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ABSTRACT

RedA time mwion l embedded systems am much expressed as a set of assertions about properties of the solu-

"or to desg than ordnary s a s . ey ton and not as sequence of procedural steps.
requi higWy reliable and efficien implemewniona to satisfy In the paper, we discuss the design of an Ada code
mision a me cosraints imposed by the appcm=. The generator for the assertive language called MODEL (Tseng
Ada language ba been desigp to aclitm rea ti me s et al, 1986]. Assertions in MODEL are expressed as recur-
softwue developmen. Hbwever, for many progamer the ize
and compexity of Ada itself are of cncem. sive equations. MODEL specifications are concise, free

In M amianve pogzamgng paradigm, computations are from implementation details, and easily amenable to
specified a sm of omemon about properties of the solu i, verification and parallel processing.
and not as u ic of medr steM . Solving p The MODEL language and system aid or automate theam somttly I I fem the merave descition Real
time programming 9im missian-ofled systems is supported by foUowing steps of the software development and mainte-
equaional languages in which asseio am expresaed as alge- nance process:
braic eqas. Programs writien in equational languages ame
concism free ho. implementation details. an easily amenable t 1. Generating high level language code for individual
verificaion and parallel processing. The level of prommng program units. A very high level, nonprocedural
expertise required to program in an equamional language is much language (MODEL) is provided for writing the
lower than the level tat is needed by Ada pogrammers. software specifications. The MODEL compiler uses

The pap describes an implenentation of an equational specifications to generate program code in Ada or
language system wich generates highly efficem d codeother high level programming language (Formn, C or
in Ad. It also deaomtraes how the qultional language system
can be used in real time software develolment. PL1).

2. Establishing synchronization and communication

L ETRODUCTION between program units executing in parallel. The

Rea time sysm programming is distinct from pro- Configuration Specification Language (CSL) is pro-

gramming oter parallel or distributed itin vided for this purpose. A MODEL subsystem called

timing constraints re imposed on delays caused b rt. Configurator generates communication tasks with

tume program The complexity and diversity of skills necessary entries.

needed for real am programming have caused extended 3. Testing. An executable model of the system that runs

development times, difficulties in attaining desired reliabil- on the host computer is produced by the MODEL

ity and sometmes even a reluctanice to undertake mainte- compiler and Configurator. This model can be used for

nance and updaIng of rea time systems. This has testing, debugging and performance study purposes.

motivated deveiopmwt of several programming languages 4. Documenting. Several reports are generated automati-
[Brinch 1971. 1981, Martin 1978, Wirth 1977, and most cally. The following is a partial list: the system design
notably Ada. 1978] to make the task easier. and structure, individual program listing, generated

Real time system development can often be simplified Ada (or Fortran, C, or PLl) code listing and timing

if it is done on higher programming level then supported by reports.

Ada. Several specification languages (Lamport 1983, Laner 5. Static timing performance analysis. Normally, the tim-
1979, Lee 1916, Milner 1980, Rmamrithan, Teichreow ing study can be done only after programs in target
1977, Zave 19821 have been proposed to this end. Some of machine code have been produced and executed.
thee languages suppor assertive programming paradigm Instead, with the help of a MODEL subsystem called
which provide a bridge between the formal requirements of timing evaluator, performance analysis can be done
a real time system and the system implementation (for when an individual task has been specified, even on a
example in Ada). In this paradigm a computation is host other than the target machine.
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Tim pape disc eu implemtaion of the Ada language. The MODEL compiler processes each unit
code poemaw for de MODEL sysm. It is organized as sepaely, performing completeness and consistency checks
follows. In the at section we describe real time software within each unit, and in the absence of eror generates an
development using MODEL Section 3 discusses implen en- Ada program to perform the task of that unit. The user can
tatim of the Cnfigurar and gesamn of c "n o now employ the Timing Evaluator on each generated Ada
msks. Section 4 describes Ada code generation for program program to verify whether the aime constraints associated
units. Finally, the last section offers the conclusion regard- with the corresponding program unit are satisfied. The Tm-
ing the use of equational languages for teal me program- ing Evaluator produces a Tuning Report for each program
ring. unit that provides information on tim delays between

instances of input and/or output in the unit. The user has to
2. REAL TIME SYSTEM DEVELOPMENT USING provide certain timing data of the target machine to theMODEL Timing Evaluator for it to generate the Timing Report.

In the MODEL approach. the pogrammer initially The programmer may also have to check if globa
partitions the problem into units based on functional time constraints are met by adding individual unit delays in
affinity. Then each unit function is described in the a path of the configuration to obtain the overall delays
MODEL equatioal language. A serie of translators s between critical events involving multiple unit. If some of

employed to implement the computation and provide the these constraints amr not satisfied, the programm may P0
feedbk on performance. This guides the programmer in have to modify the configuration of the etire system by
further partitioning or consolidating parallel units until a parnitioning some units to obtain greater degree of paral-

satisfactory locally optimal, performance is reached- lelism.

Three software tools were developed to support our Once all the program units have been satisfactorily

approach: processed by the MODEL compiler and the timing evalua-
tor, the programmer uses the Configuraor to synthesi all

i) A compiler for the configurion specificatiou language the system components (units and data files) into anin which units' interconnections and a mapping o integrated system. The user composes the system by speci-
parallel tasks onto processors are defined. fying a configuration of units and files in the Cofigurao

ii) A compiler for the MODEL equational language in Specification Language that is input to the Cotfigurator. It
which individual units are defined. This compiler pro- then schedules individual program units, synchronizes units
duces parallel tasks for the respective processors. that will execute in parallel, generates tasks responsible for

iii) A timing evaluator for estimating the delays inherent exchanging communications, and generates a configuration
in the parallel tasks. The estimates are used by the procedure that will run the Ada programs with maximum
programmer to verify that the time constraints of the concurrency in the host computer's multiprogramming I
developed system ae satisfied. multiprocessing environment.
The real time software development process starts Finally, the system can be executed and tested on the

after the software system requirement are available. These host machine. Then, code can be transfered to the target
requirements usually consist of three parts: machine for further testing and execution.

1. Functional requirements - defining the functions and
subfuncrions of the system. 3. CONFIGURATION SPECIFICATION LANGUAGE

2. Performance requirements - time constraints for time- The Configuration Specification Language, CSL,
critical peformance of the system defines flow of data between program units. Objects of the

3. Definition of intefaces with the environmnt- the lay- language ame units and files that the units exchange [Shi et
out of the data communicated with the environment. al, 19871. A target/source or consume/producer relationship

between a file (file) and a unit is represented by a directed
The programme begins by dividing the system func- edge between those objects. When the same file is pro- - --.

dions into software units and data files. A function may be duced by one unit and consumed by another, then these two "r
carried out by one one or mome units, or several related units become connected via the file.
functions may be .combined into one unit. The relationship
and communicaions between units are also defined at this Two atibutes of cofigurao nodes are worth of
point. The program units are in skeletal form, with only the mentioning here. A wri type shows whether the unit is:
external data structures outlined as files. The programmer 1) simple -an individually specified unit (default),
can now use the Configurator to verify global system con- 2) compound - a group of units for which a configuration ,
sistency and completeness, is defined separately, or

Net, the programme composes the unit specifications 3) interactive - a human communicating with the system _e1%
independently for each program unit in the MODEL through a terminal.
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Files have an organizmion at'ibute with the following can be easily modified by composing a new configuration
values: sequential (default), indexed, mail and post that includes existing, as well as new or modified, units aid

A sequential file is changd as one entity. It can be files.
consumed only alter is has beez wntirely produced. Such a The easy modifiability of a configuration supports
file may ha only ae producer, twa any number of consu- several development modes. For example, individual units
mers. and files may be reused as the system is required to change.

An indexed file has a variable defined as a key used to Entire independently developed systems may be easily
define (access) records in the file. There are no restrictions interconnected by adding interfacing processes that convert
on the order or number of references to such a file made by commonly used variables from the form used in one system
pducer and consumers. to that of the other. Thus, the creation of a new system

A mail file is a collector of records. It is private to its that encompasses the functions of several old systems
consumer and therefore it can have only one consumer, but would not require designing of a new system.
several producers Records from different producers are Ada implementation:
accepted by the consumer in order of their arrival. Using Ada as an object language of the MODEL sys- ,

A post file is a distributor of records to dynamically tem gave us several advantages over using other high level
addressable files. The post file has one producer, and its languages. Ada multitasking and randezvous create a con-
recmd include a key used as an address of a destination venient tool for assembling parallel computations. Each
file. Therefore, it can have any number of edges connect- MODEL specification is translated into a task.
ing it to mail files. Configuration dependent parts of program units, like inter-

An exchange of data between units executed in paral- connections, are encapsulated into separately compiled sub-
lel can be set either through a mail file or a pair of a post programs and subtaski. A configuration unit, also generated

and mail files connected together. The goal of our by the configurator, assembles the parallel computation by

apprwoh is to eliminate timing considerations from real simply enumerating in its body all the participatig units

time programming. The user's view of computation is with the 'WITH' clause. Only configurator generated parIs
totally static. where computation itself is expressed as a of the overall computation have to be recompiled if the

mapping of source data structures onto target data struc- configuration changes.
tures. Consequently, our communication primitives are In our design of an Ada implementation of the
based on (limited) nonblocking 'send' and blocking MODEL specifications, we stressed the independence of
'receive'. The producer of the messages continues compu- computation and configuration descriptions. Units generated
tation immediately after of messages waits until the mes- by the MODEL compiler need to be compiled in Ada only
sage to be read arrives. Such semantics allows the user to once. The naming can be local in program units, and the
treat com icatons in exactly the same way as other i/o. configuration provides the translation of file names in
If the synchronizadon is needed, it can easily be achieved different units. The user is able to select any set of such
by adding a 'receive' (in the producer unit) after the 'send' units and, after providing a configuration specification, gen-
to obtain an answer (or an acknowledgement) from the con- crate a configuration unit that will run the entire computa- 'p

sumer. non. The configuration unit is compiled separately from

The MODEL compiler, when generating a program for MODEL units. Any change in configuration unit does not
a unit, opimizes the use of the main memory assigned to require MODEL units recompilation. Such solution pro-
data, often replacing the entire range of an array by a win- vides high degree of modularity and supports easy assem-
dow, i.e. few elements. When such array has to be com- bling of new systems from existing computational units.

municated to the other units, only that window, i.e. few Thus, it facilitates fast protoryping and bottom-up develop-
records at a time, can be sent out. Therefore program ment and debugging of real-time systems.

optimizatio causes a producer to store or send as few The devised scheme of compilation is as follows:
records a a time as feasible. Similarly, a consumer has Each mail file is replaced by a task. This task receives
also to store amd consume a minimum number of records at messages from producers, stores them in a queue and then,
a time. When producer and consumer processes are con- on the consumer request, moves them to the consumer.
current, the post and mall files require a buffer for a limited Sender and consumer establish randezvous with this task
number of records. This type of data exchange realizes the and not directly with each other. Due to the name indepen-
concept of a pipeline or a stream. The user is not involved dence (the same file can be named differently in different
in this aspect of program design, however is warned if a program units), sending messages is done through a re-
file can no be exchanged in that fashion, router procedures which are generated by the Configurator.

The units (processes) and files are the basic building These procedures contain configuration sensative address
blocks of a system in the MODEL environment. A system tables.
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The generated ADA units are as foll o- TMAILN. target mail/post file

A. Each MODEL speciicati of a p unit is cm UNnN - program unit
with LTNITN; - repeau

piled by the MODEL compiler into a group of the fol- wt -

lowing packager -- for all consumer units
2. Packages for each source mail file in the follow- -- name of program unit

g fora i e-- which contains this file
ing format procedure UNNTMAiNc is

begin
-- SMAILN source mail file name-- a table of address wanslation and

-- NrN - name of the unit with SMAILN -- case on the value of the table address.

package UNITNSMAELN is end UNITN_SMAI.N_s;
task UNTrNSMAELN_mbx is 2. A configuration unit for invoking the entire corn-

entry - for receiving mail putation:
enty -- for sending mad

end UNTrNSMAL.N_mbx; -- CONFN is the name of the configuration
end UNrrNmSMAILN; with UNITNSMAILN; - repeat
package body UNrN_SMAILN is - for all source mail files
task body UNITN_SMAILN_mbx is with UNITNTMAILN -- repeat
-- body of the mailbox (queue of messages) -- for target mail & post files
end uNITNSMAR.Nmbx; with UNnTN -- repeat
end UNrN_SMAL.N; - for all program units

procedure CONFN is
begin

2. A package for a unit procedure with the follow- UNITN.UN1TNpoW, - repeat
ing S e -- for all program units

end CONFN;

All Ada compilation units are compiled in the follow-
-- SMAILN - source mail file name ing order. Al. A2, and B (order of Bl relative to B2 is
-- TMAILN - target mail/post file name irrelevant). Changes in B units affect only the changed
-- UNrrN - program unit name package (therefore changing connections between program
with SMAILNUNITN; -- repeat units and/or adding/deleting program units from
-- for each source mail file in the unit configuration is easy and simple). It is worthwhile to note.
package UNTN is that during compilation of a program unit no knowledge of
procedure UNITN.prog; configuration in which this unit will participate is needed.
end UNITN;
package body UNrN is 4. MODEL COMPILER
procedure UNITN_TMAILN-c is separate; The compilation of an equational specification into an
-- repeat for all post and mad files object code consists of four stages: syntax analysis,
procedure UNITN.prog is semantic analysis and checking, scheduling of program

task uNrrNtsk:task bodyN .~events, and generation of the program. The later three
task body uNrrN t is stages, relevant to this paper, a summerized below.- code of the MODEL program unit

end UNrrN-tsk-. Semantic Analysis and Checking:

begin The compiler translates the specification into a
null; directed graph of data dependences. Use of data depen-

end UNrrN.pmg; dence graphs to optimze programs, in particular for parallel
end UNITN; execution, has been proposed recently in the literature (see

for example (Allen et al, 19831, [Ferrante, Otmenstein, and
B. The configurator produces the foowing configuration Warren 19841, [Kuck et al. 1981; Waters, 19831). The dis-

units: tinctive feature of the array graph of the MODEL language

1. For each target post or mail file in the is the compact representation of data dependences (a node
configuration it will generate the re-router in the represents entire array not a single element) and the lack of
form: control dependences (flow of control is generated by the

compiler).
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Checking the sp caton and maling corrections compiler, provides an efficient implementation tool for
and additions may be IemIed as inferring or propagating parallel execution of the equational specifications. It also
atribues from node 0o node. Thanks to nonptocedural ensures smooth synthesis of automatically generated Ada
semantics of the MODEL language we were able to imple- code with the existing Ada software.
ment powerful consistency checks in the compiler. Experi- Use of an equational language for expressing computa-
ence has shown that these checks are effective in locating tions shields the user from considering low level implemen-
80-90% of the errors (not including syntax errors) in tation details, like describing input/output operations, loop
development of a program [Szymanski, et al. 1984). suucture, flow of control in the program etc. Compilation

Schedudng Program Events: of specifications, including optimization and synchnoniza-

In composing a unit specification the user chooses uon algorithms and customized code generators provides
natural and convenient data structures and equations. Typi- the user with efficient implementations of real time sys-
cally this choice does not corespd to the most tems. Three cooperating components of the MODEL sys-
efficient implementation. In addioro. the user descrip- tern: MODEL compiler, Configurator, and Timing Evalua-
tion of data is independent of the medium of the data and tor, constitute an integrated software development system
whether it is internal (in main storage), external (secondary that supports rapid protorypng, modularization and
storage), or exchanged (communication line carrying mes- comprehensive consistency checking.
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