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A PROBABILISTIC / POSSIBILISTIC APPROACH TO MODELING C3 SYSTEMS: PART II

I.R. Goodman

Command & Control Department
Code 421

NAVAL OCEAN SYSTEMS CENTER

San Diego, California 92152

ABSTRACT

This paper continues the work begun i the In a mere modest way. this paper seeks to estab-
last Proceedings (gth 5IT/ONR Workshop on C Sys- lish a theory unifying, coordinating, and extending
tems). In that work, C systems are considered as the somewhat-appearing distinct conSepts of data fus-
interacting networks of decision-making node com- ion, combination of evidence, and C systems analysis.
plexes characterized by system or process variables. On the other hand, relatively little attention will be
Internodal relations are modeled through nonlinear paid here to detailed computational techniques which
additive (in the generalsense) regression relations; are particular to certain types of common data fusion
Intranodal relations are made to follow a general problems suchas regression procedures for combining
SHOR (Sense-Hypothesize-Option-Response) paradigm, stochastic sensor information, or maximum likelihood
In turn, it is shown that a collection of ten types or Bayesian procedures for putting together geoloca-
of relatively primitive Jmplication or conditional tion data arriving from different sources relative
relations PRIM between CJ variables for enemy and to a given target of interest. All of the above-men-
friendly component systems determines all updated tioned techniques are essentially special cases of
marginal node State distributions. (Distributions a much more general combination of evidence approach.

can be in the classical probabilisitic sense or on which this paFrr will concentrate.
more generally in3a multi-valued logical sense.) Previously, this author proposed a bottomsjup,
This leads to a C decision game, where the loss microscopic, quantitative approach to general C sys-
function is some picked combination of measures of tems 4, In that approach, a generic C3 system
performance or effectiveness derived from node is identitied as a netwnrk of node complexes of de-
states and where each decision strategy corresponds cision-makers, human or automated, interfacing with

eof PRIM for each c3 system. each other in general. Each node receives "signals"-to some choice owhich mdy be ordinary communication signals, either
In the present work, emphasis is placed upon from friendly or hostile sources (possibly unaware),

model refinement. In particular, the intranodal re- or which may be received weapon fire. In general,
lation representing data fusion is expanded and these "signals" are stacked vectors comprised of in-
analyzed. This expansion is characterized by a coming data from several different nodes. In turn,
weighted sum of products for the classical proba- each node-which may consist of a single decision-
bility case and extended to a more general form maker or some coalition of decision-makers and which

for multi-valued logics. A number of results in- may include passive type decision-makers, such as

volving this general form are presented, including: "followers" -then processes the data. This Is follow-

Justification for use of expert-derived information ed by a response or action taken towards other nodes,

for inference rules and other factors/tie-ins with friendly or hostile. (EI],Figure 1.1 Associated with

plausibility measures; characterizations of formal each node is the node state (I ], Figure 2.) describing

language symbolizations and related data fusion the current state-of-affairs given in terms of a num-

results; and a new approach to data fusion evalua- ber of functions such as threat level, equations of

tion through algebraic logicdeveloping a formal motion, and supply level. In addition, there is an as-

counterpart to conditional probablities-"con- sociated knowledge base reflecting the node's local

ditional objects"for consistent manipulation of knowledge of the other Podes (friendly or adversary).
Also associated with each node Is its internal "signal"

disparate data. processing design, as described in Figure 3. There,

data fusion plays a central role in transmitting de-
l. INTRODUCTION tected "signals" to hypotheses formulations, which in

turn through algorithm selection leads to an output
This paper, for the most part, is an abrldg- respunse to other nodes (again, these may be friendly

ment of a much longer version [l. or adversary).

For the past several years, throughout many fields Next, since we identify data fusion with the corn-
o0 science and technoloagy, researchers hdve been seek- Lining of evidence, all of the knowledge-based system
i',j unification and extension of past results in order techni4ues associated with the latter are available. -
to explain reality better and to be able to predict In particular, this infers (see [5]. Chapters 1,2
future developments. Recent events ir, theoreticl and Figure I, page 14) that a series of underlying
physics involving "superstring" theory, an attempt at processes are Involved In data fk_.cn. Basically,
developing a Grand Unified Theory of the Universe, trere are five such processes (irkluding natural
underscore this quest £ ]. language in its broadest conteKt) yivcn in Figure I
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node in question in terms of the C3 system a (friend-_ that cnuld be used include:averaged measure of import-
ly or hostile) and nole number I, while k represents ance ; averaged measure of threat '-Wk ; upper
a discrete time i dex t Specificall l , the relation t and averaged measure of

breaks down Into 5 Intrinodal (within -nodes) rela- toea,k
Cgeso rec- 

al optal h
tions, 2 interodal (between nodes) or refression re- performance , all computable throu.3h p(h .)s
lations, asid 3 prior relations for each C system. 

3

rhese relations are expressed In terms of conditional f C system a, by use of Theorem 1. (See also ['i],

ur unconditional probabilities, as they stand, but eqs.b9)-(6).) Then one could let

the 0Jj " t extended with appropriate replace- MOE - (-..4)
merits, ta 3.a-MultkvAl.ud Ing 11m-t . (Again, see MOEk M OElok -O2,k

[41.) Then by making certain reasonable sufficiency
assumptions among the varidbles and utilizing basic where
properties of conditional probabilities-, it can be MOE xT . I * T" + 3'N k
shown that each updated node state can be obtained a~k a~k 2 ak a.k

explicitly in(probab1llsttc) terms of the other vari- + 4 " €'k (1T
ables and node states throgh PRIM. Thus. we have:

and the ki's are some predetermined weightings.
Theorem 1. (See [4]. Theorem 1.) Symbolically, the C3 decision game appears &5

Suppose PRIMI and N are as described above given In Figure 1.

with PRIMk given in further details In Tabl 2Z. Finally, one can then jpply all the usual game-

Then, under certain reasonable sufficiency theoretic methods to this C game, such as seeking

Thndiuns (sf Bayes decision functions for moves, least favorable
co dtions [4(PR ) (1) strategies (all subject to practical constraints),

ANgk) k k minimax strategies, the game value, and various sensi-
where '9 Is a computable functional involving a fi- tivity measures. It is the long-range hope that such

g k a jame will be a useful decision-aid in planning com-
nite number of integrations and arithmetic operations mend strategy. At present, a relatively simple Imple-
upon the elements of PRIk given in Table 1. mentation scheme Is being carried ous for testing the

m feasibility of such an approach to C systems.
(I) .. 'Pi-q.jIoq.k.Sg,,) ,(3)9.ktl P(el l ; L, ,. j

9"k-l 'J ' 3. STRUCTURE FOR DATA FUSION: THE CLASSICAL

_ (S . - P(O%.IS1, , 9. PROBABILITY CASE
' (a)n t p(i I (IS]).. ~ha~~- ,}

r" w (
5
) • 'With the general C3 system context for data

o- 9 INO)P(s fusion established in the previous sections, let us
SI nov. return to the task of developing a general quanti-
-i.ql.viwi Pi*t..i , I tative structure for data fusion. in light of the pre-

vious remarks (again, see Figure 3), fusion is a pro-
- .bsi tt().I a(Va.l hi .hDl.)" v. R le 2. cess intermediate with litial sensing and hypotheses

The basic internooal anl)sis is d d v.7 Rel ,frti e forPmulations, within a C node complex of decision-
1a'.ivo nolinear regrelion relaitio Aittn for C' makers. In addition, the fusion process decomposes in-

IS (R or. Gysten S. to natural subprocesses (see Figure 1). Thus, in
h'k 9(~i.: where i essence, we wish to expand the first relative primi-

.r.ere vaia1ble igk ndicates original i.stlt indi1cates
. 

nodt i. A''
k Indicites tm. tive Intranodal relation appearing in Table :-

re~atioft s$by kmabnottier$O madef~ fnat 1-1iLtl k 1v ne. P(FU) - p(HIDS) , 3 .1 )
In turn. a simple two-ps rson zero sum game can

be established, called the C decision game. Here, where for reasons of convenience from now on we sup-
Player I corresponds to ent-7e -i system a-1 (sp, prEss the denotional-time indices, unless necessary.
friendly) and Player I corresponds to entire C sys- As stated before, p need not necessarily refer to ord-
ten a- (say, adversary). In this game, a move by in.ry probability evaluation, but may represent other
Player J correspo ds to a choice (up to given con- evaluations such as possibilities for Zadeh'S Fuzzy

straints) of PRIMi 1, .J-1,11, and the resulting Logic or for more general multivalued truth systems.
loss or utility due to any such joint move L is a
function of the marginal updated node irtate aistrt- In determining the above evaluation, another var-

butions. according to Theorem 1 as fable Z is often present. Z represents the vector of
auxiliary or "nuisance" characteristics or attributes

Lk(PRIMk)-MOEk((P(N%,k)all 9)) which can be useful in connecting H, the variable rep-
resentiig possible hypotheses or decisions as to what

* , HO~ k(PRI~k)Ial 1 g)', unknown parameter value or situation or diagnosis is
k . . occurring, with input data S and detection state 0.wt g Thu) for example, If we are physically in a bunker-

where MOE represents d sfn-jle fiare-of-wtrit, coi- d C node- S niidy be observed loud noise, with Dl

bining v'ious measures of effectiver, s (iut'') or (definitely detcted), and H could have possible do-

performance (mop's) for the two C2 systems. (',ote, that main values sa.v .ou(H)'(H .H 5) as given in Table 3
although ideally the entire Joint node staLe distri-
button of the two C3 systems shoulj be -bu-jiit, in
pr-ctice this is difficult to do, hecaue of t,.e great
conbilnatoric computations involve..) Typic.i moe's

-3--



no change are available, assuming here D-1. which by use ofI in previous situation Uayes' theorem also yields p(II-H jDOS). One standard
N2 a enemy is about to mount the promised big result is tt assume tie above probabilities are

offense. gaussian, which in the discrete problem here, must
N) a enemy is just feeling us out serve as very rough approximations- in addition, the

sets dom(H) and dom(Z) are not easily ordered crm-H4 a enemy wants to negotiate patiblr with a real domain for gaussian random var-
ibles . Then, if the mean of the conditional data15 , none of the above situations hold distribution is linear in the data S, p(H &Z IS)
t.dkes one generalized wei-ht.d least squdral form.

Table 3. Typical Set of Values for dom(H). (See. e.g. [6].) The final result. p(H-H 1S), as in

(3.2), Is then a mixture of the probabilities of
Thusdom(Hi) could serve as a legimate sample such least squares estimators.

space, if conditional probability p .HID,S) could be
obtained for all possible values of H in dom(H). i.e.
(HID.S) could be interpreted as a random variable 4. STPUCTI RE FOR DATA FUSION: THE CLASSICAL
over dom(H). In this case, suppose also that Z Is an PROBABILITY CASE MODIFIED
auxiliary variable representing any of a likewise col-
lection of disjoint exhaustive situations locally go- Retaining the same terminology as before, Sup-
ing on at the bunker. Herelet dom(Z) be given as in pUse now that H,Z,S are variables such that any of
Table below: the corresponding "sample spaces" do not truly con-

tin disjoint exhaustive events; in particular, the
disjointness condition may be violated more oftenI nothing happening thdn exhaustiveness- which we will assume here Is

Z , accidental explosion in compartment 11 always satisfied. Then it follows that simple cor-2 d2 rspondiag probability measures as in Lection 4 can-
3  accidental explosion in compartment #2 not be immediately asslgned. Nor should "brute-

Z s enemy shot missile at us and It either force" normalization procedures be employed, unlesshit us or just missed absolutely necessary. For example, consider H. Sup-
pose in the above exdmple in Section S (Table 3). the

5  none of the above situations hold enemy could simultaneously mount the promised offense
(If ), yet also be feeling us out for peace (H ), or,

Table +. Typical Set of Values for dom(Z). even additionally, wanting to negotiate (H ) hus. In
that case, dom(H)(H -' H ), as it stands, is n=t a
suitable sample spac of ds joint elementary events.

Thus, again by disjointness and exhaustion, it Indeed, the elementary events H, are not so element-
is reasonable to conclude that dom(Z) could serve as ary. many of them, due to compl x causes, being over-
a legitimdte sample space and Z can be interpreted as lapping! Equivalently, H in its current form may not
a random variable. All of this leads to the evaluation be a leqlitiMate rAIndom variable. What to do?
of the cunditional probabillties p(ZJD.S). which to- In particular, consider the crucial expression
gether with the values for P(HjO,S) can be used to for data fusion appearing as primitive intranodal re-
obtain the standard "integrated-out" form for the post- lation (1) in Table 2, sans the probability evalua-
erior distribution of H as given below. tun.and In natural language form:

5
p(H-H i (&S) p(Hj&Z,1 U&S)Q "If 0 & S, then H". (4.1)

S In symobolic form. where & represents &, v repre-
a P(Z ID&S).P(H 1Z LD&SC) (3.2) snsIs~oi om hr- (ZID&S)p(HlZI&& . , (.2) sents "or". P ) represents 'not", * represents Impli-

i-l cation,

using the standard chaining property of conditional
probabilities and replacing the antecedent coma no- Q -(D-S 4 H). (4.2)
tatlon by conjunctions. One could reasonably interpret
the evaluation in (3.2) as the probability value for Theorem 2. ( Set- lThcarea, 4%)
the expression Suppose a formal language of propositions satis-

"if D and S,then H (33) fies constraints (a),(b),(c),(d). Suppose also that

variables D,S,IiZ are to be interpreted as before in
through the probability values for the expressions the genera) sense and are such that (I) and (ii) aret h r o g h h e r o b ~ i l i t y a l u e f o t h e xp e s s o n ss a t i s f i e d ,  w h e r e c o n s t r a i n t s ( * ) a r e g i v e n i n

"If. 0 and S, then 2i" and "If Z and D and S, then H] fl], Section 6. Thenr

Q~4 v I(: -,S;H). (4.3
Of course, one need not use the above evaluation ex- i
actly to obtain useful equivalent values. As it stands% where for all Z in dcm(Z),

Q IOLS) can be interpreted as an error or variability
proability for attribute Z, while p(H 1Z &O&S) can b(
understood to mean the inference rule ro 1abiity cow- I S;II) d( . a ZiH)
necting 7 and 0 and S with H. On the other hand, often ,(Z ;D,S1.h(H;Z ;Ds), (4.-f
the conditional data a, re(eresiol prubbilt where 1
i(SiZ~i) and the joint prior probability p(Z i wh

I j(Z 1 ;D,S) - (D. a ZI )  (4.5S I

S-4-
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can be Interpreted as an attribute variability or ledge-based systems,such as medical diagnosis ones,
error form and consist of a collection of inference rules corres-

h(;,DS Z-- H) (4.6) ponding to h(H;Z. D,S) linking e,-,er observed data.
Ji(HZ1;,S) (Z1 D.Ssuch as D.S or p~rtlons of intermeliate variable Z

can he interpreted as an inference rule connecting Z with other portions of Z or with diagnoses directly,
and H. i played by the role of variable H. Similar coimments

I hold for the attribute variability term g(ZpOD.S).
Given variables OSH and auxiliary va'riable Z: The somoewhat similar, but more 9eneral structure
Next, for convenience define for all i,. for such systems is given 2ts

a 9 ( D S 4 Z ) a , 9 ( D S a Y 1  ( 4 .7 ) ( J(mH f , ) (5Z, H ; . ) )

0 9(Z.-S .4H) a (Z I*O.S a H J ). (4.8 Z £ dom(Z) k--l I I 'j -

da) (ailcIe) *- doo(Z) - (zIJL) (ia 4~,1 representing (0-S a H) , where for all k, j k and k k
doaC8) -(pIcjj *" Are,possibly expert.derived, boolean functions ,i.e.,

JiIJc1-'dom(Z)-~dom(H) combinations of operations * . V C ,
. ((Z1 IJ)IicIWr.icJ), (4.10) Next. to complete the general data fusion theory

A ~ (a ~)jillm((ZZH ia}again referring to Figure 1. we must choose an ALOP.
i' (.11 ij )iIf(I.i.HJij-. i.e., a pair consisting of a compatible choice of

(4.71) formal language followed by a semantic evaluation or
Theorem 3.([S]. Chapter 5) (SteEC1ncrei S.3 logic.

Let poss :dom( 0.11~i be: ±nU function, perhaps Consider then as reasonable candidates for the
representing the expert opinions of a panel, as human evaluation of (S.1),ALDP 1,2.3 as in Figure 1.
integrators of Information, taking into account the Again, it can be shown quite readily the first 3
complex and Possible overlapping natures of the ALOP examples in Figure I are such th~at their fnrmal
events in dom( ). language components satisfy (a)-(d),Theorefr. 2, when

Then make the following semantic evaluation of QI implication is Interpreted as
preserving the formal S truc ture inTheo rem 2.: a ., (5.2

poss(Q - Q) J poss(Q. = co-s 4 HJ)) where for all o.0i

idL1 (.4,12) Details of these evaluations are given in [1]I
Theft;Section 7. Iowcver, for fixed antecedents, it Is

poss(nQj) , poss( Aj n (S x 0 )seen there that negation and disjoint union(+1 fail
b ~in all of these ALDP's to yield horomorphisms, but

- p( A Jn(S a x )dji ALDP4(to be explained in the next section) does po-
J 8'~sess this property- indeed it is a characterizing

aplauss S (A) J 4~ relation.
a a Cun-gier ne'At

where plaussxS denotes the plausibility or upper p( 0 * ) - p(0' v 00) l -pU8O'Vo ) l -p(8'a)
o 0 00

probability measure with respect to random subset -P(%I800) +' P(aI 0.) - B
SC, S 0 of dom(Q~xdom(o). o~ o(~i)~poI8)-paJ

Remarks. -P(C01 )+P0,10 N e)PF0
To-r related results, see the multivalued Q10)+P -ps.logic and fuzzy set approach to correlation and 0o 0 0, P 0l~ o

tracking through the PACT algorithm ('3 ]. For ZPa1
qeneral background, see [5 ],Ch. 3,4. Shafer (7 a 0 ~Io
de veloped use of plausibility measures and other bi- 2 P~a*. ),
Jectively related functions, such as "belief" and 00
"doubt" measures in modeling combination of evidence whr tecodinlpobiiyisefedauua
problems. However, Nguyen (9) has emphasized, viawhrtecod inapobilyisefedsuul
Choquet's Capacity Theorem which characterizes such aseg.
functions in terms of both their random set connect-P( ) p( '(-.: )/p(i
ions and their generalized Poincart expansion forms, pc0e p0 ) 0 0
that Stich "measures' require "~4 soecification nf paie t 0 0
the associated randow flub~sets- The abuve inequalities are strict,ln general ,and

15, STRUCTURE FOR DATA FU [ON: THlE GENERAL show that~basicilly, we cannot idlentify implication.
COMBINATION OF EVIDENCE CASE d, lefiiied in the formal lang~.ge ( Via eq.(S.2l ),

wit d 'condi tional object" Such as (a 081 ) ,otherwise
Let us return to thi- formal linguiju .i~pect Of tt- would, following evaluations by p ans aIking the

data fusion as given In iheorvin 3. In general know- na:.oral idtntification

-5-
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P((anke)) - P(% 1lb) .i. ) sImplIfication occurs ano the develup ent of such con-ditiondl objects would address the problem. Although
Colitradict the inequality In (5.4). Hence the behavior we have Stdted above that Implication oporator - for
of conditional probabilities, while roughly resembling a fixed antecedent yields homomorphic relations fur
that of the probability of Implications is not the v.&. but not ( )', conditional probabilities are com.
same - indeed, one cAn, by choosing judiciously o patible with homomorphic relations holding for all
close to 0 in some natural sense, make p(do- .0) 0 three operations, for any fixed antecedent-i.e., ob-
approach unity, while for the same choice of t eo, viously, for all a 0o 1 0 ,
P(Ua 6) approaches zero. The significance of these 0

results will be explored further in the next section, p((Q Iy P) P - ) p(Q'Iyr) (6.1)
where we develop an ALDP (4) where formal implications o 0 o"~o 00'
a 0 0 o n be identlifid wtth "coditional objects' p((o l') v (0 lYo)) - p(Q0v ar) 0 (b.2)

(a 0 ). whose semantic evaluations as in (.7 ) are " )

conditional probabilities; but In light of the above o 0 0 0 0 0a
remarks, necessarily these entities lie outside of the
original space of propositions 0. Recall also the operation + over r , which In

terns of v,., ( )' is , for any a .u. 0

6. DATA FUSION AND CONDITIONAL OBJECTS 0 +0o' a -o V a o6.4

In Section 5, we have seen how a general infer- 3nd conversely,
ence rule structure for data fusion can be evaluated a v V a 0o.aC (G.5)
through three different approaches ALOP 1-3. In all of 0 0 0 0o

+

these, the key connector for inference 4 was inter- = + 1.
preted in the formal language components as * as Q 0
given in eq.(5o3 ). On the other hand a natural - and
commonly used - semantic evaluation for inference Noting that also for aiy aoa c
rules is through conditional probabilities. That is, o t
the evaluation of a typical form (ikij * kkij ) is p(a 8 ) 0 p(- .a 0 ) , (a.)).8)
P(kkijlJki) for some choice of probability measuretep over ft, the set of all events or propositions, which the aiext result shows that under quite mild and sih. ple
fovr purpoese of m lci nty, f propwosits .e conditions, conditional objects are essentially char-
for purposes of simplicity from now on is assumed to acterized:
be a boolean algebra. With this choice of evaluation,
apropos to the spirit of this paper, we seek a formal Theorem 4. Characterization of conditional objects
language which will be compatible with these evalua- [lrJtions,i.e., will form an ALDP. [2

Given boolean ring P, there is a unique space
However, as pointed out In the discussion In the of smallest possible classes-according to sLbset

previous section centered around (5.4), one cannot partial ordering-denoted es the conditional objects
identify implication via (r.2) with conditioning (U0l o) a (Yo0 ). (0 le) ..... .or al aoZo
as evaluated in (5.7 ,. The apparently commvonly-held .. c a such that the measure-free counterparts of
belief that such an identification can be made with (6.1)-(6.3) and (.) hold That isc
no serious consequences, often called in the litera- " h
ture of logic as Stalnaker's Thesis (91, was attacked
by Lewis (10) and independently by Calabrese (11]. The (a0lyo)' oJ'I.
latter indeed showedby use of a simple canonical ex- (L V (a ly (a v ).
pansion, that not only -* in (S.1) would not work, o 0 o 0 0 0 0
but any boolean function of two variables could not be I f (a l) (0 -
used to play the role of conditioning, compatible o o 0 0 0 0o o Q

)  
(6.11)

with conditional probability evaluations. ano equivalent to (1.)-(C.ll), one can require eqs.

Moreover, It would be particularly desirable, to (6.11) and
replace this rather flawed situation, with an ALOP (a0Lor) + (aul~o) u (ao+ 80oyo) (G.2
which would yield feasible computations for data
fusion or at least be on the same order of complexity to hold; and
as ALOP 1.2,3. Note of course, if truly all inference (oYo) f o . (G.13)
rule antecedents are identical, as is the case es- 0 0 0
sentially in Sectiona 9,4 . then there Is no real
need to work with conditional objects, since all con- Specifically, such condt.onal objects czrnstl-
ditioned events cn he simply considered as uncon- t.te all possible principal ideal cosets of ring ., w
ditional *)nes relative to their intersections with the wn're fur any ao,Y o C 2,fixed cmomon antecedent. or one can stick with tL0e
interpretitfon of implication as in (M2 ).(CunpatIble 0 'with this result . note the homomorphic rel-tions
for implication .* w.r.t. disjunction and coniunction . o 00 Y0
- but not negation - as given In eqs.(xC.4),(I.S)ofl.) 'o

But,(or the modelinj of data fusion thrcuyh in- '" (C.14.
ference rules with Vdrying antecedents, no such direct the prlncipd' . : t rate- " ret'-

- 6-



due .  I...... *N

treWf: Use first the basic homomorphism theorem for v (ui{l.) - ( laj v l Yi v Y 1),(.21)
quotient rings and the equivalence class property 1-1 1.1 1 I:1
of cosets applied to (6.13). Again. see [12]. ( m C )

Q, I!Y m imy ) (.2

For a history of previous work in this area, 
- i" il 1.1 1=.

see D 1. Section 8. M .m

In the approach taken here, ueJooln .LI re- -I
from first principles considerdtions, the re-

quired operations upon conditional nbjects are defin- Noting the reductions of (G.21)-(6.23) when
ed simply as the natural class nr component-wise ex- antecedent yiy. r0 , as in (6.9)-(G.12), it
tensions of the original operations. Thus, for exam-pie~let a0o6,yo,0 c 0 arbitrary. The natural class follows that all boolean operational extensions

over 1 coincide with corresponding coset operations
extension of e applied now to (o 10 I 6o). not- when restricted to a fixed quotient ring, here

Ing each conditional object is in reality via (G.14) / .
a subset of 0. yields: (vii) As a special case of (6.22), the following

( 01 0) • (Yoo16 ) (q • rlqc( 0 100),rc( 0110 )) chaining Condition holds for all 0 . 0Yo c :

- ((x , + a ).(y.do + 'iyCV) (%-%1) - (001o)o 1DYo). (6.24)

V. (6.15) Proof: The most difficult proof is that of (G.22).
X-r-etch of the proof for the case m=2 is given in

The basic structure of the conditional object [13]. Theorem 3.1, a full proof is presented fin (12

extension E of 0 is summarized next. where all other proofs are also given. I

Theorem . Basic structure of 6 [12],(13],[14].
Remarks. I

(i) In terms of quotient rings, Apropos to TheoremS(I), it follows that all

- u(n/n.Y)- u~u/nyo). (6.16) results in the theory and application of linear

-Ycn Y ,1l (w.r.t. - over v) boolean equations, such as pre-
sented in (15],can be reinterpwted in terms of con-

(il) Conditioning as defined here can be identified ditional objeLts. Extensions of the concept of con-

essentially as the functional inverse of one-sided ditoning to more general structures than boolean.
conJunctioni.e., conditional objects (a 1) all sat- such as modified boolean.or Von Neuwann regular, or

o 0 to a category theory settinghave been considered
;sfy the basic relation analogous to (6.6) for (12].
conditional probabilities and a related condition:

Many other mathematical properties have been
(ao o).Yo - aY (6.17) derived for conditional objects. including: char-

and acterlzatlons for iterated conditional objectsi.e.,
:onditional objects whose antecedent and consequence

(a0y) - (xix c 0, x0vo " %- 0| .  (;.l8) are also conditional objects; extensions of Stone's
Representation Theorem to conditional objects; de-

(Wii) The natural class extensions of all boolean velopment of an outer approximation technique to

operations from n to 9 are well-define-7closed with force closure for non-boolean functions, including
arithmetic operations over conditional objects; rela-

ring-like propertiesdi.e. a in the same previous tions established between ordinary conditional random
sense, 0 Is a modified boolean algebra. variables and a randomized version of conditional ob-

(iv) a a . jects; and establishment of various probabilistic

since for all a c 0. (4.14) shows Immediately that connections, such as measure-free independence; meas-

0 ure-free bayesian and sequentfil learning forms; and
the proof that the extension of any probability

0 0 measure p:n - [0,1) to p:F, - (0,1] through eq.(S.')

(v) Also, partial order s defined over 0, character- yields for the extension a monotone function.( Again,

ized by , for any a 0 to e G. see [12)-l+], for further details.)

iff Go~ 0.0. ff a v 0 V (G.20 Most Importantly here analogueL of calculus of

0  0 0 relations for ALDP 1 (1],17.2)-(7.7)) hold for con-
ditionl objects. as Theorem 5 shows. Moreover, tne%6

can be extended directly to E with the same charac-terizatons as in (6.20) where(unconditional) ob- hypotheses for Theorem -1 all hold here. At this point

jects in n are replaced by conditional ones in 6. let us define ALDP 4. for a given boolean algebra I

Thencombining this with (iII) and (iv) establishes as simply
(fiv...( ),.*s) as a natural extension of Its ALIP 4 (4. 25)
unconditional counterpart (n,v,.-,(),.; ).

(vi) A basic calulus of operdtions is . in addition where p:P - (0,1] is the conditional probability ex-
tu the properties in (6.9)-(6.13) for any u1 ,Y I C A, tension of p:i -- (0,1], as mentioned above and where

~-7-
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