0 PRMILISTICIPOSSIHLIST!C APPROACH T muna c3 /4
A9t 917 I|S PART 2 m OCEAN SYSTEMS CENTER SAN DIEGD 1

UNCLASSIFIED F/G 23/3




Lo Aa Na Bh S ¥t Tt e B Bt Bat o F S8 KA AR B'e 88 Bvg Wis A3 879 REg dTp AV A Do pl. ¥ ‘af, ca¥_ -o% Wa-a¥ 6 T ni

o
E

Il
el = 7
125 s e

FEEFEEE R

EEER
=
§

v—
.—
EF
r
£r
N
o
- -

>
O

= ==
e

-
oS

»
]
e 4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ot G o

T T

-

- - - - - - - -
'! 'l ‘l N -| . : c o o
" 1 'o: "lb '.‘ '. I 0 " "' ' ' l 'l’ﬁ‘n:h .‘0‘;‘!‘ :\t' n"'o'
1y .'o l. .. L |‘\'| |‘|l'., | '.

:‘: ‘w‘ :“'n S "'
v, l Bb ot N
‘ ’x . K I"' i".- AT} ‘. 0' l' "l"‘l 0'0 t' .0' l. .




AD-A191 917 MR _EiLE Ccopy

R NE NN TN Xy

UNCLA!
) AN Ur {HRS PAGE
REPORT DOCUMENTATION PAGE
ry 5. RESTRICTIVE MARRINGS
UNCLASSIFIED
2. CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
25, DECLASSIFICATION, DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.
. PERFORMING ORGANZATION REPORT NUMBER(S) S MONITORING ORGANZATION AEPORT NUMBER(S!
Naval Ocean Systems Center NOSsC Naval Ocean Systems Center
83. NAME OF PERFORMING ORGAMZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
{Hf apphcable)
@c. ADDRESS /Cy, State and 2IP Code) 75 ADDRESS (Crty. State and ZIP Code/
San Diego, CA 92152-5000 San Diego, CA 92152-5000
8a. NAME OF FUNDING/SPONSORING ORGANIZATION 85 OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
{# spohcabie)
Director of Naval Laboratories DNL
8c. ADORESS /Cty, State and ZIP Cede) 0. SOURCE OF FUNDING NUMBERS
[ PROGRAM ELEMENT NO PROJECT NO TASK NO AGENCY
ACCESSION NO
Space and Naval Warfare Systems Command
Independent Research Program (IR) 61152N ZT52 RR0000101 DN306 225
11 TITLE S y Class ] - ] \
Col'v\w\aﬁ'l A_,._\r_ty“L .‘-pJ. AN R :o,f Wyes (C
A Probabilistic/Possibilistic Approach to Modeling Cg Systems: Part 1I \
T2, PERSONAL AUTROR(S!
I.LR. Goodman
13a. TYPE OF REPORT 130, TIME COVERED 14 DATE OF REPORT (Year. Month, Day)
Professional paper FAOM Jun 1987 ., Jun 1987 November 1987
18 SUPPLEMENTARY NOTATION - eb @
\ R 8 ¥
17. COSAT CODES 18. SUBJECT TERMS (Continue on raverse # necessery and identiy by block nukvbm
FieLd GRoue Sus-GRoup Sense-Hypothesize-Option-Response (SHOR} CQ
Stochastic sensor
data fusion \.
\h "ABSTRACT (Contimue on reverse il necessary and identty by Dlock number) \

This paper continues the work begun in the last Proceedings (9th MIT/ONR Workshop on ()‘uystemn). In that work,
C systems sre considered as interacting networks of decision-making node complexes characterized by system or process
variables. Internodal relations are modeled through nonlinear additive (in the general sense) regression relations; intranodal
relations are made to follow a general SHOR (Sense-Hypothesize-Option-Response paradigm. In turn, it is shown that a
collection of ten types of relatively primitive implication or conditional relations PRIM between C3 variables for enemy and
friendly component systems determines all updated marginal node state distributions. (Distributions can be in the classical
probabilistic sense or more generally in s multi-valued logical sense.) This leads to a CJ3 decision game, where the loss
function is some picked combination of measures of performance or effectiveness derived from node states and where each
decision nﬁt’egﬁgmmndl_we choice of PRIM for each C2lsystem.

- ’Es - -

~ In the-presemt work, emphasis is placed upon mod.e-l‘—reﬁnemént. In particular, the intranodal relation representing
data fusion is expanded and analyzed. This expansion is characterized by a weighted sum of products for the classical
probability case and extended to a more general form for multi-valued logics.

«<___
20.0 TMBUTION / AVAILABIUTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(O uscrasseo, unmamiTed [(X] same asaer [ oncusens UNCLASSIFIED
72a NAME OF RESPONSIBLE INDIVIDUAL 725 TELEPHONE rnclude Ares Code) T 22c OFfICE SYMBOL
LR. Goodman (619)225-2015 | Code 421
83 APR EDITION MAY BE USED UNTIL EXHAUSTED
DD FORM 1473, 84 JAN ALL OTHER EOITIONS ARE OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

LI PP IS ) ¥ NI . A Y -, ]
St R T O A O A S IO GG e M SO MO A O W L W




UNCLASSIFIED

SECURITY CLASBIFICATION OF THIS PASE (When Date Bntered

A number of results involving this general form are presented, including:
derived information for inference rules and other factors/tis-ins with plausibility

Accession For .

NTIS ORARI g
DTIC TAB

Unangounced 0
Justification —

By.
pistribution/
Availability Codes .
Avall and/or
Dist Special

4

justification for use of expert-
measures; characterisations of

formal language symbolisations and related data fusion results; and a new approach to data fusion evaluation
through algebraic logic, developing a formal counterpart to conditional probabilitiea-
consistent manipulation of disparate data.

®conditional objects” for

DD FORM 1473, 84 JAN

UNCLASSIFIED

sEcumITY cuw'iC'~8ﬂ°"8°' '§ '“g‘g pee .'(TOQ 4
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ABSTRACT

This paper continues the work begun ig the
last Proceedings (9th MIT/ONR Workshop on C° Sys-
tems). In that work, C” systems are considered as
interacting networks of decision-making node com-
plexes characterized by system or process variables.
Internodal relations are modeled through nonlinear
additive (1n the generalsense) regression relations;
intranodal relations are made to follow a general
SHOR {Sense-Hypothesize-Option-Response) paradigm.
In turn, it is shown that a collection of ten types
of relatively primitive 1mp1icatfan or condfitional
relations PRIM between C° variables for enemy and
friendly component systems determines all updated
marginal node state distributions. (Distributions
can be in the classical probabilisitic sense or
more generally fn.a muiti-valued logical sense,)
This leads to a C” decision game, where the loss
function is some picked combination of measures of
performance or effectiveness derived from node
states and where each decision strategy carresponds
to some choice of PRIM for each €3 system.

In the present work, emphasis 1s placed upon
model refinement. In particular, the intranodal re-
lation representing data fusion is expanded and
analyzed. This expansion is characterized by a
weighted sum of products for the classical proba-
bility case and extended to a more general form
for multi-valued logics. A number of results in-
volving this general form are presented, including:
Justification for use of expert-derived information
for inference rules and other factors/ tie-ins with
plausfbility measures; characterizations of formal
language symbolizations and related data fusion
results; and a new approach to data fusion evalua-
tion through algebraic logic,developing a formal
counterpart to condftional probabilities-"con-
ditional objects*for consistent manipulation of
disparate data.

1. INTRODUCTION

This paper, for the most part, is an abridg-
ment of a much longer version El ]

for the past several years, throughout many fields
ol science and technolcgy, researchers huve been seeh-
iny unification and extension of past results in order
Lo explain reality better and to be able to predict
future developsents. Recent events in theoreticadt
Physics involving "superstring” theory, an attempt at
developing & Grand Unified Theory of the Universe,
underscore this quest [3).

In 3 mcre modest way, this paper seeks to estab-
lish a theory unifying, coordinating, and extending
the somewhat~appearing distinct conﬁepts of data fus-
fon, combination of evidence, and €~ systems analysis.
On the other hand, relatively little attention will be
paid here to detailed computational techniques which
are particuldr to certain types of common data fusion
problems such as regression procedures for combining
stochastic sensor information, or maximum 1ikelihood
or Bayesian procedures for putting together geoloca-
tion dsta arriving from different sources relative
to a given target of interest, All of the above-men-
tioned techniques are essentially special cases of
a much more general combination of evidence approach,
on which this papesr will concentrate.

Previously, this author propused & bottomssup,
microscugic. quantitative approach to general _C” sys-
tems [ 4], In that approach, a generic C? system
is identiried ac a netwnrk of nade complexes of de-
cision-makers, human or automated, interfacing with
each other in general. Each node receives “signals”-
which mey be ordinary communication signals, either
from friendly or hostile sources (possibly unaware),
or which may be received weapon fire. In general,
these “sfignals” are stacked vectors comprised of in-
coming data from several different nodes. In turn,
each node- which may consist of a single decision-
maker or some coalition of decision-marers and which
may fnclude passive type decision-makers, such as
*followers" - then processes the data. This fs follow-
ed by a response or action taken towards other nodes,
friendly or hostile. (011, Figure 1.) Associated with
each node is the node state ([V),Figure 2.) describing
the current state-of-affairs given in terms of a num-
per of functions Such as threat level, equations of
motion, and supply level. In addition, there is an as-
scciated knowledge base reflecting the node's lacal
knowledge of the other nrodes (friendly or adversary).

Also associated with each node is its internal “"signal”

processing design, as described in Figure 1. There,
data fusion plays a central role {n transmitting de-
tected "signals* to hypotheses formulations, which in
turn through alqgorithm selection leads to an output
response to other nodes (again, these may be friendly
or adversary).

Next, since we fdentify data fusion with the com-
bining of evidunce, all of the knowledge-based system
techniques assoclated with the latter are available.
In particular, tnis infers (see [S], Chapters 1,2
and Figure I, page 14) that a series of underlying
processes are fnvolved In data fu.:an. Basically,
there are five such processes {including natural
language in its broadest context] gyiven fn Figure 1.
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JJHYPOTHESES ALOP 1 = (BOOL.ALG. CLASSICAL LOGIC], 1n Theorem 1 st (:v:.rl.‘l}: k-1 Ny,
FORMULATION/ ALDP 2 = (MODIFIED BOOL.ALG. through Sequence ¥\ T
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ALDP 3 = (BOOL.ALG.,PROB. LOGIC),
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Figure |. Subprocess Expansion of Data Fusion/Combination
of Evidence Process Connecting Initial "Signal”
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L Detections with Hypotheses Formulatfons, _ l "“,J"u;ﬂ_f:fh,xTB’QJ"o-’
— ‘ . s
Player I (Friendly System)
Player Il ;\ Typical Move: PRIM{I)
(Adversary C
System) ( INTERNAL DATA A
Typical Move: INCOMING “YES T0-1] PROCESS
) s MULTI-SGURCE : TN
PRIM, ? Loss= L, (PRIM,) “SIGNALS" (S INITIAL COMB INATION }
DETECTION/ OF EVIDENCE/
SENSING (D) DATA FUSION

| Figure 2, Symhelic Form for t:J Decisfon Game. (_“J NQ_(0-0)
DIRECTED HYPOTHESES
i RESPONSE (R) o T FORMULATION/
' 2. DATA FUSION AS A QUANTITATIVE PART Of AN OVERALL { (F) OPTIONS/
' €3 SYSTEM AND DECISION GAME V\\ DECISIONS (H)
. So far, in this development toward a genersal HNODE BOUNDARY —

theory for the fusion of data, only general yualita-
tive descriptions have teen given ftor the processes
fnvolved. However, 45 meptioned befnre, a quantita- -
systems nas been established

Figure 3. Data Fusion at an Integral Part of
Data Processing Structure for a Nude,

tive model for generic C

comﬁntible with these qualitative formulatinns

(4).

Inputs to the structure consist hasically of

ten sorts of known relative primltSve relations PRIM

amony the varfahies describing a C

system, These var-

fables are:node (NYhypatheses selectinn (H); detection

-2-

(I} ot tncoming "signals” (Sl; algorithm selectiuns
{F); inttfa} roce responses (R}, prior to envircrmental
disturtion {G) and additive nofse (Q). To each vari-
abla is affixed subscripts (g,k) (or {h,9,k)) where
g={a,i) denotes the identification of a particular
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node tn question in terms of the C3 system a (friend-_
1y or hostile} and node number i, while k represents

4 discrete time index t . Specifically, the relation
breaks down into 5 lntrgnodJI (within nodes) rela-
tfons, 2 interncdal (between nodes) or regresslon re- .
lations, aud 3 prior relations for each CJ system.
These relations are expressed In terms of condftional
ur uncunditional probabilities, as they stand, but .
the reyults can be extended, with appropriate replace- -
ments, to A auliivalued longic setting. (Again, see
(4].) Then by making certain reasonable sufficiency
assumptions among the variables and uti1lizing basic
properties of conditional probabilities, it can be
shown that each updated node state can be obtained
explicitly in(probabilistic) terms of the other vari-
ables and node states through PRIM, Thus. we have:

Ibearem 1. (See [ 4], Theorem 1.)

Suppose PRIHk and N . are as described above
with PRINk given in further details In Tabk 2.
Then, under certain reasonable sufficiency

conditions [ 4],

PlNg ) = g ((PRIN) (2.1)

where 4; i s 8 computadle functional involviag a fi-

nite number of integrations and arithmetic operations
upon the elements of PRIM_ given in Table 1,

]
{ ¢ s
( i (‘)9.k ’("9.k'°q.n'sq.t’ ’ (’)s.l'l "“e.h'l"i.k"u.\'"s.‘)J
a, 4 3
‘4_‘ ‘21, , ‘ AL L (g knr P(N“.k,,ll,_ul.n%‘) .
7 | E Sy e usn
- :
e Watet 08 oo FaR, gl¥g o R,
= Y E0a, o tals, glny)
T -
a. &u (6)ﬂ.q.l'| P(Qh").k") witn G"n‘J-"] »
ra f
| 22 00 g0 Volvy ) ning). Tesle 2.

The basic internodal daalysis is develeped vig
dtive nondinear regression relation

(s"k‘|lv‘.k"-(u,x);.a..q."](uh'k).c

Relatiee Primitive l
felavizas for C t
\ Gystea &,
h,g.ktt’ . .

9.4 g+{a 1", where i
wtere variable w_ . . fndicstes origlaal goistule indicates node 1.
) 9. k fadicates time
s0s51ble node source for “signal® at time &, given {ndex.

reception by anotner node &t kel

In turn, 2 simple two~pﬁrson 2ero Sum 9ake can
be established, called the C° decision game. Here,
Player I corresponds to entire C5 system a=| (ssy.
friendly) and Player Il corresponds to entire C~ sys-
tem a=2 (say, adversary). In this game, a move by
Player j corresponds }o a choice (up to given con-
straints) of PRXMZ‘- , J=1,11, and the resulting
lass or utility due to any such joint move L 1{s a
function of the marqinal updated node state 5istr1-
butions, according to Theorem 1 as

Lk(PRIMk)-MOEk((p(N..k)Iall q})

- mEk(Wq'k(PRI_Hk)]aH g}, aa)

where MOF, represents a sfnyle figure-af-merit, com-
bining vu#icus measures of effectivencss (mue's) or
performance (mop’'s} for the two (2 systems. (hate, that
although fdeally the eantire jalnt node state Cistri-
bution of the two CJ systems should be souyht, in
practice this is difficult to do, because of the yredtl
combinatoric computations f{avolves.} Typlcal moe’s
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that could be used include:averaged measure of fmport-
ance Yﬂ; g ¢ Averaged measure of threat TH_ , ; upper

bound -total entropy ENla K s and averaged measure of
.

._performance Iff‘ - all computable thr&ugh plhk k)‘s

tor ¢ systam &, by use of Theorem 1. (See alsu.[ﬁl,
eqs.(59)-(62).) Then one could let

MOEk = MOE].k - MOEz.k . x3)
where
MOE, | * A\ T e xz-Tﬁ:.k + AJ:EET‘.k
+ k4'KCE.’k . (1-+)

and the X;'s are some predetermined weightings.

Syabolically, the 63 decision game appears as
given in Figure 2,

Finally, one can then gppl,v all the usual game-
theoretic methods to this C° game, such as seeking
Bayes decision functions for moves, least favorable
strategies {all subject to practical constraints),
minimax strategies, the game value, and varfous sensi-
tivity measures. It {s the long-range hope that such
a game will be a useful decision-aid in planning com-
mand strategy. At present, a relatively simple imple-
mentation scheme {s being carried ous for testing the
feasibility of such an approach to C~ systems,

3. STRUCTURE FOR DATA FUSION: THE CLASSICAL
PROBABILITY CASE

With the general C3 system context for data
fusion established in the previous sections, let us
now return to the task of developing a general quanti-
tative structure for data fusion. In light of the pre-
vious remarks (again, see Figure 3), fusion is a pro-
cess intermediate with igitial sensing and hypotheses
formylations, within a C” node complex of decision-
makers. In addition, the fusfon process decomposes in-
to natural subprocesses (see Figure 1). Thus, in
essence, we wish to expand the first relative primi-
tive tntranodal retation appearing in Table 2 :

P(FU) = p(H(D,S) , (3.1}
where for reasons of convenience from now on we sup-
gruss the denotional-time indices, unless necessary.
As stated before, p need not necessarily refer to ord-

“ Ynary probability evaluation, but may represent other

evaluations such as possibilities for ladeh's Fuzzy
Logic or for more general multivalued truth systems.

In determining the above evaluation, another var-
fable Z is often present. I represents the vector of
auxiliary or "nuisance" characteristics or attributes
which can be useful In connecting H, the variable rep-
resenting possible hypotheses or decisfons as to what
unknown parameter value or situation or diagnosis is
occurring, with input data S and detection state D.
Thui for example, 1f we are physically in a bunker-

a €° node- S may be observed loud noise, with D=1
{definitely detected), and H could have possible do-
maln values say Jom(H)‘(H‘....HS) as given in Table 3
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Vv sy,

"l » no change in previous situation

nz = enemy is about to mount the promised big
offense

N3 = enemy is just feeling us ouz
H‘ * enemy wants to negotiate

g = none of the above situations hold

Table 3. Typical Set of Values for dom(H).

Thus ,dom(H) could serve as a legimate sample
space, if conditiona) probability p(H|D,S) could be
obtafned for all possible values of H in dom(H), {.e.
(#]0,S) could be interpreted as a random variable
over dom(H). In this case, suppose also that Z is an
auxiliary variable representing any of a likewise col-
lection of disjoint exhaustive situations locally go-
ing on at the bunker. Here let dom(Z) be given as in
Table Dbelow:

s nothing happening
= accidental explosion in compartment 11
= accidental explosion in compartment #2

= enemy shot missile at us and 1t either
hit us or just missed

Z5 = nane of the abave situations hold

N ONNN
P T N g

Table 4, Typical Sat of Yalues for dom{2).

Thus, again by disjointness and exhaustion, it
fs reasonable to conclude that dom{2) could serve as
a4 legitimate sample space and 2 can be interpreted as
4 random varfable. All of this leads to the evaluation
of the cunditional probabilities p(Z]D,S), which to-
gether with the values far P(H|0,S) can be used to
obtain the standard "integrated-out” form for the post-
erfor distribution of H as given below®

p(H-HJID&S)L‘Z‘p(HJLZ‘ID&S)

s
= J plz,1085)-p(H, |7 8085) (3.2)
1

1s
using the standard chaining property of conditional
probabilities and replacing the antecedent comma no-
tation by conjunctions. One could reasonably interpret
the evaluation in (3,2) as the probability value for
the expression
6.3

“If D and S,then Hj“
through the probability values for the expressions

"If.0 and S, then Zi" and "If Zi and D and S, then H]
(3.4)

Of course, one need not use the above evaluation ex-
actly to obtain useful equivalent values. As {1t stands
P(Z |08S) can be interpreted as an error or varfability
prodabfifty for attribute Z, while p(H.|7,8085) can be
understood to mean the inference rule ro&abllity com-
necting 2 and 0 and S with H. On the other hand, often

the conditfonal data or regression probability
”(Slzi‘NJ) and the joint prior probdability p(Zi&MJ)

are available, assuming here D=1, which by yse of
Bayes' theorem also yields p(u-ujlo&s). One standard

result is to assume the above probabilities are
gaussian, which in the discrete problem here, must
serve as very rough approximations- in addition, the
sets dom{H) and domfZ§ are not easily ordered com-
patible with a real domafn for gaussfan random var-
iables . Then, if the mean of the conditiona) data
distribution is linear In the data S, p(H 87 [S)
Ltdkes an a gencralized weiahted least squﬂral form.
(See, e.g. EG].) The final result, p(HtHJIS), as in

{ 3.2), Is then a mixture of the probabflities of
such least squares estimators.

4. STRUCTURE FOR DATA FUSION: THE CLASSICAL
PROBABILITY CASE MODIFIED

Retaining the same terminoloqy as before, <up-
puse now that H,2,S are vartables such that any of
the corresponding “sample spaces” do not truly con-
tain disjoint exhaustive events; in particular, the
disjcintness condition may be violated more often
than exhaustiveness- which we will assume here is
always satisfied. Then 1t follows that simple cor-
responding probability measures as fn fection 4 can-
not be immedfately assigned. Nor should "brute-
force” normalization procedures be emplayed, unless
absolutely necessary. For example, consider H. Sup-
pose in the above example in Section 8 (Table 3). the
enemy could simultaneously mount the promised offense
(H,), vet alsu be feeling us out for peace (H.), or,
evgn additionally, wanting to negotfate (H,). ?hus. in
that case, dom(H)={H,,..,H .}, as it standd, 1s pot a
suitable sample spacé of disjoint elementary events.
Indeed, the elementary events H, are not so element-
ary, many of them, due to complBx causes, being over-
Yapping! Equivalently, H in its current form may not
be a lenitimate random vartable, What to do?

In particular, consfder the crucfal expression Q
for data fusicn appearing as primitive intranodal re-
lation (1) in Table 2, sans the probability evalua-

tivn,and in natural language form:
29 1roas, thea He. 4.1)
In symbolic form, where o represents &, v repre-
sents "or®, ( )' represents "not®, ¥ represents impif-
cation,

Q =(D-S 3 H), (4.2)

( See= N 1*“\:9!’:!1\ 4)

Suppose a formal! language o& propositions satis-
fles constraints (a},(b),(c),(d)% Suppose also that
variables D,S,M,Z are to be interpreted as before in
the genera) sense and are such that (i) and (11) are
satisfied*, where constraints (*) are given in
[1], Section 6. Then:

Theorem 2,

0= y ¢(2,:0,5:H), (4.3)
Zi ¢ aeal)
where for all Zi in dem{2),
§(2,:0,5;H) LT Z,+H)
= g(Z];D,S}'h(H;Zl:D.S). (4.4)
where
g(Z‘;D,S) = (D:S 3 21) (4.5




can be iInterpreted as an attribute variability or
error form and

h(N;Zi;D.S) » (zi-n-s I H)

(4.6 )

can be interpreted as an inference rule connecting Z‘
and H,

.
Given vartables D,S,H and auxiliary variable 23
Next, for convenience define for all {,J
of(Dsa2) ; a, 4 (05 3 z) (4.7 )

g 9(2-0-5 3 w) ¢ (z,-005 3 H). (4.8)

H ij
dom{a) = (a;l1el) *=' dom(2) = (z,]1c1), (4.9)

dom(8) = “‘u““-"‘” ‘*=' dom(Z)xdom(H)

= ((Zi,HJ)licl,JcJ). (4.10)
g i s 3

Theorem 3.([S ], Chapter 5) (Secll;Thecren 5.)

Let poss cdom ) < [0,1] be any function, perhaps
representing the expert opinions of a panel, as human
integrators of {nformation, taking into account the

complex and possible averlappin ¢
events in dom( ) PPIng natures of the

Then make the following semantic evaluation of @
preserving the formal structure in Theorem 2:

poss(Q = 9} = poss(Q = (0-S 3 HJ))

.'.orloslpossc(u'),possa(sij)))
{el
Then: (4.02)
poss(Q'Qj) = poss( Aj s, x spt 9
=Pl A n(S xSt e)

= plausg , ¢ (AJ) . (4.13)
e "B
where p1aus$ xS denotes the plausibility or upper
a B

probabilfty measure with respect to random subset
Sq! Sa of dom(a)<dom(8).
Remarks .

For related results, see the multivalued ¢
logic and fu2zy set approach to correlation and
tracking through the PACT algorithm [3]. For
aenera1 background, see [S ],Ch. 3,4, Shafer [7]

eveloped use of plausibility measures and other bi-
Jectively related functions, Such as "belief" and
"doubt” mcasures 1n modeling combination of evidence
problems . However, Hguyen [ @] has emphasized, via
Choquet's Capacity Thecrem which characterizes such
functions in terms of both their random set connect-
fons and their generalized Poincaré expanston forms,
that such “measures” require (yl) srecification nf
the assoctated random {sub)sets.

8§, STRUCTURE FOR DATA FUSI[OM: THE GENEKAL
COMBINATION OF EVIDENCE CASE

Let us return to the formal language aspect of
Jdata fusion as given 1n Theorem 3. In genersl know-

ledge-based systems,such as medical diagnosis ones,
consist of & collection of Inference rules corres-
ponding to A(H;Z.;D,S) Vinking e‘-ner observed data,
such as 0,S or p&rtions of intermediate varfable
with other portions of I or with diagnoses directly,
played by the role of variable H. Similar comments

hold for the attribute varfability term g(Z‘;D.S).

The somawhat similar, but more general structure
for such systems is given a9
n (5.1)
(e (j (2, 040,59k (Z,,4.:0,5))
Z1 ¢ dom(2} k=1 k1 kK 1° )

L |

Jyig Py
representing (0-S 3 H), where for all k, 4, and &
are,possibly expert.derived, boolean functions ,i.e.,
combinations of operatfons » , v , ()’

Next, to complete the general data fusion theory
again referring to Figure 1, we must choose an ALDP,
t,e., a patr consisting of a compatible choice of
formal language followed by 2 semantic evaluation or
logic.

Consider then as reasonable candidates for the
evaluation of (5.1),ALDP 1,2,3 as in Figure ¥.

Again, 1t can be shown quite readily the first 3
ALDP examples in Figure 1 are such that their forma!l
Yanguage components satisfy (a}-(d),Theorem 2 , when
implication s {interpreted as

3 -Q. (5-1’

where for all q,B8

(8 +a) S8 v a). (5.3)

Details of these evaluations are given in [ 1]
Section 7, However, for fixed antecedents. 1t {s
seen there that negation and disjoint union(+) fail
in all of these ALDP's to yleld homomorphiems, but
ALOP & to be explained in the next section) does po-
sess this property- indeed it is a characterizing
relation.

Counsider next:
plag 33} = pl8) va ) = V1-pllBiva }')= 1-p(8 +ay)
= pla l8,) + plalis ) - p(B ea’)
= plaglag) + plagle,) - plogle )-ple))
= pla 8 ) + plage,)pls;)

L4

(5.4)
(5.5 )

pla,l8,)
2 p(ao'ao) .

where the conditional probability is defined as wsual
as, e.9.,

pla 18,) g Plagee )/p(3)), (5.G)

provided p(uo) > 0.

The above 1nequalities are strict,in general, and
show that, basically, we cannot identify implication,
4 defined tn the formal language (o) via eg.(S5.2),
with ¢ “conditional object” such as (a [8 ), otherwise
this would, following evaluations by p°an9 making the
natural tdentification

LR Sl Lt 0u A 8 A0 8 20 aVh a¥) o0 204 o H |

ey o Tl
v "‘ ‘\.,‘w n‘t.-'b';.‘ \.‘_s!"‘l.‘.\“.“. Qt‘.q‘.'-".ﬁ'... ‘V

SN T AT AR N W S e e |




e . e e

bty JE 2 VIS

pllagle )) = plagle,) | (5.7)

contradict the fnequality in (5.4 ). Hence the behavior
of cunditional probabilities, while roughly resembling
that of the probability of fmplications is not the

sdme - indeed, one can, by choosing judiciously g

close to 8 fn some natural sense, make p(8y9 op)
approach untty, while for the same choice of ay.Bo
p‘“olﬂo) approaches zero. The significance of these

results will be explored further in the next section,
where we develop an ALDP (4) where formal implications
coo ﬂo can be fdentified with “conditional objects"

(nolao), whese semantic evaluations as in (5.7 ) are

conditional probabilities; hut in light of the above
remarks, necessarily these entities lie outside of the
original space of proposftions Q.

6. DATA FUSION ARD CONDITIONAL O0BJECTS

In Section 5, we have seen how a general infer-
ence rule structure for data fusion can be evaluated
through three different approaches ALOP 1-3. In all of
these, the key connector for inference 3 was inter-
preted in the formal language components as < as
given in eq.(5.3 ). On the other hand a natural - and
commonly used - semantic evaluation for inference
rules is through condftional probabilities. That is,
the evaluation of a typical form (jkij 3 hkij) is

p(kk’J|Jkij) for some choice of probability measure

p over A, the set of all events or propositions, which
for purposes of simplicity, from now on is assumed to
be a boolean algsbra. With this choice of evaluation,
apropos to the spirit of this paper, we seek a formal
language which will be compatible with these evalua-
tions,i.e., will form an ALDP.

However, as pointed out in the discussion {n the
previous section centered around (5.4 )}, one cannot
icent{fy implication via (5.2 ) with conditioning
as evaluated in (5.7 . The apparently commonly-held
belief that such an identification can be made with
no serious consequences, often called in the litera-
ture of laogic as Stalnaker's Thesis [9 ], was attacked
by Lewis [10] and independently by Calabrese (11]. The
latter indeed showed,by use of a simple canonical ex-
pansion, that not only = in (5.2 ) would not work,
but any boolean function of two variables could not be
used to play the role of conditioning, compatible
with conditional probability avaluations.

Moreover, it would be particularly desirable, to
replace this rather flawed situatfon, with an ALOP
which would yield feasible computations for data
fusfon or at least be on the same order of complexity
as ALDP 1,2,3, Note of course, if truly all {nference
rule antecedents are identical, as 1s the case es-
sentially in Sections 3,3 , then there {s no rea!
need to work with condftional objects, since all con-
ditioned events cin he simply considered as uncon-
ditional anes relattive to thefr intersections with the
fixed cumnon antecedent, Or one can stick with the
interpretation of fmplication as in (5.2 ). (Compatible
with this result | note the homomarphic relations
for implication < w.r.t. disjunction and conjunction
- but not negation - as given in eqs.(7.4) (7.5)of11.)

But,for the modeling of data tusion through in-
ference rules with varying antecedents, no such direct

-6-
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simplification occurs ana the develupment of such con-
ditional objects would address the problem. Although
we have stated abuve that tmplication opurator = for
a fixed antecedent ylelds homomorpnic relations fur
v.&, but not ( }', conditional probabilities are come
patible with homomorphic relations holdtng for al)
three operations, for any fixed antecedentsi.e.] ob-
viously, for all “o‘ao'Yo eh,

Pllaglyy) ) =1 - pla |y ) » plaslv,), (6.1)
pllagtry) v (8 1y )) = plagv 8 1v,) , (6.2)
P((aolvo)°(ﬂolvo)) s p(ao-aolyo) . (6.3)

Recall also the operation + over o , which fn
terns of v, «, ( )' 1s , for any a8, €@

C|0+ ﬁo= 30-30 v ac'z‘ﬂo' (6.4)

and conversely,
a v 80 = o,t Bo* uo'Bo (6¢.5)
o; = uo* 1. (6.6)

Noting that also, for any uo,ﬁo'c a,

pla 1) = pla -8 [8)) . (6.8)
the wext result shows that under quite mild and sinple
conditions, conditional objects are essentially char-
acterized:

Theorem 4. Characterization of conditional objects
—  D2]

- Given boolean ring £, there is a unigque spece
1l of smallest poscible classes -~ according to subset
partial ordering-danoted zc the conditional objects
(o lvg) o (B Iy ) (8 le )., ForaTTa T8 Ty Le .

.. £ 0 ., such that the measure-free counterparts of
(¢.1)-(6.3) and (6.8) hold. That is,

Caglv )t = Loy lv,) o (€.9)
(BOIYO) v (5°|7°) = (aov BolYo)' (€.10)
(aglv,) = (8ylv ) = (a8 1v,)s (6.11)

anc equivalent to (6.9)-(€.11), one can require eqs.
(6.11) and

(aglvy) + (8,1v,) = (ag* 8 1v,) (6.12}

to hold; and
(aglvy) = agtvglvg ). {6.13)

Specifically, such conditional objects consti-
tute all possible principal {deal casets of ring 2,
where for any agr, € a,

Y o2 ey ot
(GOlTO' e ‘D aC

S eyl otaty T RTYL OV oagtY

o o o
i caven, (g4
2 ixe t o vy IX oy Loy, v, .
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Lcaaf: Use first the basic homomorphism theorem for
quotient rings and the cquivalence class property
of cosets applied to (6.11). Again, see [12]).

. [ ]

For a histor} of previous work in this area,
see [1], Section 8.

In the approach taken here, duvelopinq all re-
sylts from first principles considerations, the re-
quired operations upon conditional nbjects are defin-
ed simply as the natural class or component-wise ex-

tensions of the origina) operations, Thus, for exam-
ple,let ao.ao.yo.ao ¢ 0 arbitrary. The natural class

extension of ¢ applied now to (aolao) . (yoldo), not-

ing each conditional object §s in reality via (G.14)
a subset of , ylelds:

(a l6,) » (v le,) = ta » rlqe(a 8 ) rely 16,))
= ((x-8) + a ) (y-65 + vJ|xyer)
< 0. (6.15)

The basic structure of the condftional object
extension R of A is summarized next,

Theorem 5. Basic structure of i {12]1,(13],[14].
(1) In terms of quotient rings,
Q- u(ﬂ/ﬂ*ya)- u((l/ﬂ'yo)- (6.16)
yocn yocn

(11) Conditioning as defined here can be identified
essentfally as the functional inverse of one-sided
conjunction,i.e., conditional objects (u°|7°) all sat-

isfy the basic relation analogous ta (B.6) for
condittonal probabilities and a related condition:

(aglvg)evg = 857, (6.17)
snd
(aglvy) = (xlx € 0, xovy = a ey ). (6.18)

(i11) The natural class extensfons of all beolean
operations from 00 to 1 are well-defined/closed with
ring-11ke properties,f.e., in the same previous
sense, 0 1s a modified boolean algebra.

(iv) ngf ,
since for all a, € f, (6.14) shows immediately that
(ooll) -(oo} . (6.19)

(v) Also, partial order s defined over i, character-
ized by , for anya_, £ € &,

() ()

. =
a°$ Bo iff s, - °, ao iff Bo Bo
can be extended directly to §i with the same charac-
terizations as in (6.20) where(unconditional) ob-
jects in 0 are replaced by condittonal ones in 0,
Then,combining this with (ii1) and {(iv) establishes
(f.v.o.( )*,+;5) as a natura) extensfon of its
unconditiona) counterpart (a,v,=,( )’ ,+;5).

{vi) A basic calulus of operatfons is , in addition
tu the properties in (6.9)-(6.13) for any a;wy, ¢ 0,

Ve, ,(6.20)

-7

{=1,..,m, m2l,
n( l ) ('l ,lﬂ m
vi{ady,) =lva,lva,ey, v ¢ y,}).(6.21}
gy pe Vg T g

N .ﬂ( I ) m |ll m
s (o vy =(+a,] valry, v '+ yv,),.(6.22)
=1 U T a

o e (.m | @
¢ (a y;) = ( +a.l - v.). ) (6.23)
T DL RS R

Noting the reductions of (6.21)-(&.23) when
antecedent YRRt . 3S in (€.9)-(6.12), 1t

follows that all boolean operaticnal extensions
over f) coincide with corresponding coset operations
when restricted to a fixed quotient ring, here

/. 1:) .

(vi1) As a special case of (6.22), the following
chaining condition holds for all oo.so.yo €0

(agesglyy) = (8 1v ) (ag 18 - v,). (6.24)

Proof: The most difficult proof is that of (6.22).
K sketch of the proof for the case m=2 is given in
[13], Theorem 3.1, a full proof {s presented in [12
where all other proofs are also given.

|

Remarks .

Apropos to TreoremS (1), it follows that all
results in the theury and application of 1inear
{w.r.t. « over v) boolean equations, such as pre-
sented in [15),can be reinterpwted in terms of con-
ditional objects. Extensions of the concept of con-
ditioning to more general structures than boolean,
such as modified boolean,or Von Neumann regular, or
E? 3 category theory setting,have been considered

2].

Many other mathematical properties have been
derived for conditional objects, facluding: char-
acterizations for {terated conditional objects,i.e.,
conditional objects whose antecedent and consequence
are also conditional objects; extensions of Stone's
Representation Theorem to conditional objects; de-
velopment uf an outer approximation technique to
force closure for non-boolean functions, including
arithmetic operations over conditional objects; rela-
tions established between ordinary conditional random
variables and a randomized version of conditional ob-
Jects; and establishment of various probabilistic
connections, Such as messure-free independence; meas-
ure-free bayesian and sequential learning forms; and
the proof that the extension of any probability
measure p:ft + [0,1] to p:fi = [0,1] through eq.(S.7)
yields for the extensfon a monotone function.( Again,
see [12)-[14], for further details.)

Most importantly here, analoguer of calculus of
relations for ALOP 1 (13, {7.2)-(7.7)) hold for cor-
dittonal objects, as Theorem S shows. Moreover, the
hypotheses for Theorem 2 all hold here. At this point
let us define ALDP 4, for a given boolean algebra 0
as simply

ALDP 4 = (f1,p), (€.25)

where p:it -~ [0,1] is the conditfona)l probability ex-
tension of p:a ~ [0,1], as mentioned above and where
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implication is interpretec as conditioning, §.e., for
all uo.ﬁo €,

(8, 2 o) = (uolﬂo). (6.26)
(Mote that {mplication or conditioning here s re-
stricted to be upon unconditional elements, 1.e. el-
ements of 0, not upon other properly cunditional ob-
Jects. Some results indicate a possible fdentification
of tterated conditional forms with simple conditional
objects({l4 ],Section 4} so that in a sense this re-
striction may be unnecessary.)

Finally, consider use of ALDP 4 in evaluating
data fusion expression Q in (S.1):

Direct use of (6.21) and (6.22) show that
n

Q=0,) = ( - (& (L ie) ) )
Pt J) 9(21: dom(Z) k=1 kijljkij

= p(¢(ﬂj;D,S)IA(HJ;D.S)vq(HJ;D.S))
: P(A(HJ;D.S)L/p(A(HJ;D.S)VQ(HJ;D.S)).

(6.27)
where ¢ mn " |
q(HJ;D.S) : ( '(kl.(i.j.jki.l)vk:lluj
Zic dom(Z) k=1 (6.28)
and

m
(h;0,8) ¢ v . 4. ). (6.2
¢ J ) 21: dom(2) kﬂ(hku ’HJ)) (6.21)

Thus, due to the calculus of nperations given in
Theoran 5, computations for data fusion using ALDP i,
with implication {nterpreted as a cenditioning,con-
patible with conditional probabili{ties, appears no
more complex than that for the other choices of ALDP's.

7 . SUMMARY AND FUTURE DIRECTIONS

Because obviously €? systems are large scale
ones, relatively few attempts have been made at ap-
proaching such systems from the viewpoint presented
vw this paper: a microscopic bottom's up approach,
Indeed, the system branching problem is so formid-
able, that for any realistic implementation, prun-
ing techniques are necessary at all stages of model-
ing. However, this should not preclude anyone ~ §f
even nafvely - from attempting a first cut, first-
principles approach, without any such abridgment.
Such a theoretical structure can serve as a common
framework or languags for comparing and contrasting
entire or parts of CJ "theories”. Furthermore, this
generic model could be useful in rigorizing overall
C3 activities within a unified framework and pro-
vide insights not available from a sftuation-spe-
sific or only local level. 1In a similar vein, data
fusion l§ considered hereas an integral part of a
larger C- structure and identified with the com-
bination of evidence problem,

As for future directions, further work must
be done in fntegrating the cognitive process phase
with the full semantic evaluation carried out for
chofce of an ALDP, This s“ould include mental im-
aging and related thought processes. Alternative
data fusion structures,such as recursive forms anal-
ogous to Kalman filter forms, will also bs consid-
ered. Tie-ins with proposed macrascopic €' models
have yet to be carried out.
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