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THE RELATIONSHIP BETWEEN APPENDAGE GEOMETRY -%'.?
AND PROPELLER BLADE UNSTEADY FORCES

T.S. Mautner
Hydromechanics Branch

Naval Ocean Systems Center
San Diego, CA 92152-5000

ABSTRACT

A study was undertaken to determine the relationship between appendage geometry, unsteady pro-

peller blade forces and the incident velocity field distribution. Axial velocity data from water tunnel
tests of an axisymmetric body with appendages has been used to calculate the harmonic content of -
the wake and the resulting distribution of unsteady thrust and torque for a given propeller geometry.

The results indicate that unsteady force reduction can be obtained by modification of the flow at the
appendage/body intersection, and by modification of the wake such that flow regions having substan-
tial harmonic content lie outside the propeller's maximum diameter.

NOMENCLATURE

a. Zeroth order Fourier coefficient

a1, n th order Fourier coefficient -

bl, n th order Fourier coefficient
''

B Blade number

ell Complex Fourier coefficient = a -ib "

C,, Magnitude of the n th Fourier Coefficients

CL Blade section lift coefficient 'p

CT Appendage chord at the tip

Crt Appendage chord at the root S

Body diameter

Fx,,I) Unsteady axial force (thrust) for the m th harmonic

Index taking on values = 1 ....... P

klij The reduced frequency, w(C/2),/V;, at the j th element
due to the n th harmonic of the inflow velocity %

K(k) Sear's function

KT Thrust coefficient = Thrust' 1 pV,'rR2

This paper is declared a work of he U.S. Go'ernment and is - I - "
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KQ Torque coefficient Torque/ito7'R

Ljn Lift on the j th blade element due to the n th harmonic component
of the inflow velocity

LB Body length

m Order of the propeller force harmonic

Moment/Torque on the j th blade element due to the n th harmonic
component of the inflow velocity

n Index taking on values = mB

nj Identifies the j th blade element and n th harmonic component
of the inflow velocity

N Harmonic number

P Number of blade elements having width Ar

PC Propulsive coefficient = (Thrust V,)/(Torquc f) 

r Radial coordinate -,.

ri, Hub radius
*54*,

Arj Width of the j th blade element

R Propeller radius -'

RB Body radius

Re Reynolds number based on body diameter

Sr Slenderness ratio of an appendage = chord,'thickness

t,C Thickness-to-chord ratio

TIfh) Unsteady moment (torque) for the m th harmonicXS

T(k) Horlock's function "

x Longitudinal coordinate

X,, Appendage axial offset

XS Streamwise location of the appendage leading edge

z Distance from the body surface

Zr Radial location of the appendage tip %

V Velocity

5' %



V. Free stream velocity or vehicle speed

Vrj Nondimensional, resultant relative velocity of blade section
and fluid

Z-r Appendage maximum radial position

,e Steady angle of attack of a blade element

18 Blade section pitch angle (radians) :%S%

w Frequency

fl Angular velocity of propeller

4 Phase shift

p Fluid density

Cavitation number based on free stream static pressure
and velocity

9 Angular coordinate

,%

.5

INTRODUCTION 

A propeller operating in the turbulent wake of a torpedo or submarine encounters wake
.5

non-uniformities which result in spatial and temporal fluctuations of blade angle-of-attack. These '5

angle-of-attack fluctuations result in unsteady blade loadings and the generation of noise. In addition

to possible, direct radiation from a vibrating blade, the time-dependent forces on the propeller blade

are transmitted as vibratory forces and moments through the propeller shafts and bearings to the

vehicle's structure.- These unsteady forces may then result, for example, in the radiation of noise

from the vchicle's shell and in the generation of vehicle self-noise. The sources of propulsor gcn-

crated noise can be characterized by three types of unsteady force mechanisms: a) turbulence inges-

tion: b) vortex shedding; and c) blade-rate. The First two mechanisms typically generate continuous I_

spectrum (broadband) radiated noise levels while blade-rate forces generate discrete frequency noise
,-

levels at various blade-passage frequencies and harmonics. --

The flow nonuniformitics which result in blade-rate propulsor noise are caused b,
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upstream appendages and their interaction with the hull boundary layer. The flow behind an

appendage or appendage/stator combination is characterized by a complex velocity field having velo- b

city excesses at the inner radii and velocity deficits at the outer radii (for example, see figure 4).

This type of velocity field results in a complex harmonic content distribution where both the ampli-

tude and phase vary with radial position. The effects of this varying inflow velocity field on blade-

rate noise cannot be predicted without a detailed examination of the wake and calculations made for

each radius and blade geometry. It should be remembered that the reduction of blade-rate noise was

the original reason for the introduction of skew (a combination of blade warp and rake) into pro-

peller design.

Currently, techniques are available for computing unsteady forces and skew distributions.

and these methods range from low aspect ratio approximations to unsteady airfoil theory to complete

unsteady, lifting-surface methods. Even though the NOSC designed counterrotating propellers have

demonstrated exceptional hydrodynamic performance and good overall radiated noise characteristics.

the results of at-sea tests indicate that research should be directed toward increased blade-rate noise t

reduction. Thus, the objective of the work described herein is to identify the contribution of the

radial and circumferential nonuniformities in a wake to the unsteady force distribution on a propeller

blade. The distribution of the wake nonuniformities and the calculated, radial distribution of pro- P

peller blade forces will be used to suggest improvements in appendage design.

MODEL GEOMETRY AND INFLOW VELOCITY FIELD p

In the design of wake-adapted propellers, it is important that the intlow vclocityv distril'u-
U,

tion be properly specified. The state-of-the-art in boundary layer computations is such that the >5

inflow velocity field, for a body having appendages located upstream of the propulsor. should Ic

determined experimentally. Even though circumferentially averaged velocity profiles are suffi,:icnt.

for propeller design calculations, the calculation of unsteady blade forces requires that both the radial

and circumferential distributions of the wake be considered.

-4- ,
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The velocity fields used in this study were obtained from water tunnel tests conducted at

Applied Research Laboratory of the Pennsylvania State University (ARL/PSU) (see Thompson,

1986). The tests were conducted in the closed-circuit, closed-jet water tunnel which has a 14 foot

long 48 inch diameter test section. A flow correcting liner was installed in the test section to adjust

the streamlines around the model to approximate the streamlines that would exist around the vehicle

in open water operation. The model, torpedo like in shape, had a forshortened length-to-diameter

ratio of LB/DB= 7 .6. Screens were wrapped around the model's forebody to assist in the generation of

a full scale turbulent boundary layer in the afterbody region. The afterbody geometry is given in fig-

ure 1.

Three appendage configurations were used to obtain the velocity distribution used in this

study. The general characteristics of the appendages are presented in table I and defined in figure 2. _

The appendages, designated fin 1, fin 2 and fin 3, are shown schematically in figure 3. A detailed

description for fin I can be found in Nelson and Fogarty (1977) while Greeley and Milewski (1986)

describe fins 2 and 3. Briefly, fins 1 and 2 have airfoil sections of constant thickness-to-chord from
U,

root to tip while fin 3 has an airfoil section thickness-to-chord ratio which decreases from the root to %

the tip. Also, fin 2 has a cap extending the length of the fin chord at the tip, and fin 3 has a "winglet"

located in the aft region of the fin's tip chord (see the solid portions of figure 3).
,-.,.

For each appendage configuration, the axial, radial and tangential components of the velo-
-,1

city field were determined from 5-hole probe measurements. The velocity measurements were made

at the propeller stacking line locations indicated in figure 1 where, behind each fin, 125 data points

in the circumferential direction and 6 radial locations for fin I and 12 radial locations for fins 2 and

3 define the velocity field. The circumferential variation of the axial velocity components. V(r,5), V,

for the three appendage configurations are shown in figures 4-6. For illustration purposes, the meas-

urcd velocity at only six radial positions are shown for fins 2 and 3.

The polar plots presented in figures 4-6 were constructed using the axial velocity meas-

ured over the angular extent of -45"<9<+45" where 6=0 coincides with the fins trailing edge. Since

-5- I



there are four identical fins, symmetry was used to obtain the 360* velocity Field used in the Fourier

analysis. The velocity data for all three fins exhibit the velocity excesses at the inner radii and the

velocity deficits at the outer radii typically found in the flow behind an appendage on an axisym-

metric body. The velocity excesses are due to the horseshoe vortex formed at the appendage/body

intersection, and the velocity deficits at the outer radii are due to the fin's tip vortex (see Greeley

and MNilewski, 1986). The character of the velocity deficits for fins 2 and 3 are also influenced by the

vorticity shed from the fin caps. This effect can be seen in velocity trace number 5 (figure 5) for fin I %

and in trace number 12 (figure 6) for fin 3 where the deficits are more broad in nature than that

found for fin l's velocity traces numbers 5 and 6.

FOURIER ANALYSIS

Unsteady forces are generated by both temporal and spatial variations of the velocity

field; however, only the spatial variation of the inflow velocity field will be considered. The axial

velocity data presented in figures 4-6 represents a time averaged, spatially varying field, and since

the spatial velocity distribution is periodic and continuous, it may be represented by a Fourier series. :%
.4

For example, the axial component of the velocity at a position (r,9) can be expressed as %

V~r.9) a,,(r) ilV(r.) _a +(r) + an(r)cos(nO) + b.(r) sin(ng) = Re + a Cnei'c (1
i = i n =2 r

where Re( ) denotes the real part, cn(r) = an(r) - i bn(r) is a complex Fourier coefficient and

Cn(r) = (a2(r) + b2(r) ) ' i5 the Fourier coefficient magnitude. The Fourier coefficients.

ao(r) , a,(r) and b,,(r) are defined by

a,,(r) = d6 a,(r) = cos(ng) d9 b,,(r) = - sf n-l(n d4' (2)
7rf r, - . T

The term a,(r) does not vary in 6 and, thus, is associated with the steady state thrust and torque. The

additional terms are sinusoidal fluctuations of the inflow velocity which produce the unsteady forces

and moments. A Fourier analysis of a four cycle wake (due to four appendagcs) would show that the

-6-
I



harmonics of interest are N=4,8,12,16 ...... Additionally, it has been shown by Thompson (1976),

that the only harmonic numbers of concern, in the calculation of unsteady forces and moments, are

those associated with a multiple of a) blade number (mB), and b) blade number plus/minus one

(mB- 1) which result in unsteady a) thrust and torque and b) side forces and moments respectively.

Since the propeller configuration used in the calculations to follow is a 6 bladed propeller, the har-

monic numbers of interest are N=6,12,18,24,30 ........ .Thus, for the case of the 6 bladed propeller in

a 4 cycle wake, the first three harmonics of interest are N=12, 24, and 36. Fourier analysis of the

wakes generated by fins 1, 2 and 3 yield the radial variation the harmonic coefficients shown in fig-

ures 7-9 for the dominant 12th harmonic.

Briefly, for N=12, the radial distribution of a(r) for fins 1-3 show a large negative magni-

tude near the body surface (r/'Rn<0.5) . For r/RB>0.6 , a, becomes positive and has a broad peak at

the outer radii. In contrast, the an(r) for fins 2 and 3 become positive but constant over mid-radii

then have a large peak at the outer radii. The peak value occurs at approximately r,'R0 =0.8 for fin 2

and rj'RB=0.95 for fin 2. The character of the harmonic distribution for N=24 shows that a,,(r) has a

peak at the same outer radii as N=I2 but its magnitude is reduced by 50% or more. Finally for N=36.

a,,(r) has a nearly constant magnitude over radius. For all cases, b,(r) shows only small variations

with radius and appendage type.

UNSTEADY FORCE CALCULATION METHOD

During the force. calculation process, unsteady propeller blade forces will be calculated

many times. Therefore, it would be desirable to use an efficient, inexpensive method. Some of the

unsteady force calculation methods available are: 1) quasi-steady using uniform flow; 2) quasi-steady

using lifting-line theory; 3) two-dimensional unsteady theory: and 4) three-dimensional unsteady

theory. Quasi-steady methods use the instantaneous inflow velocity to solve the steady state problem

while two-dimensional, unsteady methods do not include three-dimensional flow effects and ignore

the influence of one blade section on another. Three-dimensional unsteady airfoil theory includes

-7-
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three-dimensional flow effects and the interactions between blade sections. The theory adequately

predicts the unsteady forces; however, it is computationally expensive.

The method chosen for the force calculations reported herein uses a two-dimensional

approach developed by Thompson (1976). His theory divides the propeller blade into strips (blade

elements of width Ar ) which are treated as two-dimensional airfoils, and the method includes a

correction to the lift due to the presence of other propeller blades. An integral part of Thompson's

N method is the theory developed by Sears and Horlock. Sears (1941) developed a two-dimensional,

unsteady airfoil theory which accounts for sinusoidal gusts normal to the free stream velocity. Hor-

lock (1968) extended Sears work to include sinusoidal velocity fluctuations parallel to the free stream

velocity, and his analysis also allows the inclusion of general, sinusoidally varying inflow velocities.

Recently, the two-dimensional, unsteady theory for cambered airfoils developed by Naumann and

Yeh (1973) and the capability to calculate total forces and moments on the propeller were added to

Thompson's method by Mautner and Blaisdell (1987).

Thompson (1976) has shown that only certain harmonics of the propeller's inllow velocity

field contribute to the unsteady forces and moments. As stated above, the forces on a six bladed

propeller operating in a four cycle wake are being calculated, thus only those harmonics which are

integer multiples of the number of propeller blades need be considered. Therefore, the forces of

interest are the unsteady thrust, F.',', and the unsteady torque, TI ' which are evaluated using the

equations

Fr'"=BI L L,,), e and T,'"=B!V \l- e 

where the unsteady forces due to the different harmonic groups fluctuate at the frequcncics. n-!32B.

Equation (3) yields the total thrust and torque exerted on a propeller having B blades and P elcmcntis

per blade. The lift and moment components used in the equation (3) arc dclined in cquations (4) and

8-



(5) below where the indices are n=mB indicating the harmonic numbers and j=l ....... P identifying the

blade elements.

10

OCL 1Cj
L =-[- p 2 V V c~i K(kni)cosi-caiT(ki)sin% Arcos~i (4)

2 rMinj tanj (5)

[Mi9-

PROPELLER GEOMETRY

The investigation of the effect of harmonic content on the radial distribution of unsteady

forces requires specification of propeller geometry and operating conditions. The geometry chosen is

that for the forward propeller of a counterrotating propeller set designed using the method deve.oped

by Nelson (1972, 1975). The design utilized the circumferential mean, axial inflow velocity field

measured by Nelson and Fogarty (1977). The propeller geometry is shown schematically in figure 10.

and details of the propeller geometry and operating conditions are given in table 2. It should be

noted that the wake used in the prope!ler design was obtained from wind tunnel tests: however, there

is good agreement between the circumferential mean, axial velocity proFiles obtained in the wind and

water tunnel tests (using fin 1). While it would be more correct to design a propeller spccificallv for

each appendage generated inflow, it is anticipated that only small changes in geometry would occur

since the circumferential mean velocity profiles measured for fins 2 and 3 are nearly the same and

are only slightly more "full" for r/RB<0.7 5 . Therefore, it was decided to use the same geometry for

all force calculations.

UNSTEADY FORCE CALCULATIONS

To determine the effect of each portion of the wake on the magnitude of the unstcad.

forces, the analysis included the following steps: a) modification of the measured, inflow \clocit,

field by replacing the circumrfcrentially var% ing velocit\ at a particular radial location 1), its circu1,11-

-9-
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ferential mean value; b) Fourier analysis of the modified wake; and c) calculation of the unsteady

forces. It should be noted that forces will be used to indicate both thrust and torque.

The radial distribution of forces were calculated for harmonic numbers N=12, 24 and 36.

The results for the dominant 12th harmonic are given in figures 11-13 for fins 1-3 respectively. The

calculations show that the wakes generated by all three appendages result in large magnitude forces

at the outer radii. The radial extent of these forces becomes more narrow as one changes from fin I

(0.6<r/'RB<0.9) to fin 2 (0.75<r/RB<0.9) and fin 3 (0.85<r/RB<l.0). The results in figures 11-13 also

show that the maximum force for fin 2 is approximately twice that found for either fin 1 or 3, and

that the forces calculated for fins 2 and 3, at the inner radii, are lower in magnitude and more con-

centrated near the body surface than those found for fin 1. The radial distribution of forces calcu-

lated for N=24 show maximum forces at the same outer radial locations as fcund for N=12: however.

the peak magnitudes are approximately 50% lower than those obtained for N=12. Additionally, the

radial variation of forces for N=36 show a nearly constant magnitude over radius, and their magni-

tudes are, on the average, approximately 75% lower than the force magnitudes found for N=1-.

The values of total thrust and torque calculated for harmonic numbers N=12. 24 and 36

are presented in tables 3-5 for fins 1-3 respecti ely. The results first list the forces calculated using

the measured wake and then present the results of modifying the wake at one or more radial posi-

tions. For the measured wake, the forces obtained for all three fins show a reduction in magnitude

with increasing harmonic number. As each one of the circumferentially varying velocitv measure-

ments was individually replaced by its circumferential mean value, the calculated fcrces itablcs 1-5)

show the expected result that elimination of a particular portion of the ar., ing elccit', tied remo\ C-

the contribution of that portion of the wake in the total forcels) mgnitude. The dcree oK total

thrust and torque reductioni can be directly correlated to the peak forces found in the radi: , di:riu-

tions (i.e the peak forces noted in figures 11-13 for N= 1 2. It is also found that, in socme cases, the

reduction of the thrust and torque at one or more harmonics will in fact increase the magnitude ,.%

these forces at another harmonic. For example, for fin 3 the large reduction in thrust and t,,rqouc .:

-10-



N=12 (; 75%) and 24 (; 50%) due the modification of the wake at radial location number 10 results

in a increase in the thrust and torque for N=36 of 2-2.5 times the magnitudes obtained for the meas-

ured wake.

Ile

Replacement of groups of radial locations with their circumferential mean values shows

that elimination of the varying velocity at the inner radii does not produce an immediate benefit. This

is due to the much larger magnitude forces found at the outer radii. However, the elimination of the ".

spatial variations of the velocity field at the outer radii produces large changes in the total force mag-

nitudes, especially for N=12, as shown by the data in tables 3-5 for locations 4-6 for fin I and loca-

tions 9-12 for fins 2 and 3. The results also show that the level of force reduction (increase for fin 3

at N=36) depends on both the appendage geometry and harmonic number, and that, in particular,

appendages with shorter chord lengths (fins 2 and 3) generate wakes which result in lower overall

unsteady force levels.

One implication of the radial C'orce distributions given in figures 12 and 13 (peak forces 5
near the maximum body diameter) is that reduced propeller unsteady forces can be obtained by

keeping the propeller radius smaller than the radius at which the peak forces occur. The current

NOSC design procedure is, after examining the input velocity distribution, to keep the propeller max-

imum radius smaller than the radial location of the appendage tip vortex; however, this was not done

in this study in order to demonstrate the effect of the entire wake on the propeller forces. Also, the

broad velocity deficits due to the vorticity shed from the tip cap (fin 2) and the "winglet" (fin 3)

result in the peak forces noted in figures 12 and 13. Again, the propeller maxinmum radius should be

kept smaller than the radial extent of this vorticity field.

APPENDAGE/BODY INTERACTION

The intersection of airfoils/hvdrofoils,'wings and plates/hulls fuselages has been the sut--

ject of considerable research. For example, consider the work of Johnston (1960), Barber (1978) and

Kubendran ct al (1986). Johnston (1960) determined that the intersection of a cvlindcr with a plane

A_,

-11-
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results in a three-dimensional stagnation point in front of the cylinder and the formation of a hor-

seshoe vortex. Barber (1978) formulated a model describing the flow at the appendage/wall intersec-

tion for both thin and thick boundary layers. His model is reproduced in Figure 14. For a thick

boundary layer, Barber's model indicates a stagnation point upstream of the appendage and the for-

mation of a large horseshoe vortex near the leading edge of the appendage which spreads outward as -

it convects downstream. Barber also states that: a) the path of the horseshoe vortex is determined by

the interaction of the onset boundary layer and the appendage pressure field; b) the strength of the

vortex is dependent upon the edge velocity and the local boundary layer thickness; c) the size of the I
vortex will determine the flow field downstream; and d) the horseshoe vortex contribution is dom-

inant in flows where the onset boundary layer is on the order of the appendage maximum thickness.

The more recent work of Kubendran et al (1986) presents the conclusion that the shape of

the leading edge of the appendage is the major factor determining the entire flow field around the

juncture. They also determined that the strength of the vortex is dependent upon the slenderness

ratio, and, in general, the more blunt the leading edge the stronger the vortex. From their work. _

Kubendran et al suggested that the strength and location of the horseshoe vortex can be controlled

by suitable modification of the leading edge shape.

The force calculation results presented in the previous section indicate that. at least for the

current appendage geometries, there are two regions which should be considered in order to reduce

propeller blade forces (in addition to the application of propeller blade warp and rake). First, the

area associated with the vorticity shed at the appendage tip can be easily avoided by keeping the pro-

peller maximum radius smaller than this region. The second area of' concern is the flow theld near the

wall. As indicated in the above models, the appendage body intersection will result in the generation

of a horseshoe vortex which results in* the type of velocity excesses present in the current velocity

data.

Placing the current experimental data in the context of the models of Barber (1978) and

Kubendran et al (1986) one can see that a strong horseshoe vortex will be formed at the

-'



appendage/body intersection since the appendage is located in a boundary layer of thickness on the

order of the appendage height (much greater than the maximum appendage thickness) and since the

appendage geometries (i.e. the slenderness ratios SR = 8.3, 10 and 5.9 for fins 1, 2 and 3 respectively)

are appropriate for influencing the size and strength of the horseshoe vortex.

The current data shows that the characteristics of the velocity excess region changes with

appendage geometry. By comparing figures 4 and 6 for fins 1 and 3, it can be seen that there is a

reduction in the region of velocity excess, both in magnitude and radial extent, for fin 3. Also, the

flow behind fin 3 is improved due to the smaller slenderness ratio of Sr=5.9 for fin 3 as compared to

SR=8.3 for fin 1. It should be noted that the airfoil sections used in fin 3 are more slender shape than

the airfoil section of fin 1 thus reducing the adverse effect of a blunt leading edge. The current

results also indicate that the unsteady forces due to the horseshoe vortex are also reduced due to a

more favorable interaction of the onset flow and the appendage pressure gradient. This is shown (fig-

ures 4-6) by the smaller rate of spreading of the horseshoe vortex in both the radial and circumferen-

tial directions. Finally, fin 3 has a filler-like base which produces a smooth transition of the append-

age gcometry to the body surface. This shape reduces the adverse effects of the sharp corners present

at the intersection of, for example, fin 1 and the model's surface.

CONCLUSION

It can be concluded from the experimental data and the calculated unsteady forces that

both the flow field near the body surface and behind the appendage tip must be considered in the

process of reducing unsteady propeller blade forces. By keeping the propeller radius smaller that the

appendage tip vortex region, the large magnitude forces generated by the tip vortex (with or without

caps or "winglets") can be successfully avoided. However, an appropriate choice of appendage

geometry must be made in order to reduce the effects of the horseshoe vortex formed at the

appendage,'body intersection. The significant change in geometry from fin I to fin 3 demonstrates

the validity of the models presented by Johnston (1960), Barber (1976) and Kubendran et al (1 86).

-13-
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and the design of appendages should include consideration of the proposed methods of vortex size

and strength reduction. Since the state-of-the-art in boundary layer calculations is such that these

complex flow fields cannot be calculated easily, experiments are required to accurately determine the

velocity field required in the prediction and reduction of propeller blade unsteady forces.
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Table 1. Appendage Parameters

Fin # CR/DB CT/DB (t/C)R (t/Chr Xo/DB ZT/ R1 Re

Fin 1 0.76 0.76 0.12 0.12 0.0 0.994 4.3x 104

Fin 2 0.40 0.34 0.10 0.10 0.06 0.943 5.5x 104

Fin 3 0.49 0.29 0.17 0.11 0.19 0.948 5.5x104

Subscripts T = tip; R root

-15-
'

5?'

° . . . .. . . . . . . o o . . . . . o . o-



Table 2. Test Propeller Geometry and Operating Characteristics

Number of Blades B 6

Propeller Radius (ft) R 0.875

Hub Radius (ft) rh 0.287

Propeller Rotation RPM 1400

Vehicle Speed (fps) V. 72.6

Cavitation Index a 0.9

Thrust Coefficient KT 0.108

Torque Coefficient KQ 0.059

Propulsive Coefficient PC 0.87 P

riRB Ar/RB S C t_ _ elV i\-
Radius Strip Width Semi-Chord (ft) Pitch (rad) Rel. Velocity

0.3447 0.0336 0.113145 0.576841 0.738605
0.3783 0.0336 0.121149 0.616340 0.843719
0.4119 0.0336 0.128814 0.645702 0.942810
0.4455 0.0336 0.136125 0.655345 1.031411
0.4791 0.0336 0.143065 0.658019 1.112655
0.5128 0.0336 0.149611 0.662808 1.190294,
0.5464 0.0336 0.155739 0.666440 1.264405
0.5800 0.0336 0.161418 0.664828 1.335521 "
0.6136 0.0336 0.166610 0.657412 1.404553
0.6472 0.0336 0.171262 0.646083 1.472087
0.6808 0.0336 0.175304 0.633617 1.539381
0.7144 0.0336 0. 178625 0.620620 1.606385
0.7480 0.0336 0.181013 0.606226 1.6-72096
0.7816 0.0336 0.181616 0.589-10 !.-3586-
0.8152 0.0336 0. 179654 0.570392 1-9-638
0.8488 0.0336 0.173874 0.548253 1.858500 "
0.8824 0.0336 0.163055 0.52380) 1.918692
0.9160 0.0336 0. 146230 0.500699 1 9-8.4-

0.9496 0.0336 0. 122573 0.4822- 2.0Y-8)
0.9832 0.0336 0.091345 04602S 2.0' 9
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Table 3. Calculated Total, Unsteady Thrust and Torque for Fin 1.

Wake* N =12 N =24 N =36
Mod F T F T F T VrIV

None 64.15 30.21 58.09 24.71 38.48 16.67

1 64.09 30.33 57.41 24.57 38.60 16.69

2 69.88 32.00 55.80 24.10 37.96 16.53

3 71.40 33.01 54.39 23.47 36.57 16.03

4 49.23 24.38 49.68 21.35 33.99 14.94

5 36.61 14.87 26.33 10.61 10.82 4.41

6 38.64 18.81 49.14 20.55 35.24 15.12p

1-3 79.45 35.26 51.53 22.74 36.22 15.93

4-6 27.08 7.81 7.83 2.31 3.56 1.14

I

Notes '

* The valuc(s) in this column refer to which radial location(s)

of the wake was set to the circumferential mean value. %

** Units (F)orce (thrust) - pounds; (T)orque - foot pounds

I

4
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Table 4. Calculated Total, Unsteady Thrust and Torque for Fin 2.

Wake* N= 12 N=24 N=36
Mod F T F T F T 1

None 57.66 25.05 35.21 14.76 18.23 7.45 3.

1 58.90 25.31 34.86 14.69 18.22 7.45

2 58.15 25.19 35.11 14.73 18.06 7.41

3 57.78 25.09 34.61 14.60 17.53 7.27

4 57.36 24.97 34.21 14.46 17.51 7.24

5 55.62 24.36 33.09 14.06 16.59 6.91

6 54.88 23.97 32.40 13.73 15.77 6.54

7 53.01 23.08 31.13 13.10 15.11 6.18

8 50.99 22.07 30.46 12.72 14.14 5.66

9 50.98 21.95 29.11 11.99 14.54 5.75

10 52.60 22.55 26.78 10.92 12.21 47 ,

11 27.54 12.53 34.78 14.58 22.72 9.40

12 57.80 25.11 35.08 14.70 18.24 7.45

1-2 59.51 25.47 34.76 14.67 18.05 7.40

3-8 41.58 18.40 21.39 9.42 5.66 2.62

9-12 14.97 6.50 18.20 7.01 13.04 5.00

Notes

* The value(s) in this column refcr to which radial location(s) of

the wake was set to the circumferential mean value.

** Units (F)orce (thrust) - pounds; (T)orque - foot pounds

-%--
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Table 5. Calculated Total, Unsteady Thrust and Torque for Fin 3. 1

I

Wake* N=12 N-24 N-36 A,
Mod F T I "" F T F T

None 51.57 26.43 35.69 15.72 5.05 1.81

1 56.48 27.41 35.57 15.69 5.07 1.81

2 54.21 27.09 35.93 15.77 5.07 1.82

3 54.02 27.09 36.05 15.81 4.71 1.73

4 53.46 27.01 35.56 15.68 4.60 1.68 _%

5 51.65 26.48 34.64 15.37 4.07 1.49

6 50.65 26.09 33.49 14.90 3.40 1._2

7 49.16 25.47 32.24 14.30 3.45 1.20

8 46.33 24.14 30.14 13.30 1.98 0.67

9 46.94 24.37 30.49 13.34 1.23 0.08

10 14.35 5.15 19.33 8.21 10.74 4.39

11 53.68 2 7.42 34.08 15.04 7.77 3.03

12 51.58 26.43 35.67 15.71 5.06 1.81 p

1-2 59.18 28.08 35.81 15.75 5.09 1.82

3-8 47.59 24.18 23.72 10.80 4.82 2.06

9-12 9.63 2.55 12.12 5.01 9.15 3.58 1

Notes

• The value(s) in this column rcfer to which radial locationls) ofr

the wake was set to the circumferential mean ,,alue.

•* Units (F)orce (thrust) -pounds; (T)orque- foot pounds
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Figure 14. Model of the Thick Boundary Layer Appendage interaction (from

Barber, 1978).
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