
-09 89 " SIRMN-FE APRAH T O tON G(U) VAYL 1/1
OCEAN SYSTEMS CENTER SAN DIEGO CA I R GOODMAN NOY 87

UNCLASSIFIED F/G 12/2 NU.



H lii-__

IIIDlt_ 1.6

oil.



AD-A 191 909

SECURITY CLASSIFICATION OF THIS PAGE 9 9O
REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABIUTY OF REPORT

2b DECLASSIFICATION DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBERIS) S MONITORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION 6,B OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center NOSC Naval Ocean Systems Center
6c ADDRESS (Cay. State and ZIP Code) 7b ADDRESS (Cy. State and ZIP Codel

San Diego, CA 92152-5000 San Diego, CA 92152-5000
8 NAME OF FUNDING 'SPONSORING ORGANIZATION Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Director of Naval Laboratories DNL
Sc ADDRESS (Cay. State and ZIP Cade) 10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO PROJECT NO TASK NO AGENCYSpace and Naval Warfare Systems Command CESINOACCESSION NO
Independent Research Program (IR)
Washington, DC 20360 61152N ZT52 ROOO0101 DN306 225

11 TITLE fonmlde Secrufoy Classdsceton)

A Measure-free Approach to Conditioning
12 PERSONAL AUTHORIS)

I.R. Goodman
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Yea,. Month, Dei 15 PAGE COUNT

Professional paper FROM Jul 1987 TO Jul 1987 November 1987
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 1B SUBJECT TERMS (Continue on reoerse if necesary and d9Iy by blok number/

FIELD GROUP SUB-GROUP algebraic logic description pair (ALDP)
feasible computations
characterization property

19 ABSTRACT (Coninue on reversed . nemossmey and oenldy by block n. rW)

In an earlier paper, a new theory of measure-free "conditional' objects was presented. In this paper, emphasis is
placed upon the motivation of the theory. The central part of this motivation is established through an example involving
a knowledge-based system. In order to evaluate combination of evidence for this system, using observed data, auxiliary
attribute and diagnosis variables, and Inference rules connecting them, one must first choose an appropriate algebraic logic
description pair (ALDP): a formal language or syntax followed by a compatible logic or semantic evaluation (or model).
Three common choices - for this highly non-unique choice - are briefly discussed, the logics being Classical Logic, Fuzzy
Logic, and Probability Logic. In all three, the key operator representing implication for the inference rules is interpreted
as the often-used disjunction of a negation (b .a) = (b' v a), for any events a,b.

DT&o

20 DISTRIBUfION/AVAILAIUITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION W!
0 UNCLASSIFIED/UNLIMITED 0 SAME AS R 0 DTIC USERS UNCLASSIFIED

22a NAAE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (,rA hl A,@* Code) 22c OFFICE SYMBOL

I.1. Goodman (619)225-2015 Code 421
DD FORM 1473, 84 JAN 3 APR EDION MAY BE USED UNL EXHuSTE UNCLASSIFIED

ALOTHER EDITIOS ARE OBSOLET
SfCURITY CLASSl11PCAfON OF T PAGE

&6111Ml



Accession For

NTIS GRA&I R i
/ DTIC TAB

I,,,.Unannounced

1 Justifloatio.

A MEASURE-FREE APPROACH TO CONDITIONING By -
Distribution/

I.R. Goodman Availability Codes
Ai and/or

Command & Control Department Dist Special

Code 421
NAVAL OCEAN SYSTEMS CENTER

San Diego. California 92152

ABSTRACT
It is the hope of this paper and accompanying

j In an earlier paper, a new theory of measure- work to provide positive answers to the above questions
free'conditional' objects was presented. In this paper, through the development of conditional object theory.
emphasis is placed upon the motivation of the theory.
The central part of this motivation is established In a typical knowledge-based system, a collect-
through an example involving a knowledge-based system, ion of inference rules is present, each rule connecting
In order to evaluate combination of evidence for this potential observed data through auxiliary attributes to
system, using observed data, auxiliary attribute and potential parameter estimates or diagnoses. Each rule
diagnosis variables, and inference rules connecting also has,as a main connector~some form of implication.
them, one must first choose an appropriate algebraic Thus,in evaluating such systems, it is critical that
logic description pair (ALDP): a formal language or consistent and feasible interpretations and computations
syntax followed by a compatible logic or semantic eval- be made for these operators.
uation (or model). Three common choices- for this high-
ly non-unique choice - are briefly discussed , the At present, there is no sound logic of con-
logics being Classical Logic, Fuzzy Logic, and Proba- ditional eventsanalogous to ordinary Probability Logic,
bility Logic, In all three,the key operator represent- in use. Thus no systematic approach exists for combin-
ing implication for the inference rules is interpreted ation of evidence problems, when individual inference
as the often-used disjunction of a negaton-4.NA4----Q-- rules are interpreted through conditional probabilities.
1 v a) , for any events a,b;.. Indeed, D. Lewis [9] pointed out in 1976 that one could

_ not identify implication with conditioning in the prob-
However, another reasonable interprttatitV of ability sense. That is, if

the implication operator is through the familiar form
of probabilistic conditioning. But, it can be shown - (b)a)- (aIb) c n 0, (.1)
quite surprisingly - that the ALDP corresponding to
Probability Logic cannot be used as a rigorous basis where n is some fixed boolean algebra of events or
for this interpretation! To fill this gap, a new ALDP propositions a,b,.. , then formally applying a given
is constructed consisting of "conditional objects", probability measure p:A - [0,1) to both sides yields
extending ordinary Probability Logic, and compatible
with the desired conditional probability interpretation p(b:ia) - p((alb)) - p(alb) 0 p(a.b)/p(b) (1.2)
cf inference rules. It is shown also that this choice
of ALDP leads to feasible computations for the com- provided that p(b) > 0 . But, if one makes the common
bination of evidence evaluation in the example. In identification (but by no means, the only possible)
addition, a number of basic properties of conditional
objects and the resulting Conditional Probability (bta)- (b+a) (b'v a) , (1.3)
Logic are given, including a characterization property
and a developed calculus of relations., then one can show,by use of elementary properties of

conditional and unconditional probabilities,that

1. INTRODUCTION p(ba) • p(alb) f p(b')-p(a'Ib)

This paper is complementary to a previous one • P(alb)
[1] in which measure-free conditional objects are first 2 p(a.b) ,. (1.4)
introduced. In that paper,emphasis was placed upon a
summary of the various mathematical properties that with strict inequality holding in general. (In fact, it
are derivable. In this paper, motivation for the use is rather easy to construct examples where p(bla) is
of conditional objects is underscored, followed by a close to unity while p(atb) is close to zero.) Further-
brief overview of results. A more thorough presentatior. more, Calabrese [10],[11] has shown that not only will
together with all relevant proofscan be found in [2]. + not work in (1.2), but no boolean function of two

arguments possibly representing implication, will sat-
The basic questions that are demanded of a new isfy (1.2).

theory include:

What use is it ? Is it necessary ? Yet, often individuals assume the identification
Does it solve an existing problem ? in (1.1) - at least tacitly - and manipulate and inter-
Is it truly novel ? change conditional probabilities and implications, not-
Does It tie-in with past literature in the ing an easily-derivable calculus of relations for

field ? such implications. (See, e.g., Table 1.) In fact, Stal-
ls it mathematically sound and sufficiently naker's Thesis [8) carries out this identification; but

rich to lead to further deeper results and applications? see Lewis' criticism [9].
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Thus, we must pose the basic question: Can we AUSON PROCESS (FU
make sense of "conditional object" (aib) compatible
with conditional probability pealb) 7 Also, how do we I A

Compute (at b) v (c id) and in turn evaluate the ex- IIALMENTAL IMAGING/ NATURAL LANGUAGE/
pression p( (a b)vcld)) ? Lastly, can we use such DETECTION/ COGNITION MACHINE LANGUAGE:
entities in combination of evidence problems in con- SENSIN( Anderson A Bower, TRANSFORMATIONS.
junction with knowledge-based systems? Meyer, Grossberg MORPHOLOGY, GRAM-

Another approach to avoiding the establishment 
Piaget, McDermott Chomsky Cawley

of conditional objects, in effect, is to eqate a given Lyons. Mon-ague
collection of conditional probabilities with corres-
ponding common antecedent conditional probabilities,

S S AT I C 
FU 4FIM 

L lPAR 
N O

through formation of appropriate joint events. But ELAATIO G A

this approach 
can also 

be shown 
to lead 

to certain 
EALUATIONIS/ 

LANGUAGE/ 

Winora 
Schank

difficulties conceptually as well as computationally MODELS I Scott, Bnabou, RIGSWF S /
[2] .Zadeh 

, G ddel , I Krlpke ,Johr, 
s one | 

STRINGS 
/WFF'S

Additional discussions concerning Lewis' 'triv- Lukasiewicz,
iality result" concerning Stalnaker's Thesis can be Carnap,Post,
found in [12),[13,[14].-1allperin 

__ M or s

I AL RA LOICDECRPTOiPAs
The proposed remedy to the above problem in- IALGERAIC LOGIC DESCRIPTION PAI

volves an extension of coset theory as applied to bool. - _- - -- - - -

ean algebras, where the original boolean algebra of
events 0 is replaced by the union of all principal DECISION PROCESS EXAMPLES OF ALDP'S
ideal quotient rings of 0. The fundamental justifica-

tion for this will be given below, followed by an ex-
ample illustrating how conditional objects and Con- FORMULATION/ ALDP 2 - (MODIFIED BOOL.ALG.
ditional Probability Logic can be directly utilized in IONSZADEHS FUZZY LOGIC)
a knowledge-based system. (See Section 2.) ALDP 3 - (BOOL.ALG.,PROB. LOGIC).

However, let us first back up and consider how ALDP 4 - (COND.BOOL.ALG.,
a typical combination of evidence problem can be per- COND. PROB. LOGIC).

ceived. Figure 1 illustrates the basic information (NEWLY PROPOSED ALDP)

processing flow from the inception of the problem to IN THE FIRST THREE ALIP'S. IMPLICATION 2 IS INTERPRETED
the decision process. This processing consists of five AS , WHERE (a "o) (1' v a) , FOR ALL PROPOSITIONS .8.
subdivisions in sequence: PODIFIED BOOLEAN ALGEBRA - PSEUDO-COMPLEMENTED

1. Cognition: Initial processing of information, DISTRIBUTED LATTICE.

2. Natural Language Formulation: Relevant to all Figure 1. Subprocess Expansion of Data Fusion/Combination
narratives produced by human observers. of Evidence Process Connecting Initial "Signal"

' 3. Primitive Symbolic Formulation of Information: -

Formation of well-defined formulas or strings
of information, without refined constraints. Use of
basic formal connects for:&. or, v ; not, ( )'; Given boolean algebra n2, for all a~b,c,a1 ,b1 c 12

4. Full Formal Language: Use of all relevant syn- (bla) - (bt a-b) , (1.5)
tax, constraints on connectors, such as associativity, (1 a) a (1.6)
commutativity, absorbing, distributivity, demorgan,etc.

5. Full lemantic Evaluations or Logic : Must be in (-*n'mI9) (ca.b)- (c a'b).(b.c ia). (I.7)
model formi.e., some type of homomorphism preserving (ba)' a'.b II (b-a'), in general(.8)
basic structure of full formal language. m m

It is the choice of the last two subprocesses V(bi1 ai) (Ibi " v a1 ), (1.9)

with which we are concerned here. We will call such a 1.1 1 1 1-1
pair of subprocesses 4 and 5 in Figure 1 an algebraic m m m m
logic description pair (ALDP). As given in Figure l,let: mbt4a v a ibi vm t- 1

ALDP 1 - (boolean algebra n, Classical Logic (CL)) i. 1-1 i1 1= "
ALDP 2 - (m6dified boolean algebra %,Fuzzy Loglc(FL)) Homomorphisms hold for bI .. bm-b

ALDP 3 - (boolean algebra , Probability Logic(PL)). 
m m

In all three ALDP's above, I liain fom v (b.. 1 ) (t .> V a1) (1.11-awon U3---e-- e d- 
pl ic ti n L .

i-l 
i

See [3J, Chapter 2 for general background con- (b- i  (b -.1a-), (1.12
cerning formal language and semantic evaluation in 11
modeling knowledge-based systems. See also (4) for an m
excellent survey of multivalued logics, including PL."(b44 ,iHiso

See (S] for FL and [6] for boolean algebras and rings, M if m is odd
Future efforts will deal with extensions of these ideas but * (b4.ei) " (1.13

to nonmonotonic logics as presented,e.g., in [7). il a , if m is even
For purposes of completeness, let us next brief- 1 a i f s

ly review each ALDP, presenting an abridged calculus of
operations involving implication and semantic evaluation Table 1. ALDP 1: Calculus of Operations for
for use in the ensuing example in Section 2. Implication (1.3).

-2- ... IIII



*Given boolean algebra fl and semantic evaluatior 2. AN EXAMPLE

I 1:A1 (0,1) ,101-0 *111-1. (1.14) With all the preliminaries out of the way, con-
or al a~b£ n:sider next a simple medical diagnosis system as illus-
for ll ab c : - rated in Figure 2 (next page). The basic implementation

la v b I KAXCIaI.IbI), (1.15) sc heme in combining evidence is given below, all corres-
ponding In Figure 1 to information processing,up to and

Ia - b I *MIN(IaI,Ibl), (1.16) including 5tage 3, Pimitive Symbolizations, prior to

I a"l I - Hal , (1.17) choice of ALDP, making up the last two stages (4,S);

I a + bi l a'-b v a-b' I 1.8 1. Choose data event variable set G from attri-
I b aI MA( 1- Ib , ii) (119) bute variables. Observe symptoms y c dom(G).

I b 0-al MAX(I - bI ll). .19)2. Form T7 , the set of all inference rules 4,

Table 2. ALOP I CL Evaluation for 0. where in either antecedent and/or consequent some var-
iables in G appear. I can also be considered the poten-

Given modified boolean algebra 0,for all a,b, tial "firing" class ol inference rules, if CL and ALDP 1
,a1 ,b1 , 11.,:0were chosen.

(b-.a) -(b-*a-b) c no (1.20) 3. Form

f a s b, i.e., a -a-b ,for middle equality to hold. i(G~y]A y W).e y W23) -Y-( - *Mw) (2.1)
(14*a) -a *(1.21) ocl y'v

dulninSl (c4(a-b v b-b')) (cob)-(b-c +a), (1.22) the conjunction of all data with relevant inference
rules, where we denote e as the set of all diagnoses

(b+) a'-b (b-9a'), in general,(l.23) variables £ I A 4~ the set of all attribute var-
m m able in 7y~'87~ and W~( 1,W) represents the domain

v (b* b1 I v a1). (1.24) variables., with W 2 corrcsponding toe

m m m m 4. Compute
(b I4'a1 I ((v a I b iv bI i:a1).(1 .25) (Y> eWv (~]A [W [

i~lJul i-ly 2 W1 E dom(A y) y' y . 22

Homomorphisms hold for b 1 c.=bm=b the full"integrated-out" form representing the posterior
relation between symptoms and diagnoses.

m m
v (b--a) = (b-* v a 1), (1.26) Next, as a particularization, suppose now that

1=1 i.7 in terms of the above scheme attribute,b is selected
m m and (1060,REDDISH) is observed. Thus, using Figure 2:

1=1 1=1,i) G(b 1 1 ; yb I (106,REDDISH)J
m m

9but + (b-*a ) ((bvb') a 1). (1.28) ly. {(y-a 0,((yv 2):_'(a2v a3)),(b2 asl),(a~va)491 )

Table 3. ALOP 2 : Calculus of Operations forl A7 = (a1I ,a 20a 3,b 2) 87 {81)
Implication (1.3). W V(W 1,W 2) ; '1  (x1,x'2,x3,22) ; W2 -t

For ALOD> 2 , for FL evaluation over n where f(G~y) ,A y W 1:1.9eyW 2 )) -Y'(Yta 1[x1J). (2.3)

now"poss"indlcates Zadeh's possibility or mem~ershlp -((y v b 21X23)4 (a2[x v a3[x3 l)).(b 2rz2 ]e[tP)
Aucin I i-poss :90~ .110lIl 12)((a[xlJ v a 2[x 2 D)e 1Etl1)

replacing (1.14), see Table 2 for all evaluations. (y >+ 81 [Y)~ v (f(bl[yJA [W 1 ,01[1 )

For ALDP 3, formal language is same (n boolean) xIEDM&i

as for ALDP 1; thus see Table 1, for calculus of opera- OO"11 2
tions for implication. ( O~2

For ALDP 3, the semantic evaluation becomes Tefnlstep in the evaluation of the medilcal
the standard probability type as given in Table 4 diagnosis is to choose an ALOP and apply this to (2.2)

___________________________________________ to obtain the semantic evaluation of the relation be-

Given boolean algebra 0 and semantic evaluatio tween symptoms and diagnoses. Consider, then this eval-
uation for the particular case given above in (2.3)

~mp:0 n -, 0,1J p(0)-O , p(l I 1, (1 .30) for ALOP's 1,2,3.

for any finitely addilive probability measure p, for allFothfrml agag frALPInd3

Ip(avb) - p(a) + p(b) - p(a-b), (1.31) boolean, using either Table 1 or basic properties of
m boolean algebras, one readily obtains(24

p(v 1  I(_)card(J)+I.p( a1) (1.32) f(G~yJ ,A[(W13)0etW)(me.)~nS ) (24

p(a'I) - 1 - p(a) , - (1.33) wher a .(a2 v a3)u~.I (2.5)
p(b-*a) -p(b') + p(a-b). (1.34) Thus, 1 2 3

Table 4. ALOP 3: PL Evaluation for n. (y >.'elt 1 ) ri0.61tt11Y, (2.6)

@1 -3-



ftINITIYI S1MOOLgC FORMU~LATION IM- volving conditioning interpreted as implication is
OF. IALII INORATON EEN YRIIL VEY given in Section 3. Then applying these results directly
;b az.TT OF WULIHRAL- aztsL r.I O 4(& IC1.N) fA[)[ 2 ) VALMi~I(~~j.) vb[ 2  ~.4

61 1TA1TVAA OFICULsST::!M IM to (2.3) yields first (using (3.7)),after simplifying:

I Zc I3 TA~t OFVCIRCLATRY STE ! .4Ex,3 where ii is given in (2.5). In turn, using (3.6) in (2.3)

bg-IOYT YEW., 5C1N-TM.) I k[ZI1 Om(b)(9 1.- Ila!. (y >> el [tl])- (n0 .81 ft 1 ).yI(n0 .el[tJ-y) Iv TO) * (.S
Is2DUEO LUNG CONGESTION Z2b 2Ez2] EQI(bZ)-fl.3...U where n0 is given in (2.7) and

- :1:,0 vb12~ NOLGLIOF ISESESTAE 1  0, =%, 5M( i )(NONE .!o~ -PRDG.1 0 ~zj 2
11S-DEGREE OF DISEASE STATE t * 2(t2] DOM( .2).INMRt .I(OIUAMHIH E D unb 2 )

- S NEMLNLA~h LVEL I 41[t3 DON(4).IOf.'l.O Then,applying selected probability measure p (see (423))
COR RULE ONTAINEDOS SUDSIIhTIE ly >-0 q1t, 1 lp(y >-* e t))-p( ACULIFRNERLSoum~ ySBTTTO rb[1.yN0e1 t,)y)' v 'o

(b 1 A~ .(b~v.. p(n 0.. r0 .etJy/p(nelft y)' v To~), (2.17)
(206 aNI :)01'j iZD~ 1 bz 2( 2 ) which can be further evaluated through use of (1.32).

* . ((b S 3 )10(4'4 Y~) (a Ex JU ti J. ' E btzJS1a't, Note that the computations for ALDP 4 parallel
. .......... closely those of ALDP 3,except for denominator term. It

fwe .A Slope edca Diagn'osis Systm :Basic Stmcurt, Prior to thoe of follows also, by direct comparisons with the above re-
sults, that indeed use of ALOP 4 results in calcula-

where (2.7) tions no more complicated than those for ALDP's 1,2,3.
no0 -(x v ax 1 3 -( V a2[x23 v v aglx3, ) Note also that the calculus of operations for

Cl D OM(al )) (x2 c DOM(a 2 D(x3 c DOM(aP) conditional objects (again, see Section 3) is analogous
Sersnti evluaton Ci)forALOP1 i, uing to those for ALDP's 1,2,3, using (1.3) for implication,

Ta e nni 2,lain(L orAD s sn by inspection of Tables 1 and 3. Notefurther, that these
ALDP's are not quite hocoroarphisms for fixed commnon

ly > *e1(t 1  - MIN(In 01,1611:t1)l.1yI), .(2.8) antecedents, dlue to problems with negation and/or dis-
* where joint sum (+)(s ;e (1 ll'-( 1 Z6o(21 ut,wh re I(MA A 29 in effect, conditionil prohabty- forms fioiql which are

I r 01 -MI( MX al~,]. MX1a1Ex1 )), -9 natural counterparts of homomorphic relations .*-v ,B
xICDOM(a 1) 4i2,3 DOa 1), p(&*clb)=p((alb)*(clb)). p((alb)')=l-p(alb)=p(a'1b),

which has .ob iou nterpretations inCL. Note also,18
pfalb) -. ~ -l) i' )

On the other hand, semantic evaluation (PL) for Indeed, the following result shows that if wq
ALDP 3, for some appropriate probability measure p is remove the particulAr probability measure p in (2.18)

(27) and (2.19),prioroto any evaluatiori,the resulting en-
p(y >+ 6 1y) = P(no.e 1 (t 1 -y) . 2.0 tities - co0nditional objects - are uniquely determined:

which can be further evaluated using the expansion1.32). Theorem 2.1 Characterization of Conditional Objects.
I' oolanFor the formal language for ALDP 2, nl modified Given a boolean algebra 0 (or equivalently,ting

boenusing either Table 3 or basic properlies([5), when considering + and *), there is a unique s pace v of
pp. 14-16). it follows that smallest possible classes of elements - according to
f(G[y],A W )eC 2 )y((biva va )-y' v T1 ) subset partial ordering - denoted as conditional ob-

V l3(yW2 y 2211 3Jects (alb),Ccld),.., for all a~b~c~d,...c n, such -that.(6 v a-ajb )_ (2*1) tIe measure-free counterparts of (2.18) (see (3.1) and
Then , using Table 2 (see (1 .29)), the semantic evalua- (3.25)-(3.27)) and (2.19) hold. For the latter,
tion becomes, assuming for simplicity la D[x1 monotone (i)=(~j),fralabc0.(.0
inA 04a)adasmn (2.12) Moreover, the conditional objects constituting
MIN poss(b 21Z21=O= MIN poss(a fx I);MAXposs(a Ex3 )l 5 coinciee with all possible principal ideal cosets of
e DOM(b 2) x 2 C DOa 2 1 x 3 ,DO1 a 3, ring n, where explicitly, for all a,b c n,

then [t -MX(I y A IYIAv11,A0la ,[l0 (alb)=D-b' 4aanb' +a-b-n*b' va-b
ly>6 1 IDMa) as (x-b' 4a.blX E n) S n *(2.21)

~~lEr.Vlthe principal ideal coset generated by b' with residue
= N(IyI,MAX(IlyI.181 [tlJ1, )). (2.13) a ( or, equivalen tly,. a-b).

Thus if we interpret implication as in (1.3Y, Pro:Use first the basic homomorphism theotem char-
__the above all show that feasible computations can be acterizing quotient rings,for (2.18);then apply equiv-
Uobtained for the evaluation of the posterior relation alence class property of cosets. See [2) for details.

between symnptoms and diagnoses for ALOP 1,2,3. a
With the rigorous basis for conditional objects

On the other hand, a basic interpretation of Justified above, define ALDP 4 as the pa ir 5.0p,where
implication is through probabilistic conditioning, But p:0 - [0,1) is extended to p:E - [0,13 via (1.2) or
in light of the remarks in Section 1, if we are to have (4.23). Note also the immediate relation from (2.21):
(1.2) hold, we cannot have (b~a) c n, the given boolean (a lb)=(cld) iff a-b-c-d and b-d ;all a,b,c~dto. (2.24
algebra of events for the probability space.But also
following the guidelines given in Sectionl(Figure 1), In addition, since for all a c V,
we Seek an ALOP,say ALDP 4, which is compatible with then 5 extends Al: (all) a t (2.23)
(1 .2) and yields, hopefully, computations, no more n . 0i. (2.24)
complex than the three standard AtOP's considered for In the approach taken here, all results involv-
this example as a case in point. For the time being, ing conditional objects are derivt-d from first princi-
assume ALDP4exists, where the calculus of operations in- ples. In this vein, define all operations among con-
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ditional objects as the natural class or component-W.ise i nb + a) + (n-dl + c) -n.(b'vd') + (a~c)
extensiorsof the corresponding operations among the ele-.
inents. Thus for example, for a~b,c,d c n. I - 0(b-d)' + (a+c), (3.10a)

(2.25)' by reMorgan's relation valid for regular rings and(a 1b)- (cld)-{q-r qc(a Ib) rci(cid) );((x-b+aX\a4cI~c'), the vroperty of regular rings whereby sums of principal
also a subset of nl as are (a Ib) and (cid). From this, 1 -r rnia dascmotbea bv.Tu
it follows immediately that conditioning as defined here ar 20) ia iel OD~al sabv.Tu
is essentially the functional inverse of one-sided con- U .20 and (2.21), (3.2) holds.
junction~i.e., the following hold for all a,b c 0 :Next~using (3.10),(3.1) holds since applying the

(alb-b a~ ; aib = xlx£ n x~ = ~b) (226) natural class extension to ( )'.assuming r? boolean here,
(alb)-(ib) - (-bb; alb) - b'x c n, obb- a'b.C(2.26

Hailperin [15) considered conditional objects,(l)
%:extending some of Boole's original ideas, but avoided' Note next that for all a,b~c,d e 0,any coimmuta-

combining these entities when antecedents eiffer-through tive ring with unity,again using natural class extension
use of universal algebras and partially-defined opera- (n.b + a).(fl.d + c) - K(a,b~c,d) + a b , (3.11)
tors. Domotor [16),following the direction of "qualita-
tive probability structures. as used in subjective prob- where
ability theory and preference orderings, developed a K(a,bc,d)4f-{Xy'b'd + y-a-d 4 x-b-c ix.y t ni). (3.12)
rather cumbersome indirect approach. not realizing the klso let analogously, again using natural class extension
rich structure of . (See, e.g., Theorems 3.2,3.3 in K(

*this paper.) Hute [14], among others[13), has also con- K,a, ,d)4 n-b-d + n-a-d + n-b-c. 13.13)
sidered"conditional logics", which appear to be general- It follows that letting x-O and the~n y0O in (3.12),
ly related to this work, but differ considerably in and using similar manipulations that
structure. Much work remains in tying-in these concepts
with conditional objects as envisioned here. Finally, n-a-d u n-b-c r. K(a,b,c,d)cJ(a~b,c,d)4 n-a-d + n-b-c
the pioneering work of Calabrese [11) must be mentioned :K(a,b,c,d)4 n1-b-d
as the direct cause of the current work. Although his K (a ,b,c,d). (3.14)
definition for conditional objects can be shown to be 0
equivalent ([l],(2.19)-(2.25)), Calabrese proposes ad. Lema 1..
hoc definitions for operators upon them, in contra- For all a,b,c,d c fl,conwnutative ring with unity,
distinction to the first principles approach taken here. Kabcd sa da f ~ ~~)- abcd

3. BASIC PROPERTIES OF CONDITIONAL OBJECTS 1ff n-b-d S K(a~b,c,d).
Theorem 3.1 Now suppose that II is regular with a,b,c,d c n. 1

The boolean operations + 9 v , 'are all Let z c n be arbitrary and define
well-defined over'?f as the natural class extensions of
the ordinary counterparts over n. Indeed: x )Xd'd-xO . (.

WI) - a'b) - (a'blb) ,(3.1) y1  X b*b.yO , (3.16)
(al~b) + Ccl d) - a+ cl kx) - (ab + cdjkx!), (3.2) X,~la)b,(.7
(a b) Y (cid) =(v c ab V cd v bd) 0 ax (.7

( ab Y cdiab v cd v bd) *(3.3) YO, -2-cd + .Xb c-Xd .(3.18)

(alb) -(cid) -(a-claitb v cW, v bd Then substituting (3.15),(3.16) into (3.12) yields
-(abcdla'.b v cW.dv bd) .(3.4) bd+yla +xbc

+ y .are all associative and coamutative x 1 y'ybd+y 1 ad+xbc
over Z', an'dvhence extendable unambiguously to any num- b.d.( 0 y,4a yc4 c-d xc,
ber of arguments. Specifically, for any W~ and any =Y'O+a''O+.11

cib 0 .il,..,n b.d.((xo + a.X ).(Y0  + c.Xd) - "'bC~d)

(a1Ibl)+..(a~b4-(a14..+4b..b, , (35 b-d'(l .z) - b-d.z.(3.19)

(alJb1)v..v(a~lb ,,(av.va4abv.vabvbl..b),(36) which in turn validates the last statement in Lenmma I

(al~l)-(a61n)-al--1aib -v'-band hence by Lemima 1

Prosand remarks. rn M'bi --r,?. (3.7) K(a~b~c~d) K 0(a,b~c~d), (3.20)

Thn Outline of the algebraic nature of the pro Finally, replacing b by b' and d by d' in (3.11), and
is given here. Fist, recall a ring is boolean 1ff it putting together (3.11)U,3.20), and using the property

is idempotent - a -a, for all a in ring. More generally, again of regular rings that sums of principal ideals
o isVonNeumnn egulr 7 1f foralla £ , tere are principal ideals also as computed in (3.1.a).

unistA a E ih aA 2,i assuming corniutativity with (n-bl + a)-(n-d' + c) - nab'-d' + fl-a-d' + A-b'.c

Mote first that for any commutative ring with . a.(b'.d' v a-d' v b'.c) + a-c
unity, say n, and ideals I,J r. n and a,c c nl, j n.((bvd)-(a'vd).(bvc'))' + a-c

(I~a) + (J~c) - (I+J)4(a4c), (3.8)
where 14J is also an ideal of n. In particular, define . fl.(a'.b v c'-d v b-d)' + a-c * (3.21)
for any a~b c n (Von Neumann) regular, which is the same as (3.4). using (2.30).(2.31).

8a41Aa' ~a , avb 4 Aa ~a +4 )b*b - x a' &A b*b, (3.9) A.ssuning again that a is boolean, since demnorgas
noting the reduction to t?'e boolean case, i.e., when relations have natural class extensio0ns to'?T, one can

X.Ib= 1, where the relations simplify to use (3.1) as
a'-l-a-l~a , avb - a~b-a-b - a~b~a.b. (3.10) (alb) v (cid) -((alb)'.(cld)')'

Then letting I-aIb and J-0-d' for n regular, it fcllows (ab)-ee,

that (3.8) becomes a'clbvcdvbdl
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=(avcla.b v c-d v b.d), (3.22) for the bottom of (3.31). Again see [2] for detail.

which is the same as C3.3). From this point on, most proofs will be omitted

The extension of the above results to multiple and the interested reader is referred to (2].

arguments is tedious and will be omitted. Finally, it o

should be noted that (3.3) and (3.4) can be extended

where for (3.3),n is boolean and for (3.4),P is only In conjunction with the various properties dis-

regular, where for any ideals I,J of a and all a,c c r?, played so far, ?f possesses a number of interesting al-
S(I + a) v (J + c) =(I.J + Ja' + I~c') + (avc), (3.23) gebraic properties summarized in the next theorem.

(I + a)-(J + c) = (I.J + J-a + I.c) + a 'c , (3.24) Theorema 3.3

where it should be remarked that in (3.23) and (3.24), Assuming as usual here that n Is a boolean ring,

on the right hand sides the collections of ideals to 2 in general is not a ring due to the failure of addi-

the left of avc and a-c are also ideals. Pro~fs of all tive inverses (-) to hold. However, i is commutative

of the above results together with other related in- and associative relative to 4,V,. , has additive iden-
vestigations can be found in [2]. tity 0 the same as in n and multiplicative unity 1 the

v same as in n . Also, v and - are mutually distributive
overt Z ; (like v ) is idempotent, demorgan relative

Theorem 3.1 specializes, when antecedents are to (v,-,( )'),and v and - are mutually absorbing over

the same,to the formal counterrarts of well-usEd prop- finally, ( is involutive over fi.

erties of conditional probabilities where the condition-

ing is upon the same event: Other properties of conditional objects contrib-
Corollary 3.1 uting to the development of a calculus of relations arepresented below.

For all a,b,c c n, assumed boolean,

(aib) + (cib) -(a+clb) = (a.b + c.blb), (3.25) Theorem 3.4

(aib) v (cib) (avcfb) = (a.b v c.blb), (3.26) for all a,a,....am,b,c,d c n, boolean,

(aib) ) c = (a-cjb) = (a.b.clb). (3.27) (aJO) = (010) = n , (3.34)
0 (lib) = (bib) = n.b' + b = n v b (3.35)

It should be noted that there is a basic com- (aIb)'(aIb') = (a2la') = (ala') = (O0a')=.n-a (3.36)
patibility between Corollary 3.1 and the the natural
homomorphism nat b: - /b' , where for any x c C, (alb) v (alb') =(ala ) , (3.37)

natb(x) (xib) - x + n.b' , (3.28) (alb) v (alb)' = (bib) , (3.38)

where all basic properties of r, are brought down to the (alb) - a + (Ob), (3.39)
fixed quotient ring n/b' defined through the usual coset { v (aib) = (avcjbvc), c'aib) = (c.albvc'), (3.40)
operations. c + (alb) = (c+alb) ,(3.41)

Since all boolean functions over n can be ex-
pressed as simple canonical functions of e.g., v (aib) + (cd) = (alb).(cld)' v (alb)'.(cid), (3.42)

( )', it follows that the same is true of their nat- (alb.c).(blc) = (a.blc) (chaining property) . (3.43)
ural class extensions and a simple argument thus shows
that if f:f2"- n is any n-ary boolean function, ther, If al,...am are disjoint and exhaustive, i.e.,

the natural extension of to f:fn' IT is well-defined. a *aj =6i and aI +.-+ am = 1l (3.44)

Returning to the partial order ! defined over oi I* a i nd a m

(boolean, although extendable to regular rings), where then for any j, j=l,..,m , the following forms of Bayes'

a s b iff a - a.b iff b = a v b (3.29) Theorem hold:

and where - possesses all the usual lattice proper- (a !b) = (ajbib) = (bla )-a I b (3.45)

ties, it is basic to inquire if the natural class ex-
tension of s from n to preserves these properties. (ajib)b - (bla )-aj =aj.b (3.46)

Theorem 3.2 b - (bIa 1).a1 +..+ (blam)-am . (3.47)

Let I be boolean. Then define for any a,b,c,d c In If aI s a2  ... s am , then the chaining relation

(a b) s (cld) iff (alb) = (ab). (cld). (3.30) holds:alia (a2Ja3 . (am.Iam)

Then it follows that 2 )a 2 a3 ).

(alb) s (cd) iff (cid) - (alb) v (cId) 1

iff a-b s c.d and c'.d S a'.b.(3.31) The next results tie in conditioning as defined

In addition, among the lattice-like properties enjoyed here with classical implication.

by the legitimate partial order s over 71 ( since it can Theorem 3.5
be shown to be anti-symmetric, renexive, and transit-
ive) are, letting A=(afb), C-(cd),E(elf),G-(gh) c ?1: For all ab c r? boolean

A s C,E iff A s C.E ;,E % A iff CvE s A , (3.32) (alb) - (b aib) . (3.49)

If A s C , then C' ! A'; (3.34 The smllest ele'nnt of (alb) relative to s is a-b, while
If A % C and E s G, then A.E C.G and AvE CvG.(333) the largest element is(b # a), thus

P a-t s (alb) s bf a. (3.50)
~Proofs:

The proofs in some cases are rather long such as Also,
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b *a .- ',a Ib)vb' -(a' b)=- (b'Ja I)va (3.51)' 4. ADDITIONAL PROPERTIES OF CONDITIONAL OBJECTS

(aib) - (b * a).(blb) - (CbIA')va).bfb), (3.52) In the last section, a basic calculus of opera-
- ~ (b'Ia') - (b * a).(a'la') - (Calb)vb')I(a'Ia'), (3.53) tions was presented for conditional objects. In this

(a~b(a bYb ba)=ab va~b .(lb).b~ava'b', section, certain selected topics involving conditioning
(a4b)-a 4 b)(b - a-a- va'-l -&lb-(ba~v',b-' are briefly considered.

= (3.54)First, define higher order conditional objects
(albV-(bla) -(a.blavbl (a%#4b).(a-bla-b), (3.55) through natural class extensions of conditional objects
yielding as the smallest element of (alb).(bia) being as defined in the previous sections. Thus for any a~b.
a-b and the largest being attb , analogous to (3.50). c.d c n boolean, define

Also, note thr pairwise comparisons between (Calb)l(cld)) = f ) (Ca Ib)-Ccld))
b 4 a and (alb) : (See also Table 1, Section 1.) (cd

{(xly)1(xly) c Iff and (xly)-Ccld)=Calb).(cldl). (4.1)
(a Ib)-(ablb) while (b 0 a) -(b 0 a-b) (3.56) Some basic properties and an explicit solution are given

S(1 Ib)=(b lb) - fvb while (t. I l)(b Ii b) =1 (3.57) next.
(bil) =b while (1 4 b) , b ,(3.58) Theorem 4.1
WbO) - fl while (0 4 b) - 1, (3,59) - For all a,b~c~d c nl boolean:

(alb)' II:(a'.blb) while (b 0 a)' = a'*b , (3.60) Analogous to (2.20).
(Olb) -(b'lb) III flb' while (b 0 0)=(b 4 b') = bW I36l ((alb)I(cld)) = ((alb).(cld)I(cld)) c P(M (4.2)
(alb)-Ccld) = (a.clq) while Cb * a).(d # c)-(q*c),(3,52) and (&blcd)(l)-(l)(l) 43
where (abIcd)C~)=(l)(l) 43

q a' -b v c'-d v b-d. (3.63) Without loss of generality, using (2.20),(3.31),

N~ext, and (4.2), assume from now on, unless otherwise stated:

(flb)v(cjd)=(avclr) while (b * a)v(d 4 c)=(b.d 4 (avc)), a :5 b . c !5 d , (alb) s (cld). (4.4)

where (3.64) Then explicitly
r a-b v c-d v b-d. (3.65) C(a~b)I(cld)) =(alb) v T c~d

Also, for a:5b~c, transitivity holds as -(alb) v S- d (4)
(afb).(blc) - (aic) while (c :5 b)-(b *-a)t5(c O.a),(3.66) ' {TabB;st Ift~s C(45
and for asb-c , improvement of information is where for all t:5s E D ,

(ajb) s (alb-c) while (b 0 a) S (b.c 0 a). (3.6/) ab,;tI(l)v-scdst

% Also . referring to Section 4, and the class
reduction operator 0 , one can compare iterated classic- =(a v a-tfa-v e-t v b.U(c'.d)' s )

Ll imiplication and iterated conditional forms =(a v s-t a v 0-t v b.(SB V S) E n (4.6)
d _N(alb)l(cjd))=(ala) while((d 4 c) * (b 0 a))=(y 4,a). e b' d' v c'-d ,(4.7)

where (3.68) rsligi
a= b.(c.d Y a'.d') , y = b.(c.d v d'), (3.69) 0' =(b v d)-(c'-d)' = c v b-d' , (4.8)

with the special cases Tcd fte,c,d;s,t~t:5s £ nJB8-Vcd(4.9)

5((alb)I(clb))=U((aIb)Ic))=(alb.c) while d .

((b +. c) 4, (b #4. )) - (c 4 (b 4-))U~c a).(3.70) *~~~ h~~~ )£f, (.0

*a(BtI (c' -d)'v )cA
Finally, this section is concluded with a result c,d.s,t (Ic') vs)£f 4.1

which is not only interesting in its own right as a gen- V cd (.6 .Jst t 5 S El ) (4.12)
eralization of the classic result concerning the dis-cd cdst
jointness or identity of cosets having the same antece-
dent, but which is useful in further analysis of con-
ditional objects. Unfortunately, unlike the sinole conditional case

(see (2.22)), second level conditional objects pose a
Theorem 3.6 problem with respect to both uniqueness of representa-

tions relative to their antecedents and the closure of
For any a,b~c,d c n boolean and denoting n below boolean operations. Surprisingly, only three parameter

for the ordinary class intersection, values - out of four possible a priori - a re required

V0 iff atc J (Olbid) to specify such forms uniquely. The representation is
(aib) n (cid) =( (3.71) characterized in the following theorem:

1 ~ (&Ibvd) 1ff al-c c (Ojb-d), Theorem 4.1
where orala , cid c fl~boolean satisfying (4.4)

E p + a , q + c ; a + c ,q + p , (3.72) Fo l . 11

for some p Ob n O ... (a replaced by a ,etc ) and S. s' as in (4.7),(4.8),

Fro theb and it follws tha respectively (with b r~placed ; 9i, etc.), 1-1.2:.0
Frmteaoei olw ht((allbl)I(c 1Id,)).((a 2 b 2)(c2 Id 2)) ff(a a2 b b 2 .01

(alb) S (cid) iff (d ! b and a c (c~d) ).(3.774) 1ff (aI a 2, bI b2. c 2= a IVsi.(blvw). d 2-c 2veI b 1) , (4.13)
13 for any fixed wt E. (3
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One reasonable way to treat the of& iulties a- ties. Beginning with probability space (M,A,p) and r.v.

rislnq from the necessary introduction o -re . ted con- V:,Rm ,r.v. W:M4Rn , extend V,W.VXW in the natural
ditional forms is to determine if there i - e mapping class sense to v:'. gm, W:X . fn,VKW;; l.. +n , re-from. these higher levels down to the sin ;' 'el which spectively, where for all a,b E A,~can be used to identify the former with the latter.

As a candidate for the above, suppose we consider V(alb)=V(a)xlRn;W(alb)IRxmW(b); Wx0alb)V(a)xW(b).(4.25)
the class reduction operator u:P(P(n)) i P(n), where Then the rndom onditionaZ obJect (VIW): mn is de-
for all A c P(P(n)), fined by, for all a,b c A,

U(A) t U A = {xix c A c A) S . (4.14) (VIW)(alb)((VW)alb)IW(ab))-(V(a)-W(b) PRW(b))
AcA I(V(&)JWtb)), (4.26)

with inverse mapping (VIW)-l:1m+n - A,yielding for anyTheorem 4.3
c c Em. d c£Bn

Let n be boolean and denote, analogous to ?f be- -l.l l l l
ing the clas of all (single) conditional objects form- CVIw)Cchd)=(CVxW)(cxd)IW(d))(V(c)iW(d)
ed from n, as the class of all (double) conditional Thus, VIW) induces "conditional event probability
objects famoed from i, noting that s V Elf. Then: space" ( IRm+n m+nP(vw)), where P(v'w): m+n [0,1)

: 5 is a surJectlve homomorphism relative is given by
to all boolean operations extended in a natural class p(Vlw)(cld)ip((VIw)'1(cid))=p(Vr1(c)IIwl(d)). (4.28)
way from n.

Furthermore, the specific relation defining 5 By using an optimal approximation technique, arithmetic
can be determined to be, for all a,b,c,d c n satisfying operations over conditional objects can also be deter-
(4.4), rined, in turn yielding expectations of random con-

,ditional objects, defined in the natural way. Thus,e.g,
E((VIW)) = ( E(W-W) I E(VxW) ). (4.29)((alb)i(cld)) (alb.5') (ajb.(c'.d)').(4.1S) E(~) (')jEVW ,(.9

In particular,
1 (aIb) pacb), (4.16) where E(-) is ordinary expectation. (See ll, Section 53

U((aib)J(c~b)) = 5((alb)lc) = (alb.c), (4.17) 5. REFERENCES
rd =1. Goodman,I.R.,NguyenH.T.,"Conditional objects and
i(aI(c•d)) = (a~c-d)'). (4.18) the modeling of uncertainties",in Fuzzy Conputing,

.. (cId).((a~b)I(cld)) = (alb). (4.19) M.M. Gupta et al., eds.,North-Holland Co.,1987.
2. Goodman,I.R.,Nguyen,H.T., An AZgebraic Theoryz of

Also , the following restrictions of U are Conditioning with AppZications to ncertaintj odeZ-
surjective isomorphisms relative to all boolean opera- ing (monograph to appear).
tions extended in a natural class way: 3. Goodman, I.R. ,NguyenH.T. Uncertaint Models for

U: J((aIb)Ic) ab E n ) f (aIb.c 1a.b c D,(4.20) Knowledge-Based SystemNorth-Holland Co.,1985.
4. Rescher.N.. Man,-vaZued Logic, McGraw-Hill Co.,1969.

U: ((alb)1(cjb) a,c E P ) {(alb.c) la,c c 0(4.21') 5. Dubols,D., PradeH.,Puzzy Sets and Systes,Academic
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ties directly. ditional probabilities" ,PhiZ.Rev.,85(3),July,l976.
Firstly, recall that conditional probabilities 297-315.

can be considered a homomorphic evaluation of the formel 10. CalabreseP., "The probability that p implies q",
relations in (2.26) (left side) (see also (1.2)), as Preliminary Report, Calif. State College; abstract
well as (3.1) and (3.25)-(3.27).(Again, see Theorem 2.1.) in Amer. Math.Soo. Sotices,22(3),April, 1975,
Also, conditional probabilities can be identified, with A430-431.
the introduction of conditional objects, as the exten- 11. Calabrese,P.'An algebraic synthesis of the founda-
sion of probability measure p:n * [0,01 to monotone tions of logic and probability", submitted to Info.
function p5 .40.1] , i.e., if (aib) s (cjd) E i6. then Scice (1987).

, 12. Rehder,W., "Condition; for probabilities of con-
p((alb)) - p(alb) s p(cjd) - p((cld)). (4.23) ditionals to be conditional probabilities",Sjnthese,

In particular, this shows that (3.50) implies, as a 53. 1982, 439-443.
check. (1.4). Other inequalities can be similarly est- 13. Appiah. A.,Asertion and Conditionals, Cambridge
ablished through first using the formal counter arts University Press, Cambridge, England, 1985.
One can also detine measure-tree independence of con- 14. Mute, D., Topics in Conditional Logic, D. Reidel Co.
ditional objects (alb) and (cid) to occur when they are Dordrecht. Holland. 1980.
p-independent ,i.e, .15. Hailperln,T., Boole's Logic and Probabilityj, North-

Holland Press, New York, 1976.
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updating of information can be very elegantly described Publishers, London, 1979.
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Lastly, we consider briefly random conditional
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