
-A191 022 NFEARS- A NONLINEAR ADAPTIVE FINITE ELEMENT SOLVER PART i~
USER'S MANUAL (U) PITTSBURGH UNIV PA INST FOR

COMPUTATIONAL MATHEMATICS AND APP

UNCLASSIFIED C K MESZTENVI ET AL DEC 87 ICA-87-14 F/G 1211i Ummmmmmmmmmm
EsoEEEnhhhhiEI |h.h|hhh

L411

La ILI
AH

1111125 4 11-

MICROCOPY RESOLUTION TEST CHAR1
NA'IflNA, 961.~ ,F AP~

AD-A191 822
- ! t

;!I

INSTITUTE FOR COMPUTATIONAL
I MATHEMATICS AND APPlICATIONS

IICMA-87-114 December 1987

NFEARS
A Nonkinear Adaptive Finite Element Solver'

Part I1: User's Manual
by

I Charles K. Mesztenyi 2 and We rer C. Rheinboldt 3

I Department of Mathematics and Statistics

1 University of Pittsburgh DTIC
' ~ELECTEmb

-DLW=l STATEM A SD
App Ja loub t910004

Dbwtibutica UnUmited

1 88 3 7 133.

! I

ICMA-87-114 December 1987

ANFEARS
A N n Adaptive FiniteElement Solver 1

Part I1: User's Manual
by

Charles K. Mesztenyi 2 and Werner C. Rheinboldt 3

DTICM ELECTE

DYS-MIBUTTON STATEMENT A

Approved for public release;

Distribution Unlimited

1 This work was in part supported by the Office of Naval Research under contracts N-0001 4-80-C-
9455 and N-00014-85-K-0169 and by the National Science Foundation under grant DCR-
8309926. Acknowledgment is also made for the partial support of the Computer Science Center
of the University of Maryland

Computer Science Center, University of Maryland, College Park, MD 20742
3 Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260

Ivy.

A:
MW

4

I

Contents

S Preface to NFEARS

Part I. Mathematical Foundations

Introduction 1

1.1. Problem Class 4

, 1.2. Domains and Mappings 7

1.3. Finite Element Approximation 13

V 1.4. Mesh Representation and Densities 19

1.5. The Solution Manifold 26

1.6. The Continuation Process 29

1.7. Simplicial Approximation of the Solution Manifold 32

1.8. Error Estimation and Mesh Adaptation 36

1.9. References 42

Part II. NFEARS User's Manual
N Preface to the Users Manual 45

11.1. NFEARS Program 46

11.2. Geometry Input Preparation 48

11.3. User Supplied Subroutines 55

11.4. Running NFEARS 60

11.5. NFEARS Commands r 65

11.6. Region SubcommanAs eo" 74:

Ac_etkoj For

NTIS C.. i

OTI C TA3

DA -,I
Si, ~wif

insi

Preface to the User's Manual

This represents the second Part of the report on NFEARS, the "Nonlinear Finite
Element Adaptive Research Solver" developed jointly by the Universities of
Maryland and Pittsburgh. This part constitutes the User's Manual for the
system. It was intended to describe all necessary aspects for running NFEARS
successfully without requiring a detailed knowledge of the mathematical
background given in Part I. However, the reader should be generally familiar
with the aims and tasks of the program.

.,

,.

-, ..

~ pi

t .

11.1. NFEARS Program

NFEARS is available for VAX and Unisys Computers. In order, to use the
program the user is required to write subroutines in Fortran 77 describing the
problem to be solved (see Sections 1.1 and 11.3) and to combine them with the
NFEARS program. Although, for the most part, NFEARS is written in standard
Fortran 77, some special features are assumed to be available in the compiler.
The principal non-standard feature is the use of the INCLUDE statement which
allows for the inclusion of program-segment-files.

NFEARS uses labeled common-storage areas extensively for its internal data

structure. All of these labeled common-storage areas are defined by
declarations in individual files which are then inserted into the program files by
means of INCLUDE statements. One of these individual files, MAXDIM, declaresfrof

parameter values which in turn are used for dimensioning various arrays. These
parameter values limit the current size of the problem. If a given problem
exceeds these limitations, MAXDIM should be edited for larger values, and
NFEARS should be recompiled. The following limitations are presently set up in
MAXDIM:

MOMAX -16 Maximum number of 0-D domains

M1MAX = 12 Maximum number of 1-D domains
M2MAX = 5 Maximum number of 2-D domains

M1 TMAX = 120 Maximum number of free 1 -D nodes

. M2TMAX = 100 Maximum number of free nodes in one 2-D
domain

M21 MAX = 200 Maximum number of free nodes in one 2-D
domain and its boundary

M01 DFX = 5000 Maximum size of the Jacobian corresponding

to the free nodes in the 0/1-D domains
M2DFMX = 10000 Maximum size of the Jacobian corresponding

to the free nodes in one 2-D domain and its
boundary

Other possible machine or installation dependent parts of the NFEARS program
occur in the program segment file IOPROG in connection with the handling of

4,,

disk files. When NFEARS is run the following disk files are used by unit

numbers :

5 fs System input file
6 fs System output file

9 us Used by SAVE/RESET to equate user's file
10 fs Log-file

12 ud 2-D tree file
14 ud 2-D vector file

15 us Neumann condition assembly file
16 us Element assembly file

-. 1 8 ud 2-D Jacobian file
20 s Temporary file used to equate user's geometry input file

and also used by the region calculation
* 21-29 us Region center-point save files

31-... us Region output files
(u=unformatted, f=formatted, s=sequential, d=direct access)

Although NFEARS opens these files, it does not check whether they did exist

before. Thus the user should not have cataloged and assigned files with the
above unit numbers. Normally, NFEARS is used interactively, and, in order, to
avoid excessive printout to the terminal and to keep a record of the run, a Log-
file is established on unit 10 . When an NFEARS session is terminated with the

QUIT command, this Log-file (10), as well as the Region files (31-...), are not
saved separately. It is left to the user to print out the formatted, sequential Log-
file and to save the unformatted Region files for post-processing.

Before any use of NFEARS the user is required to perform the following two

steps:

* ,(a) To prepare the geometry input describing the domain Q, and

(b) to write the user supplied subroutines describing the mathematical
problem and to combine them with NFEARS in the form of an

executable module.
0.,

These steps are described in detail in Sections 11.2and 11.3

2

St.

- %% *a~ ~ vvv

11.2. Geometry Input Preparation

The preparation of the geometry input consists of the following six steps:

(a) Subdivision of the domain Q.

(b) Assignment of directions for the 1-D domains.
(c) Numbering of all subdomains.
(d) Definition of an initial mesh.

* .(e) Specification of an initial solution.
(f) Construction of the geometry input file.

These steps are illustrated with a simple example in Figures 1:.3.1 -11.3.3.

(a) Subdivision of the domain :

-. , As discussed in Section 1.2, the domain Q must be subdivided into generalized

quadrilaterals each with four corner points and four sides. As before, we call the
*_, .. open quadrilaterals 2-D domains (K2k k=1,...,N2), the open sides 1-D domains

(i,, k=1,...,N1), and the corner points 0-D domains (Qo, k=1 ,...,N). Any 1-D do-

main is either a side of exactly one 2-D domain in which case it is part of the
external boundary of Q, or it is a side of two 2-D domain in which case it is con-
tained in the interior of Q. As shown in Figure 1.2.1, angles formed at the corner
points of the 2-D domains should be between a and 180-c degrees with a suit-
able tolerance a to avoid numerical instabilities; a value of cc=1 50 has been
found adequate.

Figure 11.3.1 shows an example where the domain is a quarter disk with Dirichlet
boundary conditions on the horizontal line (fixed boundary) and Neumann con-
ditions on the rest of the boundary. The right side of the figure shows a possible

subdivision into three 2-D domains, nine 1-D domains and seven 0-D domains.
Thus, in this case, we have N2-=3, N1=9 and No=7. It should be noted that, in line

with our definition of the admissible meshes in Section 1.3, a basic mesh A is
automatically introduced on K once the initial subdivision is given; namely, the
mesh consisting exactly of 4 superelements on each 2-D domain.

.". 3

wf S

I K

f Y.
$1lNeumann

condition

x-1
Fixed boundary

Figure 11.3.1

(b) Assignment of directions for the 1 -D domains.

As detailed in Section 1.2, directions have to be assigned to all 1-D domains in

order to define their tangent and normal vectors and also their curvature C. On
1-D domains which carry Neumann conditions this assignment must be uniform
in the sense that all normals point either outward or inward to the domain 0

and, hence, are not mixed. As discussed in Section 1.2, the normal vector is ob-

tained from the tangent vector by rotating the latter counter-clockwise through
900 . Figure 11.3.2 shows a possible assignmement of directions for our example.

n

-t t

C - +1/radius > 0f 1

C -- 1 /radius < 0f

t

Figure 11.3.2

7.

l.,*b ,,

(c) Numbering of all subdomains.

The next step is to number all O-D, 1-D and 2-D domains. Within each group the
numbers should start with 1, and end with NO* 1i and N2, respectively. The
order of the O-D and 2-D domains is irrevelant. However, some savings in
speed and memory space can be achieved if the 1-D domains are numbered
as follows: Begin by numbering the 1-D domains which carry Dirichlet
conditions, then continue with the others by using a "wavefront" to move over
the subdivision. Figure 11.3.3 shows such a numbering for our example.

(d) Definition of an initial mesh:

In NFEARS meshes are specified in terms of density functions and intensity
values. Section 1.4 presents the definition of the density function D. on the
domain 0 and gives an algorithm for the construction of the mesh from D~ and
the given intensity .3. The un-normalized density dQ is specified in terms of 29
coefficients po,... ,pg for each closed 2-D domain. In order to simpl'fy the
definition of the starting mesh, NFEARS reduces this input requirement by
asking only for a few of these coefficients and by performing linear interpolation
to get all others. More specifically, NFEARS requires one coefficient value for
each 2-D domain, one for each 1-D domain, and two for each O-D domain. The
single coefficient values for the 2-D and 1-D domains are assigned to the mid-
points of these sub-domains as their appropriate pi-value, 1! i! 9. The first of the
two coefficient values for a O-D domain is again used as their pi-value, 1i9
while the second coefficient is the p0 value which describes the singularity. Note
that the p0 values must be either zero or negative. Figure 1.3.4 shows the mesh
generated from the indicated initial density values for a closed 2-0 domain.
More specifically, the initial coefficients are shown adjacent to the corners for
the O-D domains (where the second line is p0), along the sides for the 1-D
domains, and near the mid-point of the 2-D domain. With each picture, the
intensity is listed. It is advisable to start with uniform coefficient values, and then
to increase the pl,... ,p9 values in areas where a singularity is expected.

5
4 ..

!: . ,"
',IL

7 2

lrn
6

5

1 2 3
1 2

Figure 11.3.3

Intensity: 0.05 No. of elements: 49 Intensity: 0.05 No. of elements: 52

1.0 0.0 ____0.0 -1.0 0.0 0.000.0 0. 0.0 -0.0

9,

- 0 1- .00.

0.0 -- -- .0 0.0 --- H _j- .
-.5 0.0 0.0 0.0 0.0 0.0

Intensity: 0.05 No. of elements: 43

0.0
0.0.0
0 0.0 0.0

0.0 1 0.0 1 0.00.0 -- 0.0

-O . O >E0F00.

-.25 0.0 -.5

Figure 11.3.4

6

N 0 N o

(e) Sioecification of an initial solution.

For all calculations NFEARS requires an starting solution on the nodes of the

initial mesh (see Section 1.6). Once agail, in order to simplify the input,

NFEARS az! only for a reduced number of solution values and uses

biquadratic interpolation to determine the other ones. More specifically, one

value is required for each O-D domain, one each at the mid-points of the 1-D

domains, and one each at the mid-points of the 2-D domains. The biquadratic

interpolation is based on the local coordinate system as defined in Section 1.2.

It should be noted that the initial solution values also specify the Dirichlet

boundary conditions on the relevant 1-D domains; in other words, they define

the corresponding boundary functions b as quadratic functions in the local

coordinates (see Section 1.2). In our example, we assumed a zero initial

solution and zero Dirichlet conditions.

(f) Construction of the geometry input file.

NFEARS permits either an interactive input of the geometry or a read-in of a

prepared geometry input file. In order to avoid typing errors it is generally

advisable to set up a geometry input file. This input file has to consist of
pNo+NI+N2+3 data lines in free format where, again, NO, N1 and N2 denote the

number of O-D, 1-D and 2-D domains, respectively. The general format is as

follows:

.,

7

UL

No No = Number of 0-D domains;
1 ,x, ,Yl ,b0 ,Ul , 0 index i of the i-th 0-D domain;

2,x2,y2,b2 ,u2 ,P2,p° xi,y i = global coordinates of the 0-D domain;

......... bi = 0 if this 0-D domain is free,

......... =1 if it carries a a4-dependent Dirichlet

......... condition ,

......... =2 if it carries a fixed Dirichlet condition

......... ui = initial solution value;

......... pi = density coefficient;
0.......... Pi singularity coefficient

! N0'X~o'NooUN0'PN0'PNo

N N, = Number of 1-D domains;
1 ,J,K 1 ,b1 ,C 1u,p, index i of the i-th 1-D domain;

2,J 2 ,K2,b2,C 2,u 2,P2 Ji, Ki = indices of the adjacent 0-D domains

-........... (from -to),
•............ bi = 0 this 1-D domain is free,
. .= 1 if it carries a a4-dependent Dirichiet

........... condition,

.... = 2 if it carries a fixed Dirichlet condition,

.= -1 if it carries a Neumann condition;

........... Ci = signed curvature of the 1-D domain;

........... ui solution value at its mid-point

........... pi coefficient of the density function at the

mid-point;
NJ JN1,KNI,bN1,CN1,UN1 PN1

N2 N2= Number of 2-D domains;

1 ,1,J1,K1 ,L1,UlP1 index i of the i-th 2-D domain;
2,12 ,J2 ,K2,L2,u2,P2 Ii,Ji,Ki,Li = indices of the adjacent 1-D

domains

........... ordered counter clockwwise;

........... ui = initial solution at the mid-point

........... pi = coefficient of the density function at the

mid-point
NN2,lN2 ,JN2 ,KN2,LN2,UN2 ,pN2

8

61
ldl16

Notes:
1. When a 1-D domain carries a Dirichlet boundary condition (bi= 1 or 2), then

the two bounding 0-D domains should have the same type of boundary

condition.
2. The definition of the sign of the curvature for a 1-D domain is indicated in

Figure 11.3.2; that is, if we look from the starting 0-D domain , J, toward the

terminating 0-D domain, Ki, then the positive (+) sign or negative (-) sign is to

be used when the center of the circle is on the right or the left side, re-

spectively. For straight lines, the value of the curvature is zero.
3. The indices of the four 1-D domains that bound a 2-D domain have to be

listed in counter-clockwise order. When the 2-D domain is mapped into the
units-quare, the first 1-D domain is mapped into the rj axis and the second
one onto the 4 axis (see Section 1.2).

For our example, the input file has the following form:

7 Number of 0-D domains

1,0.,0.,2,0.,0.,-.5 Data for the seven 0-D domain
2,.5,0.,2,0.,0.,0.

-43,1.,0.,2,0.,0.,0.

4,0.,.5,0,0.,0.,0.
5,.5,.5,0,0.,0.,0.

6,0.,1.,0,0.,0.,0.
7,.70710678,.70710678,0,0. ,0. ,0.

9 Number of 1 -D domains
1,1,2,2,0.,0.,0. Data for the nine 1-D domains

2,2,3,2,0.,0.,0.

3,1 ,4,-1 ,0.,0.,0.
4,2,5,0,0.,0.,0.
5,7,3,-1,1.,0.,0.

6,4,5,0,0.,0.,0.
7,4,6,-1 ,0.,0.,0.
8,5,7,0,o.,0.,0.
9,6,7,-1,1.,0.,0.

3 Number of 2-D domains
1,3,1,4,6,0.,0. Data for the three 2-D domains
2,7,6,8,9,0.,0.
3,4,2,5,8,0.,0.

9

11.3. User Supplied Subroutines

Before running NFEARS, the user must write subroutines which calculate the
values and derivatives of the functions D, G2, G1 in the problem-definition of

. Section 1.1, and which set up or modify certain parameters and print outJ.

appropriate headings. All these subroutines carry entry names beginning with
USR ... Note also that all of them must be provided even if some are not in use,

,A since the operating system usually does not handle missing subroutines. Once
these routine have been written and compiled, they have to be combined with
NFEARS to produce an executable module.

NFEARS piovides a common block

/USRPAR/ FUSER(10,2), IUSER(10)
for up to 20 real and 10 integer valued parameters for use in the supplied

* subroutines. The subroutine USRFCT allows for storing of data in these two
arrays during the initial call while USRMOD permits their later modification.
These data are retained and may be used in all other user subroutines. They
are also saved by a SAVE command , and read back by a RESET command.

The following subroutines must be provided:

USRFCT This routine is called at initialization time. It may also be used to
print out some captions.

USRINV Routine to provide an initial solution for the problem. It is called by
the "INVAL" command.

USRMOD Routine to provide, change, or print user parameter in USRPAR
• during the process.

USRPH1 Routine to provide the first derivatives of the function D at specified

points.
USRPH2 Routine to provide the second derivatives, including the

derivatives by a1 , of the function (D at specified points.
USRG1 Routine to provide the values and derivatives by G3 of the function

G1 at specified points.
USRG2 Routine to provide the values and derivatives by 02 of the function

G2 at specified points.

10

The calling sequences are as follows:

SUBROUTINE USRFCT (I, NU, IDPR, IDUF, IDUFP, IDUG2, IDUG1)
%7

This subroutine is called at the initialization of a problem either by an INIT
command or a RESET command. It is expected to print out a caption for the run.

Input arguments:
I = 0 for initial start with INIT,

= 1 for recall of saved data with RESET
N U = Fortran unit number (6 or 10) where echo print should be

directed

Output arguments (if 1=0):
IDPR = Problem number
IDUF = ID number of the (D function
IDUFP = 0 if 0 does not depend on a1, non-zero otherwise
IDUG2 = signed identification number of G2 as follows:

= 0 if zero; that is, if the G2 term does not exist
< 0 if G 2 is independent of 0 2

> 0 if G2 depends on 02

IDUG1 = signed identification number of G1 as follows:
= 0 if zero; that is, if the G1 term does not exist
< 0 if G1 is independent of G3

> 0 if G1 depends on 03

As noted before, in all cases, the program should print a title for the run. The

other arguments should be set by the user if 1=0. They will have been set before
when 1=1, but may be reset by the routine. The integer valued identification
numbers are provided for identification pruposes only. NFEARS merely checks
whether they are zero, positive or negative integers.

11

SUBROUTINE USRINV (N, XG, U)
DIMENSION XG(2,N), U(N)

This subroutine provides initial solution values U at N points in one 2-D domain
with the coordinates x,y specified in the array XG. This routine is called by the
INVAL command. The routine is called first with N=0 to allow for any
initialization, such as the input of a file of data. Thereafter it is called for all
regular free nodes of the problem. Note that an initial solution can be specified
by the geometry input in which case USRINV may be a dummy subroutine. But
then the INVAL command should never be used.

SUBROUTINE USRMOD (NU)

This subroutine allows for the modification and print-out of the parameter values
in the common block /USRPAR/. It is called by the command UMOD. The input
integer NU is the Fortran unit number (6 or 10) where the printed output should

be directed.

SUBROUTINE USRPH1 (N, IX2, S1, XG, U, P)
DIMENSION S1(2), XG(2,N), U(0:2,N), P(0:2,N)

This subroutine evaluates the first derivatives of cD at N points in one 2-D

domain, and returns the results in the array P.

Input arguments:
N = number of points where the first derivatives of (D are to be

evaluated
IX2 = index value of the 2-D domain containing the pointsi S 1 = the components of the parameter al

XG(1 ,K), XG(2,K)
= global coordinates x,y of the point K (K = 1 ,...,N)

U(0,K) = the solution value u at the point K
U(1,K) = the value of the derivative ux = au/ax at the point K
U(2,K) = the value of the derivative uy= au/ay at the point K

12

it

Output arguments:~P(0,K) = -- 0l/au at the point K (K--1,.....N)

P(1 ,K) = @-0/a(ux) at the point K (K=1 ,... ,N)
P(2,K) = oa/a(uy) at the point K (K=1 ,...,N)

SUBROUTINE USRPH2 (N, IX2, S1, XG, U, PU, PL)
DIMENSION S1(2), XG(2,N), U(0:2,N), PU(0:2,0:2,N), PL(2,0:2,N)

This subroutine evaluates the second derivatives of 1 at N points in one 2-D

domain, and returns the results in the arrays PU and PL.

Input arguments:
N = number of points where the second derivatives of (D are to be

evaluated
IX2 = index value of the 2-D domain containing the points
S 1 = the components of the parameter a1

XG(1,K), XG(2,K)

= global coordinates x,y of the point K (K = 1 ,...,N)
El U(0,K) = the solution value u at the point K

U(1 ,K) = the value of the derivative ux = Du/ax at the point K
U(2,K) = the value of the derivative uy= au/oy at the point K

Output arguments:
• PU(I,J,K) = o2D / aU(I,K) aUl(J,K) , (1,J=0,1,2; K=1 N)

PL(I,J,K) = D2cD/ S1 (I) alU(J,K) , (1=1,2; J=0,1,2; K=1 ,...,N)

SUBROUTINE USRG1 (N, IX1, S3, XG, CN, G, GL)
DIMENSION S3(2), XG(2,N), CN(2,N), G(N), GL(2,N)

This subroutine calculates the function G1 defining the Neumann boundary
conditions, and its derivatives by 03 , at N points in one 1-D domain, and returns

the results in the arrays G and GL.

13

Input arguments:

N = number of points where the evaluation is to take place

IX1 = index value of the 1 -D domain containing the points
S3 = the components of the parameter a3

XG(1 ,K),XG(2,K)
= global coordinates x,y of the point K (K = 1 ...,N)

CN(1 ,K),CN(2,K)
= components of the normal unit vector at K in the global

coordinate system.

Output arguments:
G(K) = the value of G, at the point K
GL(J,K) = the derivatives aG(K)/aS3(J), J=1,2 of G1 by Y3 at the point K.

SUBROUTINE USRG2 (N, IX2, S2, XG, G, GL)
• "DIMENSION S2(2), XG(2,N), G(N), GL(2,N)

This subroutine evaluates the value of the function G2 and its derivatives by G2

at N points in one 2-D domain, and returns the results in the arrays G and GL.

Input arguments:

N = number of points where the evaluation is to take place
IX2 = index value of the 2-D domain containing the points
S2 = the components of the parameter 02

* XG(1,K),XG(2,K)
= global coordinates x,y of the point K (K = 1,....N)

Output arguments:
G(K) = the value of G2 at the point K
GL(J,K) = the derivatives o-G(K)/aS2(J), J=1,2 of G2 by 02 at the point K.

14

a.:

While the above subroutines must be supplied by the user for any problems,

two other subroutines are used in the program file REGION under the tag R.14.
These subroutines specify the number of data (RNODI) and the actual data
(RNODD) to be written out as added node data for a region file. Default

subroutines for this are included in NFEARS. Any change of these routine
requires a knowledge of the NFEARS data structure.

*115

io

,2

V

1/

4

t

11.4. Running NFEARS

NFEARS works interactively in response to "commands" given by the user
during a run. The command names, shown in the command flow-chart in Figure

11.4.1, can be typed in lower or upper case. Once a command is given, the
program may prompt for further input, specific to that command. After a

1command has been successfully executed, NFEARS prints out the execution-
time and then prompts for a new command input. Initially, the program asks
whether all input should be echoed back or not. In the case of a batch run, this
indicator should always be set to one to ensure such an echo; there will be no

echo if the indicator equals zero.
"A

The output produced by NFEARS appears in two places, namely, (1) at the
-, terminal, and (2) in the log-file with unit number 10. The amount of output can
., be controlled by the user. The prompt for a command-input, the time spent for

-the execution of a command, and any potential error messages will always
show up at the terminal. The log-file (Fortran unit 10) will be created by
NFEARS as a new, sequential, formatted file. Thereafter, output strings are

written onto it, and an end-of-file termination occurs when the QUIT command is
given. It is the user's responsibility to print or discard this file after termination of

the NFEARS run. This file provides a record of the NFEARS session and may
contain a large amount of data which could not be handled conveniently on the

terminal's screen. The amount of output can be set and modified by the
"TRACE" command.

In this Section we summarize briefly the essential aspects of these commands

and refer to Section 11.5 for more detailed descriptions of each of them.

-A.

16

%le- ., .- . V . . I.,P
02tS "e2K6z Z5:Cl

-Command Iiilzto
Flowchart: Iiilzto

INPUT:Comn
Conmnd bac

INI

Figure 5,.4.1

17

CONST to set certain constants for the continuation algorithm and for the
mesh modifications, and to re-define the mesh intensity Z,

INIT to initiaize a problem,

INVAL to change existing values of the initial solution,
HELP to print out all command names as well as the last command,
TRACE to specify the amount of output,
RESET to reset NFEARS from a previously saved file,
CORR to correct the initial solution with the corrector process of the

continuation algorithm,
STEP to step along the solution path with the continuation algorithm,
FERR to calculate estimates of the discretization errors of a solution and

to determine the corresponding ideal density function,
MESH to modify the mesh,
TARG to request a target and/or limit point calculation,

* UMOD to call the user supplied subroutine USRMOD,

PARAM to modify certain parameters,
PRINT to print out solutions, errors, meshes, etc,
SAVE to save present data on a file,
REGION to calculate an approximation of some region of the solution

manifold,

QUIT to terminate the current run with the program.

Order of Commands:

Although NFEARS will, in general, execute commands as they are given, there

are certain logical restrictions which must be observed in the sequence of the
* commands. First of all, one has to establish the necessary constants for the

corrector iteration by means of the CONST command if the default values are
'deemed to be inappropriate. In fact, it is always advisable to start with this

command since it prints out the values of these constants before asking for any
changes and hence provides a printed record of them in the log-file. After this,
one can either initialize a new problem with INIT or continue with a previously
saved problem by commanding a RESET. The iNVAL command may be given
at this point if a different initial solution is needed. In any case, this initialization
is typically followed by a CORR command. The HELP, TRACE and QUIT
commands can be used at any time, but obviously with QUIT the run will

4,~ a'18 • .

S t " , . t " .'sp 4 " ,# " " " t -- . . .,, . ',% * " 7 . ,, . i. ..

terminate. The position of the UMOD command depends on the user supplied
subroutine USRMOD. Typically, this routine is used to modify some of the

parameters needed for the evaluation of certain functionals intrinsic to the
problem. In that case, it should be followed by a CORR command to correct the
last solution obtained by NFEARS.

R Figure 11.4.2 shows two frequently used command sequences, the first for single
parameter continuation, the second for switching over to a calculation of a
simplicial approximation of a (two-dimensional) region of the manifold.

Normal order for single parameter continuation:

T, "CONS CORR STEP FERR MESH

Switching to two parameter Region calculation:
-*1 TAR I-* TEP IICRR

: I PARAM RE(ION PARA

Figure 4.2

I The basic data structures of NFEARS consist of several summary records and
the tree-structures described in Section 1.4. With the tree-structure, storage is

* -provided for one set of solution data and the corresponding error indicators and
densities. In addition, a temporary data structure is available during the
corrector process for two sets of solution data used in the continuation algorithm

and in the region calculation. This temporary data structure consists of the
assembly files (units 15 and 16) and the vector and matrix arrays which are
partly in files 14 and 18.; it is set up by the CORR command. More specifically,
this command opens the assembly files, copies the solution currently in the tree
data structure to the "predictor"-location of the temporary data structure,

calculates its Jacobians and the tangent vector of the continuation path, and
finally starts the corrector iteration to improve that solution. The CORR and

" -STEP commands always leave the calculated solutions in the "current"-location

19

SN. 1, a
Rgi

of the temporary storage. After "STEP" there may be two such solutions, namely,
the "current" solution and, if applicable, the solution obtained at a target or limit
point which is then contained in the "predictor"-Iocation. Hence, unless the user

wants to continue with another STEP command, one of these solutions should
be transfered back to the tree storage structure. This is accomplished by the
FERR command before its calculation of the discretization errors and of the
ideal density function, and, accordingly, this command asks first which one of

the two solutions in the temporary data structure is to be transfered.

The PRINT, MESH and SAVE commands always assume that the solution is in
the tree data structure. In particular, the temporary data structure is not saved by
the SAVE command; thus after a RESET command, the user should use a
CORR command to re-establish it.

0,2

.

' N2N0

aW.

'pa,.,i.li~ i

11.5. NFEARS Commands

In this section we discuss the individual NFEARS commands in detail.

5.1 The CONST Command:

The CONST command permits a change of certain control parameters for the
continuation algorithm (CORR, STEP commands), the region calculation
(REGION command) and the mesh modification (MESH command). When this
command is invoked, the user is asked to opt either for the constants of group 1

_ used in CORR, STEP, REGION, or for those of group 2 needed in MESH, and
allowed to change there values. Initially NFEARS sets these to some default
values. The various constants, and, in parentheses, their default values are as
follows:

(a) Grou 1: Constants for the CORR, STEP and REGION commands:
Maximum number of steps allowed per STEP call (5)
Starting step size (0.01)
Maximum step size (1.0)
Minimum step size (0.0001)
Maximum number of steps in the corrector iteration (10)
Frequency of Jacobian evaluation (3)
Absolute error tolerance for the corrector iteration (1 0*C)

Relative error tolerance for corrector iteration (1 0*C)
Minimum pivot value allowed in matrix decomposition (C)

where C is the smallest number on the computer such that 1.0+C is different
from 1.0.

(b) Grou1 2: Constants for the MESH command:

Mesh-modification mode: "manual" or "automatic" (automatic)
Control of the "automatic" mesh-modification: "by error size" or "by

density" (by density)
Tolerances for automatic mesh-modification by "error size":

Refinement tolerance: If the error indicator of an element exceeds
this tolerance then the element is subdivided. De-refinement
tolerance: If w is an element of a previous mesh for which all four

21

w--rVrI

sons are elements of the current mesh and their combined error
indicators fall below this tolerances, then co is de-refined.

Intensity, initially set by user's input.

For both groups of constants, the program prints out the presently set values,
and then asks if any of them should be changed.

5.2 The TRACE Command:

This command sets the Indicator for the amount of output from NFEARS and

may be invoked at any time. It prompts for two, free-formatted input lines:

(i) The first line consists of two integer values:
ECHO, STATUS

*_ where
ECHO = 1 if all inputs are to be echoed to the system ouput file 6,

= 0 if the inputs are not to be reprinted.
STATUS > 0 indicator of the amount of print-out to the system ouput file.

A zero value keeps it to a minimum, and for increasing positive
values of STATUS the amount of output is increased.

(ii) The second line consists of six non-negative integers corresponding to 6

specific parts of NFEARS:

1,12,13,14,15 ,16
These 6 parts are identified as follows:

.. I1: Execution of the INIT and RESET commands
12: Corrector iteration

13: Execution of the MESH command
14: Execution of the CORR and STEP commands
15: Execution of the FERR command
16: Execution of the REGION Command

The integer value Ik (1:k<6) specifies the amount of output from Part k that is to

be generated in the log-file on unit 10, and, when STATUS > Ik, also on the

system output file 6.

22et '

5.3 The INIT Command:

This command initializes a new problem. NFEARS first calls the user-subroutine

USRFCT with the first argument set to zero. This call allows for any set-up of
parameter values that may needed in other user-subroutine and also for the
print-out of a problem title.

-" Upon return from USRFCT, the program asks for the name of the file containing
the geometry data. If the answer is "5", then these geometry data are to be given
interactively. Otherwise, the answer is assumed to be the file-name where the
geometry data reside with the format descibed in Section 11.2.

After the geometry input, the program asks for the intensity 3 of the initial mesh.

This value can be changed again by the CONST command.'.,

Thereafter, the program asks for the coefficients of the effective parameters.
First, the coefficients 81 and 82 with 51+5 2 = 1.0 of the linear functions X1 = 51x,
X2 = 8 2X are requested which specify the continuation-path (see Section 1.5).

Iii Then the eight coefficients a and P3 are expected that define X., and X2 in terms

of the problem parameters (see Section 1.1).

*" In summary, the input for the INIT command is as follows:

* 1. Input from USRFCT;

2. name of the geometry file or 05" for interactive input;

3. geometry data if the input is to be interactive;
4. intensity .3

.5. 1'82
1 1

6. k, k, , k=1,2,3,4

2 2
k,ak, k=1,2,3

-o After the INIT command, the user should apply a CORR command to establish
the initial solution in the temporary data structure and to compute its Jacobian

'-', 23

4.,'

and the tangent of the specified path. If the initial solution is not adequate, the
INVAL command may be used prior to CORR.

5.4 The INVAL Command:

This command is used to supply an initial solution through the USRINV
subroutine. When this command is invoked, USRINV is called first with the input
variable N set to zero to allow for any initialization that may be needed in this
subroutine. Thereafter, USRINV is called repeatedly with N>O to obtain initial
values U at N nodes with global coordinates (x,y). Note that this command
cannot be used before the geometry is established by the INIT or RESET
commands. Moreover, the INVAL command should always be followed by the

CORR command to correct the supplied solution and to establish it and its
related data in the temporary storaqe area.

5.5 The RESET Command:

The RESET command causes the data structure from a previously saved disk-
file, generated by a SAVE command, to be read back into the program. The
user must supply the name of the file. After the file is read, NFEARS calls
USRFCT with the first argument set to one to allow for a print-out of a problem-p. title and, if desired, of any saved parameters in the common block /USRPAR/.

This command should be followed by a CORR command to establish the
solution and its related data in the temporary data structure and to ensure its

correctness. Once again, the INVAL command may be applied prior to CORR.

5.6 The CORR Command:

This command establishes the current solution and its Jacobian in the
temporary data structure; it then, applies the corrector process to it , and
calculates the tangent vector of the specified path in preparation for the

<,C continuation algorithm. This command should be used after any INIT or RESET
command, and also after the calculation of an approximation of a region of the
manifold by a REGION command (see Figure 11.4.2).

vi
24

q4

5.7 The STEP Command:

The STEP command invokes the continuation algorithm and prompts the user

for the number of steps that are to be taken. It terminates in either one of the

following three modes:
(a) The specified number of steps have been taken. The "current" location

contains the "point" on the path reached at the last step.
(b) During the step-calculation, a previously called-for target or limit point is

detected between two successively computed points on the path. The so-
lution corresponding to this target or limit point is returned in the "predictor"

location of the temporary data structure while the computed point on the
path just beyond it is in the "current" location.

((c) The corrector iteration failed to converge.
A print-out informs the user which of these modes applies, and, in particular,
whether a target or limit point has been found. The STEP command is usually

followed by a FERR command. It is advisable not to take too many steps with

one STEP command, since error indicators are not calculated during the con-
tinuation and hence it may happen that the discretization errors become unde-
sirably large. When the corrector iteration fails, the user may try to decrease the
minimum step size of the continuation algorithm by means of the CONST com-
mand. Another remedy might be to establish a more suitable scaling of all vari-
ables and, especially, of the parameters k. and X2; but, of course, this requires

some modifications in the user-subroutines.

5.8 The FERR Command:

This command calculates the error indicators for a solution obtained by a CORR

or STEP command and determines the ideal density. More specifically, the error

estimates are computed for the solution in the current location, unless a target
or limit point has been found which, of course, is then contained in the
"predicted" location. In this case the user is asked whether the error calculation

should be performed for the values in the "predicted" or the "current" location.
The appropriate solution is then transfered to the tree storage area and the error

and density calculation is performed. This command should be given before

25

- -

any MESH, PRINT or SAVE commands since all of these commands work with
the solution and its error indicators in the tree storage area.
5.9 The MESH Command:

This command checks the present meshes on the 2-D domains and modifies
them in accordance with the mesh-modification-mode set by the CONST

command. The program tests first if any de-refinement is needed; that is,
whether any four elements obtained by a prior refinement of an element are to

be contracted again into one element. Once all de-refinements, if any, are
completed, the program checks if any refinement is to be performed; that is,
whether any element is to be subdivided into four elements.

Modification is performed in accordance with the mode set by the CONST

command. "Automatic" refinement decision can be made on the basis of the
* error-sizes or of the density and intensity. The refinement by error-size uses two

*. error tolerances supplied by the CONST command and for details of the
refinement by density/intensity we refer to Section 1.8. "Manual" modification is

-performed interactively. The user is asked for each element, which is a candi-

date for de-refinement or refinement, whether the particular operation should be
performed or not. In all cases, the total number of de-refinements and
refinements is provided as output.

Interpolation is used to obtain the solution values for any nodes that may have

been newly established by any refinement. The resulting approximate solution
should always be corrected by a CORR or STEP command.

5.10 The TARG Command:

This command prints out any presently set target and/or limit point indicators, if

there are any, and then asks for new indicators if these are to be established. A
target or limit point indicator always consists of the index value of the variable or
parameter variable, and, in addition -- for a target point -- of the desired target
value. The following variable indices are allowed:

A O-D domain not carrying a Dirichlet boundary condition,
the mid-point of a 1-D domain not carrying a Dirichlet boundary condition,

the mid-point of a 2-D -domain,

26

any one of the active X or a parameter variables.

5.11 The PARAM Command:

This command prints out the present values of the effective parameter values
X , X2 and of the coefficients 81, 82, a and 13. It then asks if the 8 and 13 values

are to be changed. The following answers are allowed:

0 ,0 (two zeros) no change,
81 182 (81+82 = 1.0) change the previous 81 and 52 values,

,13 reset the value of 13 for the printed i,k indices.k

kIn either case, new values of the ai are determined which ensure that the

current values of the program parameters ai are not changed, and then the

values of the effective parameters XOL,2 are set to zero. More specifically -- after

all changes are provided -- the parameter values will be as follows

k k k
ai (new) = oi (old) + 5i (old) Xk (old) , i=1 ,...,4; k=1,2

kX (new) = k(new) = 0, 13k (new) = input provided by the user.

In addition, any previously set target or limit point indicators are erased. Thus,
if desired, such target and limit point indicators have to be reset in terms of the

.q new X-values initialized to 0.

5.12 The REGION Command:

This command invokes the algorithm for the calculation of a simplicial ap-
proximation of an open region of the manifold, and enters into a sub-command
mode which is described in the next section. Before invoking this command, the
user should ensure that bot effective parameter variables, X1 and X2 are active.

This can be guaranteed with the PARAM command by providing that at least
one1 2
one and at least one 13 are non-zero. Accordingly, upon exit from the

27

REGION sub-command mode, the user may wish to invoke the PARAM

command to choose a new relation between the two parameter variables.
5.13 The UMOD Command:

This command invokes a call to the user-subroutine USRMOD. Accordingly,

any action taken depends on this routine.

5.14 The PRINT Command:

This command prints out the current solution in the tree-storage area and its

associated error and density values. It should be used after a FERR command,

otherwise the program may print a previous result. When this command is

given, the program asks whether output should be on-line (system output 6). If

the answer is "No", then the full solution, error and density values will be printed
* in the log-file (unit 10). If the answer is "Yes" (on-line), then the program will

prompt further for a specification of the desired segments of the solution, error

and density data which are to be printed out for each subdomain.

5.15 The SAVE Command:

This command saves the present data on a disk-file which can be used later to

resume the computation by means of a RESET command. The program asks for

the name of the file (which should not exist) to which the output is to be directed.

The program saves all problem data including the parameter values in the user-

subroutines. The data in the temporary storage area; that is, in particular, the
Jacobian and the path-tangents, are not saved. Accordingly, this command

should be given after a FERR or MESH command. It is the user's responsibility

to save this disk file permanently after the termination of an NFEARS session.

5.16 The HELP Command:

This command prints out the names of the commands and the name of the last

executed command.

2

i

I5.1

5.17 The QUIT Command:

This command terminates the NFEARS session and prints out the number of
region-output files (see Section 11.6) that have been generated. These files and
any files generated by a SAVE command should be saved by the user, and, in
addition, the log-file (unit 10) should be printed out.

.9

1 -"-

i%29

% ,. oI

°'

*:: .11.6. REGION Subcommands

The REGION command calculates a simplicial approximation on the manifold M

in an neighborhood of the "current solution" called, in this context, the reference

point. If a presently available target point is to be used as the reference point,

then it has to be placed into the "current" location by issuing a FERR and CORR

command prior to the REGION command. The Region sub-program is

implemented as an interactive routine which is controlled by user supplied sub-

commands each of which consists of a single character. When the REGION
* I 'command is invoked, the program checks whether both effective parameters

are active, if not thena request for a change of the parameter dependence is
issued. When this condition is satisfied, the program resets the values of the

two effective parameters X1 and X2 to zero.

* •The basic principle of the region calculation is discussed in Section 1.7. As

noted there a Kuhn triangulation in R2 is used as the reference triangulation and

we work with rectangular patches of eight triangles each containing one center

node and eight boundary nodes. As outlined in Section 1.7, the algorithm begins

by mapping a first patch onto the tangent plane of the reference point and by

projecting the nodes from there onto the manifold. Then, under user control, the

program proceeds to transfer an adjacent patch, next to the first one, onto the
manifold, etc. In other words, the REGION command maps a sequence of

"patches" onto the manifold, and their connectivity pattern defines the desired

simplicial approximation of the particular region.

The output from the REGION command consists of a region-file which has as its
first record a connectivity matrix NODE(i,j), i,j=l....MAXNOD (=21), followed by a

sequence of records containing the attributes of the calculated nodal points

(solution values, error indicators, etc.). The entries of the connectivity matrix

correspond to the nodes of a 20 by 20 subset of triangles of the reference

triangulation (see Figure 1.7.1); the triangular connections are not stored

explicitly. Originally, this matrix is set to zero, except for the entry NODE(10,10)

which corresponds to the node that is mapped into the reference point and is

set to 1. When a node of any patch has been mapped successfully onto M and
its attributes have been calculated, then the node receives a positive index
which is recorded in the matrix. At the same time, the attribute record of that

30

L.

point is saved. A negative index is used in the connectivity matrix when an
attempt has been made to transfer the point to M but the corrector iteration has
failed. In the matrix, the center-points of the patches correspond to the "even"
entries, NODE(2i,2j) (li,j<10), and the boundary points of the patch are the
eight adjacent matrix entries. Thus a patch is identified by nine entries
NODE(2i+m,2j+n), m,n=-1,0,+l. The adjacent patches, of course, share the
boundary nodes.

After the initialization, the program enters into the sub-command mode. The or-
der in which patches are to be transfered onto M is controlled by the sub-com-

_mands L(eft), R(ight),D(own) and U(p), i.e. the patch to be used next is the one
adjacent to the "current" patch in the specified direction. Figure 11.6.2 shows the
sequence of patches corresponding to the commands L,D,R,R,R. The "current"
patch is usually the last calculated one. But, the program also provides nine
temporary locations, indexed 1 to 9, where the center points on M of a success-

* fully mapped patch can be saved by means of the sub-command S(ave). The
reference point is initially saved in location 1. During the calculation another

sub-command allows for a previously "saved patch" to replace the "current" one.
When the region computation terminates, control is returned to the main
program with a "current" solution. At that time, the user also has the choice
which of these saved center points should become the "current" solution.

Generation of patches:

O Center point of patches
L

* Boundary point of patches

41 0 41 0
D Ref. pt.u

Figure 11.6.2

31'p.

The computation of the center-point needed for mapping a new patch onto M

and the process of transfering a node from R2 onto the tangent plane and of
projecting it from there onto M was discussed in Section 1.7. Default step sizes

- are based on the last stepsize of the continuation algorithm and can be
changed by the user. For the center- point calculation the modified Newton
process is the same as in the continuation algorithm, but the program always

.-. " re-evaluates the Jacobian after the solution has been obtained. The calculation

of the boundary points of the new patch uses a chord Newton method based on
, the Jacobian at the center point of the patch. A flow chart cf the region-

subprogram is given in Figure 11.6.3.

A character matrix picture of the calculated patches is printed at the terminal.
The entries in this matrix correspond to the center points of the patches. and

* consist of a character followed either by a blank or a single digit between 1
and 9. Patches which were not yet mapped onto M are represented by a period

i" followed by blank. Instead of the full 10 by 10 array of patches, only the used
patches are shown with one row and/or column of periods on the four sides
where applicable. The characters representing these patches are as follows:

11r, or "R" = Initial reference patch
-'' "a" or "A" = Successfully transfered patch for which all 9 nodes have

been mapped onto M.

' "b" or "B" = Unsuccessfully used patch for which the corrector diverged
at one or more nodes

The "current" patch is indicated by a capital letter and all others by small letters.

A digit between 1 and 9 following the patch character indicates that the center-

point for that patch has been saved in the temporary location with the same
index.

32

V, -.:

N' . .- ,, -. .. - .• - - -. -, .-.. ,,-. -,, .j, , - • , • , , , •, ,'

-~ Command:
REGION -IntaieStepsize

New Patch Center pt.
=> Reference point

INPUT Subcommand: I

S 2PT9 Subcommand Branch

R L. U, D

S Save Center pt
save at k.

1,2,..9 Retrieve Center
retrieve pt. at k=1,.,9

Figure sho6.

R. , ,U 1i11t
mov nw 33c

Cls.eio ie ---- RT R

Seet ure o

-r ~W - -W .- P- ~. -WU ~ X u~ WLC&W T. iN I. W T. V i SV TV

bN '

Initial ouput picture:

Ri

The current patch is the reference patch; its center point is the reference point

which is always saved in location 1. The next patch may be chosen in any one

of the four directions (Left, Right, Up, Down). Suppose that at a later time the

picture looks as follows:

.,b a a A

*,a a a

* a a a

.. a2 a a

-'a rl a

Only two movements are possible from the current patch "A", namely -- as

indicated by the missing period in the top line - the R(ight) and the D(own)

movement . The center points of two patches were saved in locations 1 and 2.

All patches were mapped successfully onto M, except the one in the upper left

. corner.

Below the picture, the program prints out a line of summary data, including the

number of patches used so far, number of nodes transfered onto M, etc, and,

optionally, three 3 by 3 matrices which give some information about the current

patch calculation. For details we refer to the P(rint) sub-command below. These

matrices can also be printed automatically with a proper setting of the T(race)

sub-command.

34O,,

After printing the picture the program expects another one-character
(sub)command from the user. Following is a list of all these subcommands:

"S" = Save the current patch: The center-point of the current patch is saved in
the temporary location with the next available index. If all 9 locations
have been used then the user will be asked which one of them is to be
replaced. The index of all patches for which the center points have been

saved can be seen in the next picture.
"1 ''2', ., "9-

" Use the "saved patch" in this location as the "current patch"; an error
message results if the indicated location is empty.

"F" = Prints three 3 by 3 matrices are printed side by side which give inform-
ation about the last patch calculation. The first matrix contains the indices
of the nodes that were mapped onto M, the second one shows the num-

ber of corrector steps for their calculation, and the third matrix contains
the distance, in the maximum norm, from the predicted point on the tan-
gent space to the computed node on M.

When the Print command is given, the program asks whether the above
output should be directed to the terminal orto file 10. It may be noted that
the T(race) command also allows for the automatic generation of the
same output, except that then it will always be directed to the terminal.

"L", "R", "U" or "ID"
= Calculates a new patch adjacent to the current patch by moving in the

indicated direction L(eft), R(ight), U(p) or D(own). If the patch in that

position has already been mapped onto M, or if it is outside of the 10 by
10 patch region, an error message is issued. Once the new patch has
been transfered onto M, it will become the new current patch.

'T'= Trace command provides for certain optional outputs. It requires two
integers as inputs, which are the same as the trace switches of the main
program for the amount of terminal output. A 1,1 input produces an au-
tomatic output of the same three matrices on the terminal as the P(rint)
command, while 0,0 suppresses this print-out.

"Q"= Quit command: It establishes a region-file before returning contro: to the
main program. The user has a choice which of the saved center-points of
the patches is to become the "current" solution. This solution should be
"corrected" by a CORR command.

35

N' N N

Region-file

A region-file is a sequential, un-formatted file with unit-number 30+i where i=1
at the first call of the REGION command, and, thereafter, i is incremented for
each subsequent call of the REGION program. Up to 9 region files may be
established. The first record of a region-file is the region-record containing the
connectivity matrix NODE, all subsequent ones are the point attribute records.

Region-record:
NDTOT,NR,NPTOT,MXN,NODE

where

NDTOT = number of nodes mapped onto M = number of subsequent
* •records,

NR = number of data in the record of each point
NPTOT = number of patches mapped onto M
MXN - dimension of the NODE matrix (=21)

NODE(MXN,MXN)
= connectivity matrix with entries i as follows

i > 0 index number of the point

i = 0 point not calculated

i < 0 iteration failed for the point

6.

a, 36

Point attribute records (length NR):

FERROR = the error estimator at the point

ENERGY = linear energy term
ERRMAX = maximum elemental error indicator
CINTY = current intensity

I !DINTY = ideal intensity
DNRM = ideal density norm

/, ~.VECTP(1),VECTP(2)
- values of the effective parameters X1 and X2 (recall that these

are relative to the reference point)
VECTP(3) =single effective parameter X value (this has no real meaning in

this context)
CPAR - values of the problem parameters a;i (i=1,2; j=1,2,3,4), note

that 42 - 0 is included which is not used

. V(i), i=1,...,NR-18 (= NO)

- These are optional output data obtained through a subroutine

RNODD which also has an entry RNODI(n) that returns the
number of data values "n". At present, NFEARS contains a
default subroutine R.14 which gives n = No data values at the

0-D domains, (including those carrying Dirichlet conditions).
With the 18 previous data values, we have NR = 18+N o.

i;37

?, %1

--- - ---

Fltl

$lo

00 0

