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1. INTRODUCTION

1.1 Overview of the Adaptive Time Series Analysis Problem

Adaptation in time series is an important problem in a number of DOD
systems and has many applications in various commercial industries. This
is an especially difficult problem in problems requiring realtime adap-
tation to process changes since such a procedure would have to be comple-
tely automatic and reliable. Adaptation is necessary in systems where the
dynamical characteristics change with time in unpredictable ways, or where
the nolse disturbance process characteristics vary with time. Examples of
systems that require adaptive time series analysis are the adaptive
suppression of aircraft wing flutter, identification of the dynamics of
large flexible space structures, detection of failures in aircraft from
subsystem failures of battle damage, identification of missile aerodyna-

mics, target tracking, and various signal processing problems.

The solution to the adaptive time series analysis requires several
advances in current time series methods. At the core of the problem is the
need for a fundamental statistical approach to the adaptation problem that
poses the problem in a meaningful way and that leads to computable solu-
tions. To solve the online adaptation problem, a reliabhle and automatic
time series modeling procedure is required that is lacking in previous

methods. The current research provides

® A sound statistical basis for posing and solving the adaptation

problem
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® A numerically and statistically reliable online computational

procedure

This approach has been used in conjunction with a new high resolution
S, -

system identification method utilizing canonical variate analysis (CVA) for S:b&b
d )

L2

the determination of the dynamics of high order multisensor systems with a a1

L,

small data length (Larimore, 1983b). This algorithm can be implemented on “??as
At
highly parallel processors such as a systolic array. This makes practical ﬁ:ﬂﬁjx
)

the consideration of many different system characteristics to determine the Geih

@

best for modeling the observed sensor data and correlational relationships h2¥'#
by

ORONG)

between the many sensors. The system characteristics that have been suc- ﬁﬁyizd‘
H:.U“.(‘

cessfully determined adaptively are the dynamical state order of the ?ﬂ-‘;‘:!t':
£y J’

system, the presence of correlated disturbances, the optimal data length to :51N§
fﬁ‘ﬂﬂ

use in tracking a time varying system, and the optimal data interval for ‘ ﬁh

Y
P 0‘ .0,

detection of an abrupt change or other event in the data.

The CVA time series analysis method has been applied to the design of
an adaptive flutter suppression problem for suppressing wing flutter or

aero-structural vibration in aircraft. While considerable progress has RO
AN

Ot

been made in the problem of adaptation in terms of identification of time I":::,:.l".;f
iy

series models, adaptive time series methods which can efficiently track and ik

detect time varying processes would further improve the svstem. In such a

system the wing dynamical characteristics can change instantaneouslv when a

wing store is dropped, and the new wing dvnamics are unknown and mav be

unstable resulting in a growing oscillation. If the unstahle mode 1s not

e
4?@-

detected, accurately identified, and stabilized by control feedback in less
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l than a second, then the aircraft can lose a wing. The CVA algorithm using iy
entropy methods for deciding model state order are being implemented on a e .'.
\
. vector array processor which will identify high order systems with dozens
Rigt
of dynamical states and multiple inputs and outputs in fractions of a ghyY
oy
l second. This system has been tested in real-time simulations, and was suc- ::
A\
bty
a cessfully demonstrated in wind tunnel tests at the NASA Langley Transonic 2
L,
A\_f
Dynamics Wind Tunnel. It is expected that highly parallel processors such ':?
Y,
gg as systolic array processors could result in a speedup of many thousands of gi
Tt
times which would be required for some very large scale real time adaptive 9
ﬁl
g problems. "\",
i.::"‘i
\ “l
| a 1.2 Signal and Fault Detection !
| P
’\1 {]
] '. &
rg A Comprehensive survey of fault detection methods is given by Willsky P ':
ot
| ol
| (1976). See also Mehra and Peschon (1971), Willsky and Jones (1974), "&
U
i Willsky (1980), and Isermann (1984). The type of abrupt changes in a ®
G
system that are considered are of the form o
i RSy
A
WO
x(t+l) = dx(t) + Gu(t) + w(t) + m(t) (1.1) o
'
y(t) = Hx(t) + Au(t) + Bw(t) + v(t) + N(t) (1.2) )
.
LYy
8
gs o)
where u is the input vector process, y is the output vector, x is the state %
gg vector, and w and v are white noise processes that are independent with ey
4
covariance matrices Q and R respectively. These white noise processes gé:
«w AN
gg model the covariance structure of the error in predicting y from u. The ?ﬁ_
®
abrupt changes are in the form of the time the functions m(t) and n(t) G$
Y
(i

introduced into the state and observation equations. Fault detection is

thus the detection of the presence of such nonzero functions.
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For various hypothesized forms of the functions, i.e., for jumps in 3‘_}_#5:_’
AN
various components or specific combinations of the components, a particular ;g;' ‘
A
detection computation is devised which requires implementation of a Kalman .- &
i
filter. This leads to statistically most powerful likelihood ratio tests "::::'“
0.‘(‘ h
} 3
of the various failure hypotheses. An optimal solution to the failure ..':::::E::;
nalata!
‘ detection problem formulated in (l.1) and (1.2) is thus obtained. ,.'_‘?
\ r‘r ) ':.
ot
| There are however several more general failure detection problems not ,:::::,.
A
ey
! of the form of (l.1) and (l.2). The approach permits only the consideration of Al
| @
simple hypotheses, i.e., where the failure functions m(t) and n(t) are of :;:::u
o
‘:'l“t
‘ the form of an unknown scalar amplitude parameter multiplying a function of z :::::::‘
X
g,
known form. More general functional forms such as two components with dif- _,',.!‘!:: i
ferent unknown amplitude parameters multiplying the known functions E::‘:_
v Y
v v
L2 3%
requires maximum likelihood parameter identification at considerable com- "{'3"
o .
LSt
putational expense and loss of numerical reliability. Furthermore, the ¥y #
. X
problem of unknown failure time leads to a considerable increase in the :.:,, "|:
N Y
Ca
required computation, and no theoretically sound decision procedure has ':.,:,' ':.‘
P
been proposed for choosing the failure time. Jﬂ"
-
__'y.),'\'\s
The general case of changes in the system dynamics or correlational _,\: el
w h
O 7
characteristics of the disturbance or measurement noise processes cannot be \,': o
A
g A
handled. Such cases require general time series analysis parameter iden- h
YRR
Ay’ S
e A
tification methods which are not reliable for online application to high ‘.\.".-.:-5.
r:.:__.c,\
state order multivariable systems as discussed in Section Multisensor :.'\;-:.'.:."-
9 ..‘:_,.'.\
System Identification. Isermann (1984) gives a survey of current fault @
Al
o
detection methods and concludes that: "A unique calculation of the process :f.-"
‘N.
NS




it
%A
ey
A I
o
coefficients and a parameter estimation with high precision is only ,:.-:',-
l‘.};
EAC Y,
possible for low order elements bLetween measured variables. Therefore the .-:ﬁ':"
e
measured variables should be selected such that the process is divided in "'\J'-‘
oy
first order elements or, in other words, all state variables should be r;:g-
N,
measurable. Easy to implement parameter estimation methods for continuous- : f'".r
a
time modles to be used on-line, real-time and in closed loop need to be ?
"’- "n
r_'.-_;.":
developed.” The requirement of measuring all of the states is not ;-',-;-,’_A,
P
realistic in most situations especially in general multivariate time series 4"/
AR
and system identification problems. Fortunately, the CVA system iden- .__.'
el
oot
tification method does not require this, but indeed is an online, real-time .:':'::;::".n':.:
JO
0y
method that gives the same accuracy in either open or closed loop. "::::
Lt
The issues of adaptation are not addressed in the fault detection :::-:'_’_\.
ST
r
LS
literaure except in simplistic ways. The present state of the art in adap- -ﬁ:ﬁ;
e i
- e NN
tation for failure detection appears to be the work of Hagglund (1983) s
discussed in the next section, and is just beginning of adaptive approaches “J,‘_:-l‘ﬁ_'f
P
:J'.':-"\' i
which consider fundamental issues in adaptation. ".t“f\?‘-r
Ay
WD
1.3 Adaptation to Changing Processes S
!.fN,‘
x,':-."\.
Concepts of adaptive systems have been around since the 1950's \‘:'_.','::
Ny
INENS ¥
involving various senses of adaptation. The present literature on the suh- :?(?3 s
3 -
ject includes a number of methods such as recursive computational schemes, b }
~
exponential forgetting, lattice computational methods, etc., which have \)\.r !
i
b
certain "knobs"” that allow tuning of the algorithm to accommodate changes t g
S
in the characteristics of the actual processes. Reviews of these and :J‘ J".:
R
>
related methods are contained in several recent special issues of technical ;*': i
R
<
lJ-I‘
4 ’N
V\\'\.
'.t
sV 0t
R
—5- M
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journals and books (Special Issue on Adaptive Control, Automatica, Vol. 20,

No. 5, 1985; Special Issue on Linear Adaptive Filtering, IEEE Trans. on
Information Theory, Vol. 30, No 2, 1984, Honing and Messerschmitt, 1984).
While these methods do permit some degree of adaptation to process changes,
the methods of adaptation are ad hoc, and no sound underlying statistical
principle for adaptation is proposed or demonstrated. As might be
expected, these methods can work poorly on certain cases because of the

lack of a sound statistical basis.

In particular, the recursive prediction error and lattice methods are
convenient due to their recursive form and provide an estimate at every
observation (Friedlander, 1982a, 1982b, 1983; Ljung and Soderstrom, 1983).
Also, the recursive algorithms can be sued for adaptation by exponential
weighting of the past data (Wellstead and Sanoff, 1981; Irving, 1979; Evans
and Betz, 1982). But the rational for exponential weighting has not been
given a sound fundamental justification, but is used largely due to its
ease of use. the choice of the exponential weight has been ad hoc and
susceptible to misinterpretation of changing noise variance levels as time

varying changes in the dynamics (Hagglund, 1983).

The fundamental problem in adaptive time series analysis is adaptation
to time varying processes. The essential problem is the determination of
the characteristics describing the rate at which the process is changing.
This problem has received very little in-depth treatment in the literature.
Most of the difficulty can be attributed to the discrepancy between the

true and assumed uncertainty in the measurements. Adaptive control schemes

-6-
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are notoriously optimistic about the quality of the parameter estimates

because the time varying nature of the process is ignored.

A notable exception is the recent work of Hagglund (1983) which takes x

.
LA

an information handling point-of-view. This approach leads to a more

=
5

Yy
2
LSS

realistic appraisal of the accuracy of the parameter estimates and con-

=

sequently the value of new measurements which become available in time.

f"f

hY

h

EE AR
E-‘~

h )

[4
[ X4

\rg

Two classes of time varying systems are considered:

(l:
)
[ #

s

»

."u.
L4

..
s

sy

® Processes with abrupt changes

ﬁ
e

<
X

.. “-
‘.‘-
22

s

-
-

® Processes with slowly varying changes.

s

Within each of these classes, changes are considered in the process dyna-

mics and/or noise variance. \

For abrupt changes, the fault detection approach is taken. The central &}hﬁ"ﬂ
idea is to monitor differential changes in the parameter estimates to *-'ia|
detect abrupt changes. A new procedure is derived by Hagglund which e

)
requires no apriori information and is very sensitive to jumps in the para- WO
meters. This procedure is shown to have very good properties in both *;f¢?ﬂ

A LKLY

theory and practice. This works well for parameters of the dynamics as Eﬁ?ﬁﬁ'
~

well as those of the noise variances in the simple cases of low order ol

systems. b }:c

)
The problem of slowly varying parameters has plagued manvy adaptive *ﬂahﬁf

control schemes. Although the concept of discounting the old data using a

forgetting factor has been in use for a long time, the problem of how to
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relate this factor to the data has been elusive. The principal proposed by

Hagglund 1s to discount past data in such a way that a constant amount of
information would be retained if the parameters were constant. The quan-
titative measure of the information used is the inverse of the parameter
estimation error covariance matrix which is the Fisher information matrix.
Theory and simulations show that this works quite well in low order and
well conditioned systems. However for high order and multisensor systems
with illconditioned parametric structure, the algorithms are not so well

behaved.

le4 Multisensor System Identification

System parameter identification from observed measurements is a crucial
part of the adaptive multivariate timeseries analysis problem. It is
necessary to adapt anot only to changes in the input to output charac-
teristics of a system, but the correlational characteristics of the distur-
bance and noise processes must simultaneously be determined. The
feasibility of adaptive methods requires first that a reliable online

multivariate time series identification procedure be available.

There are several difficulties with currently available methods and
software for the identification of system dvnamics and noise charac-
teristics. Current methods include the self tuning regulator (STR) (Ljung,
1983; Astrom, 1973; Astrom et al, 1973, 1977), maximum likelihood estima-
tion (MLE) (Mehra and Tyler, 1973; Larimore, 198la), Box-Jenkins (BJ)

methods (Box and Jenkins, !976), and a variety of heuristic approaches.

The current state of the art in both MLE and BJ require that an analyst he
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LoVt
i
b
involved in the procedure, and the required number of computational itera- '::.S:::
N
tions is not bounded. The STR has been applied successfully to simple pro- ":2:&::
KO
cesses, but 18 not completely reliable for general processes particularly ’
$.
when multi-input, multi-ouput systems are involved. In addition, the ?ﬁ&-\.
Y
oA
recursive prediction error algorithm used in the STR requires a good ini- s ,;
2 50 W
' tial estimate and so is not suitable for short data where no apriori data ‘d"u'?a
()
ottt
. N
is available. The heuristic approaches tend to be special purposes and are ‘;'c'
et
KRR
rather unreliable in general applications. . 'i::‘::l
DM
@
b
Of the current approaches to multivariate time series identification :'::o:"::"
18 5
4.8 ‘3‘
which are high resolution, i.e., make efficient use of the observational '::E',:a::‘
)
information, most use the ARMA (autoregressive moving average) represen- y “.:?
., {
tation for the process. For multi-input multi-output systems this is not a “‘%{;
helaels
globally well defined parameterization which is a major cause of the dif- ""a::
(4 .n,i
ficulties in the present identification methods (Gevers and Wertz, 1982). A L J
A
consequence is that there is no single parameterization which is numeri- f‘-\,ﬂ\'»'
e
Ll
cally well conditioned, and known algorithms can be made to fail for a par- '
.'I.-»
ticular choice of system. The system identification problem is well ..,.-:@,’
."“', t
(]
defined in that the class of models does have best models in a maximum 5':::52.':
I
likelihood sense (Larimore, 198la), but the ARMA parameterization is not :',.n:::.f
1‘."1&"
unique so that for cases such as pole-zero cancellation there is a whole 2
equivalence class of models with equivalent characteristics. 1In the sequel :}‘,S':fr“
L%
S
this difficulty in parameterization will be resolved by the use of state .:’_-\.‘»'s”
'J.lf, .n
space models, and stable numerical methods will be described for statisti- AN
g
cally reliable online identification of multivariable time series. ‘:_‘, »
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1.5 Adaptive Time Series Analysis Using Predictive Inference and Entropy

Recently a very general predictive inference approach to statistical
modeling has led to a fundamental statistical inference justication of
negative entropy as the natural measure of model approximation error

(Larimore, 1983a). This development has a number of very attractive

features:

® It applies to completely general modeling problems including

nonparametric methods.

® It applies exactly to small samples.

® Only the fundamental statistical principlaes of sufficiency and

repeated sampling are used.

® It applies to time correlated problems such as time series model

identification and tracking.

® Statistical inference can be fundamentally viewed as model

approximation.

Early developments in predictive distributions are very old, although
modern approaches apparently begin with Jeffreys (1961, p.143) who used a
Bayesian approach, as has much of the work following (Atchison and
Dunsmore, 1975, preface and p. 39). The approach taken here has heen sti-
mulated by Murray (1977, 1979), the work of Akaike (1973) and model struc-

ture determination problems (Larimore, 1977a).
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1.6 Initial Results Indicating Feasibility

SSI has been in the forefront in developing the CVA and entropy
methods. Here the related projects are discussed along with preliminary

results indicating the feasibility of the proposed methods.

The original stochastic realization method of Akaike's (1975) was
further developed into a commercial software package for mainframe and mint
computers by Mehra (1978) and Mehra and Cameron (1976, 1980). Further
generalizations to input output systems along with refinements in com—
putational speed and accuracy were developed by larimore (1983b) and
Goodrich and Larimore (1983) leading to the current timeseries analysis and
forecasting package, Forecast Master (Trademark of SSI), for the IBM/PC.
This package is in widespread use in utilities, banks companies and

universities.

This algorithm has been the basis for several studies in online systems
identification. The project "Basic Research in Adaptive Model Algorithmic
Control” used the online CVA system identification algorithm. 1In the
current study "Reconfiguration Control Strategies™, the CVA method along
with adaptive tracking and detection methods are being studied. The pre-
sent theory on adaptation using entropy methods (Larimore, 1985a) was deve-
loped under the basic research study "traget Dynamic Modeling” and under
the study "Development of Statistical Methods Using Predictive Inference

and Entropy” which was Phase I of this proposed Phase II study.

A review of the technology in system identification and adaptive

control for adaptive methods applicable to the suppression of aeroelastic
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wing vibration (flutter) was done in Larimore and Mehra (1984). This study
describes the deficiencies of current methods and suggets the feasibility
of CVA and entropy methods for fully adaptive online detection and tracking
of wing flutter. In a current study with General Dynamics sponsored by the
Air Force Wright Aeronautical Laboratories, CVA has been analyzed exten-
sively in computer simulations, real time tests, and demonstrated wind tun-
nel teste for adaptive flutter suppression. The ability of CVA to identify
very complex flutter dynamics of high state order involving very closely
spaced spectral peaks in the presence of correlated wind gust disturbances
using short data lenghts demonstrated the consderable statistical accuracy
of the method. The online CVA identification algorithm was demonstrated
ina wind tunnel test at the NASA Langley Transonic Dynamics Wind Tunnel on

a 1/4 scale model of an F-16 aircraft.

1.7 Synopsis of Report

In Section 2, we present a detailed and transparent derivation of an
unbiased entropy measure which will be used in the sequel for adaptive
estimation. This measure is asymptotically equal to Akaike's AIC cri-
terion. 1In Section 3, we present a detailed description and derivation of
linear least-squares prediction using canonical variates analysis (CVA).
Several new forms for these predictors are given. In Section 4, a method
for direct determination of the parameters of the Kalman filter in canoni-
cal form 1s given, and is shown to be equivalent to a truncated optimal
linear predictor derived using CVA. Section 5 considers the model order

selection problem, using an entropy-based approach. The problem of abrupt
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change detection using entropy methods is considered in Section 6 and a
specific algorithm is derived and tested. 1In Section 7 we consider the
problem of slow change detection, specifically the problem of finding the
optimal data length for model fitting when the time series coefficients are

slowly varying. An entropy-based algorithm is developed and tested.
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2. PREDICTIVE INFERENCE AND ENTROPY A

A
hﬂﬁ;
W "l"'v’
2.1 Introduction B
E— R
!
In this section we develop the necessary background for development of f:,u,
RSy
et
adaptive estimation algorithms in the sequel. " ?'o
=
g
The problem under consideration is that of predicting the future evolu- ik :P
»
-, .
tion of a time series, given some observations of the past. The predictive :ﬁé:;
_\n" t
inference framework may be described as follows. »-*
p rqu
We assume that the density function of interest is parametrized by a Sg;iﬁ?
AN
parameter vector O € RM and is denoted by p(xl 0). For the purposes of %dkw
Al

.

discrimination between two alternatives @) and Oy it can be shown (Akaike,

z

1973) that all necessary information is contained in the likelihood ratio

2

W,
LS N
(x e} ) OO )
L(x) = P Ol (2.1) -
p(x [ ©p) AN
NN
Thus, the mean amount of information for discrimination when p(xl On) y
e
is the true density is of the form XA
LY
N
1(0), 0) = [ p(x| 8g) ¢ pxlon )| (2.2) TR
= X X .2 -
tr 07 T PELTOT L G0 et

where ¢(.) 1is a properly chosen function. It can be argued using infor-

mation theoretic arguments (Akaike, 1973) that the only appropriate form is

o(y) = log y (2.1

which leads directly to the measure

b4-
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P(x' 91)

B(9), 69) = [ p(x| ©p) log P00

dx (2.4)

Note that - B(O), Og) is the Kullback-Liebler information for discrimi-
nation in favor of Q3. It can be easily shown that B(9Q;, On) < 0 and

equality holds if and only if p(x| ©)) = p(x| Op) almost everywhere
1 0

(Aitchison and Dunsmore, 1975).

Note that B(Q), ©p) can be written as

B(O1, 09) = | p(x| ©p) log p(x| ©}) dx

- [ p(x| ©9) log p(x | 0p) dx (2.5)

Since Op represents the true (unknown) parameter, our objective is to find
the parameter estimate © which maximize B(O, Op). From (2.5), we need

only maximize

/ P(xl 0g) log p(x' 9) dx

-~

with respect to © to produce our estimate. This estimate maximizes the

expected log-likelihood and is thus a maximum - likelihood estimate.

2.2 Preliminaries

In order to present a clear development, we will work in a partitioned

sample space. The random variable x is presumed to be in n - dimensional
Euclidean space, x € RN, and RN is partitioned into s mutually disjoint

regions {1, Q, . . . , g which cover RN:

-15-
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We then define “2}53"

p1(0) = [ p(x]©) dx (2.6)
€y

We consider two different samples, an informative sample q and a pre- Qﬁéb

dictive sample r« The informative sample is " .
R

Xq * {xqiv Xq2 ¢ ¢ c * anq} Sidinty

which consists of ng observations of x. The predictive sample is
V! 0

xe = {xr1, %20 o 0 0, xrnr} SORON

consists of ny observations of x. We assume that ngqj of the informative '

samples fall into 24 and that n,y of the predictive sample fall into 2j.

. 7

u
v
: »

Then

Ay -,
LR

n
-;.\f ?61
'é?q X

%%
e
Pae

(2.7)

X Npj = 0p ks
i=] -2

The two samples xq and x; are from the true distribution. cndotd

Thus we have, approximately, for sufficiently large samples,

3
e

LA
/L,

AN
?;E?
o
(X




L] - had \’ '
oS
| 3
Al
1
Pqi(G0) = T — (2.8) you
&
rioy
'
and '5,:
i 0 fri 2.9) o
Pri(%0) Ny (2. O
E and we assume regularity conditions throughout such that h
e
- ) \
g pqix | ©9) = lim Pqi(90) o ;
ng * :
IS )
iy 8
ﬂ?’
where "':‘a',
N
|ﬁ¢
W
lim R = x S
s * @ 5!—
. X € Qi i::ﬂ;
(
g and similarly for pp(x ' 9p). The computation of the probabilities asso- "':
i,
I\
clated with the parametrized densities is different. Here we use the defi- O
nition (2.6) and note that pi(®) is computable from p(x' 0) and knowledge :r&
e
of 24. In practice, this computation need not be done, as become clear in ;::
h 1 ;‘\‘:i"
the sequel. 1A
)
2.3 Entropy and Maximum Likelihood Estimation ‘ﬁ
(N
|‘I::~
The first step in our development is to form the maximum—-likelihood .
estimate. This 1is done by maximuzing (2.5) on the informative

PR
)" .

sample:

v
P
-.,54',.

54

0 = arg max Bg(0, 0p)
0

ML
s 7 PA

where

L]
s

L5

exX:

sy
v
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43 =D

B4(0, 0g) = § (99) 1 Pail®) (2.10)
q\¥» Y0 i= Pqi{¥0 og pqi(eo) *
Thus
] dlogpqi(9)
) Pqi(%0) -——3EEL————— =0 (2.11)
i=

We note here that an approximation for Bq(Ol.OO) is

n
q p(xi | ©)

B,(0, 0g) ~ 2.12
qf 0) izl log -E?;;—rgaj ( )

and the two expressions are asymptotically equal as ng > @ This form was

used by Akaike (1973) to derive the AIC criterion.

Solving (2.12) would, in principal, give the maximum-likelihood esti-

mate if the dimension of O were known. However, in practice, the actual

dimension, m, of © is not known. Furthermore, there is an obvious tradeoff

between the dimension of our estimate © and prediction error. Assume

é € RK, Then as we increase k, the fit error on the informative sample
will decrease momotonically. However, at some point we are in danger of
overfitting the model so that é is a function of the sampling error on the
informative sample. When this happens, the fit errors on the predictive

sample will begin to increase.

If we assume that the true parameter vector dimension is m and that the

estimated parameter dimension is k < m, then our objective is to evaluate

the information measure on the predictive sample and select the model which
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maximizes this measure. The discrimination measure is now separated into

two parts in order to simplify the analysis:

~k
B 0) = } ppy(9g)log —TE)
’ = = o —————————————————
r 0 1=T Prit®o & pr1(©g)
? pri(0%) $ Pri(Qp)
= 1 pri(9g)log — e L pri(8g)log —
i=1 Pr1(© ) i=1 p.4(O )
= B.(8k, 0k) - B (0, OK) (2.13)

where 0K ¢ Rk, Both entropy measures are measured with respect to the den-
sity pri(Ok) and 0k is arbitrary. We will in the sequel pick oK in a par-
ticular manner which clarifies and simplifies the development. The
decomposition of (2.13) is done to clarify the expo ition and to make clear
the crucial role played by the number of parameters k. The summations in
(2.13) are taken with respect to the true density on the predictive sampie
while ok is the estimate computed on the informative sample. Thus,

Br(ék, Qp) is a measure of the information between the estimated den-

sity and the true density on the predictive sample. Since the informative
sample is known but the predictive sample is not we will use statistical

mean values in the sequel.

In order to evaluate Br(ék, Ok) and B,(9qg, 0k) we will expand around

the actual probabilities on the informative sample.

Evaluation of Br(ék, ok)
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From (2.13):

B.(0k, 0k) =
i

Pri(9g) {log Pr1(0%) - log Pri(0K)] (2.14)

Il t~—w

1

Define the sampling error between the informative and predictive proba-

bilities as

e(0) = pri(0) - pqi(C) (2.15)

Expanding the log term to second order yields

k
dlog pqi(9)

log pri(©%) = log pqi(0K) + a1 e (GK)
2 k k
1 937logpqi(0) 3logpgi(0) -
+ = qi eiZ(ok) + qi (Nk - oky
2 3p_.2 3nk
qi
2 k .2 k
1 A J logpqi(© ) oA - . Tlogpgi(?T)
= (0k - k)T ok - ok nk - nkyT ok
+ 5 ( ) i ( )+ ( e ey (7¥)
ql
(2.16)

Thus

s s 3log pqi(0) -

Br(Ok, k) = ] pri(6p) (0k - ok)
i=1 90«
2 k
S
1 97 1log pqi(O ) -
+5 L pri(9g) (8k - okyT (ok - ok)
2 k
2 A 3°1log pqi(0")

+ 1 pri(9g) (Ok - ok)T - d eq(0K) (2.17)

This expression can be further simplified by utilizing the fact that,

since 0K is a maximum-likelihood estimate on the informative sample:
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S dlog Pqi(é )
e =0 (2.18)
121 Pq1(€0) oK

Expanding this around ok yields

k
21og pq1(®)  9’log pqs(0)

ok - oky| =0
a0k aok2 ( )

s
Z Pqi(OO)
i=]

2 & B s & i aE Gx

(2.19) ,
Using (2.15) and (2.19) and in (2.17) yields
A k
; - S dlo P Ch] ~
: Bp(0k, 0k) = ]} ej(0q) g Pqil (ok - gk)
; k
¥ i=1 30
1% 2 k
b s . T 371 0 .
; 1 3 08 Pq1(07)
\ + Y eq(0p) (0k - ok) (ok - gk)
ot z i=1 1o 30k2
:
2 k
s
: 1 . d"log pqi(07)
0 =5 L pqi(®) (0k - 0k)T : (6k - ok)
b z L Pq k2
&, i=1 90
v, 5@
&
' 2 k
s N 3°log pqi(0™)
+ 1 Ipqi(9p) + ej(0g)] (6k - ok)T - d e1(99)  (2.20)
\ i=1 90K 3p
o qi
’
b
o §g where we have assumed ey(0K) = e;(0p).
.k Eg The error ej(0p) is the difference of two probabilities, which are f
jﬁ binomially distributed, by construction:

) % e1(9) = pri(9g) - Pqi(Q0)
4
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Furthermore | ey(0g) = 0, by definition.
i=1 wh

Since we ave assuming here that pri(9g) and pqi(©g) are independent samples !

from the same underlying distribution, ey(0p) is unblased:

E {ej(9p)} =0 (2.21) e

where E { } denotes expectation with respect to all underlying random

™S o5 OB O BS 2 22 W o5 BR oo B O 5 SA & WR 0% N

variables. Recalling that the informative sample is of size ng and the ]
predictive sample is of size n., Pqi(oo) has approximate variance N?
! | 4

var (pq1(99)) = e Pi(90) [1 - pi(99)] :

and ppi(Qp) has variance 4

var (pri(00)) = 5= P1(%0) (1 - Py(%0)] o

Thus B,

Y
var (ey(0g)) =-—i p1(0g) [1 - p1(Og)]) (2.22) %-
n -

"
where n = ngny / (nq+nr). The expected value of Br(Ok, 0k) can now be - il

written in simplified form by using Ny -

leog Pqi(ek) . 1 dlog pi(ok) Y
ok L p1(90) a0k "

T e
g
I

» s
~

N
e

¥ & 7 %

@ S

R

RS . Aty
T '".’. .*'w‘ﬁ';|"b|._“‘..“|...Q.. 18, .-.l\|- AR AN l.- o, SACAlh




Jt R TR TR AR R AR AN AR AR RN AR NN SR L X ANL R ULy i'2.4% A'a- $a-aty - ghy

The result is that the expected value of Br(ék, oK) is

E {Br(ék, ek)}

2 k

s . %1 CONR

- - éE{ L pu(Bg) (Bk - )T — 2T (B ek)}
i=1

k
s - dlo Cho)
1 g Pi
- — z E {(ek - ok)T - }
n i=1 90

(2.23)

In the sequel we will choose ok = 0*k 5o that 0*kK is a minimum-variance

estimate of Op. This results in the second term being much smaller than

the first term for reasonably large values of T/s. We will explicitly

neglect this term in the sequel.

Evaluation of Bp(9p, 0%k)

From (2.23)

Br(0g, OK) =

2
s 3°log py(0p)
- '% L pi(9g) (89 - 0})T B P07 (g - ok

i=1 dpj2

- 3 (8g = 06T 1(9g) (8 - 0k)

where I(9Qp) is the information matrix

-23-
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2
§ 3°1log pi(©0)
I(9) = 1 p1(00) ———

{=] pi

(2.26)

In (2.23) both ok and 90K are k-dimensional parameter vectors. Here,
however, Oy is an m—dimensional vector (m > k). To handle this situation,

we write Og - Ok ¢ RD as

@Ok - ok

00-0k=

~

9

where Ogk € Rk, éO g Rm—k

setting

J(eky = .% (9 - 8K)T 1(0g) 69 - OK)

and minimizing with respect to ok yields

o*k = ogk - 17,-1 (9g) I;2 (8g) 99 (2.27)

where we have partitioned I(Qg) as

X

2t

111(99) I12(99)
I(0g) =

s A
.".-
e t'.

*
.

T
I12(99) I22(%9)

The minimum value of J is

4=

[ ¥ ' " LA »
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J(o*k) = %— 0T [122(00) - 112(90)T 111(00)~L 115(09)] &g

If we partition the covariance matrix !

P(8p) = I(0y)~! N

P11(09) P12(99) by

T
P12(9p) P22(9¢)

then "“Qi
l ~ -~
J(0*k) = 5 09T P22(00)"1 @

where P22(00)7L = Ip5 - 1,T 1,71 14,

Since R ]
L]

e~

P{(0) (89 - 0*k) (9y - 0*K)T 54

P(0g) = v
1 ?

i

e

s

= E [(99 - 0*k) (9 ~ 0*K)T]

we get, finally,

g

2

E [3(0*)] ~ 5 (m - k)

P AT

o
rh %

or

v YW _C_7 By
WNXE
a0

E [Bp(0g, 0*k)] = é—(k-m) (2.28)
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2.4 Unbiased Estimate of Entropy w5

From (2.23) e

E{Br(ék, ek)} - - % (0k - ok)T 1(ok) (Ok - ok)

§

where I(Ok) is the kxk information matrix

o 8

< b

2

-
S

K
s 3°logpi(0™)
I(ek) = E P1(90)
121 o aok2 ®

and pj(Og) is given in (2.6). Using (l.5) and (1.6) we see that W &

. Y
E {sr(ok, ok)} - é- tr Iy 7

- _,‘22 (2.29)

2

Eat

1)
where Iy is the kxk identity matrix. Pe

Combining (2.29) and (2.28) yields Y

E {Br(ék, 00)}= 7 -k (2.30) b,

where OK is the maximum likelihood estimate (0K e RK). This represents a .

bias in the maximized log-likelihood function, with the result that our

o>

goal is to pick k such that
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L Pqi (0p) log pqi (OK) +3 -k
i=]

}c

is maximized. By reference to (2.10) and (2.12), this is equivalant asvmp-

sz e

totically to picking k such that

p

i I P )
' P 'S
.“.‘7\.""’_

q -
) log p(xil @k) + %-— k a
i=1

is maximized. Since m is a constant here, the equivalent goal is to mini- O

mize .n;;.s

q R J"p.lz
log p(xy | 0K) + 2 k (2.31) )
1 LYY

AIC(k) = - 2

e~ 3

i

with respect to k, which is Akaike's AIC criterion. ;ﬁ‘
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3. CANONICAL VARIATES ANALYSIS

We now consider the linear prediction problem using the canonical

variates analysis approach.
Let the past be represented as a column vector P(t) defined by

Ty(t) ]

P(t) = | y(t-1)

. nxl

. -—

and define the future as a column vector

[ y(t+1) 7]
F(t) =
y(t+2)

. m < n

| . B mx1

where y(t) is the r-dimensional observed output at time t. Our goal is to

predict the future F(t) given P(t).

We now consider the canonical variate analysis in a form that allows us

to explicitly show the optimality properties of the method.

Consider nonsingular transformations of the past and future

c(t) = J P(t) (3.1)
nxl nxn nxl
d(t) = L F(t) (3.2)
mxl mxm mx 1
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and form a kEE order estimate of F(t)

- k
Fi(t) = ) ay cy(t) (3.3)
i=1
where {ai} are mx! vectors and cy is the iﬁh component of c (a scalar).
Since ay is fixed, only cy(t) depends on the data. Since J is only

constrained to be nonsingular, we can use a very general form for it.

Without loss of generality we can specify that

E [c(t) e(e)T) = Ik, (3.4)

Let B be an orthonormal matrix:

T
Bhxn Bhxn = Inxn (3.5)
Then
J Spp JT = BT B (3.6)

where Spp = E [P(t) P(t)T]

This has a solution

T -1/2
Now
T
cy = Jy4 P(t) (3.8)

T
where Ji 1is the LEE row of J;
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T T -1/2
Ji = by SPP
and
B'[ble' . -bn]
nxn
Thus

T =-1/2
cy = by SPP P(t)

and the estimate Fk(t) is

. k T -1/2
Fr(e) = z aj by Spp
i=1
-1/2

b Spp' T P(e)

where
k T
Qe = L ay bj
i=1

Note that Qi has maximum rank k.

The prediction error is

/2
ex(t) = Q Spp  P(t) - F(t)

We now form a quadratic cost function

(3.9)

(3.10)

(3.11)

P(t) (3.12)

(3.13)

(3.14)

n 3
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T -1
Ly = E [eg(t) W ex(t)]

-1/2 T -1/2 T T
=tr W E{[QqSpp P(t) - F(£)] [P(t) Spp  Qk = F(t)]}

-1 T
= tr(W Qg Q)

1/2

-1 - -1
- 2ex(W Qg Spp  Spg) + tr(W  Sgf) (3.15)

where Sy¢ = E [P(t) F(t)T], Sg¢ = E [F(t) F(r)T]
In order to handle the orthonormality constraints we add the constraint
equations via Lagrange multipliers to form the augmented cost
- k T
Li = Lg + )L Ay (by by -1) (3.16)
i=1

where {Ai} are Lagrange multipliers. Thus

- -1 kK T n T
Ly = tr {W 2 aj bj z bj aj}
i=1 j=1
) {w-l E bT -1/2
r ai b4 55, spf}
i=1
-1
+tr {W Sggl
k T
+ 1 A o (bg by -D) (3.17)
i=1
T
Using by bj = Gij’ with § the Kroneker delta function, (3.18)
and rearranging gives
-31-
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k T -1
Lk = Z aj W aj
i=1
k T -1/2 -1
-2 z by Spp Spf W aj
1=1
_1 k T
+ tr(W  Sgg) + ) Aj(by by -1)
i=1

Taking partial derivatives:

ALy T -1 T -1/2 -1
aai = 2 a; W -2 bi Spp Spf W

3Lk T -1 T -1/2 T
3b1 = -2 aj W Spf Spp + 2 A bi

Thus, the first order necessary conditions for minimizing Ly are

* T -1/2 *

* ~1/2 -1 *
Ai by = Spp Spf W ajy

for i =1, 2, ..., ke

*
Eliminating ajy.

* -1/2 -1 T -1/2 *
A{ bj = spp Spf W Spf Spp bi

which is an eigenequation.
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The first term of (3.19) becomes

i=1
kK xrT  -1/2 -1 T -1/2 =%
= ) by Spp SpeW Spe Spp by
i=1
k
= ) A
i=1

The second term of (3.19) becomes

k *T -1/2 -1 T -1/2
-2 ) by Spp  Spe W Spf Spp
i=1

Thus, the optimized cost is

* -1 k
L = tr(W  Sgp) - L A
i=1
Now let
-1/2 -1/2
R = Spp Spf W (nxm) ndm

From (3.24),

%*T N *
bj R R by = X4

by

By using a singular value decomposition on R:

(3.25)

(3.26)

(3.27)

(3.28)

(3,29)
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0

8 : :

R=UDV (3.30) .

W,

g! T T ‘

V V=1,U0 U=1I (3.31) e’

a: .

{—Yl 0 ]

% D = : (3.32)

0 Yo X

\

: — ~

: "‘

; where Y] > Y2 > « « « Yy ?

.

; : T ;

Then RR =UDV VD U £

N

g T T 3

‘ =UDD U (3.33) .

N

ﬁ Then, from (3.29)

by

:,:3 *T T T * :_'

< by UDD U by =) (3.34) ~

Q Thus bj* is the eigenvector of U D DT UT whose eigenvalue is Aie .

T e

b Now let o

W "

U=1[U] Up ... Uyl (3.35) .

B :

) A where the Uy are mutually orthogonal unit vectors by construction. But the \

\.

'g matrix U D DT UT has eigenvectors Uj and associated eigenvectors Yiz since .'

. usT u o pT UT Uy = v42 845 (3.36) S

x

Thus -

. . R
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et

(3.37) g’: .':,;::

* T -1/2 ﬂ- ...'
ay = Spf Spp Uy (3.38) folgh!

By using (3.37) in (3.27) we get

* ~1 k 2 fr o
L = te(W  Sgg) - ) Y4 (3.39) o

i=1
and we see that the cost is minimized by using the k largest canonical Ny

variances, Y12 > ¥92 > Y32 > 0 o > Y2

We can now write the optimal forecast as — j’

.3*:
x % *f%?V’
aj cj(t) LY

F*
k(t) 1 _3\

I
I~

i

®
T -1/2 T -1/2 Pt
Spe Spp Ui Ui Spp  PB(E) '-f.{:‘. ‘

It
I~ K

i

fl;{‘
%

T -1/2 Kk T -1/2 :
Spf Spp (121 Up Uj) Spp  B(D) (3.40) 1‘

e _a B
’e
L% ]
Il'")s

a
N

*
Thus, if we denote the optimal weighting matrix by Ay:

b
s
s

¥,
7

ny vy,
A Y,

L)

* %
F(t) = A P(t) (3.41)

.
by \'P
»

TN

L T e N S8 4
A X XA
5;g§,

L)
R AT
X

A
P )
pY

* T -1/2 |
Ak = Spf  Spp L Ui Uj | Spp (3.42)
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* T 1
Ay = Spf Spp (3.43)

To determine L (cf (3.2)), we can use the condition
E (cdT) = D (3.44)
or

J*spe LT = D (3.45)

From (3.7),

-1/2
uT Spp  Spf LT =D (3.46)
But
D=UTRV
-1/2 -1/2
= yT Spp Spf W v (3.47)

Comparing (3.46) and (3.47) gives

-1/2
LT = w vV, or

-1/2
L=vly (3.48)

*
Note that Ay, the optimal gain matrix is of dimenstion mxn but has a maximum

rank of k.

Note that k < m since the symmetric matrix in the eigenequation
(3.24) has rank € m. This is very important, as it implies that we need to
make the dimension of the future vector (m) at least as large as the maxi-

mum expected order of the estimator.



: '
N

"

ll * ?4
An efficient computation of Ay is [

l l‘l.
* -1/2 -1/2 4J

dj = Spp Uy Spp symmetric :g

4

!B * T * 2%
aj = Spg di "'
" p 1
* kK % %7 )

Ag = ) aj dy ]

i=1 3

:
-”'

Cholesky Form 4

: z
)

The cholesky factorization of a positive-definite matrix is an attrac- ?f

l',

ﬁ tive way of computing a square root matrix. Let ‘!."'
<X

5.

@ -1 T 0
Spp - = QQ )

44

Then we get the following relations )&
o

* T -\:

a3 = Spr Q Uy ~y

*

T -1
Af Uy = Q Spg W

T
Spf Q Ui

T -1/2

* T k T T 3
Fi(t) = Spr Q (] Up Uj) Q P(t) :
1=1

* T k T T Y
B = Spe Q (L Ug Up) Q :
i=1

e 8 BE =3 - 2 Sx
z?’“'

e
7225

Tse
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Trucated Predictor

In the sequel, we will be restricting the total number of parameters
allowed in the predictor. The question arises as how to best truncate the
prediction equations. Our approach is to use only the most recent past
values. For example, suppose we have used m = 5 in our analysis, but wish

only to use a one-step—ahead predictor with k parameters. Then our predic-

*
tor uses only the first k elements of the first row of Ag.

Inclusion of Known Inputs

If we have an unknown system with measured outputs y(t) and measured
inputs u(t), the analysis of this section holds with only slight modifica-

tions. If we augment the past vector as

™ y(t) ]
P(t) = u(t) (3.49)
y(t-1)
u(t-1)

.
e -

then all of the analyes of this section holds and the predicted values of

y(t) depend on both past values of y(t) and on past values u(t).
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4. DIRECT DETERMINATION OF STATE-SPACE MATRICES .

We now consider the problem of determining the state-space matrices I.
"

directly from the linear prediction solution. Recall from Section 3: 3

~ oy(t)

P(t)

(]
]
~

[ad
]
—
~

P
I
(4.1) ’5}\

nxl

F(t) = A P(t) (4.2) §$

If we restrict our problem to a one-step—-ahead prediction of y(t), then j.

K

EEL ALK

Pl

y(t+l | t) = A P(t) (4.3)

A

where A is mxn.

AN

We can write a recursion for P(t) as follows:

g

‘gl

L}

P(t+1) M P(t) + T y(t+l) (4.4)

4 %
"’ 2

where

i
". A - 3

X
T ]

M= I 0 «.+..+...0 (4.5)

. x_w »

o

-~

o

.

.

(e
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T= [ Inem (4.6)

0(n-m)xm

so that P(t) is 1in recursive form with a driving term y(t+l).

The state-space formulation employs a Kalman filter for updating. The

equations for the time-invariant filter at steady state are

y(t+l | £) = H x(t+1 | t) (4.7)
x(t+l | ) = ¢ x(¢ | ©) (4.8)
x(t+1 | £41) = x(e+1 | £) + K [y(e+1) -y(e+1 | ©)] (4.9)

Combining (4.7) (4.9) yields

o]

y(t+1 | t) = H ¢ x(t| ©) (4.10)

x(t+1 | t41) = (I-KH) & x(t | t) + K y(t+D) (4.11)

as the state-space equation set. The linear prediction set is
y(t+1 | t) = A P(t) (4.12)
P(t+l) = M P(t) + T y(t+l) (4.13)

What we seek to do 1s match these two pairs of equations by finding the
state-space matrices H, ¢, K which give the best "fit" to the linear pre-

diction equations.

Equations (4.7) - (4.9) can also be put in the form
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y(e+l | ) = B x(e+1 | ©)

(4.14)

x(e+1 | £) = 8(1 - Ki)x(t | t=1) + & K y(t) (4.15)

We can solve the problem operationally by using solutions involving delay

operators.

We will first solve the linear prediction equations. From (4.13),

P(t+l) = zM P(t+l) + T y(t+l)

(4.16)
where z is the delay operator: z P(t+l) = P(t)
Solving (4.16):
-1

P(t+l) = (I-zM) T y(t+l) (4.17)
Thus, from (4.12):

- -1

y(e+l | €) = A (I-z2M) T y(t) (4.18)
We can also solve the state-space equations in the same way.
From (4.10) and (4.11) we get

- -1

x(t| ) = [I -~ (I-KH) ¢z] K y(t) (4.19)
so that

- -1

y(e+1 [ £) = H & [I - (I-KH) ¢z] K y(t) (4.20)

while from (4.14) and (4.15) we get
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. -1
x(t+2 | t41) = [I - (I-KH)z] & K y(t+1) (4.21)

o
I~
- &
- .
h. -»

e

X

. -1
y(e+l | £) = B [I - (I-KH)z] ~ © K y(¢) (4.22)

s Wy,
13;?%;5
Lo

If we could get a perfect match between the linear prediction and the

state-space predictors, then the following equation would be satisfied

"‘,\’:‘;l’\"‘
PR
27 2

"
s
>,
'

WA
24
x

- “l‘

-1 -1
A (I-Mz) T = H ¢[I-(I-KH)®z] K (4.23)

e,

or, equivalently

-1 -1
A (I-Mz) T = H[I-®(I-KH)z] $ K (4.24)

Using (4.23), we see that exact matching occurs, for dim (x) = n, if

A=H? (4.25)
M = (I-KH) ¢ (4.26)
T=K (4.27)

Equation (4.26) can be written as

M=9%- TA, (4.28)
so that
¢ =M+ TA (4.29)

In addition, (4.25) gives
-1
RH=4a¢ (4.30)
Since H must satisfy A = H (M + TA), {t is easily shown that H is in cano-

nical form
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H=[I 0 - ol
mxm Ymx(n-m)]) 283

If ¢ 1s a valid transition matrix, it is guaranteed to be invertible. Thus X
we only need to guarantee the invertibility of M + TA. Using the defini- >

tion of M and partitioning T and A appropriately, we see N\

nxn Omx (n-m) Omxm 45

I(n-m)x(n-m) O(n-m)xm "'1

Yt
&

e
LInxm [:Almx(n-m) Ameﬁ]

O(n—m)xm

I
P

T_Al Ay
= (4.31)
I 0

s

IEPE AL

't -

The inverse is

b

e
L8N

-1 ]
¢ = -1 -1 (4.32) i
A2 “A2 A

W
Thus o~ exists if Az-l exists. To check this, write equation (4.15) in ’{%

partitioned form as *
(a1 A7) = o

] T T Wi W12 .
S
pfl  Spf2pyp I (4.33)

where

(B 6B o 8 2 S &8 8 55 I 293 255 290 & -
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N
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Wip W12 -1
T = Spp
Wia W2
Then

T T
A2 = Spf) W12 + Spgy W22

Now partition Spp as

J S11 S12
Spp = T
Sj2 S22
Then

1

-1 T - -1
Wi2 = - 811 S12 (S22 - S12 S11 S12)

-1

T -1
Wp2 = (S22 - S12 S11 S12)

so that

T -l T -1 -1
A2 = (Spf2 - Spf1 S11 S12) (S22 - 812 S11 S12)

Therefore

T -l T T -l
Az = (S22 - S12 811 S12) (Spf2 - Spfl S11 S12)

Solving for A) yields

T T T
Al = Spf1 W11 + Spfa Wp2

Using

-1

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

A I N S I s M ™
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2

1 -1

- T -1
Wil = S11 + 511 S12 (S22 - S12 §)1

-1 T -1
§12)  S12 S1y (4.42)

we get

T -l
Al = Spf) 811+

1 1

T -1 T T - -1 T -1
[Spf1 S11 S12 - Spr2] (S22 - S12 811 S12)  S12 Si1 (4.43)

In summary, we can use the direct solution if the matrix

T T -l
Sce = Spf2 — Spf1 S11 S12 (4.44)

is invertible.

This exact solution is restricted to the case dim (x) = n. This

implies that
dim(x(t)) = dim(P(t))

Truncated Filter

Given the matrices for the full-order Kalman filter ®,xn, Hpxn» Knoxms
the question arises as to whether there Is a suitable truncation to a
lower-oder form required to meet restrictions on the total number of para-

meters. Using the forms of (4.27), (4.29) and (4.30) and assuming an order

k < n, and prediction of the first p future values (p < m), we truncate as

follows:

(1) ®kxk 1s the upper left kxk submatrix of %4,
(2) Hpyk 1s the upper left pxk submatrix of Hyyq

(3) Kixp is the upper left kxp submatrix of Knyp
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Then the Kalman filter using ®yyk, Hpxks Kixp yields exactly the same pre- '?5

dictions as the truncated linear predictor of Section 3.
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5. MODEL SELECTION FOR LINEAR PREDICTION

We can now consider the problem
prediction problems using canonical
data y(t) are Gaussian and consider
unit time increment and let d = s -

interval are

Y(t,s) = {y(t), y(e+l), . . . .

of model order selection for linear
variates analysis. Assume that the
data on the interval [t, s} t<s with

t+l. The associated data over the

y(t+d-1)} (5.1)

The one-step-ahead prediction error

ep(t) = y(t+l) - Ay p(t) (5.2)
is also Gaussian and, from (3.42) has zero mean and variance
T
E {ex(t) er(t) }
= Sk(t+1| t)
T -1/2 k -1/2
= S¢gg -2 Spf Spp U Spp Spf
T -1/2 k 2 -1/2
*Spf Spp (U) Spp Spe (5.3)
where
k k
U = ] Ujuyg (5.4)
i=1
Since (Uk)2 = Uk (5.3) reduces to
-47-
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-1/2 k -1/2

T
Sk(t+l| t) = S¢g - Spf Spp U Spp Spf

y(t), we can set Sy = Sk(t+l| t).

From (3.3) the number of parameters is mk.

d T -1
AIC(k) = ) | log| Sk | + ex(t) sy

t=1

ex(t)

minimizes

2mk
d

logl Sk' +

for d > > 2(m)k this is approximately equivalent to

' Sk’ 1 + _EEEE—

(1973). 1In the sequel we will use (5.8) instead 0Of

interval will sometimes be relatively short.
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(5.95)

Since Sk(t+l| t) is constant for all t due to assumed stationarity of

Thus

+ 2 mk

= d[log| Sk |+ tr Ip] + 2 mk (5.6)
where, . denotes determinant and I, is the mxm identity matrix. The AIC
is thus

AIC(k) =d log |Sk| +m+ 2 mk (5.7)

Since d and m are fixed, we see that the optimum order k is the one which

(5.8)

minimizing

(5.9

which can be recognized as the forward prediction error (FPE), see Akaike

(5.9) since the data
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6. DETECTION OF ABRUPT MODEL CHANGES

In this section we apply the tools developed so far to the problem of

abrupt change detection. We then present some experimental results.

6.1 Algorithm Development

Consider the situation depicted in Figure 6.1, in which the true time-

series model changes from My to M; at time t-dj, where t is the present

time. Suppose

M
Mp

‘ !
gg | '
|
|
- ! historical ) testing ]
? | interval ] interval !
' ]
L : !
t=dp t-dj t

Figure 6.1 Changing Time Series Model

that we have data back to time t-dg and that the true model is Mgy in the

interval (t-dg, t-dj).

We wish to detect this change in the model. In this example, fitting a
single model to data over the interval (t-dp, t) should result in greater
fit errors than fitting one model over the interval (t-dp, t-d)) and
another model over the interval (t-d}, t). The crucial issue is to

determine an appropriate selection measure so as to be sensitive to

|
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Y
]
! changing models, while at the same time not being too sensitive to noise. :.-
o
Over-sensitivity to noise will result in deciding that model changes have
e
I occurred when, in fact, they have not. Low sensitivity to model changes &
4ot
o
a will result in missing changes which have occurred in the model. Another "c',:'l
U
l'.‘
obvious problem is how best to select the testing intervals, (t-dg, t) and '::«f
Sl
B (t-d], t), to minimize the time required to achieve accurate detection. We ‘
+
consider first .he selection measure. ':;
>
X
ot
Over the interval (t-dp., t) we can find the model which minimizes the 3
4
g AIC: *
o
oy
l". §
i i ’ 2!
AIC (k) = - 2 ) log p(e(t-dg + 1) | @) + 2 M(k) (6.1) s
i=1 )
:
N
where M(k) is the number of independently adjustable parameters and where we "“
ﬁ have assumed a sampling time increment of one, for convenience. g
by
Dy
o9
§ If we now divide the interval (t-dg, t) into two subintervals, ";“'
Ry
l (t-dg, t-d)) and (t-dj, t), we determine minimum AIC models for each subin- ?‘«
o ¢
' terval 4
o
U
g )
- ,)’."
dp - 9 o g
g AICy(k) = - 2 y log p(e(t-dg + 1) | © ) + 2 M(k) (6.2) *-
1=1 I
- R,
o
4
g N
} -t
do K =
AIC|(k) = - 2 ] log p(e(t-dg + 1) | 0 ) + 2 M(k) (6.3) :
§ i=dg-d |+l .‘::
2o
g Now assume that S
S [
l*‘

s
by

. 3

V., b
AN
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k* = arg min AIC(k) hTYs.
. \,
n'.‘ o
ko* = arg min AICH(k) P
k)* = arg min AIC)(k)

., (]
ak* . kg* Ak * “ ::::,e:x
and let the corresponding models be parametrized by © , Qg y 9] o

respectively.

Then the model selection criterion is based on comparing AIC(k*) with

o0

N

AICo(ko*) + AIC(kl*) and selecting the model(s) which give the least value.

AN
' ? 0
b e

We can simplify the calculation in the case that dg > > d) and the model
* * st
does not change too much, in which case we expect that k™ = kg™, Wghiy

k* * :::::;":‘I
0" = eOkO . In this case we can define the AIC difference as 40"':::'

AAIC*

AIC(k*) - AICH(kg*) - AIC|(k*)

d AR

0 Ak b “!':':f

-2 2 log p(e(t-dg + i) | ¢}
i=dp-d+1

\'I&.
d ol

0] ki * W
2 ) log p(e(t-dg + i) | 0] ! ) - 2 M(k)*) (6.4) f‘;?\
1=dp-d+1 &

+

and the decision rule is A

< 0 ; declare "no change" AN

AAIC* (6.5) ‘&'Q}-%

> 0 ; declare "change”

i Note that AAIC* may be written as G

gt
ko * e

do p(e(t-dp+1i) ' él ) [

AAIC* = 2 ) log - 2 M(kp*) (6.6) AL
R ,‘k* ) "‘.‘.n‘-

; 1=1dg-d+1 ple(t-dy+i) | § NN
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which is the likelihood ratio in favor of the best model in the interval
(t-d], t) to the best historical model evaluated over the same interval,
but biased off by the number of parameters of the best model in the inter-

val (t-d;, t).

If we specialize this result to the linear prediction problem under

study here, we see that

- -1
AAIC* =~ d) {log | S(k*) |+ tr S(k*) s(k*) '}
- d) {log| S1(k;*) | + m}

- 2 mky* (6.7)

where S(k*) is the theoretical covariance matrix of prediction errors for
the historical model fitted on the interval (t-dg, t-dj), Sl(kl*) is the
theoretical covariance matrix of prediction errors for the model fitted to
the data on the interval (t-dj, t), and S(k*) is the actual covariance
matrix of prediction errors for the historical model, evaluated on the

interval (t-dj, t). Now let AS(k*) = §(k*) - s(k*).

Then

*
* -2 mk ~ -{1
AAIC* = d] log 2(kk)* exp ————TTT—L—~ + tr AS(k*)S(k*) J
(k)

(6.8)

Thus our decision parameter is

e

-

-,

o 3.‘}}.
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*

* 2 mk - -1 ,

| st | Tl + tr AS(K*)S(k*) (6.9) e
Sl(kl*)' d) oy

Y = log

and the decision rule is 2

(6.10)

{ < 0 ; declare "no change”
Y h
> 0 ; declare "change” 9

6.2 Experimental Results

The abrupt change detector was tried on a changing autoregressive

model. On the interval t € [1, do], the actual model was R

y(t) = 1.65 y(t=1) - 0.665 y(t-2) + u(t) (Model 1) (6.11) .\k
where u(t) was zero-mean white Gaussian noise with variance of 1. This o

model has two real stable poles at 0.95 and 0.7. The actual model was then Pt

changed to ;5:"%"
R

y(t) = 2.5 y(t=1) - 2.11 y(t=2) + 0.595 y(t-3) + u(t) (Model 2) (6.12) e
" \l\,':
on the interval t € [dg + 1, dg + d,). This model has three poles at :-'E o

0.7, 0.9 + 0.2i, 0.9 - 0.21. T4
‘- ~V

The first trial used dg = 80, dj = 20. The resulting covariance matri- o~

ces on the interval [l, dg] were 7‘."’

11.0808 10.9642 10.7662 10.5378  10.2860 N
10.9642 11.0018 10.8992 10.7144 10.4733 RSN

Sppl 10.7662  10.8992 10.9484 10.8566 10.6614 PR ar N
10.5378 10.7144 10.8566 10.9144 10.8144 :
10.2860 10.4733 10.6614 10.8144 10.8619
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g
i
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¢
B
B
3
:

0 Sl X B

I 2 Er 2X

=

11.0439
10.8318
pfl 10.5900
10.3510
10.0978

11.1612

11.1214

S = 10.9673
1

£t 10.7430

10.4764

By performing an

0.6655
0.4239
0.3888
0.3596
0.3112

7.2182
= 0

0
0
0

10.9089
10.6534
10.4015
10.1607

9.9061

11.1214
11.2356
11.1760
10.9937
10.7336

10.7124
10.4500
10.1993
9.9542
9.6859

10.9673
11.1760
11.2697
11.1831
10.9711

SVD, we obtain

0.4685
-0.2456
0.2135
-0.1033
-0.8148

-0.4465
0.7166
0.3803

-0.1198

-0.3579

10.4822
10.2258
9.9753
9.7122
9.4296

10.7430
10.9937
11.1831
11.2537
11.1474

0.3351
0.4911
-0.7320
-0.3149
-0.1072

o O O

0.0207

g
”
e}

R
. !
»
10.2222 :?.
9.9723 o
9.7098
9.4267 '“
9.1241
/
%
3
)
.
10.4764 X
10.7336 &
10.9711 .é
11.1474 rx)
11.2135 L&
3
Y
"
.'
\3
e
g:
)
¢
A
W,
)
"
A
L |
N
R
‘0-1607 :"h
0.0726 ~
-0.3504 -
0.8640 ':
-0.3157 %)
<
Net
»
'
Ay
0 ﬁ.
0
0 v
0 ;
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0.4605 -0.6945 0.5094 ~0.1666 0.1355
M 0.4569 =0.2407 -0.4337 0.4939 -0.5489
e v1 = 0.4493 0.0706 -0.5097 -0.0174 0.7301
0.4398 0.3337 -0.0833 -0.7382 -0.3787
‘ 0.4289 0.5860 0.5344 0.4279 0.0627

o -
-
e

A X R S R o8 B 2
] H RN

The resulting values of AIC(k) for different orders k are, neglecting

constants,

AIC(1)
AIC(2)
AIC(3)
AIC(4)

- 2,150
- 2.264 ——-—
- 2.243
- 2.195

so that k* = 2, which is the correct order, is selected. The estimated

model 1s y(t) = 1.843 y(t-1) - 1.0081 y(t-2).

On the interval [dg + 1, dg + d]], the covariance matrices were

o

&5

N
h s
§§ }'5“
_ 1.7647  1.7624  1.6008  1.3214  1.1104 R
1.7624  1.9451  1.9171  1.7039  1.4781 ;
s, =1 16008 1.9171 20772  2.0067  1.8375
PP 1.3214  1.7039  2.0067  2.1332  2.0981
1.3214  1.7039  2.0067  2.1332  2.0981
, 1.6394  1.4902  1.4677  1.6660  2.1622 )
%g 1.4905  1.2481  1.1833  1.3743  1.8518 2y
| S ¢y = 4 1.2626  1.0238 10057 12397  1.7310 Ry
, P 0.9897  0.8111  0.8554  1.1288  1.6058 %!
E (0.8331  ©0.7084  0.7783  1.0178  1.4219 5
X
o
3 '
»
i)
X

- W
1
w
w
|
Lk

IR I R N N R R TN P
‘,'a'\ﬂ'r.\".p\.-“.-.‘:ﬁ:p‘i'\_‘:ﬁ i
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*u

X
>
71

¥
5‘:'.

i b
i
1.7259 1.7733 1.9101 2.2212 2.7981 y

gi 1.7733 2.1250 2.5776 3.1739 3.9927 ;}
Sega = 1.9101 2.5776 3.4770 4.5339 5.7802 .

2.2212 3.1739 4.5339 6.1817 8.0268 i
2.7981 3.9927 5.7802 8.0268 10.5912 »
A Y
<
ff
g 4
2

3
)
Performing the SVD yields. d$
o

al 0.9394 -0.1382 -0.2689 0.0560  -0.1513 !
0.0073  -0.8145 0.4181 0.3600 0.1791 dQ!
u, = { 0.1124  -0.1507 0.5108 -0.7606  -0.3538 )

g; 0.2936 0.5410 0.6957 0.3074 0.2065 y
\ 0.1361 -0.0455 -0.0891  -0.4408 0.8816 35

B!
i
( 3 ~.'
=7

3.5041 0 0 0 0 %

0 0.6770 0 0 0 Q}
b, = 0 0  0.2473 0 0 r 4

0 0 0 0.0326 0

E L 0 0 0 0 0.0094 an
J ;4
giy?
W
g .l‘.
!
0.3352  -0.7554 0.4483  -0.2558 0.2250 !E
3% 0.3611 -0.3926 -0.3766 0.6815  -0.3305 e,
. V = 0.4033  -0.0185 -0.6095 -0.6546 -0.1926 !
, 0.4766 0.2819  -0.1621 0.2039 0.7909 Wi
gg 0.6062 0.4422 0.5093 0.0107 -0.4213 :‘

The resulting values of AIC(k) are, again neglecting constants, '

- -~
Yo e

a» =2
Ay




AIC(1l) = - 0.960
AIC(2) = - 2,266
AIC(3) = - 2.323 ~=—
AIC(4) = - 2,223
AIC(5) = - 2.123

so that k* = 3, as desired. The estimated model is
y(t) = 1.9456 y(t-1) - 1.1485 y(t-2) + 0.0483 y(t-3)
Note that, with the sparse amount of data available, the coefficient

errors are relatively large and the two estimated models are relatively

close to each other.
The AAIC criterion was used to test for a change in the time series

coefficients. Since we have only one output, the criterion is

* ~ * * Zk*
MAIC = 1og S, (k) - S(k) 1

Using k* = 2, k* = 3, S(kx*) = .0940, 8y(k1*) = .0726, S(k*) = .0903,

d; = 20 yields,

BAIC = 0.2583 - 0.0394 ~ 0.3 = - 0.081!
so that a "no change” decision is made, but just barely. Note that the
actual covariance on the second interval using Model #1 is actually less

than for the first interval, as a result of using only a small testing

interval.

We next tried the test over larger intervals, keeping a 4:1 ratio bet-
ween the higtorical interval and the testing interval. The intervals used

were 160 for the historical interval and 40 for the testing interval.

- 6.13
Sl(kl*) S(k*) dl ( )

d

S

st ot ot ol )
(S
075
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4
. ;
ZpC
(3%
g The covariance matrices for the historical interval were :i
(A
' 6.4177 6.3504 6.2021 6.0182 5.8335 .
6.3504 6.4177 6.3504 6.2022 6.0183 ;
gg Sop1 = { 6.2021 6.3504 6.4170 6.3494 6.2006 % .
6.0182 6.2022 6.3494 6.4153 6.3470 \
5.8335 6.0183 6.2006 6.3470 6.4119 _
& A
, 3
. 6.3504 6.2014 6.0149 5.8244 5.6495 ,
82 6.2013 6.0147 5.8242 5.6493 5.4869 pué
Spf1 = { 6.0169 5.8282 5.6544 5.4919 5.3310 ¢ N
5.8316 5.6606 5.4999 5.3387 5.1657 .
§§ 5.6655  5.5089 5.3502 5.1770  4.9871 .é?
;‘;0
ﬁ o
6.4187 6.3529 6.2057 6.0202 5.8294 .
| 6.3529 6.4251 6.3642 6.2194 6.0332 o
gg Seeg = { 62057 6.3642  6.4436  6.3856  6.2387 B
6.0202  6.2196  6.3856  6.4671  6.4058 }Ek
5.8294 6.0332 6.2387 6.4058 6.4835 N
i 3
2
>,
a The results of the SVD were 5.':
)
0
& 0.6995 0.4349 -0.2706 0.4797 0.1353 ‘
0.3997 -0.7769 0.1851 0.3162 -0.3202 0
U = 0.3573 -0.0762  0.5794 -0.3109  0.6589 -i&
§§ 1 0.3481 0.3521 0.3643  -0.4460  -0.6613 %
0.3197 -0.2785 -0.6620 -0.6118 0.0879 N
B X
) i
g 5.3574 0 0 0 0 \“;"r
0  0.1611 0 0 g ~
_ 0 0 0.1026 0 m
9 b - 0 0 0 0.0233 of ¥
] 0 0 0 0 0.0070 Q;
[}
B ' g2
- b
NG
4 .
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L4693
L4616
.4489
4342
L4204
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The values of

so that k*

AIC(1)
AIC(2) =
AIC(3)
AIC(4)
AIC(5)

-0.8139
-0.1011
0.3182
0.3743
0.2933

0.191s
-0.5037
-0.4470
0.1072
0.7059

AIC (k) were

2.3072

2.487) ~—-——o

2.4795
2.467
2.4545

is selected.

-0.2626
0.6123
-0.2359
-0.5518
0.4426

y(t) = 1.6777 y(t-1) - 0.7178 y(t-2)

XYY UYY

0.1082
-0.3847
0.6647
-0.5962
0.2075

The estimated model is

which 18 much closer to the actual model (6.11), due to the increased data length.

The model over the testing interval was next found.

ces were

pp2

pf2

20.6940
20.2655
19.2378
17.6822
15.7286

20.4906
19.4580
17.9266
15.9897
13.7888

20.2655
20.4909
20.0699
19.0219
17.4532

19.6758
18.1453
16.2349
14.0540
11.7306

19.2378
20.0699
20.3055
19.8666
18.8081

18.3328
16.4322
14.2789
11.9786

9.6332

17.6822
19.0219
19.8666
20.0831
19.633¢4

16.5805
14.4431
12.1690
9.8473
7.5625
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The covariance matri-

15.7286
17.4532
18.8081
19.6324
19.8397

14.5504
12.2933
9.9935
7.7296
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20.9398
20.7220
19.8651
18.4736
16.6762

ff2

20.7220
21.1467
20.873s
19.9608
18.5264

The SVD yielded

[ 0.8905
0.3705
0.2259
0.1280

L0.0&73

,

9.7032
0

0
0
o

r

0.4557
0.4670
vV, = <10.4617
0.4410
L0.4081

0.4123
-0.4959
-0.4936
-0.4076
-0.4175

-0.6682
-0.2754
0.0760
0.3630
0.5832

19.8651
20.8735
21.2276
20.8927
19.9440

0.0935
-0.6851
0.5293
0.4613
-0.1701

0.5738
-0.5643
-0.4483

0.1371

0.3640

18.4736
19.9608
20.8927
21.1853
20.8230

-0.1344
0.2227
0.5778

-0.5170

-0.5755

0.015

O oo OO O

-0.1019
0.6055
-0.6411
-0.2325
0.3974

The resulting values of AIC(k) were

AIC(1)
AIC(2)
AIC(3)
ALC(4)
AIC(5)

so that k;* = 3 was selected.

y(t) = 2.3931 y(t-1) - 1.977 y(t=2) + 0.7421 y(t-3)

0.3771
2.7253

2.7595 —-——

2.6753
2.6253
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16.6762
18.5264
19.9440
20.8230
21.0965

-O.lOOSW
0.3128
-0.3023
0.5808
-0.6807

0
0
0
o f
7

o7

0.0784
-0.14647
0.4112
-0.7752
0.4506

The resulting estimated model was
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which is much closer to the actual model (6.12) than the estimate based on

half as many data points.

The AAIC criterion was then applied to test for a model change. Using

(6.13) with k* = 2, Kki* = 3, s(k*) = 0.0811, S;(k;*) = 0.0564,

S(k*) = 0.1119, we get

AAIC = 0.3632 + 0.3801 - 0.15 = 0.5933 (6.14)
which yields a "change” decision. By comparing (6.14) to (6.13) we note
several things. The first term, which is log S(k*) - log Sl(kl*) now more
strongly indicates a change, due to better model fit. The second term,
which is the effect of modeling error on the measured error covariances,
also more strongly indicates a change due to increased data length, which
produces a more accurate estimate of the true error covariance during the
testing interval, using the "no change” hypothesis. Finally, the last term
more strongly indicates a change, since the bias for a "no change” decision
1s reduced due to increased data length. Thus we see that all three terms
in the AAIC criterion contribute to the final decision, and each one is of

importance in achieving an accurate decision.
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7. DETECTION OF SLOW MODEL CHANGES :'
s

We now consider the detection of slow, essentially continuous, model 5J
changes. What we wish to achieve in this case is an appropriate data ig
length over which to fit models. If the data length is too short, then :q
there will be a tendency to overfit the model to the noisy data, leading i
to larger prediction errors. If the data length is too long, then the %

effects of parameter variations will bhegin to dominate the prediction

y

BT Y 2

errorse.

In order to generate an appropriate measure by which to trade off these

two characteristics, we again use the AIC criterion, but in a different

2% B 8 S5 S = OEE =E B

way. Assume we have data over a time interval I = {1,2, ..., n} and sup-

pose we divide this interval into subintervals of length W: :'

o

(&t

ii 1 = {1,2, ..., w} !
Ip = {W+l, W42, ..., 2W}, 2

LY

g A
q etce. n

Then an appropriate measure for data length determination is the average

o Y

per sample entropy. In terms of the AIC criterion we define

&3 .

S *

1 1
AlCy = — | —
W W % = AICp(kq)

e |

*

where AICp(ki*) is the minimum prediction AIC for the ith interval Ii, kg

is the optimal model order for the ith interval, and Ny is the number of

v

intervals of W over the whole data interval 1. The prediction AIC uses the

S lat L VLG 0 Sl L e AL g
o - L - - ~

forward prediction error variance (c¢f eq. (5.9)) rather than the fit error

TR XS
o,

dx 2BX
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variance, since we are interested in the error over the next interval, not
the one over which the model was fitted. This has the effect of increasing

the penalty on the number of parameters in the AIC criterion.
The form of AICp is

AICp(ki*) = AIC(ki*) + M(k®)

Experimental Results

In order to test this criterion as the basis for data length selection,

we considered a second-order AR model

y(t) = aj(e) y(t-1) + az(t) y(t-2) + n(t)
where n(t) was zero—mean white gaussian noise with unit variance. The time
varying coefficients were selected so that the two system poles were on the
unit circle in the z-plane. This yields: aj(t) = 2 cos 0(t), ap = -1 where

the roots are: cos O(t) + 1 sin O(t) and cos @(t) - i sin O(t). The time-

variation of O(t) was selected as O(t) = ©(0) + 2 © £ t, where f is a

sl ]

selected frequency. Two values of f (.0001, .00l) were used in the experi-

ments. Total data length was 1000 time points. The results for Case |

,?.
W
‘R

(f = 0.001) are shown in Table 7.1, using ©(0) = 0.2. The result is that

'-I'n

2
7]

the optimal indicated data length is 10-12 samples and corresponds to the

»
4
‘;ﬂ,\A

case in which the average coefficient change over the fit window is in the
range of 0.80 - 0.96. Over the entire data length of 1000 samples, the
value of a; starts at 1.64, deceases to — 1.90 at t = 400 and then
increases to 1.90 at t = 1000. Thus, the average coefficient change over
the optimum data length is generally more than 40% of the coefficient :";t
s
¢

value. VA
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Table 2 shows the results for Case 2 (f = 0.000l) in which the optimal
data length is found to be 30 samples. This 1is, of course, Increased over
that of Case 1 since the coefficients vary much less rapidly - on the order
of 0.019, on the average. Note that the rms prediction error Oe evaluated
over the fit set generally decreases monotonically with data length and

cannot be used as a selection criterion.
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Table 7.1
Data Length Estimation for Case 1 (f = 0.001)

W AICy YNy e 9,1 042
100 0.521 0.768 1.817 0.163 0.086
20 -1.364 0.159 0.603 0.118 0.109
15 -1.479 0.119 0.508 0.141 0.110
12 -1.557 0.096 0.520 0.116 0.108
10 -1.557 0.080 0.487 0.152 0.139
8 -1.512 0.064 0.469 0.133 0.125
S -1.265 0.0399 0.389 0.193 0.200
W = data length of window
AICy = average AIC
AAl = average change of Al over window
0o = rms one-step—ahead prediction error over fit window
031 = rms error in al estimate
042 = rms error in a2 estimate
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Table 7.2
Data Length Estimation for Case 2 (f = 0.0001)

w AICy AAT Je a1 0a2
l'g'i:r
et
100 -1.959 0.061 0.519 0.016 0.018 WS,
U M)
SOt
50 | -2.131 0.031 0.486 0.032 0.031
40 | -2.152 0.025 0.464 0.055 0.049
30 | -2.153 0.019 0.437 0.085 0.068
20 -2.052 0.012 0.462 0.507 0.046
10 -1.835 0.0061 0.455 0.065 0.062
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APPENDIX

MAXIMUM LIKELIHOOD ESTIMATION

We present here some basic background on maximum likelihood estimation,

which is used throughout this report.

The likelihood function for a sample xj, X2, . . « X, parametrized by a

parameter O is

n
L = 0 A.l
121 p(xy I ) ( )

Assume the xj are drawn independently from the true distribution
p(x' 9p). Then L is the joint distribution function of xj, %2, « « ., Xn

and
Joof Lidx, « + « dxp = 1 (A.2)
Differentiating wrt O:

I'-f(—g%-) dx, « « dxp =0 ; —%%— = row vector

or

dlogL
[..f (—wL)L dx, « « « dxg = O

or

dlog L -
E (___TRF—__) 0 (A.3)

Differentiating again
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where © is the maximum likelihood estimate which satisfies

3log L - O "’i
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ani Op is the true parameter value.
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dlog L _ T 32105 L
_sr = (90 ©) 3@2 (A.4)
=0 ]

Now define the covariance matrix

2
C = E dlog L dlog L - - g| 3logl (A.5)
a0 ELe) 502
) ) o
T

and factor Cas C =W W .

Write (A.4) as

- 2
dlog L wT - (0p - @)T d¢log L wT
30 0 302 .
9 0

The right hand side is approximated as

9 - )T cwT=(og-0)Tw

The left hand side is a normalized gaussian variate since

Thus, the right hand side is also a normalized gaussian variate and

E{[(OO - T wT (e - T w]}= 1

which yields
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E [(8g - 8) (8 - 0)T) = ¢! (A.6) ey

{
C is the Fisher information matrix, which is the inverse of the covariance e,
matrix of the parameter estimation errors. :o(::.‘
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