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Greek Letters:

: constant; value of the Eshelby S-tensor

a :relative vertical displacement between the centers of two
spheres in contact

C : angle of orientation of major principal stress

ascabcc,fcc : length of edge of representative volume of the sc, bcc
and fcc arrays respectively

8 : constant (= dT/dN)

*: Bangle of orientation of the element

8* : constant; value of the Eshelby S-tensor

Y : engineering shear strain

Yi : average shear strain experienced by inclusion i

Yt : threshold strain

Yij : engineering shear strains (components of the strain
tensor)

. : Kronecker delta

Sij : displacement

6 : horizontal displacement between the centers of two
spheres in contact

eij : strain tensor

e p
Ci, lj : elastic and plastic strains respectively

Ev : average volumetric strain experienced by inclusion i

CV : average macroscopic volumetric strain

e : constant (=f/6)

ez  : angle of incidence of S-wave
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p

coefficient of proportionality in plastic flow rule

: constant, parameter of the probability density function9 of the void ratio, p(e)

v : Poisson's ratio

V : macroscopic Poisson's ratio

SVs : Poisson's ratio of the spheres

S : 3.14159

Sp: mass density

oai (i=1,2,3) : normal stress applied to regular array

aij : stress tensor

aij (i,j-1,2,3): shear stress applied to regular array

0

aij : applied (macroscopic) state of stress

Oa : axial stress

Ga, b : principal stresses in directions of propagation and
polarization

ac  : principal stress in direction of no propagation/nohpolarization
ao  : isotropic confining pressure

ao  : mean effective stress

ai (i-1,2,3) : principal stress

ai (11,2,3) : effective principal stress

-i
Co : isotropic stress experienced by inclusion i

0

ao  : applied isotropic stress

To : applied shear stress

: shear stress
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T shear stress at failure (=fao)

vsan : vertical and horizontal stresses

Latin Letters :

A : area of face of elementary volume

a : constant (0.15 < a < 0.23)

a :radius of area of contact between two spheres in contact

C : constant

CijkX : Compliance Matrix

Cn,Ct : Normal and Tangential Compliance respectively

Cn  : Uniformity Coefficient

ci : volume concentration

D, Dij : Constrained Modulus

-D,D : Displacement between centers of two spheres in contact

DIO : percent passing

d D,dD : Displacement increment

E : Young's Modulus

SEs  : Young's Modulus of the spheres

e : void ratio

emin,emax : minimum and maximum void ratio respectively

e : mean void ratio

F : constant

f(aij) : yield function

t : friction coefficient

FEM : finite element method

xx
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Gi  : shear modulus of inclusion i (i =,...,N)

G : macroscopic shear modulus

G: secant shear modulus

G S  : shear modulus of the spheres

: normalized shear modulus

Gmax : shear modulus at very small strains

Sg(aij) : plastic potential

IHo,Hp : tangential elastoplastic and elastic moduli

Ii : first invariant of the stress tensor

Ki : Bulk Modulus of inclusion i (i =,...,N)

K* : macroscopic Bulk modulus

K : stress ratio (K - az/ao)

k constant (k = (2-vs)/2(1 vs))

L : constant (= T/fN o )

L : constant (= T*/fNo)

M : constant

m : constant

ma,mb,mc : constants

n : constant

n : porosity p

n : mean porosity, macroscopic porosity

nmin,nmax : minimum and maximum porosity respectively

N : Number of cycles

N : Number of phases or materials

: Normal force
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NIj : Contact forces at local coordinate system

Nij : Contact forces

No  : Normal contact force due to application of o

N : constant .

N,N contact normal force

P : constant
I

P,P : contact force V

Pa : atmospheric pressure

Pij : applied forces

p(x) : probability density function of x

R : radius of spheres

SxSypSz : elastic constants

SijkX : Stiffness matrix

Tx,Ty : Tangential contact forces in x and y directions (

dTn,dTt : outward normal and tangential components to the yield

surface of the applied tangential force increment

t,to,t1  : time

xi : coordinate

:,T tangential force

T : tangential force at failure (= fNo)

Vp'Vs : P and S wave velocities

VL : rod wave velocity
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ABSTRACT

The need for a micromechanical approach to modeling the stress- V,

strain response of granular soil is discussed and justified. This work

focuses on the small shear strain (y < 0.01%) behavior, and investigates

the validity of modeling analytically uniform, rounded-grained quartz

sand by arrays of identical elastic, rough, quartz spheres. As a first I
step, the stress-strain properties of six regular arrays of spheres are

studied in some detail, with focus on isotropic and and biaxial boundary

loading.

An analytical procedure is established for determining the elastic

moduli of a random assemblage of equal, elastic, rough spheres of

arbitrary mean porosity, subjected to isotropic confining pressure. The

procedure uses the properties of the regular arrays already described, it

accounts for the spatial distribution of porosity, and it calculates the

macroscopic moduli through the Self Consistent Method. The procedure was

applied to compute the shear and bulk moduli of assemblages of quartz

spheres, which were then compared to static and dynamic measurements on

uncycled and heavily precycled quartz sands reported in the literature.

Although the theoretical sands are significantly stiffer than the actual

soils, excellent agreement was found with resonant column measurements on

heavily precycled Ottawa sand at small strains.

Finally, a new two-dimensional model of the stress-strain behavior k
of granular soil at small strains is presented. The model is based on an

incremental solution to the contact problem of two equal, elastic, rough

spheres and is implemented through nonlinear finite element techniques.

xxv
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1 The results of numerical experiments conducted on this idealized

aggregate are compared to laboratory data on the static and cyclic small

strain behavior of actual sand, as well as to recent compressional waveI velocity measurements on anisotropically consolidated dry sands, with

good agreement. These measurements, performed at the large cubic

triaxial facility at the University of Texas, have shown that the P-wave

velocity depends only on the principal stress parallel to the directionI of wave propagation; this finding was also predicted by the simulation.

Concluding, the hypothesis that certain aspects of the behavior of

granular soil are due to the particulate nature of the soil is justified.

These aspects cannot be interpreted and reproduced analytically unless

this particulate nature is taken into account.
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CHAPTER I

INTRODUCTION

The main objective of this work is to present a simple, yet

rigorous, particulate mechanics model of the stress-strain response of

granular soil under small shear strains, y, of the order of 10-2% or

less. The proposed model idealizes sand as a combination of regular

arrays of elastic, rough spheres and uses Mindlin's formulation for the

contacts.

"Elastic constants" of interest at very small strains(*) include the

shear and bulk moduli and the Poisson's Ratio(s). Experimental results

and basic considerations indicate that these "constants" depend on both

the void ratio of the soil and the state of confining stresses. The

variations oF these moduli and of the damping of the soil with an applied

shear strain up to the threshold are also of interest, as is the value of

the threshold strain itself at which gross sliding occurs at the grains'

contacts.

These small strain soil parameters are very important in geotechni-

cal engineering problems involving cyclic loading or wave propagation in

the soil, such as: ocean wave loading, soil structure interaction, site

response, ground settlement and liquefaction during earthquakes. Due to

this, a great number of experimental studies of small strain behavior

(*) The concepts of small and large shear strains as used here are

consistent with usual Soil Dynamics terminology, but they do not
coincide with that of traditional Soil Mechanics, where much greater
strains of about 1% or larger are usually of interest.

I%
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U Ihave been performed, and correlations have been developed for practical

use. Especially important are the equations for the shear modulus at very

small strains, Gmax, in sands developed by Hardin and Richart (1963) and

Seed and Idriss (1970), be used on the assumption that these soils can be

treated as elastic isotropic solids. In both correlations, discussed in

more detail in Section 2, Gmax = A*(-o) 0 .5 , with -1, 02, 03 being the

effective principal stresses, ao = (ai + a2 + a3) /3 is the mean effective

stress and A is a soil constant which depends on void ratio or relative

density. Both correlations assume that Gmax (and thus, also, the shear

wave velocity, Vs = (Gmax/P)1/
2 ), is the same for isotropically or aniso-

tropically loaded sand, provided that the mean stress ao is the same;

also, both correlations assume that for the anisotropic loading case Gmax

S Iand Vs do not change with direction.

These assumptions for Gmax in sands have been challenged more re-

cently by the experimental results obtained by Roesler (1979), Knox et

al. (1982) and Yu and Richart (1984), as discussed in Section 2. There-

fore, a main motivation for this work was the need, suggested by those

experimental findings, for a fresh approach to our basic understanding of

Gmax and other small-strain soil parameters. Some preliminary analytical

results previously obtained by Dobry et al. (1982), had shown that a

particulate mechanics approach was very well suited to this purpose, and

should be the basis of this fresh approach.

The large strain (0.01% > y) behavior of granular soils is also very

important in engineering problems involving cyclic loading, and espe-

cially those related to earthquakes. At these strains, the stress-strain



* 3

behavior becomes strongly nonlinear and hysteretic, and rearrangement of

particles take place producing phenomena such as densification and pore

water pressure build-up (Silver and Seed, 1971; Youd, 1972; Dobry et al. ,

1982; National Research Council, 1985). A number of continuum mechanics

models, based mostly on the Incremental Theory of Plasticity, try to

simulate this behavior and have been proposed for soils, as discussed in

Chapter 3.

A summary literature review of previous relevant particulate

mechanics studies is presented in Chapter 4. 111any of these past inves-

tigations have focused on the very large strain (y > 1%) and strength

behavior of granular soils; at those very large strains, gross sliding

and rolling of the grains are main contributors to the overall strain,

while the elasticity of the particles and contacts play a minor or

negligible role. On the other hand, for the small to large strain ranges

of interest of the proposed research, the elasticity of the particles and

the details of the force-displacement response at the contacts are very

significant factors. The discussion in Chapter 4 includes a general

model recently proposed for the force-displacement response at the

contact between two identical elastic spheres (Seridi and Dobry, 1984,

Dobry et al., 1987).

The results of the present research are discussed in Chapters 5

through 9. Chapter 5 presents a deta..led study of the differential

stress-strain relations for various regilar arrays of spheres. Chapter 6

describes an application of these findings, using the Self-Consistent

Method, to a random arrangement of regular arrays subjected to isotropic
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I boundary loading, and with the arrangement having an arbitrary macro-

scopic void ratio. Chapter 7 presents the formulation of a two-

dimensional simulation using nonlinear finite element techniques and the

contact model of Chapter 4. The results of this simulation appear in

Chapters 8 and 9, where an excellent agreement is noted between the

3simulation and laboratory measurements.

P

.
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CHAPTER 2

LABORATORY MEASUREMENTS ON SANDS AT SMALL STRAINS

Starting around 1960, a number of cyclic and dynamic laboratory

measurements have been performed to determine the stress-strain behavior

of granular arrays and of natural sands at small strains. Properties

i studied have included: i) maximum shear modulus at very small strains,

Gmax; ii) the variation of secant modulus, G, with shear strain, y; iii)

the Poisson's ratio of the soil; iv) the variation of shear damping ratio

with strain; and v) the threshold shear strain, yt, at which densifica-

tion and pore pressure buildup start. 11any of these tests have been con-

ducted in a triaxial cell, on sand specimens isotropically or anisotropi-

u cally consolidated under a biaxial stress state (02 = 03 or 02 = al) ,

with the small strain measurements performed using the pulse method, the

resonant column or cyclic torsional techniques, and with particular

emphasis on shear modulus determinations. Important results and state-

of-the-art summaries of these modulus measurements have been presented by

Duffy and Mindlin (1957), Hardin and Richart (1963), Lawrence (1965),

Richart et al. (1970), Seed and Idriss (1970), Hardin and Drnevich

(1972), Woods (1978), Iwasaki et al. (1978), and Tatsuoka et al. (1979).

As mentioned before, "small strains" are defined here by the condi-

tion y < yt, as in this range the original geometry of the granular array

or sand remains essentially unchanged, with very few or no particles

experiencing gross sliding or rolling, and, thus, with the macroscopic

strain of the array being controlled by the elastic deformations of the

particles and by localized slips within the areas of contact areas

5~
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between particles. In many sands, Yt = 10-4 = 10-2%; measurements and

studies of Yt have been presented by Drnevich and Richart (1970), Youd

(1972), Pyke (1973), Dobry et al. (1980, 1981, 1981a, 1982), Dyvik et al.

(1982), Oner (1984) and National Research Council (1985).

On the basis of laboratory measurements, Hardin and Richart (1963)

proposed the following expression for Gmax:

Gmax - f(e)(ao)0 "5  (1)

where e void ratio, f(e) = 2630(2.17-e) 2/(1+e) for round-grained sands,

and f(e) 1230(2.97-e) 2/(1+e) for angular-grained sands; both Gmax and

ao are in psi in Eq. 1.

Seed and Idriss (1970) proposed the alternative expression:I
Gmax 1,000 K2max (ao) 0 .5 (2)

where Gmax and o are in psf, and K2max is a function of relative

3 density.

Eqs. 1-2 reflect the conclusion of these and other studies, that

Gmax and Vs are mainly a function of void ratio or relative density, and

of the mean effective normal stress o. Other variables, such as static

shear stresses, stress history, stress path (compression versus extension

loading), frequency of cyclic loading, degree of saturation, were found

to have, either a small effect or no effect at all (Richart et al., 1970,

Yu and Ric!iart, 1984). One exception is that a large number of shear

prestraining cycles at straints larger than the threshold was found to

increase Gmax significantly (Drnevich and Richart, 1970).

-Pr.eW
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It is useful to make explicit some of the implications of Eqs. 1-2

for anisotropically loaded dry sand, either for the general "triaxial"

case in which al * a2 * a3 or, as is very usually the case in the field,

the "biaxial" case, 01 *a 2 = a3. (The bars have now been dropped from

the stresses, as for a dry sand, 0 = a). These implications are:

i) Gmax and Vs depend equally on 01, a2 and a3.

ii) For a shear wave propagating in the sand, the value of Vs is the

same whatever the directions of propagation and polarization of

the wave.

Implication ii) is equivalent to assume that, at very small strains,

the anisotropically loaded sand can be modeled as an isotropically

elastic material, defined by the two elastic constants Gmax and Poisson's

Ratio, v. Under the usual additional assumption that for a dry sand, V

0.3 to 0.4 is a constant independent of confining stresses, a set of

implications similar to i) and ii) can be obtained, but now for a

dilational, P-wave, travelling in this dry sand. If we call D, Vp the

constrained modulus and P-wave velocity, respectively, the corresponding

implications are:

Mii) 0 and Vp depend equally on 01, a2 and a3, with D c(co)0 "5 and Vp
t (ao)0. 25.

iv) The value of V is the same whatever the direction of propagation

of the P-wave.

Five recent experimental studies have attempted to verify in detail

this formulation by Hardin/Richart and Seed/Idriss, and specifically the

validity of implications i) through iv) above for anisotropically loaded

"S%*' !' . ,"."~~' % ,,. ~ .
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dry sand.

Schmertmann (1978) measured Vp and Vs in several directions in a

large dry sand specimen (4 ft diameter by 4 ft high). In these tests, a

biaxial state of 3tress could be achieved, al = av * a2 = u3 = ah, with

Ov' ah = vertical, horizontal stresses, with the stresses varying between

5 to 20 psi, and with a stress ratio, G1/03 1 to 3. He found that

there was a slight amount of inherent anisotropy (different wave

velocities in the horizontal and vertical directions when av = Oh)- He

also found that for constant ao = 1/3 (av + 2 Oh) and variable 0i/u3, Vs

varied less than 10%, thus verifying the basic Hardin/Richart assumption

as a first approximation for Vs in this biaxial case. However, Vp

was strongly affected by 01/03. The results suggested that, for P-waves

propagating in the vertical direction, Vp depended more on av than on

o.

Roesler (1979) measured Vs using a I ft
3 cubical dry sand sample. %0.

In these tests, a true triaxial state of stresses was achieved. Test

pressures ranged from 5.8 psi to 23 psi, with a1/03 = I to 1.8. He

propagated the shear waves along either of the principal stress

directions (aa), with particle motions polarized in another principal

direction (ob). The third principal direction, or out-of-plane

direction, is neither a direction of propagation nor polarization (a.).

Roesler found that his results followed the law:

o l%

Vs :: B aa0 .14 9 ab0 " 0 7 ac0  (3)

N
%



9

Uwhere B constant. These results are illustrated in Fig. 1. For

isotropic confinement (aoaa-abac) they do confirm the Hardin-Richart

law that Gmax a(ao
)0 .5 and Vs c(ao)

0 "2 5 , as 0.149 + 0.107 = 0.256.

However, for the general case, Eq. 3 contradicts Eqs. 1-2, in that now Vs

is completely independent of ac . Also, Roesler's results for this case

indicate that Vs is a function of direction and the sand cannot be

treated as an isotropic elastic material; therefore, more than two

elastic constants are necessary to define it.

Stokoe et al. (1980) developed at the University of Texas at Austin

(U.T.) a large scale, 7 ft3 cubical triaxial facility, for the specific

purpose of measuring Vs and Vp in dry sand. In this facility, a triaxial

state of stress, al * a2 * 03 can be achieved. All tests performed to

date at U.T. have used a local medium to fine, washed mortar sand

classified as SP, with effective grain size, DIO = 0.28 mm and a

uniformity coefficient Cu = 1.7. The sand is placed by the raining

technique and is tested dry. Values of principal stresses used have

ranged between 10 psi and 40 psi, with the stress ratio, a1/03 = I to 4.

Knox et al. (1982) used this facility to study Vs and, similarly to

Roesler, they propagated the shear waves along one of the principal

stresses (oa), and polarized parallel to another principal stress (ob)"

They expressed Vs as:

Vs = F Gama %bmb ocmc (4)

where F = constant. They found values of ma = mb = 0.09 to 0.12, and mc

0 to 0.01. Except for some minor differences, these results are

Amu %
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identical to those of Roesler, including the independence of Vs on ac.

Kopperman et al. (1982) used the same U.T. facility and sand to study

P-waves and concluded that:

Vp = L a 0 .2 2  (5)

where L = constant. The insensitivity of V p to variations in the

stresses Ob and ac perpendicular to wave propagation is illustrated by

Fig. 2. Again, and similar to Schmertmann's findings, these results

indicate that Vp is strongly dependent on direction of propagation when

the sand is anisotropically loaded.

Yu and Richart (1984) performed resonant column tests on three sands

subjected to a biaxial state of stress. Their results essentially agreed

with those of Roesler and Knox; however, they found some effect of the

stress ratio on the results. They proposed for Gmax the expression:

Gmax = CPa0 .4 9 V.26 ah0.25 (1-a Kn2) (6)

where C=constant, Pa=atmospheric pressure, a=0.15 to 0.23, with a mean

value of 0.18, Kn=(o1/a3-1)/[(oi/U3)max-1, and (G1/02)max corresponds to

shear failure of the sand. Except for the factor 1-a Kn2 , which is

usually between 0.8 and 1, Eq. 6 is consistent with Eqs. 3 and 4 proposed

by Roesler and Knox.

Therefore, all of these results clearly indicate that implications

i) through iv) above, associated with the currently used correlations for

Vp and Vs in sands, need to be revised and upgraded. In most cases of

practical interest, sands are anisotropically loaded, and thus more than



U two elastic constants may be needed to specify the behavior of the soil

at very small strains. For the typical biaxial state of stresses exist-

ing in the field under geostatic conditions, for which all horizontal

normal stresses are equal but different from the vertical stress, the

sand will behave as a cross-anisotropic elastic solid and 5 elastic

constants will be generally needed (Love, 1927, Sokolnikoff, 1956). In

the more general case of a1 * 02 * G3, as it may happen in the soil under

a structure, the sand can be described as an orthotropic elastic solid,

with three planes of elastic symmetry, and a total of 9 elastic constants

are needed (Sokolnikoff, 1956).

The previous discussion focused on the elastic properties of sand at

very small strains, y = 10-4%, and especially on Vp and Vs measurements.

If larger loads and strains are applied to a dry granular soil, compres-

sion-wave type loading induces a nonlinear locking stress-strain response,

while shear-wave type loading induces a yielding response (see Fig. 3).

This behavior is obviously associated with the particulate nature of the

soil (Seed and Idriss, 1970; Hardin and Drenvich, 1972). During cyclic

shear loading in sand, stress-strain hysteresis loops are generated such

as shown in Fig. 4; these loops are essentially strain-rate and frequency

independent. For small strains, y < Yt % 10-2%, the hysteretic loop

repeats itself cycle after cycle, and no permanent volumetric strain is

observed, thus suggesting an essentially non-destructive though nonlinear

behavior, controlled mainly by the response of the contacts between the

grains, and with no coupling between shear and volumetric strains. At

-shear strains, y > Yt, although the overall behavior remains approximately
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the same, densification occurs, and there is also some increase in stiff-
'I

ness, with the shear stress-strain curve and the tips of the loop going

up a little as the number of cycles increases (see Fig. 4). For the

strain range 0.01% < y < 0.1% to 1%, the monotonic and cyclic behavior of

the sand is always contractive, that is, shear strains generate exclu- p

sively compressive volumetric strains, independently of the density of

the sand. However, for strains larger than about y = 14, a mixture of

contractive and dilative behavior is measured in dense sands, with

3expansion of the soil occurring during part of the cycle in cyclic shear

loading (Youd, 1972). At all strains, and for both shear and compression-

type cyclic loading, the stress-strain response of dry granular soil is

strongly dependent on the level of normal stresses acting on it.

~.
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CHAPTER 3

STRESS-STRAIN MATHEMATICAL MODELLING

A significant amount of research has been directed to obtain

stress-strain constitutive relations for cyclic and dynamic loading of

soil. Most of these studies have modelled the soil as an elastic-plastic

material, using as a basis tool the Incremental Theory of Plasticity. In

this type of model, which is particularly appropriate for dry granular

soil, the total strain increment is equal to the sum of elastic and
~e p

ij ij ij
plastic strain increments, del = de j+ dei , with all de being strain

rate independent (Drucker and Prager, 1952; Reyes, 1966; Chen, 1975; Lade

and Duncan, 1975; Prevost, 1978; Hardin, 1978). Based on the Vp measure-

ments by Roesler previously described in Section 2, Hardin (1980) sug-

e
gested the following expressions for de ij in dry granular soil:

d e F(e)* d x  da y daz

p1-n S x n Synyn Sz n
a

d e 2(1 + v)F(e) dTXy (7)
Pxy al - n Sxy (xay)n/2 _ Tx 2 + n

xy axary

e e e
where e normal strain, y = y2 e = engineering shear strain, and four

x xy xy
additional equations are obtained by permutation of subscripts. In these

equations, ax, ay and az = normal stresses; TXy = a shear stress; Pa=

atmospheric pressure; and F(e) = 0.3 + 0.7 e2 , where e = void ratio.

Eqs. 7 contain five elastic constants (Sx, Sy, Sz, Sxy and v); based on

13
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Roesler's experimental Vs results, a power of stress n = 0.5 was pro- 7W

posed.

A variety of associated and nonassociated flow roles have been

proposed for the plastic strain increment, of the form:

-ey I (8)

where X = coefficient of proportionality, and g(cij) is the plastic

potential function, which may or may not coincide with the yield function

f(oij) at which plastic strains develop. Figure 5 shows the shapes of a

number of plastic potential surfaces proposed for soil by different

authors.

In the simplest type of elastic-plastic model, there is only one

yield (failure) surface. For stresses below that surface, the behavior

is assumed to be perfectly elastic. However, granular and other soils !

develop plastic strains even at the small shear strains of interest to

this report. To allow for this behavior, a wide variety of

strain-hardening laws have been proposed, including families of yield

surfaces and specific strain-hardening yield rules. In some of these

models, the elastic region is completely eliminated, thus allowing for

plastic flow at very low levels of stress and strain (Mroz, 1967;

Prevost, 1977). One of the earliest developments included various cap

models, based on the work done at Cambridge University by Roscoe and his

co-workers (i.e., Roscoe, 1970). This includes the models proposed in

several papers by DiMaggio and Sandier (1971), which have been widely

used for dynamic analyses of soil response to explosions. Several capped

Wr e e
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I yield models are included in Fig. 5.

An important aspect of the development of elastic-plastic models is

the definition of the strain-hardening law, which defines the modifica-

tions of the yield surface(s) in the course of the plastic flow. This is

especially critical for cyclic loading, where the type of strain-harden-

ing determines the stress-strain behavior after load reversals. In most

of the models described above, which were originally developed for

monotonic loading, isotropic strain-hardening is assumed (Hill, 1950),

with the yield surfaces expanding as the stresses increase (Fig. 6).

When isotropic hardening is assumed, a large amount of load reversal is

required for additional yielding to occur, in contradiction with the

observed behavior of experimental hysteresis loops such as shown in Fig.

4.

A better alternative for earthquake loading is provided by the

kinematic strain-hardening law, sketched in Figure 7. The kinematic

model was originally proposed by Ishlinsky (1954) and Prager (1955).

Iwan (1967) proposed a reological representation for the stress-strain

model, constituted by infinite elasto-plastic elements placed in series

or in parallel. This model is a non-frictional one, with all the nested

yield surfaces being circular cylinders in principal stress space. Mroz

(1967, 1969) proposed a general model for elastic-plastic materials,

composed also of a field of yield surfaces, with a combination of r
kinematic and isotropic strain-hardening laws. Prevost (Prevost and

Hoeg, 1975; Prevost, 1977, 1978), Mroz, Norris and Zienkiewicz (1978,

"" 1979) and Vicente and Dobry (1983), have proposed to use this model to

I
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I predict static and cyclic behavior of soils. The model is flexible

enough to allow its adaptation to the cases of drained and undrained

loading, and to incorporate important large strain cyclic phenomena such

as densification, liquefaction and stiffness degradation. Anisotropic-

ally loaded soils are represented by nonsymmetric nested surfaces in

stress space. Under cyclic shear loading, the strain-hardening behavior

is basically kinematic for the reasons described above. A simultaneous

Iisotropic hardening (or softening) is allowed with the corresponding
*expansion or contraction of the yield surfaces as cyclic loading

develops. This isotropic expansion (contraction) thus could simulate in

dry granular soil the observed increase of stiffness caused by cyclic

loading above yt 10-2%.

I :
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CHAPTER 4

THE MICROMECHANICAL APPROACH

Eqs. 1-2 for Gmax and similar expressions for other small strain

moduli in dry sands assume that the controlling normal stress parameter

is the mean stress do: Gmax = f(ao). As discussed in Chapter 2, more

detailed measurements have revealed the elastic anisotropy of a dry sand

subjected to different principal stresses, and they have also shown that

the functional relationship between principal stresses al, 02, 03, on one

hand, and Gmax and other elastic constants on the other, is not Gmax

f(ao) but rather Gmax - f(aa,ab); similarly, for the constrained modulus,

D = f(aa). Derivations shown later in Section 5.1 for a simple cubic

regular array of elastic rough spheres match very well with those recent

experimental findings in sands. This strongly suggests that a micro-

mechanical (particulate mechanics) approach should be used to analytically

simulate and generalize the experimental observations.

A great number of studies have been performed using particulate

models to understand and model the behavior of cohesionless soils and

other granular materials. Most of these investigations have been analy- . .

tical, but they have also included measurements in actual granular soils,

as well as in regular or random arrays of spheres (3-D) or diqks/rods

(2-D); a number of them have dealt with the load-deformation characteris-

tics at the contact between two elastic bodies possessing friction V."

(Mindlin's problem). State-of-the-art summaries have been presented by

Deresiewicz (1958, 1973), Mogami (1965), Scott and Ko (1969), Richart et

al. (1970), White (1965), Harr (1977), and Dobry and Grivas (1978),

17
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between others. The proceedings of two US/Japan seminars on the

1 imechanics of granular materials contain excellent papers on the subject

(Cowin and Satake, 1978; Jenkins and Satake, 1983).

3A number of these studies have focused on the probabilistic aspects

and statistical distributions of different parameters within the soil or

granular medium, and their effect on the mechanical behavior of the

array. These have included investigations of the orientations of the

individual particles, of the spatial distribution of porosity, and of the

distribution of number, orientation and levels of force transmitted by

the contacts, conducted between others by Smith et al. (1929), Dantu

(1957), Field (1963), Mogami (1965), Grivas and Harr (1974), Oda (1974),

Yanagisawa (1978), Shahinpoor and Shahrpass (1982), Nemat-Nasser and

UMehrabadi (1983), and Dobry and Petrakis (1984).

Many of those analytical investigations, computer simulations and

observations have focused on the stress-strain behavior at very large

strains and on the failure of dry granular media. Because of this very

large strain nature of the phenomena, the load-deformation characteris-

tics of the particles' contacts have played a minor or negligible role,

and the emphasis has been on changes in the geometric arrangement of the

grains due to their sliding and rolling. In some of these investigations

the compliance of the contacts has been eliminated altogether by assuming

perfectly rigid particles. Some important references here are Rowe

(1962), Morgenstern (1963), Home (1965), Konishi (1978), and Oda et al.

(1983). Cundall and Strack (1983) performed numerical experiments of 2-D

random arrays of disks using an explicit finite difference procedure

,I%~ ~ \ % ** **-
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I (see Fig. 8). In these, the authors successfully simulated "compression

i triaxial" loading to failure, and studied in detail the spatial distribu-

tion of contact forces and the distribution and relative contributions of

sliding and rolling to macroscopic strain, during anisotropic deviatoric

loading with constant a3. One of their conclusions for this deviatoric

loading is that the major principal stress al is transmitted mainly by a

few "stiff chains" of particles having large contact forces, with the

particles in between chains being lightly loaded; sliding and rolling

3 occurs mainly in those lightly loaded regions. Oner (1984) worked with a

similar numerical scheme to predict the observed threshold strain yt at

which sliding and rolling starts, while Dobry et al. (1982) used a

regular simple cubic array of spheres for the same purpose.

I Of special interest are the investigations which have studied the

stress-strain behavior of granular arrays considering the elasticity of

the particles and the corresponding compliances at the contacts. Most of

these studies have assumed spherical grain shapes and elastically iso-

tropic grains characterized by three material constants (two elastic and

one friction coefficient). All of these investigations have used the

normal and tangential compliances at the contact between two elastic

bodies, derived by Hertz (1882), Cattaneo (1938), and Mindlin and his

co-workers (Mindlin, 1949, Mindlin et al. 1951, Mindlin and Deresiewicz,

1953). Figures 9 and 10 show, respectively, the distorsion of two

spheres subjected to normal (N) and tangential (T) contact loads, and the

tangential load-displacement curve for constant N. As noted in the

summary reviews of the contact theory by Deresiewicz (1958, 1973) and

I
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Dobry and Grivas (1978), Mindlin and his co-workers developed the basic

theoretical framework of the contact problem, and solved it for some

special force time histories; however, the general problem of computing

the displacements for a contact force P = N + T, whose magnitude and

direction change arbitrarily, remained unsolved. Only very recently,

Seridi and Dobry (1984) provided a general and practical solution to this

general problem, thus making it possible the use of direct stiffness and

finite difference techniques to simulate the 3-D response of granular

array at small strains. A more detailed discussion of this general

solution is presented in Section 4.1.

The contact theory has been repeatedly used to predict the elastic

stress-strain properties of granular arrays of spheres. Several authors

calculated the influence of isotropic confining pressure on Vp and Vs for

various arrays of smooth and rough spheres, and concluded that both

velocities increase proportionally to (Go)1 / 6 (Hara, 1935, Takahashi and

Sato, 1950, Gassman, 1951, White and Sengbush, 1953, Brandt, 1955). Of

special interest here are some detailed analytical and experimental in- '

vestigations of regular arrays of equal spheres. Deresiewicz (1958) lists

the five stable regular arrays included in Table I and sketched in Fig. 11,

which range from the loosest simple cubic, (void ratio, e = 0.91) to the N

densest pyramidal (also called face centered cubic array) and tethraedral

(also called hexagonal close packed), both with e = 0.35. More complete

lists and descriptions of feasible regular arrays have been presented by

Filep (1936), Brown (1978) and Shahinpoor (1981). Table 2 reproduces one

of these lists containing 31 arrays, while Fig. 12 presents elevation and

' '~'%
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Splane views for one of the loosest arrays of Table 2 (Cell No. 2 with e =

1.94). Deresiewicz (1958a) investigated in detail the simple cubic array

Usubjected to an initial isotropic loading followed by an arbitrary stress
history. He found that the array is statically determinate in this case,

provided that the stress field is uniform, with a one-to-one correspon-

dence between the nine components of the stress tensor and the nine

independent components of the conLact forces. Whitman et al. (1964)

studied a 2-D version of the simple cubic array subjected to triaxial and

confined compression. Duffy and Mindlin (1957), Duffy (1959) and Hendron

(1963) investigated the densest arrays of Fig. 11 and Table 1, which are

statically indeterminate, including some measurements of compressional

(rod) wave velocity, VL, in stainless steel granular bars loaded iso-

tropically (see Fig. 13). As shown in the figure, the measured values of

VL are somewhat smaller than predicted, with the difference being greater

at small values of ao, and with this difference increasing for the low

tolerance balls; at high pressures the measured VL approach the predicted

one. As a result, the observed VL a(ao)m, where m > 1/6 = 0.167 pre-

dicted by the theory. This difference is explained by Deresiewicz (1958),

by the small differences in size between the actual spheres, which

results in the number of actual, load-transmitting contacts being smaller

than predicted; thus, the array is less stiff than calculated. When the

tolerance becomes higher or the pressure increases, the number of these

actual contacts also increases and approaches the theoretical value, and

thus the measured velocity also approaches the prediction. As discussed

in Chapter 2, values of m 0.25 > 0.167 have also been measured for Vs

1 1 I

AIN.% 'e



22

in isotropically loaded sands, most probably due to the same reason: an

increase in the number of actual contacts as ao increases.

Several approaches have been used to model the effect of deviations

from regularity in arrays of equal or unequal spheres. Smith et al.

(1929) proposed considering a random array as formed by clusters of loose

and dense regular arrays, each present in such proportion as to yield the

overall void ratio or porosity; this idea was generalized by Munro and

Jowitt (1974) and Brown (1978), who used the concept of maximum entropy

to find the contribution of each regular array. Ko and Scott (1967) used

a similar procedure to investigate the stress-strain behavior under

isotropic compression; in this study, "holey" models were used, in which

some of the spheres in both the loose and the dense regular component

array are slightly smaller than the other spheres. In this way the

effect on the bulk modulus of the increased number of contacts caused by

an increasing pressure, was incorporated into the model. Perry and Brown

(1981) studied the influence of having different size spheres on the

compliance of the array. Davis and Deresiewicz (1977) investigated the

compressibility of a 3-D random array of smooth equal spheres subjected

to isotropic loading. Walton (1987) derived a method for computing the

effective elastic moduli of a random packing of identical elastic spheres

subjected to hydrostatic or uniaxial compression. For simplicity, he

assumed that the spheres are either infinitely rough or perfectly smooth.

Serrano and Rodrigues-Ortiz (1973) suggested a method for generating

random configurations of unequal disks or spheres having a prescribed

grain size distribution; their work was continued by the 2-D numerical

A%
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simulations by Cundall and by Oner, previously discussed.

4.1 General Solution to the Contact Problem

The problem of the contact of two elastic, elliptical, semi-infinite

bodies subjected to a normal force was first studied by Hertz (1882), who

also solved the specialized case of the contact of two elastic spheres

subjected to a normal force, N. This solution demonstrated for the first

time that the force-deformation behavior at the contact is nonlinear

elastic. Subsequently, all work on the same topic was concerned with the

loading of bodies by normal forces, until Cattaneo (1938), Mindlin (1949),

and Mindlin and Deresiewicz (1953) addressed the problem of the contact

of two elastic, rough spheres subjected to a combination of normal and

tangential forces, and presented a number of closed form solutions for

each of the cases studied. Recently, Walton (1978) studied the problem

of the oblique contact of two equal spheres for the case in which both

the tangential normal forces are applied simultaneously; this is a

different case from the work mentioned above and it will not be discus-ed

here.

The general case of two elastic, rough spheres subjected 
to a normal

force followed by a tangential force, (Fig. 9), solved by Cattaneo (1938)

and Mlndlin (1949), is a problem of the linear theory of elasticity;

however, since the solution yields an infinite shear stress at the edge

of the contact area, a slip needs to be prescribed at this edge, which

transforms the formulation into a mixed boundary value problem where the .

stress and the displacement are known at the contact. This permanent set

induces a nonlinear behavior, which is different from that computed by pI

P 10
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IHertz, since it is accompanied by energy dissipation. As demonstrated by

Mindlin and Deresiewicz (1953), due to the slip, the force-deformation

relations depends now on the entire past history of the loading as well

as the instantaneous rates of change of the normal and tangential forces.

A typical force-deformation behavior of two spheres subjected to a

constant normal force, N, and to a monotonically increasing tangential

force, T, is shown in Fig. 10, where the nonlinear, yielding behavior

can be clearly observed.

All of the above suggest that a phenomenological plasticity model

could describe this nonlinear behavior. Such a formulation would provide

the long awaited (Detesiewicz, 1958a) "general" solution to the problem

of the contact of two elastic, rough spheres subjected to an arbitrary

I force history, which in turn, could be used in numerical simulations.

This has been achieved recently through a constitutive law (Seridi and

Dobry, 1984) for the force-deformation behavior of two identical elastic,

rough spheres in contact under a combination of arbitrarily varying

normal and tangential forces, which was implemented through the program

CONTACT (Dobry et al., 1987). This model is an elastic-plastic incremen-

tal model with kinematic hardening, the main features of which are similar

to those of the plasticity models described in Chapter 3, and are

described below: --

Yield Condition:

Since failure of the contact occurs when the tangential force,

2 2 1/2
T = (Tx + Ty) exceeds fN, see Fig. 10, where f is the coefficient of

friction, Tx and Ty the force compoents in the x and y directions and N %

6, .0 J
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the normal force, the failure surface is defined as follows:

2 2 2 22
T = Tx + Ty = f N (9)

This is the equation for a cone in the three-dimensional force

space, N, Tx, Ty (see Fig. 14).

Mindlin and Deresiewicz (1953) demonstrated that in the loading case

where 0 4 dT/dN 4 f, no energy is dissipated, while for dT/dN > f energy

is dissipated. This indicates that the yield surfaces are also cones of

semi-angle * = tan-lf parallel to the failure cone, the positions of

which are determined by the history of the loading, as shown in Fig. 14.

Therefore, the equation of any yield surface is:

2 2 2 2
(Tx-x) + (Ty-y) = f (N-Ni) (10)

where X = x i + y j + Nik is the location vector of the apex of the conic
+ A A A

surface, and F = Txi + Tyj + N k is the current force point (Fig. 14).

Since the two spheres subjected to a tangential force are constantly

slipping, this implies that there is an infinite number of yield cones.

The elastic region is the inside of the cone whose apex is at the current

force point.

Flow Rule:

For a given force increment dF= dN - dT, the increment of displace-

ment between the centers of the two spheres is:

dD = d6x i + d6y j + da k = d6 + dc k (11)

The value of dD is given by:
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+ dN fdN dTn - fdN dTt
df + 2- - n + n + -p t (12)

where: n: normal unit vector to the yield circle at the current force

point,

t: tangential unit vector tangent to the yield circle at the

current force point

+

dTn = dT n (13)

+ 1/2
dTt = dT.t = (dT2 - dTn2) (14)

dT = dTn n + dTt t (15a)

= dTn + dTt (15b)

I 4 Ga

Ho - is the elastic modulus

K 1/3

H H (1 - 1-/) , elastoplastic modulus corresponding

to the yield circle of radius K

68(a K I 2/3I p = 2-'- -- ' [ l  1 -  (16)
H~ 2-v 3fN (1 N

is the tangential elastic modulus

f: coefficient of friction of the material of the spheres

1/3 3(2-v)_

a -(BNR) , with B = 3( 2 -v)
K =8G

K H radius of the two spheres

" '' l "'- .af-i "€ vicRV /',r, ,' % '.'', -v '.x '.', " - . k-" . A .- . -- - ,-- - . • , .. ,,.
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Hardening Rule:

In the 3-D force space, the axis of any yield surface translates

without rotation in such a way that it remains always parallel to the N-

axis. This is clearly a kinematic hardening behavior, the mathematical

expression of which is given by:

dX = dT - f dN n + (K + fdN) dn (17)

where dX is the translation in the i-plane of the center of the yield

surface, K is the radius of the yield surface on the w-plane and dn is

the change of the direction in the normal unit vector to the yield

surface on the -plane of the current force point.

A sketch depicting the rules described above appears in Fig. 14.

4.1.1 Implementation of the Model and Sensitivity Analysis

The above constitutive relation was implemented in the computer

program CONTACT, as described in detail by Seridi and Dobry (1984) and

Dobry et al. (1987). Subsequently, a sensitivity analysis was done in

order to determine the range of the values of the force increment to be

used in the incrementally linear analysis. This was done by varying the

force increments in the case in which the normal force was kept constant -

and the tangential force increased monotonically, and by comparing the

resulting displacements with those obtained using the analytical solution

by Mindlin and Deresiewicz (1953). It was found that the value of the

tangential displacement obtained was insensitive to the size of the force

increment, if the ratio of the normal to the tangential force increment

is less than 1/50; it was also found that the error is less than 2% if
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this ratio is about 1/30 (Dobry et al., 1987). In all cases described inII
the next section, as well as in the numerical simulations of Chapter 7,

I increments of similar size were used.

4.1.2 Verification of the Model

The above constitutive relation, implemented in the computer program

CONTACT, was subsequently tested to verify that it reproduces accurately

the analytical solutions obtained by Mindlin and Deresiewicz (1953). Six

of the cases originally solved by Mindlin and Deresiewicz (1953) are

presented here, but this time the force-deformation behavior of the two

spheres in contact is computed using the program CONTACT and the elastic

properties of quartz (Es = 295,182 Kg*/cm
2 , vs = 0.15 and f = 0.5, White,

1964). Because of the complexity of some of the cases, only six of the

most easily visualized cases will be presented herein. The force-defor-

mation curves from the analytical results of Mindlin and Deresiewicz

(1953) are reproduced separately in Figs. 15 and 16, while the correspond-

ing numerical results obtained with program CONTACT are shown in Figs.

17 to 22.

1. Load-Displacement Relation for Oscillating Oblique Force,

dT/dN > f (Fig. 17):

The normal force, N, is kept constant at 1.61 Kg*, while the appliedIy
tangential force, T, oscillates between -0.8 Kg* and +0.8 Kg*. The

results are shown in Figure 17, where the data points stand for the

analytical results, and the continuous curve for the values obtained

using CONTACT.

.1
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3 2. Oscillating Oblique Force, dT/dN < f (Fig. 18):

The normal force is increased to 1.61 Kg*, and then the tangential

force increases to 0.3 Kg* while the normal force decreases so that

dT/dN - 0.3, which is less than f. Subsequently, the shear force and the

normal force oscillate so that dT/dN remain constant at 0.3. It can be

seen that there is no loop after one cycle; this was also found by

Mindlin and Deresiewicz (1953).

3. Normal Force Increasing, Tangential Force Increasing (Fig. 19):

The normal force increases from 1.61 Kg* to 2.01 Kg*, while the

tangential force increases from 0.4 to 0.6 Kg*, and then to 1.0 Kg* (as

shown in the loading path in the T-N space which appears in Fig. 19).

The solid line corresponds to the case in which the tangential force

increases from 0 to 1.0 Kg* while the normal force remains constant. The

individual points correspond to the force path described above. This

corresponds to Fig. 7 in the Mindlin and Deresiewicz (1953) paper, which

is reproduced in Fig. 16a.

4. Normal Force Decreasing, Tangential Force Increasing (Fig. 20):

The normal force decreases from 2.01 Kg* to 1.61 Kg* while the

tangential force decreases from 0.5 Kg* to 0.3 Kg* and then increases to

0.8 Kg* (as indicated by the load path in Fig. 20). The solid curve

corresponds to the force path described above, and the individual points

to the case in which the tangential force increases with the normal force

remaining constant (this corresponds to Fig. 16b, which is Fig. 10 in

Mindlin and Deresiewicz (1953)).

V. 'A~'Vq~
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5. Normal Force Increasing, Tangential Force Decreasing (Fig. 21):

The normal force increases from 1.61 Kg* to 2.01 Kg*, while the

tangential force is reduced from 0.4 to 0.2 Kg* (as indicated in Fig. 21).

Again, the solid lines correspond to the stress path described above, and

the individual points to the force path in which the tangential force

ipcreases from 0 to 1.0 Kg* while the normal force remains constant at

1.61 Kg* (this corresponds to Fig. 16c, which is Fig. 12 in Mindlin and

Deresiewicz (1953)).

6. Normal Force Decreasing, Tangential Force Decreasing (Fig. 22):

This is a complicated loading path (shown in Fig. 22). The points,

once more, correspond to the force path with the constant normal force. 6N

This reproduces Fig. 14 of Mindlin and Deresiewicz, which has been

reproduced in Fig. 16d.

It can be seen that the computer program CONTACT, which is based on

3the constitutive law derived by Seridi and Dobry (1984), reproduces

accurately all the solutions obtained by Mindlin and Deresiewicz. There-

fore, it can be assumed with confidence that the program functions

properly. On this basis it will be used in the numerical simulations

of Chapter 7.

T o t4.2 Studies in Crystals

The concept of Micromechanics, besides its obvious application to A

the behavior of granular media, has been applied over the years to pre-

dict the response of polycrystalline aggregates from the behavior of

single crystals. It has been demonstrated that this micromechanical

%
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modeling can adequately interpret most of the phenomena associated with

the elastic and plastic macroscopic behavior of polycrystalline media

such as metals.

For years, researchers have been simulating the elastoplastic

behavior of polycrystalline aggregates through a variety of analytical,

semianalytical and numerical techniques (laylor, 1938, Hershey, 1954,

Bishop and Hill, 1951, 1951a, Budiansky et al., 1960, Budiansky and Wu,

1962, Lin, 1964, Lin and Ito, 1966, 1967, Hill, 1967, Canova et al.,

1984, 1985). One of the approaches most commonly used is to model the

polycrystal as an assemblage of equal, isotropic crystals, with N slip

systems, which are randomly oriented (Fig. 23). This results in an

isotropic polycrystal when the distribution of the orientation of the

crystals is statistically uniform; moreover this distributes randomly in

all directions the orientations of the slip planes of the monocrystals.

The yield surfaces of the resulting macroscopic medium are determined by

these slip planes. Plastic strain in the aggregate starts when the first

individual crystal slips; after sliding has occurred in a number of these

monocrystals, the yield surface(s) change (harden) accordingly. As the

aggregate is loaded farther beyond the elastic range, more and more

crystals slip, and eventually the failure surface is reached (Lin and

Ito, 1966).

In the early stages of that research, Taylor (1938), by considering

an aggregate of randomly oriented rigid-plastic for crystals under

uniaxial tension, computed the amounts of slip in each crystal by

assuming that the strain experienced by each monocrystal was the same as

.9
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the applied, macroscopic, uniform strain. Then, by equating the sum of

the work in the monocrystals to the work done on the aggregate, he was

able to obtain a tensile stress-strain curve, and a value for the yield

stress of the aggregate which later was proved to be the upper bound of

the actual yield stress (Lin, 1964). Taylor also showed that the slip in

the monocrystal depends on the resolved shear stress (the shear stress

along the slip direction and on the slip plane), and that this slip is

independent of the normal stress acting on that plane. Bishop and Hill

N(1951) derived a relationship between the stress and the plastic strain
in a polycrystalline aggregate of fcc crystals, and obtained a more re-

fined value of the limiting value of the yield stress which they found to

be 1.5 36ay, where ay is the yield stress of the single crystal. The same

valu, ias computed by Budiansky et al. (1960), who abandoned the assump-

tion of strain uniformity throughout the polycrystal and computed instead

the stress field inside each crystal. Using general results of the

SEshelby (1957) solution for the elastic field inside an elliptical, elas-

tic inclusion contained within an elastic medium, they solved the problem

of an isolated, elastic-ideally plastic, spherical grain contained within

an infinite, stressed elastic matrix, and they proved that the stress and

strain fields inside the grain, while orientation dependent, were homo-

geneous. Later, Budlansky and Wu (1962) considered an "average" inter-

action between the different phases, that is the effect of the stress

release due to a slip in one group of crystals on the corresponding

average stress increase in another, and they calculated numerically

macroscopic stress-strain curves in simple tension and pure shear.

F4
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3 The behavior of a random packing of identical spheres is similar in

some respects to the polycrystalline medium just described, as it is well

known that random assemblages of equal spheres tend to crystalize (see

Chapter 6). Since the individual grains in a uniform, granular, rounded

grained soil can be modelled by spheres, it is possible to consider, in

first approximation, that the individual grain packings within the sand

behave like randomly oriented crystals. However, a main difference is

that the properties of these grain packings are now pressure dependent

and the amount of slip in each of these packings, in contrast to the

polycrystalline aggregates, depends now on the normal pressure acting on

the slip plane. For example, it can be assumed that a simple cubic array

of equal spheres (sand grains) is a pressure dependent monocrystal with

three slip planes, with each slip plane containing two slip directions 90

degrees apart. Also, at large strains beyond the first slip (correspond-

ing to the threshold strain of the soil), the sand may experience

dilation under shear which is not necessarily present in polycrystalline

aggregates.

IL



3 CHAPTER 5

DIFFERENTIAL STRESS-STRAIN RELATIONS FOR REGULAR ARRAYS OF SPHERES

The general solution of the problem of the contact between two

spheres can be used to derive incremental stress-strain relationships for

regular arrays of spheres. These stress-strain relationships are

discussed in this Chapter, with particular emphasis on the behavior under

isotropic loading followed by very small but arbitrary stress and strain

increments, and for the following regular arrays:

i) simple cubic array (sc, see Figs. Ila and 24), discussed in

Section 5.1

ii) body centered cubic array (bcc, see Fig. 25); discussed in

Section 5.2

iii) face centered cubic or pyramidal array (fcc, see Figs. lid and

26); discussed in Section 5.3

iv) c-,bical tetrahedral (ct, see Fig. Ilb) and tetragonal-sphenoidal

arrays (ts, see Fig. lc); discussed in Section 5.4.

Most of these incremental stress-strain relations were taken from

Deresiewicz (1958a), Duffy and Mindlin (1957) and Maklhouf and Stewart

(1967). However, some are new; in particular, the body centered cubic

array is discussed here for the first time.

In addition to the five regular arrays listed above, a sixth regular

array is the hexagonal closed packed or tetrahedral array (hcp, see Fig.

lie, see also Deresiewicz, 1958). Table I lists the most important

parameters of all six arrays. A comparison of the behavior of the sc,

34
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bcc and fcc cubic arrays is presented in Section 5.5.

5.1 Simple Cubic Array (sc)

The simple cubic array sketched in Figs. Ila and 24 is the simplest

of all regular arrays of equal spheres. One sphere of radius R represents

the whole array, and for a uniform stress field this is a statically

determinate system with a one-to-one correspondence between the array's

stresses and the contact forces (Deresiewicz, 1958a). If the normal

stresses parallel to the axes of the array are aii (i = 1,2,3, see Fig.

24), the normal contact forces Ni are: Ni = 4R2 a,,(*). If the shear

stresses parallel to the axes of the array are aij (i,j = 1,2,3 and i *

j), the corresponding tangential contact forces and Tij = 4R2 aij. These

* relations occur due to equilibrium and are independent of the previous

history of stresses. Therefore, they are also valid for any stress and V

force increments at any stage during the loading, provided that no gross N

sliding of the contact has taken place dNi = 4R2 aii, dTij = 4R2 daij.

Figure 24 illustrates the case in which an anisotropic state of stresses

is applied first, with all aij = 0, followed by small arbitrary

increments daii and daij.

A similar set of simple relations is valid in this case between the

array strains and the displacements between spheres; these relations are

obtained for a uniform strain field based on simple geometric considera-

tions. If ai = normal relative displacement of centers of the two %

(*) Indicial tensor notation is not used here, that is, aii does not
imply a sum of several terms.

%.
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adjacent spheres separated by contact i, and 6ij, 6 ik = tangential rela-

tive displacements between the same two centers, then: cii = ai/(2R);

and yij = 2 cij = (6ij + Sji)/(2R), where eii = normal strain, and yij =

engineering shear strain of the array. Again, all these relations are

independent of the prior history of strains and are valid for incremental

displacements and strains.

The elastic stiffnesses corresponding to small stress and strain

increments applied to the array subsequent to an isotropic stress state,

Oil = 022 = 023 = 0o, oij = 0 are:

doll Sint 0 0 0 0 0 dell

d02 2  0 S2 2 2 2  0 0 0 0 dE22

do 33  = 0 0 S3333 0 0 0 dc33

do1 2  0 0 0 S1212 0 0 de12

da 13  0 0 0 0 S13 13  0 de13

do2 3  0 0 0 0 0 S2323 de23

(18)

where SIM 1 1 = S2222 = S3333 (3) / (v s )-2/3 (oG)1 / 3

2

S 1/3 2(l-vs ) 1/
3  2 1/3

-S313 = $2323 2 (2-vs) (coGs

Notice that the stiffness matrix is diagonal, and therefore the

Poisson's ratio of the array, v = JdE 2 2 /dEllI = 0, for "triaxial" loading

PI

W-.



corresponding to increasing all and constant a22 = a33 = Co. The array

has a v = 0 quite independently of the values of co and Vs (see Fig.

29).

Note that, for a given ao, Eqs. 18-19 describe a linearly elastic

anisotropic medium. The necessary and sufficient conditions for this

medium to be isotropic are of the type Slll - S1122 = S1212. These are

satisfied only for a Poisson's ratio of the spheres, vs = 0. This

assumption results in an isotropic medium with v = 0.

For the case of an anisotropic state of stress, oll * 022 G 033, oij

0, (i j), the coefficients become:

% .1k

3 1/3 2 1/3
S(-1 ) (1-vs> 21/ 3 (a11G5 ) (20)

2

*1

3 1/3 2 1/3

_ 331/ (1-v,) 2/3  (o3 3G)1/

2/3

4 (3)1/3* (l-vs)1/3 G* ________j__ (21)
Sj 2 2 -vs 1/3 1 1/3

where Gs and v. are the shear modulus and Poisson's Ratio of the material

of the spheres.

The array locks under "triaxial" conditions (all increasing with

022 = 033 = Go = constant), while it fails in pure shear (012 increasing

with all other do - 0). Because the stiffness matrix, [S], in Eq. 18 is

s
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U diagonal, the corresponding diagonal compliance matrix is [C] = [S]- I,

with each compliance being the reciprocal of the corresponding diagonal

stiffness term. That is, Ciiii = l/Sijii and Cijjj - 1/Sijij , and

{de} = [C] {do}.

In this simple cubic array, and again for the case of isotropic

loading, Oii = Gjj = akk= Go; for P- and S-waves propagating along prin-

cipal axis i of the array (and, for the S-wave, polarized parallel to

principal axis j), the wave propagation velocities Vp and Vs are propor-

tional to (0o)1/6, and thus, the corresponding constrained and shear

2
moduli, D = pVp 2 = daii/deii and, Gmax = pVs = daij/dyij, are both pro-

portional to (Uo)0 "3 3. As discussed in Section 4, a similar dependence

of modulus on (O) 0 .3 3 is also predicted for other regular arrays, while

laboratory measurements on regular arrays and soils indicate that Gmax

CL(0)0.5"

For this same case of isotropic loading and for a cubic array of

5 quartz spheres, and if the array is loaded in pure shear, daij = daji,

then a threshold shear strain, yt = 4.5 x 10- 3. (ao)2/3 is predicted

Iwhere yt is in inch/in and o is in psi (see Appendix B, Eq. B5). This

expression was obtained using the properties of quartz listed in Table 3.

At y = yt, gross sliding occurs at contacts i and j, and there is a

tendency for a change in the geometric arrangement of the spheres.

This predicted relation between Yt and o for a sc array of quartz

spheres is plotted in Fig. 22 while Fig. 28 shows the detailed shear

Astress-strain plots up to the threshold (failure). In the range of most

practical interest for soils, 5 psi < Go < 15 psi, the expression gives

I 11
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Yt 10-4% = 10-2%, which agrees very well with the measured Yt in sands

as discussed in Section 2. Expressions for the secant modulus reduction,

G/Gmax, and for the damping ratio of the array, versus strain incremenc Y

= dYi j were also obtained for a cubic array of quartz spheres (Dobry et

al., 1982), and were compared with actual measurements in sands, with good

agreement. The corresponding comparison for G/Gmax versus y is reproduced

in Fig. 29 for an assumed yt = 1.5 x 10-2%.

NThe more general case of anisotropic loading of the cubic array,

with all * a22 * a33, is very interesting, as this model crudely simu-

lates the laboratory measurements of Vp and V. on anisotropically loaded

sands discussed in Chapter 2. For a P-wave propagating parallel to the

i-axis of the array, the predicted expressions for D = daii/deii and Vp

Iare:

2 2/3 1/3
D [(3)I/3/2][Es/(1-vs) ](oii)

Vp = (D/p)1/ 2  (22)

where Es, vs = elastic constants of the spheres. Therefore, both D and

V p are functions only of the normal stress aii in the direction of

propagation, and do not depend on the other two array stresses ojj and

Okk.

For an S-wave propagating parallel to the i-axis of the anisotropi-

cally loaded array and with motions polarized parallel to the j-axis of

the array, the corresponding expressions for Gmax daij/dyij and Vs are:

I1

W S .
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=3(l-vfi 1/ Es) 2/3 I1/3 1/3

Gmax - (2-vs)(+vs) 1/3 + j/j / (23)

Vs = (Gmax/p)1/
2

Gmax and Vs are functions only of the normal stresses in the direction of

propagation (aij) and polarization (ojj), and do not depend on the third,

out of plane array stress Okk. Furthermore, as Eqs. 23 are symmetric

with respect to oil and ojj, the values of V. and Gmax do not change if

the directions of propagation and polarization are interchanged.

These conclusions for the simple cubic array, that Vp depends only

on aii, and Vs depends only on oil and ojj, are identical to the experi-

mental findings of Roesler (1979), Knox et al. (1932), Kopperman et al.

(1982), and Yu and Richart (1984) on anisotropically loaded sands,

previously discussed in Section 2. The symmetry of Oai and ajj in Eq. 23 .5.

is also present as a symmetry of Ga and ab in empirical Equation 4,

obtained by Knox et al. (1982) from their sand measurements.

Of course, Eqs. 22 and 23 cannot be used directly for quantitative

predictions in sands, as they give D a aol/ 3 and Gmax a 0o/ 3 for the

isotropic case, while D and Gmax a(ao)1/ 2 in actual sands. It is inter-

esting to modify Eq. 23 to make it consistent with this empirical fact,

by replacing aii11 3 , aij1/ 3 by aii1/2, ajjl/ 2, and then to compare

measurements and predictions. The new equation is Gmax = 4aii0"5 j 0.5/

(oii0" 5+ajj0" 5), where M = constant. It is useful to specialize this

expression for the biaxial case, aii = all = av, Gjj = Ukk = 033 Gh, to

be able to compare it with the empirical Eq. 6 obtained by Yu and Richart
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I for sand. If K - aii/ojj = 011/033 , the new equation becomes: Gmax =

NavO. 2 50hO.2 5[2KO. 2 5/(j+KO. 5)j, where N = 0.5M. It is convenient to de-

fine the normalized parameter G = Gmax/(NavO. 2 5ahO. 2 5), where G = I for

K - 1. The theoretical expression G = 2KO. 2 5/(I+KO. 5) has been plotted

in Fig. 30. The corresponding empirical expression G = 1-0.18 Kn2 ,

obtained from Eq. 6, has also been superimposed on Fig. 30 for typical

values Kmax = 3 and 4. The trends of the predicted and measured curves

are the same in Fig. 30, with the laboratory results showing a somewhat

faster decrease in G as Kn increases.

The fact that the crude particulate model used here is capable of

predicting the lack of influence of the two stresses perpendicular to

propagation on Vp (Eq. 22), and of the out-of-plane stress on V. and Gmax

(Eq. 23), as well as the general trend of the relationship between Gmax

and the in-plane stresses (Fig. 30), is extremely encouraging. The main

advantage of the cubic array used here is its simplicity, but of course

this model is still far from representing real sand. One deficiency

(which it shares with other regular arrays), is that in the general case

the array itself is inherently anisotropic even when isotropically loaded

(crystal-type behavior); that is, Gmax and other "elastic" stress-strain

parameters are somewhat different for shear stresses corresponding to

axes which are different from the structural axes (axes of symmetry of

the array 1, 2, 3 selected in Fig. 24). However, when the material of

the spheres has vs = 0, the array is isotropic when isotropically loaded

at very small increments. Also, the array locks when a "triaxial" test

-" is conducted on it along any of its structural axes, instead of yieldingI
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and eventually failing in shear as it happens with actual granular

materials.

5.2 Body Centered Cubic Array (bcc)

The body centered cubic array, sketched in Fig. 25, was the next

regular array studied. It is also represented by one sphere, and the

relations between stress and contact forces can be easily determined for

one uniform stress field of interest: isotropic loading followed by

small stress increments. The coordination number (number of contacts/

sphere) is now eight instead of six for the simple cubic array, and,

thus, the computations are somewhat more involved. A procedure analogous

to that used for analyzing the simple cubic array can be followed, except

that it is now easier to work directly with the compliance matrix, Cijkt,

[C] = [S] - 1, instead of the stiffness matrix [S] used before in Eq. 18.

For the case of isotropic loading, followed by small stress

increments, [C] has the following form:

dcll C1 1 11  C1 12 2 C1 1 3 3  0 0 0 doll

d 22 C2 21 1  C2 2 22 C2 2 3 3  0 0 0 do22

dC33 C3 3 11  C3 3 2 2 C33 3 3  0 0 0 do33

dcl2 0 0 0 C12 12  0 0 do12

drl3 0 0 0 0 C1 3 1 3  0 do1 3

dC23 0 0 0 0 0 C2 3 23  do23

(24)

where

.A%
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C111 1 C22*33 [(I-v5 Y + 2 -vs 1/3

(4.1 Gs2a0)1!
3  +(1-vs)

1 1

(25)

C1 1 22 = C1133 =c 22 33 = 1* 1 * Y231-vsY

V3 (4/7 Gs2ao13 0 V)1/3

(26)

C12 12 = C1 3 1 3 =C 2 3 2 3  (4r 4*ao1/ 1 *[()/3+ Vs5

(27)

Notice that, unlike Eq. 18 for the sc array, the compliance matrix [C] in

Eq. 24 is not diagonal. However, it becomes diagonal and it corresponds

to an isotropic elastic medium with v= 0, if vs 0, similarly to that

found for the sc in Section 5.1. For an initial cross-anisotropic or

biaxial loading, a22 00a + aa and 0ll 0 33 = a, followed by arbitrary,

small stress increments ,the form of [C] is still that of Eq. 24, and

the compliances in Eq. 24 are:

CII C22=C33 2 1 1/ 1 1+_ 0 a -1/3 *[,v)2/3+

(28)

+

(1-vs)1/

*See footnote, Appendix A.3.
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(;1122 C 01133 - C2 2 3 3  -2 *1/3 * [1 +3I(a1] * [(-v s) 2/3
4/I Gs 2 00

(29)
2 -vs

2(l-vs)

_________ * 1 ~ -1/32/1, 1 1/3 +1 (..) 2/3-V

C12 12 = C13 13 - C2 3 2 3 -- 1 3 a 1/3 (-_s) 2/3+
134"1 T Gs

2 a0o

(30)

~(iVs, 1/3

As it can be seen in the above equations 25-30, Vs and Vp are again pro-

portional to (ao)1/ 6 for the body centered cubic array, since the cor-

responding moduli are proportional to (ao)1/3; this is a characteristic

common to all regular cubic arrays (Duffy and Mindlin, 1957, Duffy, 1959,

Makhlouf and Stewart, 1967). However, again it is possible to modify the

exponents empirically, and (0)1I/3 can be replaced by (ao)1/2 when

measurements and predictions are compared.

Threshold strain calculations were performed for this body-centered

array in the case of triaxial loading, starting from an isotropic pres-

sure a0, for which the array yields and fails (while the array tends to

lock under pure shear loading). Again, the threshold strain, yt, obtained

for the array is a function of the confining pressure, (G0)2 /3, and for

an array of quartz spheres (using the properties for quartz in Table 3),

Yt - 3.44 x 10-3 a02/
3, with o in psi and yt in inches/inch. This gives

slightly lower values of yt than those obtained from the simple cubic ar-

ray of quartz spheres in Section 5.1, yt = 4.53 x 10- 3 a0
2/ 3 . The plots
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for these two expressions of Yt are compared in Fig. 27, while Fig. 31a)

presents detailed axial stress-strain curves up to the threshold (failure).

For the usual range of values of confining pressure for soils, both of

them agree well with yt = 10-2% experimentally observed in sands.

The body centered cubic array also has some deficiencies when com-

pared to the behavior of actual sands. First, it remains isotropic even

when loaded under anisotropic loads, as shown in Appendix A. Second, in

this anisotropic loading case the wave propagation velocities are not

proportional to the product of the principal stresses in the directions

of propagation and polarization (as measured in sands), but rather they

are proportional to the mean stress, as can be verified from Eqs. 28-30.

Finally, this array locks under pure shear loading, and in fact it locks

* Nunder a number of different shear loading paths depending upon their

orientations and initial stress state. However, the bcc array adds to

our understanding of the general problem, as it is a medium dense (e =

0.47) array, located within the range between the densest, face centered

cubic array (e = 0.35) and the loosest, simple cubic array (e = 0.91).

5.3 Face Centered Cubic Array (fcc)

The Face Centered Cubic Array sketched in Fig. 26 is one of the two

densest arrays, and it has been investigated by several researchers

(Duffy and Mindlin 1957, Ko and Scott 1969, Hendron 1963). The differen-

tial stress-strain relationship for this medium was derived by Duffy and

Mindlin (1957). The array has 12 contacts per sphere, and unfortunately

it is statically indeterminate for most loading situations; as a conse-

quence, closed form solutions are available only for the c ase ofI
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3 isotropic confining pressure. In the case of biaxial loading a qualita-

tive solution does exist, but the compliances at the contacts have not

yet been evaluated. Computation of these compliances is a formidable

task due to the indeterminacy of the problem and the variation of the

forces from contact to contact.

The incremental constitutive law under isotropic confining pressure

was used by Duffy and Mindlin to compare the theoretical and experimental

rod wave velocities through a bar composed of face centered cubic arrays

of spheres (Fig. 13).

For the case of isotropic loading followed by small stress

increments, doii, doij , the stiffness matrix has the form shown below:

U dall S1 1 11  S1 12 2 S1 133  0 0 0 del

do 22  S2 2 11  S2 22 2 S2 2 33  0 0 0 dE22

do3 3  S3 3 1 1  S3322 S3 3 33  0 0 0 de33

do 1 2  0 0 0 S1212 0 0 de12

do1 3  0 0 0 0 S1313 0 del3

do 23  0 0 0 0 0 S2323 dE23

(31)

SIM = S22 2 2 = S2323 - [ s  1/3 4° 3 v. (32)
2(l-Vs) 2  2--is

1/33Gs2 Oo * _s

S1122 = S11 33 = S22 3 3 = [ Vs (33)

2( 1-vs) 2  2(2-v)

V
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2 1/3 43 s 'S13 13  S2 32 3 = [3G s  3 v° ] * (34)

1 32(1-vs)2 (2-vs)

Similar to that discussed previously for Eq. 24 and the bcc array, the J.

stiffness matrix [S] in Eq. 31 becomes isotropic and diagonal only if vs

=0. In that case, all diagonal terms are identical and equal to:

I ik 2(3SG ) 13(35)

and the Poisson's ratio of the array is v = 0.

If the face centered cubic array is consolidated under a transversely

isotropic state of stress, with all = o + aa , 022 = a33 = oo , and 012 =

U 013 -023 = 0, the situation becomes more complicated, since in the case

of a non isotropic loading the forces vary from contact to contact and

each compliance is different. To obtain a stress-strain relation for an

anisotropic loading path, the derivation must be performed anew, distin-

guishing between contacts with different loading histories.

The differential stress strain law for this case appears in great

detail in the original paper by Duffy and Mindlin (1957); it is identical

in form to Eq. (31), except that now the expressions for Sijkt are not

known. Thurston (1958) extended the results of Duffy and Mindlin to a
set of 18 equations and 18 unknowns. .

The fcc array was subjected analytically to the conditions of a

triaxial test by Brauns (1968) and Brauns and Leussink (1970), who

derived theoretical expressions between stress and strain at finite

levels for an array of glass spheres (Fig. 31b). These expressions were
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later compared to experimental data obtained in triaxial tests on regular T1

fcc packings of glass and steel spheres (see Appendix B3).

Thurston and Deresiewicz (1959) derived expressions for the uniaxial

compression of an fcc array when applied concurrently with a related

isotropic pressure. Again, the theoretical results were compared with

experimental results obtained through compression of bars of steel

bearing spheres arranged in fcc array, with good agreement.

5.4 Cubical-Tetrahedral (ct) and Tetragonal-Sphenoidal (ts) Arrays

*j The elastic constants relating stress to strain increments for the

Cubical Tetrahedral and Tetragonal Sphenoidal arrays that have been

consolidated isotropically were derived by Makhlouf and Stewart (1967).

The procedure for determining those constants is the same as in the other

arrays described in detail by Duffy and Mindlin (1957).

3 The corresponding constitutive law for the Cubical Tetrahedral array

has the same form as Eq. 31, but now

1/3 2 1/3
3 1/3(1+3k) Gso6)

Sl111l S2 z22  4k ~ 2 (1-v2)

22 1/3

S3 33 3  [ /3 (37)
21-V) 

4,

,

N 
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31/3 (1-k) , 2 1/3 (38)
S1 1 22 - 4k [2 (l-VG )

2 1/3(+k) 31/3*2* [3 Gs 1
S1 2 12 = 5k 21 G32 ]0  (39)

5k 2 (I-V2)

1/3 2 1/3
S2*3 [3 GSc° (40)S1313 -$2323 = 5k 2 (l-V 2)

2 -v s  (41)I where k = 2 (-,Vs)

As we can see from the above equations, the Cubical Tetrahedral array

differs from the simple cubic, the body centered cubic and the force

centered cubic arrays in that it does not exhibit cubic anisotropy, but

rather transverse or hexagonal isotropy, as is also the case of the Hexa-

gonal Close Packed array (Duffy, 1959) and of the Tetragonal-Sphenoidal

Array.

The constitutive law for the Tetragonal-Sphenoidal array appears

also in Makhlouf and Stewart (1967). However, not enough detail is

provided in this reference for a full underst i ing of the results, which

are quite complex, as the representative unit prism is not symmetric.

"- Unfortunately, the original reference (Makhlouf, 1963) could not be foundI
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by the authors*, thus preventing a better understanding of this array.

5.5 Comparison of Different Cubic Arrays

The analytical results on the three regular cubic arrays discussed

in Sections 5.1-5.2-5.3: simple cubic, body centered cubic and face

centered cubic, were compared as part of the current research. This was

done to gain further insight into the behavior of granular media, and as

a necessary intermediate step toward the investigation of more elaborated

and realistic particulate models.

I All these arrays generally exhibit cubic anisotropy (crystal-type

behavior) under an isotropic confining pressure ao. In the three arrays,

it was found that the necessary and sufficient condition for the array to ".

become isotropic under oo is for the Poisson's ratio of the spheres, v.,

to be equal to zero. If vs = 0, the incremental stiffness (and compli- N%

ance) matrix for the three arrays is diagonal. Although the Poisson's N

Ratio of quartz vs - 0.15, (see Table 3), is certainly different from .9

*The differential constitutive laws for the cubical tetrahedral and the

tetragonal sphenoidal arrays are either not applicable to our research or
they are erroneous. As one can see from Eqs. 36-40, contrary to general
belief (Duffy 1959), the cubical tetrahedral array does not become iso-
tropic under isotropic loading. This is a serious deficiency vis-a-vis "

our research, as sands are uniform and more or less isotropic under
isotropic load. Consequently, the cubical tetrahedral array will not be
used here. As for the tetrogonal sphenoidal array, the results are not
complete, and since the representative volume element of this array is
not symmetric, completion of the stress strain relation in Makhlouf and
Stewart (1967) appears to be a major task. The inexistence of the
primary source for this array, Makhlouf (1963), made it impossible for
the authors to clarify the above aspects; therefore no results will be
used here for the cubical-tetrahedral and tetragonal-sphenoidal array.

2
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zero, it is low enough to make this "vs = 0 assumption*, needed for iso-

tropy, a reasonable one for quartz sands, at least as a first approxima-

tion. If vs = 0 is assumed, the Poisson's Ratio of the array is also

computed to be v = 0 for the same three arrays. It must be note that for

the range 0 < vs < 0.5, values up to v = 0.13 are computed for the same 4.

arrays (see Fig. 32). Therefore, the fact that a value v = 0 results for

the array as soon as vs = 0 is assumed does not seem to be so far off

either. It is interesting to note that measurements of Vp and Vs by

Stokoe and his coworkers on an actual sand consolidated isotropically

provided a similarly low value of v = 0.10 (Knox et al. 1982, Kopperman

et al. iQ82, Lee 1985). In any case, even with v. * 0, the cubic

anisotropy of these expressions for v arrays is not pronounced; the error

resulting from computing the moduli between the extreme values of vs does

not exceed 3.3% (Duffy, 1959).

The above three cubic arrays, starting from an isotropic a. state,

were loaded statically in triaxial compression or pure shear up to

failure, that is up to gross sliding, and computations were performed and

Iare displayed here for their stress-strain curves and threshold/failure

strains (Figs. 27, 28 and 31). A graph of obliquity, 022/ao at failure

versus the intergranular friction coefficient between spheres, f, was

also computed and is plotted in Fig. 33. The curves obtained for the

arrays in this figure were also compared to the obliquity obtained

aMF
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I 022 = 1+sin =tan2(45 + ), with tan = f

Go 1-sin 2

To be able to fail the simple cubic array in triaxial compression, this

medium was compressed by a force parallel to one of the face diagonals of

the unit volume of the array, that is along a [1101 direction

(Deresiewicz, 1959).

The same cubic arrays also give excellent results when predicting

the influence of anisotropic consolidation on shear wave velocity; this

is shown in Fig. 34 by a plot of normalized shear wave velocity vs stress

ratio K = 022/0o. In this plot, Vs(K) and Vs(1) are the values of the

shear wave velocity, Vs, computed for the anisotropic case (K) and for

the isotropic loading condition (K=I), respectively, for directions of

propagation and polarization parallel or perpendicular to 022. The same

plot includes data measured by Stokoe et al. (1985) and Lee (1985) on dry

sand in the large cubic testing facility at the University of Texas, with

excellent agreement between analytical predictions and the experimental

data.

The shear modulus at very small strains, Gmax, computed for these

same three cubic arrays under a given isotropic stress, co, is plotted in

Fig. 35 as a function of the coordination number (= number of contacts/

sphere). As expected, the higher the coordination number, the stiffer

4 i the array, with essentially a linear relation between the two parameters;

it is interesting that for a given ao the straight lines in Fig. 35 ex-

trapolate down to zero, suggesting that Gmax is essentially proportional
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to the coordination number (a similar plot was obtained by Yanagisawa,

1983). Therefore, adding contacts to the spheres has the same effect on

the stiffness of a regular array as increasing the number of springs in a

system of equal, parallel, elastic springs. A derived plot is the graph

between the shear wave velocity, Vs (Gma / 2 vessoiraoan

isotropic pressure a0 (Fig. 36a) for the same three arrays. This last

figure is especially interesting, as the trend observed in actual sands

is very similar (compare analytical curves with measured data in sands in

Fig. 36b), except that the absolute values of V5 in the real soils are

much smaller, by a factor of two or three. For example, for e -0.47,

corresponding to the bcc array, and a0 = 30 psi = 4,320 psf, V5  1,800

fps is predicted by the analytical model in Fig. 36a), while V5  1,100

fps has been measured in rounded grained sands. Therefore, Figs. 35 and

36 strongly suggest that the dependency of Gmax and V5 on void ratio

observed in real soils is explained mainly by the increase in the number 4-

of contacts as the void ratio decreases.

Even though the above rebults are encouraging, the regular arrays

are still very crude analytical models of actual granular soils, and

results such as shown in Fig. 36a are not easy to interpolate to inter-

mediate void ratios. A significant improved model is discussed in th.

following section.

S' %.~



CHAPTER 6 
A

AN ANALYTICAL MODEL OF GRANULAR SOIL OF
ARBITRARY VOID RATIO UNDER ISOTROPIC PRESSURE

Smith et al. (1929) found experimentally that a random arrangement

of equal spheres, after enough shaking and tapping has been applied to

it, seems to be composed of regular arrays, representing dense and loose

clusters distributed within the random grandular medium. The measure-

ments showed that all spheres had between 6 and 12 contacts per sphere,

which corresponds exactly to the theoretical range for regular arrays.

Additional experimental work by Bernal and Mason (1960), Bernal et

al. (1964), Scott (1960), Davis (1974), as well as Shahinpoor and

Shahrpass (1982), and Finney (1983), Figs. 37 and 38), has confirmed that

2-D and 3-D random assemblages of equal spheres tend to crystalize. .

Consequently, at the present time, it is generally accepted that an

assemblage of equal spheres can be modelled by a combination of regular -

arrays, (Finney 1983, Backman et at. 1983).

In this section, a model of granular soil is proposed which consists

of clusters of the three cubic arrays discussed in Section 5.5, with the .,

additional assumption that for the spheres vsi = 0. In this model, the

three cubic arrays, having different void ratios and inherent stiffnesses,

occur in proportions such as to give the desired macroscopic void ratio

of the "soil". In Section 6.3, the relation between Gmax' void ratio and

a. applied to this soil model is calculated using the self consistent

method, and the results are compared with Gmax measured in actual sands.%,

54
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U 6.1 The Self Consistent Method

One of the most commonly used procedure for describing the behavior

of macroscopically isotropic composite elastic media is the "Self

Consistent Scheme".

This "Self Consistent Scheme" was first devised by Hershey (1954)

and Kroner (1958) as a means to model the behavior of isotropic and an-

isotropic polycrystalline materials. Such materials are just one phase

media, but because of the random or partially random orientation of the

crystals, are heterogeneous, their elastic properties vary with position

within the medium, and discontinuities in properties exist across some

crystal interfaces.

In these original applications of the method to polycrystalline

aggregates, a single anisotropic crystal was viewed as a spherical or

ellipsoidal inclusion within an infinite medium; this infinite medium had

the (still unknown) isotropic elastic properties of the aggregate. Then

the medium, with the inclusion in it, was subjected to a uniform stress

or strain field applied at large distances from the inclusion. Next, the

orientation average of the stress or strain inside the inclusion was

assumed to be equal to ("consistent with") the corresponding applied

value of stress or strain. Thus the "self-consistent" name of the

method. This formulation provided enough equations to solve for the

isotropic effective properties of the medium (Christensen, 1979).

Improvement of this self consistent scheme and its extension to

multiphase media are due to Hill (1965) and Budiansky (1965), who

developed the method to be used here. This improved method represents an
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3 approximate analysis for the prediction of the overall (macroscopic)

elastic moduli of a multiphase medium composed of a coherent mixture of

several isotropic, linearly elastic materials or phases. The medium is

assumed to consist of contiguous, irregular zones containing these

constituent materials, and the shapes of these zones are assumed not to

I deviate much from spherical. The spatial distribution of the phases is

assumed to be such that the composite medium is macroscopically (i.e. at

a scale much larger than the dimensions of the zones), both homogeneous

and isotropic. Now, if an N-phase medium of total volume V is defined,

such that the aggregate volume of all zones containing the ith phase is

Vi, the volume concentration is ci = Vi/V, and ci is also equal to the

probability that any arbitrary point within the medium iL located within

a zone of the ith material. It should be noted that in the limiting case

of very small concentrations, cl, c2, ... cN-1, the first N-I phases will

tend to appear as isolated inclusions in a matrix consisting of the Nth

phase.

In order to obtain to effective overall (macroscopic) shear, G*, and

bulk, K*, moduli of the medium, a uniform stress field is applied at its

boundaries. Then, the stress and strain field, in each of the phases is

evaluated as explained in the next paragraph. Once the fields are deter-

mined for all materials, the effective moduli, G* and K*, can be calcu-

lated by equating the strain energies of the macroscopic medium and of

the phases. Again, the problem reduces to a number of coupled equations

for K* and G*, which are in terms of the properties of the individual

materials and of their volume concentrations (Budiansky, 1965). This

Lill 11 111 1 1 11 11111 1 1, I'd 1 1 11,11 i P
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method has been severely critized for taking enormous liberties with the

geometrical arrangement of the phases (Christensen, 1979). To calculate

the elastic field in each material, the geometry of the different zones

containing the phase is successively rearranged to view the phase as a

single inclusion. However, the method is relatively simple and in many

instances, when used with caution, gives very good results. Furthermore,

it has been proven by Hill (1965) that this "Self Consistent Method"

yields results for G* and K* which always lie between the Voigt and Reuss

bounds, that is, the spatial average of the moduli of the phases (Voigt

bound, springs-in-parallel) and of the reciprocal of the moduli, or

compliances of the phases (Reuss bound, springs-in-series).

The evaluation of the stress and strain fields in each of the phases

is performed for the isotropic case by the solution of the problem of the S

elastic field inside an ellipsoidal elastic inclusion (Eshelby, 1957).

It was shown by Eshelby that the elastic field inside an ellipsoidal

isotropic elastic inclusion embedded in an isotropic elastic medium is

uniform; this is an extremely important conclusion as it eliminates the

need for averaging the fields within the inclusion phase and simplifies

enormously the formulation. Later, it was shown that the stress and

strain fields inside an orthotropic inclusion embedded in an orthotropic

medium are also uniform, as long as the cross section of the inclusion is -*

quadratic (Kinoshita and Mura, 1971).

The averaging of the shear moduli of all phases by a strain energy

balance between the medium and the inclusions yields:

.........
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I + NI GiTi (42)
G1 GN i1

I' N- + o (l K (43)
N-+I KjLv

K KN i=I KN 0(

U where G*, K* are the desired macroscopic moduli; Ki, Gi (i 1,2,...N)

are the moduli of the ith phase, ci = Vi/V is the volume concentration,

and Yi, evi are the values of the average shear strain and volumetric

strain respectively, inside the phase. The parameters T* and a' are theU0
shear stress and isotropic pressure applied at the boundary of the

medium.

The Elshelby (1957) solution gives

To (44)Yi G,+8,(GiG,) ,

evi K,+a*(Ki-K*) (45)

B **
where a*, are components of the Eshelby S-tensor; for the case of

spherical inclusions they are:

a 3(-v*) (46)

* 2 (4-5v*) (47)I15 (I-v*)

where v is the macroscopic Poisson's ratio of the medium:

Raw"

= f r



59

V 3K*-2G* (48)
6 K*+2G*

By "smearing out", that is, by replacing the matrix surrounding each

inclusion (phase) by the desired resultant macroscopic medium, equations

(42) and (43) reduce to:

N ci (49)

N cj(50)

Ki

which are symmetrical for the various phases. Therefore, Budiansky (1965)

has suggested to use Equations 49 and 50 for arbitrary concentrations of

the constituents of the composite medium as described previously. Fur-

thermore, Budiansky simplified equations 44 and 45 to:
p

T 0 (51)
G G, +* (-w - '

0i=  1*[  , (52)

-• l- 1,1N
K *Ki

I+aK

A comparison of Eq. 51 with results obtained through statistical

finite element methods, suggests that the above equations do indeed model

the continuum described previously, including the assumption that the

stress and strain fields of the phases are approximately independent of
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location (Fig. 39, see also Petrakis, 1983).

Finally, Equations 46-50 have to be solved simultaneously to yield

the desired values of the macroscopic elastic moduli, G*, K*. These

resultant macroscopic moduli are estimates of the overall elastic

constants of the multiphase medium, and, as mentioned before, they

invariably lie between the Reuss and Voigt bounds. Other solutions may

provide narrower bounds for the actual solution (Hashin and Shtrikman,

1 1963); however, the Self Consistent solution, in certain cases, alsoa falls between these narrower bounds, thus showing its capability for

providing accurate results (Hill, 1965).

6.2 The Model

* The Self Consistent Method is applied here to evaluate the elastic

constants of a random assemblage of equal, rough elastic spheres that has

been consolidated isotropically and has a prescribed mean void ratio e.

The spheres are assigned the elastic properties of quartz, and the assem-

blage is assumed to be composed of random zones, with each zone consist-

uted by a large number of spheres arranged in either of three regular

cubic arrays.

Recently, Shahinpoor (1981) modelled a random 2-D array of equal

steel spheres as a combination of Voronoi cells, derived an expression

for the probability density function of the void ratio, p(e), and checked

experimentally this analytical p(e) by means of an optical scanning

technique, Fig. 37 (see also Shahinpoor and Shahrpass, 1982). The

expression for p(e) is:

I
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p(e) exp(-Xe) (53)

e xp(-Lemin)-exp(-Xemax)

e- emin exp(-Xemin)-emax exp(-Xemax)
X exp(-Aemin)-exp(-Aemax)

X is obtained from the mean void ratio, e, of the distribution p(e). As

mentioned before, it is reasonable to model a uniform, rounded-grained

sand as a random combination of zones corresponding to regular cubic

arrays, and this was the approach taken in this work. The sand medium is

assumed to be composed of regular arrays in the fashion of Figs. 37 and

38, where each randomly oriented Voronoi polyhedron is one of these

3 zones, and contains a regular array with many spheres. A cross section

of this 3-D medium could be visualized approximately by the actual

photograph of the 2-D medium in Fig. 37b; in this, the black spots are

spheres and the white are voids, and zones of regular packings can be

clearly observed. The macroscopic moduli of the whole medium will be

determined from the properties of these zones through the self consistent

s cheme.

As a first step, the probability density function of the void ratio,

p(e), Eq. 53, was transformed to the probability density function of the

porosity, p(n), with the basic equation (Benjamin and Cornell, 1970):

p(n) = t-n p(e)

as the mean of the porosity distribution, n, coincides with the macro-

scopic (measured) porosity of the "soil", unlike the mean void ratio e,

which is not identical to the macroscopic void ratio (Petrakis, 1983). I

_4%4. '
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Then, the probability density function of the porosity, p(n), was

discretized into three segments of influence, corresponding respectively

I to the porosities of the three regular cubic arrays (see Fig. 40): sc

(n - 0.48), bcc (n = 0.32) and fcc (n = 0.26). The values of min and

nmax used for all calculations were those of the sc and fcc arrays.

For example, for a prescribed macroscopic porosity n = 0.35 corres-

ponding to a mean void ratio e - 0.54, the calculation illustrated in

Fig. 40 allowed determining the following three volume concentrations,

ci:

Array ni ci

sc 0.48 0.1934

bcc 0.32 0.5921

fcc 0.26 0.2143

The medium with these three phases was then subjected to an

isotropic boundary confining pressure, a*, and subsequently subjected to

0
small boundary stress increments daij, from which the corresponding

elastic, very small strain increments at the boundaries, and the mean

cubic medium moduli K* and G* were evaluated.

If we now assume that the phases are quadratic (elliptical or

circular) in cross section we can apply the Self Consistent method. The
p

assumption that the "zones" are quadratic in cross-section is important,

since if the resulting stress and strain fields are uniform (see Section

6.1) within each "zone", the "zone" can be replaced by the representative

cube of each cubic array (Figs. 24-26) and the corresponding constitutive



I laws are given by 
Eqs. 18, 24 and 31. Since in turn these 

relations

depend upon the pressure acting on each inclusion or phase, the value of

the stress field at the boundary of each of these phases and inside it

can be readily obtained from Eshelby's (1957), and Budiansky's (1965)

results:

-i 0 Ki _____

- Ki (55)

I + *

where the value of a* depends upon the shape of the zone, (Eshelby,

1957), which here has been assumed to be spherical for simplicity. Note

that this value of oo is independent of the location of the zone, and is

thus the same for all zones containing the sauae regular cubic array or

phase.

Equation 55 is then replaced into Eqs. 18, 24 and 31, and the

* problem finally reduces to the solution of the following equations for

the three phases:

_i o Ki 1
K= Ki[ ; i = 1,2,3 (56)

3 Ci 1.0 (57)

i= Gi

' 'I

G*
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3 Ci 1.0 (58)

Ki

, I+V* = (59)
3 (1 -v*)

8 2 (4-5v*)S15 (1-v*) (0

= 3K*-2G* 
(61)

bK*+2G*

where Ki = Ki(oo), Gi = Gi(o o) for the three phases are obtained with Eqs.

10, 16 and 23 for i = 1, 2, 3, corresponding, respectively, to the simple

cubic, body centered cubic and face centered cubic regular arrays.

6.3 Application to Quartz Sand

The proposed model was evaluated using as input the elastic param-

eters of quartz for the individual spheres, which are Es = 11.0 x 106 psi

and vs = 0.15 (White, 1965, Ko & Scott, 1967, Lambe and Whitman, 1969,

see Table 3), and for a wide range of isotropic confining pressures. The

values of the computed shear modulus G* are plotted on solid lines in

Figs. 41, 42 and 43 versus confining pressure a. = O0, for e = 0.46, e =
0

0.54, and e 0.58, respectively. The values of the bulk modulus, K

were also computed, and Fig. 44 contains a plot of confining pressure

versus volumetric strain predicted by the model for e = 0.54, where the
0 *

volumetric strain was derived from this computed bulk modulus, rv = ao/K"
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As mentioned before in connection with Fig. 36, regular arrays are

much stiffer, up to 3.5 times stiffer, than actual uniform, rounded

sands, and this constitutes a serious defficiency of the model. However,

Urnevich and Richart (1970) have suceeded in increasing significantly the

shear stiffness of dry, rounded, uniform Ottawa quartz sand by applying

millions of cycles of a shear strain slightly greater than the threshold

strain in a resonant column device.

Figures 41, 42 and 43 also include as data points the resonant

column experimental results obtained by Drnevich (1967), and Drnevich and

Richart (1970), for the same macroscopic void ratios, e = 0.46, e = 0.54

and e= 0.58, used to calculate the solid lines. The lower dotted line in p.

each figure corresponds to virgin or uncycled sand as predicted by the

Hardin and Black (1966) correlation, which is essentially identical to

the Hardin and Richart correlation depicted in Fig. 36(b). In Figs. 41-

43, two trends may be clearly observed: a) as the number of cycles, N,

increases, the test results steadily approach the model values until, at

N = I to 2 x 107 cycles the agreement becomes excellent; and b) the slope

of the line of shear modulus vs confining pressure decreases from about

1/2 in the uncycled state to the theoretical 1/3 after, approximately, I

x 106 cycles. The reason for some of the points showing more scatter is

probably because those points were cycled more than others with the same

void ratio, or because their void ratios were slightly differed.

In the above tests, the sand specimens were cycled at strains which,

although larger than the threshold strain, were small enough so that no

significant densification occurs, and indeed the change in measured
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(macroscopic) void ratios between virgin and cycled specimens was very

little or negligible; thus, densification is certainly not the explana-

tion for the observed threefold increase in the sand stiffness. Drnevich

and Richart (1970) speculated in their paper that the above behavior

could be due to wearing of the contacts, increase of the contact areas or

formation of additional contacts. The authors think that this third

reason explains the phenomenom completely, as illustrated by the compar-

ison with the model in Figs. 41-43, and by the relation between stiffness

and number of contacts in Fig. 35. It is known that in a random array of

spheres there may be less contacts than in regular packings (see Smith et

al., 1929) and, furthermore, it is possible to have contacts which do not

transmit any load (dead contacts). By continuous cycling such as

performed by Drnevich and Richart in their tests these contacts were made

load-transmitting and new ones were formed until all or most possible

contacts were created and the stiffness of the sand coincided with that

predicted by the model. It is interesting that the creation of contacts

can also be achieved by high isotropic confinin. pressures (Duffy and

Mindlin, 1958, Deresiewicz 1958, see also Fig. 13).

The analytical model proposed herein describes exactly this: since

it assumes that the sand is a random assemblage of regular arrays of

spherical grains, it implies that the number of contacts is the max.imum ,

possible. Furthermore, as shown by Duffy and Mindlin (1957) and

Deresiewicz (1958), ard as illustrated by Fig. 13, when the number of

contacts increases the pressure dependency of the moduli tends :o change

from 1/2 to 1/3. All of this is interpreted by the model, which is showi

~~~ ~% *%*
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here to represent the limiting state, in terms of number of contacts and

of stiffness, that a sand can reach.
0

Figure 44 shows the confining pressure ao vs. volumetric strain, v,,

measured by Drnevich and Richart on the same Ottawa sand specimens dis-

cussed above, for a virgin specimen and for a specimen after I x 106

cycles of shear strain. Unfortunately, no data is available for sand

specimens cycled with more than 1 x 106 cycles. In the figure, lines 0

have been passed which approximately represent these experimental data.

The line predicted by the model is also plotted, and again it is clear

that the cycling increased the bulk modulus of the soil, thus making it

approach the predicted model curve, as the number of contacts increases

toward the theoretical, maximum value. It would be interesting to

compare the difference between the analytical results and the experimen-

tal values for both moduli, K* and G* at a given cycling state. The

experimental values for the case of hydrostatic compression (Fig. 44) are

closer to the model predicted curve than the measurements with shear

(Figs. 41-43), for a comparable number of cycles. This is explained by

the fact that, once the spheres have approached each other due to the

cycles of shearing, an increase in ao can complete the formation of many
0

contacts, thus further increasing the stiffness of the soil.

.-J
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I CHAPTER 7

A TWO-DIMENSIONAL NUMERICAL MICROMECHANICAL MODEL FOR THE
STRESS-STRAIN BEHAVIOR OF A GRANULAR SOIL AT SMALL STRAINS

3 In the preceeding chapter a closed form solution was obtained for

the elastic constants of a random configuration of equal, rough, elastic

I spheres having an arbitrary macroscopic void ratio and subjected to

isotropic loading. This was done through the use of the Self-Consistent

I Method, using a minimum number of assumptions, and it contributed to a

* greatly improved understanding of the small strain behavior of sands

under isotropic conditions. The fact that this analytical solution was

I obtained with relatively small effort should be attributed to the high

level of symmetry in such a system under isotropic pressure.

I Logically, the next step should have been to investigate the

possibility of obtaining equivalent rigorous solutions for the case of a

similar random configuration of equal, elastic, rough spheres, but now

3 subjected to anisotropic loading. Unfortunately, this proved impossible,

not only because of the lower level of symmetry in this case, which made

the combination of three or more phases for the medium impossible, but

also because anisotropic loading induces early yielding (sliding) between

some particles in the individual phases. Therefore, an elastic solution

was not possible. An elastic, perfectly-plastic rigorous solution would

have been in principle feasible, but, again, the pressure dependence of

the properties of the phases made the problem intractable.

5 68
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As mentioned in Section 4.2, for years researchers have been

modeling the elastoplastic behavior of polycrystalline aggregates using a

I variety of analytical, semianalytical, and numerical techniques. As

3 discussed previously, exhibit an analogous behavior to that of the sands,

Therefore, it seems logical to attempt formulating the problem of a

Irandom packing of equal spheres subjected to an arbitrary stress path, in
a manner similar to that used for crystals. This can be achieved by

* devising an aggregate of regular arrays such as that of Chapter 6,

describing the force-deformation at the intergranular contacts through

the nonlinear numerical techniques described in Section 4.1 (subroutine

CONTACT), and resorting to a nonlinear finite element simulation.

7.1 Aggregate Description

In order to model the behavior of granular soil at small strains, a

-gnumerical simulation was developed which calculates the response of a

random aggregate of equal, elastic, rough spheres under an arbitrary

boundary stress state, a . For this, a finite element analysis was per-
ii

formed in which the element corresponded to a simple cubic array. Each

element contains an undetermined number of spheres, assumed to be subjec-

ted to a uniform stress field, so that four spheres represent the above

element (Duffy and Mindlin, 1957); the element configuration appears in

IFig. 45. Several specific media were used in these simulations, each

medium consisting of a number of simple cubic arrays in two dimensions (a

mono-layer of equal spheres assembled in simple cubic patterns), oriented

in such a way so as to resemble a statistically isotropic random aggregate.

I"1
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U The effect of the shape of the "grain boundaries", in this case the gap

between elements which are oriented differently, and of any localized

orientation concentrations on the macroscopic behavior was not studied

here, since a statistically uniform medium was sought to interpret the

macroscopic behavior of a granular soil. Each of the above elements is a

5 simple cubic array, randomly oriented, and the number of elements used in

each of these media varies from 16 (4X4) to 64 (8X8) as illustrated in

I Fig. 46 and Figs. Dl through D2 in Appendix D. Therefore, the medium has

the same properties of the simple cubic array in terms of void ratio and

coordination number.

The simple cubic array was selected as the basis for all simulations

due to its simplicity. It is extremely difficult, for example, to imple-

I ment numerically a constitutive law for the body-centered cubic array

since the contact forces and displacements are coupled. For another

alternative, the face-centered cubic array, the task is impossible as the

array is statically indeterminate. However, it was felt that the

inability of varying the void ratio or the coordination number (number of

contacts per particle) did not unduly constrain the simulations, which

were expected to provide useful insights into the behavior of sand at

small strains.

7.2 The Element

The constitutive relation of the elements described above, is an

incrementally linear law which is based on the differential stress-strain

expressions for the Simple Cubic array presented in Chapter 5. These

incremental relations at the particle contacts are integrated through theI
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nonlinear program CONTACT, previously described in some detail in Section

4.1. Thus, at every increment, the displacements in the simple cubic

array are computed separately for each contact, and then the results are

combined following the formulation presented in Chapter 5.

Since finite element programs are implemented through the Stiffness

Method, in which the displacements are the independent variables, and

thus the code first computes the displacements at the nodes from the

* specified boundary conditions and then calculates the stresses at the

N IGauss points from these nodal displacements, the constitutive relation of

the incremental model CONTACT (Eqn. 12) had to be inverted in order for

the displacements to become the independent variables. The inverted

constitutive relation is as follows:

+ 2-a fdN)
dF -- s da k + Hp dDt t + fdN n + H(dDN -- n (62)

if dT/dN > f

and

+ 2Ga
dF -F-- d ak + HpdDt t + HodDNfn (63)

if dT/dN < f.

In the general case in which the simple cubic array element is com-

pressed biaxially under all and a22 (see Fig. 45), the normal strains are

uncoupled and depend only on the normal relative displacements between

the centers of adjacent spheres, which in turn depend only on the normal

stresses. As described in Chapter 4, this occurs because the behavior at

a contact subjected to a normal force is nonlinear elastic, and because

the normal compliance at the contact is only functions of the normal

I25d 1J11'
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3force. Unfortunately, this is not true for the shear strains, which are 7

coupled with the normal stresses. The expression for the shear strain,

1 'Y12, described in Section 5.1, is Y12 -(612 + 621)/2R, where 612 and 621

3 are the relative tangential displacements between the centers of adjacent

spheres of radius R. Therefore, the tangential displacements, 612 and

I621, depend on the values of both the tangential and the normal forces at

the contact.

I As a first step, the macroscopic normal stresses corresponding to

each contact are computed directly, since the behavior of the array under

compression is nonlinear elastic. Once these normal stresses and forces

3 are determined, the tangential forces and, consequently, the shear

stresses can also be computed. The shear strain, Y12, supplied by the

I finite element program at each Gauss point, is obtained from the

summation of the two tangential displacement components at both contacts, N

612 and 621. Since the shear stress components on the faces of the *2

3 element, 012, must be equal, the problem of finding the value of 012

reduces to computing the common tangential force acting on two different

I contacts, subjected to two different normal forces, and with the

summation of the resulting tangential displacements being known (612 +

621 = 2Ryl 2). For this purpose, an iterative numerical technique based

on the bisection method was used, and this made possible the evaluation

of the tangential force and, subsequently, of the shear stress.

The stress-strain behavior of an individual element (Fig. 45) 2eassuming quartz spheres, is shown in Fig. 47c for a biaxial state of

stress, all and 022, followed by pure shear. Figures 47a and 47b portray

IJ
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the force-deformation behavior of the "weak" and "strong"t contacts for

the same case, respectively, where the "weak" contact is defined as that

for which the normal stress is smaller (all in this case). The proper-

ties of quartz for the spheres utilized in this calculation (E = 295,182

Kg*/cm2, f - 0.5 and v =0.15, White, 1964) are consistently used

I throughout the remainder of this work.

It should be noted that the element can not take any tensile normal

U stress on the slip planes, since this would imply that a contact has

ceased to exist, and thus that the particles want to rearrange themselves

and form a new packing+. Although this rearrangement obviously happens

in actual sand aggregates, its simulation was too complex to implement in

the present finite element code, and the decision was made to make the

contact normal forces positive-definite, that is they can be positive or

zero, but never negative.

I A subroutine implementing the behavior of this element was coded

3into the nonlinear finite element program ABAQUS (1982) as a user defined

material subroutine (UMAT). The listing of the subroutine as well as a

flowchart appear in Appendix C. Finally, an incrementally linear

analysis was done using plane strain eight-noded elements with reduced

integration.

+For the simple cubic array element considered herein, simple analytical 4

considerations show that if both alt and 022 are positive definite, then
no tensile stress can exist in any direction if the friction coefficient
f is less than 1, as is the case here.

.< 1k



3 CHAPTER 8

MONOTONIC LOADING SIMULATIONS OF THE AGGREGATE

U As a first step, a number of monotonic loading cases were simulated

in an attempt to define the macroscopic behavior of the aggregate. The

medium was subjected to several loading paths ranging from hydrostatic

compression, to hydrostatic compression followed by some combination of

shear and compression.

I In most of these simulations, an attempt was made to keep the mean

stress constant, so as to hav~e the simulations contained on one i-plane,

and the microscopic behavior was closely monitored in order to verify

I that the necessary assumptions of the constitutive law were satisfied.

Finally, one simulation was also made with variable mean stress in order

* to investigate the behavior of the aggregate under biaxial compression.

8.1 Isotropic Compression

In one of the first simulations, medium I with 16 elements was sub-

U jected to a monotonically increasing hydrostatic pressure, first to
0 0

0- 3 Kg*/cm2 and then up to 00- 5 Kg*/cm2, and it was observed that

both the macroscopic and microscopic (element) response exhibit a locking

nonlinear elastic behavior, similar to that observed in sand (Fig. 48).

8.2 Isotropic Compression Followed XPure Shear

As a second step, the isotropy of the media used was verified by

02

loading them isotropically up to 00 - I Kg*/cm , followed by pure shear

applied incrementally. This was accomplished by imposing on each medium

- a predetermined direction of the major principal stress. The values used

I74 1F
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for the angle, a, between the major principal stress and the vertical

direction of the medium, (Fig. 49a), were 0* (compression in the vertical

direction); 22.50; 450 (pure shear in the vertical and horizontal

planes); 67.5*; and 90* (extension in the vertical direction). The

results of these simulations are shown in Fig. 50 as plots of the applied

0 0
deviator stress, 01-02, versus the resultant shear strain, Y =

Fig. 50 includes results of media with 16 and 64 elements. In total,

four media were used: three with 16 and one with 64 elements, including

the two media in Fig. 46. Figs. 51-53 include the stress-strain behavior

of two individual elements for the compression of medium 2 under constant

mean stress and for a - 0% The stress-strain behavior of all 16 ele-

ments for the same medium and same loading case appears in Appendix E.

It can be seen in Fig. 50 that the aggregate is indeed isotropic

under isotropic pressure, as expected. Since Fig. 50 shows that the

difference between the stress-strain behavior of the 16-element and 64-

3element media is not significant, it was decided that for subsequent
parametric studies, as well as for monitoring the stress-strain behavior

of each element, any of the less costly 16-element media could be used as

representative of the aggregate.

8.3 Isotropic Compression Followed by Biaxial Compression

A 16-element medium (medium I of Fig. 46) was compressed with the

mean stress variable, in a manner similar to that of a soil specimen in a

triaxial device (see the 450 stress path in Fig. 54). That is, the

0
medium was first compressed isotropically under . = 1.0 Kg*/cm 2 , and

then oI was increased in a vertical direction while 02 remained constant,

Uo
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a2 = .o 0 Kg*/cm 2 . The stress-strain curve calculated for this

medium is shown in Fig. 55, and the behavior for two individual elements

is presented in Figs. 56 and 57. The a-e behavior of all 16 elements

for the same medium and same loading case appears in Appendix F. The

nonlinearity of the medium here is even less pronounced than in the

simulations with constant mean stress (Fig. 50), since in Fig. 55 there

is no lateral unloading. The Poisson's ratio of the medium was also

computed from this numerical simulation, and it was found to vary from

0.02 to 0.05 (Fig. 58), thus agreeing well with values measured experi-

mentally on dry sand at the University of Texas (Lee, S., 1985). The

obliquity at failure was the same as in the simulations with the constant

mean stress, as illustrated in Fig. 54.I
8.4 Yielding and Failure Considerations

In the numerical simulations of pure shear summarized in Fig. 50, it

was observed that the yielding/failure process of the medium occurs in

two successive stages. In the first stage, a growing number of "soft"

elements, oriented more or less parallel to the directions of the applied

shear stress, slide and this sliding accounts for the increasing nonlin-

earity of the curves in Fig. 50, as the shear strain, y - -e2, increases

from 0 to values around 0.1 x 10- 3. At these larger values of shear

strain, typically around 20% of the elements have already slid (failed).

In the second stage, occurring at about y = I-E2 = 0.16 x 10- 3, one or

several of the "stiff" elements, oriented more or less perpendicular to

the direction of the shear stress, and which had not yet slid, tend to

separate as the normal force at the contact becomes zero, the correspond-

PqI
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ing ratio shear/normal force at the contact reaches f, and the element

slides. This, of course, is related to zhe fact that the normal contact

Iforce is allowed to be zero but not negative. Once some of the "stiff"

elements fail due to this tendency to separate, a growing number of both

"soft" and "stiff" elements slide in the next increment(s) by a combina-

tion of shear stress increase and separation tendency, thus precipitating

the failure of the medium, occurring at Tf = 0.448 Kg*/m 2 . This is

close, but slightly less than the yield stress of the simple cubic array

subjected to pure shear in the directions of the array: T = (0.5)/(l) =

0.5 Kg*/cm2 . This value of the failure stress is much less than the

value of 1.5 3 6Oy calculated for the polycrytalline aggregates, as

discussed in Section 4.2. This difference in values, between the simple

cubic and the fcc polycrystalline aggregate, occurs, among other reasons,

because the simple cubic element is not allowed to take any tensile

stresses during the stress redistribution which takes place when an

increasing number of the elements slide.

To further verify this sequence of events just described, a special

64-element medium was defined (Fig. D3 in Appendix D) and subjected to

shear at constant mean stress. This new medium was constructed in such a

way as to provide an insight into this complex "f,ilure" phenomenon, by

having only two extreme element orientations: the four elements at the

center are oriented at B = 00, see Fig. 49b ("stiff" elements), while the

other sixty, surrounding those four, are oriented at 450 ("soft" ele-

ments), that is parallel to the orientation of the maximum shear stress.

Consequently, the "soft" elements are expected to slide first; and if

'I -' 1 ,% ' - - - v *** ***W,*V -. ; '.% *- ' '., ' " ".°1 ' J' -- - -
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then the "stiff" elements were to fail by a tendency to separate, the

above observations on the "failure" sequence would be confirmed. Indeed,

when some of the a = 450 elements surrounding the 8 = 00 "stiff" elements

had slid, (due to roundoff error all "soft" elements did not fail at the

same time, but were sufficiently close to sliding to be considered to

fail at the same time), negative (tensile) stresses developed in all.5

"stiff" elements, which eventually slid until, finally, the global stiff-

ness matrix became singular and the simulation was terminated. The

stress-strain behavior in three representative elements is shown in Figs.

59-61; as it can be seen, the element behavior is similar to the one

which appears in Figs. 51-53. Thus, the failure of the aggregate should

be attributed to this "localization" phenomenon, which is similar to that

I observed in metals (Dieter, 1976).

This "failure" of the aggregate, defined here by the sequence of

phenomena previously described which at the end results in the global

stiffness matrix of the medium becoming singular, is associated with aL

generalized tendency of the particles to slide, separate and rearrange

themselves into more stable positions. This corresponds roughly to the

changes in geometry occurring in actual sands at the threshold strain,

Y= 0.1 to 0.2 x 10-3 (Dobry et al., 1982), as verified by the fact that

"failure" of the medium in Fig. 50 occurs at a shear st rain, Y El-E2

0.16 x103

In addition to the simulations already discussed in which the 16 and

b4-element media were sheared at constant mean stress after isotropically

compressing them with 00 I Kg*/cm, two similar runs were done on

P4s
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0
medium 2 (16-elements), but with oo = 0.5 Kg*/cm2 and 2 Kg*/cm 2. In

these two runs, the medium failed at Tf = 0.224 and Tf 0.896 Kg*/cm2 ,I 0

respectively. Therefore, in all pure shear simulations following 00,
0

Tf/a o = 0.448. This defines the "failure surface" shown in Fig. 54 for

0
the aggregate, where the corresponding three stress paths for 0o =

Iconstant are also included. The observed, and proposed, failure surface

is a cone of the Von Mises type with the slope of the directrix being

0.448, or slightly less than the coefficient of intergranular friction,

f - 0.5 (fig. 54).

8.5 Discussion of Results

As it can be seen in the simulations discussed above, the media used

represent well some aspects of the behavior of actual, uniform, rounded

sand, by being isotropic under isotropic pressure, yielding in shear and

locking under hydrostatic compression. Therefore, these "random" media

have the desirable properties of the simple cubic array without its

problematic inherent anisotropy (see Chapter 5).

ISince the elementE are randomly oriented, discontinuities in the

strain field are expected across element boundaries. It was found that

the maximum strain jump at the nodes was one to two orders of magnitude

smaller than the minimum strain value in the 16-element media, and three

Iorders of magnitude smaller in the 64-element medium. This is thought to

be satisfactory in both cases and it shows that, as expected, the spatial

accuracy of the solution improves as the number of elements increases.

Even though the macroscopic behavior in Fig. 50 is not far from

being linear almost until "failure", the microscopic behavior is not;

IL
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I this can be seen in Figs. 51-53 and Appendix E, where the individual

element stress-strain curves are shown for the 16-element medium 2. The

macroscopic "linearity" in Fig. 50 is thus a consequence of the inter-

3 action between all the elements.

The stress field inside each element was found to be close to

uniform, thus verifying a basic assumption made at the outset of this

0 0 0 0
study. The normalized element stresses 2ll/(l-a2), 2022/(a1-02) and

I 0 0

2012/(a1-02), are plotted against the applied shear strain cl-E2 for all

element orientations (8 orientations) in Figs. GI-G8, Appendix G.

Furthermore, in the normalized element strain, 2eij/cl-c2, is plotted

versus the applied difference in principal strain, ej-E 2 in Figs. G9-G16

of the same Appendix G. It can be observed that the element stress and

I strain fields remain almost constant during loading.

Moreover, it was observed that the stress field was more or less

uniform throughout the medium in all simulations, except very close to

3 failure, and that the element behavior was essentially independent of its

locations and a function only of the orientation, 8, of that element,

I (see Fig. 49b and Figs. El-El7 in Appendix E). The value of the uniform

stress, alj for each element was approximately the applied macroscopic

o0 0
stress, oj resolved in that particular orientation, oij = aij ni,nj, where

0
oij is the stress applied at the boundary of the medium and ninj are

direction cosines. This was true in all runs. This is illustrated by

0 0 0 0
Figs. 62-64, which show the variation of 2Oli/(01-o2), 2o22/(0-o2) and

o o p.

2o12/(oi-02), versus the element orientation, a. It must be remembered

that all , 022 and 012 are the element stresses oriented along the axes of !p
P9]
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the cubic array (Fig. 45). The three plots in Figs. 62-64 include all ,

022 and 012 calculated for all elements, (and all stress increments (with

the rectangles indicating the range of values for each increment), in

three pure shear simulations (a = 0%, 450, and 900), and the curves cor-

respond to the assumption of uniform stress field throughout the medium.

" iIt can be seen that the assumption of the independence of the element

stresses on element location is fully verified by the plots. It should

* be noted that this is identical to the assumption of stress uniformity in

the early work of Taylor (1938), and very similar to the results obtained

Iby [in (1964) and Budiansky and Wu (1962) for an assemblage of

elastoplastic crystals.
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CHAPTER 9

CYCLIC LOADING SIMULATIONS OF THE AGGREGATEI
The 16-element media were subjected to a number of stress paths with

3 complete stress reversal in order to study the stress-strain behavior of

the aggregate under cyclic loading, and also to compute dynamic proper-

ties such as the damping ratio.

9.1 Cyclic Isotropic Compression

The (16-element) medium I was subjected to an isotropic stress of
0

Go = 3.0 Kg*/cm 2 followed by a complete isotropic cycle with amplitude of

0
2.0 Kg*/cm2 , that is o was first increased to 5 Kg*/cm2 and then

decreased to I Kg*/cm2 , and then back to 5 Kg*/cm2 . The stress-strain

behavior of this medium is shown in Fig. 65, which shows a nonlinear

elastic behavior similar to that of actual sand (Ko and Scott, 1967).

9.2 Isotropic Compression Followed b Cyclic Shear Loading

0
The same 16-element medium, consolidated isotropically to oo = 1.0

Kg*/cm2 , was also cycled under pure shear (a = 450) conditions, with an

amplitude of shear stress, Tc = 0.2, 0.3, 0.35, 0.4 and 0.43 Kg*/cm 2 .

The hysteresis loops for Tc = 0.2, Tc = 0.35, Tc = 0.40 and Tc - 0.43

Kg*/cm2 appear in Figures 66a, 66b, 67a and 67b respectively.

Computation of Dynamic Properties and Wave Velocities

The secant shear moduli, G, obtained from the pure shear simulations

at different ('s for the constant mean stress case (Fig. 50), were

normalized with respect to the shear moduli at very small strains, Gmax,

82 A
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obtained in the same simulation, and the corresponding values of G/Gmax

versus shear strain are plotted in Fig. 68a, where they are compared to

the bounds proposed by Seed and Idriss (1970) from actual tests on sands.

The corresponding damping ratio, X, was obtained from the loops under

cyclic pure shear (Figs. 66a, 66b, 67c, 67d) with the expression:

1 AW

where AW is the area of the stress-strain loop, T and y are the maximum

values of the shear stress and shear strain, respectively, during the

cycle (see Fig. 69). The values of damping ratio obtained in cyclic pure

shear are plotted agaiis cyclic shear strain y in Fig. 68b. Figure 68

corresponds to simulations done at a mean stress of 1.0 Kg*/cm 2. Figure

68 also includes the corresponding curves for G/Gmax and damping ratio

for the case of pure shear along the slip planes of a simple cubic array,

computed by Dobry et al. (1982). Since the slope of the G/Gmax and

damping ratio versus y curves in Fig. 68 for the aggregate studied herein

is flatter than that of the simple cubic array, its behavior is more

realistic when compared to actual sand. This "stiffer" behavior of the

aggregate, as compared to that of a single cubic array, should be

attributed to the interaction between the elements of the medium.

9.3 Constrained Moduli of the Aggregate and P-Wave
Velocities Under Biaxial Compression

The small strain constrained moduli, Dij, were obtained from the

"triaxial" simulation previously discussed (Isotropic Compression

Followed by Biaxial Compression, Section 8.3). The values of Dij were

. M--.
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computed in both principal (vertical and horizontal) directions. In

order to increase the accuracy of the calculation at these small stress

and strain increments, and to fully account for the stress-induced

anisotropy of the aggregate, the 64-element medium (medium 4) was used.[0°0
The medium was loaded to the desired biaxial stress ratio, K = a/02, and A

then very small stress increments with appropriate signs were applied,

0 0
Aal, A02, the corresponding differences in strain were computed and,

finally, the small strain constrained moduli of the medium, D11 , D2 2 were

computed in both directions. The results of this simulation are shown in

Figs. 70a and 70b as plots of the normalized constrained moduli of the
(K) (1) (K) (1) 0 0 '

medium, D2 2 /D2 2 and Dll /Dll versus the stress ratio K = '7/02, where
(K) (1)

Dii is the constrained modulus at a given K, and Dii the corresponding

0
constrained modulus under the initial isotropic stress, o. The same

figure also includes data points from a number of measurements on sand

obtained in the large cubic facility at the University of Texas at Austin

(Kopperman et al., 1982), which were performed during a test with

conditions similar to those assumed in this numerical simulation. The

agreement between experimental results and numerical simulations in fig.

70a and 70b is excellent. Consequently, the main conclusion obtained

from the University of Texas laboratory results, that the P-wave velocity

propagating along a principal stress direction is only a function of the 'V

value of that principal stress is fully predicted by the numerical experi-

ment. Therefore, as previously hypothesized by the authors, this effect %

is due to the particulate nature of the soil, and its analytical modeling

necessarily requires taking into account this particulate nature.

-f 0' -' I
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CHAPTER 10

CONCLUSION

A particulate mechanics model has been developed for describing the

elastic response of an assemblage of identical, elastic, rough spheres of

arbitrary macroscopic porosity, n, subjected to an isotropic pressure,I 0
a0 . The model is based on the Mindlin-Deresiewicz theory of bodies in

3 contact and takes into account the spatial variation of porosity. The

model assumes that the assemblage is composed of random clusters of

several regular arrays of various porosities and it computes the macro-

scopic moduli by means of the Self Consistent Method.

The predictions of the model, specialized for the case of quartz

spheres, were compared to measurements of the shear modulus, Gmax, on

uniform quartz sands, with good qualitative agreement; however, the

analytical "sands" were as much as 3.5 times stiffer than the actual

soils. This is explained by the fact that sands have less effective

contacts per grain than theoretically predicted for a given porosity, n.

However, when the sand is prestrained by millions of shearing cycles

slightly above the threshold strain, the shear modulus approaches the

theoretical value without changing the macroscopic porosity, n, as the

theoretical number of contacts is slowly realized. Thus, the model "1

exhibits excellent agreement with results on heavily prestrained sand,

and it also provides upper bounds for small strain shear and bulk moduli

for rounded, uniform sands.

Finally, a nonlinear finite element formulation is established which

interprets the behavior of granular soil at small strains. This
~85
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formulation also considers the soil as an aggregate of different packings

of equal spheres, but this time, for simplicity, only the simple cubic

packing is used. The inherent anisotropy of the simple cubic packing is

eliminated by orienting the same packing randomly in several directions.

The model incorporates the nonlinear constitutive model CONTACT for

Idescribing the force-deformation behavior at the contact, and results are

obtained for several stress paths. Specifically, the recent compressional

wave velocity measurements on anisotropically consolidated, dry sand are

simulated. These experimental measurements have shown that the P-wave

velocity depends only on the principal stress on the direction of wave

propagation; this was predicted by the numerical simulation. Further-

more, the comparison of the normalized constrained moduli between the

finite element model and the measurements is excellent, thus validating

the micromechanics approach used to the problem.

Both phenomena described above, the increase in the stiffness of a

granular soil and the dependence of the P-wave velocity only on the

principal stress in the direction of wave propagation, had not previously

been fully interpreted or modelled analytically. Their interpretation

and modeling here was made possible only through a micromechanical

approach, which takes into account the particulate nature of the granular

soil responsible for the above phenomena. Therefore, the method of
°1,>

modeling rounded, uniform granular soil as an aggregate of regular

packings of equal, elastic, rough spheres leads to simple and accurate

results.
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|L~,)| 0.5 0 .547)

1.9403

3 .O, Por0. S O t. Coil 3

[2 2, [ 0.6933 2L2605 4

1,,] , .6292 1,.001 10

2 0.56l2 10 20

0]l .3983 0.662? 1 8 21

0li/~lll .3)9 0.78'.0 2 2t

0. 1329 96 4 12 2
0,Z 01985 0.402 2'
1 '.0.3866 0.9303) 22 2 62 02512 10542 26 -%

1Zl0 116 33. 0522 27
[ .10.01 0.4 02 28

12 . 11 . 4 18Z 0.9677 is
tO Z,.4 [I.6 )J 0.143 0.7822 19

I S.1 0.309 0.6625 29
12.2.41 0.3954 n.6540 22

11 2,6 , 1 0.23195 0.350 30
1t .0. .4 0.2191 0.4704 31

9l 1.l4.4 1 o0 +9 186 0 63) 2

Table 2. Feasible Regular Arrays or "Cells" (Shahinpoor, 9/

1981). Coordination No. = N = No. of ContactsIper Sphere. fu,m,tl gives No. of Contacts of
Spheres with Layer Above, Same Layer and Layer''i!

I ~elow: N- U + in + ..-.

SYoung's Modulus Es  11 xI 106 psi

Poisson', R2tio 0.15 A

Coefficient of f 0.5

Int erranular Fric ion 9.

12 136.3114.441 0 595 0.154. 3

Table 3 Properties of Quartz Used in this Report

19 1) Co rd naio No.+ -N -o. .of ont ct

0.31 for quartz, which in turn was used for the calculations
in Dobry e al. (1982). The lower value La y 0.15 used herein

is more realistic and was obtained from White (1964) and Ko and
Scott (1967)] W)i

Is
saut

in Dbryet a. (982) Th loer vluevs I 0.5 usd hrei
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Figure I. Variation of Vs with Principal Stress in (a) Direction
of Wave Propagation, (b) Direction of Polarization

(Particle Motion) and (c) Out-of-Plane Direction 4

(Roesler, 1979)
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Figure 2. Effect on Vp of Principal Stress, 
ac, Perpendicular to

Wave Propagation for Biaxial Loading 
Case (Kopperman

et al., 1982)
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Figure 3. Stress-Strain Curves for Monotonic Loading of Dry
Granular Soils.

Oft CLEAN 0 2wgill10

m I

Figure 4. Stress-Strain Hysteresis Loops for Reversed Loading
(Hardin and Drnevich, 1972)
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Figure 6. Isotropic Hardening Model (Chen, 1975)

Ftd

Figure 7. Kinematic Hardening Model (Chen, 1975) .
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Initial state of 100-disc J5 test: isotropic boundar
stress

ttaxown force:

S. STRES
(1.1) -1.3w+06
(CIs ) *. 9uE+99

Components Of applied
stress tensor

boundary particles
Identified by dashed line

Snum~erical ly greatest
principal Stress

100-disc test: Just
before failure

tiaximuo force:
- S. 13W94E.

a. STRSS

- Fig. 8 Finite Difference Simulation of a Triaxial Test on a
100-disc Model (Cundall and Strack, 1983)
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F~igure 9. Elastic Spheres Under Normal and Tangential Loads

U

IL
1 3L4

U

I U 14 0.6 t.3 I.A

Figure 10. Tangential Force-Displacement Relation for N
Constant, T Increasing (Dobry et al, 1982)
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I

(a) simple cubic (b)cubical tetrahedral

(c) tetragonal (d) Pyramidal (e) tetrahedral
Sphenoidal

I
nlg Figure 11. Regular Arrays of Equal Spheres (Deresiewicz, 1958).
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Elevation
View,

D2 PlaneI View
Ii

Figure 12. Regular Array No. 2 (see Table 2) (1,0,3);

N=4; n=0.6599; e-1. 9 40 3

I

o Spheres 1 0 x 10-  i. diameter
Spheres ± 50 x IO- 6 in diometer %

3000

1Ist Mode #

00
1500-Ter 

0 0 A,

I000- a

Pressure, lb/f 2  2

Figure 13. Rod Wave Velocity Measurements in Regular Dense Array

of Steel Spheres Isotropically Loaded (Duffy and

Mindlin, 1957, figure presented by Richart et al.,

1970)
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, Figure 15. Force-Deformation Behavior of Two Elastic Rough

Spheres in Contact: Analytical Solution fo "~~Oscillating Oblique Forces (a) dT/dN > f and .
(b) dT/dN < f (after M4ndlin and Deresiewicz,
1953)
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PFigure 16. Force-Deformation Behavior of Two Elastic Rough '

Spheres in Contact: Analytical Solutions for
(a) Normal Force Increasing, Tangential Force
Increasing; (b) Normal Force Decreasing,
Tangential Force Increasing; (c) Normal Force
Increasing, Tangential Force Decreasing;
(d) Normal Force Decreasing, Tangential Force .

Decreasing (after Mindlin and Deresiewicz, 1953)
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Figure 17. Numerical Simulation of the Force-Deformation Behavior
for Two Equal, Elastic, Rough Spheres in Contact: 'V

Load-Displacement Relation for an Oscillating Oblique
Force with dT/dN > f
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Figure 18. Numerical Simulation of the Force-Deformation Behavior
for Two Equal, Elastic, Rough Spheres in Contact:
Load-Displacement Relation for an Oscillating Oblique
Force with dT/dN < f
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TANGENTIAL DISPLACEMENT, 6(CM)(x 10- )

Figure 19. Numerical Simulation of the Force-Deformation Behavior
for Two Equal, Elastic, Rough Spheres in Contact:
Load-Displacement Relation for the Case in Which the
Normal Force Increases and the Tangential Force
Increases
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Figure 20. Numerical simulation of the Force-Deformation Behavior
for Two Equal, Elastic, Rough Spheres in Contact:
Load-Displacement Relation for the Case in Which the

Norml FrceDecreases and the Tangential Force
Increases
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Figure 21. Numerical Simulation of the Force-Deformation Behavior
for Two Equal, Elastic, Rough Spheres in Contact:
Load-Displacement Relation for the Case in Which the
Normal Force Increases and the Tangential Force
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Figure 22. Numerical Simulation of the Force-Deformation Behavior
for Two Equal, Elastic, Rough Spheres in Contact:
Load-Displacement Relation for the Case in which the
Normal Force Decreases and the Tangential Force
Decreases
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Simple Cubic Unit Cell

I
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Figure 24. Regular Simple Cubic Array of Equal Spheres
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a) Body-centered cubic unit cell b) Body-centered cubic structure

Figure 25. (a) Body-Centered Cubic Array of Equal Spheres;
(b) Body-Centered Cubic Array (after Van Vlack,
1964).U

a) Face-centered cubic unit cell b) Face-centered cubic structure

Figure 26. (a) Face-Centered Cubic Array of Equal Spheres;
(b) Face-Centered Cubic Array (after Van Vlack,
1964).
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Figure 28. Shear Stress-Strain Curves for Simple Cubic Array of

Quartz Spheres
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Figure 29. Secant Shear Modulus Versus Shear Strain: Comparison
Between Calculated GIGmax for the Simple Cubic Array
and Experimental Range for Sand (Dobry et al.,
1982)
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Figure 30. Influence of Stress Ratio, K - a1 /q 3 on max:

Comparison Between Prediction From Simple Cubic Array
and Experimental Range for Sand
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Figure 32. Poisson's Ratio of Regular Cubic Arrays, v, as a
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Figure 33. Triaxial Loading: Ob1iquity, 922/a., at Failure
Versus the Coefficient of Intergranular Friction, f,
for Three Regular Cubic Arrays.



I 129

I
I V1(K)

V1.( 0 Tost (1)
5 0 Test 2 Stoko. et al (1985)

1.12

irection sld cubic
I Polrition .array

bd c entered
culic array

1.04 
%

1.02 0

1.00.N

0.00 .. ,.

0.0 1.0 1.33 1.67 2.0 2.33

Streoss Ratio, Ka 022

Figure 34. Shear Wave Velocity, Vs, Versus Stress Ratio, K,
for Biaxial Confinement and 6z 0 : Analytical andExperimental Results.
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Figure 35. Shear Modulus Versus Coordination Number ( Number

of Contacts per Sphere) for Regular Cubic Arrays of
Quartz Spheres. 4.
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Measurements in Quartz Sand



B 
132

,All =. l

I
.2.6.03. . 3.8 .

Void Ratio, e Void Ratio, e

Figure 37. Histogram and Random Two-Dimensional Packing of Equal

Sized Spherical Steel Balls (after Shahinipoor and
Shahrpass, 1982).



I

I

I
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Method Results.
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Figure 40. Discretization of Probability Density Function of
Porosity, p(n), to Represent a Medium of Macroscopic
Porosity, -0.35, by a Combinatin of Three RegularICubic Arrays.



I 136

V 0 o0
0 o 4

d CD 0
X~ 4

(0 ' _C

o CL

Vn CL

i-4L

00

CY

C

0

001

LW

* --4

(7 o r- to in IV cm V.

(!sd ,OL x) snlnpoyy j eetqS



137

0

(0 CD CD C

0o
E C C

L.O

__ ~ 4 -4z z z .;
4 00 b, % (LW

EI\
0 0,C

0 v

000

(tsd

CD *



138

q0

0 0
(D 0

C.)

0.0
S C 0CI

c~ IZ

0))
0 D -

4)

03C

0) .~0

CL.

O)0)~-% If)

(isd OL x sn~po~jieeq

%~

% C;i



139

60 a

model ate 10 v irin ci.wes.
cycles of ow =, 55

50 e,,-054

45

40040 -
:35

a 30

1 25 jIsotropic Compromlion
25

20

15 SS

10 .4

5

0

0 0.1 0.2 03
VlmtfcStrain C % )Volumetric tri

4.
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Figure 47. Stress-Strain Behavior, (c), of a Simple Cubic Array
of Quartz Spheres Subjected to Biaxial Stress,
al11.61, 022-2.0 Kg*/cm2 , Followed by Pure Shear,
012, to Failure. (a) and (b) Portray the Correspond-
ing Force-Deformation Behavior of the "Weak" and
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Figure 54. Failure Surface of the Aggregate, Determined
From Four Stress Paths.
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* constant).

I1l



*I I
166~



1 167

I APPENDIX A

g STRESS-STRAIN RELATIONS FOR A BODY CENTERED CUBIC ARRAY

Following a procedure similar to that used for the simple cubic array

U by the authors and by others, incremental stress-strain relations for

3 various states of initial stress can be obtained for the body centered

cubic array.

U A.1 Relation Between Stress and Contact Forces

Consider first a medium composed of identical spheres, Fig. 25b,

arranged in a body centered cubic array. Take as an element of the medium

JV the cube shown in Fig. 25c. This "elementary" cube (or representative

volume), Fig. Al, is chosen to contain a sufficient portion of the

I medium to define the arrangement. Clearly, each sphere in the medium is

in contact with 8other spheres.

Increments of the force dPij act on the forces of the cube, Fig. Al,

* and they are assumed to be distributed among the spheres in proportion to

their stiffness, that is to their section exposed on the faces of the

I cube.

The incremental stress components are defined as follows:

d Ij 16R 2(Al)

where 16R is the gross area of the face of the cube.

3

At each contact between spheres, the normal and tangential components

- of the incremental force are again designated by dNij; with dNii being the

3 normal component and dNij being two the tangential components.
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Once more, the first step in deriving the incremental stress-strain

relationships is to define the expressions for the increments in the

forces at the contacts between the spheres in the cube, Fig. 25a, dNij, in

terms of the increments of the applied stress doij. However, since this

array is statically determinate for initial isotropic and transversely

isotropic triaxial loading, only the equilibrium conditions are sufficient

for the solution of this subproblem. However, this case is much more

involved than the simple cubic array and tedious calculations have to be

performed.

Fig. A2 shows one octant of a sphere at the apex H as well as the

point of contact with the "central" sphere and the applied and contact

forces. This octant of the sphere at H will be treated as the representa-

tive octant. Now equilibrium equations have to be written for each

spherical octant at every apex and the contact forces will have to be

solved for each case separately. For example for apex H, Fig. A2, the

equilibrium equations are:*

Fx, 0=> - dN33 + L dNj dN'2 +-1 dPI I + -1 dP 1 3 + -1 dP1 2 0

VV-6 4 4 4

(A2)

F 0 dN 3 3 +- dN3 2 + - dP2 2 +- dP1 2 +- dP3 2 = 0
2 V3- 4 4 4 ( 3(A3) "

* The primed symbols refer to the local coordinate system.

Ill 111 N 1 111 1 1 1 1 %

b"M Uka N
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0 => 3 32d' -I N N + - dP3 + - dP33 + -L dP2 3 =0

3UT r - r 7 (A4)

3the solution of which is:
3dN3'1 = - (dPll - dP3 3 + dP12 -dP 2 3) (AS)

8

dNi2 = - -= (dPll - 2dP 2 2 + dP33 -dP 12 + 2dPI3 - dP2 3) (A6)

I2
dN33 = - - (dPll + dP2 2 + dP33 + 2dP 12 + 2dPI3 + 2dP 2 3) (A7)

12

At this point the state of stress can be defined and the constitutive

law may be determined for each case (isotropic or cross-anisotropic

t riaxial confinement).

A.2 Isotropic State of Stress:

Applying inczrements of force along the three principal directions,

dPlI, dP2 2, dP3 3 and one at a time, on top of the isotropic confining

stress, an inremental force-deformation relationship can be developed.

For example, in the case of application of dP11 (Fig. Al) we have:

(al -6 Cn +-3 Ct) dPjj (A8U

d62 2 - +-(C - Ct ~(A9)
6

d63 3 -- I (C n - Ct) dP11  (AIO)
6
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where Cn, Ct are the normal and tangential Compliances at the contact.

Similarily applying dP2 2:
I I

d6l = (I % -- Ct) dP2 2  (All)
6 6

d6 2 2 = Cn + - Ct) dP 2 2  (A12)
6 63

d63 3 = Cn Ct ) dP22  (A13)
6 6

To determine now the relation between changes in angle and forces we

have to look at the difference between displacements (Fig. Al). For

example, dP1 2 being applied, we have:

dY23 = + 2 2 2 D etc. (A14)
abcc abcc

where abcc is the length of edge of the cube. Now:

633 - 33 = 2(- 633 + -  613 + -  623) (A15)
IA V3V- V'

622 - 622J etc. (A16)

Consequently:

dy 2  2 Cn + C t ) dP2 (A17)

3 3

Evaluating the compliances

- _ C which yields

n 2G a



(1-v 5
2 1 3  1171

Un 1vs / (A18)
(4V-TGs2 Go)1/ 3 R

Similarily

I = 
2 -vs (A 9)

2 (I vs) 1/3 (4V-TG8 
2 o) 1/ 3  R

in the case that vs *0

d 651 1 = (I Cn +- Ct) dPl 1
6 3

Substituting for Cn, Ct eqns. (A18, A19) we obtain:

U~l (I-vs)2 / 3  P I+ 2 -vs I dI l
6 (414(TG

2 cy,)/ 3  R 6dP11 13(V-G~o)/

then:

dell (/so1/ [(I-vs)2!3 + vs dl(A13,3IV-G a~/ (V-vs)1/ 3 (A)

dc,11 = 3 4-3 (4VT2 o) 1/3

daldell (A22)

(l-vs) 1/3

Similarily

1 12 [2(1-vs) 2 / 3 
- 2-v,8  al (A23)\

=3V3-( 4VjG s2 a )I1 3 3 daj~ll



-C3 -W dLWWV(A24)

Also :::: eqns. (A17, A18) and (A19) we have that(A4)7

U]

dc12 = 4- I -[ (1-,s) 2/3 , -L 2 ], do 1 2  (A25)

WVT(4WIG s2 00 )1/3 4 -v 1/

Finally, the incremental stress-strain law for the isotropic case may be

written as follows

del= C1 1 11 dol1 -" C1122 d022 + C1133 d0 33

dE2 2 =01122 doll + C2222 da22 + C2233 d03 3

de3= 01133 doll + C33 22 da 22 + C333 3 dG33 etc. (A26)

where Cijkt, are the expressions (compliances) in the stress-strain

relations, as for example, in eqn. (A21), (A22). In matrix form

delC1111 01122 C1133 0 0 0 do1I

0E2 2211 02222 C2 2 3 3  0 0 0 do22

dE:3 3  03311 03322 03333 0 0 0 do33

0 0 0 1212 0 0 do1

dE:1 3  0 0 0 0 C1313 0 dojl3

dE2 3  0 0 0 0 0 02323 d G )3

(A27)

In order for the bcc array to be isotropic under isotropic loading the

following condition must be satisfied:

del CII CI22 CI33 00 ol
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C1212 = C1313 C2323 CliI1 - C1122 (A28)

C2 2 1 1 = C1122 = C1133 C2233 C33 1 1 = C33 22 = C1122 (A29)

The above conditions are satisfied only when v. = 0; furthermore, in this

case of the bcc array, as in the sc array, C1122 = 0 and the compliance

matrix is diagonal.

In this case:

C1111 = C2222 = C3333 2 1-1/3 (A30)

-3 4VT G 2  0

Since the compliance matrix is diagonal, its inverse, the stiffness matrix

is easily computed by inverting each term: i.e.

do,, 1 E: dj

do2 2  d22

d33 - _F(4--G2 1/3 1 1 d33

s 0

du1 2  I d c12)

do13 1d13

do 2 3  j d23

(A31)

VT- 2 1/3
and clearly the shear modulus of the array, G, is G = (4V3- Gs  (o)

(A32)

I
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At this point the Poisson's Ratio of the bcc array may be computed as

follows:

EI331 IE221 (A33)

-V s ) 2 / 3  2 (-v) 1/32 vs
Vbcc 2-vs (A34)

Vs ) 2/3 + - ) 1/3
(l-v5  + (-v 5 )

For different values of vs, the Poisson's Ratio of the bcc array, Vbcc,

may be computed; a plot of Vbcc versus the Poisson's ratio of the spheres,

vs, appears in Fig. (32) together with the variation of Vsc and Vfcc with

V. for easy comparison. 
A

A.3 Transversely Isotropic State of Stress (Triaxial Loading)

As in the case of the simple Cubic Array, the application of an

anisotropic stress increment will result in a variation of the contact

forces and, consequently, of the corresponding contact stiffnesses. -'

Therefore, in order to obtain the stress strain relationships, the

derivation must be performed once more distinguishing between compliances

at contacts with different loading histories.*

The computation of the compliances for the case of anisotropic loading

for both the sc and the bcc arrays has been done in order for the results "-.M

to be used only for the special case of wave propagation. This way, the %

load was assumed to reverse direction, and for this the elastic tangen-

tial compliances were used. In the general case, the load could either
increase or decrease monotonically and different compliances in each case
would apply.
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Consider now the case of cross-anisotropic stress ("triaxial test")

p imposed after the array has been subjected to an initial hydrostatic

stress. That is (Fig. A3):

at t t0 : (H1= 022 =I33 (Yo  (A35)

t =tl: 1 1= a33 co (A36)

3022 = Go + Ga  (A37)

rhe contact forces during this Anisotropic Loading are:

dN' = ± - [dPll - dP 33 ] (A38) %
31 8

dN ='  - -- [HP - 2d + de33] (A39)

-+ = --T [dPll - dP 22 + dP33] (A40)

in the case of transversely isotropic loading the above equations simplify

to

dNI= 0 (A41)

dN3 2  ± - dP a  (A42)

12

N33 =+ d a (A43) .

'his is the case of the two spheres in contact where the normal force is

increasing from No to No + N and the tangential force from 0 to T with

dT > f (Mindlin and Deresiewicz, 1953)

dNl

,~,.,p~.%
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dT _dNJ2 2 >f (A4 4)
dN dNb 3

(usually 0.5 < f < 0.8 for sands)

in this case the Normal Compliance, C n, is:

n. -vs

n 2 Gs

where a3 3(l-v5 )RN ) (A45)
8G5  ( 0 +N

and finally

a3.= (-s R3 a.[I (- ')] (A46)
2Gs 3 (0

then

(lvs)2  1/3 1 a -1/31
_____n_ I 0 ] (A4 7)

41r3G 2 0 0  3 0

The Tangential Compliance, Ct, is:

b-V5  *- 1/3
Cr =- 4Ga{ ~-e )[+6 1-[ 2( 1 +QL6) (A48)

where -, L= and L* T

f f40 fNo

However, in this case, since the load decrement is small, then L -L + 0,

therefore

PIN.

"9,
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N 2 -vs (A49)
Ct 4Gsa

in this case

C 
2 -vs 11/3 + 0 /31

2(lvs)l/ 3  43--Gs2oo 3 o R

The constitutive law for this particular loading may be developed in the

I same manner as in the case of the isotropic loading, i.e.

d622 Cn + Ct] dP22  (A51)

3 ~finally

I d!22  2 1 1/3 1 a -1/3 _vs2/3 _ s
+-dE22 + ( - )] [(1-Vs) ] do2 2

-- '4VTJh 5 2a0 3 00 (I-vs) 1/3

(A52)

for vs - 0.

dE2 2 - (_________ 1/3 1)-1/3 22 (A53)

V~4V-Gs 02 a1 3- (-io 2 (A3

in the case of isotropic loading and v. - 0, the above reduces to

2 1/3

d =22 - 2 ( ) do2 2  (A54)
4j W"Gs 2 oo

which is the same obtained before, eqn. (A30). Analogously

J
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del 2 1 13[1 + I .a / 2/3 - 2-vs da2 2
'VrT 4Vr Gs2 (70 3 Go)Iv 21-s /3

I (A55)

I For v. = 0 this reduces to zero.

3 The Shear Compliance is computed as follows:

d6ij = [2- C + -L Ct ] dPij (A56)

=2 1/3 1 -I1/3 2/3 2-VSdci ( ') [I1 +-() [4(1-vs)21  + ] doij

3%/3-4V7G5
2o GO 3 O 2(1-vs) 1/3

(A57)

For v. = 0 this reduces to

Ii 2-- (__________ 1/3 1 a -1/3 (A58)
3V-4V Gs 2 a0o

For oa - 0 this reduces to eqn. (A31). Therefore, for the case of vs * 0

2 I3 _ _/3

SC2222 C 33 3 3  2 ) [ + a 1/3

1 +
3VT 4AT Gs2ao 3"

- (A59)
(i-vs )1/3' %

Pq
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I 2 r 1 131 0_a
C1 12 2  C2 2 33  C3311 + - )

I * [(-VS) 2/3 - 2-vs (A60)2(l-vs) I/3] A0

1 1/3oa -1/3
C12 12 = C13 13  C2323 2 04V3G2 3 (

* [4(- vs) 21 3 + ]/s (A61)-

In this case the material will be isotropic under cross anisotropic load-

ing only if in the compliance matrix

Cli11 - C122 = C12 12

Performing the calculations we see that indeed,

C1 1 1 -C 1 1 2 2 = ( 1 1/3 (1 + (a)]- [4(1-v,) 2/3+ 2 -vs ]-CI212
3%(- 4VT Gs2aOo3 G (I _ s) /3]

Therefore, the bcc array is isotropic under cross anisotropic loading*"

this is a serious deficiency of the model and should be attributed to the

symmetry of the array.

In the case that vs = 0, the array is still isotropic but this time

the compliance matrix is again diagonal:

*for the conditions specified previously.
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ell 1 0 0 0 0 0 doll

£C22 1 0 0 0 0 d(122

dC33 1/3 1+_(a,-1/3 1 0 00 d3

-V(4VT G2 1yo 0 0c do
de 1 2  1 0 0 da12

de d 13  1 0 dal3

dC23 1 d023

(A6 2)
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APPENDIX B

Simulation of Triaxial and Pure Shear Loading
in Cubic Arrays
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3 APPENDIX B

SIMULATION OF TRIAXIAL AND PURE SHEAR LOADING IN CUBIC ARRAYS

The three regular cubic arrays will be subjected to a finite loading

U in such a way so as to cause failure when applied along a principal

direction. In the case of the simple cubic array, this corresponds to a

pure shear loading, since for a triaxial loading the array locks.

3 Conversely, the body centered cubic and the face centered cubic array will

be subjected only to a triaxial loading, since for a pure shear loading

* the array also lock.

In order to obtain a finite stress strain relation in every case, the

compliances need to be integrated along the loading path. Once this is

done, finite displacements are computed and then the strains are obtained

in the same manner as in the infinitesimal constitutive laws.

Finally, the load is increased until failure (gross sliding) occurs

in the array; in the statically determinate arrays gross sliding at a

h contact translates into failure of the cubic array. In the statically

indeterminate face centered cubic (fcc) array, the medium does not fail

immediately, but first the number of contacts reduces from 12 to 8 when

the fcc array becomes statically determinate, and then sliding at one

contact becomes failure.

B.1 The Simple Cubic Array Subjected to Pure Shear Loading

Consider the Simple Cubic Array shown in Fig. 17 and consider a

force T acting in the xj direction (Fig. Al). The s.c. array is s'ibjected

to an initial isotropic force Noh and the value of T increases monotonically
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from zero to T*, where T* is the value of T that causes failure in the

array, while No remains constant. In this case the tangential displace-

ment is given by Mindlin (1949):

__2-_s) T 2/3 (BI)

6 3(2Gva fNo [I - (1- -L )  ] (BI) 8Gsa 0 %

301-v5)NR
where a

3  -s)No8Gs

is the radius of contact.

Now y - 6/R; substituting the expression for a3 into eqn. (BI) and after

transforming the forces into stresses we obtain:

3(2-vs) 2 1/3 2/3
3(2-Vs)__ 00 f °2] * [i - (I I(B2

y f fT) (B2)
(l-us)I/3 [12Gs2fCF

The above equation has been plotted in Fig. 28 for different values of

oo and f; obviously failure occurs when

T = fo0  (B3)

and at this point the value of the strain is*

3(2-vs) G (o )(4
Yf = Yt - -- f (B4)

( vs ) I/ 312 s

Substituting the properties of quartz (Table 3) in eqn. (B4) we obtain

Yt - 4.5 x 10- 3 (B))2/3 (B5)

with 00 in psi. P

* The value of vs - 0.15 used here was obtained from White (1964) and

other sources, and is different from vs - 0.31 used in a previous
report (Dobry et al., 1982). The value v. = 0.15 is more
representative of quartz; as a result, the values of the threshold
strain yf computed using Eq. A66 and vs - 0.15 are slightly different

from those originally obtained by Dobry et al. (1982).
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B.2 The Body Centered Cubic Array Subjected to Triaxial Loading

Consider the bcc array shown in Fig. 25, initially subjected to an

isotropic stress 0o and consider an additional force Pa acting in the x2

direction, Fig. Al). The bcc array is subjected to an initial isotropic

stress co and the stress 022 is increased monotonically from co to a

value Oo+ua, at which sliding occurs in the array. In this case, the % e,

loading path is as follows

at t = t o  P 1 1 - P2 2 = P3 3 = Po (B6)

at t - t i  P 1 1 = P3 3 - Po (B7)

P2 2 - P0 + Pa (B8)

The contact forces are (eqns, A5, A6, A7)

dN' M 8 [dP1j - dP3 3] = 0 (B9)

dN32 [dP 11 - 2d 2 
+ dP3 3] - dPa (B1O)

-242 = ±- 12

dN33 + -12 [dP 1 1 + dP2 2 + dP 3 3] -- dPa (B11)

dN 3 3  ± + + 12(B)

and the ratio between the increment of the tangential force and the

increment of the normal force, 8, is

T dN2 .
8 adN dN'3 (B12)

In this case 8 > f, the coefficient of interparticle friction, therefore

the values of the compliances are: (Mindlin and Deresiewicz, 1953)

a) Normal Compliance, Cn

JI -vs
Cn .I- (B13)

2Gsa 7
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this expression for Cn being valid no matter what the loading history of

the spheres is. Now

1/3
a - a o (I+ OL) (B14) .- ,

where

3(1-vs) 3(l-vs) 3
a o  No R= Po* R (B15)8 5 8Gs 4

Also 6 f

TL = fN

The vertical displacement, 6 , has two components; a 6' and a 6'
22 33 23

component:

622 = - 2 63 + -  2623 (B16)
3 6

the 6' component is computed as follows:
33

= - (1 + OL) - 1/ 3  
(B17)Cn dN 2Gs a o

633 -s + N-1/3
( L_ (B18)

dN 2Gsao f(0

N I-vs -1/3
633 - 2 so rI dN (B19)

finally
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1/3 2/3

633 = 207R(I-vs) ( 2 [(1 +-a -J11 (B20)
,3 "o

The 6 component will be computed from the tangential compliance since
23 -a'° :. :

it is a tangential displacement; the tangential compliance is (Mindlin

and Deresiewicz, 1953):
2 - 5  L -1/3 -

Ct = 4gs- [6 + (I _)(1 L ) - (B21)

Simplifying:

______ L-1/3vs I I (1-(I (B22)t-3,Ct 4 Gsa (1+OL)1/3  ++6L
)

and finally a'

C .0 Tt - + ( -( ) I + (6-)] (B23)
Cl: =4Gsa 1 /3 4 s "To '" *

(leTo) -:
0%

now d -1/3 '-

- 6[l + 6 T + (1-6)[1 + T(0-1) (B24)dT o + o T 0

where

2-vs

o 4 Gsao

Now

.*',K

"-'~ - ' Zr -II'I -
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T T /3T 1/3d
62 c ei 0~) dT + CtTJI-e)[l+(6-1) T]

62' To Tt -1/36 T-td (B25)

finally

3 2-v5  2/3 f 2/3

2(4Gao)EOV BN 6) -1 1])H i ~ - (1326)

Simplifying further and expressing the displacement in terms of stresses

we obtain:

22 1/3 2/3 2/3a
6~.V3-f R [v a T /

(1-vs)1/3 4V-3Gs 2  a0 3f o0

(B27)

In order to compute the vertical displacement of the array, 622, we have

to substitute equations (B20) and (B327) into eqn. (1316):

622 =2 6133+ -623 (1328)

1/3G

2/3 2 1/ 2/3 V-a /
+ 62 f R(1vo _ j 0 ( + )I a.) _- _] _+_1

(Iv4V/ T G 2  30o!3fG

(B29)

From the above equation, (B329), th'- stress-strain relation may be com-
puted for the bcc array under isotropic loading, and it is:
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21/3 2/3 -t
2/3 1 Ga fv V22 = ( 0 

2) fV 1-vs)2[(I+--) -i] + -f
3 04 (-v s )1/3

* V --a 2/3 f V -a)2/3
-- 1 - ] 0( + -I) I] ] ( B 3 0 )

38 Co B 3f ' 0,

The above equation is plotted in Fig. 3/a for various values of o and f.

At this point, the value of Oa/Oo which causes failure in the array must

be determined. Failure is defined as sliding at the contacts; this time,

since the bcc array is statically determinate, failure in one contact -.

implies failure of the array. Furthermore, because of the symmetry of

the array, failure will occur simultaneously at all contacts. Sliding

will occur when

T - f (B31)No+N

We know that

T A12 Aa (B32)

N - A 0a (B33)N 12 A 

,-No T ° (B34)

where A is the area of the face of the bec array. Then:

. w

p %~ t~rA'r, :.AZ-.
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T - f(No + N) (B35)

) -A f(- A a +-A o (B36)
12 22 12 4 4

)E2 f(1 a + a (B37)
3 22 3 a 0

o22 F2 f-

and finally, Oa/ o at failure, (Ga/ao) is

a  - 3f (B39)

0 f 2-f

If 022 - o + aa (total stress), then

02 f + (B40)
0o f 

-
3 3

in terms of total stress (Fig. 24)

In order to compute the strain at failure, E22 , we must substitute

the equation for (022/0o)f, eqn. (B39) into the stress-strain relation,

eqn. (B30). Doing this we obtain

002  1/3 2/3 _ _f)2/3 2 2-vs
22f3(1-v s  [(I +4-fG2 -i] + 4 f -vs) j

' f )2/3 - - 2/3
g. * [[(1 + -T2-l[ + 2- 2 --f] (B41)

_

'S
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for the properties of quartz (Lambe and Whitman, 1964, Ko and Scott, 1967,

White, 1964)

Gs = 4.783 x 106 psi

vs = 0.15

f = 0.5

the strain at failure is

622f = 3.438 x I0- 3 o2/3 (in percent) (B42)

with E22f in percent and oO in psi,

and Yt = c2 2 for vs = 0,

which is the threshold strain Yt for the array. This equation is plotted

Iin Fig. 27 together with the other expressions for Yt for the other

arrays for easy comparison.

B.3 The Face Centered Cubic Array Subjected to Triaxial Loading

The triaxial loading of a Face Centered Cubic Array was solved by

Brauns and Leussink (1970). In this work, the stress-strain relationship

is not obtained for the whole range of values of G22/ao but only for

those which make the array statically determinate. It is extremely hard

to determine the values of compliances for cross anisotropic loading

(Duffy and Mindlin, 1957); therefore once sliding occurs and the number

of contacts decreases from 12 to 8, the array becomes statically deter-

minate and it is possible to compute a stress-strain relation up to the

point which the 4rray fails (range b -Fig. B2). Once the array has

failed, simple geometric considerations make the computation over the
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strain range c possible (Fig. B2).

Consider the fcc array in Fig. Bla and the cross anisotropic loading

as shown. The free body diagram of the octant of sphere A is shown in

Fig. Blb. The equilibrium conditions yield

N + T = F2 R2 a, (B43)

N - T + N1 = 2T2 R2 03 (B44)

Also, the sum of the displacements around a closed path must vanish (Duffy

and Mindlin, 1957), which yields

aj - a + 6 = 0 (B45)

The normal compliance is found to be

Cn = da . _ -vs (B46)

[3(1-v s )Gs
2 RN] 1/3

and the Tangential Compliance

I fdN
Ct d 2-vs [f dN i (B47)

dT dT
2 [3( Ivs )Gs2RN] i/ 3  - T 1/3

fN

The strain is

I
e (a + 6) (B48) I-.

2R

Z

L
6 %
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Integrating the compliances and substituting the results into eqn. (B48),

we find after transforming the forces into stresses that the strain, ell,

is given by

/(1-s2/3 2/3 jf 012/3
3f (r-s - I} 0332/3

Ell = 8G 2T-f (-3 -12 f a033,3
033) + 3

(B49)

this expression being valid only for the range of (0l1/033) in which the

array is statically determinate, that is 8 contacts per sphere (range b

in Fig. BI).

Failure is defined again as sliding, but this time when the whole

array fails, that is when the number of contacts from 8 reduces to none.

Using the same criteria as in the other arrays, the critical stress

ratio at which the array fails is

a = 2 1+f (B50)
033 -f

The above equation is plotted in Fig. 31b.

.%

,N
N
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033 '73'33

U NKa T A

I Figure BI. (a) Representative Unit Volume of an fcc Array with
State of Stress (b) Sphere Centered a Apex A with

Applied Stresses, Contact Forces and Displacements

I 011 /733

25

225

2T

1 75

159

125 
%%

0 002 004 025 05 0 75 1 125 1 5 1752
vertical strain, E 1~

Figure B2. Triaxial Compression of an fcc Array of Glass
Spheres: Analytical and Experimental Results
(Brauns and Leussink, 1970)
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C SUBROWJIN2 UKAT TO BE USED WI1TH THU FINITE ELEMENT PROGRAM

C ABAA.?
C

csuUR ouTXNU UMAT( I,STRZSS,DDSDDE, STRAN,DSTRANNDI ,NSHR,NTENS ,M)
IMPLICIT RZAL'O(A-H,O-Z)
COIUON/UNTRL/GI,Z, UN.SR,*DEBUG .

COMMON/SIIIST/AHIST(, 1 3004)
LOGICAL FLAGI ,FLAG2,DDE3UG wzs
DIMENSIONI STuZSS(NTNS) ,DDSDDE(NTENS INTENS).SRA
DIMENSION DSTRAN(NTENS),DSIGXA(4)
ARZIA4.*SR*SR
Do 141 31.1,4
DO 142 32-1,4
DDSDDE(31 ,J2)-O.DO

142 CONTINUE

1)41 CONTINUE
C CHANGE COMPRESSION INTO POSITIVE
C

DO 143 J331,3
STRESS ( 3 )--STRESS C 3
STRAN(J3)s-STRAN(J3)
DSTRAN(j3)--DSTRAN(J3)

143 CONTINUE

C%
C TRANSFORM STRESSES TO FORCES p
C

THI 1-STRESS(1 )*ARZA
TN?2STRESS ?) *ARZA
TN33sSTRESS( 3)*AREANOMLDSLC ETSFMSRAS
T120STRESS(4)*AREA

c COMPUTE CURRENTTOANOMLDSLCMTSFMSRIS

CDELl 1-(STRAN( 1).DSTRAN(1) )*2.*SR
DEL22rn(STRAN(2)*DSTRAN(2) )*2.*SR

C
C COMPUTE THE INCREMENTAL SHEAR DISPLACEMENT FROM STRAINS
C

DDEL12-2.*DSTRAN(4)*SR
C
C COMPUTE NORMAL FORCES AND I NCREMENTS l
C

CALL NORMAD(DZL11,TNI1,TNNA,DTNA)
CALL NORMAD(02L22,TN22,TNNB,DTNI)

C
C TRANSFORM FORCES TO STRESSES
C

DSIGMAC 1)-DTNA/AREA
DSIGMA( 2) -DTRD/AREA
DSIGMA(3).0.

TOL-1 .E-16
EPSL-1.9-16
I TMAZS 500
DETAO .D0 ez

Z~ Ze .
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DTYAuO .00

102.1503

C COMPUTE SEED FOR THE I TRATI ON,

If (I)STRUM4 .ZQ. 0.) THEN

0313.0.
ITER=O
DTIA.O.

GO TO 1167
END! F

C
IF((TNNA-TN) .EQ. 0.) THEN
WRITZ(3,1375)THNA,TNNS

1375 FORMAT('TNN-TNN',iX,r1O.6,21,F1O.6)
DEXA-DDELl 2/2.DO
DEXnuDDELI 2/2 .DO
GO TO 1169
ELSE
DEXTA-DOELJ 2/2.00
DEXTBIDDELI 2/2.D0
END! F
IF((TNNA-TNN3) .GT. 0.) 0O TO 1311

C BEGIN ITERATION 5

C GIVEN THE SHEAR STRAIN ITERATE TO FIND THE COMM4ON SHEAR FORCE

D116ITER-1,IT4AZ
DTYU-0.DO
CALL CONPLF(M,102,TNND,DTNU,DTXD,DTYB,DEXB,DEYB,IDEXB)
DEXAnDDELI 2-0313
CALL CONPL0(M,IDI ,TNNA,DTNA,DEIA,DEYA,DTIA,DTTAIDEZA)
IF(DADS(DTIA-DTUN) .LT. TOL) GO TO 1167
0Th. (DTIA.0T13)/2 .00

1166 CONTINUE
C

IF( ITER .GE. ITHAX .AND. IDEZA .EQ. 1) THEN
DTXB=O.0
DTIA-0.0
DEX80a.0
DEXA=ODELl 2
ITER-ITMAX
GO TO 1167

ENDIF
C

IF (ITER .GE. ITMAX .AND. IDEXB .EQ. 1) THEN
DTXB-0.0

0TA0.0
DEXB-DDEL1 2
DEXA*0.0
I TER I TMAI
GO TO 1167

ENDIF
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WRIT113, 1954)?

1954 FOUEATlWEL= ITER WAS ITI4AZ BUT IDE WAS NOT' ,11,15)
C
1311 CONTINUE
C
C 3301W ITERATION A4

CALL CONPLD(K,101,TNNA,DTNA,OEXTA,DETA,D MADTTIDET)

C
C GIVEN THE SHEAR STRAIN ITERATE TO FIND THU COIION SHEAR FORCE
C

DO 1166 ITERa1,ITNAI
DTYAO0.0 

S''

CALL CONPLF(14,1DI, TUNA,DTMA, DTIA,DMA, DhXA,DICTA, I DEA)
01B-OEL 1 2-DEXA
CALL CONPLD(M,I02,TNNB,DTNB,OEXU,DEY3DTU,D?,IDUUB)
IF(DABS(DTIA-DTIU) .LT. TOL) GO TO 1167
OTIA- (DTIA+DTIB) /2.00

1168 CONTINUE
C

IF( ITER .GR. ITMA1 .AND. IDECZA .2Q. 1) THEN
DTUO-.0
0TIAO0.0
0311-0.0

ITERwITMAZ
GO TO 1167 

. .

ZNDI F
C

IF (ITER .GZ. ITMAX .AND. 10313 SOQ. 1) THEN
0TUB-0.0
0TZMO0.00

GO TO 1167 ,
ENDI F4/

C
1167 CONTINUE

WRITE( 1, 1111)1,ITER,DEXA,0E13,OTXA,DTZD
1111 FORMAT(215, 1Z,F1O.8, 1I,F10.8, 11,F1O.8, 11,F1O.8)
C
C UPDATE CONTACT HISTORY AND STORE INTO AHIST

1169 CONTINUE

CALL CONPD(M,IDI,TNNA,DTNA,DEIA,DEYA,DTXA,DTYA,IDEI)
CALL CONPD(M,102,TNN3,DTNB,DEZB,DEY3,DTXB,DTYB, IDEX2)

C
DTXM-(DTXA+DTXI)/2 .DO
DSIGMA(4)uDTXM/AREA
WRITE(6, 1863)DSIGMA(4)

1863 FORMAT(F20.10)
C
C COMPUTATION OF THE INCREMENTAL STIFFNESS MATRIX, STIFF

AB=3.DO'( 1 .0-UN)/(8.00*GI)
ABAs(AD'TNNA*SR)**(l1./3.)
ADS=(AB*TNNB*SR)"( 1.13.)
DSD0E( 1,1 )2.DO*Gl*(AD*TNNA*SR)**( 1./3. )/( 1 .0O-tN) N

DDSD0E(2,2)m2.DO*Gl*(AB*TNNB*SR)**( I./3. )/( 1.DO-UN)%

:%II



3rmWrmmWuW1npjA~ K;"PRV j Xz MR L~~~ .W W 1 VV -- ~-~ * ILI %m J'.. -, lk" ~% i. -

199

W5Si(3,3).1 .0
Ii' (DSTRAM(4) .9Q. 0.) THEN
DDSDD3(4,4)u-1 .00o
ESN
DDSDDN (4, 4) -DS IGKA (4) /DSTRAW (4)
END! F
IF (DDSDD8(4.4) .L9. EPSL) DDSDDZ(4,4)-EPSL

C UPDATE STRESS VECTOR *SGA()~ ;

STRSS(IoSTRSS()4DSI=IA(I
STRESS (2) -STRSS()DIA2
STRESS(C3 ) '0.0

C
C CHANGEZ COMPRESSION INTO NEGATIVE
C

STRZSS( 1)=-STRESS( 1)
STRESS(2)--STRBSS(2)

C
RETURN
END

C
C

SUBROUTINE CONPD(M,IADI ,TNN,DTN,DEZ,DEY,DTZ,DTY,IDEZ)
IMPLICIT RENAL *8(A-H,O-Z)
COIUON/DMATRL/GI * 2 UN,SRDESUG %"i

COII4ON/EHIST/AHIST(1, 3004)
DIMENSION 11111 (100),IRKS (100),HHZ (100),HHs (i00),vvx (i~o),
$vvy(00o),TTZS(100),TTYS (100),TTZI ( 00),TTYI ( oa),AAIS(100), N
$AAYS (100),AAII (100),AAYI (iOO).IC (100)
LOGICAL FLAG? ,FLAG2,DE3UG

C-------------------- INITIALIZATION---------------------

IN-IADI
DEBUGm. FALSE *

NGaIDINT(AHIST(M,IADI))
DTZ=O.
OTY-0.
NGROUPm100 . i

C PREVIOUS NORMAL FORCE, TNI

C AESURE THERE IS A OTC; O HS THE NORMAL FORCE HAS TO

C /

IF (TNN.GT.O) GO TO 9827 .,..

RETURN
9827 ITING.NE.0) GOTO 9820
C
C CALL THE ELASTIC MODULUS OF THE CURRENT NORMAL FORCE

CALL EMOD(TNN,HO)

TX*HO*DEI
TY*HO'DEY

:."M

P% 

-U.
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1 TKuDSQR ( TX*TX+TYTT)
IF(DTM.EQ.0.) GOTO 9840
IF (TM .G9. Z*TNN) THEN

TluTZ*ZTNN/TM
TYTTTZTNN/TM
TNuZ*TNN
END! F
DrI-TI
DTTY

C
C ---- INITIALIZE THE NEW CONTACT HISTORY------
C

9840 NO. NTILGOP HRCER TC

C

C

C------------INITIAL SURFACE POSITIONS -----
C COORDINATES OF CENTRES OF MAX BOUNDARY YIELD CIRCLE
C

AAXSM0

C
C COORDIANATIS OF CENTRES OF MIN BOUNDARY YIELD CIRCLE
C

C AAII;:m

C ------------------ INITIALE REFERENCE POINTS -------
C

TTIS(-0
TTYS(l~0

TTYI (1 )TY

C ------------ KIND Of INITIAL GROUP -------
C

IF(IDEX .EQ. 0) THEN
C
C------- NO SLIDE-----------
C

ICC 1)-O

VVX( i-l

ELSE
C
C--SLIDE OCCURS ----------

C i;.)TX/T4
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WVT(1I)*TT/TN

TTYS( 1)UTY
I DEzm
GO TO 9910
ENDI V

C
C--- BEGIN CALCULATION WITH THE OLD CONTACT
C
9820 DSN.DSQRT(DEZXDZY*DEY)

C-CHECK IF THE MORY I S ENOUGH

IWEX-4

C
C - GET THE HISTORY OF THE CONTACT FROM THE MEMORYI 9790 CONTINUE

DDTN-AHIST(M,IAD14I)
DO 9810 In1,NG
IAD2*IAD1II1

XvI( )-AHISTM,IAD24NROP
VVT(I )uAHIST(M,IAD2.5NGROUP)
TTISCI )AHIST(M,IAD2+6*NGROUP)
TTS(I )-AHIST(M,IAD2+7*NGROUP)
TTXI(I )AHIST(1,IAD2+*NGROUP)
TYI(I )uHIST(M,IAD2+5*NGROUP)
TAXS(I )-AHIST(M,IAD2+I*NGROUP)
AAYS(I)uAHIST(M,IAD2+7*1NGROUP)

AAXI (I) AHIST(M, IAD2+1 2'NGROUP)

AAYI (I )AHIST(H, IAD2*I 3*NGROUP)

9810 IC(I)=IDINT(AHIST(M,IAD2+14*NGROUP))
T~mTTI(NG)
TY-TTYI (NG)

C
C C----------END OF INITIAL REFERENCE POINTS--------
C

IF(DEM.EQ.0.) GOTO 9900
C
C -------- UPDATING PARAMETER BEFORE INCREMENT ------
C

HSLuHHS(NG)
HIL*HHI (NG)
IF(HIL.LE.0.) HIL=HSL

IF(TI.G.N. CALL ELAD(XKL,TNI,EML)

NGL-NG
C
C----------- CALCULATE THE CORRECT FORCE INCREMENT----

'v'. C
DTX-HSL*DEX
DTYsHSL*DEY
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DTKsHSL'DEM
C f

C - U---NIT NORMAL VECTOR---------

C
IF(IC(NGL).EQ.0Olt0. DTH .GT. 0.) THEN

VY-DEy/DEKm
ELSE '

vx-VZCNGL)
VY-VVY(NGL)
VIL-VI I.

VYL-VY

DBN=0TX*VZDTYVY
DIT-DAIS (DTZ*VY-IYrVZ)

C FIND THE CORRESPONDING FORCE
Cf~~

IF(DDN.LE.Z'DTN) GOTO 9900 
p

IF(IC(NGL).EQ.0) THEN%
3yT(u(DE)4.Z*DTN( I./HIL- ./HSL) )*HIL
ELSE IF(HML.EQ.0.) THEN
DTh.DEM'(DEN+Z*DTN*( I./HIL-i ./HSL) )'HIL/(DEX'VX+DEY*VT)
ELSE
DTh-DEM*(DEN.Z*DTN*( I./HIL-l ./HSL))/( (DEX*VX+DEY*VY)/HIL

$ *DABS(DEX*VY-DEY*VZ)/HML)

DTZ.DEV*DABS (0Th)/EN
DTY-DEY*DABS (DTh) /0F2
DaN-orE' V14DTY*VY
DOT-DASS(DTX*VY-DTT'VZ)

9900 TN-TNN
TI-TX+DTX
TY-TY+DTY

C
C ------------- UPDATING FORCE INCREMENT -------------
C

TNL-TN ,.f

TYL=TY
C
C ------------- CURRENT ELASTIC MODULUS ------------------

-----------------CEKICHR SFIUE------
CALL EMOD(TN,HO)

C

C 't

IF(TM.LT.Z*TN) GOTO 800
IDEXMI
TX-TX' Z*TN/TM

TY-TY'Z'TN/TM

DTX-TX-TTXI (NG)
DTY-TY-TTYI (NG)
GOTO 9840

C
C -------------UPDATE THE SIZES -------------
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C
C WI--- RADIUS OF YIELD CIRCLES OF GROUP (IG)---------

C

C

211 IF(ZKI(IG).LT.0.) XKRI(IG)-O.

C

C ------------- UPDATING THE MODULI--------------------------
DO 215 10-i ,NGI ~ ~HHI( IG)u( (I. -(XKKS( IG))/( Z*TN) )**(1./3.)) H
HHS(IG)u((1 .-(ZK1U(IG))/(Z*TN))**(1 ./3.))'140

215 CONTINUE
C Gu-(TTYI(NGL)-TTYS(NGL))*DTX.(TTINGL)-TTxS(NGL))*DTI ~ GDDTN*DTX+ (TTZI (NGL) -TTXS (NGL) ) DTN
C
C ----------- UPDATE REFERENCE POINT WHEN IC-I -------------
C

DO 213 IGw1,NG
IF(IC(IG).EQ 0) GO TO 213
TTXS(IG)-TTXS(IG).Z* M *VVX(IG)
TTYS(IG)-TTYS(IG).Z'DTN*VVY(IG)
TTXI (IG)-TTXI (IG).Z*DTN*vvx(IG)
TTYI (IG)-TTYI(IG)+z'DTN'VVY(IG)

213 CONTINUE
IF (DTN) 849, 850, 851 %~ %

849 IF (TX .EQ. 0. .AND. TY .EQ. 0. .AND. DTM .EQ. 0.
$.AND. IC(NG) .EQ. 0. .AND. KRS(NG) .GT. 0.) THEN
l~wXKKS(NG)
H-HO*( I-XK/(Z*TN) )*( 1./3.)
AX-AAXS(NG)
AT. AAYS(CNG)

GOTO 60
ENDIF
GO TO 272

850 IF (DEN .EQ. O.)RETURN
GO TO 272

851 IF (ABS(DBN) .LT. Z*DTN) THEN
IF (IC(NG) .EQ. 0. .AND. G .EQ. 0.) THEN
XK-XKKS(NG)

AX-AAXS (NG)
AY-AAYS (NG)

GO TO 60
ENDIF
GO TO 273
ENDIF
IF (IC(NG) .EQ. I .AND. DSN .EQ. Z*DTN) THEN
XK-XKKS(NG)
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H.HO*( 1.-I1/(z*TN) )*( 1./3.) -

AZ-AAZS(ma)
AT.AAYS(NG)

GO TO 60
END! F
GO TO 272

C-------A NEW ELASTIC GROUP IS CREATED---
C--------------- NG*IS INCREASED TO *NG+I----------------------
C . ..

273 CONTINUE
NGuNG* 1
ZR. Z*DTN
H-C(1 .- DTN/TN)**( ./3.) )'IO

A!'IAAYI(NG-1)
ICISO
GO TO 60

C--TO WHICH REFERENCE GROUP DOES THE FORCE POINT BELONG ---------
C ---- THIS IS THE SUBROUTINE SEARCH OF THE ORIGINAL PROGRAM--------
C
272 IGwO

NGuNGL
276 IG-IG*1...i

IF(IG.GT.NG)GOTO 273
TAZS-TX-AAZS (IG)
TAYS=TY-AATS (IG)
RSoDSQRT(TAXS*TAXS+TAYS*TAYS) o
IF(RS.GT.ZRKS(IG)) GO TO 99bo
TAZI=TZ-AAZI (IG)w
TAYIuTT-AATI (IG)
RI .DSQRT(TAXI *TAXI *TAYI *TAYI)
iF(DEBUGa) WRITE(11,1234) IG,T1,TY,RS,XRKS(IG),RI,IRKI(IG)%

1234 FORMAT(21,'IG',51,'TZ',10Z,'TY',101,'RS',91,'XKKS',91,
'RI' ,5Z, 'XII' ,/I5,6E12.4) .
IF(XKKI(IG).GT.RI) GO TO 276 ..

C
C ------------- APPROXIMATE LOADING MODULUS AND NUMBER OF -------------
C ------------- YIELD SURFACES AFTER A LOAD INCREMENT -------------

C9 CONTINUE

IF(DTN.LT.O.AND.NG.NE.1.AND.IC(NGL).EQ.0.AND.G.EQ.0.)GOTO 9910
IF(IC(NG).EQ.1) THEN

C *'

C --------THE FORCE POINT FALLS INSIDE A GROUP OF THE SECOND KIND
C

11-0.
TENPI .- 2.*( (TX-TTXS(NG) )*VVX(NG).(TY-TTYS(NG) )*VVY(NG)),.
IF(TEI4PII.NE.0.) XK=((TX-TTXS(NG))*(TX-TTXS(NG))
$ *(TY-TTYS(NG))*(TY-TTYS(NG)))/TEMPIl
ELSE

C
C --------THE FORCE POINT FALLS INSIDE A GROUP OF THE FIRST KIND
C

AAI.(TX-TTXS(NG))*(TX-TTXS(NG))+(TY-TTYS(NG))*(TY-TTYS(NG))
AA2-(TTXS(NG)-TTXI (NG)) *(TX-TTXS(NG))
S +(TTYS(NG)-TTYI(NG))(TY-TTYS(NG))

AA3u(TTXS(NG)-TTXI (HG) )*(TTXS(NG)-TTXI (HG))

l~~~~~sI~~~a I *. %'6!< z< <.lz
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$ +(TTTS(NG)-TTT!(NG))*(TTTS(NG)-TTT!(NG))
ALPIIAA3/(URKS(IIG)*ZRKS(NG))-l.
I3The(AA3+AA2) )/MKS (NO)

IF(ALPH.NU.0.) GOW1 900
zKo..
zF(SxTA.N3.0.) ZKmGAMA/(2.*BETA)

901 90AA1 *A*A4A
900 flu ( DETA-DSQRT ( UETA'UEPTA-ALP4'GANA) )/ALPH

91IF(.N#OT.DEDUO) GOTO 902
URZE(1,134) ZKTTIS(NG),TTTS(NG),TTII(NG),TTY!(NO),

$ vvI(NG),vVT(NG)
134 FONIAT(SZ,flK',91,'TTKS',SX,'TTYS',81,'TTZ!',81,'TTYZ',

$ 81,' VVI',SZ.'VVT,/7ZI2.5)
Wi~c(NG).zQ.0.) WRITU(11,135) AAI,AA2,AA3,ALPH,DETA,GAMA

035 FORNAT(51,'AA',9 1 'AA2',9,'AA3',81,'ALP4',SX,'BETA',SZ,'GAMA',
$ /6E12.5)I 902 ir(UK.O.AND.XR.LE.Z*TN) GOTO 119
WRITE(11,134) XK,TTXS(NG),TT!S(NG),TTXI(NG),TTYI(NG),

$ VVX(NG),WVY(NG)

IF(IC(NG).EQ.0.) WRIT(?1,135) AA1,AA2,AA3,ALPH,BTA,GAMAI I DZl.3
RETURN

C 1
C ---------------- FINAL PARAMETERS -------------------
C
119 ICIai

H-HO'( 1lX/(Z*TN))*( 1./3.)
IF(IC(NG).EQ.1) THEN
AXwTTIS (NG) -fl~vm(KG)
AY-TTYS(NG)-ZK*VVY(NG)
ELSE(N)

AT-TTYS(NG)+(TTYI (NG)-TTYS(NG) )*AA4
END! P

C
C FINAL PARAMETERS
C

C
C ------------ OUTWARD NORMAL UNIT VECTOR WHEN XK-0O------------

IF(XK.EQ.0.) THEN Z.
vx-wvvx(NG)
VY'IVVY(NG)
DTM-DSQRT (DTX*DTX+DTY*DTY) X
IF (TTZI(NG) .EQ. TX .AND. TTYr(NG) .EQ. TY .OR. DTM .EQ. 0)

$ GOTO 555

VK:DTX/DTh

C WHEN THE LOADING IS ALONG THE CONE AND NORMAL FORCE DECREASE

C
ELSE

C -------- OUTWARD NORMAL UNIT VECTOR WHEN R(=X() IS DIF FROM 0.IC

%.
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VI. (TE-Al) RK
VT. (TY-AT ) /Zl

555 1?P(DEDUG)WRITZ(?1, 197)IN,VZ,VT,XA,H
197 FORXAT(3Z,'IN',6Z,'V',I0,'V',ZZR',81,'H',/15,41 2 .4)

C-------------------GROUP NUMBER or THE CURRENTLY ACTIVATED -----

C NG-NG~t 1
C

C AK ----- ----CNIrNdK O IZ ---------

C

C COORDINATES OF CENTER OF YIELD CIRCLE oF mIN RADIUS(INFERIOR)
C

AAXI (NG-I ).Al
AAYI (NG-1 )-AY

C
C C----------- UPDATE FOR THE REFERENCE POINT-------
C

IF(IC(NG-1).EQ.1) GO TO 60
TTZI (NG-i )-AZ
TTYI (NG-I )-AY
AAI(MG-i )uAZ
AAYI (MG-I )-AY

C
C ----------- UPDATING THE CONFIGURATION OF THE------I C-----------------YIELD SURFACES --------------------
C

60 CONTINUE
xuKs(NG)-ui
ZK! (rG)-.

AAS(NG).AY

AAXI (NG)-TI
AAYI (NG)-TY
TTZI(NG).TZ
TTYI(NG)-TY
TTI (NG)-TI
TTYI (NG)uTY

VVZ(NG) -VI
VVY(NG)-VY
IC (NG)-I CI
IF(ICI.EQ.0) TTXS(NG)uAX
IF(ICI.EQ.O) TTYS(NG)uA

9910 DO 109 IGuf,NG
IF (DEDUG) WRITE( 13, 124) IN, IG, HHS (IG) , HI( IG) ,XKKS( IG),

iXKKI (IG) ,IC(IG)
109 IF(DEBUG)WRITE(1:,124)IN,IG,AAXS(IG),AAYS(IG),AAXI(IG),

IF(DEBUG)WRITE( 15,7)
124 FORMAT( I,2I5,4El2.4,I5)
115 FORMAT(1X,215,2FI2.4,I5)
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7 FORMAT(1Z,q --- - - - - - -- - - - - - -- - - - - -
is'-------------------------------

C
C --- UPDATE THE HI STORY BEFORE LEAVING THE SUBROUTINE ------

AHIST(N,IADI )ODVWAT(NO)
AHIST(H,IAD1*1 )-DTNl
DO 9960 1.1,140
1AD2uIAD1I*1
AHIST(M,IAD2)sIRRI(I) 4

AHIST(N,IAD2+NGROUP)uXKRS(I)
AHISTCMD 1AD2+2*NGROUIP)oHHI(I)
AHIST(M,1AD2+3*NGRtOUP)-HHY(I)
AHIST(1,IAD2+6*NGRtOUP)-TTZS(I)

AHIST(14,IAD2+7'NGROUP)-TTYS(I)
AHIST(M,IAD2+7*NGROUP)-TTII (I)

AHIST(M,IAD2+9*NGROUP)nTTYI (I)

AHIST(14,IAD2.I 3'NGROUP)aAAYI (I)

996o AHISTMH,IAD2+14*NGROUP.DFLOATIC~fl

33FORMAT(15,7E 12.4)I END

SUBROUTINE ENOD(TNJP,HO)

C M4ATERIAL DEPENDENT SUBROUTINE COMPUTES THE ELASTIC
C MODULUS CORRESPONDING TO A GIVEN TN
C

IMPLICIT REAL*8(A-H,O-Z)
COIO4ON/BMATRL/GI, Z,UN,SRDEBUG
LOGICAL FLAG I,FLAG2,DEBUG
AS-( (3.*( 1 -U4)*TNP*SR)/(8.*GI) )"*( ./3.)
HOu(4.*GI*AS)/(2.-UN)%
RETURN
END

SUBROUTINE LAD(Z,P,DI)"®

CMATERIAL DEPENDENT SUBROUTINE COMPUTES THE ELASTIC
C MODULUS CORRESPONDING TO A GIVEN TN

ASu( (3.*( 1.-UN)*P*SR)/(8.*GI ))"*( ./3.)

1/3.)) )/(8.*GI*AS)
RETURN
END

C

CI
SUBROUTINE NORMAD(EN,TN1 ,TNN,DTN)

Jil

%4
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C
C COMPUTE THE TOTAL NORMAL FORCE AND THE FORCE I NCRMNT
C DASBD ON THE TOTAL NORMAL DISPLACEMENT
C

IMPLICIT RAL*S(A-H,O-Z)I CoOM/UEATRL/GI ,Z, U,UI SR, DEBUG
LOGICAL FLAG1, FtAG2, DEBUG

DTM.TNN-TNI

C

C

C

SUBROUTINE COMPLD)(MIAD1 ,TNN,DTN,DEZ,DEY,DTI,DT,IDEX)
IMPLICIT REAL'8(A-H,O-Z)I COlMMON/DMATRL/GI ,Z, UN ,SR, DEBUG
CO?.04N/HIST/AHIST( 1,3004)
DIMENSION IRK! (100),ZRKS (100),HHI (100),H15 (100),VI (100),
$vvT(100),TTIS(100),TTYS (100),TTII (100),TTTI (100),AAXS(100),
SAAYS (100),AARI (100),AATI (100),IC (100)
LOGICAL FLAGI ,FLAG2,DEUG

C CHARACTER'S CHECK

C--------------------- INITIALIZATION---------------------

C If (CHECK .NX. 'FIRST') THEN
C CALL EMO0(TNN,H0)
C CHECK*'FIRST'
C ENDIF

1031.0

NG-IDINT(AHISTCM, IADI))

DTYwO.
NGROUP. 100

C

C
TNI uTNN-DTN

C
C MAKE SORE THERE IS A CONTACT; FOR THIS, THE NORMAL FORCE HAS TO
C BE POSITIVE--lDEXw2 MEANS THAT THERE IS NO CONTACT

IF (THN.GT.0) GO TO 9827.5
1031.2
RETURN

9827 IF(NG.NE.0) GOTO 9820
C
C CALL THE ELASTIC MODULUS OF THE CURRENT NORMAL FORCE

CALL EMOD(TNN,HO)

dA

Iq
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TIsHO*DEI2T"wH0*Dl9Y
'INDSQtT (Tz*'rz.+TT*TT) ..

Irn(.3-.0.) GOTO 9840I IF(TN.G3.ZTNN) mHEI Dli.- 1

TI-TI" Z'TN'/T]
TI-TI* Z*TNN/TM
TM-Z*TNN

DTZT]OTT-I~MOTT

C --------- INITIALIZE THE NEW CONTACT HISTORY -----------

C
9840 NO-i

C INITIAL GROUP CHARACTERISTICS
C ------------- MODULI AND SIZES------------------

HS ( t) -H0 '
HHI(M)0.

C
C INITIAL SURFACE POSITIONS --------

C COORDINATES OF CENTRES OF MAX BOUNDARY TIELD CIRCLE

AAXS(l )-O.
AAYS( I )-o.

C COORDIANATES OF CENTRES OF MIN BOUNDARY YIELD CIRCLE
C

AAXZ (1)-TI
AAYI (0 -TY

C ------------------ INITIALE REFERENCE POINTS--------------
C

TTXS( )-0.
TTYS( )-0.
TTZI( 1)-TI

NO LIE .,.

GTO 9910=

C ------------ KIND Of INITIAL GROUP -- -- -- -- -

C -

IF(IDeX ,EQ. 0) THEN

C ------ NO SLIDE -------
IC( 1)"0mo,
VV][( 1)"1 . "

vx.,. ,.

GO TO 9910 :
~~ELSE :

C "S

C ----- SLIDE OCCURS ----------c :.:
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xC(O ul
vvl(0 1)-TI/TX
WYT( I ) uTY/TH
TTZS( I).Tz
TTYS0() aT?
IDul-
GO TO 9910

C
C--- again CALCULATION WITH THE OLD CONTACT

9820 DZUwDSQRtT(DEI'DEZ+DEY*DEY)
C
C-- CHEK IF THE MEMORY IS ENOU1GH ----

IF(NG.LT.NGROUP) GO TO 9790
1031-4
RETURN

C
C - GET THE HI STORY OF THE CONTACT FROM THE MEMORY
C
9790 CONTINUE

DDTWAHIST(M,IADI+l)
DO 9810 Iwl,NG

IKE! (I )UAHIST(M,IAD2)
IRKS(I )-AJIIST(M, IAD2+NGROUP)
HH! (I)-AHIST(M9 IAD2+*NGROUP)
1*5(1 )-AHIST(M,IAD23*NGRtotP)
VVI(I )UAHIST(M,1AD2+4*NGROUP)
VVY(I )-AHIST(N,IAD2+S'NGROUP)
TTIS(I )-AHIST(MIAD2+6NGROUP)
TTTS(I )-AHIST(M, 1AD2+7'NGROUP)
TTRI(I )AHIST(M,IAD2+8NGROUP)
TTYI (I )aAHIST(M,IAD29NGRtOUP)
AAIS(I )-AHIST(M,IAD2.10NGRtOUP)
AAYS(I).AHIST(K,IAD2+1 1*NGRtOUP)
AAhI(I )-AHIST(M,IAD2.12NGROUP)
AAYI (I )mAHISTCMIAD2+13*NGROUP) .~'~S

9810 IC(I)IINT(AHIST(M,IA214*NGROUP))
TlaTTI(No)
TYmTTYI (NG) *\

C
C-----------END oF INITIAL REFERENCE POINTS ---------
C

IF(DEH.EQ.0.) GOTO 9900
C
C -------- UPDATING PARAMETER BEFORE INCREMENT ------------
C

HSL-HHS(NG)
HILuNHI (KG) :
IF(HIL.LE.0.) HIL.HSL
XKL-XKKS(NG)
IF(TNI.GT.O.) CALL ELAD(XKL,TNI,EML)
HHLm0.D0
IF(ENL.NE.O.) HML=XKL/EML
NGL=NG 1%

C---------- CALCULATE THE CORRECT FORCE INCREMENT--------
C
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DTESKSLDZZ
MToHSL*DBT
DTNBKSL*DU

C - U---NIT NOINAL VECTOR---------

C
IF(!C(NGL).3Q.0) THENI VZMDEI/DUE
VY-DET/DUE
ELSB
Vx.vvz(NGL)
VTuVVT(NGL)

END! F
DBN=.DTI'VI+DTTwVYI DBT-DAUS (DTI'VT-DTT'VI)

C
C FIND THU CORRESPONDING FORCE

IF(DBN.LE.Z*OTN) GOTO 9900

IF(IC(NGL).EQ.0) THEN
o'r?-(DEx.Z'DTN*( 1./HIL-l ./HSL) )*HILi
ELSE IF(HML.EQ.0.) THEN
DM.DEM'(DEM+*DTN'(1 ./HIL-I ./HSL) )*HIL/(oZx'vz.DET*VT)
ELSE
DT-DEM(DN.ZDTN( 1./HIL-1 ./HSL) )/( (ou*vx+OEY*VT)/HIL

$ +DASS(DU*'VY-DEY VI) /106.)
END!
DTXuDEI'DABS (DTNI/DZ1M
DTT.DIY*DASS(OTM /DE
DDN=DTI'VI*DTY*VT
DSToDADS (OTI VT-OTT' VI)

9900 TN-TNN
TY:TT+DTY
TY-T1+DTT

C
C ------------- UPDATING FORCE iNCRzmzNT----------
C

TNL=TN
TIL-TI

C TYL sTY

C ------------ CHECK IF THERE IS FAILURE-------
C

DXIF(T14.LT.Z*TN) GO TO 9910

TI-TX' Z*TN/TM
TYuTY*Z 'TN/TN
TM-Z'TN
DTX-TZ-TTI(NG)
DTY-TY-TTYI (NG)
GOTO 9840

C
9910 CONTINUE

RETURN
END

-alp
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C

C THIS SUBROUTINE COMPUTES THU INCRDUT or DISPLACEMENT FOR
C A GIVEN INCR3MT Or FORCE WITIOUT STORING OR UPDATING THE
C STRESS HISTORY. *

c i-c
SUBROUTINE CONPLF(M, IADt ,TNN,DTIDTZ,DTT,DU,DEY,IDEE)
IMPLICIT RBA dS(A-H,O-Z)
DIMENSION ]XsI(100),ZKIS (100),HHI (100),HHS(0OO),VV (100),
$VvT (tOO),TISr(IOO),TTYS(IOO),TTZZ(?OO),TTI (O0),AAES(100),
$AATS (1O0),AAZI (100),AAYI (100),IC (100)
COMoN /DmATRL/ GIZ,h,SR,DE.UG
COI4ON/3 IST/ ANIST( 1,3004)
LOGICAL FLAGI ,FLAG2,FLAG3,DEBUG

C CHARACT R"S CHECK

C ------------------- INITIALIZATION -------------------------------

C IF (CHECK .NE. 'FIRST') THEN
C CALL EMOD(TNN,H0)
C CHECK' FIRST'
C ENDIF

NG-IDINT(AHIST(M,IADI))
NGROUP- 100
IDEISO

C C PREVIOUS NORMAL FORCE, TN)

TNt .TNN-DTN
C ---- MAKE SURE THAT THE NORMAL FORCE IS POSITIVE. OTHERWISE,
C---- IDEX.2 AND THERE IS NO CONTACT BETWEEN THESE PARTICLES

IF(TNN.GT.0.) GOTO 9827
IDE1=2
RETURN

9827 IF(NO.NE.0) GOTO 9820
C CALCULATE THE ELASTIC MODULUS OF THE CURRENT NORMAL FORCE

CALL EMOD(TNN,HO)• TX-DTX

I TY-DTT
TM-DSQRT ( TI*TX+TY*TT)
DTM"TM
IF(DTM.EQ.0.) GOTO 9840

C --- IF THE FORCE POINT IS OUTSIDE 'HE FAILURE SURFACE
C --- USE THE FORCE POINT ON THE FAILURE SURFACE-----------

IF(TM.GE.Z*TNN) THEN
IDE!-)
TX-TI*TNN/TM
TY-TY*TNN/TM
TM-Z*TN
END I F -.

~~DTXmTX '-

DTY-TY '.~DEX-TX/H0
DEY-TY/H0

C --------- INITIALIZE THE NEW CONTACT HISTORY------
9840 NG-I
C --------- INITIAL GROUP MODULI AND SIZES ---------
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g lotHS( 1) H0

HH! ( )-0.
S( 1 )=Z*TJN

EXR (1) .0.
C ---------- INITIAL YIELD SURFACE CENTERS
C COORDINATES OF CZNTRES OF MAX BOUNDARY YIELD CIRCLE

AAZS( I )lO.
AAYS( 1 )-0.

C COORDIANATES OF CENTRES OF HIM BOUNDARY YIELD CIRCLE
AAI( t N)TTIA
AAYI(1)-TT

C -NITIAL REFERENCE POINTS
TTZS(M)0.
TTYS(l)=0.
TTZXI(1 )=TZ
TTYI (I )uT=

C ------------ KIND OF INITIAL GROUP
IF(IDZ .EQ. 0) THEN

C ------ NO SLIDE----------
ICCI )uO
vv( 1)0.
VV'( )=I.
V101.
VTI.
GO TO 9910
ELSE

C --- SLIDE OCCURS----------
IC(1 )=1
VVI( 1)-TI/TM
vVT 1 )-TT/TM
TTZS( 1 )=TI
"TYS( 1)=TY

IDZM
GOTO91
ENDIF

C ------- CALCULATION BEGIN WITH OLD CONTACT
C9820 DEM-DSORT ( DEZ*DEX+DEY*DEY)
9820 CONTINUE
C
C---- STOP WHEN THE MEMORY IS NOT ENOUGH
C

IF(NG.LT.NGROUP) GO TO 9789
WRITE(3,8101) NG

8101 FORMAT('THE MEMORY OF THE YIELD SURFACE IS NOT ENOUGH',14)
STOP

C
C GET THE CONTACT HISTORY FROM MEMORY
C
9789 CONTINUE

DDTN"AHIST(M, IADI +I)-- DO 9810 Iw!,NG

?(IAD2=IADI+I+I
XKKS(I )-AHIST(MIAD2)
XKKS (I )-AHIST(M,IAD2 NGROUP)
HHI(I)-AHIST(M,IAD2+2*NGROUP)• ,, HHS ( I) AHI ST(M, IAD2 3*NGROUP)
WX(I )-AHIST(M,IAD2+4*NGROUP)
VVTY( I) AHI ST(H, IAD25*NGROUP)

TTYS(I )-AHIST(M,IAD2+7*NGROUP)

TTSI)=NS(, A2TeGOP
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TTII(I)-HS(,A28fG0P
TTT (I )-AIIST(x,1An2+9*NGROUP)
AAZS(I )mAHIST(H,1AD2+10'NGROUP)
MYTS (I ) mAN! ST (N, ZAD2* 11 *NGROUP)
AiCC! )!DZNT(KI(AD24NGOUP))
AU! (I ).AIIST(M, IAD2*1 2'NGRtOUP)
AM(I ).ANT(NHS,1AD21 NGROUP))

9810 CONTINUE
TZ.TTZI (HG)
TTYIi!(HG)

C
C -U--- PDATING PARAMETER BEFORE INCREMENT -- ----

HSLwHHS(WG)

IF(HIL.LE.O.) HIL-HSL
IlL-IRKS (NG)
Ir(rNI.GT.0.) CALL ELAD(IRL,TNI,EM)

C-----CLUAETHE CORRECT FORCE INCREMENT I---
DTM.DSQRT (DTV*DTI*DTY*DTY)
IF(DTM.EQ.0.) GOTO 9900

C --------- UNIT NORMAL VECTOR -----------------

IF(IC(NGL).EQ.0) THEN
VI.DTI/DTH
VT.DTY/DTK
ELSE
VZ-VVI(CNGL)
VT-VY (NOL)

VYL-VY

C - TO FIDTECREPNIGDSLCMT
DBNuDTI*VI4DTY*VY
DaT. DADS (DTXVT-DTY'VI)
XF(DBN.LE.Z*DMN) THEN
DE~uDTI/HSL

DEY-DTT/HSL
ELSE IF(IC(NGL).EQ.0.OR.HNL.EQ.0.) THENI
DEI-z'DTN'VI/HSL.(DBN-ZDTN)VX/HIL
DEY-Z*DTN*VT/HSL.(DBN-Z*DTN) 'VY/HIL
ELSE
DEXuZDTNVXV/HSL.(DBN-Z*DTN) 'VK/HIL+DDT*VX/HML

C DEXuZ*DTN*VI/HSL.(DBN-Z*DTN) 'VX/HIL. (DTX-DBN*VX)/HML
DEY-Z'DTN'VY/HSL.(DBN-Z*DTN) 'VY/HXL.(DTY-DBN*VY)/HML
END! F
DEN. DSQRT(CDEX*DEX*DEY*DEY)
GOTO 9900

C---- CALCULATION OF THE CURRENT YIELDING SURFACE BEGIN--

C-------------- UPDATING FORCE INCREMENT-------------------

TNLwTNI

TXLUTI

-A-.k -I
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TLmT

c ----- CHECK IF THERE IS FAILUR E --- ----

C
IF(TH.LT.Z*TN) GO TO 9910

TX-TI' Z*TN/TN
TTmTT*2ZTN/Th -

TN. Z'TN
DTl.TZ-TYZ! (MG)
DTT-TT-TIZ(MG)
D~n.DTZ'VZ*DTT*VY 'T) V/

DETuZDMVY/HSL+(BNZ'DTN 'VY/1ISL
IF(IC(HGL) .EQ. 0 .OR. lHlL .Q. 0.) THEN
GO TO 9840
ELSE
DEIwDEX.(DTI'DDN*VX) /HOU
DEYoDEY4 (DTY-DDN*VT ) /H04
END! F
GO TO 9840

9910 CONTINUE
RETURN
END

-. 4
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Figure DI. Configuration of the Media Used in the Simulations
and Orientation of Each Element
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Figure E5. Medium 2: Com resslon with Constant Mean Stress

(a°=I.0 Kg*/cm ). Stress-Strain Behavior of
Element E5 Oriented at 820*.

U
.' .UI



226

U 0.80-p

* 0.64

o0.48

_g 0.32 -

0.16
o ' - " " I i I I I I
0.080 0.04 0.08 0.12 0.16 0.20

1.60 . Y12 (X 10- 3 )

1.28-E-

" . 0.96 -

" 0 .64 - -
tZ 0.32- 

,

0 06 0.16 0.24 0.32 0.40
1.60- C22 (X 10-3)

. 1.28 -

00.96 --

0.32-

000 
,

0.00 0.08 0.16 0 24 0.32 0 40
Eli (X 10- 3 )  

_

Figure E6. Medium 2: Co rnression with Constant Mean Stress
(=1.o0 Kg*/cm) Stress-Strain Behavior of
Element E6 Oriented at 0=30o

W a .. a)



227

I

U0.80
S0.64-

U0.48-

b0.16

000

0.00 0.04 0.08 0.12 0.16 0.20160 - rt2 (X 10- 3)

128/

0.64

¢ 0.32-
o.oc I I I I I I I

0.00 0.08 0.16 0.24 0.32 0.40
1.60- E22 (X 10 - 3)

128- _U
• 0.96 /

. .64

S0.32 -

000 I I I I
000 008 0.16 024 032 040

Eli (x 10-3)

Figure E7. Medium 2: Comression with Constant Mean Stress
0

(ao=1.0 Kg*/cm). Stress-Strain Behavior of
Element E7 Oriented at 8=600.

pq



228

0A0 - ,

S0.64

0.48

0.32 -

0.16

000I I
0.00 0.04 0.08 0.12 0.16 0.20

1.60_ Y12 (X 10 - )

I ~1128

E
U 0.961-

0.64

0.32-

3 0.00 0.08 0.16 0.24 0.32 0.40
1.60 - E22u (X 10- 3)

1.28-

0.96 %

064.

tZ 0.32-

0.00 008 0.6 0.24 032 ,40
E', (X 10- 3)  ""

Figure E8. Medium 2: Com ression with Constant Mean Stress

(a°.1.0 Kg*/cm ). Stress-Strain Behavior of
Element E8 Oriented at 8=10.

Ile
Ig



229

0.80-

ilk, 0.64 -

U0.48-

-y 0.32-

S0.00 0.04 0.08 0.12 0.18 .2

_1.28-

0.96

~.0.64-

b0.32-

0.00 I I I
0.00 0.08 0.16 0.24 0.32 0.40I1.60- (22 (X 10-3

1.28-

j0.96-

S0.32-

0.007I I I I
0.00 008 0.16 024 0.32 0.40

Eli (X 10-3)

Figure E9. Medium 2: Comb ression with Constant Mean Stress
(GO=1.O vg*/cm ). Stress-Strain Behavior of
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(oo-1.0 Kg*/cm 2 ). Stress-Strain Behavior of
Element 15 Oriented at 8-30•
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Elements Oriented 500.



260

I 1.00

0.80-

0.60-3.0
0.20-

0.00 IIII
0.00 0.04 0.08 0.12 0.16 0.20

1.00- E£i2(X 10O3)

* 0.80-

0.20

0.0-

30.00 0.04 0.08 0.12 0.16 0.20

0.80-* S ph e ,

* 0.60-

~0.40

0.20-

0.00r-III

0.00 0.04 0.08 0.12 0.16 0.20

Figure. G6. Medium 2: Compression with Constant Mean Stress

Applied Principal Strain Difference for All
E clm n O rien/ t ed No m l ze0l m nt S r ss V r u



* 261

I 100-

0.80 "-----0-0 -- --- 0--0

I 0.40-

020 -

0.00
0.00 0.04 80.12 0.16 0.20

1.00 EI-C 2 (x 10-3)

0.80 N
0.40 -

0.20

0.00

0.00 0.04 0.08 0.12 0.16 0.20

1.00 -  Ec-C2(X 10-3)

0.80 -

a t t 0 1 p

t 0.40-

0.20-

0.00 I I I I I I
0.00 0.04 0.08 0.12 0.16 020

¢-C 2 (X 10- 3 )

I Figure G7. Medium 2: Compression with Constant Mean Stress

o-1.0 Kg*/cm 2 . Normalized Element Stress Versus

Applied Principal Strain Difference for Allp Elements Oriented 700.

'I



1 "262

I
1.00 0-6 * - -- - - "

I -0.80

0.060

I 0.40
0.20-.

0.00[ I 1 1 1 1 1 1 1 1

0.00 0.04 0.08 0.12 0.16 0.20C,-C2 (X 10 3 )

1.00 - IS

H 0.80-

0.6 -

0.40-

i 0.20-

0.00 I I I I I i I I I I
0.00 0.04 0.08 0.12 0.16 0.20

1.00- c -C2(X 10-3)

0.80 -

0.40-

0.20

0.00 1 I I . I I I I I I

0.00 0.04 0.08 0.12 0.18 020
EI-C2 (X 10- 3)

i
Figure G8. Medium 2: Compression with Constant Mean Stress

000-1.0 Kg*/cm 2. Normalized Element Stress Versus
Applied Principal Strain Difference for All
Elements Oriented 800.

' N'



263

S1.00-
* 080-

0.60-

0.j~4 0 .

0.20-

1 ~ ~~0.08.F II
.00 0.04 0.08 0.12 0.16 0.20

0.80-

- 0.60

0.40

0.20

0o'0 ...... L I '
.00 0.04 0.08 0.12 0.16 0.2012I I-2( 03

0.96-

U 0.72-

CYJ 0.48-_ _ __ _ _

USS~tpa *.0 0 -
0.24

I0.00 0.04 008 0.12 0.16 0.20

C1-E2(X 10-3)

Figure G9. Medium 2: Compression with Constant Mean Stress

ao-1.O Kg*/CM2 * Normalized Element Stress Versus
Applied Principal Strain Difference for All
Elements Oriented 10%

I



3 264

U 1.00-

!~a -1 0.80

0.20-

0.00 r
0.00 0.04 0.08 0.12 0.16 0.20

1oo- (I-C(X 10-3)

0.80-

0.40

3020-
I'.o0 0.04 0.08 0.12 0.16 0.20

S1.20- Ct-EC(X 10-3)

0.9

C~0.72______________
CM 0,48

0.24-

o.oo I I I, I I 1 I

0.00 0,04 0.06 0.12 016 020e,-62 (X 10-3)

Figure GIO. Medium 2: Compression with Constant Mean Stress
0a O1.0 Kg*/cm2. Normalized Element Stress Versus

Applied Principal Strain Difference for All
Elements Oriented 200.

I



265

U1.00 L

0.80 

1

0.60-

C4 0.40 __ _ _ _ _

0.20
0 OCI I I I I i f

0.00 0.04 0.08 0.12 0.18 0.20
1.00- I-,(X 1o-3)

0.80

0.60-

I 0.40-

0.20 .-

0.00 0.04 0.08 0.12 0.16 0.20
1.20 - El -E2(X 10"-3)

C'4 0.48-

0.24

000
0.00 0.04 0.08 0.12 016 020

cl-E2 (x 10-3)

Figure Gil. Medium 2: Compression with Constant Mean Stress

o 2
cro1.0 vg*/cm2 . Normalized Element Stress Versus

Applied Principal Strain Difference for All

Elements Oriented 30.

UP

_*1

I
.



m i~gIUw~wj

266

1.00-

0.80-

0.60-

? 0.40

0.20-

.00oo 0.04 0.06 0.12 0.16 0.20o1.00- CI,- C (X 10- 3)

0.40-

0.200-

0.0i -i -P I I
0.00 0.04 0.08 0.12 016 0.201 .2 0 C , ' ( X 1 0 -)

0.72

Figure G12. Medium 2: Compression with Constant Mean Stress
00 1.0 Kg h/cm . Normalized Element Stress Versus
Applied Principal Strain Difference for All
Elements Oriented 40.

II

0, , 0,0 0.0 0, 0. I0.2



267

1.00-

0.80 "

'~0.60-
4 W 0.40

0.20-
o I I I" -- i '
00 0.04 0.08 0.12 0.16 0.20

1.00_ C-E2(X 10 - 3)

0.80-

0.80--

W 0.40

0.20-

I I I I I I I lI , Ij
0 . 0.04 0.08 0.12 0.18 .-

.00 0.04 0.08 0.12 0.16 0.20
12-(X 10 - )

Figure G13. Medium 2: Compression with Constant Mean Stress

oiouI.0 Kg*/cm2 . Nraie 1mn tesVru
Applied Principa1 Strain Difference for All
-lements Oriented 50.

0.72

C

0.8



.,aI 268

I 1.00

0.80

0.40

0.20-- .

0. 0 _ I I , , , I I I I00 0.04 0.08 0.12 0.16 0.20
1.00- E,-E2(x 0-3) ,I 0

0.80-

0.40

00

0.00 0.04 0.08 0.12 0.16 0.201.20 - E-C2 (X 10- 3)

7-
0.24 -

0.'.00 0.04 0.08 0.12 016 020
El,-E2(X 10 - 3 )

Figure G14. Medium 2: Compression with Constant Mean Stress
0ao0I.O Kg*/cm 2 . Normalized Element Stress Versus

Applied Principal Strain Difference for All
Elements Oriented 60°.

%

.. ,

,'e.

IO



269

1.00

0.80

0.20 *

C* Q 000 00 0.8 01 0.8 02

0.00

0.00 0.04 0.08 0.12 0.16 0.20
1.20- E1-E2(X 10-3 )

0.60

0240

0.00 0.4 0.08 0.123 0.16 0.20
1.20- C1-E2(X 10)

C"44I 0. 4

Figure G15. Medium 2: Compression with Constant Mean Stress
ao , i.0 Kg*/cm 2 . Normalized Element Stress Versus
Applifed Principal Strain Difference for All
Elements Oriented 70*.

A.me.0"0



27(1

1.00

i ~d ooo.r _0.80-

0.60-

04 0.400

0.20-

0.00 0.04 0.08 0.12 0.16 020
1M 0 I  '-C 2 (X 10- 3)

0.80

-N0.60-

CJ 0.40- 0-

020-

-0oo0 I 1 I I I Io./o
.oo 0.04 008 0.12 0.16 0.20

1 20 C -CE2(X 10 - 3 )

0.96-

S 0.72-

0.48.

0.24

000 I I I I I I
0.00 0.04 0.08 0.12 0.16 0.20

CI-E'2(X 10-3)  .j

Figure G16. Medium 2: Compression with Constant Mean Stress .

o0=1.0 Kg*/cm 2. Normalized Element Stress Versus
Applied Principal Strain Difference for All
Elements Oriented 80. . -.

! -- -



ILA(\


