a-40, b-41, c-O, d--0.

2kc: xL-+N, a-->0, b-->, c--l, d--O.

Xd: &-+N, a--+0, b---0, c--40, d---*l.

The label of the connector conn(2) is the set Xal.

P is defined as the following boolean operation:

V X e Lconn(1 ), V X' r Lccnn(2), P(%, ') = ( * Xa).

In other words, P(XL, ') is True whenever X is not equal to Xa, regardless of what the

actual value of X' is.

The complete logical formula attached to tl is given by Eq. (3.9), and if we denote by M

a generic marking of the net, it is the following:

(3 X e LConn(1), %1 < M(P 11)) A (3 X2 E Lconn(2), %2 < M(P12)) A (P(-I, X2))"

For the marking M0, the formula displayed above is True since we have:

I b, kb e Lconn(1), and ,b = b <_. MO(p 1j) = a + b.

X2= %a, X-a e LConn(2), and Xa = a < MO(P 12) = a.

P(OL1, X2) = P(Lb, %a) = True, since b # a.

tI is therefore enabled, and can fire. The new marking M' of the input places Pl1 and P12

of t1 is given by:

M'(Pll) =M(Pll) X-

= (a + b) - (b)

"-a.

and
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M'(P 12 ) = M(P 12) -2

=a-a

--0.

Now since the output connector conn(3) is labeled ¢, all the information carried by
conn(1) and conn(2) is lost. No matching and transferring of terms and variables is
achieved in that case. A token is generated by t1 according to the label of conn(3), which is
€. With the notation which has been adopted so far, the label X3 of the connector conn(3) is

X3 = 1. Then the new marking of p1 3 is:

M'(P 13) - M(p 13) + X3
=0+1

=1, since M(P13) = 0.

In summary, the transition t1 is enabled for the marking M and the firing process changes

M into a new marking M' as follows:

M(PN) = (a + b, a, 0)T  -+ M'(PN) = (b, 0, 1)T.

Example (b)
In example (b), a partial order relation (R) has to be defined on the set x. Recall that:

x = (a, b, c, d). (R) is simply defined as being the lexicographic order. In other words, p

(R) is the only partial order relation on L which satisfies the following:

a<b, b<c, c<d.

The complete logical formula associated with t2 is then:

t2: (3 x r P2 1) (3 y e p22) (3 z r P2 3 ) (x < y).

The logical statement which appears in t2 involves two terms, x and y, and the partial
order relation (R). In the enabling process and for the initial marking considered in Fig. 4.1,
x is matched successively to a, and b, whereas y is matched to b, and z to c. The only

combination (x, y, z) for which the logical formula is True is: x = a in P21, = b in P22, and
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z = c in P23- Although the variable z does not appear in the logical statement without
quantifiers, it does appear in the formula as a whole, precisely through these quantifiers: the
label of the input connector from P23 to t2 is precisely 2z. t2 is then enabled.

When t2 fires, a is removed from P21, b is removed from P22 , and two instances of c,

from P23- x and y, with their respective values, are matched into the terms of <x,y>, the
label of the output connector. z is lost in the matching process. Finally, an individual token
<a,b> is added to p24. Some information has been lost in that process, and the variables x
and y have been aggregated.

Example (c)
In example (c), an operation needs to be defined on 2j: x -- y = x + 1. In that particular

case, x + 1 is defined as follows:

b=a+ 1.

c=b+ 1.

d=c+ 1.
a=d+1.

The complete logical formula associated with t3 is then:

t3: (3 <x,y> e P31) (Y = x +l)

The transition t3 is then clearly enabled for <x,y> ! <b,c>. Then the term x of <x,y> is

matched into an unary variable, and an individual token of variable x, namely b, is put in P32.
The term y does not appear in the labels of the output connectors, thus the information it
contains is lost. Whenever the transition fires, since the output connector allows only
individual tokens a, a token a is generated and added to P33. In that case, some information
has been lost, some has been generated, and the components of a binary variable <x, y> have
been taken apart.

4.2 CONFLICT RESOLUTION

The development of the preceding section and of the preceding chapter left aside the issue

of the resolution of conflicts, which is addressed here. This issue arises after the enablement
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process, and its aim is to derive from the set of possible combinations of tokens which enable

the transition, the subset of these combinations which will actually participate in the firing

process and will be removed from the input places.

Conflicts in Ordinary Petri Nets only happen when a place has two (or more) output

transitions. In that case, a token in that place enables each of these transitions, but only one

can fire. In PrTN's, however, conflicts can be found in two different areas:

- In the selection in a given input place of the set of tokens which will participate in the

firing process. Indeed, since the tokens are not indistinguishable any more, it matters

which individual token will actually participate in the firing process, when the same

transition is enabled for more than one possible token.

- In the selection of the transitions which will actually fire, if several of them are output

nodes of the same place, and enabled for the marking of their common input place.

This is the kind of conflict occuring in Ordinary Petri Nets.

The first type of conflicts arises in every firing of transitions of a PrTN, provided that

more than one token is present in their input places. The second type happens only when one

place has more than one output transition. In that case, however, the two types of conflicts
may arise simultaneously.

4.2.1 Token Selection

One input place

Let us first consider a transition t with only one input place p, (Fig. 4.2). The variable x

is the argument of the predicate associated with Pl, and has still its set of values equal to

(a, b, c, d). The operator in the transition t is named Op(x), without further explanation.

Assume that the marking M of the net is such that:

M(pl)= a + b + c + d.

In that case, the enablement process first scans the set of possible combinations of tokens

in Pl (combination according to the label of the connector), and then determines a subset
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-enab(M, Pl) of those for which t is enabled (i.e., Op(x) is true).

p1  t P2

Op(x)

Figure 4.2 Token selection: one input place.

The selection within that subset of the combination of tokens which will actually

participate in the firing process is then carried out by a rule R of conflict resolution,

determined by the designer. This rule R can be anything, and the designer of the net has full

freedom to implement any rule he can think of. Some examples follow:

* R = random: an individual token is selected at random in fenab(M, Pl). It, and only

it, is removed in the firing of t.

* R. = Sup: an order relation is defined on the set x and can then be extended to the

set of linear combinations of values of x. The rule R. is then to select the maximal

element of Opemb(M p1).

* P. = SuPn: this is a variant of the preceding relation, and selects at most the n first

elements of Opab(, p1) as ordered by the order relation previously defined.

* 1 = Inf. R selects the minimal element of Qenab(M, p 1).

The set of combinations of individual tokens which are selected by R. is then given by the

transformation of Deab(M, PI) under R, leading to the set Qflr(M, Pl) of combinations of

tokens which will actually be removed from the input place P, of t:

f'ire(M, P) = P.(fpmb(M, Pi))- (4.3)

Several input places

The transition t has I(t) input places Pi, each associated to a Predicate Hi(xi) (Fig. 4.3).

The connector from pi to t is labeled conn(i), as a subset of L+(xi). The transition t has
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associated with it an operator Op whose arguments are the terms involved in conn(i). The

application of the operator Op to the markings M(pi) determines a subset of combination of

individual tokens. Each combination in that subset enables t. This subset is called nab. It

is a I(t)-dimensioial vector, whose components are the sets ienab of individual tokens

enabling t in place pi. This is denoted as:

[ ' 1

aemb =  ienb (M ' Pi)  (4.4)

P" 0 conn(i) ) P,

conn(nt)pp

PI(t)

Figure 4.3 Token selection: several input places.

Now the application on this set of the conflict resolution rule R, provides the set of tokens

ready to be removed from the input places during the firing of t. As in the case of a single '

input place, the rule R can be of different types, but here it has to be multi-dimensional: it has

to take the markings of P, through P1(t) into account. The tokens which will eventually leave

the pi'S actually correspond to the set ffe deduced from Denab by the application of the rule

'I,

fff P= Q. (enab )

0~ie=~ (fenai,) Pd(45
i.e., .,',-

L = 1  [fnab(M, Pi) ) = L 2ir(M, p =) (4.5) "
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4.2.2 Transition Selection

We only consider the case of a place p being input place to two transitions t1 and t2

(Fig. 4.4). The same methodology addresses the case of a place being input to more than

two different transitions.

The place p is associated with a predicate H(x). The connector between p and t1 (resp.

between p and t2 ) is conn(l) (resp. conn(2)). For a given marking M, we call

fenab(tl) (M, p) and ilenab(t2) (M, p) the sets of combinations of individual tokens in p for

which t1 or t2 is enabled. These sets are actually subsets of conn(l) and conn(2). S

If these two sets of combinations of tokens are not disjoint, then an individual token

belonging to the intersection of these sets can be fired either by t1 or by t2, but not by both.

This conflict has to be resolved. Just as in the previous section, there are many ways to

resolve it: we present three of them, only the last of which will be used in this Thesis.@

t
1pconn(I ' ' '  P

.1€
P2,P

p 2
2

Figure 4.4 Transition selection: one input place.

We call -1 (resp. R2) the rule which resolves the conflict among the possible tokens in p

which enable t1 (resp. t2); we call R' the rule which solves the conflict among the tokens in p

which enable both t1 and t2. R' partitions by some means this intersection set in two

subsets, one being directed to t, £ f-u and the other to t2, 2 ire. The conflict can be solved

by applying R 1 and R2, and then R'. The final sets of tokens ready to go is then: b
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(~ie( ~ fi~re(M e) [~jfnaM P) en(abMP) (4.6)

The net is guaranteed never to reach a deadlock, as far as the place p is concerned, if and

only if the following property (P) is true (we call M0 the initial marking):

(P): V M e R(M0), Ulfire(M, p) r) j22fe(M, p) = 0. (4.7)

This property can be very difficult to prove. We can even say that in the general case, it
is unprovable, since it would require the knowledge of the entire reachability set of the

marking M0 . And the Predicate Transition Nets have been proven to be undecidable

(Brahms, 1983).

The underlying idea of the two other ways to automate the resolution of this conflict is

then to weaken the property (P) and to give only a sufficient condition for the non occurence

of deadlocks.

The second way then is to have (P) true without the resolution rules R'I and R2. Only

R' applied on the total marking of p will guarantee that there will be no conflict.

(a 1 (M' P), L12(M p)) 1 (m P), f2,enb~'"p (4.8)

In that case, the property (P) becomes (P) as follows, where the sets 121fire and Q2fire

are deduced from 21eab and We2a b by the application of the rule R':

(P'): V M e R(M0), Q Ifir(M, p) r 0 2fire(M, p) 0. (4.9)

However, the property (P ) has the same complexity as (P), since the knowledge of the .

reachability set of M0 is still required.

The third way to solve the conflict is to turn (P) into a sufficient only condition by

making it independent of the initial marking, and of the rules R1, R2, and R': 4

For any marking M of the net, we have:
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(M )ilnbM P) (.0

The property (P) becomes therefore (P"):

(P"): IV M(p) e L+(x), fllfir(M, p) r Q2fIre(M, p) =0. (4.11)

In other words, the operators of t1 and t2 are such that if t1 is enabled by a combination of

tokens in P, then t2 is not enabled for that combination.

This last property (P") is a lot easier to guarantee than (P) or (P'), and the nets which are

considered in this Thesis are all such that (P ") be verified. This approach for conflict

resolution can be easily extended to the case of several places having in common several

output transitions. We will not proceed any further in that area, since the concepts are the

same, only the notation becomes more cumbersome. An example of application of the

property (P ") as a conflict resolution rule is presented in section 4.4.1 for the representation

of switches.

4.3 LINEAR ALGEBRA

4.3.1 Definition

Linear algebra plays an important role in net theory because the structure of the net can

be easily represented by a matrix, and because the firing process of a transition has a linear

representation. The representation with matrices is a convenient tool to investigate the

structural properties of the net (e.g., connectivity) as well as the topological structure of the

set of nets which are considered (e.g., lattices, meet and join operations) (Remy and Levis,

1987). An incidence matrix for Predicate Transition Nets could be easily formulated.

Unfortunately, a set of properties comparable with the structural and topological ones for %

Ordinary Petri Nets can not be derived from the manipulation of such incidence matrices.

since they do not show the notation of the net, i.e., neither the Predicates nor the Operators

which actually determine the behavior of the net. These matrices take only into account the
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fixed part of PrTN's (see section 3.2).

A totally different area of investigation lies in the dynamics of the net, i.e., the study of
the firing processes which can occur in the net and of the evolution of the marking of the net.
The study of the behavior of Ordinary Petri Nets provides some results concerning the
reachability set of a marking, its liveness, its boundedness, etc. This investigation is greatly

facilitated by the existence of a linear representation of the firing process of a transition, as
described in section 3.1.2. The presentation of a similar linear representation of the static
structure and of the firing process for Predicate Transition Nets is the purpose of this section.

We assume that all the Petri Nets considered in this Thesis are Pure, i.e., a place cannot -
be input and output of the same transition at the same time.

The incidence matrix of a Pure Predicate Transition Net with n places and m
transitions is a (nxm) dimensional matrix (C) whose components Cij , i = 1..., n, and
j = 1.... m, are the following:

S-L, where L is the label of the connector from pi to t

C = whexe L is the label of the connector from tj to pi

0, otherwise

The knowledge of C allows then to construct the structure of the net. The incidence
matrix is particularly easy to handle and manipulate when the labels of the connectors can be

represented by linear combinations of terms instead of simple sets Lconn. When this is the
case, and when the operators associated with the transitions consist only of the sequence of
quantifiers (i.e., P = True in Equation 3.9), then the structure and the behavior of the net are
completely described by its incidence matrix. The PrTN has then the property of

transparency.

4.3.2 Example

Let us consider the example of the PrTN of Fig. 4.5. In that net, the variable x still
denotes the set of values (a, b, c, d).
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Pl 

t IP2 

t 2

x .

'I

P3  t

Figure 4.5 Predicate Transition Net PrTNl.

The incidence matrix of the net PrTN1 is the following:

ti 
t2  

t3

P, -x 0 0

p2  
x -x 0 

'f,

C(PrTN1) P2X
P3  0 0 -€

P4  0 €

A connector carrying uncolored tokens can be denoted as either 0 or 1.

Let us consider now the examples of nets shown in Fig. 4.1. Their respective incidence
matrices Ca, Cb, and Cc are the following (with the underlying natural ordering of the nodes):

-X-x 1i-<x,y> 
<,,

Ca3 - -
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4.3.3 Firing Process

We introduce the linear algebraic formulation of the firing process through the simple

example of PrTN 1 in Fig. 4.5. The original marking of PrTN 1 is M0 where

M=( a + b, 0 , 0, 0 )T.

The transition t1 is enabled for both tokens a and b, and no other transition is enabled in

PrTN1. A conflict in the selection of tokens in P, has to be solved. If for instance the

conflict resolution rule R associated with the place P, is R. = Random, and if the token

selected by R is a, then when t1 fires it removes the individual token a from p1 . The token b

is not affected in that process. The new marking M1, reached when t1 has fired, is then the

following:

M 1 = (b, a, , 0 )T.

The relation between M 1 and M0 is then the following:

-a

a
M' =M° +

We define then the vector A as follows:

_x

oo
X "

A='

L J

The value of the vector A for x = a is denoted A:Sa , where Sa {a}. More generally, if

S is a set of individual tokens, A:S is the set of values for A when the variables involved in A
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take the values of the individual tokens elements of S. Then we get

M 1 = Mo + A:Sa.

On the other hand, we have:

-x -x 0 0

xx _x 0
A 1 = . = C(PrTN1) 0 C(PrTNI). F

1 1 O -1 [ ( l

where we denote by F the firing vector which corresponds to the firing of t1 . Therefore

A : Sa = C(PrTNI). F : Sa.

Then, we have

1

M1 =M 0 + C(PrTNI). 0:Sa

1
=M° + C(PrTN1) . 0 Sa

00

This leads then to:

M I =MO+C(Pr T N 1) . Fa, where Fa=F:Sa,

which is a similar relation to the one obtained in the case of Ordinary Petri Nets. The

difference lies in the firing vector Fa which is considered as a function of the variables xi and
which carries the information about what individual tokens are selected. It outlines the fact
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that the transition has different colors, in the sense that it behaves like a set of transitions of

an Ordinary Petri Net, from which set only one has been activated and fired by the firing

vector Fa. This need not be the case in general, and depending on the rules chosen for

conflict resolution, more than one Ordinary transition in a colored transition can be activated

by the same firing vector, in which case several individual tokens would be removed

simultaneously.

4.4 APPLICATIONS

In this section, two applications of the formalism which has been developed so far are

presented. They will be used extensively in this Thesis. One deals with the representation of

switches, as introduced in the Petri Net formalism in section 3.1.4, with Predicate Transition

Nets. The other treats the folding of nets, which is a powerful tool for obtaining an

aggregated version of large nets.

4.4.1 Switch Representation

Let us consider an ordinary Petri Net PN with a switch s with two branches and one

input place. The decision rule of the switch s is given by a strategy u which can take the

values 0 or 1 (Fig. 4.6). If a token is present in the place P, then s is enabled and can fire. If

u = 0, a token is added to p 1I- If u = 1, it is added to p 2 1.

The subnet which consists of the nodes {t0 , t1 , s, P1l, P21 ) together with their

connectors is then replaced by a Predicate Transition Net (Fig. 4.7). The transition to

receives an uncolored token € but when it fires, it puts an individual token from variable u in

pl. The variable u is defined as the following set: u = (0, 1 ). The way to assigns a color to4

the incoming token is done in accordance with some rule implemented in it. It can do this ,

assigning at random, or as a function of the attributes of the uncolored token which has been %

removed from pO.

The conflict of selection of a transition (t1 0 or t2 0 ) does not occur in Pl, since the

operators associated with these two transitions are mutually exclusive: either u = 0, or

u = 1. For the variable u, either one output transition of p, is enabled, or the other, but

never both, nor none. For example, if to puts an individual token 0 in Pl, then tj 0 is enabled

and fires, adding an uncolored token to P, 1. The transition tI 0 (and t20 as well) acts like a
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sink for the variable u. The flow of tokens after Pi1 and P21 is identical to that of the original

Ordinary Petri Net.

t
Pl 1 11 P12

(u--lP 0 P1

0

P21 t21 P22

Figure 4.6 Petri Net with switch PN.

P t

0

21 21 22

Figure 4.7 Predicate Transition Net equivalent to PN.

The subnet {to, PI, s, PIP P21 ) has therefore been removed, and replaced by another

subnet {tN, PI, t10 , t20, P11, P211 without any other change in the rest of the net. The two -

nets keep the same behavior. Petri Nets with switches are thus subsumed in PrTN's. This

facilitates the study of the effects of the decision rules of the switches by re-expressing the

problem in terms of conflict resolution and truth tables of the logical operators associated
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with the colored transitions.

4.4.2 Folding of Nets

Predicate Transition Nets can also be used to produce simpler, more aggregated, and still

workable representations of Ordinary Petri Nets which exhibit some properties of symmetry.

A very simple example of that is an Ordinary Petri Net PN which is made of n identical

subnets PNO, each of which is connected the same way to the same input place p0 and to the

same output place P, (Fig. 4.8).

We define then a variable x as being the set: 2L = { 1..., n}. Each subnet of type PNO is

colored with a specific color taken from the set x. A Predicate Transition Net PN1 is defined

as the net which has the same structure as PNO but where the connectors are all labeled x. P0

and P, are connected to PNl with connectors labeled x as well. Then the obtained net,

PrTN, describes the same system, and has the same behavior as PN (Fig. 4.9).

PNO(#1)

'I

p0  PNO(#i) p 1

PN0(#u) :#11

Figure 4.8 A symmetrical Petri Net PN.

p X 1~

Figure 4.9 PrTN equivalent of PN.
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Petri Nets may have other properties of symmetry than the one of being made of identical
subnets. A famous example of other possible aggregations of a net is described in the

literature as the Philosophers' problem (Brams, 1983). We consider here a simple example
which is derived from that and which contains the same ideas in the aggregation and folding
process.

The Petri Net of Fig. 4.10 is symmetrical (subnets of nodes indexed by a and by b).
Furthermore, it embodies a potential conflict in Pl, which has two output places ta and tb.
The net is folded through the following mechanism:

-differenciation of the tokens of the original marking.

-labeling of the corresponding connectors.

-folding of each pair of symmetrical nodes into a single one.

P2a Pl Pb P P2Pl P2

ta a

cc b c b

t b t

x

P3a P3b P3 P3

Figure 4.10 Folding of a net.

In this example, the tokens in places P, (resp. P2a, P2b) are labeled as individual tokens c,
(resp. a, b) of a variable x defined as the following set: = {a, b, c). In the firing of ta or tb
the identity of the token which will be removed from P2 is not important. For that reason, the
connector from P2 to t is labeled x. On the other hand, since P, means that a conflict is

present in the firing of t8 and tb, the identity of the individual token c has to appear in the label
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of the connector from P, to t. The output connector of t is labeled x for the same reason as

for P2.

The two incidence matrices of the original net (C1) and of the final Predicate Transition
Net (C2) are the following:

P1  -1 -1 j10

P2. -1 0 p1  -c

C= P2b 0 -1 C2 = P2 X
P3a 1 .0 P3  X

P3b 0 1 t

ta tb

4.5 TIME IN PREDICATE TRANSITION NETS

The introduction of time in the Petri Net formalism allows to model and analyse
quantitatively real time processes (Hillion, 1986). In that formalism, a processing time is
associated either with the places, or with the transitions. Since it has been proven that the
two are equivalent, we choose to associate the processing time with the transitions.

A Timed Petri Net is therefor.- the pair (PN, p.) where PN is an Ordinary Petri Net, with
n places and m transitions, and p. a real function from the set of transitions to R+, the set of

non-negative real numbers:

}.t : tI ... tn --- PL+ ,  ti -4 t(ti).

The Petri Net is assumed to have a clock indicating the current time t.

The transition ti takes pt(ti) units of time to fire. It means that when ti is enabled, the

relevant tokens are removed from its input places at the current time T, and will be added to
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the output places at time t + p.(ti). Between t and t + p.(ti), the transition ti can be enabled

again, but cannot fire. It has to wait at least until T + i(t i) to start removing another
combination of tokens from its input places.

The function gt can have its value in a set of random variables, instead of R +. In that

case, the transitions have associated a stochastic processing time. The macro-transition,

consisting of a switch together with its branches whose transitions have constant real

processing times has attached a stochastic processing time: the probability of occurence of a
value within the set of possible processing times match exactly the probability that a branch is

activated. A switch itself can have a non zero processing time, depending on the modeling

assumptions whicI& have been made.

The extension of the concept of time to Predicate Transition Nets is straightforward: each

transition may have attached a processing time which is a function of the particular

combination of individual tokens which have been selected in the enablement and firing

processes.
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CHAPTER V

MODELING METHODOLOGY FOR VARIABLE DMO'S

In chapter II, the definition of three types of variable DMO's was presented, and for each

of them a methodology for their evaluation was developed. What was needed at that point

was a modeling methodology for these organizations, regardless of the type of variability

they exhibit: this is the goal of the present chapter. In that perspective, this chapter

introduces first the Petri Net model of the internal processing of information of a

decisionmaker (Tabak and Levis, 1985). It then outlines the disadvantages and the

complexity of a representation of variability in DMO's by Petri Nets with Switches. The

Predicate Transition Nets, which have been presented in chapter III and chapter IV, are

shown to be a much better tool to account for the concept of variability. A step-by-step

procedure for the modeling of VDMO's is then developed. An example of a three member

organization with type 1 variability illustrates that methodology. Some more examples of

decisiomaking organizations with type 2 and type 3 variability are provided in chapter VL

5.1 THE DECISIONMAKER MODEL

5.1.1 The Four Stage Model

The Petri Net formalism has been found to be very convenient for describing the

concurrent and asynchronous characteristics of the processing of information in a

decisionmaking organization. The internal information processing which takes place in any

decisionmaker has been modeled by a subnet with four transitions and three internal places.

A simplified version of this so-called four stage model is shown in Fig. 5.1.

This model allows to differentiate among the outputs and the inputs of the decision

maker, and to describe the types of interactions which can exist between two decisionmakers.

The decisionmaker receives an input signal x from the environment, from a preprocessor,

from a decision-aid, or from the rest of the organization. He can receive one input to the

Situation Assessment stage (or SA) at any time. He then processes this input x with a

specific algorithm which matches x to a situation the decisionmaker already knows. He
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obtains an assessed situation z which he may share with other DM's. Symmetrically, he may

also receive at this point other signals from the rest of the organization. He combines the

information with his own assessment in the Information Fusion stage (IF), which is an

algorithm which provides him with his final assessment of the situation, labeled z'. The next

step is the possible consideration of commands from other DM's which would result in a

restriction of his set of alternatives for generating the response to the input. This is the

Command Interpretation stage, or CL The outcome of the CI stage is a command v

which is used in the Response Selection stage (RS) to produce the output y. y is the

response of the decisionmaker, and he sends it to the actuators of the organization (see

section 2.1.1), or to other DM's within the DMO.

x SA z IF ,o CI vRSl y

Figure 5.1 Four stage model of a DM.

In the Petri Net representation of this processing, the transitions stand for the algorithms,

the connectors for the precedence relations between these algorithms, and the tokens for their

input and output. The places act like buffers, hosting the tokens until all the input places of a

transition t are non-empty, in which case the algorithm embodied in t can run and remove the

tokens. The time taken by the algorithm to run is the transition processing time p.(t). The

tokens in this model are all indistinguishable. A token in a place p means simply that a piece

of information is available there for the output transition(s) of p. This information can be

formatted, as part of a well-known set of identities, or alphabet, if p is an output place of a

defined algorithm. This may also be the case for the input x, if the corresponding

decisionmaker receives this input from another decisionmaker, of from the environment

through a preprocessor. However, if the DM receives his information directly from a sensor,

the question of what the meaning of x is arises. Ideally, the organization is submitted to a
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continuous flow of information. However, the decision process is more discrete-like, and

the approximation of an organization having to respond to discrete events is legitimate.

Thus, the tokens x are unformatted information. The decisionmaker has to make an

assessment of what x stands for in the first stage of his processing.

We call attributes the parameters describing completely what the tokens represent. For

instance, if the deisionmaker has to identify a threat coming in a given area of the sky and to

givea response to it, then a token on the input place of his SA stage may be just a blip on the

DM's radar screen. The token that the SA algorithm produces is in turn formatted

information which includes the DM's measurement, or assessment, of the position, speed,

nature, behavior, or size of the threat. The DM can receive from elsewhere in the

organization other formatted information, not necessarily of the same format, provided that it

matches what his IF algorithm expects as inputs formats. The different tokens in the
different places have then different formats, and different attributes. But as long as the

protocols ruling their processing do not vary from one set of attributes to the other, they are

indistinguishable tokens.

5.1.2 The Four-Stage Model with Switches

A decisionmaker may have at a particular stage of ols processing, a set of different

algorithms processing in different ways tb,. same input to produce the same format of output,
instead of just one algorithm. In this model, it has been assumed a_.t only the SA and RS

stages of the decisionmaking process consist of a set of U and V algorithms respectively.

The SA or RS stage is represented as a macro-transition standing for an aggregated

subnet of a Petri Net with switches (Fig. 5.2). A particular stage consists of a switch s
together with a number of branches, in each of which the transitions models a specific

algorithm. The switch indicates that a choice has to be made among the possible algorithms.

In the SA stage, this choice is denoted by the variable u, taking its values in, say,

{1, 2,..., U). The probability distribution of u, (p(u = i)i 1 . u) is caled the decision

strategy of the decisionmaker for the particular stage. If one branch of the switch is

always chosen, i.e., if there is an i in ( U)..., U) such as p(u = i) = 1, then the strategy is

pure. Otherwise, it is mixed.

The strategy that a decisionmaker uses at a particular stage may well depend on the input
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of that stage. In that case, the probabilities p(u = i) are conditional probabilities. It does not
make sense to condition these probabilities at the SA stage, since x, the input, is totally

unformatted, and not assessed.

SA (RS

Figure 5.2 Four stage model with switches.

A pure organizational strategy is a strategy in which the DM's choose always the

same algorithm in their Situation Assessment stage, and for each possible value of the input

of their Response Selection stage, the same algorithm to produce a response. If there are n(s)

switches si in the entire organization, if the alphabet of inputs of the switch si has ni terms,

and if si has Ui branches, then the maximum number n(pure) of pure organizational strategies

is the following:

n.
n(pure) ff [ U i  (5.1) 

with the assumption that ni is equal to 1 whenever the probabilities of the corresponding

switch are not conditioned, as in the case for the SA stage. This number is the maximum

number of possible pure strategies, because the probabilities are conditioned on the inputs zj

of the switch. The zj are themselves outputs of other algorithms and may not describe their Ile

whole alphabet. For instance, if the value zj = zj. is never reached, the pure organizational
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strategies for which we have:

p(u = i lzj = zj.) = 1

are never used. However, these pure organizational strategies are included in n(pure).

The structure of the interactions between decisionmakers does not depend on the setting

of the switches. In order to see that, the switches and their branches are aggregated in I

macro-transitions, which are indicated in Fig. 5.2 by the boxes with rounded comers. In

other words, the subnet constituted by the switch, its branches (i.e., its output places), and

the transitions which model the alternative algorithms is aggregated in a super-node

(Kyratzoglou, 1987) or macro-transition. When the processing of any given input of a

switch has been completed, a token is added in each of the output places of the

macro-transition, no matter what algorithm has been activated. The alternative algorithms of

the switch should of course produce the same formats of output from the same formats of

inputs, and should deliver them to the same places.

The macro-transitions behave then as ordinary transitions. They are enabled whenever

there is a token in all of their input places, and when they fire, they add a token in each of

their output places. No matter what the setting of the switch was, the tokens which are

produced in a given output place have the same format, with the same set of attributes. The

values of their attributes depend of course on the chosen algorithm (Fig. 5.3).

IF CI .t.

SA "RS

Figure 5.3 Four stage model of Fig. 5.2 with aggregated switches.
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5.1.3 Interactions between DM's

As shown in Fig. 5.1, the decisionmakers can only receive inputs at the SA, IF, and CI

stages, and send outputs at the SA and RS stages (Remy and Levis, 1987). The interactions

which are the most significant are shown in Fig. 5.4. For the sake of clarity, however, this

figure only accounts for the interactions as oriented links from DMi to DMj. Symmetrical

links from DMj to DM i may of course exist as well.

11SA IF CI RS

xij ij •4 1j v '.. yj

SA IF CI RS

Figure 5.4 Allowable interactions between DM's.

xi and yj are respectively the input and output that DM i receives from and sends to the

environment. zij is an information sharing link. xij refers to the case of a serial arrangement

of the decision process: DM i sends some information to DMj who assesses the situation from

it. In that case, the decisionmaker does not know in advance the format of the information he

receives, nor where in that message the information he needs could be. An example of this

can be that DMj receives a large number of signals on a screen. An assessment of the

situation is required. %

z"ij is a result sharing link. DM i sends information to DMj in a form already recognizable

by him. v'ij is a command from DM i to DMj and introduces explicitly the notion of a
hierarchy between the two DM's.
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Two kinds of places can be distinguished: the internal places, or memory places,

which are the places where the decision maker stores his own information: between SA and

IF, IF and CI, or CI and RS. The places between the DM's and the sensors, the

preprocessors, or the actuators, as well as those between two DM's are called interactional

places. The knowledge of the set of interactional places is equivalent to that of the whole

sucture of the net.

A decisionmaker may not have all his four stages present. Depending on the interactions

he has with the rest of the organization and with the environment he may exhibit different

internal strucures:

- SA alone.

- SA, IF, CI and RS (IF and CI can be simple algorithms that copy the signal).
- IF, CI, and RS.

Depending on what the designer of the organization requires, different constraints on the

allowable interactions can be expressed, which limit or expand the set of possible

organizations.

5.2 VARIABLE DMO'S AS PETRI NETS WITH SWITCHES

5.2.1 Variable Interactions and Petri Nets with Switches

In the Petri Net representation of the internal processing of a decisionmaker introduced in

section 5.1.2, the interactions that the DM had at a particular stage did not depend on which

particular algorithm had been chosen. The decisionmaking organization had a fixed

structure. In variable structure organizations, however, the structure of the interactions

between DM's depends on the settings of the switches.

An example of a decisionmaker in a variable structure organization is presented in Fig.

5.5. The DM has three algorithms in his SA stage, and three algorithms in his RS stage.

The transitions which model these algorithms may not have the same output places, since the

interactions between the DM and the rest of the organization are algorithm-dependent. If the

switch, its output places, and the transitions which model the alternative algorithms are

aggregated in a super-node (as in section 5.1.2), the macro transitions which are obtained do
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not act like ordinary transitions: although they have the same rule of enablement than the

ordinary transition, they add, when they fire, tokens in only some of their output places,

depending on what branch has been activated (Fig. 5.6).

IF CI

SA RS

Figure 5.5 DM in a Variable DMO.

SA RS

Figure 5.6 Aggregated model of a DM in a Variable DMO.

The switches in the Petri Net formalism were convenient for the modeling of alternatives

in a particular stage of the decisionmaking process of a DM. It seems legitimate at this point

to extend that grammar to variable organizations. We will see with an example that this idea

involves a great deal of complexity.
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5.2.2 An Example

We consider a variable organization (VDMO#1) of two decisionmakers DM1 and DM2

(Fig. 5.7), in which two patterns of interactions are allowed:

Setting 1 DM1 receives the situation as assessed by DM2 in his IF stage; he issues a
command to DM2 and gives his own respose in his RS stage. The branch

(2) of switch s, and the branch (1) of s2 are always chosen.

Setting 2 DM1 and DM2 have completely parallel activities in their treatment of the

input, i.e., the branches (1) of s1 and (2) of s2 are always chosen. DM1 and

DM2 never interact.

The type of variability that the organization exhibits, however, is not the immediate

concern. The issue of what can trigger changes in the settings of the interactions is not

addressed in this section.

S A F ( ) R

CI RS

Figure 5.7 An example: VDMO#1.
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The representation of VDMO#1 with Petri Nets with switches is incomplete for two

reasons:

- the decision rules of the switches have to be correlated, since only two out of the four

combinations of active branches are allowed for any incoming input: if we represent

by (u, v) the numbers of the branches of the switches (sI , s2) which are activated at

each time, then branches (2, 1) for setting#l, and (1, 2) for setting#2 only are valid.

- the Information Fusion stage of DM1 or the Command Interpretation stage of DM2

have different rules of enablement depending on the setting of the interactions which

has been chosen. In the representation of Fig. 5.7, the transition modeling the IF

stage of DM1 is enabled when there is a token in each of its two input places. As

stated above, DM1 has no way of knowing when he will receive some information

from DM2. If DM2 sends to DM1 either some information, or a null message to tell

DM1 to continue his processing, the deadlock may be overcome: but all the advantage

of variability has been totally lost, since DM1 has to wait before continuing the

processing.

The representation of variable organizations must therefore take into account these two

requirements of correlation of rules and deadlock avoidance.

5.2.3 Correlation of Rules

The solution is to represent the IF and CI stages with switches (Fig. 5.8), and to

associate with the Petri Net depicting the organization (where the branches of the switches

have been labeled by integers), a table showing the intercorrelation of the rules of the

switches (Table 5.1).

The transitions in a particular stage now stand for different algorithms which have little in

common. In particular, they do not have the same inputs, nor the same format in their

inputs. The tokens they produce are not the same across the set of algorithms. However,

when these tokens are directed to an identical place, they have the same format. And the F

tokens are still indistinguishable.

'p.
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Setting 3 DM1 receives the situation as assessed by DM2. The further processing of

the two DM's is independent.

Setting 4 The oriy interaction between the DM's is a command from DM1 to DM2.

The Petri Net with switches which represent the VDMO#2 is the sam., as that of

VDMO#I (Fig. 5.8). The table of correlation of the rules of the switches, however, has to

be modified (Table 5.2), since more settings are allowed.

TABLE 5.2 Settings of switches (VDMO#2).

Switches

sI s2 s3 s4

1 2 1 2 1

2 1 2 1 2

3 1 2 2 2

4 2 2 1 1

Therefore, the Petri Net model of a variable structure decisionmaking organization

requires a table of correlated switch settings. Although the model which is obtained at this

point is guaranteed never to deadlock (e.g., a decisionmaker does not wait for iformation

which is not sent), it still leaves aside a whole set of issues, such as knowing how effectively

the DM's communicate their strategy to each other, or who will decide the strategy for sez.n'g

the switches of the other DM's.

5.2.4 Motivation for Predicate Transition Nets

The Petri Nets with switches are not a convenient formalism for the representation of
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variable DMO's. As illustrated in section 5.2.3, they introduce a set of problems which can

be listed as follows:

- other switches are needed in addition to the ones in the SA and RS stages.

- the inercorrelation between the switches is not indicated on the net. A table has to be

attached to it. The actual way the DM's communicate their choice of algorithms is not
modeled explicitly.

- the relation between the inputs and the patterns of interactions is not shown explicitly.
The very high illustrative power of Petri Nets is lost since the behavior of the net can

not be deduced from its representation.

- the representation becomes quite complex even for simple organizations. This
modeling tool may become unworkable when applied to organizations with more

decisionmakers, and more possible interactions between them.

- the addition of decisionmakers, of possible links, or their removal, obliges the
designer to redesign the net and the attached table totally.

Some other tool has then to be applied for such modeling. The first approach is to attach
to the tokens the information of the setting of the switches. If a decisionmaker has a
deteministic way to dispatch his outputs as a function of the attributes of the token which he

possesses, then he has a way to know what would be the strategies of the other DM's, as far

as their interactions are concerned. Another approach is to represent separately the different
patterns of interactions which are allowed in the DMO, and to make the DM's move from one

pattern to the other depending on the information they receive.

What is needed then is a tool which would allow to distinguish among the tokens, and
which would have the capability to implement logic able to determine explicitly what

interaction and what DM's have to be active for the processing of a given input. Individual

tokens, Predicates, and Operators can meet these requirements. The application of the

Predicate Transition Nets to that purpose is developed in the next section.
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5.3 MODELING METHODOLOGY

5.3.1 A Modular Architecture

The purpose of this section is to present a methodology for the modeling of variable
structure organizations (VDMO) using Predicate Transition Nets. The methodology has a
modular architecture (Fig. 5.9), and consists of five modules:

1- Interface with the environment.

2- Scarce resources.

3- Interactions.

4- Switching module.
5- Algorithm implementation.

mplementation

Figure 5.9 Architectum of the modeling methodology.

Each of the first three tasks can be done independently and in arbitrary order. The three
tasks address the sub-problems (a) of modeling of the inputs that the DMO receives and the
responses that it gives, (b) of the representating the scarce resources that the DMO needs in
that processing, and (c) of modeling of the possible interactions which can exist between the

components. [
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When the first three tasks have been completed, the switching module is designed. The

switching module is the part of the model where the logic, which rules the variability feature

of the organization, is implemented. For each incoming input, this is the part of the model
which decides what particular resources, and what particular setting of interactions will be

adopted. The way this choice is made will detemine what type of variability the VDMO

exhibits.

What is obtained at this point is a Predicate Transition Net where only the non trivial

operators, i.e., the operators which consist of more than a sequence of quantifiers (see
section 3.2.4) are indicated in the corresponding transitions. The fifth and last part of the
methodology consists of the rigorous labeling of the nodes, connectors, and tokens of the

net. It also aims to give a precise meaning to what the individual tokens stand for (i.e., the

list of their attributes), depending on the place which hosts them, and on what algorithm, or

what set of algorithms, a particular transition models. The processing time of the different

algorithm is defined in that part of the methodology.

The steps of that methodology are independent enough to allow easy changes in any
subproblem, without threatening the functioning of the whole model. The modular

architecture is also very convenient for the implementation of extensions of the model, which

simply become new modules, or new well-defined subproblems. Examples of extensions

are given at the end of the present chapter.

The present section focuses on the modeling of type I variable DMO's. An example of a

three member organization with type 1 variability serves to illustrate the methodology.

Examples of VDMO's exhibiting type 2 or type 3 variability are included in chapter VI.

These models will be produced by the same type of modular methodology.

5.3.2 Interface with the Environment

The goal of this sub-problem is to achieve a representation of the input and output
alphabets. In the modeling of decisionmaking organizations (see section 5.1) we have

defined the discrete representation of information sets as lists of attributes, an instance of
which is called a token. In the ordinary Petri Net representation of a DMO, the values of the

attributes were of no importance as far as the Petri Net was concerned; no matter what these
values were, the treatment of the token was the same: the interactions between the
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components were the same, the algorithms, and their precedence relations were the same.

The only difference which appeared was the strategy used in a switch ruled by conditional

probabilities. The interactions, however, between the DM's were not affected by these

strategies and remained the same across the alphabet of inputs.

In the case of type 1 variable DMO's, the inputs are sepamted in classes, each of which

needs different resources, and different interactions between these resources. The inputs are

still lists of attributes, but they have associated an additional attribute which indicates the

interaction and the resources required for its processing. Since the other attributes are not

necessary to determine that information, they are not explicitly mentioned.

The alphabet X of inputs is therefore partitioned in r classes, namely Xi , for i = 1..., r.

All inputs x belonging to the same class are processed with the same resources used with the

same pattern of interactions. A given input x cannot belong to more than one class, which is

to say that it can only be processed with one specific set of resources, and one specific kind

of interactions.

The inputs are then represented by individual tokens; the identity of a token is the class Xi

to which it belongs, i.e., its number #i. The variable "class of inputs" is denoted by x and

has the following set of allowable identities:

We suppose that the processing of the response does not depend on its attributes. Then

the tokens which model the outputs of the organization do not have an identity. They are

instances of the O-ary variable 0.

Example: Step 1
The example used in this section is a three member organization with four possible

interactions between the decisionmakers. The DMO consists of two field units, FU 1 and

FU2, and one headquarters, HQ. The possible interactions are the following: '

Int#l- FUl and HQ (HQ fuses its assessment with FUI's, and issues a command to

him).
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Int#2- FU2 and HQ (HQ fuses its assessment with FU2's, and issues a command to

him).

Int#3- FU1 alone (SA and RS stages).

Int,- FU2 alone (SA and RS stages).

The alphabet of inputs X is therefore partitioned in four classes X1, i - 1..., 4. The
variable x representing the class of the inputs has a set of identities ( 1, 2, 3, 4). The outputs
are not partitioned. The model of the organization which is obtained at this point is shown in
Fig. 5.10.

Source Sink

Figure 5.10 Example - Step 1.

5.3.3 Scarce Resources

A resource is a generic name which designates something which is needed for the
processing of an input to be accomplished. A resource is scarce when it cannot be allocated
freely to theprocessing of any incoming input because of insufficient or limited supply. The
resource has to be shared. For example, two consecutive inputs which need the same
resource have to be processed successively. The scarcity of resources bounds from above

the performance of the organization.

Scarce resources are modeled in a convenient way in the Petri Net formalism. They are
represented by places with multi-input transitions and multi-output transitions, and non-zero
original marking. In the example depicted in Fig. 5.11, the resource place R means that
either the transition tj or t'1 fires, but they cannot fire simultaneously, if the initial marking of
the place R is 1.
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Rb

ti1 t2

Figure 5.11 Scarce resource.

Examples of scarce resources can be common databases with limited access,

communication links with limited capacity, mainframes with shared processing time, or

weapons platforms capable of handling a limited number of threats at a time.

In the modeling methodology, the decisiomaakers are treated at the same level as these
scarce resources. Actually, in the decisionmaking process, they act exactly like resources:
they ae assigned to an incoming input; once they have been assigned to a certain number of

inputs, the other inputs have to wait in line to be processed; they can process different kinds

of inputs, and have different kind of interactions, just like the token in place R in Fig. 5.11

can be fired by either t, or t'1

The pool of decisionmakers which implements the organization is partitioned in classes of

DM's who have the same function within the organization, i.e., who possess the same kind

of algorithms. Two decisionmakers who belong to the same class are then interchangeable.

The DM's of a class are represented by individual tokens of a variable, and placed in the

corresponding resource place. If there is only one class of DM's, then the DM's are

represented by uncolored tokens. The other resources that the organization may need are

partitioned and associated with variables and places the same way.

The input and output connectors of a given resource place R where the corresponding

variable is x are labeled by elements of L+(x) (see section 3.2.3).
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Exanq/e: Step 2 I
In the example, two DM's are interchangeable as far as their interactions with the rest of

the organization are concerned: these are the field units FU and FU2. HQ has a specific
function in the DMO, and is the only one in that case. The three DM's are then represented

by the following variables:

- Resource place FU: associated with the variable s = (1, 2). The individual token 1
models the decisionmaker FUl. The token 2 stands for FU2.

- Resource place HQ: since there is only one HQ, the place carries an indistinguishable

token 0, shown as a dot in the place HQ.

The modeling of the DMO obtained at this point is shown in Fig. 5.12.

HQ

Source Sink

FU

Figure 5.12 Example - Step 2.

5.3.4 Interactions

The interactions between components which are allowed in the organization are
represented without paying attention to the identity of the resources they involve. What is of
interest, at this point in the modeling, is only the topology of interactions that can be found in

the DMO. The way one interaction is chosen instead of another is not of immediate concern.
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The typical model obtained at this point is shown in Fig. 5.13: it is a list of the possible
patterns of interactions depicted in their most aggregated form. The input and output places
of these possible interactions would have been the source and sink places, had these
intractions been considered alone as DMO's with fixed structure.

The possible interactions can be partitioned in four generic types, as illustrated in Fig.
5.13:

- Type (a): the pattern of interactions is that of an organization with a fixed structure
which processes the inputs without resources. It is represented by an ordinary Petri
Net which can be aggregated in a super-node Int#l.

- Type (b): the pattern of interactions has the same characteristics as in type (a), but the
net which models that pattern exhibits some properties of symmetry. A more conve-

nient representation is obtained by folding the net, as explained in section 4.4.2. The
Predicate Transition Net which is obtained is similar as that of Fig. 4.9, and is
aggregated in tum in a super-node Int#2.

- Type (c): the pattern of interactions is the same as type (a), but the DMO with that

pattern requires a resource R1 for the processing of the inputs. This resource is used
from the beginning of the processing until its completion. The ordinary Petri Net
which models that pattern is therefore aggregated in a super-node and the resource
place R1 is both an input and an output places of that macro-transition Int#3 (the

underlying Petri Net is still pure, however).

- Type (d): the pattern of interactions is similar as in type (c), except that the resource
R2 is not used during the whole processing of the inputs. In the particular case of
Fig. 5.13(d), it is only needed at its beginning. The ordinary Petri Net modeling

that pattern is then aggregated in two super-nodes, (Int#4, 1) which stands for the part
of the processing of the task using the resource R2, and (Int#4,2) which accounts for
the remaining of the processing.

Any other combination of type (a), (b), (c), or (d) can be encountered as well. In
particular, the number and diversity of resources required and the lack of symmetry of the
pattern of interactions may lead to the irrelevance of the aggregation in super-nodes. In that

102

• F . ., '' '.-,, ..'.-, ,:.'.,,,-. , .,- , ,. -- ,'p, ,37' *"-,"' : _ .



case, the net which would appear in Fig. 5.13 would show in detail all the stages of the

decisionmaking process.

No matter where the resource places are connected, the subnet which is subsumed in a
macro-transition represents a decisionmaking organization where the internal processing of

the input is modeled by the four stage representation that was described in section 5.1. That
net stands, therefore, for an organization with fixed structure, which is to say, that it may

contain some switches, but the setting of these switches does not affect the structure of the

interactions between the decisionmakers (whose identity is not defined) (see section 5.2.1,
Variable DMO's with Petri Nets with Switches). If each switch is aggregated in a macro

transition, then the ordinary Petri Nets which are obtained are all Event Graphs, i.e., a

place can have only one input transition, and only one output transition.

(a) (b)

(c) (d)

Figure 5.13 Allowable interactions.

Example: Step 3

In the example, although four kinds of organizations have been allowed, only two
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patterns of interactions are actually distinct: one where dhe HQ interacts with a FU, and one
where the FU processes the task alone. The first part of the modeling consist of representing
these patterns in detail (Fig. 5.14). Then an aggregated model comparable to Fig. 5.13 can
eventually be produced.

0-0

FU

Figure 5.14 Example - Step3.

For the first pattern of interactions, two resources are required, namely HQ and FU. The
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resource HQ is not used in the decision process until a response is chosen, and can be free

before that. The resource FU, however, is needed from the beginning of the processing to

the end. Finally, this pattern of interactions is such that no aggregation in super-nodes is

possible.

For the second pattern, the only resource used is FU, and it is needed during the whole

processing of the input. An aggregated version of Int#2 would then be similar to Fig. 5.13b.

5.3.5 Switching Module

The objective of this part is the representation of the decision rule which determines for

any incoming input what the actual configuration of the organization will be. Again, the

switching module is the part of the modeling where the type of variability of the organization

will be modeled. It supposes that the first three sub-problems have been already completed.

A switch is implemented as an output node of the source and the resource places. This

switch is modeled as indicated in section 4.4.2, and as such, consists of a set of transitions
with operators, whose arguments are the individual tokens in the source and resource places.

Recall that the focus of this section is aDMO with type 1 variability, and that it has been

assumed that each class of inputs has associated only one possible pattern of interactions.

Thus, if the number of classes of inputs is r, there are at most r branches in that switch.

A decisionmaking organization needs an interaction and some resources to process an
incoming input. The type 1 variable DMO which has been considered so far adopts for each

class of inputs, a specific interaction and set of resources. The formal notation for the inputs,

resources, interactions, and their relations is the following:

Inputs
- An input is an individual token of variable x.
- The source place SO is associated with variable x.
- The set of allowable identities for x is x = ( 1, ..., r}.
- An input of variable x belongs to the class Xi, where x =i.

Resources

- The resources places are Rk for k = 1, ..., K.
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- The resource place Rk is associated with the variable sk.

- The set of allowable identities for Sk is fk = { 1 .... SO }

Interactions

The patterns of interactions are Int#(y), for y - 1, ..., r.

- There are J transitions tj in the switch.

- t, is associated with the Operator Opj.
- tj is associated with the pattern of interactions #o(j), i.e., Int#(0(j)).

Relations

- The input x requires a pattern of interactions #yr(x), i.e., Int#(y(x)).

- The input x requires some resources from Rk, which are:

res(k, x) = (skn(X) I n - 1 .... N(x)}.

- I(x) and res(k, x) for any k are functions of x.

- 4(j) is a function of j; 0 is attached to the switch.

An incoming input, modeled as an instance of an individual token x, belongs to the class
Xi. The organization is type 1 variable, and it adapts the pattern of its interactions to the class

of the incoming input. The processing of the input x requires a precise pattern of

interactions, namely Int#(y(x)). Since the same interactions can be adopted for different

classes of inputs, the function y is not bijective, and the number F of interactions is necessary

smaller than the number r of classes of inputs. The processing of this individual token x also

needs some resources of type Rk, given by the set of individual tokens res(k, x). The

transition of the switch which corresponds to the pattern of interactions Int#(^Ax)) is the

transition tj such that 0(j) = y(x); there is only one j such that this relation is verified, which is

denoted as 1('y(x)).

If all the conditions stated above are fulfilled, then the input x is processed. In other

words, for ((j) = ,(x), the transition tj is enabled and fires. The operator Opj associated with

tj expresses in logical terms the above conditions, and can be written as follows:

(B x r SO) A ( Yx) = 0(j) ) A (B res(k, x), Rk ; res(k, x)) (5.2)

Since the transition tj corresponds to Int#(0(j)), and since this pattern of interactions may %
be needed for more than one class of input, the actual operator associated with tj is the logical
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OR (v) of the operators (5.2) for the inputs x such that y(x) = 4Kj), i.e., for all the inputs x

in the set yl(o(j)) = {x I y(x) = 0(j)}. The operator Opj associated with tj is finally the

following:

Op = V [(3 x e SO) A (3 res(k, x), Rk ; res(k, x))] (5.3)

x E

The operators (Opj) = 1. which are attached to the transitions tj which constitute the
branches of the switch are such that the property P" of section 4.2.2 of conflict resolution is

verified: for any input x in the place SO, there is one and at most one transition is the set (tj)

which is enabled, the one with the number j = 4-ly(x)). There is therefore no conflict and as

soon as the required resources res(k, x) are available, tj can fire.

The connectors from the place Rk transition tj are labeled by the set Lconn(Rk, tj) (see

section 3.2.3, Connectors) whose elements are the symbolic sums of the individual tokens in
res(k, x). If the set res(k, x) is non empty, the connector from Rk to tj has the following

label:

L n (Rk, t j) -- ,L(sk) I ,= s,,(x) and (x)=(i) (5.4)
n=I

Example: Step 4
In the example, the switching module is composed of two transitions t1 and t2. Using

similar notation as above, we get:

Inputs: x 1, 2, 3, 4).

Resources: R1 = HQ, associated to the 0-ary variable o.

R2 = FU, associated to the variable s, withs = (1, 2).

Interactions: Int#1, corresponding to transition tj.
Int#2, corresponding to transition t2.
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Relations: For any input x, the pattern of interactions Int#(y(x)) is:
7 ) = 1

7(2) = I

-(3) = 2
7(4) = 2

For any input x, the required resoures are:

res(1, 1) = res(1, 2) = (lo)
res(l, 3) = res(1, 4) = 0

res(2, 1) = (1)

res(2, 2) = (2)

res(2, 3) = (1 }
res(2, 4) = (2)

The operators Opland Op2 can then be written (without mentioning the quantifiers) as

follows:

OPI: [(x = 1) A (s = 1)] v [(x = 2) A (s = 2)].

Op2: [(x = 3) A (s = 1)] v [(x = 4) A (s = 2)].

The operators can actually be aggregated into a more convenient form:

OPl: [[(x = 1) v (x =-2)] A (S = X)].

Op2: [[(x = 3) v (x = 4)] A (s = x-2)].

The net obtained up to this point is a net where the patterns of interactions, the resources,
the source, the sink, and the transitions of the switch are connected together, and where these

transitions show the operators which are assigned to them. The patterns of interactions,
however, are stiU in their most aggregated form, and the connectors are not all labeled (Fig.

5.15). This net is temporary, as were all the previous nets (steps 1 through 3). The
purpose of the next module will be precisely to make this net functional by completing its

annotation.
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Figure 5.15 Example- Step 4.

5.3.6 Algorithm Implementation

This final part of the methodology deals with the labeling of the connectors, with the
definition of the attributes of the tokens which can be found at different places, and with the
algorithm that the various transitions represent. The rules of firing are also established in the
present section.

Labeling of connectors: The connectors from the source to the transitions of the switch areE

labeled x, i.e., with the variable designating the class of the inputs. Those from the input
nodes of the sink to the sink itself are labeled 0. The labels of the output connectors of the ,
resource place Rk have already been given in section 5.3.5 (Eq. 5.4). The input connectors",of Rk are labeled accoringy.

Each pattern of interactions Int#Qy) is adopted whenever the incoming class of input x is
such that r(x) = When x describes the set of classes of inputs the number of times
Int#(a ) is activated ious eqalto e eeo te(x) = , i.e., to the cardinal " of the set
(x I gx) = c}. The connectors which are involved in the representation of the organization
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with a pattern of interaction Int#(7) can then be labeled with a variable pj whose set of

allowable identities is the following:

ri- ={I, 2, ..... ^0}.

These labeling rules are the most general that can be presented, and can be applied to any

case. However, some variable organization can be such that another labeling may be more

intuitive, or more convenient, in which case that latter labeling would be preferred to the

more generic one developed in this section.

Firing ruls: The firing rules are actually problem dependent, and can be revised at any time.

However, they are generally the following:

- the transitions which constitute the switch are enabled and fire consecutively, i.e.,

with one input at a time.

- the transitions which are part of the subnets representing the possible interactions

with Ordinary Petri Nets are enabled and fire in the same consecutive manner. In

other words, if a given place in one of these subnets contains more than one token, its

only output transition ("only" because the subnet is an event graph) is enabled by

more than one token. But it will fire them only one by one.

- the wansitions which are part of the subnets representing the possible interactions

with Predicate Transition Nets, i.e., when the original Petri Net has been folded

(sections 4.4.2 and 5.3.4), can allow simultaneous firing; depending on the circum-

stances, two tokens in the same place of a given net of that kind can enable the same

transition at the same time and leave simultaneously the same place.

A given transition which is not part of the switching module, but of the subnet Int#(y)

models a set of at most ^( algorithms, or a set of y' sets of algorithms, i.e., switches.
Depending on the identity of the individual token of variable pj which enables it, a particular

algorithm, or a particular switch, is activated, and processes the input that the token

represents. Depending also on the organization that the net models, this transition can veryI

well consist of only one algorithm, which is always activated and executed when the
transition is enabled and fires, regardless of the identity of the individual token which has
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triggered that process. The rule which selects the algorithm which will process the token

which enabled the transition is problem dependent, and as such, defined for each particular

case.

The individual tokens represent different information sets depending on the variables they

belong to, and depending on the places which host them, and on the algorithm which they

activate when they are removed from an input place of a transition. However, the only

attributes which are represented are those which are relevant as far as the interactions between

components are concerned. Two individual tokens which occupy the same place are

necessarily from the same variable, but their other attributes can very well differ in terms of

their actual identities, or in terms of their formats. The rules which associate a given

individual token with a given algorithm within the set that a given transition represents can

account for these attributes. Once again, since such rules do not determine the interactions

between the components, their definition will not be pursued in this Thesis.

Example: Step 5
The final representation of the example is given in Fig. 5.16. In this example, since the

organization is fairly simple, a simplified and self-explanatory labeling has been adopted.

HQ 0

(x=2)]

xand insr

Source FU1 1xml 2 Stink
111*

t

Figure 5.16 Exapl --Sep I

and Int#
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5.3.7 Extensions of the Methodology

As pointed out in section 5.3. 1, the architecture of the methodology which has been

presented is highly modular. It allows for easy modification of the present organization

being modeled, and for possible extensions or enhancements which would take into account

other features of the actual organization.

Modifications

Modifications to the model of the three member organization which has been obtained at

the end of section 5.3.6 could include:

- other classes: the partitioning of the alphabet of inputs X can be modified, and the

operators which make up the decision rules of the switch changed accordingly.

- other interactions: other possible interactions can be added to the set of allowable

ones described in section 5.3.4, whereas some others can be removed from that set.
It it then necessary to modify the partitioning of the alphabet of inputs, and the

operators of the switch as well.

- more or fewer resources: another field unit, say DM3 can be added to the pool of
decisionmakers of the organization, or some others can be removed. Other types of

resources can be added: for instance, a weapon system (the actuator) which is

necessary to the organization no matter what configuration has been chosen, but

which can only be assigned to one target at any time. This weapon system could be
represented as a scarce resource Rw containing one token € and with the same

connections with the transitions of the switch and with the subnets Int#(Y) as the
resource FU. In that case, corresponding modifications have to be made in the

algorithms associated with the transitions of the subnets, and in the switching modu-

le.

- Different switching module: a change in the switching module can be made, -

everything else being equal, assigning, for instance, other sets of resources to the

same input.
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Extensions
Different meanings can be given to the components which make up the model of

VDMO's. Some new modules can also be added to the current architecture of the

methodology. We present in this section two possible extensions, which would allow the
modeling of DMO's with type 2 or with type 3 variability.

- Perception of the environment: a new module could consist of assessing the

changes in the environment by keeping track of the last N tasks that the organization
has been processing, and evaluating the probability distribution of the classes of

inputs on the basis of this sample of size N. When a modification in that distribution

justifies the reconfiguration of the organization, the DMO changes the pattern of its
interactions and the resources that it uses in its function. Then it is type 2 variable.

- Multi-matching: a class of incoming inputs can be treated in different ways; instead

of having only one possible pattern of interactions and one possible combination of

resources, different combinations of resources and interactions can be used for their
processing, with of course different performance. A model which would account for
such property could be the extension of the meaning of the switching module to a

multi-level switching module. This switch would propose successively these alterna-

tives to the incoming input, following in an order corresponding to a degraded

performance. Then, if a component or a resource of the organization is removed, the

combination of resources and interactions would differ from the one which would

have been adopted otherwise. The organization is type 3 variable.

The following chapter will develop these two extensions using two different examples to

illustrate them.
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CHAPTER V

MODELING METHODOLOGY: APPLICATIONS

This chapter provides some applications of the methodology developed in chapter V. The

focus of chapter was the modeling of organizations with type 1 variability. The DMO
adapted the pattern of its interactions to the class of the incoming input. Another meaning can

be given to the identity of the inputs of the DMO, allowing to account for type 2 variability:

the first organization considered in the present chapter is a two-member DMO where each
decisionmaker can serve as a Head Quarter or as a Field Unit, depending on the environment
in which it functions. Different combinations of resources and interactions can also be used
for the processing of a given task, leading to type 3 variability; the second organization

considered in this chapter allows this multi-matching, and is modeled using the same
methodology as in chapter V, with a different switching module. Finally, the third

organization has a fixed structure, but exhibits variability in the interactions between its

decisionmakers and a decision aid (Grevet, 1987). This DMO is modeled with the same

methodology as in chapter V, and is shown to be type 1 variable.

6.1 A SYMMEtRIC ORGANIZATION WrIH TYPE 2 VARIABIHTY

6.1.1 The Organization

We consider a decisionmaking organization of two DM's, namely DM1 and DM2. Only

one kind of interaction is allowed between these two DM's: after having both assessed the

situation, one of them sends his information to the other, who fuses it with his own. The
latter DM issues then a command to the former, who produces the final response of the

organization.

These two DM's however are not totally interchangeable. They do not possess the same

set of algorithms. In other words, they are experts in different fields; and each is a novice in

the field in which the other is an expert. Since it makes sense that the expert issue a

command to the novice instead of the contrary, considering an organization with variable

interactions between its DM's is appropriate.
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An example of such complementarity of the domains of expertise can be found in an

organization in charge of the air defense of a particular sector, where the threats are of two

different kinds, aircraft or missiles. One DM (namely DM1) would be a specialist in the

identification of the aircraft (type, function, and armament), whereas the other (namely DM2)

would be one in the tracking of a missile threat.

In an environment where the tempo of operations is fast, a type 1 variable DMO which

would adapt the pattern of its interactions to the identity of the inputs (e.g., aircraft or

missiles) would probably not be workable, since it would require a lot of switchings between

the two possible interactions. Instead of switching for different input classes, a type 2

variable organization would adopt each pattern for a given range of environments modeled by
the probabilties p = (Pl, p2), where P1 is the probability of occurence of an aircraft, and p2

the probability of occurence of a missile, with P, + p2 = 1. For instance, in an environment

in which the threat is much more likely to be an aircraft than a missile (i.e., p, much higher

than p2) the decisionmaker who is an expert in aircraft will serve as Headquarters unit.

6.1.2 The Model

The methodology for the modeling of this type 2 variable DMO is similar to the one

developed in chapter V, except that the module "interface with the environment" is adapted to

this type of variability.

The alphabet X of the inputs consists of occurences of threat which can be either aircraft

or missiles. The inputs are uncolored, i.e., modeled by indistinguishable tokens. They are

generated in a source place SO and, when their processing has been completed, they are

added to the sink SI. A preprocessor (PP) is inserted between the source and the organization

(i.e., between the places SO and S02), whose mission is to associate with every input a

color determining the type of environment (and as a result the type of interactions) in which

the organization functions. This coloring of tokens can be done by memorizing the N last

occurences of the threat, and computing the probability distribution of their identity. In the
present case, this distribution is simply given by the probabilities p = (Pl, P2). If there are "

N1 occurences of aircraft among the N threats, then p1 is simply given by:

P, =N 1 /N. .

1 
%
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For any new occurence, PI is evaluated, and if it is higher than a certain threshold

determined by the designer, the color 1 is associated with the token which models that

occurence. Accordingly, if pI is lower than the threshold, the token is colored by 2. At the

end of the preprocessing, the occurences are therefore modeled as individual tokens of

variable s, whose set of identities is s = ( 1, 2). The way the color of the incoming token

relates to the interaction and the resources used will be described in the switching module part

of the methodology.

The decisionmakers are represented by individual tokens of a variable x, which can also

be denoted by y. DM1 is then modeled by a token labeled 1 and DM2 by a token labeled 2:

=..= (1, 2).

These two decisionmakers are the only resources of the organization.

The switching module consists of only one transition t, which assigns the role of the

expert to either DM1 or DN2 depending on the class of the incoming token; its input places

are the output place S02 of the preprocessor PP and the resource place DM which contains

the decisionmakers. The matching process (as described in section 4.3) which occurs in t is

the following (see Fig. 6.1):

s = 1: DM1 is an expert and the Headquarters, and DM2 is the novice and the Field

Unit. Then the inputs I and 2 of variable x are removed from the place DM. x is

matched to 1, and y to 2.

s=2: DM2 is an expert and the Headquarters, and DM1 is the novice and the Field

Unit. Then the inputs 1 and 2 of variable x are removed from the place DM. x is

matched to 2, and y to 1.

This can be summarized in the following operator-

(3s e S02) A(3xe DM) A(3ye DM) A(X = S) A(y = 3 - s) (6.1)

The final representation is shown in Fig. 6.1.
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Figure 6.1 A symmetrical organization.

6.2 A DMO WITH INTERCHANGEABLE PARTS AND TYPE 3 VARIABILITY

6.2.1 The Organization

The variable organizations modeled in chapter V associate with each class of inputs, a

specific combination of resources together with a specific pattern of interactions. The present

section develops the modeling of a DMO which can process the same input .in several

different ways. The evaluation of the performance of the organization is clearly dependent on

the combination chosen, but will not be addressed here.

The organization adapts the pattern of its interactions to the class of the incoming input.

As such, it is type 1 variable. If a component (decisionmaker or any other resource) is

removed from the organization, then the DMO could use a different combination of resources

to still perform its mission. The DMO would then also be type 3 variable.

We consider the same three member organization as the example in chapter V. The

inputs belong to the same alphabet X. X is partitioned in four classes, X1 through X4. The

decisionmakers are the same, namely FU 1, FU2 and HQ, with the same possible interactions
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between them.

An input of a given class is preferentially processed with the resources R and the

interactions Int#(y) as stated in chapter V:

input of class 1: R = (FUl, HQ); Int = Int#l.

input of class 2: R = {FU2, HQJ; Int = Int#l.

input of class 3: R = [ FU 1 ); Int = Int#2.

input of class 4: R = (FU2); Int = Int#2.

The input can also be processed using a different combination of resources and

interactions. Each of these possible combinations would lead to a different level of

performance for the organization. For example, an input of class 1 can be treated by FU1
and HQ adopting Int#l as a pattern of interactions, but also by FU2 and HQ with the same IWO

pattern, and even by FU1 alone (i.e., with Int#2). The performance of the organization
(namely Timeliness and Accuracy) may be very different for these alternatives, but
presumably, the first combination would be preferred to the other two.

We assume at this point that for any class of inputs, there is a set of possible

combinations of resources and interactions which can process it. These combinations are

ordered by some criterion. The way this order relation is established is not defined.
Nevertheless, it makes sense to assume that such an order exists: in the example mentioned

above, FUl and FU2 may be interchangeable as far as their interactions with the

Headquarters are concerned, but they may also not possess the same set of algorithms to

process an input of class 1. FU1 could be a lot more efficient in that respect than FU2.
Furthermore, FUl alone could still perform that task, with a reduced value for an index of

performance.

6.2.2 The Model

The representation of a variable organization which can process the same input with

different combinations of resources and interactions differs from that developed in chapter V
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in the definition of its switching module.

The switching module of the model of the DMO is composed of a set of two transitions t,

and t2 which are output transitions of the same place SO (the source). These transitions have

attached the operators Op, and Op2 respectively. In the case of a type 1 variable DMO in

section 5.3.5, the operators associated with the transitions of the switching module were

given by Equation (5.2) (or Eq. 5.3); they consisted of the union (expressed by the logical

AND) of conditions to be satisfied so that the operators have a value equal to True.

In the present case, the operators Op, and OP2 are an ordered sequence of operators

(OPI,m) with m = 1, 2 for OP1, and (OP2,m') with m' - 1..., 4 for Op2. Each of these

operators Oplm and Op2,m , has a formulation similar to Eq. (5.3). Each is True when a

certain combination of resources needed for the processing of an input is available:

Op, = (Op1,m)m=1,2 and Op2 = (Op2,m)m,= 1....4.

Consider an incoming input of class x in the place SO (source). The operators Opl,1 in t,

and Op2, in t2 are first examined. They correspond to the combination of resources and

interaction between decisionmakers which is the best suited for the processing of the input.

Only one of them can have the value True. If this is the case, say, for Op1,1, then the

transition t, is enabled and fires. If none of these two operators has a value equal to True,

then the operators Op1.2 and Op2,2 are examined. They also correspond to a combination of

resources and interactions, but coming second (according to some criterion) for the

processing of the input of class x. Again, only one of them can have the value True. If it is

the case for one of them, the corresponding transition fires. If it is not, the operator Op2,3 is
examined. If the value of Op2,3 is true, t2 fires and the corresponding resources are removed

from their resource places; if it is not, OP2,4 is examined. Again, if it is true, t2 fires,

removing the corresponding resources from their resource places. These resources are of

course different from the ones involved in OP2,3; if they are not, then there is no possible

combination of resources available in the organization at this time which would allow the

processing of the input of class x; however, as soon as an event modifies the availability of

the resources in the organization (for instance when a decisionmaker has just finished

processing a task and when the individual token which models him is put back in the

corresponding resource place), the whole process starts again and the operators OP1, and

Opl,2 are examined again.
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The different combinations of resources and interactions which are possible for the
processing of an input of class x are given in Table 6.1. For instance, the best suited

combination for an input of class I is the Field Unit FU I interacting with the Headquarters
HQ with a pattern of interactions Int#1 (combin.#1 in the Table 6.1). The combination of

resources which comes second (according to some criterion) for the processing of the input

of class 1 is the Field Unit FU2 interacting with the Headquarters with a pattern of

interactions Int#1 (combin.#2 in the Table. 6.1). This means that FU1 and FU2 are
interchangeable to the extent that they can both process an input of class 1 by interacting with

the Headquarters. However, the performance of the organization is better ("better" in the

sense that it is preferred according to that criterion) if FU 1 processes the input than if FU2

does it.

TABLE 6.1 Possible combinations of resources.

Combinations

Combin.#1 Combin.#2 Combin.#3 Combin.#4

x=l Int#1 Int#1 Int#2 Int#2
U, FU1 + HQ FU2 + HQ FU1 FU2

, x=2 Int#1 Int#1 lnt#2 Int#2FU2 + HQ FU1 +HQ FU2 FUI

x=3 Int#2 Int#2
FUl FU2

x-4 Int#2 Int#2
FU2 FU1

The operator Opl,1, for example, expresses in formal language the existence of a token in

the place HQ and of an individual token 1 (i.e., FUl) in the place FU if the token in the

source place SO is of class 1, or of a token in the place HQ and of an individual token 2 (i.e.,
FU2) in the place FU if the token in the source place SO is of class 2. Op21 is deduced from

Table 6.1 in a similar way:

Opjj =[(3 xe SO,x= l)A(3se FU,s=I) A(3¢ e HQ)]

v [(3xe SO,x=2) A(3 s FU, s=1) A(3 r HQ)]

OP2,1 = [(3x SO, x = 3) A(3 s e FU, s = 1)]
v [(3xe SO,x=4)^(3 s FU, s=2)]
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The formal expressions of the other operators have been deduced from Table 6.1.

The output connectors of the tansitions tI and t2 as well as those which are involved in

the subnets Int#1 and Int#2 are conveniently labeled by <x,s> in the case of the present

organization; for instance, an individual token <1,1> of the binary variable <x,s>,

occupying a place of the subnet Int#2 is an association of an individual token 1 of variable s,

representing the decisionmaker FU1, and of an individual token 1 of variable x, representing

an input of class 1. This particular input has been associated with FU1 who processes it

alone, ie., without interacting with the Headquarters. The representation of the organization

is shown in Fig. 6.2.

HO

<X, <X <X, <X <X, > <

<.1'

2 -.

Int#2

Figure 6.2 Organization with interchangeable parts.
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This organization is type 3 variable because it can still perform its mission when changes

happen in its resources. Consider for instance the removal from the organization of the Field

Unit FUL. The number of possible combinations of resources and interactions is then

reduced. An incoming input of class 1 is preferentially processed with the Field Unit FU2

interacting with the Headquarters with the pattern of inmaction Int#l. If these resources are

not available, then this input can be processed by FU2 alone.

6.3. DMO WITH DECISION SUPPORT SYSTEM AND TYPE 1 VARIABILITY

6.3.1 Organizations with Decision-aids

The variable decisionmaking organizations considered so far have been DMO's where the

interactions between decisionmakers can vary. Similar modeling methodologies apply for

each type of variability that these VDMO's exhibit. A closely related set of variable

decisionmaking organizations can be DMO's in which the interactions between the DM's and

the non-human components of the organization (such as decision-aids, see section 2.1) can

vary.

When a particular decision-aids can be consulted by only one decisionmaker at a

particular stage of its decisionmaking process, this stage can be modeled by a switch whose

branches include the algorithms with and without the decision-aid (Weingaertner, 1986).

The switch and its branches can then be aggregated in a super-node, and the aggregated net

which is obtained is the model of a DMO with a fixed structure.

However, when the same decision-aid is used by several decisionmakers, the model with

Petri Net with switches does not work, for identical reasons as described in section 5.2. In

that case, the formalism of variable structure organizations can be applied. The methodology

developed in chapter V produces convenient models of such organizations.

6.3.2 The Organization

An example of a decision-aid of the type mentioned in section 6.3.1 is the decision

support system (DSS) described by Grevet (1987).

A DSS is a local area network composed of intelligent terminals, transmission modules

123

I% I Q



and a central computer. In an organization supported by a DSS, each DM may have at hand

an intelligent terminal. The DM's can use the mainframe computer to benefit from its large

computational power or to have access to a common data base. The consultation of the

mainframe computer is done through the intelligent terminal and a transmission module.

We consider an organization composed of two decisionmakers, HQ and FU, who interact .

during the processing of a given input. They each assess the task simultaneously. HQ then

fuses the information that FU sends to him with his own, and issues a command to FU, who

in turn produces the final response of the organization.

HQ and FU can use the DSS in their Situation Assessment stage. As a result, they have

several strategies in their SA stage, which are the same for HQ and FU. HQ, for instance,

can do the following:

- assess the situation without using the decision-aids.

- assess the situation with the aid of the intelligent terminal: HQ assesses the situation
with an algorithm of his own and consults the intelligent terminal. He then compares

the two assessments and produces the final one.

- assess the situation with the aid of the intelligent terminal: HQ takes the assessement

of the intelligent terminal He does not make an independent assessment.

- assess the situation with the aid of the mainframe: HQ assesses the situation

with an algorithm of his own and consults the mainframe. He then compares the two

assessments and produces the final one.

I
- assess the situation with the aid of the mainframe: HQ takes the assessment of the ..

mainframe. He does not make an independent assessment.

Again, FU possesses the same set of alternatives in his SA stage.

The ordinary Petri Net model of this organization is depicted in Fig. 6.3, due to Grevet

(1987). I
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The intelligent terminal, the transmission modules and the mainframe are modeled in
distinct boxes. The access to the mainframe is limited to one decisionmaker at a time, which
is modeled in the Petri Net formalism as a scarce resource with initial marking 1 (place R).
This scarce resource makes the two DM's interdependent through the use of the mainframe.

6.3.3 VDMO Model of the DMO with DSS

The organization consists of the two decisionmakers and the DSS. In that sense, it is a
VDMO and the methodology developed in chapter V can be applied, or at least modified to

account for the variability of this organization. The idea is to represent separately the
possible interactions that the DM's can have with their terminals, those that they have with
their mainframe, and those between the DM's themselves. The request of a DM to consult
the terminal or the mainframe is modeled by an individual token, and so is the decision to
execute his own Situation Assessment algorithm (Fig. 6.4).

In that representation, the interactions between DM's are represented with a Petri Net
which is Ordinary, i.e., uncolored, except at the SA stages. These stages are modeled by a
subnet, with one input transition SA1 and one output transition SA2. The former acts like a
source of information (see section 4.4.1), whereas the latter behaves like a sink. For
instance, the decisionmaker HQ receives at his Situation Assessment stage an input modeled
by an uncolored token €. Depending on the strategy he intends to choose, he assigns the

attributes s and s' to this incoming token (SA1 stage):

The attribute s accounts for the decision aid which will be consulted:

s = 0: none.
s = 1: intelligent terminal (IT).
s = 2: intelligent terminal (IT) + transmission module (TM) + mainframe (MF).

The attribute s' accounts for the fact that the DM will also execute his SA algorithm:

' = 0: no personal processing.

s' = 1: personal processing. 5,

We have therefore =0, 1, 2) and'-{0,1 .
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Recall that a decisionmaker is an individual token of variable x, whose set of values 2 is

{0, 1).

Depending then on the strategy chosen, the corresponding individual tokens of variable

<x,s> and <x,s'> are created and added respectively to the marking of P, and P2. For

instance, if DM1 chooses to consult his intelligent terminal and not to process his own

algorithm, in other words, if he chooses to take for granted the assessed situation that the

terminal will produce, then a token <1,1> is added to Pl, and a token <1,0> to p2. These

individual tokens will eventually appear in P'i and P'2 after having been through their

corresponding subnets. The transition SA2 consists of a set of algorithms, one of which is

activated depending on the values of s and s' of the incoming tokens. In this example, the

algorithm activated in SA2 in a simple procedure "copy". If the attributes s and s' are

respectively equal to I and 1, then the algorithm which is activated would be one of

information fusion of the two assessements, the DMs and the intelligent terminal's.

This representation of the organization with Predicate Transition Nets is convenient since

it avoids the redundancy which occurs when the same kind of interaction is depicted more

than once (here twice, once for HQ and once for FU). If another decisionmaker is added to

the organization, or if the DMs want to use the DSS in some other stage of their

decisionmaking process, then the modification in the net of Fig. 6.4 would only consist of

the addition of a set of four connectors between the aided stage and (respectively) the places

Pl, P2, P'i and P'2.
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CHAPTER VII

APPLICATION: EFFECTlIENESS OF A TYPE 1 VARIABLE DMO

In chapter 2, the general framework was provided for the evaluation of the effectiveness

of a decision making organization, variable or not. In chapter 5, a methodology for the

modeling of VDMO's was presented, and it was assumed that the inputs were partitioned in

classes, corresponding to specific patterns of interactions, before being processed by the

organization. An example of a three member variable organization for which this assumption

is relaxed is considered in the present chapter. The organization is first described and

modeled with an Admissible Net. The organization is type-I variable. The Effectiveness of

the type 1 variable DMO and the Effectiveness of comparable organizations with fixed

structure are then compared. Each organization is associated with a range of mission

requirements for which it is the most effective.

7.1 THE ORGANIZATION AND ITS MODEL

7.1.1 The Organization

We consider an organization composed of three decisionmaking units, the Headquarters

(HQ) and two Field Units (FUl and FU2). Its mission is the defense of a given area against

aerial threats, aircraft or missiles. Each incoming threat is identified by HQ, and its location

determined by both Field Units. HQ communicates then the identity of the threat to the FU's
who decide to fire or not to fire, depending on that information.

DMO's with ajfced structure: FDM01 and FDMO2

Different settings for the interactions between the DM's are possible. In the first case

(FDMO1), the HQ and the FU's receive simultaneously the input and HQ sends its

information on the identity of the threat to each of the FU's at the same time. They each fuse

their assessement of the situation with that information, and give a response to the threat in a

simultaneous way. In the second case (FDMO2), only FUl receives information from HQ,
which he fuses with his own assessment of the situation and sends to FU2. FU2 fuses in

turn this information with his own assessment and produces the final response of the

organization (Figs. 7.1 and 7.2).
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Figure 7.1 Candidate #1: FDMOI.
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Figure 7.2 Candidate #2: FDMO2.

Type 1 variable DM0: VDMO

In gene'ral terms, it is legitimate to suspect that FDMO1 would take less time to respond

than FDMO2, since the two Field Units have parallel activities in the first case, but have to

interact in the second. However, the same reason may result in the response of FDMO2

being more accurate than the one of FDMO1.

An organization in which the three decisionmakers would concurrently andI
simultaneously assess the situation, and in which Headquarters would decide the type of
interactions to be adopted between the FU's for their final processing, is likely to perform
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better, by better performance, we mean lower processing delay and higher accuracy of the

response. The organization which would be obtained that way would be type-1 variable,

and the Headquarters in that case would be the equivalent of the preprocessor mentioned in

the methodology developed in chapter 5. The inputs arrive and are indistinguishable; then the

HQ attaches to each of them an attribute, or class, which determines the type of interactions
that are best suited for their processing. There are, therefore, three candidates for that air
defense mission, two organizations with a fixed structure (FDMO1 and FDMO2), and a
variable structure organization (VDMO).

PrTN model of the VDMO

The variable organization is modeled with a Predicate Transition Net using the

methodology developed in chapter 5. The Situation Assessment stage of the HQ acts as a

source of information and associates an attribute u to the incoming token.

What is obtained then is an hybrid representation, using the formalisms of both Ordinary

Petri Nets and Predicate Transition Nets. The VDMO is shown in Fig. 7.3. The variable

controling the variability is called u, whose set of allowable values has been set to {0,1).
The Situation Assessment stages ogf the Field Units are modeled with the conventional
representation. After an input has been processed in these stages, the FU's are modeled with
individual tokens of a variable x. The set of allowable values for x is { 1, 2 ), an individual

token I (resp. 2) standing for FUl (resp. FU2).

7.1.2 The Inputs

The three decisionmakers are geographically dispersed. They communicate with the help

of wired links or radio. The threats are characterized by their radial distance, i.e., they are

modeled as occurences on a line. Their position on this line is measured by a variable x,

x e [0, 3]. They appear one at a time and they are independent. The line is divided in

three sectors (Fig. 7.4), namely [0,1], ] 1,2[, [2,3]. Since the Field Units are placed close to

the extreme sectors, they perform the same algorithm which determines the position of the

target on the line but with different accuracy, depending on the sector in which the target

appears. For instance, FU1 is accurate when a threat appears in [0,1], less accurate when it

appears in ]1,2[, and even less when in [2,3]. The accuracy of FU2 is symmetrical to

FU l's.
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The inputs are instances of elements x of an alphabet X. A given instance is modeled by
the pair x = (z, Name), where z is a real in [0,3] and Name is a string in {00, 10, 01, 11).

The name of the input represents the identity of the threats. They can be thought as being
types of aircraft, or types of behavior. The threats whose Name is 00, 01, or 10 represent

Foes, and have to be destroyed. Only 11 is Friend.

The position of the threat on the line is denoted by z. This is the actual position, but the

Field Units, who are in charge of determining it, only achieve their own measure [z] of z. In

other words, each of them has an interval (of uncertainty) for the value of z. The accuracy of

their measure decreases with the remoteness, and so does the length of the interval. In order

to keep the computations simple, the position z in [0, 3] is discretized such that only 30

different positions are allowed, namely 1, 2, ..., 30. Any input which appears actually in

[0.1*(i - 1), 0.1*(i)[ is called z i, where i is an integer between 1 and 30. For completeness,

the last interval is [2.9, 3.0].

Consequently, the alphabet X consists of elements x - (zi, Namej), with:

z i r ( 1, 2, ..., 30)

Namej e (00, 01, 10, 11), forj = 1,.... 4.

7.1.3 Strategies of the DM's and Cost Matrix

For any incoming input xi, the Field Units determine a measure of the position of the

threat, and the Headquarters identifies its Name.

Situation Assessement of the Field Units

Each FU's has the same set of two algorithms in the SA stage, called SAl(FU) and

SA2(FU). SAI(FU) is more accurate than SA2(FU), and, as a result, takes more time to

produce a response. Each algorithm yields a measure of the position of an input xj with a

precision 8 represented by an integer. A precision of 1 means that there is no uncertainty in

the knowledge of zi, and that the measure of its position [zi] is equal to zi. The interval of

uncertainty is reduced to (zi}. A precision of 3 means that the measure [zi] can be at tany

one of hree different positions: {zi - 1, zi, zi + 1 }
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The algorithms used in the Situation Assessment of the Field Units are characterized by

the precision of the measure they can achieve. In this model, the precision of the measure is

taken as a function of the sector to which the threat belongs: the precision 8 is supposed to be

a linear function of the remoteness, at least in this range of positions of the threat. The

precision of these algorithms is as follows:

-Algorithm SA1(FU), (for FUl):

ISi I0 = 8=1

11<i520 = 8=3

21 i<30 8=5

-Algorithm SA2(FU), (for FUI):

15i5 10 = 8=3

115i<20 = 5

21 <i<30 = 8=10

The precision of measurements for FU2 are deduced from the above by symmetry (i.e.,

i' -+ (30- i)).

The values of the precision 8 are quantized so that they are the same wherever the threat

appears in a given sector. Their dependence on the distance has been set to account for a

rapid decrease in accuracy when the distance increases. The delay of the second algorithm

has been set arbitrarily at one unit of time. At this point, we assume that if one obtains a

measurement with precision 8 but spends T units of time in that operation, then one will

require more than 2T units of time to obtain a precision 5/2. Since the first algorithm is twice

as accurate as the second one, the processing delay of the first one is set to three units of

time.

Situation Assessement of the Headquarters

The Headquarters possesses a set of two algorithms in its SA stage. The first one,

SAl(HQ), identifies the name of the threat by reading the two characters of the string. In

that case, the threat is completely identified. The second algorithm, SA2(HQ), only reads the

first character of the string and is less accurate than the first one. The same argument as
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above leads to a processing delay of two units of time for SA2(HQ) and four units of time for

SA1(HQ).

Internal Strategies

The set of alternative algorithms that the decisionmaker possess leads to the definition of

their internal strategies. The variables ul, u2, and u3 are first defined to have their set of

values equal to ( 1, 2), and to correspond to the settings of the switch of the situation

assessement stage of FUl, FU2, and HQ, respectively. The variable ul for instance is set to:

ul -- 1 if FU1 processes his input with the algorithm S Al.

u=12 if FUl processes his input with the algorithm SA2.

u2 and u3 are determined accordingly. Now the internal strategy of, say, FU 1 is the

probability distribution of the variable ul, as indicated in the following:

D(FU1) = (p(ui = 1), p(ui = 2)).

D(FU2) = (p(u2 = 1), p(u2 = 2)).

D(HQ) = {p(u3 = 1), p(u3 = 2)).

A decisionmaker uses a Pure Strategy when he always processes the incoming input

with the same algorithm. Otherwise, he uses a Mixed Strategy. In the present case, each

DM possesses two pure internal strategies.

Information Fusion stages

The time delay of the Information Fusion stages is logically a function of the number of

the number of inputs to be fused. If two inputs have to be fused, the processing delay is one

unit of time. If three inputs have to be fused, the delay will be two units of time. All other

algorithms have associated a delay of one.

When the two Field Units fuse their measurements of the position of the threats, the

precision is increased, if these measurements are consistent, which in this Thesis is supposed

to be the case. If two measurements of a same input with precision respectively 81 and 82

are fused into a measurement with precision 8 = Fus(8 1 , 82), then the results are as follows:
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TABLE 7.1 Precision of Fused Information.

Fus(1,-) = 1 Fus(5, 5) = 3 ,

Fus(3, 5) = 2 Fus(5, 10) = 5 .
Fus(3, 5) = 2 Fus(10, 10) = 10

Fus(3, 10) = 3

Response Selection Stages and Cost Matrix

The decisionmaker in each Field Unit can either send a missile to the target, or do

nothing. If he sends a missile to the place where he has measured the threat to be located,

then he can either hit the target or miss it, depending on the accuracy of his measure. The

FU's response is denoted as y, the place where the missile is targetted: y can take the values

x, if the missile is sent exactly where the target is, 1 x, if a missile is sent to a wrong

position, and t if no missile is sent.

The ideal response for a Friend input (Name 11) is of course to do nothing, whereas the
ideal one for a Foe input is to destroy it. There is, furthermore, a penalty for an

over-consumption of missiles. The cost associated to any discrepancy between the ideal and
the actual responses is indicated in the following cost matrix:

TABLE 7.2 Cost Matrix.

x1  x x

x2  x x , x x x.

Foe: -i Y =o 6 6 60 " 6

Friend Y= 3 3 1 3 2 1 3 1 0
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In that matrix, the left column corresponds to the ideal response of the organization. The
top row labeled x1 indicates the response of FU1, whereas the one labeled x2 represents the

response of FU2. The costs are adjusted to reflect subjectively the ranking of the seriousness

of the actual responses of the organization. For example, the ideal response for a Friend

input is for the Field Units to send nothing, i.e., x1 and x2 to be inactive (t). If one missile

is sent to a wrong position, in other words if x1 = t, and x2 = 1 x, (or the reverse), then the

cost of wasting one missile is estimated to be one. The cost of sending one missile and biting

the friendly target is set to be three. These values can be modified to account for any other

set of beliefs.

Probability distribution of the inputs

The probability distribution of the occurences of the inputs is assumed to be uniform,

unless otherwise specified. The probability for the input x of the alphabet X of having its
Name equal to a given Namej is then 1/4, whereas the probability that this input has a

position equal to a specific zi is 1/30. We have then:

p(x = (zi, Name)) = 1/120, for all zi in 1,..., 30) and all Namej in {00, 01, 10, 11).

7.2 MEASURES OF PERFORMANCE

7.2.1 Accuracy and Timeliness for Pure Strategies

The previous section has described the parameters which specify the organizations

FDMO1 and FDMO2, as well as the internal strategies of the decisionmakers. The

performance of the organization is a function of the strategy of the organization as a whole,

or organizational strategy. It is given by the triplet:

S - (D(FUl), D(FU2), D(HQ)}.

Since the three switches which are present in the organization are in the Situation

Assessement stages, the internal strategies are not formulated with probabilities conditioned

by the inputs. There are, therefore, eight Pure Organizational Strategies, which are the
triplets of the pure internal strategies. These Pure Strategies Si, i = 1,..., 8, can be defined

by the algorithms the DM's are using, as follows (the order is FU1, FU2, HQ):
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S1 = (SA1, SAl, SAl)

s2 = (SA, SA2, SAl)

S3 = (SA2, SAl, SAl)

S4 = (SA2, SA2, SAl)

S5 = (SAL, SA, SA2)

S6 = (SAL, SA2, SA2)

S7 = (SA2, SAL, SA2)

S8 = (SA2, SA2, SA2)

The application of the formulas (2.1) and (2.2) of chapter 2 gives immediately the values

for Timeliness T and Accuracy J for FDMO1 and FDMO2, for each Pure Strategy Si. The

results are shown in Table 7.3, with T in units of time.

The type 1 variable organization VDMO which has been considered in section 7.1 adapts

the interactions between the Field Units to the inputs that they have to process. In order to do

that, Headquarters, in its Situation Assessment stage, associates a variable u with the .4

information that it sends to the Field Units. This variable u will determine the interactions

between FUl and FU2. HQ has indeed many ways to partition the alphabet of inputs in

classes. We consider here the case where the inputs are distinguished on the basis of the

sectors in which they have appeared. HQ is assumed to be able to determine the

sectors of occurence of the threat, which the FU's either cannot do, or can do but have to

wait for the HQ's command. HQ, therefore, sets the interactions between the FU's to be as

in FDMO1 when the threat occurs in the extreme sectors [0, 1] and [2, 3], and as in FDMO2

when the threat is in ] 1, 2[. In the former case, there is no real need for the Field Units to

interact since at least one of them has an accurate measurement of the position of the threat.

In the latter case, however, the precision of the measurement is increased because the FU's

fuse their information, and, in doing so, reduce the interval of uncertainty of their respective

measurements.

When compared to FDMO1, VDMO is likely to have an improved accuracy of response

when the threat appears in ] 1,2[. When compared to FDMO2, VDMO will have a lower

response time when the threat appears in the extreme sectors. The results for Accuracy and

Timeliness for the VDMO are shown in Table 7.3, for the eight Pure Strategies.
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TABLE 7.3 Accuracy and Timeliness for the Pure Strategies.

FDMO1 FDMO2 VDMO

FUI1 FU2 HQ T J T J T J

S SA1 SA1 SA1 5.00 3.5900 9.00 2.4838 6.67 3.3944 !
1 1 1

S SA1 SA2 SA1 6.00 2.8167 10.00 1.9583 7.67 2.6271
21

S SA2 SA1 SA1 6.00 2.8167 10.00 1.9583 7.67 2.6271

S SA2 SA2 SA1 6.00 2.1759 10.00 1.4167 7.67 2.000
41

S SA1 SA1 SA2 7.00 3.0500 11.00 2.4167 8.67 2.8056
5

S SAl SA2 SA2 7.00 2.0833 11.00 1.1250 8.67 1.7292
6

S SA2 SA1 SA2 7.00 2.0833 11.00 1.1250 8.67 1.7292
7

S SA2 SA2 SA2 7.00 1.3056 11.00 0.5625 8.67 1.06258_

7.2.2 System Locus and Comments

A behavioral Organizational Strategy is constructed by considering the probability

distributions of choosing a particular algorithm at each switch. In the present case, such a
strategy is completely defined by the triplet X = (XI, X2 , X3), where the Xi's are the

parameters describing the (binary) mixed strategy of each decisionmaking unit (Boettcher and

Levis, 1982):

i= P(Ui = 1).
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The resulting strategy space for the organization is the set [0, 1]3. The performance

measures of the organization for the Pure Strategies Si, for i = 1 to 8, are denoted by Ti and

Ji. Timeliness and Accuracy, as defined in chapter 2, are linear functions of the mixed

strategies of the individual decisionmakers. J(X) (and accordingly T(L)) is computed for any

behavioral strategy X~ as follows:

J( -) = 2)L.-J(Sl) + )Lq.(1-X 2).)X3.J(S2) + (1-X1)X 2 .X3.J(S3 )

" (I-)Ll).(1-X2)X 3.J(S 4) + XI.)X2 .(1-X3 ).J(S5) + l-lX)lX3J(6
" (l-X1 )X 2.(- 2GA).J(S 7 ) + 1X)(X2-lx-JS)

The system loci for the two organizations with a fixed structure, i.e., FDMO1 and

FDMO2, are depicted in Fig. 7.5. They are disjoint, and no matter what Organizational

Strategy is used in any of the two organizations, FDMO2 needs more time to respond. As

J
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Figure 7.5 System Loci for FDMO1 and FDMO2.
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indicated in Fig. 7.5, the whole locus for FDMO1 is tD the left of the line T =7 units of time,

whereas the one for FDMO2 is to the right of the line T = 9 units of time.

The same methodology as for the organizations with fixed structure applies for the

organization with a variable structure VDMO. The system locus of VDMO is shown in

Fig. 7.6. As expected, the variable structure organization is, on the average, faster to

respond than the fixed structure organization in which the Field Units have to interact

(FDMO2), precisely because they do not always interact in VDMO. VDMO is also, on the

average, more accurate than FDMOl, since the FUs in the VDMO interact as needed to

improve their measurements of the position of the target.

4.0

3.5 I.

3.0
FDMO L

2.5

2.0

1.5

1.0

0.5

0.0 I I I I I I I I I I .--
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Figure 7.6 System Loci for VDMO.
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In the observations that can be made on these plots, one has to be aware that each system

locus has associated a probability distribution f (see section 2.1.4), which indicates how

probable it is to attain a given set of the MOP's, T and J.

The computation of the performance of an organization for any behavioral strategy and

the representation of its system locus are not sufficient to allow the desigier to select the best

organization among a set of candidates. The mission the organization has to fulfill has to be

taken into account. In the next section, the Effectiveness of the three organizations that we
have considered in the achievement of their common mission will be evaluated.

7.3 MEASURES OF EFFECTIVENESS

7.3.1 Diagrams of Consistency

The mission of an organization is described in terms of a pair (T0 , JO) of constraints on

its performance. As described in chapter 2 (see section 2.1.4), a convenient representation of

the Effectiveness of a DMO is a three dimensional locus (T0, JO, E(T0, JO)), called diagram

of consistency. In such a locus, E(Tr0, JO) is the percentage of strategies for which the

performance of the DMO (T, J) meets the requirements of the mission (T < To , J 5 JO).
E(T0 , JO) takes a value between 0 and 1, 0 corresponding to no strategy at all satisfying the

mission, and 1 meaning that all admissible strategies lead to satisficing performance.

The diagrams of consistency for the three candidate organizational structures are depicted

in Fig. 7.7 (for FDMO1), Fig. 7.8 (for FDMO2) and Fig. 7.9 (for VDMO). They have been

obtained with the Locus module of the CAESAR system. In these diagrams, the variables X,

Y and Z are matched respectively to J, T, and E. The figures show clearly that FDMO1 has a

higher effectiveness than any of the other two organizations in the region of stringent

constraint on Timeliness and loose constraint on Accuracy. FDM02, on the contrary, is the

most effective when the mission requires high Accuracy.

For any given design candidate, such locus provides some insight on the shape of the

probability distribution f(T, J) (as defined in section 2.1.4). However, it does not allow an

easy comparison of different designs of organizations achieving the same mission. A tool for

that comparison will be derived in the next section.
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7.3.2 Comparison of Designs

In section 7.3.1, the Effectiveness of each of the three design candidates has been

computed, for any given mission defined by its requirements ('0, JO). For each pair

(T0, JO) of mission requirements, the organization which has the highest effectiveness can be

selected. More than one organization can, of course, achieve the same Effectiveness. Then
each organization has associated a range of mission requirements (0, JO) in the MOP space,

such that for any mission requirements (T0 , JO) within that subset, that organization will have

higher effectiveness than all the other candidates. This defines a partitioning of the

requirements space (T, J) in areas corresponding to each organization, or set of

organizations, if the maximum effectiveness is obtained for several designs for the same

mission requirements. This happens when more than one system locus is included into the

mission locus.
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The computation of the measure of effectiveness E for each design candidate has been

done for discrete values of TO and 0. Thirty three values for the Timeliness requirement T0,

ranging from 4.00 to 12.00, and thirty six values for the Accuracy requirement JO, ranging

from 0.50 to 4.00, have been used. This resulting grid of 33x36 values for the effectiveness

of each candidate was then used to determine the ranges of mission requirements for which

each candidate is the most effective. The precision of the determination of these ranges is of

course a function of the size of the grid. This explains, for instance, the occasional piecewise

linear border between zones.

Such a partitioning is represented first for the organizations with a fixed structure,

FDMO1 and FDMO2. In Figure 7.10, the methodology outlined in the previous paragraph S

yields four different areas. The first area, with no shading pattern, corresponds to the set of

mission requirements for which both FDMO1 and FDMO2 have an effectiveness equal to 0.

The system locus and the mission locus are completely disjoint, i.e., there is no

organizational strategy that can meet the mission requirements. The area labeled FDMO1 is

the one in which FDMO1 is the most effective; its non-zero measure of effectiveness is

higher or equal to the measure of effectiveness of FDMO2. The reverse is true for the area

labeled FDMO2; here FDMO2 is more effective than FDMO1. In the fourth area, which is

labeled FDMO1+FDMO2, both organization have an effectiveness of 1, which means that for

both any organizational strategy will meet completely the requirements of the mission. There

is no rationale in that case to pick up one organization rather than the other. Note that, in this

case, the FDMOl+FDMO2 region is defined by the worst accuracy of FDMO 1 and the worst .'

timeliness of FDMO2: JO .3.59 and TO = 11.00.
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Figure 7.10 Partitioning of the requirements space for fixed structure DMO's.

The same methodology applies when considering the three designs together, namely

FDMO1, FDMO2, and VDMO. The results are shown in Fig. 7.11. There are seven

subsets of the requirements space, one corresponding to effectiveness equal to zero, when no

design meets the mission requirements, one corresponding to each one of the three designs,
in which that particular design is clearly the most effective, and three others assxiated to

more than one design. In (FDMO1+VDMO), for instance, FDMO1 and VDMO have an

effectiveness equal to 1, whereas FDMO2 is less effective. There is no region corresponding

to FDMOL+FDMO2. In the region (FDMOI+FDMO2+VDMO), all three designs meet totally

the requirements.

p,',,
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2.5

7.3.4 Conclusion.

The previous sections have successively modeled a variable structure organization, ,

plotted its system locus, and its diagram of consistency. It has been shown that one can not ,

decide whether a VDMO performs better than an organization with a fixed structure, unless-'7,

the specific mission requirements are taken into consideration. Then ranges of mission (.
requirements have been identified for which specific organizational designs are most "

effective. If the requirements are such that the best design is the one with variable patterns of '

interactions, then the VDMO should be considered. If they do not, there is no need to

1.5,

introduce variability in the DMO's, since a VDMO would not perform any better. A Fixed :

organizational structure would require a simpler C3 system to support it.-..
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If the requirements are met both by a variable structure organization and an organization

with a fixed structure, then other criteria may be used at this point, such as, for instance, the

robustness of a design, which would favor a fixed structure DMO since it is less sensitive to

noise or jamming. These criteria have not been addressed in this Thesis, but would

constitute the next step toward the modeling of more realistic decisionmaking organizations.
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CHAPTER VIII

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

8.1 CONCLUSIONS

In this Thesis, variability in decisionmaking organizations has first been defined. More

precisely, three different types of variability have been distinguished: a type 1 variable DMO

adapts the pattern of its interactions to the class of inputs it has to process. A type 2 variable

DMO adapts that pattern to changes in the environment. It has been assumed at this point that

the organization has a way to perceive such a change. Finally, a type 3 variable organization

adapts that pattern to changes in the nature of the components that it is constituted of, and

again the same assumption has been made. This artificial distinction between types of

variability has been introduced to facilitate its description, but clearly a given organization can

exhibit these !hree types simultaneously.

The System Effectiveness Analysis methodology has been extended to account for

variable organizations. A Measure of Effectiveness has been proposed for each type of

variable DMO's. A mathematical formulation for the computation of that MOE has been

established.

A modeling methodology has been described providing a representation of DMO's by

functions. The main features of that methodology is the decoupling between the pattern of

interactions and the identity of decisionmakers, who are modeled by tokens and treated like

any other resources. The Predicate Transition Nets formalism has been adapted to allow

such representation.

An example of the overall procedure has been presented. It consists of three candidate

designs for an air defense task. Each of these candidates is composed of three

decisionmakers, namely one Headquarters and two Field Units. Two organizations have a

fixed structure, and the third one is type 1 variable; for some tasks, it adapts the pattern of

interactions to a pattern comparable to that of the first fixed structure DMO. For some others,

it takes the other pattern. The results of the comparison of these designs are that a particular

one cannot be selected in general on the basis of its system locus only. The Effectiveness of
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each candidate has to be evaluated quantitatively for each set of mission requirements; then

zones can be defined in the requirements space which characterize for each organization the

ranges of mission requirements for which it is the most effective. In that particular case, the

set of mission requirements for which the variable structure organization has the highest

Effectiveness has been computed and represented. It shows clearly that a variable structure

organization is only preferable to fixed structure ones when the requirements are such that

one design is not timely enough, whereas the other is not accurate enough. Type 1 variability

seems then to provide a compromise between extreme performance of organizations with

fixed structure.

8.2 DIRECTIONS FOR FURTHER RESEARCH 1

At this point, research could be pursued in many directions to improve and extend the

methodology developed in this Thesis. Four different areas for future research have been

considered.

8.2.1 Improvement of the Present Model '%

the present example of the three design candidates can be investigated in more detail. =

The HQ in the organization, which has been described in chapter VII, has a single strategy to

determine the sector in which the threat is located. The impact of alternatives that the HQ '-S

could have in that determination would be interesting to assess. In such a configuration, HQ

would have several ways to set up the interactions of the rest of the organization and, as a

result, the system locus of the variable organization would be likely to expand. In the

extreme case where HQ associates a class to the command that he sends to the Field Units at V.

random, i.e., with no rationale for that decision, that locus would include both of those of the

organizations with fixed structure.

The same result is likely to occur when there is some noise either in the determination of

the position of the target by the HQ or in the communication of the commands to the Field

Units.

In either case, the area of the requirements space in which the variable organization is the

most effective would shrink, up to a point where it is no more worth it having a variable

structure. A substantial effort would be required for the quantification of these qualitative

150



conjectures.

The investigation of changes in these results when the probability of occurence of the

threat is no longer uniform, but when for instance the probability of a threat occuring in any
sector is (Pl, p2 , p3 ) instead of (1/3, 1/3, 1/3) could give some insight on what a type 2
variable organization would be like. The methodology for the evaluation of effectiveness for

type 2 variable organization as developed in chapter II could then be applied in that context.

8.2.2 Impact of the Bounded Rationality Constraint

Another Measure of Performance has been defined in the context of decisionmaking

organizations, which is the Workload, or Activity Q, of each decisionmaker DM i (Boettcher
and Levis, 1982). Gi measures the amount of mental effort expended by DM i in order to

perform his task. Gi depends on several factors, including the probability distribution of the
inputs, the algorithms used to represent the various processing stages, and the interactions

between decisionmakers. The qualitative notion that the decisionmakers are not perfectly
rational has been modeled as a constraint (known as the bounded rationality constraint) on

* their activity Gi:

where ' is the mean interarrival time of the inputs and Fi the information processing rate that

characterizes DM i . Any given organizational strategy yields a set of MOP's (T, J, G); the

bounded rationality constraint determines a part of the system locus that should be avoided.

The methodology which has been used so far in the quantitative evaluation of the
Activities of the DM's (Boettcher and Levis, 1982; Andreadakis and Levis, 1987;
Weingaertner, 1986) has to be adapted to the particular case of variable organization. The

first part of this task would be to set up the right formalism to do it. The second part would

be to examine the impact of the bounded rationality constraint on the measure of effectiveness
of a variable organization as opposed to the ones of organizations with a fixed structure. The

effort required to change the configuration of the interactions between DM's could possibly
drive the type- 1 variable organizations out of the competition with fixed structure ones. "
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8.2.3 Dynamics of Variable Structure Organizations

A deeper insight on the improvement that variability can bring in the effectiveness of an

organization can be provided when the DMO is considered from a dynamic point of view, as

in Hillion, (1986). The order of arrival of the classes of inputs would be as important as the

interarrival times. In that context, a type 1 variable organization would allocate dynamically

its resources to the class of the incoming input. It is suspected at this point of the research

that the introduction of variability in decisionmaking organizations would produce a greater

improvement of performance, when compared with the static case. A whole set of problems

arises, however, among which is the design of preprocessor which would reorder the inputs

to minimize the number of switchings. This area of research would relate closely to queueing

theory.

8.2.4 Computation of Invariants

Invariants can be computed on the Predicate Transition Nets, using a methodology

introduced originally by Genrich, (1986). An invariant can be defined as a linear function 1.,

from the set of the markings of the net, to the set of the symbolic sums of all the individual

tokens which can be found in the net; given a net rI and an initial marking M0 , the value 1,(M)

of the function 'L is the same for each marking M in the reachability set of M0 . It represents a

certain content of tokens which remains constant during the firing process.

Not all PrTN's can be obtained through the methodology developed in chapter V. An

interesting area of research would be to characterize these nets, and then to develop a

methodology for the computation of their invariants. It is suspected at this point that the

relations on the markings of the different places of the net that the invariants will provide

would correspond to the conservation of the initial markings of the resource places of these

nets; in terms of the variable DMO's that these nets model, these relations would correspond

to the conservation of the resources utilized by the organization when it functions.

I
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