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A MEASURE-FREE APPROACH TO CONDITIONING

1.R. Goodman

Command & Control Department
Code 421
NAVAL OCEAN SYSTEMS CENTER

San Diego, California 92152

' ABSTRACT I
—

© In an earlier paper, a new theory of measure-
free“conditional® objects was presented. In this paper,
emphasis {is placed upon the motivation of the theory.
The central part of this motivation is established
threcugh an example involving a knowledge-based system,
In order to evaluate combination of evidence for this
system, using observed data, auxiliary attribute and
diagnosis variables, and inference rules connecting
them, one must first choose an appropriate algebraic
logic description pair (ALDP): a formal language or
syntax followed by a compatible logic or semantic eval-
uation (or model). Three common choices- for this high-
1y non-unique choice - are briefly discussed , the
logics being Classical logic, Fuzzy Logic, and Proba-
bility Logic, In all three,the key operator represent-
ing implication for the inference rules is interpreted
as the often-used disjunction of a negation-{bda}=—2

©* {'v a) , for any events a'?iﬁ:___’ - i

However, another reasonable interpretatich of
the implication operator is through the familiar form
of probabilistic conditioning. But, it can be shown -
quite surprisingly - that the ALDP corresponding to
Probability Logic cannot be used as a rigorous basis
for this interpretation! To fil11 this gap, a new ALDP
is constructed consisting of "conditional objects”,
extending ordinary Probability Logic, and compatible
with the desired conditional probability interpretation
¢f inference rules. It is shown also that this choice
of ALDP leads to feasible computatfons for the com-
bination of evidence evaluation in the example. In
addition, a number of basic properties of conditional
objects and the resulting Conditional Probability
Logic are given, including a characterizatfon property
and a developed calculus of relations..

1. INTRODUCTION

This paper is complementary to a previous one
[1] 1n which measure-free conditional objects are first
jntroduced. In that paper,emphasis was placed upon a
summary of the various mathematical properties that
are derivable, In this paper, motivation for the use
of conditional objects is underscored, followed by a
brief overview of results. A more thorough presentation,
together with all relevant proofs,can be found in [2].

The basic questions that are demanded of 2 new
theory include:

What use is it ? Is it necessary ?

Does it solve an ex{sting problem ?

Is 1t truly novel ?

Does it tie-in with past literature in the

field ? )
Is it mathematically sound and sufficiently

rich to 1ead to further deeper results and applications?

-1-
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It 1s the hope of this paper and accompanying
work to provide positive answers to the above questions
through the development of conditional object theory.

In a typical knowledge-based system, a collect-
ion of inference rules is present, each rule connecting
potential observed data through auxiliary attributes to
potential parameter estimates or diagnoses. Each rule
also has,as a main connector,some form of implication.
Thus,in evaluating such systems, it is critical that
consistent and feasible interpretations and computations
be made for these operators.

At present, there is no sound logic of con-
ditional events,analogous to ordinary Probability Logic,
in use. Thus no systematic approach exists for combin-
ation of evidence problems, when individual inference
rules are interpreted through conditional probabilities.
Indeed, D. Lewis [9) pointed out in 1976 that one could
not identify implication with conditioning in the prob-
ability sense. That is, if

(bda)= (alb) e a, (1.1)

where 0 is some fixed boolean algebra of events or
propositions a,b,.. , then formally applying a given
probability measure p:0 + [0,1] to both sides yields

p(bda) = p((a]b)) = p(alb) ¢ pa-b)/p(d) . (1.2)

provided that p(b) > 0 . But, if one makes the common
identification (but by no means, the only possible)

(b3a) = (ba) $(b'y a) , (1.3)

then one can show,by use of elementary properties of
conditional and unconditfonal probabilities,that

p(b>a) = p(a|b) + p(b')-p(a']d)
2 pla|b)
2 p(a-b) ,, . (1.4)

with strict inequality holding in general. (In fact, it
is rather easy to construct examples where p(b>a) is
close to unfty while (a{b) is close to zero.) Further-

E‘I'I has shown that not only will
+ not work in (1.2}, but no boolean function of two
arguments possibly representing implication, will sat-
isfy (1.2).

Yet, often {ndividuals assume the identification
in {(1.1) - at least tacitly - and manfpulate and inter-
change conditional probabilities and implications, not-
ing an easily-derivable calculus of relations for
such implications. (See, e.g., Table 1.) In fact, Stal-
naker's Thesis [8) carries out this identification; but
see Lewis' criticism [9]. .
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Thus, we must pose the basic question: Can we 3”;\ rusxoi??o_c:ss (FU)

make sense of "conditional object® (a]b) compatible
with conditfonal probability p(a]b) ? Also, how do we

Ty
3
compute (a|b) v (c]|d) and in turn evaluate the ex- INITIAL MENTAL IMAGING/ NATURAL™ LANGUAGE
pression p({a]b)v(c|d)) 7 Lastly, can we_use such DETECTION/ COGNITION MACHINE LANGUAGE/:
entities in combination of evidence probiems in con- SENSING (D) Anderson & Bower . [—% TRANSFORMATIGNS
junction with knowledge-based systems? Meyer, Grossberq, MMQ:PHOLOGY, GRAM-
Piaget,

Another approach to avoiding the establishment 2get, McDermott Chomsky, M Cawl
of conditional objects, in effect, is to squatea given Lyons . Fon.s :eey
collection of conditional probabilities with corres- ———— - = - - - - | * 29
ponding common antecedent conditional probabilities | SEMAN PARSING
through formation of appropriate joint events. But ' gf:ﬁ:;l%?ow/ rXLzL; ;0“"’“’ | H'inogrss Schank
this approach can also be shown to lead to certain "losics) gY:Txcﬁés :
difficulties conceptually as well as computationally HODELS .

$ 3 PRIM, SYMBOLIZATIONS/
[2]. cott, Bénabou,
ladeh, Gddel, STRINGS/WFF'S

Additional discussions concerning Lewis' "triv- [ {Lukasiewicz, SEMIOTICS
fality result" concerning Stalnaker's Thesis can be C"'“P»"“‘-_j Eco, Korzybski,
found in [12],[13],014]. Hailperin Morris

|
]

The proposed remedy to the above problem fn- |i ALCEPRAIC tOGIc DESCRIPTION PAI*
volves an extensfon of coset theory as applied to bool- i
ean algebras, where the original boolean algebra of
events f is replaced by the union of all principal DECISION PROCESS EXAMPLES OF ALDP'S
jdeal quotient rings of n. The fundamental justifica- .
tion for this will be given below, followed by an ex- ALDP 1 = (BOOL.ALG.,CLASSICAL LOGIC),
ample §1lustrating how conditional objects and Con- ALDP 2 = (MODIFIED BOOL.ALG. |,
ditional Probability Logic can be directly utilized in IADEH'S FUZ2Y LOGIC) ,
a knowledge-based system. (See Section 2.)

——h o~ . -

HYPOTHESES
FORMULATION/
OPTIONS/

QECISIONS (H)

ALDP 3 = (BOOL.ALG.,PROB. LOGIC),
However, let us first back up and consider how ALDP 4 = (COND.BGOL.ALG.,
a typical combination of evidence problem can be per- COND. PROB. LOGIC).
cefved, Figure 1 illustrates the basic imformation {NEWLY PROPOSED ALDP) .

processing flow from the inception of the problem to IN THE FIRST THREE ALQP'S, IMPLICATION 3 IS INTERPRETED
the decision process. This processing consists of five |AS >, WHERE (8 »a) 9 (8' v a), FOR ALL PROPOSITIONS «,8.
subdivisions in sequence: FODPIFIED BOOLEAN ALGEBRA = PSEUDO-COMPLEMENTED

1. Cognition: Initial processing of information, |DISTRIBUTED LATTICE.

2. Natural Language Formulation: Relevant to all Figure 1. Subprocess Expansion of Data Fusion/Combination

narratives produced by human observers. of Evidence Process Connecting Initial "Signal”
. Detections with Hypotheses Formulations.

3. Primitive Symbolic Formulation of Information:
Formation of well-defined formulas or strings
of information, without refined constraints. Use of

li)as:liﬁ fz;‘ma] ;onnects for:4, - ; or, v ; not, ( )'; i Given boolean algebra o, for all a,b.c,a,[.bi en
mplication, 3. =1,..,m :
4, Full Formal Language: Use of all relevant syn- (b>a) = (bda-b)e n, (1.5)
tax, constraints on connectors, such as associativity, ) (19a) =
commutativity, absorbing, distributivity, demorgan,etc. 2 2. (1.6)
5. Full Semantic Evaluations or Logic : Must be in (chaining)  (cwa-b) = (c»b)-(b-c >a), (1.7)
model form,i.e., some type of homomorphism preserving (b»a)' = a'+b ¢ (ba), {n general{}.8)
basic structure of full formal language. n m n
It is the chofce of the last two subprocesses v(b‘-n‘) = (. b‘ > v ‘1)' (1.9)
with which we are concerned here, We will call such a {1 i=1 i=1
pair of subprocesses 4 and 5 in Figure 1 an algebraic
logic description pair (ALDP). As given in Figure T Vet: } '.“(b o2 )= (( l:"a'-b v m b » Ta ) (1.10)
ALDP 1 = (boolean algebra n, Classical Logic (CL)) g 1 T2 BRI I g dp
ALDP 2 = (médified boolean algebra @ _,Fuzzy Logic(FL)) Homomorphisms hold for b,=..=b =b
. o 1 m
ALDP 3 = (boolean algebra n, Probability Logic(PL)). m m
%jﬂ.% three ALDP's above, implication, from 1\-:1(».‘) = (b "1"1!1)» (1.m)
oow on, s To be Inferprefed only 3L'IE.EII:IT-""l .
See [3), Chapter 2 for general background con- " (bsa, )= (b ,,T 2)) (1.12)
cerning formal language and semantic evaluation in i) i ile .
modeling knowledge-based systems. See also [4] for an n
excellent survey of multivalued logics, including PL,
See (5] for FL and [6) for boolean algebras and rings, n (b ‘1:151) » 1f m 1s odd
Future efforts will deal with extensions of these fdeas but i:]“»'i) REE (1.131
to nonmonotonic ogics as presented,e.g., in [7]. s8; if m is even ,
For purposes of completeness, let us next brief- i)
1y review each ALDP, presenting an abridged calculus of
operations involving implicatfon and semantic evaluation Table 1. ALDP 1: Calculus of Operations for
for use in the ensuing example in Section 2. Implication (1.3),

-2-
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‘ﬂ:"',"' ‘.!e'?lg‘?lz‘f'q‘t'n.t“.‘:' SN '.‘g'«f."’l"!.'.«S"hl'.‘.!‘l'!.‘lf‘.‘t$x.‘;

Wt




v AW R, ELEFLENLS VY RLUFUN

MWL W UwYRTw

Given boolean algebra 0 and semantic evaluatfon

1 t:a+ (0,1}, 101=0 , N1=1, (1.14)

for all a,b ¢ A:
la v b1 = MAX(HaB,Ibl), (1.38)
fa + b 1 = MIN(Tal,Ibl), (1.16)
1a'y =1- 1al, (a7
fa+ble=la'bvabl, (1.18)
1 b>al = MAX( ) - Ib1, Jal), {1.19)

Table 2. ALOP 1 : CL Evaluation for q.

Given modified boolean algebra ﬂo' for all a,b,
:'ai'bi' t=1,..,m:

(b»a) = (b>asb)e fp , (1.20)
fashb, i.e., a = a:b , for middle equality to hold.
(1»a)=a, (1.21)
haining) (c»(asb v beb')) = (cdb)-(bec »a), (1.22)

(b>a)' = a'-b ¢ (b>a'), in general(1,23)

m

v(bsa) = (b > va), (1.24)
gy 1 =1 1 =1 '
. v Tb) s v a) (1.25)
« (b.*a,) =({valeb, v+«b.)> «a){1.25
R e A R
Homomorphisms hold for b]=--=bm=b :

m m

v (bba,) = (b v a‘), (1.26) |

i=1 i=l

m m

c (bray) = (b> . ;). (1.27)
i=1 i=]

m m

but + (b"ai) = ((bvb' ) + °1)- (1.28)

i=] {=)

Table 3. ALDP 2 : Calculus of Operations for

Implication (1.3).

For ALC? 2 , for FL evaluation over R, , where
now"poss” indicates Zadeh's possibility or membership

function § f=poss 10y » [0,1] ,101=0,111=1, (1.29)
replacing (1.14), see Table 2 for all evaluations.

For ALDP 3, formal language is same (n boolean)
as for ALDP 1; thus see Table 1, for calculus of opera-
tions for implicatfon.

For ALDP 3, the semantic evaluation becomes
the standard probability type as given in Table 4 :

Given boolean algebra f and semantic evaluation
vaep:n+ [0,1], p(0)=0, p(1) =1, (1.30)

for any finitely addithve probability measure p, for all
u.b.ai e n, i=1,..,.m:
p(avb) = p{a) + p(b) - p(a-b), (1.31)

! (0o, (132)
ofds{l,..,m} fed

p(a') =1 - p(a),.
p(t->a) = p(b’) ¢+ p{a-b).

m
plv a,) =
i=1
(1.33)
(1.34)

Table 4, ALDP 3: PL Evaluation for Q.

2. AN EXAMPLE

With al) the preliminaries out of the way, con-
sider next a simple medical diagnosis system as 11lus-
«rated in Figure 2 (next page)., The basic implementation
scheme in combining evidence is given below, all corres-
ponding in Figure 1 to information processing,up to and
including Stage 3, Primitive Symbolizations, prior to
choice of ALDP, making up the last two stages (4,5):

1. Choose data event variable set G from attri-
bute variables, Observe symptoms y € dom(G).

2, Form
0 ly

where in either antecedent and/or consequent socme var-
ijables in G appear. I_ can also be considered the poten-
tial "firing” class of inference rules, if CL and ALDP 1
were chosen,

, the set of all inference rules y

3. Form

Fl6IyD.A W1ue [W,1) = y+( « WD),

vel

the conjunction of all data with relevant inference
rules, where we denote 6, as the set of all diagnoses
variables 6. € 1 : A i¥ the set of all attribute var-
jables in I ~ ey ;andy H=(H],H2) represents the domain

variables., with Hz corrcsponding to ey

(2.1)

4. Compute

(>l & v ( F(SLLAL0D0,00) ). (2.2)

N]e dom
the full"integrated-out" form representing the posterior
relation between symptoms and diagnoses.

Next, as a particularization, suppose now that
in terms of the above scheme attribute,b, is selected
and (106°,REDDISH) is observed, Thus, us‘ng Figure 2:

(6=(b;) 5 y=b, [(106° REDDISH)] &

1, = {(y32,),(y vh,)9(a,v 23)),(b,36,) l(ayv 2 38)

Ay = {2;.3,,25,b,} ; 8y = {8y} 3

W= (W M) 5 Wy o= (kg a%y0%g,2,) 5 Wy =ty

f(6[y1,A 41,0, [W1) = ye(y3a,[x])-

*((y v bylx, 113 (a,[x,] v 230x,1)) (byl2,]36, [t])-
*((a;0x,] v a,[x,1)38,[t,]) 5

t = f(b LA LW, 1,8, [t .
(y > 0,[t,]) . Sonﬁ.ﬁ’,] [0 3,0, 01,0 )
1=1,2,3 ;
\ z, € DOM(b,)

The final step fn the evaluatfon of the mefical
diagnosis is to choose an ALDP and apply this to (2.2)
to obtain the semantic evaluation of the relation be-
tween symptoms and diagnoses. Consider, then this eval-
uation for the particular case given above in (2,3)
for ALDP's 1,2,3.

—P

(2.3)

For the formal language for ALDP 1 and 3, @
boolean, using either Table 1 or basic properties of
boolean algebras, one readily obtains (2.4)

F(GLyD A [,7,8, M, )= (n-ey-) '8 (nety -y} = medyey,
where d
n ¥ age(a, va,) antwl, (2.5)
Thus,

(y > 0,[t;]) = noeoyttiey , (2.6)

el Aah Sl Soll S22 Malt Sab Bib Bae Sab Sat Sor aoc fae g bta, e tStat
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(2.7)
[xy] «( v azlx;] ]

© ey ¢ DOM(3 ) (x, € DOM(Z,Dixs € 38»[4’((33)3

evaluation (CL) for ALDP 1 is, using

where
n §

Semantic
Table 2,

ly > e][t]]l = MIN(Inol.la][t]]l.lyl). (2.8)
where !

In l = MIN( MAX §ay0x, 0, MAX Ta5[x;11), (2.9)
° xy € DOM(a;) X € DOM(a,),
22,3 .

which has obvious interpretations in CL.

On the other hand, semantic evaluation (PL) for
ALDP 3, for some appropriate probability measure p is

D(y »e‘ft'l.]) = P(n°°91[t~|}'¥) » (2.’0)
which can be further evaluated using the expansion{l.32),

For the formal language for ALDP 2, n_ modified
boolean, using either Table 3 or basic properties([5],
pp. 14-16), it follows that

f(6Ly],A W 1,0, [Wo])=y- ((byva,vaz)-y* v m )e
(8 v aj-ay-by). (2.01)
Then , using Table 2 (see (1.29)), the semantic evalua-

tion becomes, assuming for simplicity Ia1[x]]I monotone
in Xy € DOM(a]) and assuming (2.12)

MIN poss(b,{z,}=0= MIN poss(a,lx,1};MAX poss(a [x.])=1
z, € 00M(b,)2 2" x, ¢ DOM(a,] 2 xze DOM(ay) E

then )
1y >+e, [t 1= MAX(MIN(y,MAX{Dy" 0, MAx e L1 [x 300

= MINCIyE,MAX(1-Iy0, 06, [, J0,5)). (2.13)

Thus if we interpret implication as in (1.3,
the above all show that feasible computations can be
obtained for the evaluation of the posterior relation
between Symptoms and diagnoses for ALDP 1,2,2.

On the other hand, a basic interpretation of
implication 4s through probabilistic conditioning, But
in 1ight of the remarks in Sectfon 1, 1f we are to have
(1.2) hold, we cannot have (b3a)e n, the given boolean
algebra of events for the probability space.But also
following the guidelines given in Section){Figure 1),
we seek an ALDP,say ALDP 4, which is compatible with
(1.2) and yields, hopefully, computations, no more
complex than the three standard ALDP's considered for
this example as a case in point. For the time being,
assume ALDP4exists, where the calculus of operations in-

B O T W S N N U R W WU w U WIrTUW T e T TN TS e ey

volving conditioning interpreted as implication is
given in Section 3. Then applying these results directly
to (2.3) yields virst (using (3.7)),after simplifying:

FIYIA 4] 8 M1 (negiltdey] (n6ftdoy) v Blz,]),¢.14)
where n is given in (2.5). In turn, using (3.6} 1n (2.3)

(y »9][t]])' (no’ﬁ[t]]'YI(no'e‘[ﬁJ')’)' v To)o (2.15)
where n_ is given in (2.7) and
& v bolzr] (2.18
Z,¢eD M(bz)

Then,applying selected probability measure p (see (423))

Iy >> oftJt=p(y > g1)=pln, fl[tﬂ')"fb’ﬁ[ﬁ]'y)' v 1)
sp(n -1o-q [t J-y)/p(ns iy}’ v 1 ), (2.17)
which can be further evaluvated through use of {1.32).

Note that the computations for ALDP 4 parallel
closely those of ALDP 3,except for denominator term. It
follows also,by direct comparisons with the above re-
sults, that indeed use of ALDP 4 results in calcula-
tions no more complicated than those for ALOP's 1,2,3.

Note also that the calculus of operations for
conditional objects (again, see Section 3) is analogous
to those for ALDP's 1,2,3, using (1.3) for implication,
by inspection of Tables 1 and 3. Note further, that these
ALDP's are not quite howmororphisms for fixed common
antecedents, due to pro?lems with\negatign and/or dis~

+ - -
Qg‘g};:g’{' . (cg%s%iggﬂ ! ﬁréla’ ?J:” fg_y '%o?‘mg ﬁg?p\ih?gﬁ ‘are
natural counterparts of homomorphic relatfons.*=v,,+ :

p(asc|b)=p((a]b)«(c|b)), p((a]b)')=1-pla]b}=p(a’lb],

N 2.18)
ote a1s0,  p(alb) = pla-b|b) 19y
Indeed, the following result shows that if we
remove the particular probability measure p {n (2.18)

and (2.19),prior to an{ evaluation,the resulting en-
tities - conditional objects - are uniquely determined:

Theorem 2.1 C(Characterization of Conditional Objects.

Given a boolean algebra @ (or equivalently,ring
when consfdering + and -), there is a unique space @ of
smallest possible classes of elements - according to
subset partial ordering - denoted as conditional ob-
Jects (a]b),{c|d),.., for a1l a,b,c,d,..€ %, such that
the measure-free counterparts of (2.18) (see (3.1) and
(3.25)-(3.27)) and (2.19) hold. For the latter,

(a]b) = (a-b]b) , for a1l a,be n . {2.20)

- Moreover, the conditional objects constituting
2t cofncide with all possible principal ideal cosets of
ring n, where explicitly, for all a,b ¢ 0,

(a]b)=n+b' +amnsb' +a+b=nsb' vacd

= {xsb'+a-blxe@ cn, (2.21)
the principal ideal coset generated by b' with residue
a (or, equivalently, a-b).

Proof:

Use first the basic homomorphism theorem char-
acterizing quotient rings,for (2.18);then apply equiv- J
alence class property of cosets. See [2] for detafls.

: o
With the rigorous basis for conditional objects
Justified above, define ALDP 4 as the pafr (Q,p),where
p:0 + [0,1) 1s extended to p:ft - [0,1] via (1.2) or
(4.23). Note also the immediate relation from (2.21):

{(a]b)=(c]d) 1ff a-b=c-d and b=d ;211 a,b,c,de8.(2.22
In addition, since for all a e 0,

then fi extends n: (a|1% < %,’ E;:g:;
In the approach taken here, all results involv-

ing conditional objects are derived from first princi-

ples. In this vein, define all operations among con-
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ditfonal objects as the natural class or component-wise |
extensions of the corresponding operations among the ele-;
ments. Thus for example, for a,b,c,d e R, (2 25)!

(a]b)-(cld)g(q-rlqc(alb).rc c]d)}={{xb'+a)yd ' +c)|x yen),
also a subset of 0 as are (a|b) and {c]d). From this,
it follows immediately that conditioning as defined here
is essentially the functional inverse of one-sided con-
Junction,i.e., the following hold for all a,be 0 :

{alb)eb = asb ; {a|b) = {x|x € 0, x-b = a-b). (2.26)

Hailperin [15] considered conditional objects,
extending some of Boole's original {deas, but avoided
combining these entities when antecedents differ-through
use of universal algebras and partially-defined operz-
tors. Domotor [16), following the direction of "qualita-
tive probability structures, as used in subjective prob-
ability theory and preference orderings, developed a

(p-b' + a) + (n-d' + ¢) = n.(b'vd') + (a+c)

= g.(b.d)' + (a+c), (3.102)
by feMorgan's relation valid for regular rings and
the property of regular rings whereby sums of principal
ide27s are principal {deals computable as above, Thus
usioo 2.20) and (2.21), (3.2) holds. :

Next,using (3.10),(3.1) holds since applying the
natural class extension to ( )',zssuming o boolean here,

(Blb)' -(n-b'+a)'=Q.b'+a+]=n.b'+a'x(a'|b)_
Note next that for all a,b,c,d e 0, any commuta-
tive ring with unity,again using natural class extension
(nb + &)-(n-d +c) = K(a,b,c,d) +a b, (3.1)

where d
k(a,b,c,d)®{x.y-b-d + y-a+d + x.b-c-|x.y e 0}. (3.12)

)
:: rather cumbersome indirect approach, not realizing the \1so let analegously, again using natural class extension
XS rich structure of #i. (See, e.g., Theorems 3.2,3.3 in K (a.b.c.d)f n.bed + d+ b 13.13)
< this paper.) Mute [14], among others[13], has also con- ota2.b,c,d)= n-b.d + n.2.d + a-bec. 19
AN sidered”"conditional logics", which appear to be general- [t follows that letting x=0 and them y=0 in (2.12),
1y related to this work, but differ considerably in and using similar manipulations that
structure, Much work remains in tying-in these concepts
A with conditional objects as envisioned here. Finally, -3-d v a.bec < K(a,b,c,d)ck(a,b,c,d)+ n-2.d + a-b-c
) the pioneering work of Calabrese [11] must be mentioned =K(a,b,c,d)+ n-b-d
.U:J as the direct cause of the current work. Although his <K (a,b,c,d). (3.18)
-f'“ definition for conditional obgects can be shown to be o
"_:-,: equivatent ([13,(2.19)-(2.25)), Cah:rese proposes ad Lema 7,
; hoc definitions for operators upon them, in contra- i i
'tah. distinction to the first principles approach taken here. For all a,b,c,d « 0,commutative ring with unity,
: k(a,b,c,d} is an ideal 1ff K(a,b,c,d)=K (a,b,c,d)
. 3. BASIC PROPERTIES OF CONDITIONAL OBJECTS §FF 0-b.d € K(a.boc.d)
- - * » ) .

Theorem 3.1

Now suppose that o 1s regular with a,b,c,d ¢ Q.
» ()" are al let z ¢ 0 be arbitrary and define

as the natural class extensions of

The boolean operations + , v, °
well-defined over

4
the ordinary counterparts over o, Indeeds: X : Agrd-xg o (3.15)
(a]b) = (a’|b) = (a4b|b) , (3.1) vy £ apbeyg (3.16)
-l (alb) + {c]d) = (a + c]bd) = (ab + cd|bd), (3.2) x. & 129 (3.17)
8 (alb) v (cld) = (a v clabv ed v ba) 0 b '
q _ = (abv cdlabv ed v &) , (3.3) Yo ¢ R N ' (3.18)
4 ﬁ (afb) + (c|d) = (a-clatb v ctd v bd) . .
) ‘$ . . Then substituting (3,15),(3.16) into (3.12) yields
oe = (abed|ah v cid v bd) . (3.4)
L +, v, are all associative and commutative Xy ¥yrbed + yyra.d 4 xpcbeco=
) over %, and hence extendable ‘unambiguously to any num- b-d-(xo-y0 taktyyt c-ld°xo)
,‘0:;'5 berbof argum:n]ts. Specifically, for any n21 and any -
a., fl v 15,0,
:::,.‘a iP5 € n bed-((xq + 2y} -(yy + coay) = a=x -coay)
s 0 (a]Ib])4--+(auJb“)=(a‘+.-+ngb‘--bn), (35) = b-d (1 Z) b-d-2 (3 19)
' d-{(1:2) = bed-2,(3.
:"c:. (8]lbl)v"V(G,me)“(l]V"Va"Ja]-b]V--Vam-meb,--bm),(3.6) which in turn validates the last statement {n Lemma 1
B and hence by Lemma 1 ,
a b .. b ™Y .o v, .. L .e
e irLLf]s)an?"rr'lem"a‘ikia] LR A K(a.b,c.d) = K (a,b,c.d), (3.20)
e . n Tacing b by b' and d by d' fn (3.11), and
1 “En outlTine of the algebraic nat f th ¢ Finally, replacin o WA N re prg
':‘.:' is given here. Fipst, recanga ring is ggglgan 1$fp?§° putting together 23'” +(3.20), and using the property
) is idempotent - ,5=, for all a in ring. More generally again of regular rings that sums of principal ideals
;c..:o f is Von Neumann regﬁ’lar 517] iff for all a ¢ n, there  2T¢ principal fdeals also as computed in (3.1%a),
i ex:its Ay € B with a=A -2, assuming commutativity with (n-b' + a):(n.d' +¢c) =n-b'-d' +n.2.d" +0a-b'-c
0. unity. R e
o Note first that for any commutative ring with . 0. IR .Y ' ',
A,::::i unity, say n, and ideals I,J g n and a,c ¢ 0, i a-(b-d" v ?‘d Vb 'c)'+ 8-¢
o (1s2) + (3e) = (1+0)+{a%c), (3.8) = -((bvd)-(a'va):(bve )" ¢ ace
:,:}:& »fvhere 14 ;s also an {deal of a. In particular, definc =p-(a'-bve'-dvbd) +ac, (3.21)
'::.‘3' or a’s;\y a,bean (Vo: Neumann) regular, which fs the same as (3.4), using (2.30),(2.31).
N a'%1-x -2, avb Agra b - a2 b, (3.9) tesuming acain thet 0 s boolean, since demorgan
‘-;,4"‘. QOtlnglth!hreduiﬁhn %otﬂ‘s bog\e:?fcase. i.e., when reh%;o?; have natural class extensions to %, one can
by a"dp"'s where the relations simplify to use (3, as
' = L t )
o) a'sl-a=14a , avb = a+b-a-b = asbea.b. (3.10) (alb) v Lcla) (('!b) (c]a)')
0',.:" Then letting I=n-b' and J=n.d' for n regular, it fcllows =((a'lb)-(c'¢))
-::::f that (3.8) becomes =(a'.c'la.b v c.d Vv hed)
[ -5.
)
R
W OO0 OO0
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=(avc|a-b v c.d v b.d), (3.22)

for the bottom of (3,31), Again see [2] for detail.

which is the same as (3.3). From this point on. most proofs will be omitted
The extension cf the above results to multiple and the interested reader is referred to [2].

arguments is tedious and will be omitted. Finally, it fe

should be ncted that (3.3) and (3.4) can be extended

where for (3.3),0 {s boolean and for (3.4),2 is only

regular, where for any {deals 1,J of o and 211 a,c ¢ 1,

(1 +2a) v({Jd+c)=(13+J-a®+T:¢")+ (avc), (3.23)
(1 +2)-(J+¢c)={(l-0+3d.a+Tc)+ac, (3.24)

where it should be remarked that in (3.23) and (3.24),
on the right hand sides the collections of ideals to
the left of avc and a-c are also ideals, Pro.fs of all
of the above results together with other related in-
vestigations can be found in [2].

In conjunction with the various properties dis-
played so far, T possesses a number of interesting al-
gebraic properties summarized fn the next theorem.

Theorem 3.3

- Assuming as usual here that o is a boolean ring,
1 in general is not a ring due to the failure of addi-
tive fnverses (-) to hold, However, T is commutative
and assocfative relative to +,v,- , has additive iden-
tity 0 the same as 1n 0 and multiplicative unity 1 the
o same as in n , Also, v and - are mutually distributive
over @ 5 % (1ike f ) is idempotent, demorgan relative
Theorem 3.1 specializes, when antecedents are to (V,'.( )'),and v and * are mutually absorbing over
the same,to the formal counferrarts cf wellsuse¢ prop- % : finally, ( }' is involutive over .
erties of conditional probabilities where the condition- Q

ing s upon the same event: ses
Other properties of conditional objects contrib-

uting to the development of a calculus of relations are

Coro11arx 3.1
presented below.

For all a,b,c ¢ 0, assumed boolean,

(alb) + (c|b) = (a+c|b) = (a.b + c.blb)}, {(3.25)  Theorem 3.4
{alb) v (c]b) = (ave|b) = {a-b v c-b]b), (3.26) for all a.a1....am.b.c.d ¢ 1, boolean,

b o (afb) + (c]b) = (a-c]b) = {a-b.c|b). (3.27) (a]0) = (0]0) = a , (3.34)
o _ ' . (1b) = (blb) = b’ +b=R Vb  (3.35)
% oyl Lol e et that thre 1w baic conalb)-(a1s) = G2) - (ola') + Gla) e (3,36
N homomorphism nat, :a + a/b’ , where for any x ¢ @, (a[b) v (a[b') = (ala) ., (3.37)
o nat,(x) = (xjb) = x + a-b', (3.28) {a]b) v (a[b)' = (b]b) , (3.38)

where 311 basic propertfes of o are brought down to the (aJb) = a + (0]b), (3.39)
:;:i:t?:zzfent ring 2/b' defined through the usual caset ¢ v (alb) = (ave]bve), c-(alb) = (c-albve’), (3.40)
c + {a|b) = (c+a]b) , (3.41)

Since al)l boolean functions over Q can be ex-
pressed as simple canonical functions of e.g., v, -,
{)', it follows that the same is true of their nat-
ural class extensions and a simple argument thus shows
that if f:@"+ n is any n-ary boolean function, thern
the natural extension of to f:7f" + T is well-defined,

Returning to the partial order s defined over Q
(boolean, although extendable to regular rings), where

iffa=ab iffb=avhb (3.29)

and where < possesses all the usual lattice proper-
ties, 1t is basic to inguire if the natural class ex-
tension of < from Q1 to preserves these properties,

2 sb

Theorem 3.2
Let © be boolean. Then define for any 2,b,c,d ¢ 0
{a]b) s (c|d) 1£f (a]b) = (a]b)- (cld). (3.30)

Then it follows that
{a]b) s (c|d) 1£f (c]d) = (alb) v {c|d)
iff a-bsc.d and c'-d < a'-b.(3.31)

In addition, among the lattice-11ke properties enjoyed
by the legitimate partial order < over fI { since it can
be shown to be anti-symmetric, reflexive, and transit.
ive) are, Vetting A=(a|b)}, C=(c|d),E=(elf),6=(g]h} ¢ %:

AsCE iff A< C.E;fEsAiff CVEsAy (3,32)
IfA<C, then C' s A'; (3,329
1f A< Cand £ s G, then A-ESC-G and AvE<CvG,(233)

Proofs:
The proofs in some cases are rather long, such as

-6~

(alb) + (cld) = (afb)-{cld)* v {a[b)'-(c]d}, (3.42)
(a]b-c)-(blc) = (a-blc) (chaining property) . {3.43)

1f 8;,..9, are disjoint and exhaustive, i.e.,

agray =65 5 and ay 4t g =1, (3.44)

then for any j, j=1,..,m , the following forms of Bayes'
Theorem hold:

(ajlb) = (aj-blb) = ( (bIaJ)~aj| b ), (3.45)
(ajlb)-b = (b[aj)'aj =24, (3.46)
b= (bla])-a1 oot (blam)~am . (3.47)

If 2, s 2, s-es A, then the chaining relation

holds:
(l1|62)'(02|03)"(hm_]lﬂm) = (a]Iam). (3.48)

0
The next results tie in conditioning &s defined
here with classical implication.
Theorem 3.5
For 211 a,b ¢ n boolean
(a]b) = (bsajb) . (3.49)

The avdlest element of (alb) relative to s is a-b, while

the largest element is(b ? a), thus
a-t s (alb) s bd a, (3.50)

Also,

aVy a8 St TR T Ry Sy
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td & o= {a|b)vb' =@a' » by = (b'la')va,
(alb) = (b »a)-(b]b) = ((b']a')va)(b]b),
(b']a') = (b »a)-(a']a') = ((a|b)vb*)(a']a'), (3.53)
(2 #b)=(a »b):(b»a)a-bva'ed =(alb)-(bla)vatby,
(3.54)

{3.52)

(a]b)-(bja) = (a-blavb} = (s s b)-(a-bla-b),  (2.55)

ylelding as the smallest element of (alb).{bla) being
a-b and the largest being a4 b , analogous to (3.50).

Also, note the pairwise comparisons between
b 3aand (alb) : (See also Table 1, Section 1.)

(ab)=(a-b[b) while (b # a) = (b » a-b), (3.56)
(1]b)=(b]b}= avb while (t % V)=(b 3 b) =1, (3.57)
(bJ1) = b while (1 b)) =b, (3.58)

(b]0) = n white (0 3b) =1, (3.59)

(alb)' = (a'-b|b) while (b 2 a)' =a'-b, (3.60)

(0]b) = (b'[b) = n-b' while (b » 0)=(b 2 b') = b'(3.61)
{a]b)-(cld) = (a-clq) while (b % a)-(d * c)={g>&c)(362)

her
where ‘

q=a'‘bvec'dv b;d. (3.63)
Next,
{a]b)v(c]d)=(avc|r) while (b ® a)v(d 3 c)=(b-d 3 {avc)),
where (3.64)
4
r=a.bvedvb-d. (3.65)

Also, for asbsc, transitivity holds as
(a|b)-(bJc) = (a]c) while (c # b}-(b & a)s{c »a),(3.66)
and for asb.c , improvement of information is

(a]b) = (alb-c) while (b 3 a) s (bec # a), (3.67)

Also , . referring to Section 4, and the class
reduction operator v , one can compare iterated classic-
&1 implication and iterated conditional forms

ul{alb)](c]d))=(a}a) while((d #c) ®» (b » a))=(y » a),
where (3.68)
a =b.{c.dva.d'),y=blcdvd), (3.69)

with the special cases
G((alb)|(cib))=u((a]t}|e))=(a]b.c) while
((b 3c) 3(bda)) = (cd(d=a))=({bc) »a)(3.70)
0

Finally, this section is concluded with a result
which is not only interesting in {ts own right as a gen-
eralization of the classfc result concerning the dis-
jointness or identity of cosets having the same antece-
dent, but which is useful 1in further analysis of con-
ditional objects.

Theorem 3.6

For any a,b,c,d ¢ ot boolean and denoting n below
for the ordinary class fntersection,

¢ iff atc ¢ (0|bed)
{alb) n (c|d) = (3.7)
(¢]bvd) iff atc e (0]b.d),
where
g=pta=q+c;at+tc=q+tp, (3.72)

for some p e (0]b) and q ¢ (0]d) .
From the above it follows that
a c (cld) ).(3.73)
a

(ajb) < (cld) iff (dsb and

(3.51)

4. ADDITIONAL PROPERTIES OF CONDITIONAL OBJECTS

In the last section, a basic calculus of opera-
tions was presented for conditional objects. In this
section, certain selected topics involving conditioning
are briefly considered. ’ )

First, define higher order conditional objects
through natural class extensions of conditional objects
as defined in the previous sectfons. Thus for any a,b,
c,d ¢ 0 boolean, define

(alb)l(ela)) = )4y (Kalb)-(c[))
= {(xly)l(xly) e & and (x|y)-(cld)=(a]b)-{c]d)}. (4.1)
Some basic properties end an explicit solutfon are given

next,
Theorem 4.1
For all a,b,c,d ¢ n boolean:
Analogous to (2.20),
((a]b)] (c]d)) = ((alb)-(c[d)](c[d)) e P(R)

{(a}b)[(c|d))-(cid) = (a]b)-(c]d). (4.3)

Without loss of generality, using (2.20),(3.31),
and (4.2), assume from now on, unless otherwise stated:

(4.2)

a<b,csd, (a]b) s (c]d). (4.4)
Then explicitly
(Caib)[(c]d)) = (alb) v Ty 4
= (a|b) v BV, 4
= {‘a,b,s;s,t [tss ¢ 1), (4.5)
.where for all tss e 00,
d
Ta,b,B3s,t (a]b) v ts.c.d;s.t
=(ave-tlave-tvb((cd) vs))
=(ave-tlavetvb(s vs))en, (4.6)
g 3bed veed, (4.7)
resulting in
g' = (b vd){c'd)' =cvbd, (4.8)

‘ ) .
Tocd® “a,c,d;s,tlt‘s e =8V, 4.(4.9)
4.
is.c,d;s,t =8 be.dis,t
= (gt](c'-d) vs)en, (4.10)
d
= ', ' [1] .
e dis,t - (tl(etd)t vs)en, (a.11)
Ve g d (Ac’d;s.tlt <sen). (4.12)
o

Unfortunately, unlike the sinale conditional case

(see (2.22)), second level conditional objects pose a
problem with respect to both uniqueness of representa-
tions relative to their antecedents and the closure of
boolean operations. Surprisingly, only three parameter
values - out of four possible a priori - are required

to specify such forms uniquely. The representation s
characterized in the following theorem:

. Theorem 4.2
For all a,,b,,c,d, ¢ f,boolean satisfying (4.4)

{(a replaced by a,, etc.) and 8,8 as in (4.7),(4.8),
respectively (with b replaced ﬁy éi' etc.), i=1,2 ¢

i ((a] lbl)' (C] ld] ))'((azlbz)l(c2|dz))iff("“z.b-.'bznsl‘ﬁg
f (a =2y, by=b,, c =a,v8 e (byww), dy=c ve -by), (4.13)

for any fixed w e f, o

.-
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One reasonable way to treat the di<<iculties a-.

rising from the necessary introduction of '-=rzted con-
ditional forms {s to determine .1f there i. . -e mapping
from. these higher levels down to the singlc 'evel which

can be used to {dentify the former with the latter,

As a candidate for the_above, suppose we consider
the class reduction operator U:P(P(a)) + P(n), where
for a1l A ¢ P(P(n)),

GAY UA =ixlxehecAcn.
AcA

(4.14)

Theorem 4.3

Let o be boolezn and denote, analogous to T be-
ing the class of a1l (single) conditional objects form-
ed from q, é as the class of a1l (double) conditional
objects formed from T, noting that 0 ¢ B ¢ T, Then:

G:0+ 8 is a surjective homomorphism relative
to all boolean operations extended in a natural class
way from Q.

Furthermore, the specific relation defining U
%an ge determined to be, for all a,b,c,d ¢ a satisfying
4.4),

(alv){cla)) = {alb-g*) = (a]b.(c'-d)"'}.(4.15)
In particular,

3(alb) = (a]b), (4.1€)
g((alb)lelb)) = G((alb)|c) = (afb-c), (4.17)
ulal(c|d)) = (a](c'd)'), {4.18)
(cld)-u((alb)](c]d)) = (alb). (4.19)

Also , . the following restrictions of u are
surjective isomorphisms relative to all boolean opera-
tions extended in a natural class way:

O {((alb)[c) | a,ben )+ ((a]b-c) |a,b e a)(a.20)

: {(a]b)l{c]b) ‘ a,cen )+ {{alb-c) [a.c € 0}{g . 21)
T: {{alb)l(cld) Ja.b e o)+ ((a]b-g') | a,bem,(4.22)
D

Thus, in 2 nztural way, one can idertify all
higher order conditional objects with single condition-
al ones.

Finally, we conclude this paper with some results
involving conditional objects and conditional probabili-
ties directly.

Firstly, recall that conditional probabilities
can be considered a homomorphic evaluation of the formal
relations in (2.26) (left side) (see also (1.2)), as
well as (3.1) and (3.25)-(3.27). (Again, see Theorem 2.1.)
Also, conditional probabilities can be identified, with
the introduction of conditional objects, as the exten-
sfon of probability measure p:0 + [0,1] to monctone
function p:& »[0,1] , f.e., if (a|b) s (c|d) € &, then

p((a[b)) = pla]b) s plc}d) = p((c]d)). (4.23)

In particular, this shows that (3.50) implies, as a
check, (1.4). Other inequalities can be similarly est-
ablished through first using the farmal counterparts.
One can also detine measure-tree i1ndependence of con-
ditional objects (a|b) and (c[d) to occur when they are
p-independent ,1.e,

p((a|b)-(c[d))=p(a]b)-p(c|d), (4.28)

for a1l possible probability measures p:q + [0,1?. One
simple example of such a2 measure-free pair is (alb),b,
using (2.25§(Ieft side), This can be extended to certain
other pairs and to multiple conditional forms as the
factors in (3.48). (See El]. Sectfon 5.) Also sequential
updating of informatfon can be very elegantly described
through the use of conditional objects rather than only
through conditfonal probabilitfes ([1], Section 5).
Lastly, we consider briefly random conditional
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objects and how they relate to conditional probabiif-.
ties. Beginning with probability space (M,A,p) and r.v.
ViM9RT r v, W:MARM | extend V,W,VxN_in the natural
class sense to V:X + BMm, W:X + Bn,vxi; X+ Brtn | e
spectively, where for all a,b ¢ A,

V{a|b)=v{aRM;W{a|b)R™xW(b)Vxua|b)=v(a)xH(b).(4.25)

Then the random conditional object (V|W):X + BM™*F {s de-
fined by, for all a,b ¢ A,

(VIW)(ab)2((vxW) (a]b)[W(alb))=(v(a)xW(b) [R™W(b))

4(v(a)[W(b)), (4.26)
with inverse mapping (VIW)-1:Bm#n 4 A yielding for any
ccBM demBn,

(vlw)'1(cld)=((VxH)’1(cxd)|H’](d))=(V'](C)IN'1(d)%h 27)

Thus, ‘V|W) induces "conditional event probability
space” ( RM*n m*",p(vlw)). where Pviw) Br+n + [0,1]
is given by

ey (el VI el =ptvHed ¥ (¢)).  (a.28)
By using an optimal approximation technique, arithmetic
operations over conditional objects can also be detcr-
mined, in turn yielding expectations of random con-
ditienal objects, definec in the natural way. Thus,e.g,

E((viW)) = ( E(vxW) | E(vxW) ), (4.29)
where E{-) {s ordinary expectation. (See [1], Section 5)
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