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Abstract

An efficient, stable, explicit, first-order cross-stream differencing scheme having low truncation
V. error is derived and applied to three dimensional integral boundary layer equations. The
-. analysis is considered in detail for the particular case of the momentum integral equations and
Ar, Head's entrainment equation with power law profiles and Mager's cross flow assumption. In

comparison with upwinding differencing, the new scheme has better stability properties, smaller
truncation error, and smaller artificial viscosity.

R6sum6

Un sch6ma de differentiation transversale de premier ordre explicite,
stable et efficace, avec une faible erreur de troncature, est 6tabli et
appliqu6 aux 6quations int6grales tridimensionnelles de la couche limite.
L'analyse est consid~r~e en d6tail dans le cas particulier des 6quations
int6grales de quantit6 de mouvement et de l'6quation d'entrainement de
Head, avec des gradients exponentiels et l'hypothise d'6coulement
transversal de Mager. Compar i la diff6rentiation longitudinale, le
nouveau schema poss~de une plus grande stabilit6, une plus petite erreur
de troncature et une viscosit6 artificielle plus faible.
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Notation

1/ A, B: Matrices of a hyperbolic system of first order partial differential equa-
tions.

C Matrix defined in equation (4.17).

N: D: Matrix defined in equation (3.11).

D + , D-: Forward and backward differencing operators defined by equation (2.4).

E: Matrix defined in equation (4.17).

Et: Truncation error.

f: Independent variable in the convection equation.

fk : Independent variables in the multi-dimensional hyperbolic system of
equations.

Fk. : Fourier component of f at the point (Xk, Y3).

F: Matrix defined in equation (4.16).

G: Matrix equal to EC - '.

hi. h1 2), h h, 22, k,k : Boundary layer velocity profile functions.

H: Shape factor.

P: Stability factor definined by equation (2.7).

Ql,Q2,Q± l :Independent variables in the boundary layer equations.

Q1 2, E1 , E 2 : Variables of which cross-stream derivatives are taken in the boundary
layer equations.

t: Tan of the cross flow angle.

T: Matrix defined in equation (4.16).

v The nth eigenvector of A- 1B.

;Vf : Velocity in the x direction.

VV: Velocity in the y direction.

V 1,V 2 : Contravariant components of the potential flow velocity.
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"- V-±-, VI- 2  Contravariant components of a vector perpendicular to the potential
flow velocity but having the same magnitude.

)Vectors defined by equation (3.5).

x, s: Non-orthogonal surface coordinates in which the boundary layer equa-

tions are solved.

z, y Coordinates in which the convection equation is solved.

As, Ax, Ay: Grid spacing in the s, x, or y directions.

a: Coefficient defining the cross-stream differencing scheme.

- H
6k Coefficients giving f,, as a linear combination of vk

6. Boundary layer thickness.

&,n.: Kronecker delta.

A, The n eigenvalue of A- B.

ps: A parameter defined in equation (2.12).

* Bold face characters are reserved for use as vectors or matrices.
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N1 Introduction

Numerical integration of a system of boundary layer equations is widely used for the
prediction of the flow over ship hulls and aircraft. When the boundary layer equations are
written in integral form and solved in a coordinate system roughly aligned with the flow, a
popular method of discretization is a first order explicit scheme using upwind differencing for
the cross-stream derivatives. This method has the virtue of extreme simplicity; however, a
disadvantage of the method is that it is unstable when the direction of forward integration
lies between the potential flow streamlines and the limiting streamlines at the hull surface.
While the occurrence of instability will normally be infrequent and will usually not persist, it
is most likely to occur when the cross-flow is high: that is, at a time when the modelling of
the boundary layer is most suspect. When testing the validity of a boundary layer prediction

*@_ method, it can be difficult to ascertain whether problems occurring at regions of high cross-flow
are due to deficiencies in the boundary layer modelling or due to instabilities in the integration
procedure. A completely stable differencing scheme would remove this ambiguity.

A second disadvantage of upwind differencing is that it is discontinuous with respect to
the direction of the flow: i.e. an infinitesimal change in the flow which causes the cross-stream
component of the flow to change sign, will cause finite changes in the solution due to the change
in the direction of cross-stream differencing. If the boundary layer equations are being used in
an iterative loop to account for the interaction between the boundary layer and the potential
flow (see, for example, Chapter 8.3 in Reference [1]), this discontinuity can inhibit convergence.

In this memorandum an improved scheme for the cross-stream derivatives is proposed.
The new scheme is also of first order, is stable for sufficiently small step size, and is continuous
with respect to the direction of flow. It also has smaller truncation error and artificial viscosity
than the upwind differencing scheme.

Motivation for the new differencing scheme for the boundary layer equations is given by
first examining the pure convection equation with one dependent variable. For this equation, the
new scheme is shown to be the optimal explicit differencing scheme in that it is (conditionally)
stable and minimizes the truncation error. The scheme is then extended to systems of equations
(i.e. equations with more than one dependent variable). Finally, use of the scheme in the context
of the boundary layer equations is discussed. For this purpose the boundary layer equations
are assumed to be the two momentum integral equations and Head's entrainment equation;
these are the equations used by the HLLFLO computer programs developed at DREA for the
prediction of the flow around ship hulls[lI]. A complete discussion of these equations is given
by Hally[21.

1V

%0

P5 e.. 55



-

2 Stability of the Convection Equation

Consider, first, the simple one dimensional convection equation,

vz9 . + L f = o (2.1)
ax 49Y

where V' will be assumed positive with V' > IVYI. To solve the equation numerically, a

rectangular grid (xk, yj) is used. For simplicity, the cross-stream step size will be assumed

uniform: i.e. yj+ - yy = Ay for every j. The derivatives are approximated by

Of f k+i _ fj (2.2)
ax Ax
Of 1- a l+_

- D+f + 2D- (2.3)

where Ax = Xk+ - xk and

,°- fk,j+l f fkj f kj - f , j-1
D+f D-f (2.4)

Ay Ay

The upwind differencing scheme has a = sgn(Vy). Central differencing, which has accuracy of

second order in the y-derivatives, has a = 0.

The stability of a differencing scheme is determined by supposing a solution of the form

f, j = FkeijAt (2.5)

Substitution into equation (2.1) and using equations (2.2) and (2.3) yields

Fk+l, = Fk, [1 - P[(1 - a)(e'/' - 1) + (1 + or)(1 -e- l )]] (2.6)

where
p- (2.7)

VrAy

The scheme is stable if IFk+ljI < IF'JI which occurs when

aP< 1 and P(o:-P)_>0 (2.8)

(see, for example, Peyret and Taylor[3]). Hence, there is stability only if the scheme is weighted
towards upwind differencing: i.e. sgn(ci) = sgn(P). Complete upwind differencing is stable if

IPI < 1; this is called the Courant-Friedrichs-Lewy (CFL) condition. Central differencing is
unstable.

*2

%% %

-~~ % % %~ *% *



AThe truncation error of the scheme of equations (2.2) and (2.3) is

Az 2f . Ay 2f (2.9)
2 8X2  20y,

The term in Ay has a dissipative effect if o:V > 0. Since this term is physically similar to
a diffusion term, it is often called "artificial viscosity". For a first order scheme the artificial
viscosity is necessary for stability, but to avoid unwanted diffusive effects, it should be as small

as possible. If V' and VV are constant, equations (2.1) and (2.7) can be used to rewrite
equation (2.9) as

= aa + o(Az 2 , A2) (2.10)

In order to minimize the truncation error, equation (2.10) suggests that one use a = P,
a scheme which will be termed partial upwinding for the purposes of this memorandum. This
scheme is stable provided that IPI < 1, the CFL condition; it therefore requires no smaller step
sizes than complete upwind differencing. Moreover, since a is continuous with respect to P,
the differencing scheme is continuous with respect to VV. The artifical viscosity is also reduced
in comparison with that of the complete upwind differencing scheme.

In a more general convection equation, A and B may not be constant and there may be

production terms.
:A,. (x, y, f) af+Bk,.C,y,/)Lf =ok(m=,f) (2.11)

The differencing scheme defined by equations (2.2), (2.3), and a = P is stable when used for
equation (2.11) but will have truncation error which is first order in Ax and Ay. However, if
convection is the dominant mechanism describing the evolution of the solution, the truncation
error will be small.

The relative accuracy of central differencing, upwind differencing, and partial upwind
differencing have been compared using

' '.'• V v  y(1 - Y
- - ) (2.12)
V't 1 +z(1 - 2y)

The solution to equation (2.1) is then

%- f(., Y) f(0,V + AXY(1 - y)) (2.13)

* In this flow, V is zero along the coordinate lines y = 0 and y = 1; hence, specification of the
value of f(0, y) for 0 < < 1 is sufficient to determine the value of f for any z > 0. In this

-- sense, the flow mimics the evolution of the boundary layer on a ship hull which is confined
- .' between streamlines at the keel and at the waterline (see Hally[2]).

The parameter IA can be used to alter the relative magnitude of the components of the

. velocity in the x and y directions. Since one can show that

PY-(I- - Y < (2.14)
I1+ jUs(1 - 2y) 21MI

V.

3i4,
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the maximum value for P, which will determine the stability of the differencing schemes, is

...- (1 - /I - (.2)AX..I. z 21.lAy

Flows with larger p will tend to be less stable.

The integration was performed for 0 < x < 1 and 0 < y _ 1. Figure 2.1 shows the result

of the integrations when Ax -- Ay = 0.05, ju = 0.3 and the starting values were given by
f(0, y) = 1 - cos(ry). The deviation of the predicted values from the exact values are also
shown. In this flow the velocity component V1 is both small and varies smoothly with y. Both
upwind and partial upwind differencing are stable (Pma. = 0.077) but the instability of the
central differncing scheme is not clearly manifested. On the other hand, it is clear that the

' upwind differencing scheme has much higher truncation error relative to the other schemes.

Figure 2.2 shows the results of integrations with Ax = 0.1, Ay = 0.0333, p = 0.9 and
starting values given by the pyramid function f(0, y) = (1 -11 -2yl)/ 2 . Again, the upwind and
partial upwind differencing schemes are stable (P,,az = 0.940), but in this case the instability
of the central differencing scheme is clear. The rapid change in the y-derivative of VY causes

oscillations to appear in the central difference solution. Once more, the accuracy of the partial

upwind scheme is the best.

4
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RESULTS OF N'TEGRATION AT x=1.0 ERRORS IN PREDICTIONS AT x=1.0

0.015 .... Central

1.5-000 Upwind0.1- -Partial Upwind

to 0.005 '

*0.5- 0.000

-- Upwind-005--/
-0.5- Partial Upwind -0.010

Exact
-1.0_______________-0.015-

0.0 0.2 0.4 0.6 0.8 1.O 0.0 0.2 0.4 0.6 0.8 1.0

y y

Figure 2. 1: Results of integration with f (0,y) = -cos(7r y)

RESULTS OF INJTEGRATION AT x=1.0 ERRORS IN PREDICTIONS AT x=1.0
0.8 - 0.1 GA

... Central ... Central
0.7- - Upwind -- Upwind

- Partial Upwind 0.10 - Partial Upwind
0.6 - Exact

0.5- 0.05-

0.4-.

0.3 . 0.00 /

0.2 -0.05-

6 0.1-

0.0 , -0.10 ___________ ____

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

y y

*Figure 2.2: Results of integration with f (0, y) =(1 - 11 -l/
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3 Stability of a Hyperbolic System of
Equations

The stability of a system of first order equations can often be reduced to the stability of
a number of one dimensional equations. Suppose fn, n - 1,..., N are variables dependent on
x and y, and which satisfy"'kn-, af. + BA:. = 0 ./

Z 9 ak-+ k y= (3.1)
n1 a

where A and B are N x N matrices and A is non-singular. Let An be the eigenvalues and V(")

- be N linearly independent eigenvectors of A-'B: i.e.

N N

Z Z -1 BkivO') =AV$,n) (3.2)
*j=l k=1

or equivalently,

Z.(A.Ak, - n) = 0 (3.3)

If all N eigenvalues are real and non-zero, equation (3.1) is said to be hyperbolic. If they are
all real but some are zero, equation (3.1) is said to be mixed parabolic-hyperbolic. Henceforth
each A, will be assumed to be real.

The dependent variables, f,, can be expressed as a linear combination of the eigenvectors
(n):

N
fn.-:#1, = k) (34)

k=1

Defining vectors w(") such that

E d) l) n (3.5)
k=1

one can represent the 6k explicitly:

N
,A= n Wk) (3.6)

Note, too, that
N N

ZW$k)V$,h)Ak = A-'Birn (3.7)[:n I"n F, nk

ii k=1 k=1

6
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as can be verified by substituting equation (3.7) into equation (3.2).

After mutiplication by A- 1 and substitution for fn, equation (3.1) can be rewritten

S+ - - Vk )An- -- 0(3.8)

n=1 k aY

whence, since the V(n) are linearly independent,

+ aA  " - =0(3.9)

Hence, by applying a stable one-dimensional differencing scheme to each of the On, one obtains
a stable differencing scheme for the entire linear system. The differencing scheme for A.f is

recovered using equation (3.4).

N (M+) (t () 1- , r + 1
ny 2 2

-~~~ ~ ZV )W [l mD+fr+ 2 Df
D+f, + D-j, D+.f (3.10)

2 2

where
- N

Dnm mar (3.11)

nm r=

If all the eigenvalues are of the same sign, it is possible to choose all the am to be equal
and have a stable scheme. This has the advantage that the cross-stream differencing is the
same for each equation in the system. A complete upwind scheme would have am = sgn(Am)
while a possible extension of the partial upwind scheme of the previous section would be am =

max(A1 ,..., AN)Az/Ay. By using the maximum eigenvalue one can ensure stability by choosing
Ax sufficiently small that am < 1. When all the am are equal, equation (3.10) reduces to the
simple counterpart of equation (2.3):

a n , 1- 1+ fn':' '. -"---$ D+f/n + -- -D - (3.12)

ay 2 2

* However, if the eigenvalues are not all of the same sign, then to maintain at least partial
upwinding to provide stability, some of the am must be positive and some must be negative.
Thus, in general it is not possible to have complete stability while retaining the simplicity of
having all am equal.

The logical extension of the partial upwinding scheme of the previous section, is to set
0. a = Pm. Then

AN N
Dnm .V., W$, )A - A= k A m (3.13)

0. 7
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whence
D = A 1 BAx/Ay (3.14)

The truncation error when D is defined in this way is of second order in Ax and Ay.

<4 A Differencing Scheme for the
Boundary Layer Equations

As mentioned in the introduction, the boundary layer equations discussed here are assumed
to be of the form used in the DREA HLLFLO programs[I]. These are a system of three coupled

IN. first order equations: the two momentum integral equations and Head's entrainment equation.
They can be written in the form[2],

SQ1+ = production terms (4.1)
ax as•aQ.Li aQ±. 2

8.--- Q 8s -- production terms (4.2)
:"-:':a xl a 8 2

aE' a E2

+ wi--- production terms (4.3)

where
Q _ / Vt(VlhI + tV'1 h12) (4.4)

= = V6(V 2 hil + tV' 2 h1 2) (4.5)

Q±1  = \/Fgt(Vh 2l + tV±'-h 22) (4.6)

QI2= J6t (V 2h2l + tV-' 2 h 22) (4.7)
E' = "Fg6(Vki + tV-±Ik2) (4.8)

2 = ,Fg6(V2k + tV±2k2 ) (4.9)

b is the boundary layer thickness, and t is the tan of the cross-flow angle, V I and V 2 are the
contravariant components of the potential flow velocity, V - and V1 2 are the contravariant
components of a vector perpendicular to the potential flow velocity and having the same mag-
nitude, z and a are non-orthogonal coordinates which run over the surface of flow, and g is the
determinant of the metric tensor for the coordinates (x,s). The values of VI, V 2 , V1', V1 2 ,

and g are known for any given z and 8.

O The profile functions h1 , h12, h2 l, h22, kj, and k2 depend on the velocity profile assump-
tions made for the boundary layer calculation. In general, the profile functions may depend on
6, t, and a third independent variable usually taken to be the shape factor, H, though more
commonly they depend only upon H and t or on H alone.

9 8
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A simple variant of upwind differencing can be used to integrate the boundary layer

equations (4.1) - (4.3). If V 2/V 1 and (V 2 + tV' 2 )/(V 1 + tV ±L) both have the same sign (i.e.

both potential streamlines and limiting streamlines lie on the same side as the x coordinate

lines), upwind differencing is used for each of Q2, Q± 2 , and E2 . However, if they have different

signs (the z coordinate line bisects the two streamlines), no unique upwind direction is identified:

,, central differencing is then used. Unfortunately, as has been demonstrated above, central

differencing is unstable. Moreover, it is clear from Section 3 that no simple scheme in which

the same value for a is used for each of Q 2, Q±2, and E 2 can be stable when the x coordinate

line lies between the characteristic directions defined by A, and A3 .

On the other hand, by changing independent variables to the boundary layer variables 8,
H, and t, the boundary layer equations may be rewritten in the form of equation (2.11) with

f, = 8, f2 = H, f3 = t, and

aQ1  aQ1  aQ1  aQ2  aQ2  aQ2

88 8 H at a 8H at
A = Q±L aQ' 1  aQ± 1  = aQ±' 2  aQ-'2  aQ-'2  (410)

a 8H at a aH at
E1  8E' 8E 1  E 2  2  2

a 8H at 8 81 at

. A and B are easy to determine analytically and, since A is only 3x3, A- is also easily

calculated. Hence, the differencing scheme described in the previous section may be calculated

easily. It is well-known that the characteristics of the boundary layer equations lie between the

potential flow streamlines and the limiting streamlines at the hull surface; this is equivalent to

saying that the eigenvalues of A-B lie between V 2 /V 1 and (V 2 + tV±2 )/(Vl + tV-l). Hence,

the CFL condition is satisfied provided that

MaX(V2&X (V2 + tV±2 )AX <  (4.11)
mxIV'A8 (Vl + tvil')A.)<9(.1

The differencing scheme just described is with respect to the independent variables 8, H

and t. To generate corresponding difference schemes for Q2 , Q12 and E 2 , the correspondence

aQ 2  a
as 8

8Q'-2  a H (4.12)

as as

aE 2  at
as9 asJ

is used. Equation (3.10) is then an appropriate difference scheme where

(f1, f2, f3) = (Q 2,Q1 2 , E 2 ) (4.13)

and
D = B(A-B)B-Ax/Ae = BA-AZ/As (4.14)

% %
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If it is assumed that the profile functions depend only on H, further simplifications are
possible. In this case one has

A = vfT(VlC + tV1 lE)F ; B = VfT(V 2C + tV' 2E)F (4.15)

where.""I0 0 10 0

-. 0 t 0 , 0 8 0 (4.16)
.0 0 1 0 0 6

" h11  hi 0 h12 h 2  h12

C= h 2 1 h'l h 2 E- h 2 2 h22 2h 2 2  (4.17)

-k k' 0 k 2  k' k ]
The primes denote differentiation with respect to H. Substitution into equation (4.15) gives

BA - 1  = T(V 2 C + tV-12E)(V'C + tV 1 E)-T-
T(V 2 + tv 2EC-1 )(V' + tV-±'EC-)-'T - ' (4.18)

Since the x coordinate lines are assumed to lie roughly along the potential r,'w streamlines,
and since t is usually (though not invariably) significantly smaller than 1.0, it is reasonable to
assume that tV- 1 << V and retain only first order terms in equation (4.18).

rV2 VI1V1
BA- = T + (V) 2  tGT

= T[~+ (C ] T -1 (4.19)

where
G =- EC - 1  (4.20)

and U is the magnitude of the potential flow velocity. The last equality in equation (4.19)
follows from the relations between V and V' (see Appendix A.5 in Hally[2]).

The matrix G depends only on H. Its components may be written explicitly in terms of
the profile functions as follows

k,(k'h 2 l - k2 h'l) (4.21)
h21(h'l1 kl - hlk'k)

= 1+2 (4.22)
h21

: GI = k1 (hi2 h21 -h 22hl 1 )-h 22 (h 1k - h2 1k ) (4.24)

h2l(h'11 kl - h11 k'1)

lO
10
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@ 2h22

G 2 2 = (4.25)
h2 l

h2 2(h'lh1 1 - h21 h' 1 ) - h1 1 (h2 2h 2 - h2 2 h21 ) (4.26)
G 23 =

-.hn(h'lk - hlk')
G 31 = Gil (4.27)

G 32 = G 12 - 1 (4.28)

G 33 = G', (4.29)

where use has been made of the identity

h 12 = h 21 + k 2  (4.30)

For the particular case of power law profiles with Mager's cross-flow assumption (see
Hally[2]), the profile functions are

g-H 1) (4.31)h =H(H + 1)

h12 = h2 1 + k 2  (4.32)

h2l = (4.33)H(H + 1)(H + 2)
* -24

h22 = -4(4.34)h2 ,= H(H + 1)(H + 2)(H + 3)(H + 4)

2
ki = H + 1 (4.35)
k2 = 16 (4.36)

(H+ 1)(H+ 3)(H+ 5)

and the components of G are

Gil=G, = 96H(H2 + 5H + 5)
(H + 2)(H + 3) 2 (H + 5)i (4.37)

G1 2 = (H - 1)(7H + 15) (4.38)
(H + 3)(H + 5)

G13 = = -48(H - 1)(H 2 + 5H + 5) (439)
(H + 2)(H + 3) 2(H + 5) 2

2 24(5H 2 + 24H + 24)

G -= (H + 2) 2(H + 3) 2 (H + 4) 2  (4.40)

G22  = 24 (4.41)
(H +3)(H+4)

G25  - 24(3H 2 + 14H + 13)
(H + 2) 2(H + 3) 2 (H + 4)2 (4.42)

G 32  = 8H(H + 2) (4.43)(H+3)(H+ 5)

11
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To a very good approximation, G is linear in H over the range of interest (H is usually

in the range 1.2 to 1.5). A linear approximation for G was generated using a least squares fit
for the range H E [1.2,1.5], yielding

[0.46785 0.84360 0.19553 1 [0.16237 -0.85387 -0.210271
G -0.56021 1.61323 0.31568 + H 0.22268 -0.43032 -0.12418 (4.44)

,.0.46786 -0.15638 0.19553 0.16237 -0.85389 -0.21027

The components of G and the approximations to them are shown in Figure 4.1.

Substitution of the above approximations into equation (3.10) with the identificati,'ns in

equation (4.13) yields the following approximation to the stable scheme with or = A"Ax/As;

- therefore it should be stable for all reasonable values of the boundary layer parameters.

a(Q2 ) 11 V AX D+Q2+ 1 V 2 A

ay 2 V'AsJ 2 V1AS)

+ ( U )2 [tii(D+Q2 - DQ 2 ) + G 12 (D+Q±2 
-DQ2 )

+G 1 3 t(D+E - DE)] (4.45)

DQ1 +2  1 + A D-Q
VAy 2S)D 2

t Q2\ Q2r+1 -2+-i tG21(D+Q - D-Q) G22 (D+Q' D-Q')

+ tG2 3 (D + E2 - D- E2)] (4.46)

aE2  V2Az' D+E 1 ( VVD E2AX

a9y 2 V1AS) 42' V 1 ASJ

1 U - 31 (D + G 3 2 (D'

+ tG 33(D+E - DE)] (4.47)

This scheme is efficient to calzulate (since all the boundary layer parameters are known),

* has small truncation error and small artifical viscosity, and is continuous with respect to all

boundary layer and potential flow parameters.

When the cross-flow is large, when the shape factor lies outside the range [1.2,1.5], or
when profiles other than the power law profiles are used, a stable differencing scheme can be

generating by calculating BA -1 explicitly and using equations (3.10) and (4.14). While not as

*. efficient as using equations (4.45) - (4.47), the computational effort is not high as A and B are

only 3x3.
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Figure 4.1: Components of G as functions of H
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5 Concluding Remarks

-L A differencing scheme for the cross-stream derivatives of integral boundary layer equations
has been discussed. In comparison with upwinding differencing, the new scheme has better
stability properties, smaller truncation error, smaller artificial viscosity, and is continuous with

- -' respect to the direction of flow. Hence, it is a more accurate and more reliable method for the
solution of the boundary layer equations.

When applied to the boundary layer equations used by the DREA HLLFLO programs,
it has been shown that the improved differencing scheme can be written in a form which is
straightforward and efficient to calculate.
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