
- 6 APTI E TIME SERIES AMOLYSIS USING PREDICTIVE 1/
INFERENCE AND ENTROPY(U) SCIENTIFIC SYSTEMS INC
CRWIDGE no S E DUSTAFSON DEC 87 AFOSR-TR-O-U32

w SIFI ED F29-7-C-2 6 F/0 12/1 .

/lUUUEUEUUsEU

IIII



Im

age

J1.02

jj JL 11.

MICROCOpy RESOLUTION TEST CHART

NATIONAL BUREAU O' STANDARDS 1%3 A

Rl

"I PL
IV

k



fII fLE -~
co ~AFOSR-Th. 88 -0 03 2

In)
00

'-Ullr



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Aoved
OAMS No. 070" W8

I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Za. SECURITY CiASSIFICATION AUTHORITY 3. DISTRISUTl9gN 4 AVLAU4IW,1YI

2. DECLASSIFICATONDOWNGA.NG SCHEDULE distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- 8 8 -U 03 2
6a. NAME OF PERFORMING ORGANIZATION . b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Scientific Systems, Inc. DCASMA Boston

Sc. ADDRESS (City, State. and ZIP Code) - 7b. ADDRESS (City, State, and ZIP Code)
Ckze Alewife Place A 495 Summer Street
Cambridge, HA 02140 Boston, MA 02210-2184

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if ,applicablo)

USAF Office of Scient. Res. • F49620-87-C-0026

Ic ADDRESS (City, Stew, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Building 410 PROGRAM PROJECT TASK WORK UNIT

Boiling An, DC 20332-6448 . NO. NO. NO ACCESSION NO

~ 11. TITLE (MOtSecur" Claaflcatuon)

-A--.- 7 - Adaptive Time Series Analysis Using Predictive Inference And Entropy

12. PERSONAL AUTHOR(S)
Donald E. Gustafson

13a. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (YearMontt, Day) 15. PAGE COUNT

Anul I FROM 12/R_ TO 48 88/1/1.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block numoer)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continu on revre if nec,ary and identify by block number)

SiResearh is being conducted on adaptive time series methods for detecting and tracking both
abrupt and slow changes in both structure and parameters. The methods are based on a
unified statistical frame work which is motivated by statistical inference and entropy
arguments. The method yields estimates of input/output dynamics and noise,4Zatistics. An
integrated approach which combines canonical variates analysis and maximum likelihood
estimation has been developed and tested. Specific attention is given to the problem of

_ .... parameter truncation in both a linear predictor and Kalman filter framework.

20. DISTRIBUTIONIAVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
.. UNCLASSIFIED/UNLIMITED 3 SAME AS RPT 0 oTIC USERS Unclassified

22a E OF REPONSIBLE INpIVIOUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

O Form 1473, JUN 86 Previous edition; are obsolete. SECURITY CLASSIFICATION Or --.S -'4G-

• . . .



Annual Technical Report

ADAPTIVE TIME SERIES ANALYSIS

3 USING PREDICTIVE INFERENCE AND ENTROPY

December 1987

By:

I Donald E. Dustafson
SCIENTIFIC SYSTEMS, INC.

One Alewife Place
Cambridge, MA 02140

Prepared for:

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Bolling Air Force Base

Washington, DC 20332-6448

Under Contract No. F49620-87-C-0026K

DTI

S ELECTEFEB 2 51988 D

DISTRIUTION STATMN A

I Approved for public reIeas.m
Distibution UnIfmited



Section COTNSPage

1.1 Overview of the Adaptive Time Series Analysis Problem ..............

1.2 Signal and Fault Detection ...... . .. .. . .... . .. ......... .. 3

1.3 Adaptation to Changing Processes ......................... 5

1.4 Multisensor System Identification ...................... 8

1.5 Adaptive Time Series Analysis Using Predictive Inference and
Entropy ........................................... 10

1.6 Initial Results Indicating Feasibility...................... 11

1.7 Synopsis of Report .......................................... 12

2. PREDICTIVE INFERENCE ANDENTROPY .................................... 14

2.1 Introduction ...... ................................ 14

2.2 Preliminaries ..................................... 15

2.3 Entropy and Maximum Likelihood Estimation......................... 17

U2.4 Unbiased Esimate of Entropy ....................... 26

3. CANONICAL VARIATES ANALYSIS ................................ 28

4. DIRECT DETERMINATION OF STATE-SPACE MATRICES .................. 29

5. MODEL SELECTION FOR LINEAR PREDICTION........................... 47

6. DETECTION OF ABRUPT MODEL CHANGES ........................... 49

6.1 Algorithm Development . .................. ... ............ 49

6.2 Experimental Results.............................................. 53

7. DETECTION OF SLOW MODEL CHANGES....................................... 6 2 por

REFERENCES ............................................... 6

APPENDIX: MAXIMUM LIKELIHOOD ESTIMATION................................ 76 El

AvoItibuity (,,rdes.d( ) AvcaIl 1k1;Aor
Dist sptvcla1

I~~~~ ~ ~ ~ ~ ~ KI' >.,111 111 j



CONTENTS

Figures Page

6.1 Changing Time Series Model . *.. . .. .. .. ... .. .. . .................. 49

ORK



I
CONTENTS

Tables Page

U
7.1 Data Length Estimation for Case I (f - 0.001) ......... 65

3 7.2 Data Length Estimation for Case 2 Cf = 0.0001) ............. 66

* p..

I
I
I
I
U
U
U

I
I
I

p's

Pt

Si'U p.,

'S

p.

~ .$"wf.E * ~ ~''s''.P ~



1. INTRODUCTION

1.1 Overview of the Adaptive Time Series Analysis Problem

Adaptation in time series is an important problem in a number of DOD '#'

systems and has many applications in various commercial industries. This

is an especially difficult problem in problems requiring realtime adap-

tation to process changes since such a procedure would have to be comple-

tely automatic and reliable. Adaptation is necessary in systems where the

dynamical characteristics change with time in unpredictable ways, or where

the noise disturbance process characteristics vary with time. Examples of

systems that require adaptive time series analysis are the adaptive

suppression of aircraft wing flutter, identification of the dynamics of

large flexible space structures, detection of failures in aircraft from

subsystem failures of battle damage, identification of missile aerodyna-

mics, target tracking, and various signal processing problems.

The solution to the adaptive time series analysis requires several

advances in current time series methods. At the core of the problem is the

need for a fundamental statistical approach to the adaptation problem that

poses the problem in a meaningful way and that leads to computable solu-

tions. To solve the online adaptation problem, a reliable and automatic

time series modeling procedure is required that is lacking in previous

methods. The current research provides

* A sound statistical basis for posing and solving the adaptation

problem or
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A numerically and statistically reliable online computational a

procedure

This approach has been used in conjunction with a new high resolution

system identification method utilizing canonical variate analysis (CVA) for

the determination of the dynamics of high order multisensor systems with a

small data length (Larimore, 1983b). This algorithm can be implemented on

highly parallel processors such as a systolic array. This makes practical

the consideration of many different system characteristics to determine the

best for modeling the observed sensor data and correlational relationships

between the many sensors. The system characteristics that have been suc-

cessfully determined adaptively are the dynamical state order of the

system, the presence of correlated disturbances, the optimal data length to

use in tracking a time varying system, and the optimal data interval for

detection of an abrupt change or other event in the data.

The CVA time series analysis method has been applied to the design of

an adaptive flutter suppression problem for suppressing wing flutter or

aero-structural vibration in aircraft. While considerable progress has

been made in the problem of adaptation in terms of identification of time

series models, adaptive time series methods which can efficiently track and

detect time varying processes would further improve the system. In such a

system the wing dynamical characteristics can change instantaneously when a

wing store is dropped, and the new wing dvnamics are unknown and mav be

unstable resulting in a growing oscillation. If the unstable mode Is not

detected, accurately identified, and stabilized by control feedback in less

-. 2-
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3- than a second, then the aircraft can lose a wing. The CVA algorithm using

entropy methods for deciding model state order are being implemented on a

vector array processor which will identify high order systems with dozens

of dynamical states and multiple inputs and outputs in fractions of a

U second. This system has been tested in real-time simulations, and was suc-

cessfully demonstrated in wind tunnel tests at the NASA Langley Transonic

Dynamics Wind Tunnel. It is expected that highly parallel processors such

as systolic array processors could result in a speedup of many thousands of %

times which would be required for some very large scale real time adaptive 0

3 problems.

1.2 Signal and Fault Detection

A Comprehensive survey of fault detection methods is given by Willsky

(1976). See also Mehra and Peschon (1971), Willsky and Jones (1974),

Willsky (1980), and Isermann (1984). The type of abrupt changes in a

system that are considered are of the form

x(t+l) = Ox(t) + Gu(t) + w(t) + m(t) (1.1)

y(t) = Hx(t) + Au(t) + Bw(t) + v(t) + N(t) (1.2)

where u is the input vector process, y is the output vector, x is the state

vector, and w and v are white noise processes that are independent with

covariance matrices Q and R respectively. These white noise processes

model the covariance structure of the error in predicting y from u. The,'.

abrupt changes are in the form of the time the functions m(t) and n(t)

introduced into the state and observation equations. Fault detection is

thus the detection of the presence of such nonzero functions.

-3-



For various hypothesized forms of the functions, i.e., for jumps in' " /""A: , .,,

various components or specific combinations of the components, a particular

detection computation is devised which requires implementation of a Kalman

filter. This leads to statistically most powerful likelihood ratio tests

of the various failure hypotheses. An optimal solution to the failure

detection problem formulated in (1.1) and (1.2) is thus obtained.

There are however several more general failure detection problems not

of the form of (1.1) and (1.2). The approach permits only the consideration of

simple hypotheses, i.e., where the failure functions m(t) and n(t) are of

the form of an unknown scalar amplitude parameter multiplying a function of

known form. More general functional forms such as two components with dif-

ferent unknown amplitude parameters multiplying the known functions

requires maximum likelihood parameter identification at considerable com-

putational expense and loss of numerical reliability. Furthermore, the

problem of unknown failure time leads to a considerable increase in the

required computation, and no theoretically sound decision procedure has

been proposed for choosing the failure time.

The general case of changes in the system dynamics or correlational .. %

characteristics of the disturbance or measurement noise processes cannot be %

handled. Such cases require general time series analysis parameter iden-

tification methods which are not reliable for online application to high

state order multivariable systems as discussed in Section Multisensor

System Identification. Isermann (1984) gives a survey of current fault

detection methods and concludes that: "A unique calculation of the process

-4- " %
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coefficients and a parameter estimation with high precision is only

possible for low order elements between measured variables. Therefore the

measured variables should be selected such that the process is divided in

first order elements or, in other words, all state variables should be

measurable. Easy to implement parameter estimation methods for continuous-

time modles to be used on-line, real-time and in closed loop need to be

developed." The requirement of measuring all of the states is not

realistic in most situations especially in general multivariate time series

and system identification problems. Fortunately, the CVA system iden-

tification method does not require this, but indeed is an online, real-time

method that gives the same accuracy in either open or closed loop.

The issues of adaptation are not addressed in the fault detection

literaure except in simplistic ways. The present state of the art in adap- %

tation for failure detection appears to be the work of Hagglund (1983) ,1

discussed in the next section, and is just beginning of adaptive approaches

which consider fundamental issues in adaptation. ,

At.

1.3 Adaptation to Changing Processes
,.e.v I

Concepts of adaptive systems have been around since the 1950's N .. o

involving various senses of adaptation. The present literature on the sub-

ject includes a number of methods such as recursive computational schemes,

exponential forgetting, lattice computational methods, etc., which have

certain "knobs" that allow tuning of the algorithm to accommodate changes

in the characteristics of the actual processes. Reviews of these and

related methods are contained in several recent special issues of technical ,

-5-
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journals and books (Special Issue on Adaptive Control, Automatica, Vol. 20,

No. 5, 1985; Special Issue on Linear Adaptive Filtering, IEEE Trans. on

Information Theory, Vol. 30, No 2, 1984; Honing and Messerschmitt, 1984).

While these methods do permit some degree of adaptation to process changes,

the methods of adaptation are ad hoc, and no sound underlying statistical

principle for adaptation is proposed or demonstrated. As might be

expected, these methods can work poorly on certain cases because of the

lack of a sound statistical basis. .

In particular, the recursive prediction error and lattice methods are

convenient due to their recursive form and provide an estimate at every

observation (Friedlander, 1982a, 1982b, 1983; Ljung and Soderstrom, 1983).

Also, the recursive algorithms can be sued for adaptation by exponential

weighting of the past data (Wellstead and Sanoff, 1981; Irving, 1979; Evans

and Betz, 1982). But the rational for exponential weighting has not been

given a sound fundamental justification, but is used largely due to its

ease of use. the choice of the exponential weight has been ad hoc and

susceptible to misinterpretation of changing noise variance levels as time

varying changes in the dynamics (Hagglund, 1983).

The fundamental problem in adaptive time series analysis is adaptation

to time varying processes. The essential problem is the determination of 4

the characteristics describing the rate at which the process is changing.

This problem has received very little in-depth treatment in the literature.

Most of the difficulty can be attributed to the discrepancy between the

true and assumed uncertainty in the measurements. Adaptive control schemes

-6- %

*%N..



are notoriously optimistic about the quality of the parameter estimates

because the time varying nature of the process is ignored.

A notable exception is the recent work of Hagglund (1983) which takes %

an information handling point-of-view. This approach leads to a more

realistic appraisal of the accuracy of the parameter estimates and con-

sequently the value of new measurements which become available in time.

Two classes of time varying systems are considered:

* Processes with abrupt changes

* Processes with slowly varying changes.

Within each of these classes, changes are considered in the process dyna-

mics and/or noise variance.

For abrupt changes, the fault detection approach is taken. The central

idea is to monitor differential changes in the parameter estimates to

detect abrupt changes. A new procedure is derived by Hagglund which

requires no apriori information and is very sensitive to jumps in the para-

meters. This procedure is shown to have very good properties in both

theory and practice. This works well for parameters of the dynamics as

well as those of the noise variances in the simple cases of low order

systems.

The problem of slowly varying parameters has plagued many adaptive

control schemes. Although the concept of discounting the old data using a

forgetting factor has been in use for a long time, the problem of how to

-7- .i-.d-.,._
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relate this factor to the data has been elusive. The principal proposed by

Hagglund is to discount past data in such a way that a constant amount of

information would be retained if the parameters were constant. The quan-

titative measure of the information used is the inverse of the parameter

estimation error covariance matrix which is the Fisher information matrix.

3 Theory and simulations show that this works quite well in low order and

well conditioned systems. However for high order and multisensor systems

with illconditioned parametric structure, the algorithms are not so well

behaved.

1.4 Multisensor System Identification

System parameter identification from observed measurements is a crucial

part of the adaptive multivariate timeseries analysis problem. It is

necessary to adapt anot only to changes in the input to output charac-

teristics of a system, but the correlational characteristics of the distur-

bance and noise processes must simultaneously be determined. The

feasibility of adaptive methods requires first that a reliable online

multivariate time series identification procedure be available.

There are several difficulties with currently available methods and

software for the identification of system dynamics and noise charac-

teristics. Current methods include the self tuning regulator (STR) (Ljuns,

1983; Astrom, 1973; Astrom et al, 1973, 1977), maximum likelihood estima-

I tion (MLE) (Mehra and Tyler, 1973; Larimore, 1981a), Box-Jenkins (BJ)

methods (Box and Jenkins, 1976), and a variety of heuristic approaches.

The current state of the art in both MLE and BJ require that an analyst he

,-8-



involved in the procedure, and the required number of computational itera-

tions is not bounded. The STR has been applied successfully to simple pro-

cesses, but is not completely reliable for general processes particularly

when multi-input, multi-ouput systems are involved. In addition, the

recursive prediction error algorithm used in the STR requires a good ini-

tial estimate and so is not suitable for short data where no apriori data

is available. The heuristic approaches tend to be special purposes and are

rather unreliable in general applications.

Of the current approaches to multivariate time series identification

which are high resolution, i.e., make efficient use of the observational

information, most use the ARMA (autoregressive moving average) represen-

tation for the process. For multi-input multi-output systems this is not a

globally well defined parameterization which is a major cause of the dif-

ficulties in the present identification methods (Gevers and Wertz, 1982). A

consequence is that there is no single parameterization which is numeri-

cally well conditioned, and known algorithms can be made to fail for a par-

ticular choice of system. The system identification problem is well

defined in that the class of models does have best models in a maximum

likelihood sense (Larimore, 1981a), but the ARMA parameterization is not

unique so that for cases such as pole-zero cancellation there is a whole

equivalence class of models with equivalent characteristics. In the sequel

this difficulty in parameterization will be resolved by the use of state

space models, and stable numerical methods will be described for statisti-

cally reliable online identification of multivarliable time series.

...... .... NaM
-9-



1.5 Adaptive Time Series Analysis Using Predictive Inference and Entropy

Recently a very general predictive inference approach to statistical

modeling has led to a fundamental statistical inference justication of

3 negative entropy as the natural measure of model approximation error

(Larimore, 1983a). This development has a number of very attractive

features:

0 It applies to completely general modeling problems including

nonparametric methods. 0

0 It applies exactly to small samples.

0 Only the fundamental statistical principlaes of sufficiency and

repeated sampling are used.

* It applies to time correlated problems such as time series model

identification and tracking.

9 Statistical inference can be fundamentally viewed as model

approximation.

Early developments in predictive distributions are very old, although

modern approaches apparently begin with Jeffreys (1961, p.143) who used a

Bayesian approach, as has much of the work following (Atchison and

Dunsmore, 1975, preface and p. 39). The approach taken here has been sti-

mulated by Murray (1977, 1979), the work of Akaike (1973) and model struc-

ture determination problems (Larimore, 1977a).

-10-
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1.6 Initial Results Indicating Feasibility

SSI has been in the forefront in developing the CVA and entropy

methods. Here the related projects are discussed along with preliminary

3 results indicating the feasibility of the proposed methods.

The original stochastic realization method of Akaike's (1975) was

further developed into a commercial software package for mainframe and mini

computers by Mehra (1978) and Mehra and Cameron (1976, 1980). Further

generalizations to input output systems along with refinements in com-

putational speed and accuracy were developed by larimore (1983b) and

Goodrich and Larimore (1983) leading to the current timeseries analysis and

forecasting package, Forecast Master (Trademark of SSI), for the IBM/PC.

This package is in widespread use in utilities, banks companies and

universities.I
This algorithm has been the basis for several studies in online systems

Iidentification. The project "Basic Research in Adaptive Model Algorithmic

Control" used the online CVA system identification algorithm. In the

current study "Reconfiguration Control Strategies", the CVA method along

with adaptive tracking and detection methods are being studied. The pre-

sent theory on adaptation using entropy methods (Larimore, 1985a) was deve-

loped under the basic research study "traget Dynamic Modeling" and under

the study "Development of Statistical Methods Using Predictive Inference

and Entropy" which was Phase I of this proposed Phase II study.

A review of the technology in system identification and adaptive

control for adaptive methods applicable to the suppression of aeroelastic

-Ii



wing vibration (flutter) was done in Larimore and Mehra (1984). This study

describes the deficiencies of current methods and suggets the feasibility

of CVA and entropy methods for fully adaptive online detection and tracking

of wing flutter. In a current study with General Dynamics sponsored by the

Air Force Wright Aeronautical Laboratories, CVA has been analyzed exten-

sively in computer simulations, real time tests, and demonstrated wind tun-

nel teste for adaptive flutter suppression. The ability of CVA to identify

very complex flutter dynamics of high state order involving very closely

spaced spectral peaks in the presence of correlated wind gust disturbances 0

using short data lenghts demonstrated the consderable statistical accuracy

of the method. The online CVA identification algorithm was demonstrated

ina wind tunnel test at the NASA Langley Transonic Dynamics Wind Tunnel on

a 1/4 scale model of an F-16 aircraft.

1.7 Synopsis of Report

In Section 2, we present a detailed and transparent derivation of an

unbiased entropy measure which will be used in the sequel for adaptive

estimation. This measure is asymptotically equal to Akaike's AIC cri-

terion. In Section 3, we present a detailed description and derivation of

linear least-squares prediction using canonical variates analysis (CVA).

Several new forms for these predictors are given. In Section 4, a method

for direct determination of the parameters of the Kalman filter in canoni-

cal form is given, and is shown to be equivalent to a truncated optimal

linear predictor derived using CVA. Section 5 considers the model order

selection problem, using an entropy-based approach. The problem of abrupt

-12- .€, L2
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I
change detection using entropy methods is considered in Section 6 and a

specific algorithm is derived and tested. In Section 7 we consider the

problem of slow change detection, specifically the problem of finding the

optimal data length for model fitting when the time series coefficients are

slowly varying. An entropy-based algorithm is developed and tested.

!
I

I

I'

_ 3-



%
2. PREDICTIVE INFERENCE AND ENTROPY

2.1 Introduction

In this section we develop the necessary background for development of

adaptive estimation algorithms in the sequel.

The problem under consideration is that of predicting the future evolu- '

tion of a time series, given some observations of the past. The predictive -

inference framework may be described as follows. 10-0

We assume that the density function of interest is parametrized by a

parameter vector 0 E Rm and is denoted by p(x 0). For the purposes of

discrimination between two alternatives 01 and 00 it can be shown (Akaike,

1973) that all necessary information is contained in the likelihood ratio

p(x 0 o)

L(x) = p(xi 00) (2.1)

Thus, the mean amount of information for discrimination when p(x i 00)

is the true density is of the form

I()1, 0 0) = f P(x ®0) * p(x 00) dx (2.2)

where 0(.) is a properly chosen function. It can be argued using infor- Y.

mation theoretic arguments (Akaike, 1973) that the only appropriate form is

(y) = log y (2.3) %

which leads directly to the measure

1.% .41

-14- 'k
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B(O ) -f p(x 00) log p(x)50 dx (2.4)

Note that - B(O1 , 00) is the Kullback-Liebler information for discrimi-

nation in favor of 00. It can be easily shown that B(01 , 00) 4 0 and

equality holds if and only if p(x 01) = p(x O0) almost everywhere

(Aitchison and Dunsmore, 1975).

Note that B(0, 00) can be written as

B(O, 00) = f p(x 0) log p(x 01) dx

- f p(x 00) log p(x 00) dx (2.5)

Since 0 represents the true (unknown) parameter, our objective is to find

the parameter estimate 0 which maximize B(6, 00). From (2.5), we need

only maximize

f p(x 00) log p(x I6) dx

with respect to 0 to produce our estimate. This estimate maximizes the

expected log-likelihood and is thus a maximum - likelihood estimate. ,,'

2.2 Preliminaries .'.".

In order to present a clear development, we will work in a partitioned

sample space. The random variable x is presumed to be in n - dimensional

Euclidean space, x E Rn, and Rn is partitioned into s mutually disjoint Q. .d

regions Q1' ,2 .... , Qs which cover Rn: .-. '-."

-15- ,*,
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We then define

Pi(O) f p(xI J ) dx (2.6)Qi

i = 1, 2, . • • , s

We consider two different samples, an informative sample q and a pre-

dictive sample r. The informative sample is

xq -{xqi, 'xq2 *** xqn.1

which consists of nq observations of x. The predictive sample is

Xr = {Xrl, Xr2, . . Xrnr

consists of nr observations of x. We assume that nqi of the informative N"

samples fall into Qi and that nri of the predictive sample fall into .Z.. .

Then

nqi = nq

(2.7)

nri nr
.. .%. ,"

The two samples xq and xr are from the true distribution.

Thus we have, approximately, for sufficiently large samples,

N

-16-



Pqi(eO) q-- (2.8)
flq

and

0nr

Pri(r) nr (2.9)

3 and we assume regularity conditions throughout such that

Pq(x i 0 0 ) = lir Pqi(O0)
nq + 0
sq+

I lwhere

and similarly for Pr(x 00). The computation of the probabilities asso-

3 ciated with the parametrized densities is different. Here we use the defi-

nition (2.6) and note that pi(O) is computable from p(xj 0) and knowledge

of Qi. In practice, this computation need not be done, as become clear in

the sequel.

2.3 Entropy and Maximum Likelihood Estimation

The first step in our development is to form the maximum-likelihood

estimate. This is done by maximuzing (2.5) on the informative

sample:

arg max Bq(O, 00)

where

-17-
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q(, 0) Pqi( 0) log T -. (2. 10)

Thus

s alogpqi(O) 02

Pqi(O 0 )  af 0

P-

We note here that an approximation for Bq(OI. o0 ) is

Bq(O, 0), log p(X1 0) (2.12)

and the two expressions are asymptotically equal as nq 0 0. This form was

used by Akaike (1973) to derive the AIC criterion.

Solving (2.12) would, in principal, give the maximum-likelihood esti-

mate if the dimension of 0 were known. However, in practice, the actual

dimension, m, of e is not known. Furthermore, there is an obvious tradeoff

between the dimension of our estimate 0 and prediction error. Assume

- Rk. Then as we increase k, the fit error on the informative sample

will decrease momotonically. However, at some point we are in danger of

overfitting the model so that 0 is a function of the sampling error on the

informative sample. When this happens, the fit errors on the predictive

sample will begin to increase.

If we assume that the true parameter vector dimension is m and that the

estimated parameter dimension is k < m, then our objective is to eviluate

the information measure on the predictive sample and select the model which

I
t1-18- , .d" /s



maximizes this measure. The discrimination measure is now separated into

two parts in order to simplify the analysis:

.k s Pri(6 k )

Pri( 0 )

BrPr,(Oo=log Pri(k) k (oo-

Pr(0)1, ((O k )  i Pl ri( k )  ""o0

i=l

= ~ ri(0~log- ~.p~j(o~l p (Ok)
pri ri

= Br(Ok, Ok) - Br(OO, Ok) (2.13)

where Ok C Rk. Both entropy measures are measured with respect to the den-

sity pri(Ok) and Ok is arbitrary. We will in the sequel pick 0k in a par-

ticular manner which clarifies and simplifies the development. The

decomposition of (2.13) is done to clarify the expo ition and to make clear

the crucial role played by the number of parameters k. The summations in

(2.13) are taken with respect to the true density on the predictive sample

while 6k is the estimate computed on the informative sample. Thus,

Br(Ok, 00) is a measure of the information between the estimated den-

sity and the true density on the predictive sample. Since the informative

sample is known but the predictive sample is not we will use statistical

mean values in the sequel.

In order to evaluate Br(Ok, Ok) and Br(OO, ok) we will expand around

the actual probabilities on the informative sample.

Evaluation of Br(Ok, ok)
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From (2.13):

B 6,0) s 6k -k

Br(Ok, Ok) = Pri(O0) [log Pri(Ok) - log Pri(Ok)] (2.14)
i= 1

Define the sampling error between the informative and predictive proba-

bilities as

ei(O) = Pri(®) - Pqi(O) (2.15)

Expanding the log term to second order yields

~log Pqi(Ok )
.

log Pri(Ok) = log Pqi(Ok) + el(k )

6k (k) alogpq i (Ok) (k k
+ T aopqi 2  ei2 (ok) + Ok  ( k 0k)

2 a 2 laokO ' l g qi '
2(k k) T l k ) (ok - ek) + (Qk - e-°j i((kk)

+ - kk2 ) lk op( 
e qi ( ,1)

Thus

s log Pqi(Ok) (p '

Br(®k, Ok) = i Pri(O0) (k - Ok)

+ I s(Ok k)T.a 2lo 19Pqi(O) (ok - ok)
+4 iPri(S)O) (3 k) k2

s 2 1og Pqi(O )
Pr ( ) (k _ Ok)r el(Ok )  (2.17)+ )Pri() O a0k apqi

This expression can be further simplified by utilizing the fact that,

since ok is a maximum-likelihood estimate on the informative sample:

-20-
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s 310g Pqi(6k
II Pq)(0) ak =0 (2.18)

Expanding this around ok yields

s 310log Pqi(2) alog 2 Pqi(ek)

i Pqi(P aEk 3 (ak2 (ok _ ok) = 0(2.19)

Using (2.15) and (2.19) and in (2.17) yields

S alog Pqi(Ok)
Br(Ok, ok) = ei(O0) (ok ok)~~i=l k

9
ei(O) (k a 2 9 Pqi(k

i((=1 (okk-2 (Ok - k)* Ok2

•2i=1 20k2

s a2 109 Pqi(O
+ [Pqi(O0) + ei(O0)] (;k ok)T 30°g ei() (2.20)

where we have assumed ej(Ok) f ei(OO).

The error ei(O0) is the difference of two probabilities, which are

binomially distributed, by construction:

ei(OO) = Pri(O0) - Pqi(O0)

-21-



I Furthermore ei(O O ) - 0, by definition.
i-I

Since we are assuming here that Pri(O0) and Pqi(O0) are independent samples

from the same underlying distribution, ei(OO) is unbiased:

E lei(GO)} = 0 (2.21)

where E { I denotes expectation with respect to all underlying random

variables. Recalling that the informative sample is of size nq and the

predictive sample is of size nr, Pqi(0O) has approximate variance

var (Pqi( 0 )) = - Pi( 0 ) [1 - pi(O0)I
nq

and Pri( 0 ) has variance

var (Pri(O0)) =_ Pi( O 0) [ - pi(O0 )]

Thus

var (ei(e0)) = pi(o0 ) [1 -pl(O0) (2.22)

where n = nqnr / (nq+nr). The expected value of Br(Ok, Ok) can now be

written in simplified form by using

a 2 109 Pqi(Ok) I log pi(Ok)

a0k apqi Pi( 0O) ok.

-22-
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The result is that the expected value of Br(Ok, ok) is

E {Br(Ok, Ek)}

E- Is pi(O) (kOk _ )T a2log Pi(O) (6k 0k)

aok2

s 6 (kT alog )O
I 2 E 300)k (2.23)

In the sequel we will choose Ok = O *k so that O*k is a minimum-variance

estimate of 00. This results in the second term being much smaller than

the first term for reasonably large values of W/s. We will explicitly

neglect this term in the sequel.

Evaluation of Br(O 0 , e*k)

From (2.23)

Br(O 0 , 0k) =

P 0 - a2 log Pi( (%0 - Ok) (2.24),,
i= p(0 ) (0 - (2.24)

- - (00 - ok)T l(0o) (00 - ok) (2.25)

where 1(00) is the information matrix..

%
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I(0 0 ) s aiog P( 0o (2.26) 6%

In (2.23) both Ok and 6k are k-dimensional parameter vectors. Here,

however, 00 is an m-dimensional vector (m > k). To handle this situation,

we write oo - 0k e Rm' as

[0ok -0k]

where Ook c Rk, 60 E: Rm-k

setting

j(Ok) =*.(00 - Ok)T 1(00) 00 0 k)

and minimizing with respect to Ok yields'.

O*k = 0 k - 111- (00) 112 (00) 00 (2.27)

where we have partitioned 1(00) as

[ , 1i(00) 112(00)
1(00)=

112(00) 122(00)1

The minimum value of J is

A A
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I J~~k) ~ T [122(00) - 1 1 2 (0  ) ~~ 0~ 112(00)] 00

I If we partition the covariance matrix

P(0) = I(OO)-l

trP 11(00) P100

gLP 12(00) P20 _5 then

j(0*k) =1 0T P (0)l00

2 2(EI-
where P2 2(00 )-' = 122 - 1 12 T 111- 112

j Since

1P(0 0) = sl p1(C0) (00 - 0*k) (00 - kT

- E [(oo O *k) (00 -~)T

we get, finally,

E [j(0)*k)] (~ m -k)

or

E [Br(00, 0*k)] = (k-n) (2.28)
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2.4 Unbiased Estimate of Entropy

£ From (2.23)

5Er(6k, Gk)} 1 (6k - k)T JcOk) (6k -k

where I(Gk) is the kxk information matrix

l(O k ) 
= E Pi(eo) ok2 t

and pi(G 0 ) is given in (2.6). Using (1.5) and (1.6) we see that

Br(e e} -4 tr Ik

J k'

where (2.29)

where Ik is the kxk identity matrix.

I
Combining (2.29) and (2.28) yields

E Br(Ok, 00)} - k (2.30)

where 6k is the maximum likelihood estimate (^ E Rk). This represents a

bias in the maximized log-likelihood function, with the result that our

goal is to pick k such that
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~s 3 Pqi (00) log Pqi (Ok) +. - k

iml 2i-1

S is maximized. By reference to (2.10) and (2.12), this is equivalant asvmp-

totically to picking k such that

n
) log P(xi1 Ek) + k

i= 2 k

is maximized. Since m is a constant here, the equivalent goal is to mini-

mize

n

AIC(k) - - 2 log p(xij k) + 2 k (2.31)

with respect to k, which is Akaike's AIC criterion.

4.

Ii"

U .p~Jk
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p 3. CANONICAL VARIATES ANALYSIS

We now consider the linear prediction problem using the canonical

variates analysis approach.

ILet the past be represented as a column vector P(t) defined by

3 -y(t)

P(t) = y(t-1)

L . nxl

and define the future as a column vector

y(t+l)
F(t) -

y(t+2)

L • mm Il

. mxl

where y(t) is the r-dimensional observed output at time t. Our goal is to

I predict the future F(t) given P(t).

We now consider the canonical variate analysis in a form that allows us

to explicitly show the optimality properties of the method.

Consider nonsingular transformations of the past and future

c(t) - J P(t) (3.1)
nxl nxn nxl

d(t) = L F(t) (3.2)
mxl mxm mxl
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and form a ktLh order estimate of F(t)

Fk(t) = aj cj(t) (3.3)

where fail are mxl vectors and ci is the _Lh component of c (a scalar).

Since aj is fixed, only cj(t) depends on the data. Since J is only

constrained to be nonsingular, we can use a very general form for it.

Without loss of generality we can specify that

E [c(t) c(t)T] I 'oxn (3.4)

Let B be an orthonormal matrix:

T
Bnxn Bnxn = Inxn (3.5)

Then

J P jT - BT B (3.6)

where Spp E [p(t) p(t)TI

This has a solution

T -t/2
J B S, (3.7)

Now 
I

T
=i J i P(t) (3.8)

T
where Ji is the iLh~ row of J;
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T T -1/2
Ji bj Spp (3.9) A

and

B =[bl b2 . . . bnI (3.10)
n xn i

Thus

T -1/2
ci bi SpP P(t) (.1

and the estimate Pk(t) is

Fk(t) = ~ ai bj S1/2 P(t) (3.12)

Qk SQ1/ P(t)

where

kT

Note that Qk has maximum rank k.

The prediction error is

-1/2 -*

ek(t) =Qk Sp,1  P(t) -F(t) (3.14)

We now form a quadratic cost function
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! T
Lk - E [ek(t) W ek(t)]

1 -1 -1/2 T -1/2 T T
- tr W E {[Qk Spp P(t) - F(t)] [P(t) Spp Qk - F(t)]}

S-1 T
- tr(W Qk Qk)

-1 -1/2 -12tr(W Qk Spp Spf) + tr(W Sff) (3.15)

where Spf = E [P(t) F(t)T], Sff = E [F(t) F(t)T] -'

In order to handle the orthonormality constraints we add the constraint

equations via Lagrange multipliers to form the augmented cost

k T
Lk = Lk + Xi (bi bi -1) (3.16)

i-i

where {A} are Lagrange multipliers. Thus

-1k T n TI-
Lk tr 1W ai bi bj aj

-1 k T -1/2
- 2 tr {W I ai bi Spp Spfl

i=l

+ tr {W Sff}

k T 
S+ Xi (bi bi -1) (3.17)

i=l

TUsing bi bj = dij, with 6 the Kroneker delta function, (3.18)

and rearranging gives

%7
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- k T -1
Lk jaj W aj

k T -1/2 -
2 bj Spp Spf W aj

-1

+ tr(W Sff) + iX(b1  bj -1) (3.19)

- I 
k 

T

Taking partial derivatives:

aLk T -1 T -1/2 -1

-ai 2 ai W -2 bi Sp, Spf W (3.20)

aLk _ T -1 T -1/2 T

abi -- 2 a1  W Spf S pp + 2 Xi. bi (3.21)

Thus, the first order necessary conditions for minimizing Ek are

* T -1/2 *
aj Spf Spp bi (3.22)V

* -1/2 -1 *

Xi bi = S pp Spf W ai (3.23)

for i 1, 2, .. ,k.

Eliminating ai:

* -1/2 -1 T -1/2
Ai bi =S pp S pf W Spf Spp bi (3.24)

which is an eigenequation. elm.*
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The first term of (3.19) becomes

k *T -1*
S ai W aj

9Uk *T -1/2 -1 T -1/2 *

= bi  Spp S pf W Spf Spp b i

k
x i (3.25)

1=1

The second term of (3.19) becomes

k *T -1/2 -1 T -1/2
-2 b i Spp Spf W Spf Spp bi

k
-2 Xi (3.26)

Il

5 Thus, the optimized cost is

-1 k
Lk = tr(W Sff)- Xi  (3.27)

Now let

-1/2 -1/2

R = Sp Spf W (nxm) n>m (3.28)

From (3.24),

% 
,

*T*

bi R R bi = Xi  (3.29)

By using a singular value decomposition on R: e

PP



7[

T
R = U D V (3.30) •

T T

V V ;I, U U =1 (3.31)

D -(3.32)
0 Ym

where YI > Y2 > . . . Ym

T T T T

Then R R U D V V D U

T T
=U D D U (3.33)

Then, from (3.29)

•T T T *
b i  U D D U bi = X i  (3.34)

Thus bi* is the eigenvector of U D DT UT whose eigenvalue is Xi.

Now let

U = [U1  U2  . . . Un] (3.35)

where the U1 are mutually orthogonal unit vectors by construction. But the

matrix U D DT UT has eigenvectors Ui and associated eigenvectors y,2 since

UiT U D DT UT Uj = -i2 5ij (3.36)

Thus

a-34-
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Yj 2  X Xi, Ui = bi (3.37)

and

* T -1/2
ai = Spf Spp Ui  (3.38)

By using (3.37) in (3.27) we get

* -1 k 2
Lk = tr(W Sff) - Yi (3.39)

and we see that the cost is minimized by using the k largest canonical

variances, y12 > Y22 > Y32 > . > Yk2 .

We can now write the optimal forecast as

, k * * 
.F

Fk(t) = ai ci(t)

k T -1/2 T -1/2

= ) Spf Spp Ui Ui Spp P(t)

T -1/2 k T -1/2

= Spf Spp ( 1 Ui U i ) Spp P(t) (3.40)i1l

.®r,

Thus, if we denote the optimal weighting matrix by Ak:

Fk(t) = Ak P(t) (3.41) ?-

.0

* T -1/2 k Tj -1/2
Ak Spf Spp Ui i Spp (3.42)

i=V

Note that %
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I.

[

I* T
An sp S pp-  (3.43)

To determine L (cf (3.2)), we can use the condition

E (cdT) D 0 (3.44)

3 or

J*SpfLT D (3.45)

From (3.7),
i

uT -1/2 L
UTSpp Spf LT=D (3.46)

5But

D - UT R V
-1/2 -1/2

- UT Sp Spf W V (3.47)

Comparing (3.46) and (3.47) gives

~-1/2

LT =W V , or

L VT W (3.48)

Note that Ak, the optimal gain matrix is of dimension mxn but has a maximum

rank of k.

Note that k < m since the symmetric matrix in the eigenequation

(3.24) has rank 4 m. This is very important, as it implies that we need to

make the dimension of the future vector (m) at least as large as the maxi-

mum expected order of the estimator.

IM
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An efficient computation of Ak is

3 * -1/2 -1/2
di =S pp U1 ; P symmetric

S* T T*
ai -Spf di

Ak~ = ai diT-

Cholesky Form

The cholesky factorization of a positive-definite matrix is an attrac-

I tive way of computing a square root matrix. Let

Up-I
3 Then we get the following relations

* T
ai=Spf Q Ui

* T -1 T3i XU 1=Q Spf W SfQ

R QT -_1/2

Fk(t) - Spf U1 U1)Q P(t)

* T k T T
Ak =Spf Q C Ui U1 ) Q
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Trucated Predictor

In the sequel, we will be restricting the total number of parameters

allowed in the predictor. The question arises as how to best truncate the

3 prediction equations. Our approach is to use only the most recent past

values. For example, suppose we have used m = 5 in our analysis, but wish

3only to use a one-step-ahead predictor with k parameters. Then our predic-

tor uses only the first k elements of the first row of Ak.

3 Inclusion of Known Inputs

If we have an unknown system with measured outputs y(t) and measured

Iinputs u(t), the analysis of this section holds with only slight modifica-

tions. If we augment the past vector as

y(t)
P(t) = u(t) (3.49)

y(t-1)
u(t-1)

then all of the analyes of this section holds and the predicted values of

I y(t) depend on both past values of y(t) and on past values u(t).

Asp
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4. DIRECT DETERMINATION OF STATE-SPACE MATRICES

We now consider the problem of determining the state-space matrices

directly from the linear prediction solution. Recall from Section 3:U
3y(t)

P(t) = y(t-1) (4.1)

nxl

F(t) = A P(t) (4.2)

If we restrict our problem to a one-step-ahead prediction of y(t), then

y(t+1I t) = A P(t) (4.3)

where A is mxn.

We can write a recursion for P(t) as follows:

P(t+l) - M P(t) + T y(t+l) (4.4)

where

M 1 0 0.. .. .... 0 (4.5)

010.. ..... 0

L0 ..... 0 1010 'a

where all submatrices are mxm.
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5T ImxM (4.6)

0(n-m)xmJ

so that P(t) is in recursive form with a driving term y(t+1).

The state-space formulation employs a Kalman filter for updating. The

3 equations for the time-invariant filter at steady state are

y(t+1j t) =H x(t+l1 t) (4.7)

3x(t+1j t) = 0 X^(tj t) (4.8)

3 (t+1 J t+l) =X^(t+li t) + K [y(t+1) -y-(t+1l t)] (4.9)

Combining (4.7) -(4.9) yields

5 ;(t+ll t) = H 0xc(tt) (4. 10)

1I
x(t+1 j t+1) = (I-KH) IV X(tl t) + K y(t+l) (4.11)

as the state-space equation set. The linear prediction set isI (t+ll t) = A P(t) (4.12)

P(t+l) = M P(t) + T y(t+l) (4. 13)

What we seek to do is match these two pairs of equations by finding the

state-space matrices H, D, K which give the best "fit" to the linear pre- '

diction equations.

Equations (4.7) - (4.9) can also be put in the form
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;(A l t) -H X^(t+l1 t) (4.14)

x(t+l t) 0 (1 - KHOX(tj t-1) + 0 K y(t) (.5

We can solve the problem operationally by using solutions involving delay

operators.

We will first solve the linear prediction equations. From (4.13),

P(t+1) - zM P(t+l) + T y(t+1) (4.16)

where z Is the delay operator: z P(t+1) =P(t)

Solving (4.16):

P(t+1) -(I-zM)- T y(t+l) (4.17)

Thus, from (4.12):

Y(t+1l t) - A (I-zM) -1T y(t) (4.18)%

We can also solve the state-space equations in the same way.

From (4.10) and (4.11) we get

x(tj t) [I -(I-KH) Oz] K y(t) (4.19) P

so that

Yt t) - H $ [I - (I-KH) 1$zJ K y(t) (4.20)

while from (4.14) and (4.15) we get
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x(t+2 I t+l) [I I(I-KH)zl 0-  K 4.1 *4

.Z

x=+ +)-[ - $(-Hz K y(t+1) (4.21) .

y(t+lI t) - H [I - '(I-KH)zI t K y(t) (4.22) ,

If we could get a perfect match between the linear prediction and the

state-space predictors, then the following equation would be satisfied P.'

-I - I1 4 .'

A (I-Mz) T = H t[I-(I-KH)$z] K (4.23)

or, equivalently S

-1 -1 .,

A (I-Mz) T = H[I-$(I-KH)zl $ K (4.24) P.

Using (4.23), we see that exact matching occurs, for dim (x) = n, if

A - H 0 (4.25)

M = (I-KH) 1 (4.26)

T - K (4.27)

Equation (4.26) can be written as

M - I - TA, (4.28)

so that

$ - M + TA (4.29)

In addition, (4.25) gives

H - A - (4.30)

Since H must satisfy A = H (M + TA), it is easily shown that H is in cano-

nical form

%
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IN

H [Imxm 0mx(n-m) ]

If 0 is a valid transition matrix, it is guaranteed to be invertible. Thus

we only need to guarantee the invertibility of M + TA. Using the defini-

tion of M and partitioning T and A appropriately, we see

Onxn mx(n-m) °mxm 1
I(n-m)x(n-m) 0 (n-m)xm

+ MI

(4.31)n- 0

3 The inverse is

0
* = L A-A Aj(4.32)~A2- -A2 -1A -

Thus 0- exists if A2
1  exists. To check this, write equation (4.15) in

partitioned form as

[Al A2 ] =

T T P]2W1] W2plSpf2px  T (4.33)

W, W2
where
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W11 I W12  -1
T - Spp (4.34)

W1 2  W2 2.

Then "

T T
A2 = Spf I W12 + Spf2 W2 2  (4.35)

Now partition Spp as

Spp T (4.36)

LS12 S22
Then

-1 T -1 -1
W2= - SII S12 (S2 2 - S12 S1 SI2) (4.37)

T -1 -1
W22= (S2 2 - S12 S11 S1 2 ) (4.38)

so that

T T -l T -1 -1
A2 = (Spf2 - Spfl Si1 S12) (S22 - S12 S1i S12) (4.39)

Therefore

-1 T -1 T T -1 -1
A2  = (S22 S12 S11 S12) (Spf2 - SpfI S1i S12) (4.40)

Solving for A1 yields

T T T
Al = Spfl Wi1 + Spf2 Wi2  (4.41)

Using .

L p* .,
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4-

-1 -1 T -1 -1 T -1

W - S1 1  + SlI S12 (S2 2 - 1 S12) S12 SL1 (4.42)

we get T--
Al SAI=SpfI SlI +

T -I T T - -1 T -I
[Spfl SII S12 - Spf2] (S22 - S12 S1i 91 2 ) S12 SL1 (4.43)

In summary, we can use the direct solution if the matrix

T T -1 
I

Sce = Spf2 - Spfl SI1 S12  (4.44)

is invertible.

This exact solution is restricted to the case dim (x) = n. This

C61 implies that

dim(x(t)) = dim(P(t))

Truncated Filter e

Given the matrices for the full-order Kalman filter Dnxn, Hmxn, Knxm,

the question arises as to whether there is a suitable truncation to a

lower-oder form required to meet restrictions on the total number of para-

meters. Using the forms of (4.27), (4.29) and (4.30) and assuming an order

k < n, and prediction of the first p future values (p < m), we truncate as

follows:

(I) Okxk is the upper left kxk submatrix of Dnxn

(2) Hpxk is the upper left pxk submatrix of Hmxn

(3) Kkxp is the upper left kxp submatrix of Knxm
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IThen the Kalman filter using *kxk, Hpxk, Kkxp yields exactly the same pre- ".

dictions as the truncated linear predictor of Section 3.

II

I9

_ .

-
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U 5. MODEL SELECTION FOR LINEAR PREDICTION

I We can now consider the problem of model order selection for linear

prediction problems using canonical variates analysis. Assume that the

data y(t) are Gaussian and consider data on the interval [t, s] t<s with

3 unit time increment and let d =s - t+1. The associated data over the

interval are

Y(t,s) = (y(t), y(t+1)......y(t+d-1)} (5.1)

I The one-step-ahead prediction error

ek(t) = Y(t+l) - Ak P(t) (5.2)

is also Gaussian and, from (3.42) has zero mean and variance

E {ek(t) ek(t) T

= Sk(t+l J t)

T-1/2 k -1/2

+ Sf p (U S p Sf (5.3)

where

kic k u uT to
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T -1/2 k -1/2
Sk(t+l1 t) = Sff - Spf Spp U Spp Spf (5.5)

Since Sk(t+li t) is constant for all t due to assumed stationarity of

y(t) we can set Sk = Sk(t+ll t).

From (3.3) the number of parameters is mk. Thus

d T-

AIC(k) =og L1  + ekktl Sk ek(t) + 2 ink

d[logi Skj + tr Ira + 2 mk (5.6) .

where . denotes determinant and lm is the ixin identity matrix. The AIC

is thus

AIC(k) -d log Ski + m + 2 mk (5.7)

Since d and m are fixed, we see that the optimum order k is the one which 9

minimizes A

log I Sk + mk (5.8)

for d > > 2(m)k this is approximately equivalent to minimizing

s I (5.9)

S d

which can be recognized as the forward prediction error (FPE), see Akaike

(1973). In the sequel we will use (5.8) instead ff (5.9) since the data .,- ,

interval will sometimes be relatively short. %
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6. DETECTION OF ABRUPT MODEL CHANGES

In this section we apply the tools developed so far to the problem of

abrupt change detection. We then present some experimental results.

'I.,

6.1 Algorithm Development

Consider the situation depicted in Figure 6.1, in which the true time-

series model changes from M0 to M1 at time t-dl, where t is the present

time. Suppose SI

MO 
I

historical testing

I interval I interval I

t-do t-d1

Figure 6.1 Changing Time Series ModelI
that we have data back to time t-do and that the true model is MO in the

interval (t-d0 , t-dl).

We wish to detect this change in the model. In this example, fitting a

single model to data over the interval (t-d0 , t) should result in greater

fit errors than fitting one model over the interval (t-d0 , t-dl) and

another model over the interval (t-dl, t). The crucial issue is to

determine an appropriate selection measure so as to be sensitive to

-449-
111 11 IN

III, Mae'



S.

changing models, while at the same time not being too sensitive to noise.

Over-sensitivity to noise will result in deciding that model changes have /

occurred when, in fact, they have not. Low sensitivity to model changes

will result in missing changes which have occurred in the model. Another

obvious problem is how best to select the testing intervals, (t-d0 , t) and

U (t-dl, t), to minimize the time required to achieve accurate detection. We

consider first Lhe selection measure.

Over the interval (t-d0 , t) we can find the model which minimizes the

AIC:

d0 k

AIC (k) = - 2 ) log p(e(t-d 0 + i) E0 ) + 2 M(k) (6.1)

where M(k) is the number of independently adjustable parameters and where we

have assumed a sampling time increment of one, for convenience.

If we now divide the interval (t-dO , t) into two subintervals,

(t-do, t-d1 ) and (t-dl, t), we determine minimum AIC models for each subin-

I terval

d0 -d 1  k

AIC(k =-0 + 2 M(k) (6.2)AIC0(k) = - 2 log p(e(t-d 0 + i) 1 ) + 2 M(k) (6.3)

i=l- 
,+1

d 0
AlCI(k) =-2 i-od log p(e(t-d 0 + 0)I + 2 M(k) (6.3)

~~Now assume that 
.,
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k* arg min AIC(k)

-o arg min AIC0(k)

k* =arg min AICI(k)

-*-ko*, 6kl*
and let the corresponding models be parametrized by 0 00~

respectively.

Then the model selection criterion is based on comparing AIC(k*) with i

AICO(ko*) + AIC(kl*) and selecting the model(s) which give the least value.

We can simplify the calculation in the case that do > > dl and the model

does not change too much, in which case we expect that k* ko*,

0 k , 0ko. In this case we can define the AIC difference as

AAIC* AIC(k*) - AICO(k0 *) - AICIjkl*)

--2 1 log p(e(t-do + i) 0
i=d0-dl+l

+ 2 0 log p(e(t-do + i)l Oi ) - 2 M(kl*) (6.4)
i=do-d1+l

and the decision rule is

<0 ; declare "no change"

AI {> 0 ; declare "change"(.5

Note that AACmay be written as

dJ kP.

tAAIC* =2 lopg~ -d+i 2 M(k1*) (6.6)
i=ld 0-d1+l p(e(t-d +i)l 5k* )
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which is the likelihood ratio in favor of the best model in the interval

(t-dl, t) to the best historical model evaluated over the same interval,

but biased off by the number of parameters of the best model in the inter-

val (t-dl, t).

If we specialize this result to the linear prediction problem under

study here, we see that

AAI* d flgiS(k*) + tr S(k*) S(k*)-I

dl {log Sl(kl*)l + ml

- 2 mkl* (6.7)

where S(k*) is the theoretical covariance matrix of prediction errors for

the historical model fitted on the interval (t-do, t-dj), SI(kl*) is the

theoretical covariance matrix of prediction errors for the model fitted to

the data on the interval (t-dl, t), and S(k*) is the actual covariance

matrix of prediction errors for the historical model, evaluated on the

interval (t-dl, t). Now let AS(k*) = S(k*) - S(k*).

Then

AAIC* di log S(k,) exp 2 mk + tr AS(k*)S(k*)- I
S I (k1 ) L dl I

(6.8)

Thus our decision parameter is '

lot
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-00

Y log S(k*)l 2 mk1  + tr AS(k*)S(k*) (6.9)
S1(k*)l

and the decision rule is

< 0 ; declare "no change"

> 0 ; declare "'change" (

6.2 Experimental Results

The abrupt change detector was tried on a changing autoregressive

model. On the interval t 6 [1, do], the actual model was

y(t) = 1.65 y(t-1) - 0.665 y(t-2) + u(t) (Model 1) (6.11)

where u(t) was zero-mean white Gaussian noise with variance of 1. This

model has two real stable poles at 0.95 and 0.7. The actual model was then

changed to

y(t) = 2.5 y(t-1) - 2.11 y(t-2) + 0.595 y(t-3) + u(t) (Model 2) (6.12)

on the interval t 6 [do + 1, do + d,]. This model has three poles at

0.7, 0.9 + 0.2i, 0.9 - 0.2i. 4

The first trial used do = 80, dl = 20. The resulting covariance matri-

ces on the interval [1, do] were

11.0808 10.9642 10.7662 10.5378 10.2860 '

10.9642 11.0018 10.8992 10.7144 10.4733

Spp I  10.7662 10.8992 10.9484 10.8566 10.6614

10.5378 10.7144 10.8566 10.9144 10.8144

10.2860 10.4733 10.6614 10.8144 10.8619 J
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11.0439 10.9089 10.7124 10.4822 10.2222
10.8318 10.6534 10.4500 10.2258 9.9723

Spf 10.5900 10.4015 10.1993 9.9753 9.7098

10.3510 10.1607 9.9542 9.7122 9.4267
10.0978 9.9061 9.6859 9.4296 9.1241I

(11.1612 11.1214 10.9673 10.7430 10.4764
1109937 10.7336S ff I  10.9673 11.1760 11.2697 11.1831 10.9711
10.7430 10.9937 11.1831 11.2537 11.1474
10.4764 10.7336 10.9711 11.1474 11.2135

i I

By performing an SVD, we obtain

0.6655 0.4685 -0.4465 0.3351 -0.1607

0.4239 -0.2456 0.7166 0.4911 0.0726
U 1  0.3888 0.2135 0.3803 -0.7320 -0.3504

0.3596 -0.1033 -0.1198 -0.3149 0.8640

0.3112 -0.8148 -0.3579 -0.1072 -0.3157

7.2182 0 0 0 0

D =0 0.1863 0 00
0 0 0.1032 0 0

0 0 0 0.0207 0
-- 0 0 0 0 0.0165
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0.4605 -0.6945 0.5094 -0.1666 0.1355

0.4569 -0.2407 -0.4337 0.4939 -0.5489 47
vI  0.4493 0.0706 -0.5097 -0-0174 0.7301

0.4398 0.3337 -0.0833 -0.7382 -0.3787

0.4289 0.5860 0.5344 0.4279 0.0627

J0

The resulting values of AIC(k) for different orders k are, neglecting

constants,

AIC(I) = - 2.150

AIC(2) - 2.264
AIC(3) = - 2.243
AIC(4) = - 2.195

so that k* = 2, which is the correct order, is selected. The estimated ..

model is y(t) = 1.843 y(t-1) - 1.0081 y(t-2). -

On the interval [do + 1, do + di, the covariance matrices were

1.7647 1.7624 1.6008 1.3214 1.1104
1.7624 1.9451 1.9171 1.7039 1.4781

S = 1.6008 1.9171 2.0772 2.0067 1.8375
1.3214 1.7039 2.0067 2.1332 2.0981
1.3214 1.7039 2.0067 2.1332 2.0981

r1.6394 1.4902 1.4677 1.6660 2.1622
1.4905 1.2481 1.1833 1.3743 1.8518
: 1.2626 1.0238 1.0057 1.2397 1.7310

pf2 0.9897 0.8111 0.8554 1.1288 1.6058

L 0.8331 0.7084 0.7783 1.0178 1,4219
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1.7733 2.1250 2.5776 3.1739 3.829927

S2.7981 3.9927 5.7802 8.0268 10.5912

~Performing the SVD yields.

0.9394 -0.1382 -0.2689 0.0560 -0.1513

0.0073 -0.8145 0.4181 0.3600 0.1791
U 2 = 0.1124 -0.1507 0.5108 -0.7606 -0.3538

0.2936 0.5410 0.6957 0.3074 0.2065

0.1361 -0.0455 -0.0891 -0.4408 0.8816

3.5041 0 0 0 0

0 0.6770 0 0 0
2 =0 0 0.2473 0 0

0 0 0 0.0326 0

0 0 0 0 0.0094

0.3352 -0.7554 0.4483 -0.2558 0.2250
0.3611 -0.3926 -0.3766 0.6815 -0.3305

The resuling values of AIC(k) are, again neglecting constants,

-56.
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AIC(l) - - 0.960
AIC(2) - - 2.266
AIC(3) - - 2.323 -

AIC(4) - - 2.223
AIC(5) - - 2.123

so that k* = 3, as desired. The estimated model is

y(t) = 1.9456 y(t-1) - 1.1485 y(t-2) + 0.0483 y(t-3)

Note that, with the sparse amount of data available, the coefficient

errors are relatively large and the two estimated models are relatively

close to each other.

The AAIC criterion was used to test for a change in the time series

coefficients. Since we have only one output, the criterion is

S(k ) S(k ) - S(k ) 2 k 1  ( 1AIC log * l(6.13) '

Sl(k I ) S(k*) dl

Using k* = 2, kl* = 3, S(k*) = .0940, St(kl*) = .0726, S(k*) .0903,

dl = 20 yields,

AAIC = 0.2583 - 0.0394 - 0.3 = - 0.0811

so that a "no change" decision is made, but just barely. Note that the

actual covariance on the second interval using Model #1 is actually less

than for the first interval, as a result of using only a small testing

interval.

We next tried the test over larger intervals, keeping a 4:1 ratio bet-

ween the historical interval and the testing interval. The intervals used

were 160 for the historical interval and 40 for the testing interval.

i0
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The covariance matrices for the historical interval were

6.4177 6.3504 6.2021 6.0182 5.83351

63504 6.4177 6.3504 6.2022 6.0183

S 1p 62021 6.3504 6.4170 6.3494 6.2006

6.12 6.2022 6.3494 6.4153 6.3470

58335 6.0183 6.2006 6.3470 6.4119J

6.3504 6.2014 6.0149 5.8244 5.6495

6.2013 6.0147 5.8242 5.6493 5.4869

S =f 6.0169 5.8282 5.6544 5.4919 5.3310 P

5.36 5,6606 5.4999 5.3387 5.1657

56655 5.5089 5.3502 5.1770 4.9871

r6.4187 6.3529 6.2057 6.0202 5.8294'
6 .3529 6.4251 6.3642 6.2194 6.0332

S ff1  6.2057 6.3642 6.4436 6.3856 6.2387}

5.8294 6.0332 6.2387 6.4058 6.4835

The results of the SVD were

*0.6995 0.4349 -0.2706 0.4797 0.1353'

0.3997 -0.7769 0.1851 0.3162 -0.3202

1 0,{O3573 -0.0762 0.5794 -0.3109 0.65891

0.3481 0.3521 0.3443 -0.4460 -0.6613

0.3197 -0.2785 -0.6620 -0.6118 0.0879j

5.3574 0 0 00

0 0.1611 0 0 0

D0 0 0,1026 0 0

o 0 0 0.02330

0 0 0 0 007
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0.4693 -0.8139 0.1915 -0.2626 0.1082
0.4616 -0.1011 -0.5037 0.6123 -0.3847

V 0.4489 0.3182 -0.4470 -0.2359 0.6647I0.4342 0.3743 0.1072 -0.5518 -0.5962
0.4204 0.2933 0.7059 0.4426 0.2075

The values of AIC (k) were

AICCI) = - 2.3072 S

AIC(2) = - 247
AIC(3) = - 2.4795
AIC(4) = - 2.467
AIC(S) = - 2.4545

so that k* = 2 is selected. The estimated model is

y(t) = 1.6777 y(t-1) - 0.7178 y(t-2)

S which is much closer to the actual model (6.11), due to the increased data length.%

5 The model over the testing intervral was next found. The covariance matri-

ces were

f20.6940 20.2655 19.2378 17.6822 15.7286I20.2655 20.4909 20.0699 19.0219 17.4532
S = 19.2378 20.0699 20.3055 19.8666 18.8081

17.6822 19.0219 19.8666 20.0831 19.6334 5

DL 15.7286 17.4532 A8.8081 19.6334 19.8397,

20.4906 19.6758 18.3328 16.5805 14.5504'

19.4580 18.1453 16.4322 14.4431 12.2933 . %

S f 79266 16.2349 14.2789 12.1690 9.9935
1f ~ 5. 9897 14.0540 11.9786 9.8473 7,7296

N 37888 11.7306 9.6332 7.5625 5.5657)

, A,
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20.9398 20.7220 19.8651 18.4736 16.6762
20.7220 21.1467 20.8735 19.9608 18.5264

Sf = 19.8651 20.8735 21.2276 20.8927 19.9440
ff2 18.4736 19.9608 20.8927 21.1853 20.8230

16.6762 18.5264 19.9440 20.8230 21.0965

The SVD yielded

0.8905 0.4123 0.0935 -0.1344 -0.1008
0.3705 -0.4959 -0.6851 0.2227 0.3128

U2 0.2259 -0.4936 0.5293 0.5778 -0.30230.1280 -0.4076 0.4613 -0.5170 0.5808
0.0473 -0.4175 -0.1701 -0.5755 -0.6807

9.7032 0 0 0 0

0 1.7256 0 0 0

0 0 0.0533 0 0
2= 0 0 0 0.0158

II0 0 0 0 0.0117

[0.4557 -0.6682 0.5738 -0.1019 0.0784-

0.4670 -0.2754 -0.5643 0.6055 -0.1447

V = 0.4617 0.0760 -0.4483 -0.6411 0.4112
2 10.4410 0.3630 0.1371 -0.2325 -0.7752

0.4081 0.5832 0.3640 0.3974 0.4504

The resulting values of AIC(k) were

AIC(1) = 0.3771
AIC(2) = - 2.7253
AIC(3) = - 2.7595

LIN AIC(4) = - 2.6753
AIC(5) = - 2.6253

so that kl* = 3 was selected. The resulting estimated model was

y(t) = 2.3931 y(t-1) - 1.977 y(t-2) + 0.7421 y(t-3)

ORS
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which is much closer to the actual model (6.12) than the estimate based on

half as many data points. .

The AAIC criterion was then applied to test for a model change. Using

(6.13) with k* = 2, k* = 3, S(k*) = 0.0811, SI(kl*) = 0.0564,

S(k*) = 0.1119, we get

AAIC = 0.3632 + 0.3801 - 0.15 0.5933 (6.14)

which yields a "change" decision. By comparing (6.14) to (6.13) we note

several things. The first term, which is log S(k*) - log Sl(kl*) now more

strongly indicates a change, due to better model fit. The second term,

which is the effect of modeling error on the measured error covariances,

also more strongly indicates a change due to increased data length, which

produces a more accurate estimate of the true error covariance during the %

testing interval, using the "no change" hypothesis. Finally, the last term

more strongly indicates a change, since the bias for a "no change" decision

is reduced due to increased data length. Thus we see that all three terms

in the AAIC criterion contribute to the final decision, and each one is of

importance in achieving an accurate decision.

W.

% 5.
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7. DETECTION OF SLOW MODEL CHANGES

We now consider the detection of slow, essentially continuous, modelIN
changes. What we wish to achieve in this case is an appropriate data

length over which to fit models. If the data length is too short, then

there will be a tendency to overfit the model to the noisy data, leading

to larger prediction errors. If the data length is too long, then the

effects of parameter variations will begin to dominate the prediction

errors.

In order to generate an appropriate measure by which to trade off these

M two characteristics, we again use the AIC criterion, but in a different

way. Assume we have data over a time interval I = {1,2, ... , n} and sup-

pose we divide this interval into subintervals of length W:

j II = {1,2, ... , W1

12 = {W+l, W+2, ... , 2W},

etc.

Then an appropriate measure for data length determination is the average

per sample entropy. In terms of the AIC criterion we define

AIC..

NC W W AICp(ki)

where AICp(ki*) is the minimum prediction AIC for the ih interval I, ki*

is the optimal model order for the i-h interval, and NW is the number of

intervals of W over the whole data interval I. The prediction AIC uses the

forward prediction error variance (cf eq. (5.9)) rather than the fit error
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variance, since we are interested in the error over the next interval, not

the one over which the model was fitted. This has the effect of increasing

the penalty on the number of parameters in the AIC criterion. |

The form of AICp is

AICp(ki*) = AIC(ki*) + M(ki*)

Experimental Results

In order to test this criterion as the basis for data length selection,

we considered a second-order AR model

y(t) = al(t) y(t-1) + a2(t) y(t-2) + n(t)

where n(t) was zero-mean white gaussian noise with unit variance. The time

varying coefficients were selected so that the two system poles were on the ,'

unit circle in the z-plane. This yields: al(t) = 2 cos 0(t), a2 = -1 where

the roots are: cos 0(t) + i sin 0(t) and cos 0(t) - i sin 0(t). The time-

variation of O(t) was selected as 0(t) = 0(0) + 2 7 f t, where f is a

selected frequency. Two values of f (.0001, .001) were used in the experi-

ments. Total data length was 1000 time points. The results for Case I

(f = 0.001) are shown in Table 7.1, using 0(0) = 0.2. The result is that

the optimal indicated data length is 10-12 samples and corresponds to the %

case in which the average coefficient change over the fit window is in the

range of 0.80 - 0.96. Over the entire data length of 1000 samples, the

value of al starts at 1.64, deceases to - 1.90 at t = 400 and then

increases to 1.90 at t = 1000. Thus, the average coefficient change over

the optimum data length is generally more than 40% of the coefficient

value. 
..

-%
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5Table 2 shows the results for Case 2 (f - 0.0001) in which the optimal

data length is found to be 30 samples. This is, of course, increased over

I that of Case I since the coefficients vary much less rapidly - on the order

of 0.019, on the average. Note that the rms prediction error ce evaluated

over the fit set generally decreases monotonically with data length and

cannot be used as a selection criterion.
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Table 7. 1

Data Length Estimation for Case I (f = 0.001)

W AIW A A ae Cal Ga2

100 0.521 0.768 1.817 0.163 0.086

20 -1.364 0.159 0.603 0.118 0.109

15 -1.479 0.119 0.508 0.141 0.110

12 -1.557 0.096 0.520 0.116 0.108

10 -1.557 0.080 0.487 0.152 0.139

8 -1.512 0.064 0.469 0.133 0.125

5 -1.265 0.0399 0.389 0.193 0.200

W = data length of window

AIC W = average AIC

AM - average change of Al over window

oe = rms one-step-ahead prediction error over fit window

aal = rms error in al estimate

g aa2 = rms error in a2 estimate
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Table 7.2
Data Length Estimation for Case 2 (f 0.0001)

W AICW aeaa1 Oa2

100 -1.959 0.061 0.519 0.016 0.018

50 -2.131 0.031 0.486 0.032 0.031

40 -2.152 0.025 0.464 0.055 0.049

30 -2.153 0.019 0.437 0.085 0.068

20 -2.052 0.012 0.462 0.507 0.046

10 -1.835 0.0061 0.455 0.065 0.062

% k?
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APPENDIX

MAXIMUM LIKELIHOOD ESTIMATION

We present here some basic background on maximum likelihood estimation,

which is used throughout this report. 1-'%0-

The likelihood function for a sample x1 , x2, . xn parametrized by a

parameter 0 is

n
L= iT p(x t jj) (A.1) I "

i=1

Assume the xi are drawn independently from the true distribution

p(x O). Then L is the joint distribution function of x1, x2, . .

and -

f..f L dx, . . • dxn I (A.2)

Differentiating wrt 0:

dx,0; -L row vector

or 5

g L dx, dxn  =0

or S.

ogL. L-

E alog =0 (A.3)

Differentiating again " ,
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%

2  dx, •dxn  0 %

Now

T33 2log L I__L_ 9L~ + 32L
302  L2 ao 0- L a02

so that

T
321og L alog L log L + 1 2L

a02  /o 3a / a02

Thus

E 2iog L F alog L (log L
* EL a2 J ® /a®

Now

log L alog L + (00 -;)T 
2log L

where C is the maximum likelihood estimate which satisfies

3log L =0
a0

and 00 is the true parameter value.

Y.Thus
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alog L (n- T 21og L ~Aa0 2  (A .4 )

_i e 0

Now define covariance matrix

iF 3log L og L -E 21oL (A.5)

CE Lk aae J L) 6and factor C as C W W T

I Write (A.4) as

log L w-T = (0 0 )T a2 log L w-T30 1 o W 0 0 )

The right hand side is approximated asI
(00 _ 6)T C W- T . (00 _ 6)T W

The left hand side is a normalized gaussian variate since

T

E alog L 1- alog L W-T 1 I
Sao ) aO 1

Thus, the right hand side is also a normalized gaussian variate and

E{[(O0 - )T wIT [(00 - 6)T W,} I

* which yields
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E [G ) (00 -8)1 . C- (A. 6)

3 C is the Fisher information matrix, which is the inverse of the covariance

matrix of the parameter estimation errors.
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