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INTERACTION OF ULTRASONIC WAVES WITH COMPOSITE PLATES

ADNAN H. NAYFEH

Department of aerospace Engineering and Engineering Mechanics,

University of Cincinnati, Cincinnati, Ohio 45221

ABSTRACT

During the second year of our reporting period we continued our close

cooperation with the NDE Branch of the Materials Lab at Wright-Patterson Air

Force Base. For our part, we continued developing analytical and

computational methods on the modeling of the mechanical behavior of fibrous

composites for applications in the NDE field. Specifically, we extended our

theoretical models which were developed to describe the behavior of single

unidirectional fiber-reinforced plates, to more general plates. These

included single and multilayered plates. For the single laminate plate the

solutions are extended for arbitrary azimuthal angles and hence resulted in

three-dimensional analysis. However, for the general multilayered plate

case, treatment so far has been restricted to the case where the individual

lamina component of the plate is isotropic. Reflection and transmission

coefficients are derived, from which characteristic behavior is identified.

This was verified experimentally by the scientific group at Wright

Patterson. These combined efforts contributed to an advancement of the

state-of-the-art of the NDE methods. As described below our recent efforts

resulted in several presentations and publications in the open literature.
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I. Fluid-Coupled Wave Propagation in Orthotropic Plates With Application to

Fibrous Composites

1.1 Introduction

In recent years considerable efforts have been expended upon the

modeling, testing and analysis of fibrous composites. This is due in part

to their popularity in applications requiring high stiffness to weight

ratios and also to their intrinsic interest as challenging mechanical

systems. However, the morphology of fiber-reinforced composites, as

compared with that of homogeneous isotropic media, can seriously complicate

their mechanical response. For example, these materials differ from

isotropic homogeneous materials in that they are anisotropic and dispersive.

The degrees of anisotropy and dispersivity depend upon the specific material

under consideration and also upon the specific application, however.

Since most fibrous structural components are subjected to cyclic or

impulsive loads which can lead to degradation in load-carrying capability,

initial inspection and continued monitoring of these materials for detection

and sizing of strength-degrading flaws is necessary in order to insure

structural reliability. Ultrasonic nondestructive evaluation is one useful

means to provide information related to structural integrity of composites.

To assist in the exploitation of this technique for inspecting composites, a

full understanding of the propagation of elastic waves in fibrous composites

is highly desirable.

Compared with the voluminous literature on the propagation of elastic

waves in isotropic media, a limited amount of work exists on anisotropic

materials. This is particularly true for the classes of guided waves such

as surface, Love, Lamb, and Stonely waves. Investigation of the propagation

of bulk waves in anisotropic materials is relatively well established (see,
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for example, Musgrave [], Synge [2] and Fedorov [3]). Comparatively

speaking, few quantitative results have been reported on solutions of guided

waves in anisotropic media.

Several authors [4-14] have discussed the reflection and refraction

problems from interfaces of anisotropic media in varying degrees of detail.

Stonely, in 1955, studied Rayleigh surface wave propagation on an

anisotropic half-space having cubic crystal symmetry [15]. Since then

several other authors [16-22] have considered and reported on similar

problems. Theoretical analyses have been undertaken for free Lamb waves in

plates of orthotropic [23-24] , transversely isotropic [25-27] and cubic

[28-29] materials.

Because fiber-reinforced composites are often employed in plate-like

structures and ultrasonic testing is conveniently performed in immersion, we

recently investigated both theoretically and experimentally the behavior of

guided elastic waves in fluid-coupled plates of unidirectional fibrous

composites [30,31]. For consistency we refer, in our work, to the fluid-

coupled modes as plate modes. These exitations may be contrasted with Lamb

modes for a plate in vacuum, like that studied in [32,33]. In [30,31]

results were presented for cases where the plate wave vector is along the

direction of symmetry, i.e., the fiber axis.

We present a unified analytical treatment of ultrasonic waves with

generally orthotropic elastic plates. The plates are assumed to be immersed

in a fluid and subjected to incident acoustic waves at arbitrary angles from

the normal as well as at arbitrary azimuthal angles. Reflection and

transmission coefficients are derived from which characteristic features are

identified. Highly complex reflection behavior, expressed as phase

velocity-frequency dispersion, is observed in the model prediction. Our
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analytical modeling has been compared with the extensive experimental data

collected by Chimenti of the Air Force Material Laboratory in ultrasonic

reflection measurements on a plate of T300/Ciba-Geigy 914 composite,

selected as a model system to test the theory. Comparisons between theoty

and experiment show excellent agreement is seen in curves at several

azimuthal angles between Oand 900, despite complicated features in the

results.

A key condition which is found to facilitate our subsequent analysis

is the fact that the wave vectors of the incident and refracted waves must

all lie in the same plane. This result is a consequence of satisfying

continuity conditions at the fluid-solid interface (see [10] for

justification). We will therefore conduct our analysis in a coordinate

system formed by incident and interfacial planes rather than by material

symmetry axes. This condition leads to a simplification in our algebraic

analysis and computations.

1.2 Theory

Consider an infinite orthotropic plate having the thickness d and

immersed in fluid such that its symmetry axes are oriented originally along

the cartesian coordinate system xi =(xl,x 2 ,x3). The plane x1 -x2 is chosen

to coincide with the upper surface of the plate, and the x3 coordinate is

normal to it, as illustrated in Fig. 1. With respect to this primed

coordinate system, the elastic field equations of the plate are given by the

momentum equations

2'
a, at ixj(1)



and, from the general constitutive relations for anisotropic media,

I I I

aij =Cijki e (2)

by the specialized expanded matrix form to orthotropic media

II I I f

1C C1 C 0 0 0 el1111' 12 13 1

I I I I I
022 C 2 C22 C23 0 0 0 e22

033 C13 C23 C33 0 e33  (3)

23 0 0 0 C 44 0 0 Y 23

a 1 0 0 0 0 C01 0 Y1

013 5513f I
f I I 1 !

012 0 C661 Y12

where we used the contracting subscript notations 1-11, 2422, 3*33, 4+23,

1 1
5413 and 6.12 to relate cijk to Cpq (i,j,k,i - 1,2,3 and p,q - 1,2 .... 6).

Thus, C55 stands for C1313 , for example. Here aij, eij and ui are the

components of stress, strain and displacement, respectively, and p is the

material density. In Eq. (3), Yij - 2e j (with i-j) defines the engineering

shear strain components.

Since cijkt is a fourth order tensor, then for any orthogonal
I 

e

transformation of the primed to the non-primed coordinates, i.e., x. to xI,

it transforms according to

c 8 8 8 c'. (J4)
Cmnop mi Bnj Bok Sp ijk(

6 %V ~



where is the cosine of the angle between x' and xj, respectively. For a

rotation of angle 0 in the x' -x1 plane, the transformation tensor a.
1 2 13

reduces to

coso sino 0

-sino cost 0 (5)

0 0 1

which, f applied to Eq. (2) through the relation of Eq. (3) yields

11 C 1 C 2 C1 3 0 0 C 16 e 11

022 C1 2  C22 C23 0 0 C26 e22

33 C1 3 C23 C33 0 0 C36 e33 (6)

23 0 0 0 C4 4  C45  0 Y23

a013 0 0 0 C45 C55 0 Y 3

12 C 16 C26 C36 0 0 C66 "l 2

where the transformation relations between the C and C entries are
pq pq

listed in Appendix A. Notice that, no matter what rotational angle ¢ is

used, the zero entries in Eq. (6) will remain zero. In fact, the matrix of

Eq. (6), although particularized to orthotropic media, resembles that of

monoclinic media (i.e. media which has x3 - 0 as a plane of symmetry). In

terms of the rotated coordinate system xk9 we write the momentum equations

as

-a ii r -2- (7)
axji at 2

Substituting from Eq. (6) into Eq. (7) results in a system of three

coupled equations for the displacements uI, u2 and u3. If we now identify
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the plane of incidence to be the x1-x3, as in Fig. 1, a formal solution for

the displacements ui can be written as

(ulu 2,U3) = (1,V,W)Ue1 (xl + 3  t), (8)

where & is the wave number, c is the phase velocity (=w/ ), w is the

circular frequency, a is still an unknown parameter, and V,W are ratios of

the displacement amplitudes of u2 and u3 to uI, respectively. Combinations

of Eqs. (8), (7) and (6) yield the matrix relation

C1 1 -pC 2 + C5 5a 2 C16+ C45 a2 (C13+ C55 )a 1

C16+ C45a
2 C- c 2V =09

C66- PC2 + C44 a 2  (C3 6
+ C45 )a 0 (9)

(C13 + C5 5)a (C36+ C45)a C55- Pc + C33 a W

Nontrivial solutions for V and W demand the vanishing of the

determinant in equation (9) and yield an algebraic equation relating a to c.

This equation is reduced (see Appendix B) to a sixth-degree polynomial

equation in a, namely

6+ A1  +A 2  + A3 = 0 (10)

2 2 2 2
Equation (10) admits three solutions for a which we label as al, a3 and a .

These lead to six solutions for a which we further label as

a 2 = - a,, a4 - a3anda 6= - a5 (11)

Using superposition, together with the relation (9), we can relate the

displacement ratios V and W for each a as
q q q

8



F (F + C55 +2 C45')F
v 23 11 5 q 1 (F q 13 (12)13 2(2 44 q - 1(2 c45 q 23

F3 (F1 + C 2 ) _ (F + C5a 2)F 1

W a 3 ( 11  5 5 q 12  1 3  q = 1,2...6 (13)
q q(F Ca 2XF + C a 2-F F a2

12 +45q q 33 33q 1323 q
where F ,s,tat 1,2,3 are defined in Appendix B. Combining Eqs. (12) and

(13) with the stress-strain relations Eq. (6), we rewrite the formal

solutions for the displacements and stresses as

6 i(x 1 +a qX 3-Ct)
(ulu 2,u3) = E (1, V q,W q)Uq e (14)

q=1

6 i(x1 +a q X 3-ct)
33'a13' 23 E (D Dq D 3 q )Ue 1 (15)

ql

where

Dl q = C1 3
+ C 36 V + C3 a W (16a)1q 13 36q 3 q q

D 2q= C 55(a q+Wq ) + C45 aq Vq (16b)

and

D3q =C4 5 (a q+ W q) +C44 aqVq q = 1,2,...,6 (16c)

With reference to Eq. (11) and by inspection of Eqs. (12) - (16c) one

deduces the relations

V2 = VI, V4 = V3, V6 = V5  (17a)

W2 = -Wi , W4 = -W3 , W6 = -W5  (17b)

D12 ' D1 1 D14 - D1 3 0 D1 6 = D15 (18a)

D22= -D21' D24 - -D2 3, D26 - D25 (18b)

D -D D - D3 6  -D35  (18c)

1.3 Derivaylon of the Reflection and Transmission Coefficients

9
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To determine the reflection and transmission coefficients for plane

waves incident from the fluid onto the plate surface at an arbitrary angle a

we need to obtain general solutions for the upper and lower fluids similar

to those of Eqs. (14) and (15). Recognizing that the fluid does not

support shear deformation, its field equations reduce to

f 1 (19)
axj at2

(f) a&f)
a M . k 6 , i,j = 1,2,3, (20)Ii f k ij

where both equations hold only for i=j; pf and Af are the fluid density and

Lame' constant. If the wave is assumed to be incident and hence reflected

in the upper fluid and transmitted into the lower fluid, then using similar

analysis to that of the plate yields, for the upper fluid,

(u) 2 (u) 2 (u) ir[x 1 +(-1) k+1f x 3-ct]

(u1 t u2 9u3  a 33( E (1,0,W , ipfc )Uk e (21)
k=1

and for the lower fluid

U, 2 ,U3, 33 2 (£)ei [x + cLf(x -d)-ct (22)

where

W u)- af fW( )- _f (23a)

1 2 f _

2 1

alf . (c2 -I) , c f= ()2 (23b)
c ff

Notice the vanishing of shear component u2  in both the upper and lower

fluids.

10
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By invoking the continuity of the normal displacements and stresses at

z - 0 and z - d and setting the solid shear stresses o013 and a023 equal to

U

zero at z - 0 and z = d we obtain, for a given incident amplitude U, a

system of eight linear simultaneous equations for the amplitudes U (u U,2

U1 9U 2 ' U 3 P U 4 9U5 and U 6is obtained. Solving these equations with the help

of the relations (17) and (18) and applying rather lengthy algebraic

reductions and manipulations, we derive the following expressions for the

reflection and the transmission coefficients

U (u) 2
R 2 ASY (4

U1(u) =(S+iY)(A-iY) 
(~

T U M iY(S+A) (5
U(u) -(S+iY)(A-iY)

U1

where

S ) 11 G 1cot(Ya 1) - D 13GC cot(YaL ) + D 15G cot(a5 ) (26a)

A =D 11GC tan(Ya 1 ) - D 13GC tan(Ya 3 ) + D 15G tan(Ya 5) (26b)

2

Y =- (W G- WG W G (2ca f 1 1 3 3 5 5

with

G .D 23D 35-D 33D 25(27a)

G 3 D 21D 35-D 31D 25(27b)

G .D 21D 33-D 31D 23(27c)

Y - &d/2 -wd/2c. (27d)



bp

Except for the more complicated definitions of the functions S,A and Y, the

expressions R and T resemble those reported in our earlier paper [31], and

our notation was chosen for consistency with this previous calculation.

1.4 Results and Discussion

In comparisons between the results of many measurements at several

azimuthal angles and the model calculation, we have concentrated our

attention, as in previous investigations [30,31], on the reflection

coefficient. Since the basis of the experimental data is an amplitude

signal in the reflected field of the incident beam, we calculate the plane-

wave reflection coefficient for the plate and investigate it for the same

type of behavior as we observe in the measurements. In addition to direct

comparisons of amplitude spectra, we have also expressed our results as

dispersion-like curves, where the results correspond to functions

conditioned by the reflection coefficient. Both of these aspects of our

studies are presented below.

A finite ultrasonic beam is composed of a range of plane wave

components which define its angular spread,

8(x) f = ( )exp(-2ni~x)dE (29)

where 8(x) is the one-dimensional real space incident beam profile, x is a

coordinate perpendicular to the beam direction, and the caret denotes

Fourier transform. When such a finite beam interacts with a plate, each

Fourier component of the incident field will contribute to the reflected

field, weighted by the appropriate value of the reflection coefficient for

that . The resulting expression for the reflected field is given by

A(Fd,x i) = J(E)R( ,Fd)exp[-2ni(x 1 -afx 3)]d (30)

12



where R(&,Fd) is the reflection coefficient from Eq. (24) for the composite

plate. The expression of Eq. (30) evaluated over frequency is an

approximation to the experimental spectrum of the plate, if the beam profile

B(x) is chosen to represent the incident beam. We have performed such

calculations for a variety of experimental conditions. Some typical

comparisons are contained in Figs. 3(a)-(d).

Figure 3(a) shows the measured and predicted spectra from 1 to 8 MHz

for an incident angle 8 - 120 and azimuthal angle 0 - 300. The two curves

have been vertically scaled, but in no other way adjusted. The solid curve

Is the expression of Eq. (30), and the dashed curve is the experimental data

deconvolved to remove transducer response. Positions of the deep minima in

the two curves are nearly coincident, as we have observed for propagation in

the fiber direction [311. We conjecture that the additional shallower sharp

dips, some of which do not appear in the data, arise from the coupling

between vertical and horizontal shear displacements, referred to in the

Theory section, which occurs for propagation in a general azimuthal

direction. At e - 280 and 0 - 150 in Fig. 3(b), similar results are found,

where the general trend of the data is well reproduced by the model

calculation. In particular, the two shallower minima between 2 and 4 MHz

are given fairly accurately by the prediction. This structure disappears

for 0 - 00, leaving only the deep minima at 1.9, 4.3 MHz, and beyond.

Holding the incident angle constant and incrementing to 300, the structure

of the curve has evolved in Fig. 3(c) with the two minima near 3 MHz

approaching each other more closely and deepening considerably. These

features are also seen in the model calculations. In the final frame, Fig.

3(d), results are given for B - 240 and - 900. This case corresponds to

symmetry axis propagation, and therefore the complex structure of the

13



previous examples is largely absent. The positions of the minima are well

modeled by the theory, whereas the minor differences in the lineshape

details may be attributed to wavefront distortion and sound absorption,

neither of which is considered in the model.

Taking the results of many dozens of experimental spectra such as

those shown in Fig. 3 and recording the minima as a function of the incident

angle (expressed through Snell's law as a phase velocity), yields a

dispersion-like plot of the ultrasonic reflection behavior. In previous

work [31,36] we demonstrated that the hypothesis of Cremer [37] concerning

the coincidence of reflection minima with the excitation of Lamb wave modes

is not well satisfied in all regions of plate wave dispersion in graphite-

epoxy composites. Therefore, although we present these data in the manner

of a velocity dispersion curve, it must be stressed that it is the

reflection properties which are being reported.

Figure 4(a) shows data acquired in the current study at an azimuthal

angle 0 = 00 plotted together with the results of the analytical prediction

derived by examining the behavior of the reflection coefficient, Eq. (24).

To obtain the theory curves rapid phase variations in the reflection

coefficient, generally indicative of total transmission, have been recorded

as a function of Fd for many values of phase velocity. These calculations

are presented as small filled circles which coalesce into solid curves over

most of the plot. In some cases to be discussed a dashed line has been

added as a guide to the eye. In Fig. 4(a) the data, plotted as discrete

crosses, are in excellent agreement with the prediction of our new, more

general model. All features of the data from e = 120 to e = 400 are well

explained in the model. Propagation in the other material symmetry

direction c - 900 is shown in Figure 4(b). Here the results reflect the

14
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substantial effective softening of the composite as the fiber axis is

rotated out of the plane of incidence. Therefore, we observe a marked

reduction in the phase velocities at which certain features occur. The

vertical intercept of the curve, which is similar to the S mode, is seen to

be near c - 2.2 km/sec. Likewise, the point of diminishing slope of some
P

of the higher order curves is much lower here than for € - 00 as in Fig.

4(a). In fact, the behavior referred to is not even visible in Fig. 4(a)

because it occurs above c = 9.8 km/sec.
p

For a transversely isotropic material, setting 0 = 900 implies that

elastic behavior in the plane of the incidence (x2 - x' plane) will be

isotropic. An important experimental finding of the present study is the

suggestion that transverse isotropy is not an appropriate symmetry class for

the eight-ply Thornel/Ciba-Geigy composite sample we studied. Our result on

the inequality of C' and C' stands in contrast to previous investigations,
22 33

both mechanical [38] and ultrasonic [39], on thick-section T300 - 5208

unidirectional composite. In these earlier studies the ratio C' C' was
22 3

measured to be within 2% of unity. Because of the method of fabrication of

these materials in which compressive stresses are exerted on the surfaces of

the curing composite, fibers might tend to be distributed nonuniformly in

the plate. That is, the number of fibers per unit length in the x'
I3

direction could be higher than the same quantity in the x' direction (refer

to Eqs. (I)-(3)). Our experimental data for 0 = 90o are consistent with the

above interpretation and draw us to the conclusion that orthotropy is the

correct symmetry class for thin sections of this material. Since the

elastic constant denoted in Eq. (3) is difficult to measure

15



independently, we have inferred this quantity from our reflection data and

the model calculation. The results of this evaluation yield a ratio of C'2

to C3 of 0.72. Once this adjustment in C2 is made, all subsequent33 2

comparisons at intermediate values of 0 are carried out, using this same

constant. Here we note that C' does not influence the propagation behavior
22

along 0 - 0 0, and hence this issue was not encountered in our previous work

[31]. A set of slowness curves with the elastic constants of [35] for

orthotropic graphite epoxy at 0 = 900 is shown in Fig. 5. This

representation illustrates the degree of anisotropy in the x - x plane.

It may be noted that while the quasilongitudinal and slow quasitransverse

wavespeeds vary with propagation direction in this plane, the fast

quasitransverse wave is still isotropic. Of course, if the composite were

transversely isotropic, all three slowness curves would be circles with the

two transverse waves coincident.

If we now depart from the principal axis directions, the reflection

behavior becomes substantially more complicated, as can be seen in Fig. 6(a)

for 0 = 300 . The simple structure of Fig. 4(a) is replaced by curves which

split apart, rejoin, and cross over each other. Throughout the range of the

measurements, relatively good agreement with the theory is apparent.

Although interpretation of these results is delicate, we may note a few

arguably consistent trends. As the fiber direction is rotated out of the

plane of incidence, the effective material constants begin to soften,

causing the phase velocity intercept of the S0 -like curve to decrease, as in

Fig. 4(b). In Fig. 6(a) that velocity is about 8.5 km/sec, whereas the

value is 9.8 km/sec for propagation along the fibers. Moreover, an

additional set of curves seems to have nucleated, in agreement with our

16



calculations and data starting as low as ¢ = 150. These general features

will be seen to persist in the results for higher values of as well.

Comparison of measurement and theory for 0 - 450 is contained in Fig.

6(b). As expected, the intercept velocity has decreased to about 7 km/sec,

and behavior of even higher complexity has appeared above this value. The

series continues with * - 600 in Fig. 6(c), where the overall pattern

established earlier is evident here also. Finally, in Fig. 6(d) for 0 = 750

we have the last of the comparisons. The intercept velocity here is near

3.4 km/sec, nearly a factor of 3 below its 0 - 00 value. These curves

contain an almost unbelievably rich variety of reflection phenomena,

considering the relatively simple form of the - 00 curves in Fig. 4(a).

As we have stated earlier, it is our conjecture that these additional

features arise from the coupling of the vertical and horizontal

quasitransverse waves, which are independent for propagation along principal

axes. We note in closing this section that in all these comparisons, but

especially Figs. 6(c) and 6(d), agreement between measurements and theory is

not simply a matter of general trends. Excellent detailed agreement is seen

over most of these plots, in spite of the richly complex behavior observed

for a general azimuthal angle. This observation lends confidence in the

validity of the theoretical approach.

II. Surface Wave Characteristics of Fluid-Loaded Multilayered Media

(Included as an attachment in the form of a manuscript)
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VI. Work in Progress

We have started modeling the interactions of multilayered fibrous

composite plates with ultrasonic waves. Arbitrary numbers of plate

constituents will be allowed. All appropriate interfacial conditions will

be invoked. Furthermore, in order to simulate the existance of large cracks

in the forms of debonding or delaminations we plan to introduce a slip

boundary condition. This condition does not require the continuity of shear

stress and displacements along the interface. Thus the shear stresses on

the interface will vanish and hence result in the weakening of the

interface. This concept seems to be promising and will be verified

experimentally in the near future. Results on this problem will be

available for comparisons with the concurrently acquired experimental data

of Dr. Chimenti.
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The grant supports Mr. Timothy Taylor who is a graduate student in the

Engineering Mechanics program of the Aerospace Department. He has passed

his Ph.D. qualifying examination and is now enrolled into the Ph.D. program.
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Appendix A

C 1 - C G 4+ C2 S 4+ 2(C + 2C 6)S2 G2

11 22l 1 4 22 66 G4

C12 '(C 1 1  c2 2 -14C66 )S C1 2 (S 'G

C - Ct G 2+ c S2
13 13 23

f I I
C 6  (C 1 -C 2 - 2C )SG 3 + (C' -C + 2C )GS 3

111 1 6 12 22 6

c =C' s 4 +2C, + 2C )S 2 G 2 + G' C4

22 1112 6) C2

c23 2;3 G C13

C 26(C -C2 - 2C )GS 3 +(C2 + 2'6)G

c33 C33

C 3 6 -(C 23- C)SG

-4 (C 44 C5 5 )SG

C c1  f C 1 G 2 + C 'S 2

44 44 55

c G2 '2
5 C55 C1414

C (C' + C -2C -2C SG+C(4+G4
66 11 22 12 66 ~ C 6 6 ( C

Where G - cos and S - sin 0.

20



Appendix B

Expanding the determinant relation (9) and collecting powers of a we have

6 4  A 2a
2

a+ A1  + + A3  0

where:

A = (PIF11 + P2 C - P4 F - P5 C + P7 F 13)/ A

A -(P F +P C -P F -P C P 8F 13)/A
2 211 355 512 645 813

A = (P3 F - P6 F 12)/ A -

A P 1 C55 - P4 C4 5

P1 C44C55 ; P3 - F22F33

P2 = F2 3C33 + F 33 C - F2 3

P4 C 33C45 P P6 ' F12F32

P5 C 33 F12 + F33 C45 -13 FF23

P6 F 23C45 - F13C44' P F 12F23 F 13F22

F11 C11 -P

F12 C 16

F13= C 3 55

F -C 2 P 2

F 2 3 =-C 3 6  C14 5

F33 C55 PC
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"SURFACE WAVE CHARACTERISTICS OF FLUID-LOADED MULTILAYERED MEDIA"

by

Adnan H. Nayfeh

**

Timothy W. Taylor

University of Cincinnati

Cincinnati, OH 45221

Abstract

A unified theoretical treatment is presented for the interaction of

ultrasonic waves with multilayered media. The wave is supposed to be

incident from water, at an arbitrary angle, upon a plate consisting of an

arbitrary number of different material layers. The composite plate is

supported from the bottom by a solid half-space. It is assumed that all

solid interfaces are either rigidly or smoothly bonded. The smooth contact

interface condition is of special importance since it may simulate weak

bondings, extended cracks, or delaminations; such situations are of great

interest for nondestructive evaluation applications. Reflection and

transmission coefficients are derived for the total system. By examining

the behavior of the reflection coefficient, all of the propagating modes are

identified. Furthermore, the rate of energy leakage in the fluid is

derived. Extensive numerical results are given in order to delineate the

influence of the plate material orderings on the propagation process.

Included are also comparisons of results obtained under the rigid and the

smooth bonding assumptions.

* Professor

** Graduate Assistant



I. INTRODUCTION

The lateral displacement and associated distortion of a bounded

acoustic beam upon its reflection from fluid-solid interfaces have been the

subject of many analytical and experimental investigations [1-15]. Although

these effects are found to exist for any angle of incidence, the beam

suffers severe distortion if it is incident at, or near, the Rayleigh

critical angle. Physically, resonant generation of a Rayleigh-like surface

wave and rapid reradiation of its energy into the fluid are responsible for

the severe displacement and distortion of the beam.

In three recent papers [10-13] Nayfeh and Chimenti analyzed, both

analytically and experimentally, the reflected waves from liquid-solid half-

spaces interfaces separated by a solid layer of different elastic material

in rigid contact to the solid half-space. In [11-12] we derived exact

expressions for the reflection coefficients where, as in our earlier paper

[10], only an approximate expression was reported. As was discussed in

these papers all physical effects of the reflected beam can be explained by

examining the behavior of the appropriate reflection coefficient. Generally

speaking, the inclusion of the layer was found to give rise to dispersive

effects in both the surface wave speed and the lateral shifting

(displacement) of the beam. These two effects are found to further

influence the distortion of the reflected beam. It was also found [12] that

the specific infl:,ence of the layer depends highly upon its material

properties as compared to that of the substrate. Specifically, the layer

can either load or stiffen the substrate. The loading situation occurs when

the layer's properties (especially its shear wave speed) are smaller than

those of the substrate, whereas stiffening occurs for layers stiffer than

2
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the substrate. Here we mention that concurrent with our investigations Bogy

and Gracewski conducted analyses and presented numerous results on similar

problem situations [13-15].

In the present paper we generalize our single layer results to the case

of an arbitrary number of layers separating the fluid and solid half-spaces.

Among its many applications it can be used to examine the combined influence

of loading and softening layers. This is of particular importance in

advanced device applications where there is a need for characterizing

material properties of material deposition (in the forms of thin layers) on

host substrates.

In order to generalize our single layer's result to the multilayer case

we use the matrix transfer technique introduced originally by Thomson [16]

and somewhat later on by Haskell [17] and others [18-23] for applications in

the geophysics, acoustic and electromagnetic fields. According to this

technique we construct the propagation matrix for a stack of arbitrary

number of layers by extending the solution from one layer to the next while

satisfying the appropriate interfacial continuity conditions.

In order to execute cur results we shall carry out our analysis in

terms of the displacements and stresses directly rather than in terms of the

wave potentials. This leads to somewhat simpler expressions and is also

chosen as a prelude to our future development of similar analysis for

anisotropic media. In order to simulate a wide variety of debonding,

delamination and cracking, we shall introduce a new feature which allows us

to treat "smooth" interfacial conditions at selectively arbitrary locations.

These conditions can be simulated by introducing a very thin layer (of

negligible thickness) of nonviscous fluid between solid interfaces, or by

3
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setting the smooth interfaces in contact without bonding. As a result,

transverse slip occurs at the boundary resulting in the vanishing of the

shear stresses at the interface for both media. On the other hand, the

components of displacements and stresses normal to the interface plane are

kept continuous as if the media were in rigid contact.

In Section II we present complete analysis for the multilayered system

with all rigidly bonded interfaces. This will result in algebraic

expressions for the reflection and the transmission coefficients. In

Section III, we invoke the smooth interface condition at the arbitrary

interface between layer m and m+1 of the plate and thus modify the

reflection and transmission coefficients accordingly. In seciton IV we

present a qualitative description of leaky mode extraction. In section V,

we present a wide variety of numerical results to delineate the utility of

the models. Several comparisons between results obtained under the rigid or

the smooth interfacial conditions assumptions will be presented.

II. THEORETICAL DEVELOPMENTS CASE OF RIGID BONDS

(a) Formulation of the Problem

Consider a laminated plate consisting of an arbitrary number, n, of

elastic isotropic layers rigidly bonded at their interfaces. This plate is

assumed to be rigidly attached to an elastic isotropic solid half-space

separating it from a fluid half-space. The problem then is to study the

reflected beam from the fluid-plate interface for an incident beam

originating in the fluid at an arbitrary angle from the normal to the

interface.

Guided by our single layer plate analysis of [12], in order to

facilitate the present analysis, we shall use two sets of two-dimensional



coordinate systems (x,z), as illustrated in figure 1. One system is global

which has its origin at the substrate-plate interface such that x denotes

the propagation direction and z is normal to the interfaces. Here the

layered plate will then occupy the space 0 < z < d where d denotes the total

thickness of the plate. The second system is local for each sublayer of the

plate. Since the plate is made of n layers, the kth layer will then have

(k)
its local coordinates x and z with local origin at the interface between

(k) (k)
layers k-1 and k. Hence layer k occupies the space 0 < z < d , where

d(k ) is its thickness. In figure 2 we display a representative layer k with

its appropriate coordinates and boundary field variables.

With this choice of coordinate systems all motions will be independent

of the y-direction and the relevant elastodynamic equations for each solid

(including each layer and the substrate) consist of the momentum equations

30 Do z V

axz  z P (1)

xz 3aw (2)

and the constitutive relations

Ox - (X + 2,)'' + XZ (3)

ax ax

= (+ 2 ) + ,3u (4)

au + aw) (5)
xz

where ax, axz and cz are the components of the stress tensor; u and w are

the components of the displacements; p, X and u are the density and elastic

constants of each material. Due to the absence of viscosity in the fluid

J, 5



(water) its relevant field equations corresponding to equations (1-5) are

given by

ax . f - - (6a)

"-= f -t-- (6b)

M ) au M w(f)

z x A f (- + --£-) (7)

Equations (1-7) must be supplemented with the appropriate interfacial

continuity conditions. For rigid bonding between the individual layers of'

the plate these are

(k) (k+1) (k) (k+1)
xz xz z z

(k) (k41) (k) (k+l)
u u w w k = 1,2,...,n-1 (9)

(k) d(k) (k+1)

at z d (or z =0)

Similarly, at the substrate's interface the rigid bonding continuity

conditions are given by

(1) o(s)z a(1) a(s)

(1) (s) (1) . (s)
u U ,w -w (10)

at z(1) = 0 (or global z = 0). Here superscript (s) designates the

substrate. Finally, at the fluid-plate interface, the appropriate bonding

conditions are

(n) O (n )  (f) (n )  .w(f)  ( 1

xz z z

(n) (n)
at z = d (or global z = d)

6



(b) Analysis

In this subsection we shall describe the propagation process in the

plate by solving the field equations in each of its layers and satisfying

the interfacial continuity conditions. By combining equations (1-7) we

obtain the following two coupled displacement equations, which hold in each

layer of the plate, as well as in the substrate

[(x + 2) 32- + 3w - ] u +(x+P)-xz = 0 (12)

+ 2u ri32 32 32
+ + [(X + 2 4)- + 2 - P 1] w =0 (13)

For waves whose projected wave vector is along the x-axis, equations (12)

and (13) admit the formal solutions

(u,w) - (U,W)ei q (x - c t +az )  (14)

where U and W are constant amplitudes, q is the wave number, c is the phase

velocity and a is the ratio of the z and x-directions wave numbers. By

satisfying equations (12) and (13), followed by solving for the four roots

of a and using superposition we conclude that

i eiqazU1

I l 1 1 1 U2 e-iqa~z

w= a 1 1 U3iaz (15)
11 ie-

qa 2 z

where

02  a 2
l 2- c (16a)

L cT

and for compactness, we define

U U e j 1,2,3,4 (16b)

7 1



Here c L - [(X+21i)Ip] / and c T = 1U'p] / designating longitudinal and shear

wave speeds, respectively. Substituting from (15) into the stress-

displacement relations (3-5), we can generalize equation (15) to also

include the stresses as

u 1 1 1 1 U~iqc1z

w L -a 1 '- i qOL'z
w~~C = a -a 2  a2  iqa2z (7

zD, D, D, D2  U~e

az D, -D3  D, -D, U~ei z

where

Cy

D)3 = 2pal D. (,~
2 

-2),

a2 C T

Oz.a i and a az Gx/iq (18)

Since equations (12)-(18) hold for each layer k (k =1,...,n), equation

(17) can be used to relate the displacements and stresses at z (k= 0 to

(k) (k) (k)
those at z -d .This can be done by specializing (17) to z =0 and

(k) (k) (k)
to z = d ,and eliminating the common amplitude column made up of U1

(k) (k) ad (k)
U2  ,U 3  adU 4  resulting in

u (k) a,, a,2  a1 3  a14  u (k)

w(k) = a21  a2 , a.3  a2 4  w (k) (19)

-(k) -(k)a xza 31  a32  a3 3  a3 4

-(k) -(k)
az (k) d (k) a4 , a4 , a43  a4 , az (k)=0

xz z d z =0



where
BI B2 B3  B, 1 1 1 1 -1

aB1 -aIB2 - B, 1 B-. a ---
[aij]k aB a a 2  a 2  (20)

D1B1  DB, D2B,  D2B4  D, D, D2  D2

DB, -DB 2  D4B, -D4B4 k D, -D3  D4  -D, k

and

iqa,d(k) -iqaid(k)
B, - , B 2 = e

iqa~d (k) -iqa~d(k)

B,  , B 4 - e (21)

and the various parameters cx,, a2, D,, etc. are specialized to the material

k under consideration.

By applying the above procedure for each layer and invoking the

continuity relations on the top and bottom of each layer we can finally

relate the displacements and stresses at the top of layer n to those at the

bottom of layer 1 via the transfer matrix multiplications

[A Ij = [aij ]n[aijan-I . . . [aij], (22)

which can be written in the expanded form

u(n) All A1 2  A 13  A1 4  U

w(n) A21  A22  A23  A24  w I1
-(n) A -(1) (23)

azA 31  A32  A33  A34
-(n) -(1)
xz z = d A4 1  A 4 2  A 4 3  A 4 4  xz z = 0

Now, in order to satisfy the remaining continuity conditions (10) and

(11) at the substrate-plate and the plate-fluid interfaces, respectively, we

need to solve the field equations in the substrate and in the fluid. By "4

inspection, such solutions can be deduced from the formal solution (17). b
9



First, due to the absence of shear deformation, specializing (17) to the

fluid half-space yields

U 1 1 e iqaf (z-d)
(f) (24a)

f(f) 2 fC2 (
0z P fc P fC 1U.2  -Iqt z

where

a2 
_ (c2/cI) - , (f) e q (x- c t ) r = 1,2. (24b)

f ) -r r

with uf is the constant amplitude of the incoming wave, u(f) is that of

the reflected wave and z is the global coordinate. Also, the sub and

superscripts f denote quantities belonging to the fluid.

Next, specializing (17) to the substrate yields

- (s) iqa z

w (S )  a, -c -- 0
-ks) 2 a2  (S) iqctz (25)

a - D, D D 2  U 3 e

Sxz D3  -D3  D, -D s0 s

where the 4x4 characteristic material matrix in (25) designates the [als

(s) (s) -(s) -(s)
of the substrate, and UI  and U are related to U and U in a manner

similar to that of equation (24b). Notice that in equation (25) the

-(s) -(S) .reflected wave amplitudes U2  and U5 s vanish since our solutions must be

bounded for large values of Izi and the substrate is considered to be an

infinite half-space. Here also we a, and a, which insure boundedness at

infinity. Again, z in (25) is the global coordinate.

10
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Invoking continuity conditions (10) and using (23) and (25) with global

z - 0, we can express the displacement and stresses at the top of layer n

(i.e. the top of the plate) in terms of the substrate wave amplitudes as

u R1 1  R 12  R1 3  R 1 4  U 1

w (n )  R 2 1  R 2 2  R 23  R 24  0
o(n ) R l (, , R U s )  (26a)

aR 3 I R32  R3 3  R3 4  U 3
an) d R41 R42  R43  R44 0XZ z - d

where, from (23) and (25), we construct [R ij] as

[RIj ] - [Alj][a=j~ s  (26b)

The continuity conditions (11) can now be used to relate the wave

amplitudes within the fluid with those within the substrate. Thus, invoking

these conditions at the plate-fluid interface (i.e., at global z=d) and

using the relations (24a) and (26a) yield

af u f R2 1  R2 3 s)

U U1
2c c R3 1  R33 (27)

f f (s)
U2  U 30 0 {R4 R4 3

Since the incident wave amplitude Uf is assumed to be known, the matrix

equation (27) represents three equations for three unknowns. It can thus be

solved to yield the reflection, longitudinal transmission, and shear

transmission coefficients, respectively as

(f) G3-QfG21
R 2 u (28)

U,

U(s) 2pf c 2
TL = u = G, fG (29)

f). G31 +QfGl

T (s) , T (30)
S M R4 3 L

ii .



G -f 2

G2 1 - R2 1 - R2 3 R , R - R , Qf (31)

III. SMOOTH INTERFACE CONDITION

Now, if a smooth contact interface is introduced within the plate at an

arbitrary location, say the interface between layers m and m+1 then the

previous analysis must be modified. In this sense, we may now consider the

plate to be composed of two subplates, the top subplate with n-m layers and

the bottom one with m layers, where 1 < m < n. The appropriate interfacial

conditions for the smooth contact surface are

w(m+l) w(m) (m+1) (m) (m+1) (m)
z a Z  z  , aX z OXZ

at zm+1) - 0 (zi) d ()) (32)

First, we construct the top subplate's characteristic matrix by

truncating Aij starting from the top as

[AlI]T - [aijn Caij]n_1 ' [a ij]m+I  (33)

Next, we construct the bottom subplate's characteristic matrix from the

remaining part of Aij as

[Aij]B - [a]ijm[a ij]mI .. [a ij] .  (34)

Hence, it is clear that [Ai] [A ijT[Aij]B. Notice that when the smooth

contact surface is at the plate-substrate interface (m-O) [AijIT in (33)

becomes [A ij ] and [Aij] B in (34) becomes I 4x4 We can now write the

displacements and stresses at the fluid-plate interface in terms of those at

the bottom of layer m+1 by analogy with (23) and using (33)

12



(n)u(m+1)

u(n)  All A1 2  A1 3  A1 4  u (m + )

w(n) A21  A22  A2 3  A 24

-(n) - -(m+1) (35)az A3 1  A3 2  A3 3  A3 4  z
-(n) -(m+1) (m+l)
xz z-d A4 1  A4 2  A4 3  A 4 4 T a = 0

In the same way, we write the displacements and stresses at the top of layer

m in terms of the wave amplitudes in the substrate using (34)

(m) (S)u Q11  Q12  Q13  Q14  U1
w(mn) Q2 Q2 Q2 Q2 Q

-(m) u(s) (37a)
a zQ 3 1  Q3 2  Q 33  Q3 4  U3

a m -z - dm Q41  Q4 2  Q43  Q4 4  0

where now

[QIj] [A Ij]B[aij]s. (37b)

Invoking continuity conditions (11) and using (35) and (24a) with

global z-d, we can express the displacements and stresses at the bottom of

m+1
layer m+1 (z 0 0) in terms of the fluid wave amplitudes as

w(m+l) (fMil M12 w af -a f U1f

-(m+1) z 2 2 (f) (38a)

M(m+l) Pf Pfc U2

where

A4T A43T
M I, - A22T - A21T A- T  M 12 - A 2 T  T  A - t

- A42T M2 = A233 - A3I A43 T
A42T A4,T

M 2 1  o A 3 2 T  - A T  A I T; A 4 T

and the zero shear condition at z(m+ 1 ) - 0, from (32), has been employed.

13



Finally, invoking conditions (32) and using (37a) and (38a) we again

obtain matrix equation (27) where now

R21  R23  Mil M12  0 Q21  Q23

R31  R33 = M21  M2 2  0 Q3 1 (39)

R41  R43  0 0 1 Q41  Q4 3

The expressions for the reflection and transmission coefficients (28),

(29), and (30) are also valid with the Rij as defined in (39).

IV. QUALITATIVE DESCRIPTION OF LEAKY MODE EXTRACTION

Insight on the problem of nonspecular reflection of finite acoustic

beams from fluid-solid interfaces can be gained from an examination of the

reflection coefficient R as a function of angle of incidence and frequency.

The expression (28) for the reflection coefficient contains, as a by-

product, the characteristic equation for the propagation of modified (leaky)

Rayleigh surface waves which propagate along the fluid-layered solid

interface. The vanishing of the denominator in Equation (28), namely,

G3 1 + QfG 2 1 = 0 (40)

defines the characteristic equation for such waves. Furthermore, in the

absence of the fluid, i.e., fcr pf = 0, Eq. (40) reduces to

G3 1  - 0 (41)

which defines the characteristic equation for Rayleigh surface waves on the

multilayered plate bonded to a semi-infinite solid substrate.

For given real frequency w (or fd), the real wavenumber solutions p =
p%

k of (41) define propagating Rayleigh surface modes. It is important to
r

indicate that in the absence of the plate only a single real solution will

exist. This will be the classical surface wave mode which propagates on a

14
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half-space. In the presence of the liquid these real wavenumbers will be

perturbed rather mildly and become complex. This, of course, is confirmed

by Eq. (40) which in general admits the complex solutions

=p kr + ia. (42)

From Eq. (42) the phase velocity is given as cr = w/kr and a is the

energy leakage coefficient. Notice that a vanishes in the absence of the

fluid and hence no attenuation (leaking of energy in the fluid) occurs.

Hence, in the presence of the fluid these surface waves are called leaky

waves. It is also known that cr is hardly affected by the presence of the

fluid [4,10-12]. However, as has been shown earlier [10-12] c is importantr

because it is related to the lateral displacement of the reflected beam; in

fact, the beam displacement parameter As is defined to be equal to 2/a.

Since we have concluded that the vanishing of G3 defines the

propagating surface modes, then it is clear from (28) that as G3 4 0,R 4-1,

and we find that we have an alternative method for deducing the leaky wave

propagation constant. Accordingly, the reflection coefficient at Rayleigh

angle can be represented by expanding its phase factor about the incident

wave vector in powers E and retaining the leading term [10-12]

R(t) - exp[i(E-k )S'(k )], (43)r r

where kr is the Rayleigh wave vector, and S'(k r ) is the derivative with

respect to E of the phase of R evaluated at k r In refs. [10-12] we showed

that

As - -S'(k r ) (44)r

15



Furthermore, Eqs. (43) and (42) are also valid at any incident angle

above the transverse critical angle, permitting straightforward calculation

of As away from the mode critical angles.

V. NUMERICAL RESULTS

For our material menu we choose steel, copper, chromium and epoxy;

properties of which are collected in Table 1.

Material CL C T P

Type x10 5 cm/s x10 5 cm/s g/cm3

Steel 5.69 3.13 7.9

Copper 4.76 2.32 8.9

Chromium 6.6 4.0 7.2

Epoxy 3.45 1.28 1.25

Table 1

In all of our numerical calculations we use steel for the substrate. The

plate's constituents, on the other hand, can be chosen from all of the menu

materials. Since it is known that chromium stiffens steel and that copper

and epoxy load steel [12], we shall show that combinations of these

materials (to form the plate) can either stiffen or load the steel substrate

depending upon their volume fractions and ordering. Without any loss of

generality the thickness d of the plate will be kept constant, and the

plate's constituents (layers) will be assigned volume fractions adding to

unity. Of prime importance is keeping track of the constituents order,
;,

however.

Numerical results are presented below in three different categories.

In the first, we will illustrate variations of the reflection coefficient

16
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and function G,, with phase velocity c (or equivalently with incident angle

a since sine = c f/c). This will be done in order to display the criteria

for the surface mode identification. In the second category we present

dispersion relations in the form of variations of phase velocities with Fd,

where F is the frequency and d is the layered plate thickness. Here

comparisons of results obtained under the rigid and the smooth bondings

assumptions will be displayed. Finally, in the third category we depict

similar dispersion results in the forms of the variation of beam

displacement A with Fd.

In figures 3a-3d, the variations of the real and imaginary parts of the

reflection coefficients with phase velocity are shown at four values of Fd

for a copper plate rigidly bonded to the steel substrate. Also displayed on

this figure are normalized values of the corresponding parameters G,,.

These figures clearly demonstrate the surface wave identification criteria

where the real value of the reflection coefficient approaches -1 which also

coincides with the rapid variation (through zero) of its phase and the

vanishing of G 31. Furthermore, at Fd=O the mode occurs at the phase

velocity of 2.89 x 10 cm/s which is the surface wave speed of steel. This

is expected since at the zero frequency limit, i.e., for very long

wavelengths, the plate will be essentially "washed" out. As the frequency

increases other modes will appear successively; this behavior is typical of

all softening (loading) materials.

In figures 4a-4d, similar results are presented for a chromium plate

rigidly bonded to the steel substrate. Here, the behavior is entirely

different from that of figure 3a-3d except at, obviously, the zero frequency

17
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limit. As the frequency increases, no other modes appear which is typical

of stiffening materials.

Base,1 upon the identification criteria of figures 3 and 4, we

constructed in figures 5 and 6 dispersion relations curves for a copper

plate attached to a steel substrate and for a chromium plate attached to a

steel substrate, respectively. The solid curves correspond to rigid bonding

whereas the broken curves correspond to smooth bonding to the substrate.

Notice that there exists a one to one correspondence between the solid and

broken curves which can be easily identified and thus compared. Notice also

that the difference between corresponding solid and broken curves is most

pronounced at relatively small values of Fd. For the copper plate case

several modes besides the fundamental modes exist whereas for the chromium

plate case only the fundamental modes exists. In both cases the phase

velocity of the fundamental mode converges to the surface wave speed of the

steel substrate at Fd - 0. As Fd increases the phase velocity of the copper

plate case decreases to its limiting copper surface wave speed while other

modes appear. The phase velocities of these higher order modes are bounded

by the shear wave speeds in the steel substrate and the copper layer,

respectively. This general behavior is valid for both rigid and smooth

bonding; however, the slopes of corresponding solid and broken curves can

vary substantially. As Fd. increases from zero the phase velocity of the

chromium plate increases towards the chromium's surface wave speed of

3.6x10 5 cm/sec. However, at certain values of Fd, (corresponding to a

cutoff frequency) where the phase velocity reaches the steel substrate shear

wave speed of 3.13x105 cm/s, the mode ceases to propagate. This behavior

can be easily explained from the fact that, for surface waves to also exists

18
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in the steel substrate, the phase velocity cannot exceed its shear wave

speed of 3.13x10 5 cm/s. Notice also from figure 6 the dramatic contrast

between the mode's behavior for the rigid and the smooth bonding situations.

In the series of figures 7-10 dispersion curves are displayed for

various plates made up of equal thickness copper and chromium layers. The

order of the specific plates chosen are given by c/ch, ch/c, c/ch/c/ch/c,

ch/c/ch/c/ch respectively, where c stands for copper and ch for chromium.
9,

Notice, from this group of figures, the influence of layers ordering on the

propagating process. The general conclusion is that for plates whose upper

layer is copper the phase velocity tends to decrease at higher values of Fd

and visa versa for plates with chromium top. In fact, in figure 11, we

confirm this conclusion by presenting, for comparison, dispersion results

obtained for a plate made up of a periodic array of 21 copper and chromium

layers rigidly bonded to a steel substrate. The solid curve correspond to

the case where a copper layer is at the top, and the broken curve

corresponds to the change in ordering of the plate's layer, resulting in a

chromium layer at the top.

In order to isolate, and quantify, the absolute influence of invoking

the smooth interface condition we present in figure 12 the dispersion curves

for a steel plate smoothly bonded to a steel substrate of the same material.

These results are shown by the broken curves. The variation of the phase

velocity should be compared with the constant value of 2.89 x 105 cm/s which

correspond to the rigid bonding case, i.e., the steel plate becomes part of

the steel substrate resulting in no dispersion. Also, included for

comparison are results obtained for a thin epoxy plate (with volume fraction

19



- .01) separating the steel plate and the steel substrate. It is here

assumed that the epoxy is rigidly bonded to the plate and to the substrate.

In the series of figures 13-16 we display the variations of the beam

displacements as functions of Fd for the variety of multilayered plates used

to generate the corresponding phase velocity dispersions of figures 7-10.

Here solid curves correspond to rigid bonding whereas broken ones correspond

to smooth bonding to the steel substrate. In the cases where the plate's

upper Layer is copper, figures 13 and 15, the phase velocity converges to

that of the copper as Fd becomes large. For the case where the upper

plate's layer is chromium, however, we present results up to the cut off

frequency. Here the beam displacement varies from that of the steel

substrate as Fd increases from zero to its cutoff value. Once again figures

12-16 show a relatively large difference between the results predicted for

either rigid bonding or smooth bonding of the plate to the substrate

especially at relatively low frequency ranges.

Finally, to gain further confidence in our analysis and computations we

confirmed, as a special case, the numerical results reported on figure 7 of

Bogy and Gracewski [15], for a two layer plate composed of nickel and silver

layers rigidly bonded to a copper substrate and immersed in water.
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FIGURE CAPTIONS

Figure 1 The laminated plate model.

Figure 2 Representative lamina with Interfacial field variables.

Figure 3 Variations of the real and imaginary parts of R and normalized
values of G,, for a copper plate rigidly bonded to a steel

half-space. Solid line - real (R), long dash - imag(R), short
dash - G,,.

Figure 4 Variations of the real and imaginary parts of R and normalized
values of G,, for a chromium plate rigidly bonded to a steel
half-space. Solid line - real (R), long dash - imag (R), Short
dash - G31 .

Figure 5 Dispersion relation curves for a copper plate rigidly bonded to
a steel half-space (solid lines) and a copper plate in smooth
contact with a steel half-space (dashed lines).

Figure 6 Dispersion relation curves for a chromium plate rigidly bonded
to a steel half-space (solid lines) and a chromium plate in
smooth contact with a steel half-space (dashed lined).

Figure 7 Dispersion relation curves for a plate composed of equal
thickness layers of copper (top layer) and chromium In rigid
contact (solid lines) with a steel half-space and in smooth
contact (dashed lines) with a steel half-space.

Figure 8 Dispersion relation curves for a plate composed of equal
thickness layers of chromium (top layer) and copper in rigid
contact (solid line) with a steel half-space and in smooth
contact (dashed line) with a steel half-space.

Figure 9 Dispersion relation curves for a plate composed of 5 equal
thickness layers of copper (top) alternating with chromium in
rigid contact (solid lines) and smooth contact (dashed lines)
with a steel half-space.

Figure 10 Dispersion relation curves for a plate composed of 5 equal
thickness layers of chromium (top) alterating with copper and
in rigid contact (solid lines) and smooth contact (dashed
lines) with a steel half-space.

Figure 11 Dispersion relation curves for a plate composed of a periodic
array of 21 equal thickness layers of copper alternating with

chromium. The solid line is for the case when the top layer is
copper and the dashed line is for the case when the top layer
is chromium.

Figure 12 Dispersion curves for; a steel plate in smooth contact with a

steel substrate (broken curves), a steel half-space (dotted
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curve), and a thin epoxy layer separating a steel plate from a
substrate (solid line) with all surfaces rigidly bonded.

Figure 13 Variation of beam displacement for a plate composed of 2 equal
thickness layers of copper (top) and chromium rigidly bonded
(solid line) and in smooth contact (dashed line) with a steel
substrate.

Figure 14 Variation of beam displacement for a plate composed of 2 equal
thickness layers of chromium (top) and copper rigidly bonded
(solid line) and in smooth contact (dashed line) and in smooth
contact (dashed line) with a steel substrate.

Figure 15 Variation of beam displacement for a plate composed of 5 equal
thickness layers of copper (top) alternating with chromium and
rigidly bonded (solid line) and in smooth contact (dashed line)
with a steel substrate.

Figure 16 Variation of beam displacement for a plate composed of 5 equal
thickness layers of chromium (top) alternating with copper and
rigidly bonded (solid line) and in smooth contact (dashed line)
with a steel substrate.
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Figure 1 The laminated plate model.
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Figure 2 Representative lamina with interfacial field variables.
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