
WV'WU~kUWUT3JJULWuwW

AD-A 191 770 EPORT DOCUMENTATION PAGE
I b RE rT TW MA KIG

UNCLASSIFIED
2 SECURY CLASSIICATIOFN AUTHORITY 3. 0SIBUTION/AVAKASTY OF REPOR

2k OCLA.SSIFNcTION/SNGRoAIo SCEDULE Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBERS) 5 MONITORING ORGANIZATION REPORT NUMBEI(S)

6 NAME OF PERFORMING ORGANIZATION 6i OFICE SYMSOL ?. NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center
6c. ADDRESS (CY. Stare and ZIP Code) 7b. AOODESS (Coy. Sta*e and ZIP Cde

San Diego, CA 92152-5000
Be. NAME OF FUNOING/SPONSORING ORGANIZATION Ws OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTICATION NUMBER

M catel

Office of Naval Research ONR
ft ADORESS (C y State and 2P Ce / 10. SOURCE OF FUNOING NUMBERS

PROGRAM ELEMENT NO. PROJECT NO TASK NO. AGENCY

800 North Quincy Street ACCESSIO
Arlington, VA 22217 61153N EES5 RR01509 DN088 669
11 TITLE ImestA, Securfi C1atahto,,

Architecture of the Systolic Linear Algebra Parallel Processor (SLAPP)
12 PERSONAL AUTHOR(S)

J.J. Symanski
130 TYPE OF REPORT 3b. TIME COVERED 14. DATE OF REPORT (Ye, Mo.t Dey I5.PAGE COUNT
Journal Article FROM TO August 1986

IS SUPPLEMENTARY NOTATION

17 COSATI CODES 1B. SUBAJECT TERMS (Contuwe on verse d necessary end ,dentdy by Week nto.bPO

FIELD GROUP SUB-GROUP real-time signal processing
integer or floating point numbers

19 ABSTRACT (Cor t a, an **etse d necesay and idemn'y by bloc, nrmwl

This paper will present preliminary concepts for the design of a systolic array of processors specifically aimed at
efficient implementation of a core set of matrix operations consisting of matrix multiplication, ZRD, SVD and generalized
SVD. The algorithms to be implemented will be discussed briefly. Concepts for efficient implementation of the algorithmswill be presented along with future plans.

Col

20 DOITRIUTION/AVALABIUTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIEDUNUMITED 0 SAME AS RPT Q OTIC USERS UNCLASSIFIED
220 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE nekoe Area Code 22c OFFICE SYMBOL

J.J. Symanski -2 2e, 741

D3 FORM 1473, 84 JAN AM EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIEDALL OTHER EDITONS ARE OSOLETE

SECUITY LASI~A1ON F TMPA,

:qs 34
To appear in the Proceedings of the PIE International Technical Symposium,
Vol. 698-34, Real Time Signal Processing, San riago, CA 17-22 August 1986.

Architecture of the Systolic Linear Algebra Parallel Processor (SLAPP)

J. J. Symanski

Naval Ocean Systems Center
San Diego, CA 92152

Abstract

-) This paper will present preliminary concepts for the design of a systolic array of
processors specifically aimed at efficient implementation of a core set of matrix operations
consisting of matrix multiplication, ORD, SVD and generalized SVD. The algorithms to be
implemented will be discussed briefly. Concepts for efficient implementation of the
algorithms will be presented along with future plans.

--------trdction

The impoftance of the ORD, SVD and GSVD to real-time signal processing has been discussed
by Speiserl. These algorithms are far more complex than the FFT and similar algorithms
which require basicall only multiplications and additions of integer or floating point
numbers. H. T. Kung's elegant and efficient concept of data rhythmically flowing through
linear or two-dimensional arrays of processors, becomes more complicated with these advanced
algorithms. This added complexity is partly due to the algorithms-and partly to the state-
of-the-art of integrated circuits available to construct these processors. Divisions and
square roots, are more difficult and time consuming to achieve in hardware, since they
require iterative approaches or additional complex circuits.

Other factors which lead to implementation difficulties are data movement and the pro-
gramning of long pipelines of data. For applications where the data arrays have dimensions
on the order of 100 to 1000 and the dynamic range of floating point computations is required,
it is currently infeasible to build arrays with one processor for each data element. This
means that techniques must be found to map large data arrays onto smaller physical arrays
and maintain a high level of efficiency for the algorithms.

This paper will present a new architecture, implementable with current state-of-the-art
integrated circuits which attempts to efficiently implement he core operations of matrix
multiplication, the QR, SVD and GSVD as described by Luk 3 ,4 , as well as containing a high
level of flexibility for the implementation of other algorithms and application dependent
functions. The architecture attempts to deal with the problems of latency in the primitive
arithmetic operations, imbalances in data transfer and computation rates, processing of
arrays of data larger than the physical array and some software issues.

Algorithms

The algorithms of primary interest are the QRD, SVD and GSVD of Luk 3 ,4 . The GSVD is
similar to the SVD but more complex in that it will be implemented on two triangular arrays
which will make its data movements more complex. The GSVD is currently being analyzed
with respect to its mapping onto the array. Matrix multiplication is relatively easy to
implement on the array and will be discussed only briefly.

The ORD algorithm of Luk 2 ,3 is similar to that of Gentlemen and Kung6 in that it is based
on a triangular array of.*processors. However, it is organized to permit a smoother data
flow when used for both a ORD and SVD or GSVD. The general appearance of Luk's computational
network is shown in Figure 1, where the data elements are shown as squares and the processors
are shown as circles. This is a conceptual representation only.

Luk's array consists of (n x n)/4 + 0(n) processors and a triangular array of storage
cells located around the processors. (In our implementation these storage cells are brought
into the processor, since they are easily incorporated into RAM memory in the processor.)
The algorithm basically operates on 2 x 2 matrices along the diagonal to obtain rotation
sines and cosines which are then applied along the rows to annihilate the leading element
of each row as it comes into the array from above. This process continues until the m ele- I
ments of the input data matrix have been processed and we are left with a n x n triangular
matrix. (This is a common situation in signal processing, where we have m time samples
from n sensors producing an array of m x n data elements.)

The SVD uses a similar triangular array of (n x n)/4 + 0(n) processors, as shown in
figure 2. The input matrix must be in the upper triangular form which can be obtained by
using the QRD. The approach is to use the diagonal processors of the array to annihilate

the off diagonal elements via Jacobi rotations. We compute block 2 x 2 SVDs along the main
diagonal and pass rotation sines and cosines to the right and up to eliminate internal
elements. For a given 2 x 2 block this is a two step process in which the 2 x 2 matrix
is first symmetrized and then diagonalized. Then, an odd-even ordering scheme is applied
to the 2 x 2 blocks. First, the odd index blocks are reduced to diagonal form, data passed,
and then the even numbered blocks are similarly reduced. This process proceeds until
n(n-l)/2 transformations have been completed. This is one sweep of the algorithm. Luk 2

proposes that iterations be stopped after about ten sweeps, which is usually sufficient to
achieve convergence.

000 ROW
01GC l(:

EVNRW0000
ROW©

EVENVE ROW(~

SDATA ELEMENTS rn+)/2 LDATA ELEMENTS: n I 11/2

O PROCESSING ELEMENTS- n
2
/4 + 0O j PROCESSING ELEMENTS: M2/4 + O(nj

Figure 1. The Luk QRD Computational Network Figure 2. The Luk SVD Computational Network

The GSVD will utilize this same triangular array but will require two arrays with a data
path between corresponding elements of the two triangular arrays. The details of this
mapping will be reported in a later paper.

We propose to implement the algorithms on a triangular array of processors as shown in
Figure 3. The processors on the diagonal, shown as circles, are called boundary processors
and are designed to perform the generation of sines and cosines required for the Jacobi
rotations, quickly with low latency. Note that trigonometric functions are not explicitly
computed. Generation of the sines and cosines requires only square roots, divisions, multi-
plies and additions. The off diagonal or interior processors, shown as squares, are similar
but do not (necessarily) have the capability to generate sines and cosines quickly. All
processors have the capability to perform multiplications and additions with 32 bit floating
point data.

Matrix multiplication is a very regular and simple algorithm to implement in a square
array. Since two triangular arrays will be required for the GSVD the two triangular arrays
will be connected in such a way as to form a square array with two main diagonals, or an
(n+l) x n array, as shown in Figure 4. Matrix multiplication will be accomplished in a
manner similar to that described by Symanski 7 .

Architecture

The architecture proposed can be thought of simply as two triangular arrays similar to
that shown in Figure 3, placed parallel to each other and connected with data paths between
corresponding elements in each array. This results in a three-dimensional array of two
triangular planes. Two triangular arrays are required for the solution of the GSVD and
also to gain the factor of n when performing matrix multiplications. Some applications
require as much computation in matrix multiplications as in the more complex QR and SVD.

aThe availability of n squared processors speeds the throughput of matrix multiplies by a
factor of n which becomes significant as n increases.

The architecture of the processing element is shown in Figure 5. It consists of an
Input/Output Processor (IOP) connected via a dual-port RAM to a Linear Algebra Processor
(LAP). There is an auxiliary RAM module for temporary data storage and also interprocessor
communications circuitry to enable the IOP to queue tasks for the LAP.

The key concept here is that the 10 is independent of the computation in any processing
element. As long as the 10 overhead is low, we can make a gain in overall throughput by
sharing computational tasks among processors. This makes programming of an algorithm or a
set of algorithms for specific application much easier since the programmer does not have

TA :

]. ' []*

Figure 3. The Triangular Systolic Array Figure 4. Dual Triangular Arrays
Configured for Matrix
Multiplication

to worry about interruptions in the flow of the algorithm. This is especially advantageous
with the pipelined floating point units currently available for implementing these
processors.

Furthermore, this could be extended to any nearest (or even not so nearest neighbors) as
long as there are 'available cycles' in a processing element and the 10 doesn't wipe out
the time gained by using other processors. The whole game is to keep as many of the proces-
sors as busy as possible and obtain as close to a linear gain in processing for all of the
array, as possible.

The LAP block diagram is shown in Figure 6. The floating point multiplier/accumulator
is a device such as the Weitek 3332. This device performs multiplies, adds, data conver-
tions and also contains a 32 word register file. The Unary Function Module, which is cur-
rently under development, performs arithmetic functions of one variable, such as inverse,
square root, etc.

INTER
PROCESSOR OUAL

COMMUNICTION PORT
RAM

S INPUT OULINEAR

E OROUTTT ALGEBRA A

WA PROCESSOR PROCESSOR

FLOATINGUNR
POINT FUNCTION
MAC MODULE

Figure S. The SLAPP Processing Element Figure 6. The Linear Algebra Processor

Unary Function Module

There are many instances in the computations of the algorithms of interest where we
require a unary function, i.e., a function of a single variable, for instance the inverse
of x. The use of a high speed unary function module can significantly speed up the compu-
tation of the rotation sines and cosines, thus cutting down the latency of the boundaryprocessors.

Previous work by Nowatzyk8 at Carnegie-Mellon University indicated that the basic func-
tions of the inverse of x, the square root of x and the inverse of the square root of x
could be obtained using about thirty TTL integrated circuits. The results could be obtained
in about 150 nanoseconds. During our ai.alysis of the arithmetic functions needed for the
QRD and the SVD, other functions were found which would also be useful. Table I shows the
list to date. Some of these functions are difficult to obtain, requiring larger tables and
some additional logic. Others are trivial, but may be useful if the availability will
reduce programming complexity and computation latency.

The block diagram for the unary function circuit is shown in Figure 7. This module is
in the early stages of design so only a simplified discussion of its operation can be given
here. Input to the module will be a 32-bit IEEE format floating point number and function
codes to specify the desired output. The 32-bit IEEE format result will have latency of
two or three 100 nanosecond clock cycles.

Table 1. Unary Functions Useful in f M A M A 0

Linear Algebra N1.! 2

Inverse x T u
Square root x > 3 8s
Inverse square root x
Square root (1 + x2) 2
Inverse square root 1 + x2) C
Sign x and -Sign x CONTROL 9
2x and -2x
Abs x and Abs 2x FUNCTON >
+Sine 8 and -Sine 8 [sign x/v----x72 COoE

R - 90 + 34B1 +- BZxi

Figure 7. Unary Function Block Diagram

The exponent and control codes are input to the control circuit which decodes the func-
tion code and controls the rest of the module circuitry and generates the correct exponent.
The mantissa is separated into two parts. The most significant seven bits plus some control
lines go to the ROMS B0, Bl and B2 which produce seed values for the computation. The least
significant sixteen bits are feed to two 16 x 16 multipliers. Two 28-bit ALUs sum these
.products to produce the mantissa of the result.

Extensive analysis and simulation indicates that the least significant bit of the result
will have an error rate of less than 6 percent. Details of this work will be presented in a
later report.

Future Plans

There are many details to be studied and verified. This architecture promises a new
level of parallelism but at a cost of complexity of the computations and data movement.
The GSVD has to be analyzed as to its operation and mapping onto the array. The prime
objective is to fully utilize the available bandwidth of the processors. The approach of
separating the 10 from the computation has advantages in programming of the array and
allowing different processors to perform similar or very different processes simultaneously,
similar to a MIMD array. This also has implications for fault tolerance through reconfigu-
ration and redistribution of the processing load.

The next step is to verify the efficient operation of the algorithms through detailed
analysis and simulation of the operation of the array and individual processing elements.
Throughput for typical problems will be determined. High level modeling will suffice to
accomplish this. Design can then proceed to detailed logic definition and simulation,
which will be done on an engineering workstation.

Acknowledgments

This work is funded by Dr. Richard L. Lau of the Office of Naval Research, Code 1111.
Program management was ably performed by Dr. Keith Bromley.

The concepts presented are the result of discussions with many people. Harper Whitehouse
first recognized the signal processing implications of Luk's QRD and SVD techniques and pro-
posed the dual triangular architecture for the SLAPP. Co-workers Barry Drake and Jeffrey
Speiser at NOSC were of great help in understanding the algorithms. John Celto and
Tom Hendersen of NOSC have done considerable work on the unary function module. Special
thanks go to Frank Luk and researchers at Cornell for helpful information on the algorithms.
The author also gratefully acknowledges many stimulating discussions with Professor H. T. Kung
and members of the WARP project at Carnegie-Mellon University.

N!

oi "'I W 9-734

References

1. Jeffrey Speiser, "Linear Algebra Algorithms for Matrix-Based Signal Processing,"
Highly Parallel Signal Processing Architectures, SPIE Critical Review of Technology,
Los Angeles, CA, Jan 1986, SPIE Volume 614, paper 614-01.

2. H. T. Kung, "Why Systolic Architectures?," Computer, IEEE Society, Volume 15,
Number 1, January 1982.

3. Franklin T. Luk, "A Triangular Processor Array for Computing the Singular Value
Decomposition," Cornell University Department of Computer Science Technical Report
TR 84-625, July 1984.

4. Franklin T. Luk, "Architectures for Computing Eigenvalues and SVDs," Technical
Report EE-CEG-86-1, February 1986, Cornell University, Ithaca, New York, 14853.

5. Franklin T. Luk, "A Parallel Method for Computing the Generalized Singular Value
Decomposition," Technical Report EE-CEG-85-1, January 1985, Cornell University, Ithaca,
New York, 14853.

6. W. M. Gentlemen, and H. T. Kung, "Matrix Triangularization by Systolic Arrays,"
Proc. SPIE, Vol. 298, Real-time Signal Processing IV, Tien F. Tao, Editor, SPIE, 1981.

7. J. J. Symanski, "Implementation of Matrix Operations on the Two-dimensional Systolic
Array Testbed", Proceedings of the SPIE International Technical Symposium, San Diego, CA,
21-26 August 1983.

8. Andreas Nowatzyk, "Fast Evaluation of Arithmetic Functions," Carnegie-Mellon
University, Computer Science Department, Technical Report CMU-CS-85-169, September 1985.

Accession For

NTIS GRA&I
DTIC TAB

Unannounced El
Justification

I BI

.By I
Distribution/

Availability Code3

lAvall 8nd/Or

Dist Spec ial

AL

