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- Abstract
T2
] .:J‘ Previous reviews of signal processing computational needs and thetr systolic implementation have emphasized the need ‘or 3 small set

of matrix operations, primariiy matrix multipiication, orthogonal triangularization, tnangular backsolve. angular vaiue Jecompoution, and
the generalized singular value decomposition. Algorithms and architectures for these tasks are sufficiently well understood 0 Yegin irans-
tioning from research to exploratory development. Supstantial progress has also been reported on parallel aigonthms ‘or upaatng sym-

Ui

¥
LW L ! . .
| <y metric eigensystems and the singular vaiue decomposition. Another problem which has proved :0 be easier than expected s nner “roduct
vn.:\ computation for high-speed high resoiution predictive analog-to-digital conversion. Although inner product :omputation 1 Jeneru
Sty serting will require O(log n) time via a tree, the speciai structure of the prediction problem permits the use of a systouc transversa ‘ilter.
::,p: producing a new predicted vaiue in time 0(1).

{4 . . . -~ . . . - . - 1

* Problem areas which are still in in early stage of study inciude parailel algorithms for the Wigner-Ville Distnbution {unciion. L. norm
) approximation, inequality constrained least squares, and the total least squares problem.
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o Introduction
) -‘.‘u -
_n:.. Representative areas of modemn signal processing which have substantial computational requirements for real-ume impiementation
M o inciude beamiorming, direction finding, spectrum analysis, and image processing. An important area whuch has received less ittention s
D) inteiligent anaiog-to-digitai conversion.
v Beamforming and direction finding
by~

Classical ;requency-domain beamforming is the spatial equivalent of a matched :iter. To form a beam in one direction it one

T ‘requency. .t s necessary o ‘orm the mner product ot he vector of compliex amplitudes at the sensor array elements with 1 steenng vector
o ‘or the speciried look direczion.! [f -he processing bandwidth is small compared to the center ‘requency, then the number of operations
L (compiex multiply-1dds) required per second ‘o realize the beamforming by matrix-vector muitipiication wiil be B*W*E, where B :s the
'.- ‘. aumoer of Seams (more generaily the number of cells in direction/focus depth), W is the bandwidth in Hertz, and £ is the number of
¢ siements in the array. For 1 [mited aumber of special array geometries and corresponding special choices of look directions. it s tossibie
‘ 10 reduce the numper of operacions oy using spatial convolutions or discrete Fourier transforms (DFTs) realized via the Fast Founer
N J.:v Transform  FFT).! However. general matrix multipiication will be needed for randomly time-varying array geometries as weil as Jor arrays

\‘.;-\' subject to tlexure or required to conform to special surface shapes.

I-‘ "-

-‘,_-:.\ Several interference cancellation techniques require the solution of linear least squares problems: An adaptive combiner using pre-
i" Y ‘ormed beamns requires the soiution of an unconstrained linear !east squares problem. Miglimum variance distortionless response { MVDR)
4 I_ Seamrorming requires the soiution of a least squares problem with one linear constraint.=+> More recent versions use multipie linear con-

straints to avoid the formadon of deep nulls in directions too close to the look directions. 4.5 Although least squares adaptive beamformers

C

have frequently been implemented using gradient descent and similar iterative methods, such methods can suffer from slow convergence

x] .:~" when the interference is strong compared to the signal and noise, and the data covariance matrix therefore has a large condition number.

1 .,n.‘: Since the cost of computation is continually decreasing relative to the cost of aperture in space or time, it is desirable to avoid statistical
".\:_ iteration, and rather to provide at each time the best least squares solution possible with the avaglable data. Although the signal processing
P s textbooks describe such a solution in terms of direct inversion of the sample covariance matrix, - it is numerically far preferable to solve the
o, least squares problem directly with the data matrix, using either the singular vajue decomposition (SVD) or orthogonal triangularization
' :"; techniques such as Givens rotations, Householder reflections, or the modified Gram-Schmidt method.§ Some authors have proposed par-
® ailel architectures based on ayperboiic rotations or 2 hyperbolic version of the Householder transformation. Such transformations are not
by unitary, and are not guaranteed to have the Jood numerical stability of true unitary transformations. For MVDR impiemented via
"‘. orthogonai-triangularization, with a aumber of look directions greater than the number of elements in the array, and with the adaptive
R weights updated for each data sampie. the number of writhmetic operations required per second will be appproximately B*W=*E*E, or
) larger than the requirement Jor classicai beamrorming by about a factor of E, the number of siements in the array.

: : While adaptive interference cancellation techniques incorporate a-priori information in the form of the assumption of point sources of

p interference, eigenvector and eigenvaiue-eigenvector Hased direction finding methods use two covariance matrices: prior knowledge (perhaps
. @, in :he form 2f a model) of the noise spatial covariance structure, and measurement of the total signal-plus-noise spatial covanance matnx. A
" survey of :uch methods through mid !985 3 availabie.” Although a quantitative theory of the performance of such methods remains

: ! tifficult, many stimuiation :tudies ind a fe 2xperimental ones nave shown :hat when the prior information is correct, eigenvecror based

direction :Inding can provide resolurion many times ‘iner than the Rayleigh limit. A representative eigenvector based direction method

is the MUSIC aigonthm ot Q. Schmdt.3-11 vusic cequires the following sequence of calculations: 2) Solution of 1 generalized ¢igen-
value problem. b) Estimating the number of sources :rom the multiplicity of the smallest generalized sigenvalue. (With finite sampie size.
this will actuaily be a cluster of smail generalized eigenvalues). ¢) Determining the “‘noise subspace™ ~ computing an orthonormal basis for
the generaiized eigenvectors corresponding o the smailest (or small) generalized eigenvalues, d) Forming the so-cailed “direction-of-arrival
spectrum,” or equivalently searching for look directions whose steering vectors are orthogonal or neariy orthogonal to the noise subspace.
2) Estimation of the sourcs :ovariance matnx o determune source powers and to associate multiple arnvals from 1 single source.

XTI
A SENT

Ly ®
PP i

88 3 17 084

OGN R N




" -‘. -‘. "

h a3
s

-~

o 15

4
e 696 01
o
-'-\".- . . .
R In order to accurately compute small generalized eigenvalues and corresponding generalized eigenvectors, it is preferable to solve the
4;\-1‘ generalized eigenvalue problem via the generalized singular value jecompoation (GSVD) ¢t Van Loan. 12,13
For most sigenvector-based direction finding techniques. the most computationally burdensome step will be the computation of the
N DOA spectrum. Although this requires only matnx-vector muitipiications. it requires a very large number of them — unless fast search
LY techniques are developed, it will require one matnx-vector product for each resolvable point in the array manifoid. For a two-dimensional
= antenna array with elements sensing diverse polarizations. he requured aumber of matnx-vector multipiications per frequency bin update is
\;‘-' the product of the numoer of resoivabie two-dimensional ingles times the numoer of resoived polarizations. One recent eigenvector based
:‘.-': direction finding method, the ESPRIT techmique of Pauimj and Kulath. ! avowds the computationally 2xpensive DOA spectrum calcuia-
v tion, but is only applicable for very special array geometnes and noise ticids.
\ Spectrum analysis
(e
'_-.':- Most beamforming/direction finding techniques have direct inalogs for the problem of spectrum analysis, !5 due to the similarity of
‘;.:,' beamforming for 3 uniformly spaced line array and spectrum analysis for 3 stationary random sequence. An extensive survey of modem
- spectrum estimation techniques is available. | 528 One class of methods that should receive special attention from a computation point of
oGy view is the linear predictive techniques.16.15 Frequently, these methods are implemented using fast Toeplitz equation soivers, such 1s the
v Levinson-Trench method or Durbin’s method to solve the prediction problem. Although such methods save anthmetic operations, they can
produce poor numerical resuits when the covariance matrix is ill-conditioned. Such ill conditioning will occur, when there are strong spec-
tral lines — exactly the case where the random process has an all pole spectrum as assumed by linear gredictx’ve methods. Improvement of
.':J linear predictive methods by using the SVD to solve the prediction equations has been reported. 17,
ol
e : . N . . . . . .
Tud Dense matrix computation needs for beamforming, direction finding, and spectrum estimation
w, v
~
:,'.'\-'_' Beamformung, direction {inding, and spectrum analysis lead to requirements for a fairly complete set of linear algebra operations for
‘A dense matrices: In principle one needs matrix-vector multiplication, matrix multiplication, linear equation solution, matnx inversion, least
® - squares solution, orthogonal triangularization, solution of Hermitian symmetric ¢igensystems, singuiar vajiue decomposition. and the gener-
= alized sngular value decomposition. The above list can be reduced to a) matrix-vector muitipiication. 5) orthogonal tnangular decompos-
S ition. o) the SVD, d) the generaiized SVD.
" e
A )
S Matrix computations in image processing
-.; N The above list of matrix operations also suffices for many types of image processing. The SVD :s sspecially suitable ‘or imagerv with
- unknown or time-variant statistics, since it 3enerates a best reduced rank approximation to a data block. thus constructing 1 transform basis

! matched to the current data dlock.!83 An cigenvector based image registration technique has been reported which uses signal subspace
methods quite similar to the MUSIC algorithm, { =21

-:‘-,' Image restoration problems wiill require 3 wider range of minimization techniques than unconstrained and linearly constrained least

N - squares ggll%tion. Promising methods include least squares (possibly damped or regularized) with nonnegativity or other noniinear con-

" straints===25 and L1 nonm minimization.=6 The use of L} norm minimization has also been described or deconvolution with improved
::-; tolerance of noise bursts2’ and for spectrum estimation with improved tolerance of outliers.>

Do "

Predictive analog-to-digital conversion

™8

< Techniques have Heen proposed for improving the dynamic range and accuracy of analog to digitai converters (A/Ds) by incorporating
o a linear prediction using coarsely quantized past samples.3° To implement such convertors with high sample rates it is necessary to mini-
mize the computational latency in the predictor, since the allowable latency will be less than the sampling interval. Predictors using weights
which are independent of the data statistics (other than bandwidth) have been described by Brown3! and Splettstosser.37-o33 Such methods
require 2 digital inner product computation with a fixed weight vector ‘or each new data sample. The muitiplications needed for such an
isolated inner computation can be performed in parailel, so only one multiplication is needed. However, if the summation is performed by
® a binary tree of adders, log7(N) addition times are required, so a lower latency method for inner product computation or summation would

4 be useful, even at the cost of decreased efficiency. Since the predictor output may be viewed as the resuit of convolving the previcusly
4 " quantized values with a fixed set of filter coefficients, the latency may be reduscd to approximately one multiply/add time by using a
- systoiic convoliver. Several suitable designs have been discussed by H.T. Kung.-
‘G
X ": Paralle} matrix algorithms and architectures: non-iterative
-
)

s W2 Hj%hly efficient muitipiication of matrices may be performed using a rectangular systolic array in the *‘engagement processor”
mode.34.35 an engagement processor provided with muitiple planes of memory can aiso efficiently perform the sactitioned multiplication
of larze matrices, 3422 or the partitioned inversion of strongly aonsingular matrices. Gentleman and Kung have Jjescribed an efficient tni-
anguiar systolic architecture for orthogonal reducuon of matrices to tnangular :'grm 'na Givens' rotatons and its lse for ‘east squares soiu-
tion wien combined ‘vith 1 linear systolic array ‘or trianguiar backsubstitution.26 This archutecture can also efficiently update such a
reduction when an additional row is added. or indeed can continuously update with new rows corresponding to new data. [ts application
to constrained least squares solution for MVDR beamforming has been described .37 including efficient implementation of complex arith-
metic and fuil triangular array emuiation by a subarray. A variant of the triangular systolic array has been descnibed which permits direct
formation of the MVDR output vthout requiring 1 separate acksolve array.38.39 However it appears difficult to efficiently appiy this ;
array to problems requiring the formation of muitipte simuitaneous beams. A Jifficuity with the soiution of least squares problems by ‘
present systolic arrays for orthogonal triangulanzation is that they are unabie o provide for coiumn pivoting. Therefore. ([ the data matnx
has less than tull rank. the triangularized matrix can be singular. and the triangular backsolve il break dJown. In the case of near rank
deficiency, the triangularized matrix will be close to singular, and the backsoive may ¢xhibit poor numerical performance. While more
complicated architectures may provide pivoting for matnices of iixed :1ze. many least squares signal processing ipplications will require
continuous updating. Harper Whitehouse has suggested that the tnangularized problem be soived via the SVD.40 Thus avouds the need for
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A 1:\ 2wvotng in the orthogonal tnangulanzation, and permits solution of the ieast squares proolem via the pseudoinverse of the tnangulanzed
i matnx. Regulanzation may easly be provided. Orthogonal tnangulanzation via the Gentleman-Kung and sumuar arrays requures the comp-
‘A utauon ot a Givens rotation before the rotation coefficients can be propagated ind applied to a pair of rows of the matrix. Application of

y 1 rotation to a pair of ziements requires only multiplications and additions, but computation of the rotation requires square roots, and can

limut the speed of the processor. Several approaches to this problem have been proposed: a) implementing the square root ceill using 1

- {aster technology than :s used for the interior cell. b) use of on-line arithmetic4! to speed the computation of square roots, ¢) use of scaled
- Givens rotations.*2+#3 1lso known as “‘fast Givens’ or *‘square root free Givens.” The last approach requures special care to select a stabie
O version of the aigorithm, to avoid underflow, ind also ieads to a significantly more complicated control structure for the array.
. Parallel matrix algorithms and architectures: iterative

N For matnices larger than 4 X 4, the computation of eigensystems, the SVD. and their generalization :s necessanly iterative. There are

é three generally applicable classes of numericaily stabie methods {or the dense symmetric 2igensystem and the SVD for which parallel R
o, impiementations have een proposed: 1) Jacooi methods, #4—+9 b) QR methods.50-54 and ¢) the recently :ntroduced tearing methods. 55-36
b~ The lacobi methods are far superior in terms of simplicity, regularity, ind need ior only local communication ind control. The QR methods
N ‘QR >r QL eigensystem and Golub-Remnsch SVD) are significantly faster on a uniprocessor, but introduce several new problems: a) The
> need Jor A predmunary reducuon to tridiagonai form for the eigensystem problem or to bidiagonal form or the SVD. b) greatly increased
~_\: sommunication and control tomplexity, ¢) the possibiiity of required Jecomposition of the problem into subprobiems. possibly of different
~ sizes. vhen impiicit shufts are used. The teanng methods are in an earfy stage ot study, Sut may be the rost 2fficient of all. 1nd may be
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1sed n combnation vith the other two methods.
The difficuit problem of systolic omputation of the GSVD by a :uily numerically stable method has now “een solved. s~

While nearly optimally =fficient systolic architectures are xnown for the dense, non-iterative matrix :omputations, that stage of devel
opment has not vet Seen reached for the ¢igensystem problem and the SVD. Other areas of current research :nciude etficient communica-
uon detween systolic subarrays and hugher levei ianguage support for parailel processors.

Updating eigensystem solutions and the SVD

In many signal processing ipplications, Jata is recsived essentially continuously, and it is necessarv o update previousiy computed
2:zensystem Jecompositions Jr singular value decompositions. Such problems irequently occur in beamrorming, direction iinding, and
spectrum estimations. Although efficient updating tecaniques have [ong been <nown or orthogonal-tnangular factonzation. the more
iirficuit probiem of 1pdating 21gensystems has oniy recently Seen addressed.S8-3

L1 norm model fitting and deconvolution

Traditionally, modet fitting and Jeconvoiuuon in signal grocessing as used the L2 norm. However. i1 1as .ong been xnown in the
statisticad literature that L] regression is far more robust with respect -0 outliers - bad observations o. long-taliea 2rror distnbutions. For
Jus teason, L. norm model tting is Seginning ‘0 receive attention in the signal processing community ‘or leconvolution and modei-fitung
methods of spectral analysis. 30-91 On traditional computers, L] model {itting has usuaily been performed v1a variants of the simpiex
lgonthm. The simplex algonthms requires a great deai of testing, branching, and data movement. and Jdoes not seem to be weil suited S
.mpiementation on systolic arrays. However, Li norm (itting may also be performed via iteratively reweighted east squares techmques®--92
using :xtensions of current parallel aigorithms and architecturss jor orthogonai trianguiarization and singuiar vaiue decomposition.
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