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- Previous reviews of signal processing computational needs and their systolic implementation have emphasized the need
for a small set of matrix operations, primarily matrix multiplication, orthogonal triangularization, triangular backsolve,
singular value decomposition, and the generalized singular value decomposition. Algorithms and architectures for these tasks
are sufficiently well understood to begin transitioning from research to exploratory development. Substantial progress has

* also been reported on parallel algorithms for updating symmetric eigensystems and the singular value decomposition.
- Another problem which has proved to be easier than expected is inner product computation for high-speed high resolution

predictive analog-to-digital conversion. Although inner product computation in a general setting will require 0(log n) timevia a tree, the special structure of the prediction problem permits the use of a systolic transversal filter, producing a new
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Signal processing computational needs

Jeffrey M. Speiser
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Abstract

Previous reviews of signal processing computational needs and their systolic implementation have emphasized the need 'or small set
of matnx operations, primarily matrix multiplication, orthogonal triangularization, triangular backsolve. singular vaiue Jecomposition, and
the generalized singular value decomposition. .lgorithms and architectures for these asks are sufficiently well understood to )egin :rans-
tioning from research to exploratory development. Suostantial progress has also been reported on parallel algorithms :or upoating iym-

V, • metric eigensystems and the singular value decomposition. Another problem which has proved to be easier than expected is .nner 'rod uct
computation for high-speed hagh resolution predictive analog-to-digital conversion. Although inner product _omputatlon in i enerai
setting will require O(Iog n) time via a tree, the special structure of the prediction problem permits the use of a systouc !ransvera i "ilter.
producing a new predicted value in time 0(l).

Problem areas which are still in an early stage of study include parallel algorithms for the Wigner.Ville Distribution fun :ion. '-. orm
approximation, inequality constrained least squares, and the total least squares problem.

Introduction

Representative areas of modern signal processing which have substantial computational requirements for real-time implementation
inc'ude beamforming, direction finding, spectrum analysis, and image processing. An important area which has received less ittenuton is
intelligent anaiog-to-digital conversion.

_ Beamforming and direction finding

C.assicai equency-domain beamforming is the spatial equivalent of a matched alter. To form a beam in one direction at one
. reouency. r s necessary to form the inner product of :he vector of complex amplitudes at the sensor array elements with a teenng vector

or :he specified look direct:on. I If :he processing bandwidth is small compared to the center frequency, then the number of operations
(complex multaply-dd) required per second to realize the beabforming by matrix-vector multiplication Will be B WE. where :s the

% *. numoer of 5eams (more generally the number of cells in direction/focus depth), W is the bandwidth in Hertz, and E is the number of
-.ements in :he array. For a dmited number of special array geometries and corresponding special choices of look directions, it is possible
.o -educe the number of operations by using spatial convolutions or discrete Fourier transforms (DFTs) realized via the Fast Fourier
Transform, FFT). 1 However. general matrix multiplication will be needed for randomly time-varying array geometries as well as or arrays
subject to tIexure or required to conform to special surface shapes.

Several interference cancellation techniques require the solution of linear least squares problems: An adaptive combiner using pre-
,ormed beams requires the solution of an unconstrained linear 'east squares problem. Minimum variance distortionless response iMVDR)
heamformng requires the solution of a least squares problem with one linear constraint. 2- 3 More recent versions use multiple linear con-
straints to avoid the formation of deep nulls in directions too close to the look directions. 4 ,5 Although least squares adaptive beamforers
have freuently been implemented using gradient descent and similar iterative methods, such methods can suffer from slow convergence

,'" when the interference is strong compared to the signal and noise, aid the data covariance matrix therefore has a large condition number.
Since the cost of computation is continually decreasing relative to the cost of aperture in space or time. it is desirable to avoid statistical
iteration, and rather to provide at each time the best '.east squares solution possible with the available data. Although the signal processing

.r. textbooks describe such a solution in terms of direct inversion of the sample covaiance matrix, 2 it is numerically far preferable to solve the
least squares problem directly with the data matrix, using either the singular value decomposition (SVD) or orthogonal triangularization
techniques such as Givens rotations, Householder reflections, or the modified Gram-Schmidt method. 6 Some authors have proposed par-
ailel architectures based on hyperbolic rotations or a hyperbolic version of the Householder transformation. Such transformations are not
uautary, and are not guaranteed to have the good numerical stability of true unitary transformations. For MVDR implemented via
orthogonal-tnangulanzation, with a number of look directions greater than the number of elements in the array, and with the adaptive
weights updated for each data sample. the number of ithmetic operations required per second will be appproximateiy B*W*E*E. or
larger than the requirement for classical beamforming by about a factor of E, the number of elements in the array,

While adaptive interference cancellation techniques incorporate a-priori information in the form of the assumption of point sources of
interference, eigenvector and eigenvaiue-eigenvector ,)ased direction finding methods use two covariance matrices: prior knowledge (perhaps
in :he form .of a model) of 'he noise spatial covanance structure, and measurement of the total signal-plus-noise spatial covanance matrix. A
.urvey of -uch methods through mid 1985 s availabie. Although a quantitative theory of the performance of such methods remains
lifficult, many stirnuiation :tudies and a few experimental ones have shown that when the prior information is correct. eigenvector based
direction finding can provide esolution many times :iner than the Rayleigh lmit. A representative eigenvector based direction method
is the MUSIC algorithm of 1. Schnmdt. 8 -1 1 MUSIC requires the following sequence of calculations: a) Solution of a generalized eigen-
value problem. b) Estimating the number of sources from the multiplicity of the smallest generalized elgenvalue. (With finite sample size.
this will actually be a cluster of small generalized eigenvalues). z) Determining the "noise subspace" - computing an orthonormal basis for
the generalized eigenvectors corresponding to the smallest (or small) generalized eigenvalues. d) Forming the so-called "direction-of-arrival

. spectrum," or equivalently searching for look directions whose steering vectors are orthogonal or nearly orthogonal to the noise subspace.
ci Eatimation of the source :ovariance matrix to determne cource powers and to associate multiple arrivals from a single source.

g8 3 17 084
e4



0696 01

.1' In order to accurately compute small generalized eigenvalues and corresponding generalized eigenvectors, it is preferable to solve the
generalized eigenvalue problem via the generalized singular value jecomposition (GSVD) of Van Loan. I ,13

For most eigenvector-based direction finding techniques, the most computationally burdensome step will be the computation of the
DOA spectaum. Although this requu-es only matnx-vector multiplications, it requires a very large number of them - unless fast search
techniques are developed, it will require one matix-vector product for each resolvable point in the array manifold. For a two-dimensional
antenna array with elements sensing diverse polarizations. 'he reqtured number of matnx-vector multiplications per frequency bin update is
the product of the number of resolvable two-dimensional ingles tinels the numoer of resolved polarizations. One recent eigenvector based

,- direction finding method, the ESPRIT technique of Paulraj ind Kiulath. 4 avoids the computationally expensive DOA spectrum calcula-
N tion, but is only applicable for very special array geometnes and noise fie!ds.

Spectrum analysis

Most beamformingidirection finding techniques nave direct analogs for the problem of spectrum analysis, 15 due to the similarity of
beamformung for a uniformly spaced line aramy and spectrum analysis for a stationary r-andom sequence. An extensive survey of modem
spectrum estimation techniques is available. 1 5 a One class of methods chat should receive special attention from a computation point of
view is the linear predictive techniques.16.i5 Frequently, these methods are implemented using fast Toeplitz equation solvers, such as the
Levinson-Trench method or Durbin's method to solve the prediction problem. Although such methods save arithmetic operations, they can
produce poor numerical results when the covariance matrix is ill-conditioned. Such ill conditioning will occur, when there are strong spec-
tral lines - exactly the case where the random process has an all pole spectrum as assumed by linear predictive methods. Improvement of
linear predictive methods by using the SVD to solve the prediction equations has been reported. 17 -i 8

Dense matrix computation needs for beamforming, direction finding, and spectrum estimation

Beamforrnsg, direction anding, and spectrum analysis lead to requirements for a fairly complete set of linear algebra operations for
dense matrices: In principle one needs matrxvector multiplication, matrix multiplication, linear equation solution, matrix inversion, least

* squares solution, orthogonal triangularization, solution of Hermitian symmetric eigensystems, singular value decomposition, and the gener-
alized singular value decomposition. The above list can be reduced to a) matrix-vector multiptication. b) orthogonal triangular decompos-
ition. z) the SVD, d) the generalized SVD.

,..
.- -. Matrix computations in image processing

The above List of matnx operations also suffices for many types of mage processing. The SVD :s especially sutable "or .magery with
unknown or tine-vanant statistics, since it generates a best reduced rank approximation to a data block. thus constructing a transform basis
matched to the current data block. 18a An eigenvector based image registration technique has been reported which uses signal subspace
methods quite similar to the MUSIC algorithm. 19-21

Image restoration problems will require a wider range of mniimization techniques than unconstrained and linearly constrained least
squares solution. Prorrusing methods include least squares (possibly damped or -egularized) with nonnegativity or other nonlinear con-
straints':- 2 5 and LI norm minimization. 2 6 The use of l norm minimization has also been described "or deconvolution with improved
tolerance of noise bursts2 7 and for spectrum estimation with improved tolerance of outliers.-

Predictive analog-to-dig:ital conversion

Techniques have been proposed for improving the dynamic range and accuracy of analog to digital converters (A/Ds) by incorporating
a linear prediction using coarsely quantized past samples. 3 0 To implement such convertors with high sample rates it is necessary to mini-
mize the computational latency in the predictor, since the allowable latency will be less than the sampling interval. Predictors using weights
which are independent of the data statistics (other than bandwidth) have been described by Brown 3 I and Spiettstosser. 3 2 .3 3 Such methods
require a digital inner product computation with a fixed weight vector for each new data sample. The multiplications needed for such an
isolated inner computation can be performed in parallel, so only one multiplication is needed. However, if the summation is performed by

S •a binary tree of adders, log,iN) addition times ar required, so a lower latency method for inner product computation or summation would
be useful, even at the cost of decreased efficiency. Since the predictor output may be viewed as the result of convolving the previously
quantized values with a fixed set of filter coefficients, the latency may be reduced to approximately one multiply/add time by using a
systolic convolver. Several suitable designs have been discussed by H.T. Kung. -9

Parallel matrix algorithms and architectures: non-iterative

Highly efficient multiplication of matrices may be performed using a rectangular systolic array in the "engagement processor"
mode.3 '5 An engajement processor provided 'wnth multiple planes of memory can also efficiently periorm the partitioned multicication
of large matrices. 3 4 .c - or the partitioned inversion of strongly lonsingular matrices. 'entleman and Kung have iescribed an efficient tri-
angular systolic arctutecture fror orthogonal reducuon of matrices to triangular form i-a Givens' rotations and its lse for east squares soiu-
tion when combined with a linear systolic array for triangular backsubstitution. 3 6 This architecture :an also efficiently .idate such a
reduction when an additional row is added, or indeed can continuously update with new rows corresponding to new data. Its application
to constrained least squares solution for MVDR :eamforming h., been described. 3 7 including efficient implementation of complex anth-
metic and full triangular array emulation by a subarray. A variant of the triangular systolic array has oeen described which permits direct
formation of the MVDR output w ithout requiring a separate backsolve array. 3 8

.39 However it appears difficult to efficiently apply this
array to problems requiring the formation of multiple simultaneous beams. A difficulty with the solution of least squares problems by

. present systolic t rays for orthogonal triangularization Ls that they are unable o provide for :oiumn pivoting. Therefore. J the data matrix
;._%r ...,has less than Cull rank. the tniangularized matrix :an be xngular. ind the triangular backsotve -will break down. In the case of near .rank

defcency, the tragularized matrix will e close to singular, and the backcsoive may exhibit poor numencal performance. While more
compicated architectures may provide pivoting :or matrices of fixed size. many least squares -ignal processing applications will require
continuous updating. Harper Whitehouse has suggested that the tnangulanzed problem be solved via the SVD. 4 0 This avoids the need for

•t
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pivoting in the orthogonal truinguianzation, and permits solution of the :east squares problem via the pseudoinverse of the trangulanzed
nmatx. Regularnzation may easily be provided. Orthogonal tnangularzation via the Gentleman-Kong and ,imilar arrays requires the comp-
utation of a Givens rotation before the rotation coeffictents can be propagated and applied to a pair of rows of the matrix. Application of
a rotation to a pair of elements requires only multiplications and additions, but computation of the rotation requires square roots, and can
lirmt the speed of the processor. Several approaches to this problem have been proposed: a) implementing the square root cell using a

J-. :aster technology than is used for the interior cell. b) use of on-line arithmetic4 l 
to speed the computation of square roots, c) use of scaled

. Givens rotations,4., 4 3 also known as "fast Givens" or "square root free Givens." The last approach requires special care to select a stable
*" "version of the algorithm, to avoid underflow, and also jeads to a significantly more complicated control structure for the array.

,.' Parallel matrix algorithms and architectures: iterative

For matrices larger than 4 X 4. the computation of eigensystems, the SVD. and their generalization is necessarly iterative. There are
.hree generally applicable classes of numerically stable methods for the dense symmetric esgensystem and :he SVD 'or which parallel
•mmiementations have been proposed: 3) Jacooi methods,"&4 -

' 9 b) QR methods. 5 0
"

54 
and c) the recently introduced tearing methods. 55-56

The Jacobi methods are far superior in terms of simplicity, regularity, and need for only local communication and control. The QR methods
QR )r QL eigensystem and Golub-Reinsch SVD) are significantly faster on a umprocessor, but introduce several new problems: a) The
tneed or a preiumnary reduction to tridiagona form for the eigensystem problem or to bidiagonal form :'or the SVD, b) greatly increased
.ommunicataon and control -omplexity, c) the possibiity of required decomposition of the problem into subprobiems. possibly of different
sizes. when implicit shifts are used. The tearing methods are in an early stage of study, but may be the :.-ost efficient of all. and may be
-iseu _n combination with the other two methods.

The difficult problem of systolic computation of the GSVD by a fully numerically stable method has now been solved.

While nearly optimally efficient systolic architectures are known for the dense, non-iterative matrix :omputations, that stage of level-
"- oupment has not yet been reached for the eigensystem problem and the SVD. Other areas of current research mciude efficient communica-

:on netween systolic subarrays and higher level language support for parallel processors.

* Updating eigensystem solutions and the SVD

In many signal processing applications, data is received essentiafly continuously, and it is necessary :o update previously computed
, - .. tensvstem decompositions ir singular value decompositions. Such problems frequently occur in beamforming, 1irection finuing, and
• ,, cpectrum estimations. Although efficient updating tecniques have long been known for orthogonal-trangular :actonzation. the more

Sifficuit problem of updating eigensystems has only recently been addressed.58- 5 9

Ll norm model fitting and deconvolution

STraditionally, model titting and aeconvoiution in signal processig has used the L2 norm. However. .t ias ong been known in the
itatistcal literature that LI regression is far more robust with espect to outliers - bad observations o, loniz-caiieo error distributions. For
h:s -eason, L" norm model fitting is egrining to receive attention in the signal processing community for Jeconvolution and modei-fitting
methods of svectral analysis. i0-61 On traditional computers, Li model fitting has usually been performed via variants of the simplex

'- .algonthm. The simplex algorithms requires a ;'eat deai of testing, branching, and data movement, and does not seem to be weil suitea to
nmoiementation on systolic arrays. However, L I norm :dtung may also be performed via iteratively rewegnted :east squares techniquesOZ- 6 3

using extensions of current parallel algorithms and architectures for orthogonal trianguianzation and singular value decomposition.
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