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INTERACTION OF ULTRASONIC WAVES WITH COMPOSITE PLATES

ADNAN H. NAYFEH
Department of aerospace Engineering and Engineering Mechanics,

University of Cincinnati, Cincinnati, Ohio 45221

ABSTRACT

During the second year of our reporting period we continued our close
cooperation with the NDE Branch of the Materials Lab at Wright-Patterson Air
Force Base. For our part, we continued developing analytical and
computational methods on the modeling of the mechanical behavior of fibrous
composites for applications in the NDE field. Specifically, we extended our
theoretical models which were developed to describe the behavior of single
unidirectional fiber-reinforced plates, to more general plates. These
included single and multilayered plates. For the single laminate plate the
solutions are extended for arbitrary azimuthal angles and hence resulted in
three-dimensional analysis. However, for the general multilayered plate
case, treatment so far has been restricted to the case where the individual
lamina component of the plate is isotropic. Reflection and transmission
coefficients are derived, from which characteristic behavior is identified.
This was verified experimentally by the scientific group at Wright
Patterson. These combined efforts contributed to an advancement of the
state-of-the-art of the NDE methods. As described below our recent efforts

resulted in several presentations and publications in the open literature.
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I. Fluid-Coupled Wave Propagation in Orthotropic Plates With Application to

Fibrous Composites

I Introduction

In recent years considerable efforts have been expended upon the
modeling, testing and analysis of fibrous composites. This is due in part
to their popularity in applications requiring high stiffness to weight
ratios and also to their intrinsic interest as challenging mechanical
systems. However, the morphology of fiber-reinforced composites, as
compared with that of homogeneous isotropic media, can seriously complicate
their mechanical response. For example, these materials differ from
isotropic homogeneous materials in that they are anisotropic and dispersive.
The degrees of anisotropy and dispersivity depend upon the specific material
under consideration and also upon the specific application, however.

Since most fibrous structural components are subjected to cyclic or
impulsive loads which can lead to degradation in load-carrying capability,
initial inspection and continued monitoring of these materials for detection
and sizing of strength-degrading flaws 1s necessary in order to insure
structural reliability. Ultrasonic nondestructive evaluation is one useful
means to provide information related to structural integrity of composiées.
To assist in the exploitation of this technique for inspecting composites, a
full understanding of the propagation of elastic waves in fibrous composites
is highly desirable.

Compared with the voluminous literature on the propagation of elastic
waves in isotropic media, a limited amount of work exists on anisotropic
materials. This is particularly true for the classes of guided waves such
as surface, Love, Lamb, and Stonely waves. Investigation of the propagation

of bulk waves in anisotropic materials is relatively well established (see,
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for example, Musgrave [1], Synge (2] and Fedorov "3]). <Comparatively

speaking, few quantitative results have been reported on solutions of guided
waves in anisotropic media.

Several authors [4-14] have discussed the reflection and refraction
problems from interfaces of anisotropic media in varying degrees of detail.
Stonely, in 1955, studied Rayleigh surface wave propagation on an
anisotropic half-space having cubic crystal symmetry [15]. Since then
several other authors [16-22] have considered and reported on similar
problems. Theoretical analyses have been undertaken for free Lamb waves in
plates of orthotropic [23-24] , transversely isotropic [25-27] and cubic
(28-29] materials.

Because fiber-reinforced composites are often employed in plate-1like
structures and ultrasonic testing is conveniently performed in immersion, we
recently investigated both theoretically and experimentally the behavior of
guided elastic waves in fluid-coupled plates of unidirectional fibrous
composites [30,31]. For consistency we refer, in our work, to the fluid-
coupled modes as plate modes. These exitations may be contrasted with Lamb
modes for a plate in vacuum, like that studied in ([32,33]. 1In [30,31]
results were presented for cases where the plate wave vector is along the
direction of symmetry, i.e., the fiber axis.

We present a unified analytical treatment of ultrasonic waves with
generally orthotropic elastic plates. The plates are assumed to be immersed
in a fluid and subjected to incident acoustic waves at arbitrary angles from
the normal as well as at arbitrary azimuthal angles. Reflection and
transmission coefficients are derived from which characteristic features are

identified. Highly complex reflection behavior, expressed as phase

velocity-frequency dispersion, is observed in the model prediction. Our




analytical modeling has been compared with the extensive experimental data
collected by Chimenti of the Air Force Material Laboratory in ultrasonic
reflection measurements on a plate of T300/Ciba-Geigy 914 composite,
selected as a model system to test the theory. Comparisons between theoty

and experiment show excellent agreement is seen in curves at several

azimuthal angles between Ooand 900, despite complicated features in the
results.

A key condition which is found to facilitate our subsequent analysis
is the fact that the wave vectors of the incident and refracted waves must
all lie in the same plane. This result is a consequence of satisfying
continuity conditions at the fluid-solid interface (see [10] for
Justification). We will therefore conduct our analysis in a coordinate
system formed by incident and interfacial planes rather than by material
symmetry axes. This condition leads to a simplification in our algebraic
analysis and computations.

I.2 Theory

Consider an infinite orthotropic plate having the thickness d and

immersed in fluid such that its symmetry axes are oriented originally along

L L L} ]
the cartesian coordinate system xi =(x1,x2,x3). The plane x1-x2 is chosen

t

to coincide with the upper surface of the plate, and the x3 coordinate is

normal to it, as illustrated in Fig. 1. With respect to this primed

coordinate system, the elastic field equations of the plate are given by the

momentum equations
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and, from the general constitutive relations for anisotropic media,

1] 1 1

13 7 Cigke Ske (2)

(4]

by the specialized expanded matrix form to orthotropic media

] : " ] ]
%1 €1 Ciz Cy3 0 0 01 {e14
] ] L] ] 1 ]
%20 Cy2 Cos Cog 0 0 01 1222
' c c. c. 0 0 0 " (3)
933 13 23 33 e33| 3
L t ]
5| = | 0 0 0 Cuy 0 ol |5

where we used the contracting subscript notations 1+11, 2+22, 3+33, u4-»23,

5+13 and 6+12 to relate cijkzto

c;q (1,j,k,% = 1,2,3 and p,q = 1,2....6).

A
Thus, C stands for C

55 1313° for example. Here ¢

1]
e and ui are the

i3' "ij
components of stress, strain and displacement, respectively, and p is the

material density. In Eq. (3), YiJ = 2eij (with i=j) defines the engineering

shear strain components.

f
Since cijkl is a fourth order tensor, then for any orthogonal

*

transformation of the primed to the non-primed coordinates, i.e., xi to X

it transforms according to

B B B

cmnop = mi nj ok 8

1
pt  © 1jke (8)
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where 8i is the cosine of the angle between x! and x,, respectively. For a

J i J

rotation of angle ¢ in the x{ -xé plane, the transformation tensor Bi.

reduces to

cos¢ sin¢ 0
-siny cos¢ 0 (5)
0 0 1
{
which, 1If applied to Eq. (2) through the relation of Eq. (3) yields
%9 v G2 G3 0 0 Gy 11
%22 Cla Cop Cp3 0 0 Cy €2
= 0 6
033 C13 C23 C33 0 C36 833 (6)
023 0 0 0 C’-lll CUS 0 Y23
013 0 0 0 CUS C55 0 Y13
%2 Cle Co6 C36 O 0 Cge Y12

]
where the transformation relations between the Cpq and Cpq entries are

listed in Appendix A. Notice that, no matter what rotational angle ¢ is
used, the zero entries in Eq. (6) will remain zero. In fact, the matrix of

Eq. (6), although particularized to orthotropic media, resembles that of

monoclinic media (i.e. media which has x, = 0 as a plane of symmetry). In

3 |
terms of the rotated coordinate system X .+ we write the momentum equations
as
2
tL] a u
i
J . 0 21 (7)
ax at

Substituting from Eq. (6) into Eq. (7) results in a system of three

coupled equations for the displacements u u, and u,. If we now identify
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the plane of incidence to be the x1-x3, as in Fig. 1, a formal solution for

the displacements uy can be written as

is(x1 + ax3- ct)

(u1,u2)u3) = (1,V,W)Ue ’ (8)

where £ is the wave number, ¢ is the phase velocity (=w/£), w is the
circular frequency, a is still an unknown parameter, and V,W are ratios of

the displacement amplitudes of u, and u3 to U, respectively. Combinations

of Egqs. (8), (7) and (6) yield the matrix relation

C11 - pc” + 055a C16+ CHS“ (C13+ Css)a 1
2 2 2
C16+ CMS“ C66_ pc + Cuua (C36+ Cus)a v =0 (9)
(C,, + C_.)a (C,.+ C, .)a C__~- pcz+ C a2 W
13 55 36 45 55 33

Nontrivial solutions for V and W demand the vanishing of the
determinant in equation (9) and yield an algebraic equation relating a to c.
This equation is reduced (see Appendix B) to a sixth-degree polynomial
equation in a, namely

a6 + A1au + A2a2 + A3 =0 (10)

a2 and a2.

Equation (10) admits three solutions for a2 which we label as a2 3 5

1 ’
These lead to six solutions for a which we further label as

A, = < o, ap= < a3and ag= - as (11)

Using superposition, together with the relation (9), we can relate the

displacement ratios Vq and wq for each aq as
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2 2
v . F23(F11+ Cssaq) (F12+ Cusaq)F13 (12)
q 2, 2
F13(F22+ Cuuaq) (F12+ Cu5aq)F23
F._(F.. + C__a2) = (F.. + C,.a°)F
W - 2311 55"q 12 45 13 C 126 (13)
9 9 (p s %) (F.. + C.0®) ~F. F a° s S
12 7 “u5%’ 33 7 ~33% 13°23%

where Fst +8,t= 1,2,3 are defined in Appendix B. Combining Eqs. (12) and

(13) with the stress-strain relations Eq. (6), we rewrite the formal

solutions for the displacements and stresses as

6 : 1E(x1+aqx3~ct)
(u1,u2,u3) =qf1 (1, vq,wq)uq e (14
) i&(x1+aqx3-ct)

(033,013,023) =q£1 (qu,qu,D3q)qu (15)
where

D1q = C13+ C36 Vq + C33 aq Wq (16a)

D2q= Css(aq+wq) + Cus aq Vq (16b)
and

D3q =Cu5(aq+ wq) +CMM aqVq , qQ=1,2,...,6 (16¢)

With reference to Eq. (11) and by inspection of Egs. (12) - (16¢c) one

deduces the relations

Vy =V, Vy = Vg, Ve - Vg (17a)

T (175)

Dyo = Dyy» Pyy = Dyg» Dyg = Dyg (18a) »
-,

Dap = ™Dayr Doy = Dpzs Dyg = Dy (180)

D3 = “D3y» D3y = D334 D3g = ~Dyg (18c) ;

A
L
1.3 Derivayion of the Reflection and Transmission Coefficients ?i
-




bt i 0e e a¥hTah et a8 MR ol a08 b2t ath ath ath AtE ate" a1t 02" g0 et  y ¥ ot Ba® $a¢ Bat Pa® fuv bat ¥ b et e B bt g2V g

To determine the reflection and transmission coefficients for plane
waves incident from the fluid onto the plate surface at an arbitrary angle 8
we need to obtain general solutions for the upper and lower fluids similar
to those of Eqs. (14) and (15). Recognizing that the fluid does not

support shear deformation, its field equations reduce to

(f) ()
8 aci! Bui (19)
. x.  Pr T 2
3 ot
)
g) Ao ﬂ 85 0 1,j =1,2,3, (20) '
axk \

" where both equations hold only for i=j; and A are the fluid density and

Pe £
Lame' constant. If the wave is assumed to be incident and hence reflected
in the upper fluid and transmitted into the lower fluid, then using similar

analysis to that of the plate yields, for the upper fluid,

t iglx +(-1)k+1a X.~-ct]

1 £%3
yW e (1,0, w(“)u-;p c )U(”) (21)

k=1 |

‘f (u1,u2,u3, 033

[ o AN

and for the lower fluid

-
.

o’
Vw0

A (%) (2) i&[x + an(xy=d)- ct] ;
i (u1,u2,u3, 033) =(1,0, a., 10 C %)y 3 (22)

: where

Jt

i (u) (w)_ _

R (232) |
r_‘

B 1 1

7' 2 3 A, =

ap = (& -1)°7, op= (55)° (23p)

o p

‘: Co f

P

Notice the vanishing of shear component u, 1in both the upper and lower

s fluids.

10

] , v ) . R " -
THUE TR AT 00 BT 0 1S 0T T TR T T 5T 000 o o i 0 P, M W T A L O G N



b € B v g inaB Fad caf vap D, R N U, U N T R WU VO VU A W TN I T T LS m'ﬂ"“h"bm“\?

By invoking the continuity of the normal displacements and stresses at

z =0 and z = d and setting the solid shear stresses ¢ and o equal to

13 23
zero at z = 0 and 2z = d we obtain, for a given incident amplitude U?, a

(u) 2

system of eight linear simultaneous equations for the amplitudes U 5 U,

N UI’UZ’ U3, UM’US and U6 is obtained. Solving these equations with the help

of the relations (17) and (18) and applying rather lengthy algebraic
reductions and manipulations, we derive the following expressions for the

‘] reflection and the transmission coefficients

(u)
: R o2 L AL (24)
(u) (S+iY) (A-iY)
U1
T - oM ivesen (25)
U(u) (S+1iY) (A-1Y)

W !
KK
’5 where
W
b S = D11G1cot(Ya1) - D13G3cot(Ya3) + D15Gscot(Ya5) (26a)
le A= D11G1tan(7a1) - D13G3tan(Ya3) + D1505tan(Ya5) (26b)
o ,
KX 2
L":o Pec
Y = g (W, Gy = WGy ¢ WSG) (26¢)
Y
%‘ with
l':
"\ = -
ié G1 D23D35 D33D25 (27a)
;$ G3 = D21D35 - D31D25 (27b)
R
Ao - -
n Gg = DpyDyq = DgyDyo (27¢)
i
- Y = £d/2 = wd/2c. (27d)
4 11
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Except for the more complicated definitions of the functions S,A and Y, the
expressions R and T resemble those reported in our earlier paper [31], and
our notation was chosen for consistency with this previous calculation.
I.4 Results and Discussion

In comparisons between the results of many measurements at several
azimuthal angles and the model calculation, we have concentrated our
attention, as in previous investigations [30,31], on the reflection
coefficient. Since the basis of the experimental data is an amplitude
signal in the reflected field of the incident beam, we calculate the plane-
wave reflection coefficient for the plate and investigate it for the same
type of behavior as we observe in the measurements. In addition to direct
comparisons of amplitude spectra, we have also expressed our results as
dispersion-like curves, where the results correspond to functions
conditioned by the reflection coefficient. Both of these aspects of our
studies are presented below.

A finite ultrasonic beam is composed of a range of plane wave

components which define its angular spread,

B(x) = I ;(E)exp(-2ﬂi£x)d£ (29)
where B8(x) 1is the one-dimensional real space incident beam profile, x is a
coordinate perpendicular to the beam direction, and the caret denotes
Fourier transform. When such a finite beam interacts with a plate, each
Fourier component of the incident field will contribute to the reflected
field, weighted by the appropriate value of the reflection coefficient for

that §. The resulting expression for the reflected field is given by

A(Fd,xi) = IB(E)R(E.Fd)exp[—Zni&(x1—afx3)]d£ (30)
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where R(£,Fd) is the reflection coefficient from Eq. (24) for the composite
plate. The expression of Eq. (30) evaluated over frequency is an
approximation to the experimental spectrum of the plate, if the beam profile
B(x) is chosen to represent the incident beam. We have performed such
calculations for a variety of experimental conditions. Some typical
comparisons are contained in Figs. 3(a)-(d).

Figure 3(a) shows the measured and predicted spectra from 1 to 8 MHz
for an incident angle 8 = 12° and azimuthal angle ¢ = 30°. The two curves
have been vertically scaled, but in no other way adjusted. The solid curve
is the expression of Eq. (30), and the dashed curve is the experimental data
deconvolved to remove transducer response. Positions of the deep minima in
the two curves are nearly coincident, as we have observed for propagation in
the fiber direction [31]. We conjecture that the additional shallower sharp
dips, some of which do not appear in the data, arise from the coupling
between vertical and horizontal shear displacements, referred to in the
Theory section, which occurs for propagation in a general azimuthal
direction. At 8 = 28° and ¢ = 15° in Fig. 3(b), similar results are found,
where the general trend of the data is well reproduced by the model
calculation. In particular, the two shallower minima between 2 and 4 MHz

are given fairly accurately by the prediction. This structure disappears

for ¢ = 0°, leaving only the deep minima at 1.9, 4.3 MHz, and beyond.

Holding the incident angle constant and incrementing ¢ to 30°, the structure
of the curve has evolved in Fig. 3(c¢) with the two minima near 3 MHz
approaching each other more closely and deepening considerably. These
features are also seen in the model calculations. 1In the final frame, Fig.
3(d), results are given for 8 = 24° and 9% = 90°, This case corresponds to

symmetry axis propagation, and therefore the complex structure of the
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previous examples is largely absent. The positions of the minima are well
modeled by the theory, whereas the minor differences in the lineshape
details may be attributed to wavefront distortion and sound absorption,
neither of which is considered in the model.

Taking the results of many dozens of experimental spectra such as
those shown in Fig. 3 and recording the minima as a function of the incident
angle (expressed through Snell's law as a phase velocity), yields a
dispersion-like plot of the ultrasonic reflection behavior. 1In previous
work [31,36] we demonstrated that the hypothesis of Cremer [37] concerning
the coincidence of reflection minima with the excitation of Lamb wave modes
is not well satisfied in all regions of plate wave dispersion in graphite-

epoxy composites. Therefore, although we present these data in the manner

of a velocity dispersion curve, it must be stressed that i't is the

reflection properties which are being reported.
Figure 4(a) shows data acquired in the current study at an azimuthal
angle ¢ = 0° plotted together with the results of the analytical prediction

derived by examining the behavior of the reflection coefficient, Eq. (24).

U -4"’

To obtain the theory curves rapid phase variations in the reflection

p -
K e

coefficient, generally indicative of total transmission, have been recorded

‘o

as a function of Fd for many values of phase velocity. These calculations

>

QIO AT

are presented as small filled circles which coalesce into solid curves over

most of the plot. In some cases to be discussed a dashed line has been
added as a guide to the eye. 1In Fig. 4(a) the data, plotted as discrete
crosses, are in excellent agreement with the prediction of our new, more
general model. All features of the data from 8 = 12° to 8 = 40° are well
explained in the model. Propagation in the other material symmetry

direction ¢ = 90° is shown in Figure 4(b). Here the results reflect the

14
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substantial effective softening of the composite as the fiber axis is
rotated out of the plane of incidence. Therefore, we observe a marked
reduction in the phase velocities at which certain features occur. The

vertical intercept of the curve, which is similar to the S, mode, is seen to

0

be near cp = 2,2 km/sec. Likewise, the point of diminishing slope of some

of the higher order curves is much lower here than for ¢ = 0° as in Fig.
4(a). 1In fact, the behavior referred to is not even visible in Fig. t(a)

because it occurs above cp = 9.8 km/sec.

For a transversely isotropic material, setting ¢ = 90° implies that

elastic behavior in the plane of the incidence (xé - xé plane) will be

isotropic. An important experimental finding of the present study is the
suggestion that transverse isotropy is not an appropriate symmetry class for
the eight-ply Thornel/Ciba-Geigy composite sample we studied. Our result on

the inequality of Céz and Cé3 stands in contrast to previous investigations,

both mechanical [38] and ultrasonic [39], on thieck-section T300 - 5208

unidirectional composite. In these earlier studies the ratio CéZ/Cé3 was

measured to be within 2% of unity. Because of the method of fabrication of
these materials in which compressive stresses are exerted on the surfaces of
the curing composite, fibers might tend to be distributed nonuniformly in

the plate. That is, the number of fibers per unit length in the xé

é direction (refer

direction could be higher than the same quantity in the x
to Eqs. (1)-(3)). Our experimental data for ¢ = 90° are consistent with the
above interpretation and draw us to the conclusion that orthotropy is the
correct symmetry class for thin sections of this material. Since the
elastic constant denoted Céz in Eq. (3) is difficult to measure
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independently, we have inferred this quantity from our reflection data and

the model calculation. The results of this evaluation yield a ratio of Céz

to Cé3 of 0.72. Once this adjustment in Céz is made, all subsequent

comparisons at intermediate values of ¢ are carried out, using this same

constant. Here we note that Céz does not influence the propagation behavior

along ¢ = 0%, and hence this issue was not encountered in our previous work
{31]. A set of slowness curves with the elastic constants of [35] for
orthotropic graphite epoxy at ¢ = 90° is shown in Fig. 5. This

representation illustrates the degree of anisotropy in the xé - xé plane.

It may be noted that while the quasilongitudinal and slow quasitransverse
wavespeeds vary with propagation direction in this plane, the fast
quasitransverse wave is still isotropic. Of course, if the composite were
transversely isotropic, all three slowness curves would be circles with the
two transverse waves coincident.

If we now depart from the principal axis directions, the reflection
behavior becomes substantially more complicated, as can be seen in Fig. 6(a)
for ¢ = 30°. The simple structure of Fig. 4(a) is replaced by curves which
split apart, rejoin, and cross over each other. Throughout the range of the
measurements, relatively good agreement with the theory is apparent.
Although interpretation of these results is delicate, we may note a few
arguably consistent trends. As the fiber direction is rotated out of the
plane of incidence, the effective material constants begin to soften,

causing the phase velocity intercept of the S_-like curve to decrease, as in

0
Fig. U(b). In Fig. 6(a) that velocity is about 8.5 km/sec, whereas the
value is 9.8 km/sec for propagation along the fibers. Moreover, an

additional set of curves seems to have nucleated, in agreement with our




calculations and data starting as low as ¢ = 15°, These general features
will be seen to persist in the results for higher values of ¢ as well.
Comparison of measurement and theory for ¢ = 45° is contained in Fig.
6(b). As expected, the intercept velocity has decreased to about 7 km/sec,
and behavior of even higher complexity has appeared above this value. The
series continues with ¢ = 60° in Fig. 6(c¢c), where the overall pattern
established earlier is evident here also. Finally, in Fig. 6(d) for ¢ = 75°
we have the last of the comparisons. The intercept velocity here is near
3.4 km/sec, nearly a factor of 3 below its ¢ = 0° value. These curves
contain an almost unbelievably rich variety of reflection phenomena,
considering the relatively simple form of the ¢ = 0° curves in Fig. U4(a).
As we have stated earlier, it is our conjecture that these additional
features arise from the coupling of the vertical and horizontal
quasitransverse waves, which are independent for propagation along principal
axes. We note in closing this section that in all these comparisons, but

especially Figs. 6{¢) and 6(d), agreement between measurements and theory is

not simply a matter of general trends. Excellent detailed agreement is seen
over most of these plots, in spite of the richly complex behavior observed
for a general azimuthal angle. This observation lends confidence in the

validity of the theoretical approach.

II. Surface Wave Characteristics of Fluid-Loaded Multilayered Media

(Included as an attachment in the form of a manuscript)
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III. Publications of Research Sponsored by This Grant

Several publications comprising extensive comparisons between our
theoretical and numerical model and the experimental results of Dr. D.
Chimenti at the Material Laboratory have resulted. These include:

Nayfeh, A.H., "Ultrasonic Reflections from Water-Laminated Composite
Intefaces," to appear in Journal of Applied Physies, January, 1988.

Nayfeh, A.H. and Chimenti, D.E., "Propagation of Guided Waves in Fluid-
Coupled Plates of Fiber-Reinforced Composite," to appear in Journal of
Acoustical Society of America, 1988.

Nayfeh, A.H., and Taylor, T.W., "Interaction of Ultrasonic Waves with
Layered Media," Acousto-Ultrasonics: Theory and Application, Edited by J.C
Duke, 1988,

Nayfeh A.H., and Taylor, T.W., "The Influence of Interfacial Conditions on
the Ultrasonic Wave Interaction with Multilayered Media," to appear in
Review of Progress in Quantitative NDE, Edited by D.0O. Thompson, and D.E.
Chementi, Plenum Press, 1988,

Chimenti,D.E., and Nayfeh, A.H., "Influence of Fiber Orientation on Leaky
Waves in Composite Plates," to appear in Review of Progress in Quantitative
NDE, Edited by D.0O. Thompson and D.E. Chimenti, Plenum, 1988,

Shaikh, N., Chimenti, D.E., and Nayfeh, A.H., "Leaky Rayleigh Waves on
Surfaces With Laminated Microstructure", to appear in Proceedings of the
IEEE, 1988.

IVv. Presentations of Research Sponsored By this Grant

All of the above quoted proceedings publications were presented at
their respective conferences.

V. Abstracts Submitted for Publication During 1987

A. H. Nayfeh, T. W. Taylor and D. E. Chimenti, " Theoretical Ultrasonic
Reflection and Guided Wave Propagation in Fibrous Composite Laminates ", To
be presented at the Applied Mechanical and Engineering Science Conference,
to be held at Berkely, California, June 20-22, 1988.

D. E. Chimenti, and A. H. Nayfeh, " Experimental Ultrasonic Reflection and
Guided Wave Propagation in Fibrous Composite Laminates ", to be presented at
the Applied Mechanics and Engineering Science Conference, to be held at
Berkely, California, June 20-22, 1988,

A. H. Nayfeh and T. W. Taylor, " Distribution of Stresses and Displacements
in Multilayered Media ", to be presented at the ASME annual meeting in
Chicago, I11. Nov. 28-Dec. 2, 1988.
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VI, Work in Progress

We have started modeling the interactions of multilayered fibrous
composite plates with ultrasonic waves. Arbitrary numbers of plate
constituents will be allowed. All appropriate interfacial conditions will

' be invoked. Furthermore, in order to simulate the existance of large cracks
' in the forms of debonding or delaminations we plan to introduce a slip
boundary condition. This condition does not require the continuity of shear
stress and displacements along the interface. Thus the shear stresses on
the interface will vanish and hence result in the weakening of the
interface. This concept seems to be promising and will be verified
experimentally in the near future. Results on this problem will be
available for comparisons with the concurrently acquired experimental data
of Dr. Chimenti.

VII. Professional Personnel

The grant supports Mr. Timothy Taylor who is a graduate student in the

Engineering Mechanics program of the Aerospace Department. He has passed

his Ph.D. qualifying examination and {s now enrolled into the Ph.D. program.




Appendix A
| u ] u \J 1] 2 2
C11 = C11G + CZZS + 2(C12 + 2C66)S G
' ' ' W22 ! 4 by
C12 - (C11 + C22 - hC66)S G + C12(S + G )
v 2 v 2
C13 = C13G + C23S
L ] ] 3 L L ] 3
C16 - (C11 - C12 - 2C66)SG + (C12 - C22 + 2C66)GS
L ' ' 2.2 y
C22 = C11S + 2(C12 + 2C66)S G + C22G
v 2 2
C23 = C23G + C13S
L} 1 ] L} 3 1} L] t 3
C ]
33 7 33
L ?
C36 = (C23 - C13)SG
L ]
Cus = (Cuu - CSS)SG
v 2 ' L2
Cuu = CuuG + CSSS
v 2 ' L2
€55 = C550 * CyyS
' ' ' ' 2.2 U 4
C66 = (C11 + C22 - 2C12 2C66)S G + C66(S + G)

Where G = cos ¢ and S = sin o.
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Appendix B

Expanding the determinant relation (9) and collecting powers of a we have

6

where:

1

a + A1au + ALQ

2

A, = (P1F

2

1

A2 = (P2F1

Ay = (P

A = P1C

F11 = C

Fila= €

F C

F22 = C

F23 =C

F33 = C

3
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Reflection spectrum cor 6 = 28°

Figure 3(b).
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"SURFACE WAVE CHARACTERISTICS OF FLUID-LOADED MULTILAYERED MEDIA"
by

*
Adnan H. Nayfeh

X%
Timothy W. Taylor
University of Cincinnati

Cincinnati, OH 45221

Abstract

A unified theoretical treatment is presented for the interaction of
ultrasonic waves with multilayered media. The wave is supposed to be
incident from water, at an arbitrary angle, upon a plate consisting of an
arbitrary number of different material layers. The composite plate is
supported from the bottom by a solid half-space. It is assumed that all
solid interfaces are either rigidly or smoothly bonded. The smooth contact
interface condition is of special importance since it may simulate weak
bondings, extended cracks, or delaminations; such situations are of great
interest for nondestructive evaluation applications. Reflection and
transmission coefficients are derived for the total system. By examining
the behavior of the reflection coefficient, all of the propagating modes are
identified. Furthermore, the rate of energy leakage in the fluid is
derived. Extensive numerical results are given in order to delineate the
influence of the plate material orderings on the propagation process.
Included are also comparisons of results obtained under the rigid and the
smooth bonding assumptions.

* Professor
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I. INTRODUCTION

The lateral displacement and associated distortion of a bounded
acoustic beam upon its reflection from fluid-solid interfaces have been the
subject of many analytical and experimental investigations [1-15]. Although

p these effects are found to exist for any angle of incidence, the team

suffers severe distortion if it is incident at, or near, the Rayleigh

hA
ja critical angle. Physically, resonant generation of a Rayleigh-like surface
" wave and rapid reradiation of its energy into the fluid are responsible for
i. the severe displacement and distortion of the beam.

‘; In three recent papers [10-13] Nayfeh and Chimenti analyzed, both
%; analytically and experimentally, the reflected waves from liquid-solid half-
:§ spaces interfaces separated by a solid layer of different elastic material
:E in rigid contact to the solid half-space. In [11-12] we derived exact
:; expressions for the reflection coefficients where, as in our earlier paper
é [10], only an approximate expression was reported. As was discussed in
QS these papers all physical effects of the reflected beam can be explained by
- examining the behavior of the appropriate reflection coefficient. Generally
;% speaking, the inclusion of the layer was found to give rise to dispersive
it effects in both the surface wave speed and the lateral shifting
'§ (displacement) of the beam. These two effects are found to further
b

ﬁ influence the distortion of the reflected beam. It was also found [12] that
ﬁ: the specific inflience of the layer depends highly upon its material
ég properties as compared to that of the substrate. Specifically, the layer
ﬁ? can either load or stiffen the substrate. The loading situation occurs when
X

:S the layer's properties (especially its shear wave speed) are smaller than
ﬁé those of the substrate, whereas stiffening occurs for layers stiffer than
;

- . -y - R I L L ) . A T T T N AT AT AT e T AT AT et e et
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the substrate. Here we mention that concurrent with our investigations Bogy
and Gracewski conducted analyses and presented numerous results on similar
problem situations [13-15].

In the present paper we generalize our single layer results to the case
of an arbitrary number of layers separating the fluid and solid half-spaces.
Among its many applications it can be used to examine the combined influence
of loading and softening layers. This is of particular importance in
advanced device applications where there is a need for characterizing
material properties of material deposition (in the forms of thin layers) on
host substrates.

In order to generalize our single layer's result to the multilayer case
we use the matrix transfer technique introduced originally by Thomson [16]
and somewhat later on by Haskell [17] and others [18-23] for applications in
the geophysics, acoustic and electromagnetic fields. According to this
technique we construct the propagation matrix for a stack of arbitrary
number of layers by extending the solution from one layer to the next while
satisfying the appropriate interfacial continuity conditions.

In order to execule cur results we shall carry out our analysis in
terms of the displacements and stresses directly rather than in terms of the

wave potentials. This leads to somewhat simpler expressions and is also

chosen as a prelude to our future development of similar analysis for

Y NS R Y

anisotropic media. 1In order to simulate a wide variety of debonding,

delamination and cracking, we shall introduce a new feature which allows us

L

to treat "smooth" interfacial conditions at selectively arbitrary locations.

L -]

These conditions can be simulated by introducing a very thin layer (of

negligible thickness) of nonviscous fluid between solid interfaces, or by

L ; - agw - - - . .
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setting the smooth interfaces in contact without bonding. As a result,
transverse slip occurs at the boundary resulting in the vanishing of the
Bt shear stresses at the interface for both media. On the other hand, the
It components of displacements and stresses normal to the interface plane are
kept continuous as if the media were in rigid contact.
4] In Section II we present complete analysis for the multilayered system
"\ with all rigidly bonded interfaces. This will result in algebraic
expressions for the reflection and the transmission coefficients. 1In

Section III, we invoke the smooth interface condition at the arbitrary

interface between layer m and m+1 of the plate and thus modify the

;.;: reflection and transmission coefficients accordingly. 1In seciton IV we
R

n ‘

::‘ present a qualitative description of leaky mode extraction. 1In section V,
Jy

N}‘

L we present a wide variety of numerical results to delineate the utility of

it the models. Several comparisons between results obtained under the rigid or
5:: the smooth interfacial conditions assumptions will be presented.

II. THEORETICAL DEVELOPMENTS CASE OF RIGID BONDS

(a) Formulation of the Problem

r‘:’ Consider a laminated plate consisting of an arbitrary number, n, of
:; elastic isotropic layers rigidly bonded at their interfaces. This plate is
;E assumed to be rigidly attached to an elastic isotropic solid half-space
j:"i separating it from a fluid half-space. The problem then is to study the
:':' reflected beam from the fluid-plate interface for an incident beam
gg originating in the fluid at an arbitrary angle from the normal to the
:::% interface.

.‘t’ Guided by our single layer plate analysis of [12], in order to

facilitate the present analysis, we shall use two sets of two-dimensional
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coordinate systems (x,z), as illustrated in figure 1. One system is global
which has its origin at the substrate-plate interface such that x denotes
the propagation direction and z is normal to the interfaces. Here the
layered plate will then occupy the space 0 < z < d where d denotes the total
thickness of the plate. The second system is local for each sublayer of the
plate. Since the plate is made of n layers, the kth layer will then have

(k)

its local coordinates x and z with local origin at the interface between

(k) (k)

layers k-1 and k. Hence layer k occupies the space 0 < z <d , where

q(K)

is its thickness. 1In figure 2 we display a representative layer k with
its appropriate coordinates and boundary field variables,

With this choice of coordinate systems all motions will be independent
of the y-direction and the relevant elastodynamic equations for each solid

(including each layer and the substrate) consist of the momentum equations

d0 30

X Xz 3%u
9x Y T3z T et (1)
aoz acxz . 32w (2)
9z ax at?

and the constitutive relations

au ow
Ox = (A + 2u)"a'; + st (3)
ow du
o, = (x + 2u)3; + Xs; ()
u aw
Oy = u(sz + 3;) (5)

where Oyr Oyy and 9, are the components of the stress tensor; u and w are

the components of the displacements; p, A and u are the density and elastic

constants of each material. Due to the absence of viscosity in the fluid
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(water) its relevant field equations corresponding to equations (1-5) are )'
” ..
given by
(J
2 'l
— J
x T PraeT (6a) "
2 14
30(” 3 w(f‘) 1
— = psrT— (6b) :
9z f ot e
7
[
f e
EDTNE S (a_U( ) + aW(f; (7 i
z X £ 3x 0z x
‘l
.0
Equations (1-7) must be supplemented with the appropriate interfacial 1,
Y
J
continuity conditions. For rigid bonding between the individual layers of ‘:
the plate these are N
U
(k) _ (k+1) (k) _ (k1) b
9%z Xz » 9 92 !
!1
u(k) - u(k”), w(k) = w(k”). k=1,2,...,0=1 (9) ~
\
at z(k) - d(k)(or' z(k”) = 0) 4
’\
Similarly, at the substrate's interface the rigid bonding continuity *
conditions are given by ~I
..\
(M. (s) (1) _ (s) 5
xz = “xz ' ‘2 2 K
[
o). u(S), WL 8) (10) .
<
at z(” = 0 (or global z = 0). Here superscript (s) designates the Y
X
substrate. Finally, at the fluid-plate interface, the appropriate bonding -
conditions are n
"
"
o0 g G (6)  (n) () (1) 3
Xz z z )
~
at z(n) = d<n) (or global z = d) :,
:

-
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(b) Analysis

In this subsection we shall describe the propagation process in the
plate by solving the field equations in each of its layers and satisfying
the interfacial continuity conditions. By combining equations (1-7) we
obtain the following two coupled displacement equations, which hold in each

layer of the plate, as well as in the substrate

32 92 92 33w
COx+ 2w 3x2 T Yaz2 T “at!] u +(““)axaz =0 (12
3%u 92 32 32

For waves whose projected wave vector is along the x-axis, equations (12)
and (13) admit the formal solutions

(u,W) - (U’w)eiq(x—ct"’GZ) (1)4)

where U and W are constant amplitudes, q is the wave number, ¢ is the phase
velocity and a is the ratio of the z and x-directions wave numbers. By
satisfying equations (12) and (13), followed by solving for the four roots

of a and using superposition we conclude that

U, eiqa,z
Y ER 1 U, e Fd%:Z
wl o a, -a, ‘% % U, eiqazz (15)
2 2 -
U, e iqa,z
where
2 2
a%--g-,-1,a§=%,—1 (16a)
L T :
and for compactness, we define
U, =0, etd(xct) j=1,2,3,4 (16b)
J J
7
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Here ¢, = I:(>‘+2u)/p]1/2 and ¢, = [u/p]”2 designating longitudinal and shear

L T
wave speeds, respectively. Substituting from (15) into the stress-
displacement relations (3-5), we can generalize equation (15) to also

include the stresses as

u 1 1 1 1 L eldnZ
W Q, -a, —‘J; 1: Uze—lqa‘z
- - 2 2 1
5, D, D, D, D,| |u,etd®2? (7
- -ia,z
Oy D, -D, D, -D,| [|u,e %2
where
02
D, = u(= - 2), D, = -2y
c
T
u c?
D3 = 2].1(11 , D., = —(1' = 2),
@y Cp
o, = ¢,/iqand o = 0, /iq 18)

Since equations (12)-(18) hold for each layer k (k = 1,...,n), equation

(k)

(17) can be used to relate the displacements and stresses at z =0 to
those at z(k) = d(k). This can be done by specializing (17) to z(k) = 0 and
to z(k) = d(k), and eliminating the common amplitude column made up of Ufk),
ng), ng) and Usk) resulting in

u(k) a,, a,, a,, a., u(k)

w(k) = a,, a,, a,, a,, w(k) (19)
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where
B, B, B, B, 1 1 1 1 1-1
1 1 1 1
[a ] ) a,;B, a,B, EZB, a2B~ a, a, -a, Ez (20)
ij'k
D,B, D,B, D,B, D,B, D, D, D, D,
D,B, -D,B, D,B, -D,B.|k [D, -D, D, =D, |k
and
(k) . (k)
B, = eiqa,d , B, = e iqa,d
. (k) - (k)
B, = et " 5 . g7lde.d (21)

and the various parameters «,, a,, D,, etc. are specialized to the material
k under consideration.

By applying the above procedure for each layer and invoking the
continuity relations on the top and bottom of each layer we can finally
relate the displacements and stresses at the top of layer n to those at the
bottom of layer 1 via the transfer matrix multiplications
n-1

[A13] = [aiJ]n[aiJ] « e [aijll (22)

which can be written in the expanded form

(n) 1)
u : A, Ay, Ay, L U(

n 1
""E ) Az, A, Ay, Ay w( )
-(n = -(1) (23)
Uz Ay, A,, Ay, Ay, Uz 3
=(n) =(1)
sz z = d Ao, A, A, A, sz z =0

Now, in order to satisfy the remaining continuity conditions (10) and
(11) at the substrate-plate and the plate-fluid interfaces, respectively, we
need to solve the field equations in the substrate and in the fluid. By

inspection, such solutions can be deduced from the formal solution (17).
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First, due to the absence of shear deformation, specializing (17) to the ‘::
9,
fluid half-space yields
4
¥
u(f) 1 1 '
(f) Ul(f)eiqaf(Z’d) (2“3) :
W ur 'Gf ) :
=(f) 2 2 (f) -iqa.(z-d) i
°z pfc pfc U, ‘e f 1
A
WA
where 4
. '
1 '
(f) =(f) _ig(x-ct) o
2 . 2 2y - = =
ag (c /cf) 1, Ur Ur e , P = 1,2, (24b)
R
- - O
with USt‘) is the constant amplitude of the incoming wave, Ugf) is that of “::
£,
the reflected wave and z is the global coordinate. Also, the sub and v,
superscripts f denote quantities belonging to the fluid.
"
Next, specializing (17) to the substrate yields 4
W
)
ul®) 1 1 1 1 yis)glaa,z P
w(s) a, -a, -;—1- % 0 .
- 2 2 3
o;s) . D, D, D: : U§S)elq°"z (25) "::
-(s) ."
Oz D, -D, D, =D, s 0 s 2
where the U4x4 characteristic material matrix in (25) designates the [aij]s
_ - "
of the substrate, and U.ES) and U;s) are related to U1(S) and U;S) in a manner )
2 )
similar to that of equation (24b). Notice that in equation (25) the b
~
=(s) =(s) : o,
reflected wave amplitudes U, and U, vanish since our solutions must be Py
bounded for large values of |z| and the substrate is considered to be an t':'
infinite half-space. Here also we a, and a, which insure boundedness at :;
. I‘
infinity. Again, z in (25) is the global coordinate. o\
r Y
oY
\J
:::;
o)
10 .
~
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Invoking continuity conditions (10) and using (23) and (25) with global
z = 0, we can express the displacement and stresses at the top of layer n

(i.e. the top of the plate) in terms of the substrate wave amplitudes as

ul® R,, Ris R,s R, uls)
W R,, Rz, Rzs R, 0
o(m) ) R,y  Rsz Rss  Rse uls) 2o
of('z’) .- d Rvi R.; Rus R, 0
where, from (23) and (25), we construct [RiJ] as
[Rij] = [AU][aiJ]8 (26b)

The continuity conditions (11) can now be used to relate the wave
amplitudes within the fluid with those within the substrate. Thus, invoking
these conditions at the plate-fluid interface (i.e., at global z=d) and

using the relations (24a) and (26a) yield

a -a R R
f f 21 23
(f) (s)
U, U, \
chz chz = Ry, Ria (277
u () U(s)
2 3
0 0 Ry Rys

Since the incident wave amplitude Gsf)

is assumed to be known, the matrix
equation (27) represents three equations for three unknowns. It can thus be
solved to yield the reflection, longitudinal transmission, and shear

transmission coefficients, respectively as

Uif) Gal'Qszx

R - Uff) ) Gsx*chzl (28
(s) 2p.c?
T. = UL - pr (29)
L Usf) Gyy * Qszx
(30)
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where "
:l

R R pec’ 4
G“'R“‘R“'—’-L.G“-R“-R“—“'-L,Q = (31) ::'

Ry, Ry s f an e

,‘

IX1YI. SMOOTH INTERFACE CONDITION :'.(
e,

&

Now, if a smooth contact interface is introduced within the plate at an .Q

Wh

arbitrary location, say the interface between layers m and m+1 then the 1!
W

previous analysis must be modified. In this sense, we may now consider the R
Ry

plate to be composed of two subplates, the top subplate with n-m layers and ﬂﬂ
the bottom one with m layers, where 1 < m < n. The appropriate interfacial b
Wy

conditions for the smooth contact surface are &
O

1)

(m1) (@) (me1)  (m)  (m+e1) _ (m) i

W W » O, =0, s O, L 0 s

D‘

yJ

at z(M+1) = 0 (z(m) = d(m)). (32) w
4

First, we construct the top subplate's characteristic matrix by a

N

b

truncating Aij starting from the top as | |
= 9

Cagydp = Tag ) fay 3y - o e Tyl (33)

Next, we construct the bottom subplate's characteristic matrix from the

remaining part of AiJ as

]m[ai‘j]m_1 C o [aij]1. (34)

[Aij]B - [aij

Hence, it is clear that [Aij] = [AiJ]T[Aij]B. Notice that when the smooth

contact surface is at the plate-substrate interface (m=0) [Aij]T in (33)

becomes [A,,] and [A,.], in (34) becomes quu. We can now write the

13 15°8B

displacements and stresses at the fluid-plate interface in terms of those at

SRS S s R T S e

the bottom of layer m+1 by analogy with (23) and using (33) L,
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(n) (m+1)
u( ) Al! Alz Al! Allo u( )
n m+1
W AZl A22 A23 A2h w
5 ) glm1) (35)
? ) A Asz sy Ay % )
a0 -(m+1
O%z | z=d A, A.: A, A, |T Oy Am+l) L g

In the same way, we write the displacements and stresses at the top of layer

m in terms of the wave amplitudes in the substrate using (34)

U(m) Q. Q2 Qs Q. UES)
W) Qi Q. Qs Q. |0
3 T [ SR O TN I (37)
Bi:) _zm = dm |Q,, Qu2 Qus Q. 0
where now
Q1 = Tag,Jglay g (370)

Invoking continuity conditions (11) and using (35) and (2L4a) with
global z=d, we can express the displacements and stresses at the bottom of

m+1

layer m+1 (z = 0) in terms of the fluid wave amplitudes as

(m+1) (f)
My, My, 0w o -a, U,
= (38a)
- +‘|
MZl Mzz O;m ) z(m+1) pfcz pfcz Uz(f)
where
A.,z,r Alo 3T
M, = AzzT - Asz K:T; 3 My, = AzaT - Ale ';;é
szT A‘o ET
My, = AazT - A3lT K:T; i Ma, = A”T = AaxT K:T;
(m+1)
and the zero shear condition at z = 0, from (32), has been employed.
13
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Finally, invoking conditions (32) and using (37a) and (38a) we again

obtain matrix equation (27) where now

sz RZJ Mll sz 0 QZX 023
R31 R33 - Mll M22 0 Qil Q33 (39)
Rkl RMS 0 0 1 Q'ﬁl Qka

The expressions for the reflection and transmission coefficients (28),

(29}, and (30) are also valid with the Rij as defined in (39).

IV. QUALITATIVE DESCRIPTION OF LEAKY MODE EXTRACTION

Insight on the problem of nonspecular reflection of finite acoustic
beams from fluid-solid interfaces can be gained from an examination of the
reflection coefficient R as a function of angle of incidence and frequency.
The expression (28) for the reflection coefficient contains, as a by-
product, the characteristic equation for the propagation of modified (leaky)
Rayleigh surface waves which propagate along the fluid-layered solid
interface. The vanishing of the denominator in Equation (28), namely,

Gy, + QG =0 (40)

f
defines the characteristic equation for such waves. Furthermore, in the

absence of the fluid, i.e., fcr P = 0, Eq. (40) reduces to

Gy, = 0 (u1)
which defines the characteristic equation for Rayleigh surface waves on the
multilayered plate bonded to a semi-infinite solid substrate,

For given real frequency w (or fd), the real wavenumber solutions Ep =
kr of (41) define propagating Rayleigh surface modes. It is important to

indicate that in the absence of the plate only a single real solution will

exist. This will be the classical surface wave mode which propagates on a

14
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half-space. In the presence of the liquid these real wavenumbers will be
perturbed rather mildly and become complex. This, of course, is confirmed
by Eq. (40) which in general admits the complex solutions

Ep = kr + ia. (42)

From Eq. (42) the phase velocity is given as c, = w/kr and a is the

energy leakage coefficient. Notice that o« vanishes in the absence of the
fluid and hence no attenuation (leaking of energy in the fluid) occurs.
Hence, in the presence of the fluid these surface waves are called leaky

waves. It is also known that C. is hardly affected by the presence of the
fluid [4,10-12]. However, as has been shown earlier [10-12] . is important

because it is related to the lateral displacement of the reflected beam; in

fact, the beam displacement parameter As is defined to be equal to 2/a.

Since we have concluded that the vanishing of G,, defines the
propagating surface modes, then it is clear from (28) that as G,, + O,R =»-1,
and we find that we have an alternative method for deducing the leaky wave
propagation constant. Accordingly, the reflection coefficient at Rayleigh
angle can be represented by expanding its phase factor about the incident
wave vector in powers £ and retaining the leading term [10-12]

R(E) ~ expli(g-k )s'(k )], (43)
where kr is the Rayleigh wave vector, and S'(kp) is the derivative with
respect to £ of the phase of R evaluated at kr" In refs. [10-12] we showed

that

As = -S'(kr) . (4y)
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Furthermore, Eqs. (43) and (42) are also valid at any incident angle

above the transverse critical angle, permitting straightforward calculation

of As away from the mode critical angles.

V. NUMERICAL RESULTS

For our material menu we choose steel, copper, chromium and epoxy;

properties of which are collected in Table 1.

Material CL CT p

Type x10% em/s x10° cm/s g/cm?

Steel 5.69 3.13 7.9

Copper 4,76 2.32 8.9
! Chromium 6.6 4.0 7.2
. Epoxy 3.145 1.28 1.25
) Table 1

In all of our numerical calculations we use steel for the substrate. The
plate's constituents, on the other hand, can be chosen from all of the menu
materials. Since it is known that chromium stiffens steel and that copper
and epoxy load steel [12], we shall show that combinations of these
materials (to form the plate) can either stiffen or load the steel substrate
f depending upon their volume fractions and ordering. Without any loss of
generality the thickness d of the plate will be kept constant, and the
plate's constituents (layers) will be assigned volume fractions adding to
unity. Of prime importance is keeping track of the constituents order,
however.

Numerical results are presented below in three different categories.

In the first, we will illustrate variations of the reflection coefficient

HHEYLHCLAR LY ChrEabhe



and function G,, with phase velocity ¢ (or equivalently with incident angle

0 since sing = cf/c). This will be done in order to display the criteria

for the surface mode identification. 1In the second category we present
dispersion relations in the form of variations of phase velocities with Fd,
where F is the frequency and d is the layered plate thickness. Here
comparisons of results obtained under the rigid and the smooth bondings
assumptions will be displayed. Finally, in the third category we depict
similar dispersion results in the forms of the variation of beam

displacement A with Fd.

In figures 3a-3d, the variations of the real and imaginary parts of the

reflection coefficients with phase velccity are shown at four values of Fd
for a copper plate rigidly bonded to the steel substrate. Also displayed on
this figure are normalized values of the corresponding parameters G,,.
These figures clearly demonstrate the surface wave identification criteria
where the real value of the reflection coefficient approaches -1 which also
coincides with the rapid variation (through zero) of its phase and the

vanishing of G Furthermore, at Fd=0 the mode occurs at the phase

31°
velocity of 2.89 x 10° em/s which is the surface wave speed of steel. This
is expected since at the zero frequency limit, i.e., for very long
wavelengths, the plate will be essentially "washed" out. As the frequency
increases other modes will appear successively; this behavior is typical of
all softening (loading) materials.

In figures 4a-4d, similar results are presented for a chromium plate
rigidly bonded to the steel substrate. Here, the behavior is entirely

different from that of figure 3a-3d except at, obviously, the zero frequency

17

LA L g B T T e W W M W T W e W W MW W T W ™
w '.l‘.? .A.I.E..‘ .a:‘ ..'.',\ P.be .a}.n‘.‘_p. A AT _‘-\','.A‘."‘R‘\.'J!‘\,Ll*_;.‘u(." \_‘n‘rl\x'ﬂ.;.\:\kh »



B o e 't i At A s et e’ 87 2% atl . va al) mr’atd a8 o828 a2 22" 00" Ba® 80° Bet Bt Gaf Dot 8t “But 2ot 8 v

limit. As the frequency increases, no other modes appear which is typical
of stiffening materials.

Based upon the identification criteria of figures 3 and 4, we

constructed in figures 5 and 6 dispersion relations curves for a copper

. plate attached to a steel substrate and for a chromium plate attached to a

:E steel substrate, respectively. The solid curves correspond to rigid bonding
::;E whereas the broken curves correspond to smooth boading to the substrate.
Notice that there exists a one to one correspondence between the solid and
3 broken curves which can be easily identified and thus compared. Notice also
o

‘»' that the difference between corresponding solid and broken curves is most
‘,‘: pronounced at relatively small values of Fd. For the copper plate case
E,‘*; several modes besides the fundamental modes exist whereas for the chromium
Y

:\,,:, plate case only the fundamental modes exists. In both cases the phase
,:’:; velocity of the fundamental mode converges to the surface wave speed of the
‘;Eg steel substrate at Fd = 0. As Fd increases the phase velocity of the copper
";:: plate case decreases to its limiting copper surface wave speed while other
:; modes appear. The phase velocities of these higher order modes are bounded
E:.EE by the shear wave speeds in the steel substrate and the copper layer,
::_E: respectively. This general behavior is valid for both rigid and smooth
i;' bonding; however, the slopes of corresponding solid and broken curves can
:%E vary substantially. As Fd. increases from zero the phase velocity of the
:::: chromium plate increases towards the chromium's surface wave speed of
;;;'. 3.6x10® cm/sec. However, at certain values of Fd, (corresponding to a
.:.:E" cutoff frequency) where the phase velocity reaches the steel substrate shear

9l wave speed of 3.13x10° cm/s, the mode ceases to propagate. This behavior

;;-i can be easily explained from the fact that, for surface waves to also exists
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in the steel substrate, the phase velocity cannot exceed its shear wave
speed of 3.13x10°% cm/s. Notice also from figure 6 the dramatic contrast
between the mode's behavior for the rigid and the smooth bonding situations.

In the series of figures 7-10 dispersion curves are displayed for
various plates made up of equal thickness copper and chromium layers. The
order of the specific plates chosen are given by c¢/ch, ch/¢, c/ch/c/ch/c,
ch/c¢/¢ch/e/ch respectively, where ¢ stands for copper and ch for chromium.
Notice, from this group of figures, the influence of layers ordering on the
propagating process. The general conclusion is that for plates whose upper
layer is copper the phase velocity tends to decrease at higher values of Fd
and visa versa for plates with chromium top. In fact, in figure 11, we
confirm this conclusion by presenting, for comparison, dispersion results
obtained for a plate made up of a periodic array of 21 copper and chromium
layers rigidly bonded to a steel substrate. The solid curve correspond to
the case where a copper layer is at the top, and the broken curve
corresponds to the change in ordering of the plate's layer, resulting in a
chromium layer at the top.

In order to isolate, and quantify, the absolute influence of invoking
the smooth interface condition we present in figure 12 the dispersion curves
for a steel plate smoothly bonded to a steel substrate of the same material.
These results are shown by the broken curves. The variation of the phase
velocity should be compared with the constant value of 2.89 x 10°® cm/s which
correspond to the rigid bonding case, i.e., the steel plate becomes part of

the steel substrate resulting in no dispersion. Also, included for

comparison are results obtained for a thin epoxy plate (with volume fraction




o
W

= ,01) separating the steel plate and the steel substrate. It is here
assumed that the epoxy is rigidly bonded to the plate and to the substrate.

In the series of figures 13-16 we display the variations of the beam
displacements as functions of Fd for the variety of multilayered plates used
to generate the corresponding phase velocity dispersions of figures 7-10.
Here so0lid curves correspond to rigid bonding whereas broken ones correspond
to smooth bonding to the steel substrate. In the cases where the plate's
upper iayer is copper, figures 13 and 15, the phase velocity converges to
that of the copper as Fd becomes large. For the case where the upper
plate's layer is chromium, however, we present results up to the cut off
frequency. Here the beam displacement varies from that of the steel
substrate as Fd increases from zero to its cutoff value. Once again figures
12-16 show a relatively large difference between the results predicted for
either rigid bonding or smooth bonding of the plate to the substrate
especially at relatively low frequency ranges.

Finally, to gain further confidence in our analysis and computations we
confirmed, as a special case, the numerical results reported on figure 7 of
Bogy and Gracewski [15], for a two layer plate composed of nickel and silver
layers rigidly bonded to a copper substrate and immersed in water.
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CAPTIONS

i

2

10

11

12

The laminated plate model.
Representative lamina with interfacial field variables.

Variations of the real and imaginary parts of R and normalized
values of G,, for a copper plate rigidly bonded to a steel
half-space. Solid line = real (R), long dash = imag(R), short
dash = G,,.

Variations of the real and imaginary parts of R and normalized
values of G,, for a chromium plate rigidly bonded to a steel
half-space. Solid line = real (R), long dash = imag (R), Short
dash = G,,.

Dispersion relation curves for a copper plate rigidly bonded to
a steel half-space (solid lines) and a copper plate in smooth
contact with a steel half-space (dashed lines).

Dispersion relation curves for a chromium plate rigidly bonded
to a steel half-space (solid lines) and a chromium plate in
smooth contact with a steel half-space (dashed lined).

Dispersion relation curves for a plate composed of equal
thickness layers of copper (top layer) and chromium in rigid
contact (solid lines) with a steel half-space and in smooth
contact (dashed lines) with a steel half-space.

Dispersion relation curves for a plate composed of equal
thickness layers of chromium (top layer) and copper in rigid
contact (solid line) with a steel half-space and in smooth
contact (dashed line) with a steel half-space.

Dispersion relation curves for a plate composed of 5 equal
thickness layers of copper (top) alternating with chromium in
rigid contact (solid lines) and smooth contact (dashed lines)
with a steel half-space.

Dispersion relation curves for a plate composed of 5 equal
thickness layers of chromium (top) alterating with copper and
in rigid contact (solid lines) and smooth contact (dashed
lines) with a steel half-space.

Dispersion relation curves for a plate composed of a periodic
array of 21 equal thickness layers of copper alternating with
chromium. The solid line is for the case when the top layer {is
copper and the dashed line is for the case when the top layer
is chromium.

Dispersion curves for; a steel plate in smooth contact with a
steel substrate (broken curves), a steel half-space (dotted
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Figure

Figure

Figure

Figure

13

14

15

16
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curve), and a thin epoxy layer separating a steel plate from a
substrate (solid line) with all surfaces rigidly bonded.

Variation of beam displacement for a plate composed of 2 equal
thickness layers of copper (top) and chromium rigidly bonded
(solid line) and in smooth contact (dashed line) with a steel
substrate.

Variation of beam displacement for a plate composed of 2 equal
thickness layers of chromium (top) and copper rigidly bonded
(solid line) and in smooth contact (dashed line) and in smooth
contact (dashed line) with a steel substrate.

Variation of beam displacement for a plate composed of 5 equal
thickness layers of copper (top) alternating with chromium and
rigidly bonded (solid line) and in smooth contact (dashed line)
with a steel substrate.

Variation of beam displacement for a plate composed of 5 equal
thickness layers of chromium (top) alternating with copper and
rigidly bonded (solid line) and in smooth contact (dashed line)
with a steel substrate,
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Figure 2 Representative lamina with interfacial field variables.
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