AD-A191 866 BEYOND ADA - GENERATING ADA CODE FROM EQUATI
SPECIFICBTIOIS(U) ngSnSELﬁl POLVTECHIC INS
UNCLASSIFIED l.“i‘-“- -0

77: 1 ‘

F/G 12/%

"




Tt et A2

LSS -
A .‘l?"‘

ERENT

R )
RN Y
Qg 27 U7y ¥7h gTe kVsge

== - 1z %22
P e

|l
i = o

2 it tis

i ROCOPY RESOL

NATH NAL kYR

potamgav o

(TGN TEst THART

-

2L

»

T E o
Pl 4

A N,
A A

ki

[P
S Ay
PO

L 3
LY
,e
N

*
e/’

T,
S,ﬁ
& %

P
I.,

=
)
AT




AD-A191 866

Beyond Ada - Generating Ada Code from Equational Specifications

Boleslaw K. Szymanski

Computer Science Departraent
Rensselaer Polytechnic Institute

Et ¢ :
y FEB 101 988

“H

Troy, NY 12128

ABSTRACT

\\)Rnlﬁmemidonoﬂemdemheddedsymsmmuch

more difficuit to design than ordinary software systems. They
require highly relisble and efficient implemenaations to satisfy
Ada language has been design to facilitme real time system
software development. However, for many programmers the size
and complexity of Ada itself are of concem.

In the assestive programming paradigm, computations are
specified as sets of assertions about properties of the solution,
mm-lmofmm&lvmm
are antomatically genersted from the assertive description. R
dnemmin'lormmon-oﬂmdxymumppomdby
equational languages in which assertions are expressed as alge-
braic equations. Programs written in equational languages are
concise, free from implementation details, and casily amenable to
verification and perallel processing. The level of programming
expertise required (0 program in an equational language is much
lower than the level that is needed by Ada programmers.

The peper describes an impiementation of an equational
language system which generates highly efficient distributed code
in Ada. It also demonstrates how the equational language system
can be used in real time software development. (

1. INTRODUCTION

Real time system programming is distinct from pro-
gramming other parallel or distributed applications in that
timing constraints are imposed on delays caused by real
time programs. The complexity and diversity of skills
needed for real time programming have caused extended
development times, difficulties in attaining desired reliabil-
ity and sometimes even a reluctance to undertake mainte-
nance and updating of real time systems. This has
motivated development of several programming languages
[Brinch 1978, 1981, Martin 1978, Winth 1977, and most
notably Ada, 1978) to make the task easier.

Real time system development can often be simplified
if it is done on higher programming level then supported by
Ada. Several specification languages (Lamport 1983, Laner
1979, Lee 1986, Milner 1980, Ramamrithan, Teichreow
1977, Zave 1982] have been proposed to this end. Some of
these languages support assertive programming paradigm
which provide a bridge between the formal requirements of
a real time system and the system implementation (for
example in Ada). In this paradigm a computation is
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expressed as a set of assertions about properties of the solu-

tion and not as sequence of procedural steps.

In the paper, we discuss the design of an Ada code
generator for the assertive language called MODEL (Tseng
et al, 1986). Assertions in MODEL are expressed as recur-
sive equations. MODEL specifications are concise, free
from implementation details, and easily amenable to
verification and parallel processing.

The MODEL language and system aid or automate the
following sweps of the software development and mainte-
nance process:

1. Generating high level language code for individual
program units. A very high level, nonprocedural
language (MODEL) is provided for writing the
software specifications. The MODEL compiler uses
specifications to generate program code in Ada or
other high level programming language (Fortran, C or
PL/1).

2. Esumablishing synchronization and communication
between program units executing in parallel. The
Configuration Specification Language (CSL) is pro-
vided for this purpose. A MODEL subsystem called
Configurator generates communication tasks with
necessary entries.

3. Testing. An executable model of the system that runs
on the host computer is produced by the MODEL
compiler and Configurator. This model can be used for
testing, debugging and performance study purposes.

4. Documenting. Several reports are generated automati-
cally. The following is a partial list: the system design
and structure, individual program listing, generated
Ada (or Fortran, C, or PL/1) code listing and timing
reports.

5. Stadc timing performance analysis. Normally, the tim-
ing study can be done only after programs in target
machine code have been produced and executed.
Instead, with the help of a MODEL subsystem called
timing evaluator, performance analysis can be done
when an individual task has been specified, even on a
host other than the target machine.
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The paper discusses an implementation of the Ada
code generasor for the MODEL system. It is organized as
follows. In che next section, we describe real ime software
development using MODEL. Section 3 discusses implemen-
tation of the Configurator and genenation of communication
tasks. Section 4 describes Ada code generation for program
units. Finally, the last section offers the conclusion regard-
ing the use of equational languages for real time program-
ming.

2. REAL TIME SYSTEM DEVELOPMENT USING

MODEL
In the MODEL approach, the programmer initially

partitions the problem into units based on functional

affinity. Then, each unit function is described in the

MODEL equational language. A series of transiators is

employed to implement the computation and provide the

feedback on performance. This guides the programmer in

further partitioning or consolidating parallel units until a

satisfactory, locaily optimal, performance is reached.

Three software tools were developed to support our
approach:

i) A compiler for the configuration specification language
in which units’ interconnections and a mapping of the
paraliel tasks onto processors are defined.

ii) A compiler for the MODEL equational language in
which individual units are defined. This compiler pro-
duces paraliel tasks for the respective processors.

iii) A timing evaluator for estimating the delays inherent
in the perallel msks. The estimates are used by the
programmer to verify that the time constraints of the
developed system are satisfied.

The real time software development process starts
after the software system requirement are available. These
requirements usually consist of three parts :

1. Functional requirements - defining the functions and
subfunctions of the system.

2. Performance requirements - time constaints for time-
critical performance of the system.

3. Definition of interfaces with the environment - the lay-
out of the data communicated with the environment.
The programmer begins by dividing the system func-

tions into software units and data files. A function may be
carried out by one one or more units, or several related
functions may be combined into one unit The relationship
and communications between units are also defined at this
point. The program units are in skeletal form, with only the
external data suctures outlined as files. The programmer
can now use the Configurator to verify global system con-
sistency and completeness.

Next, the programmer composes the unit specifications
independently for ecach program unit in the MODEL
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language. The MODEL compiler processes each unit
separately, performing completeness and consistency checks
within each unit, and in the absence of errors, generates an
Ada program to perform the task of that unit. The user can
now employ the Timing Evaluator on each generaied Ada
program to verify whether the time constraints associated
with the corresponding program unit are satisfied. The Tim-
ing Evaluator produces a Timing Report for each program
unit that provides information on time delays between
instances of input and/or output in the unit. The user has to
provide certain timing data of the target machine to the
Timing Evaluator for it to generate the Timing Report.

The programmer may also have o check if global
time constraints are met by adding individual unit delays in
a path of the configuration 1o obtain the overall delays
between critical events involving multiple units. If some of
these constraints are not satisfied, the programmer may
have to modify the configuration of the entire system by
partitioning some units to obtain a greawer degree of paral-
lelism.

Once all the program units have been satisfactorily
processed by the MODEL compiler and the timing evalua-
tor, the programmer uses the Configurator to synthesize all
the system components (units and data files) in®o an
integrated system. The user composes the system by speci-
fying a configuration of units and files in the Configuration
Specification Language that is input to the Configurator. It
then schedules individual program units, synchronizes units
that will execute in parallel, generates tasks responsibie for
exchanging communications, and generates a configuration
procedure that will run the Ada programs with maximum
concurrency in the host computer’'s multiprogramming /
multiprocessing environment.

Finally, the system can be executed and tested on the
host machine. Then, code can be transferred to the target
machine for further testing and execution.

3. CONFIGURATION SPECIFICATION LANGUAGE

The Configuration Specification Language, CSL.
defines flow of data between program units. Objects of the
language are units and files that the units exchange [Shi et
al, 1987). A target/source or consumer/producer relationship
between a file (file) and a unit is represented by a directed
edge berween those objects. When the same file is pro-
duced by one unit and consumed by another, then these two
units become connected via the file.

Two atributes of configuration nodes are worth of
mentioning here. A unit rype shows whether the unit is:

1) simple - an individually specified unit (default),

2) compound - a group of units for which a configuration
is defined separately, or

3) interactive - a human communicating with the system '
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Files have an organization auribute with the following
values: sequential (default), indexed, mail and post

A sequential file is exchanged as one entity. It can be
consumned only afier it has bees entirely produced. Such a
file may have only one producer, ta: any number of consu-
mers.

An indexed file has a variable defined as a key used to
define (access) records in the file. There are no restrictions
on the order or number of references to such a file made by
producers and consumers.

A mail file is a collector of records. It is private to its
consumer and therefore it can have only one consumer, but
several producers. Records from different producers are
accepted by the consumer in order of their arrival.

A post file is a distributor of records to dynamically
addressable files. The post file has one producer, and its
record include a key used as an address of a destination
file. Therefore, it can have any number of edges connect-
ing it to mail files,

An exchange of data between units executed in paral-
lel can be set either through a mail file or a pair of a post
and mail files connected together. The goal of our
approach is to climinate timing considerations from real
time programming. The user’'s view of computation is
totally static, where computation itself is expressed as a
mapping of source data structures onto target data struc-
tures. Consequently, our communication primitives are
based on (limited) nonblocking ‘send’ and blocking
‘receive’. The producer of the messages continues compu-
tation immediately after of messages waits until the mes-
sage t0 be read amrives. Such semantics allows the user to
treat communications in exactly the same way as other i/o.
If the synchronization is needed, it can casily be achieved
by adding & 'receive’ (in the producer unit) after the "send’
to obtain an answer (or an acknowledgement) from the con-
sumer.

The MODEL compiler, when generating a program for
a unit, optimizes the use of the main memory assigned to
data, often replacing the entire range of an array by a win-
dow, i.e. few elements. When such armay has to be com-
municated o the other units, only that window, i.e. few
records at a time, can be sent out. Therefore program
optimization causes a producer to store or send as few
records at a time as feasible. Similarly, a consumer has
also to store and consume a minimum number of records at
a ime. When producer and consumer processes are con-
current, the post and mail files require a buffer for a limited
number of records. This type of data exchange realizes the
concept of & pipeline or & stream. The user is not involved
in this aspect of program design, however is wamed if a
file can not be exchanged in that fashion.

The units (processes) and files are the basic building
blocks of a system in the MODEL environment. A system

can be casily modified by composing a new configuration
that includes existing, as well as new or modified, units and
files.

The easy modifiability of a configuraton supports
several development modes. For example, individual units
and files may be reused as the system is required to change.
Entire independendy developed systems may be easily
interconnected by adding interfacing processes that convert
commonly used variables from the form used in one system
to that of the other. Thus, the creation of a new system
that encompasses the functions of several old systems
would not require designing of a new system.

Ada implementation:

Using Ada as an object language of the MODEL sys-
tem gave us several advantages over using other high level
languages. Ada muldtasking and randezvous create a con-
venient tool for assembling parallel computations. Each
MODEL specification is wanslated into a task
Configuration dependent parts of program units, like inter-
connections, are encapsulated into separately compiled sub-
programs and subtasks. A configuration unit, also generated
by the configurator, assembles the paraliel computation by
simply enumerating in its body all the participating units
with the "WITH' clause. Only configurator generated parts
of the overall computation have to be recompiled if the
configuration changes.

In our design of an Ada implementation of the
MODEL specifications, we stressed the independence of
computation and configuration descriptions. Units generated
by the MODEL compiler need to be compiled in Ada only
once. The naming can be local in program units, and the
configuration provides the translaton of file names in
different units. The user is able to select any set of such
units and, after providing a configuration specification, gen-
erate a configuration unit that will run the entire computa-
ton. The configuration unit is compiled separately from
MODEL units. Any change in configuration unit does not
require MODEL units recompilation. Such soluton pro-
vides high degree of modularity and supports easy assem-
bling of new systems from existing computational units.
Thus, it facilitates fast prototyping and bottom-up develop-
ment and debugging of real-time systems.

The devised scheme of compilation is as follows:

Each mail file is replaced by a task. This task receives
messages from producers, stores them in a queue and then,
on the consumer request, moves them to the consumer.
Sender and consumer establish randezvous with this task
and not directly with each other. Due to the name indepen-
dence (the same file can be named differenty in different
program units), sending messages is done through a re-
router procedures which are generated by the Configurator.
These procedures contain configuration sensative address
tables.
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- . : file
o The generated ADA units are as follows: TMAILN - target mail/post

: - -- UNITN - program unit name
b A. Each MODEL specification of a program unit is com- with UNTTN: — repeat

piled by the MODEL compiler into a group of the fol- - for all cons units
2 lowing packages: separate(UNTTN) -- name of program unit
o 2. Packages for each source mail file in the follow- - which contains this file
ing format: procedure UNTTN_TMALLN._c is
f .!;‘ um
, -- a table of address translation and
- SMAILN - source mail file name -- case on the value of the table address.
e -- UNITIN - name of the unit with SMAILN end UNITN_SMAILN.s:
KNy package UNTTN_SMAILLN is
'é: task UNITN_SMAILN_mbx is 2. A configuration unit for invoking the entire com-
'r; ;: entry -- for receiving mail putation:
, - sending mail .
:‘ ‘ enlmuy fc,"l\ftAII.Ng ; -- CONFN is the name of the configuration
d r S ith UNITN_SMAILN; — repeat
. wil 2 e
i epachgend w:d}swwrm 'SMAILN is — for all source mail files
o task body UNTTN_SMAILN_mbx is with UNTTN_TMALLN - ropen
N -- body of the mailbox (queue of messages) - for warget mail & post files
;;:. end UNTTN_SMAILN_mbx; with Um -- repeat .
[ end UNITN_SMAILN; -- P“"S“m‘
) procedure CONFN is
. begin
) A
(0 _
! , - . UNITN.UNTTN_prog; - repeat
‘::: 2. A package for a unit procedure with the follow - for all pragmes anim
) ing structure: end CONEN: gram
B0 NFN
kK All Ada compilation units are compiled in the follow-
-- SMAILN - source mail file name ing order: Al, A2, and B (order of Bl relative to B2 is
Bl -- TMAILN - target mail/post file name irrelevant). Changes in B units affect only the changed
i: (X -- UNTTN - program unit name : package (therefore changing connections bctween program
:" with SMAILN_UNITN; -- repeat units and/or  adding/deleting program  unis  from
": -- for each source mail file in the unit configuration is casy and simple). It is worthwhile o note,
Wy package UNTTN is that during compilation of a program unit no knowledge of
procedure UNITN_prog; configuration in which this unit will participate is needed.
W end UNITN;
o package body UNTTN is 4. MODEL COMPILER
‘.:.‘ ure UNITN_TMAILN ¢ is separate; The ilatdon of an equatonal specification into an
" . comp .
e -- repeat for all post and mail files object code consists of four stages: syntax analysis,
B procedure UNTTN_prog is semantic analysis and checking, scheduling of program
task UNITN_tsk: ) events, and generation of the program. The later three
o task body UNITN. sk is . stages, relevant to this paper, a summerized below.
o - code of the MODEL program unit Semantic Analysis and Checking:
:';" b: nd Bk The compiler translates the specification inwo a
:‘: ::1; directed graph of data dependences. Use of dam depen-
Al end UNTTN_prog; dence graphs to optimize programs, in particular for paralle]
nd UNITN. execution, has been proposed recently in the hm (see
e ¢ ' for example (Allen et al, 1983], [Ferrante, Ottenstein, and
i the following configuration Warren 1984], [Kuck et al, 1981; Waters, 1983]). The dis-
K B. The configurator produces the g arren .
'c:’: units: tinctive feature of the array graph of the MODEL language
’ ‘ - 1 . .
a'ﬁf 1. For each target post or mail file in the is the compact repn:sentauonAof data depent:en:ce!:e (Ia.c n:t‘i)ef
s configuration it will generate the re-router in the represents entire array not a single elelpent) od by the
form: conwrol dependences (flow of control is genen
n compiler).
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Checking the specificstion and making corrections
and additions may be regarded as inferring or propagating
anributes from node © node. Thanks to nonprocedural
semantics of the MODEL language we were able to imple-
ment powerful consistency checks in the compiler. Experi-
ence has shown that these checks are effective in locating
80-90% of the emors (not including syntax errors) in
development of a program [Szymanski, et al, 1984).

Scheduling Program Events:

In composing a unit specification the user chooses
natural and convenient data structures and equations. Typi-
cally this choice does not comrespond to the most
efficient implementation. In addition, the user descrip-
tdon of dat is independent of the medium of the data and
whether it is internal (in main storage), external (secondary
storage), or exchanged (communication line carrying mes-
sages). It is up o the compiler to map the user’s
specification into an efficient procedural computer program.

The optimization of the schedule proposed in the
MODEL compiler is based on merging scopes of iterations
to enable elements of the same or related structures to share
memory locations. Usually there are many ways in which
components can be merged (for different dimensions), each
corresponding to different total orderings of the component
graph. The memory requirements of different candidate
scopes of iterations serves as the criterion for selecting the
optimal merging and corresponding total ordering of the
schedule. The selection is equivalent to NP-complete prob-
lem of finding a clique with the maximum weight of nodes
in an undirected graph. Therefore a heuristic is used [Szy-
manski, 1987).

Generating Ada Code:

The final step of compilation is program generation
that translates the individual entries in the schedule into
the object code. In generating Ada code, the MODEL com-
piler heavily depends on the library of generic procedures
for i/o conversions and mathemarical operations. These gen-
eric procedures are differently instantiated in the generated
programs according to the data types used in the
specification. The object programs also use overloaded
definitions of mathematical functions and operators to keep
them independent of the used data types. The generated
code use only sandard features of Ada. It can be casily
added to the existing Ada software. It can also be used as a
part of the overall software development process.

§. CONCLUSION X

The MODEL equational language provides the pro-
grammer with a powerful twol for very-high level, nonpro-
cedural development of the executable system
specifications. The MODEL compiler enables rapid proto-
typing and ensures high level of correctness and con-
sistency checking. Ada, as an object code for the MODEL
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compiler, provides an efficient implementation tool for
parallel execution of the equational specificatons. It also
ensures smooth synthesis of automatically generated Ada
code with the existing Ada software.

Use of an equational language for expressing computa-
tions shields the user from considering low level implemen-
tation details, like describing input/output operations, loop
structure, flow of control in the program eiwc. Compilation
of specifications, including optimization and synchroniza-
tion algorithms and customized code generators provides
the user with efficient implementations of real time sys-
tems. Three cooperating components of the MODEL sys-
tem: MODEL compiler, Configurator, and Timing Evalua-
tor, constitute an integrated software development sysiem
that supports rapid prototyping, modularizaton and
comprehensive consistency checking.
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