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Abstract

An efficient, stable, explicit, first-order cross-stream differencing scheme having low truncation
error is derived and applied to three dimensional integral boundary layer equations. The
analysis is considered in detail for the particular case of the momentum integral equations and
Head’s entrainment equation with power law profiles and Mager’s cross flow assumption. In
comparison with upwinding differencing, the new scheme has better stability properties, smaller
truncation error, and smaller artificial viscosity.

Résumé 1

Un schéma de différentiation transversale de premier ordre explicite,
stable et efficace, avec une faible erreur de troncature, est établi et
appliqué aux équations intégrales tridimensionnelles de la couche limite.
L'analyse est considérée en détail dans le cas particulier des équations
intégrales de quantité de mouvement et de 1l'équation d'entrainement de
Head, avec des gradients exponentiels et l'hypothése d'écoulement
transversal de Mager. Comparé a la différentiation longitudinale, le
nouveau schéma posséde une plus grande stabilité, une plus petite erreur
de troncature et une viscosité artificielle plus faible.
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Notation

Eg:
I
fi:

FkJ .

F:

G:
hi1,h12,h21,ha2, k1, k2
H:

P:

Q!,Q%,Q! .
QL2 Bl E? .

v(")

ve:

vive:.

: Matrices of a hyperbolic system of first order partial differential equa-

tions.

: Matrix defined in equation (4.17).
: Matrix defined in equation (3.11).
D*,D":

E:

Forward and backward differencing operators defined by equation (2.4).
Matrix defined in equation (4.17).

Truncation error.

Independent variable in the convection equation.

Independent variables in the multi-dimensional hyperbolic system of
equations.

Fourier component of f at the point (zi,y;).

Matrix defined in equation (4.16).

Matrix equal to EC™1.

Boundary layer velocity profile functions.

Shape factor.

Stability factor definined by equation (2.7).
Independent variables in the boundary layer equations.

Variables of which cross-stream derivatives are taken in the boundary
layer equations.

: Tan of the cross flow angle.
: Matrix defined in equation (4.16).

: The nth eigenvector of A~1B.

Velocity in the z direction.

: Velocity in the y direction.

Contravariant components of the potential flow velocity.
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V11 vi2 . Contravariant components of a vector perpendicular to the potential
flow velocity but having the same magnitude.

A FEERE,

R :: w{") : Vectors defined by equation (3.5).
[ z,s : Non-orthogonal surface coordinates in which the boundary layer equa-
e tions are solved.
A )
1 ::". z,y : Coordinates in which the convection equation is solved.
NN
' As,Az, Ay : Grid spacing in the s, z, or y directions. ¢
v )
- a : Coefficient defining the cross-stream differencing scheme.
" q_'-- L
'\-j* Bi : Coefficients giving f, as a linear combination of v£").
OOl
-
o - § : Boundary layer thickness.
o 6mn : Kronecker delta.
S th o -1
N An : The n'" eigenvalue of A™"B.
e
i '\“- N .
- p: A parameter defined in equation (2.12).
,.. . Bold face characters are reserved for use as vectors or matrices.
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1 Introduction

Numerical integration of a system of boundary layer equations is widely used for the
prediction of the flow over ship hulls and aircraft. When the boundary layer equations are
written in integral form and solved in a coordinate system roughly aligned with the flow, a
popular method of discretization is a first order explicit scheme using upwind differencing for
the cross-stream derivatives. This method has the virtue of extreme simplicity; however, a
disadvantage of the method is that it is unstable when the direction of forward integration
lies between the potential flow streamlines and the limiting streamlines at the hull surface.
While the occurrence of instability will normally be infrequent and will usually not persist, it
is most likely to occur when the cross-flow is high: that is, at a time when the modelling of
the boundary layer is most suspect. When testing the validity of a boundary layer prediction
method, it can be difficult to ascertain whether problems occurring at regions of high cross-flow
are due to deficiencies in the boundary layer modelling or due to instabilities in the integration
procedure. A completely stable differencing scheme would remove this ambiguity.

A second disadvantage of upwind differencing is that it is discontinuous with respect to
the direction of the flow: i.e. an infinitesimal change in the flow which causes the cross-stream
component of the flow to change sign, will cause finite changes in the solution due to the change
in the direction of cross-stream differencing. If the boundary layer equations are being used in
an iterative loop to account for the interaction between the boundary layer and the potential
flow (see, for example, Chapter 8.3 in Reference [1]), this discontinuity can inhibit convergence.

In this memorandum an improved scheme for the cross-stream derivatives is proposed.
The new acheme is also of first order, is stable for sufficiently small step size, and is continuous
with respect to the direction of flow. It also has smaller truncation error and artificial viscosity
than the upwind differencing scheme.

Motivation for the new differencing scheme for the boundary layer equations is given by
first examining the pure convection equation with one dependent variable. For this equation, the
new scheme is shown to be the optimal explicit differencing scheme in that it is (conditionally)
stable and minimizes the truncation error. The scheme is then extended to systems of equations
(i.e. equations with more than one dependent variable). Finally, use of the scheme in the context
of the boundary layer equations is discussed. For this purpose the boundary layer equations
are assumed to be the two momentum integral equations and Head’s entrainment equation; }
these are the equations used by the HLLFLO computer programs developed at DREA for the !
prediction of the flow around ship hulls[1]. A complete discussion of these equations is given ‘
by Hally[2].
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2 Stability of the Convection Equation

Consider, first, the simple one dimensional convection equation,

291 L yvdf _
|4 az+V ay_o (2.1)

where V2 will be assumed positive with V* > |[VV|. To solve the equation numerically, a
rectangular grid (zx,y;) is used. For simplicity, the cross-stream step size will be assumed
uniform: i.e. yj4+1 — y; = Ay for every j. The derivatives are approximated by

3f fk+l,j — fk,j

_— 2.
dz ~ Az (2:2)
af l—a l1+a _
3y Sl D™ f+ 2 D~ f (2.3)
where Az = zx41 — 7 and
kj+1 _ ¢kj ki _ fkg-1

The upwind differencing scheme has a = sgn(V¥). Central differencing, which has accuracy of
second order in the y-derivatives, has a = 0.

The stability of a differencing scheme is determined by supposing a solution of the form
[hi = Feiis (2.5)

Substitution into equation (2.1) and using equations (2.2) and (2.3) yields

Pt = P (1o D - a)(edr - 1)+ (14 01 - 7o) (26)
where VVAz
P= Veihy (2.7)

The scheme is stable if | F¥+1J| < |F*J| which occurs when
aP<1 and P(a-P)20 (2.8)

(see, for example, Peyret and Taylor(3]). Hence, there is stability only if the scheme is weighted
towards upwind differencing: i.e. sgn(a) = sgn{P). Complete upwind differencing is stable if
|P| £ 1; this is called the Courant-Friedrichs-Lewy (CFL) condition. Central differencing is
unstable.
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The truncation error of the scheme of equations (2.2) and (2.3) is

Azl vAvdlS

E =V* b A
‘ 2 922 & 2 3y

+0(Aaz?, AyY) (2.9)
The term in Ay has a dissipative effect if aV'¥ > 0. Since this term is physically similar to
a diffusion term, it is often called “artificial viscosity”. For a first order scheme the artificial
viscosity is necessary for stabilify, but to avoid unwanted diffusive effects, it should be as small
as possible. If V* and V'V are constant, equations (2.1) and (2.7) can be used to rewrite
equation (2.9) as

_ V*Ay(a - P) 8%f

Ei 2 dzdy

+0(Az?, Ay?) (2.10)

In order to minimize the truncation error, equation (2.10) suggests that one use a = P,
a scheme which will be termed partial upwinding for the purposes of this memorandum. This
scheme is stable provided that |P| < 1, the CFL condition; it therefore requires no smaller step
sizes than complete upwind differencing. Moreover, since a is continuous with respect to P,
the differencing scheme is continuous with respect to V¥. The artifical viscosity is also reduced
in comparison with that of the complete upwind differencing scheme.

In a more general convection equation, A and B may not be constant and there may be
production terms.

Arn(2,9,1) 2L + Binl,3, 1) g = ex(z,9. 1) (211)

The differencing scheme defined by equations (2.2), (2.3), and a = P is stable when used for
equation (2.11) but will have truncation error which is first order in Az and Ay. However, if
convection is the dominant mechanism describing the evolution of the solution, the truncation
error will be small.

The relative accuracy of central differencing, upwind differencing, and partial upwind

differencing have been compared using

vy  py(l-y)
Vz T 14 pz(l - 2y) (2.12)

The solution to equation (2.1) is then

[(z,y) = f(O,y+ pzy(1 —y)) (2.13)

In this flow, V¥ is zero along the coordinate lines y = 0 and y = 1; hence, specification of the
value of f(0,y) for 0 < y < 1 is sufficient to determine the value of f for any z > 0. In this
sense, the flow mimics the evolution of the boundary layer on a ship hull which is confined
between streamlines at the keel and at the waterline (see Hally(2]).

The parameter u can be used to alter the relative magnitude of the components of the
velocity in the z and y directions. Since one can show that

py(l-y) | _1-vi1-4 (2.14)

1+ pz(1 - 2y) 2(ul
i
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the maximum value for P, which will determine the stability of the differencing schemes, is

(1-+v1-pu?)Az

2|ulAy

Praz =

(2.15)

Flows with larger u will tend to be less stable.

The integration was performed for 0 < z < 1 and 0 < y < 1. Figure 2.1 shows the result
of the integrations when Az = Ay = 0.05, u4 = 0.3 and the starting values were given by
f(0,y) = 1 — cos(ry). The deviation of the predicted values from the exact values are also
shown. In this low the velocity component V'V is both small and varies smoothly with y. Both
upwind and partial upwind differencing are stable (Pmqaz = 0.077) but the instability of the
central differncing scheme is not clearly manifested. On the other hand, it is clear that the
upwind differencing scheme has much higher truncation error relative to the other schemes.

Figure 2.2 shows the results of integrations with Az = 0.1, Ay = 0.0333, u = 0.9 and
starting values given by the pyramid function f(0,y) = (1 —|1 —2y|)/2. Again, the upwind and
partial upwind differencing schemes are stable (Ppy; = 0.940), but in this case the instability
of the central differencing scheme is clear. The rapid change in the y-derivative of V'V causes
oscillations to appear in the central difference solution. Once more, the accuracy of the partial
upwind scheme is the best.
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RESULTS OF INTEGRATION AT x=10
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ERRORS IN PREDICTIONS AT x=10

T

~ Central
=~ Upwind
—/_Pcrticl Upwind
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T

T

T

] -0.015}, , . , )

Figure 2.1: Results of integration with f(0,y) =1 — cos(7y)

0.8
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RESULTS OF INTEGRATION AT x=10

0.15¢
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0.0 — Portial Upwind _
0.05} AR ]
o.oo————.\\p:f; — ]

\ Lo

-0.05¢ -
-0, -
00 02 04 06 08 10

ERRORS IN PREDICTIONS AT x=10

Figure 2.2: Results of integration with f(0,y) = (1 - |1 — y|)/2
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3 Stability of a Hyperbolic System of
Equations

The stability of a system of first order equations can often be reduced to the stability of
a number of one dimensional equations. Suppose f,,n = 1,..., N are variables dependent on
z and y, and which satisfy

a n a n
ZAk,.i+Bkna—’y= (3.1)

where A and B are N x N matrices and A is non-singular. Let A, be the eigenvalues and v(")
be N linearly independent eigenvectors of A"!B: i.e.

A;L Biivl™ = AofD) (3.2)
ZZ mk ki V

I=1lk=1

or equivalently,
N
Z(/\nAkJ Bk,)v( ") = (3.3)

If all N eigenvalues are real and non-zero, equation (3.1) is said to be hyperbolic. If they are
all real but some are zero, equation (3.1) is said to be mixed parabolic-hyperbolic. Henceforth
each A, will be assumed to be real.

The dependent variables, f,, can be expressed as a linear combination of the eigenvectors

v(n).
N
fn=3_ Brvl) (3.4)
k=1
Defining vectors w(” such that
N .
> wMel) = 5, (3.5)
k=1
one can represent the F; explicitly:
N
Bi=_ fawl (3.6)
n=1
Note, too, that
N
3wt = Z A} Bim (3.7)
k=1 k=1
6
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as can be verified by substituting equation (3.7) into equation (3.2).

After mutiplication by A~! and substitution for f,, equation (3.1) can be rewritten

N
(9B, (n)y, 9Bn _ 18
?_:‘lv,‘ 5z T g, =0 (3.8)
whence, since the v(?) are linearly independent,
9Bn 98n
— —_— = 3.9
9z Ty =0 (3.9)

Hence, by applying a stable one-dimensional differencing scheme to each of the 8,, one obtains
a stable differencing scheme for the entire linear system. The differencing scheme for f, is
recovered using equation (3.4).

N —
Lo n 3o [——1 2°’"‘D+ﬂ,..+‘+°‘"‘o-ﬁm]

dy ot 2
N N _
_ z Z v,(,"')wsm) [l_ﬂp*'f, + 1+ C""‘D'f,]
m=1r=1 2 2
D*fa+ D fn & D*fm = D™ fm
— Y In _ n 3.10
2§ e =
where N
Dpm = Zv,(,')w,(,:)a, (3.11)
r=1

If all the eigenvalues are of the same sign, it is possible to choose all the a, to be equal
and have a stable scheme. This has the advantage that the cross-stream differencing is the
same for each equation in the system. A complete upwind scheme would have a, = sgn(Anm)
while a possible extension of the partial upwind scheme of the previous section would be a, =
max(Ay,...,An)Az/Ay. By using the maximum eigenvalue one can ensure stability by choosing
Az sufficiently small that a,, < 1. When all the a,, are equal, equation (3.10) reduces to the
simple counterpart of equation (2.3):

9fn
dy

1;"‘0‘;,. (3.12)

e .L%ﬁp"‘," +

However, if the eigenvalues are not all of the same sign, then to maintain at least partial
upwinding to provide stability, some of the a,, must be positive and some must be negative.
Thus, in general it is not possible to have complete stability while retaining the simplicity of
having all a,, equal.

The logical extension of the partial upwinding scheme of the previous section, is to set
am = Py. Then

Az N (,) (,) _ Az N -1
Dpm = By 2 wm A = Ay gAn, Bim (3.13)

r=]




e
N
9
.“ whence
SR D =A"'BAz/Ay (3.14)
- _, The truncation error when D is defined in this way is of second order in Az and Ay.
|
3
TN
S . .
“a 4 A Differencing Scheme for the
-"x-'{ ° ‘
3 Boundary Layer Equations
P o
2 .
R
7
o As mentioned in the introduction, the boundary layer equations discussed here are assumed
to be of the form used in the DREA HLLFLO programs|1]. These are a system of three coupled
R first order equations: the two momentum integral equations and Head’s entrainment equation.
';' They can be written in the form[2],
h '-('-
RN
N Q' aQ? .
o~ -8% + —3% = production terms (4.1)
11 12
"' a—gz— + a—ga— = production terms (4.2)
dE! QE? .
o 2273, = production terms (4.3)
' . where
- Q' = G6(Vihy +tVLilhy) (4.4)
o Q* = 36(VZihy +tV13hy,) (4.5)
o Q' = 5t(Viha + tViihy,) (4.6)
- Q'Lz = \/§6t(V"'h21 + tV'Lzhzz) (4.7) |
o E' = \/g5(V'ky+tVilky) (4.8) |
i E? = /g5(V%k; +tViiky) (4.9) |
vl § is the boundary layer thickness, and ¢ is the tan of the cross-flow angle, V! and V'? are the
.'A contravariant components of the potential flow velocity, V1! and V12 are the contravariant ‘
s components of a vector perpendicular to the potential flow velocity and having the same mag- S
.:::{ nitude, z and s are non-orthogonal coordinates which run over the surface of flow, and g is the :
e determinant of the metric tensor for the coordinates (z,s). The values of V!, V2 Vi1 v 12 :
A and ¢ are known for any given z and s. k
o The profile functions hyy, hya, h21, h22, k1, and k2 depend on the velocity profile assump-
T tions made for the boundary layer calculation. In general, the profile functions may depend on
oo 8, t, and a third independent variable usually taken to be the shape factor, H, though more
:-_::{ commonly they depend only upon H and t or on H alone.
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A simple variant of upwind differencing can be used to integrate the boundary layer
equations (4.1) - (4.3). f V2/V! and (V2 +tV12?)/(V! + tV+!) both have the same sign (i.e.
both potential streamlines and limiting streamlines lie on the same side as the z coordinate
lines), upwind differencing is used for each of Q2, Q12, and E2. However, if they have different
signs (the z coordinate line bisects the two streamlines), no unique upwind direction is identified:
central differencing is then used. Unfortunately, as has been demonstrated above, central
differencing is unstable. Moreover, it is clear from Section 3 that no simple scheme in which
the same value for « is used for each of Q2, Q*2, and E? can be stable when the z coordinate
line lies between the characteristic directions defined by A; and 3.

On the other hand, by changing independent variables to the boundary layer variables §,
H, and t, the boundary layer equations may be rewritten in the form of equation (2.11) with

fi=$é, fa=H, fy=t,and
- an an an ] [ an an an h
a5 8H ot 36 8H ot
A= aQJ.l aQ.Ll aQ.Ll . B= 3Qu aQ_Lz aQ_Lz (4.10)
3§ 9H ot a5 8H ot
dE' QE! OE! 9E* QE? OE?
L 96 d0H ot L 36 0H ot |

A and B are easy to determine analytically and, since A is only 3x3, A~! is also easily
calculated. Hence, the differencing scheme described in the previous section may be calculated
easily. It is well-known that the characteristics of the boundary layer equations lie between the
potential flow streamlines and the limiting streamlines at the hull surface; this is equivalent to
saying that the eigenvalues of A~!B lie between V2/V'! and (V2 +tV+2)/(V1+tV+1). Hence,
the CFL condition is satisfied provided that

viaz (Vi+tVid)Ax <1
max\vias’ (VI+tVvil)As

(4.11)

The differencing scheme just described is with respect to the independent variables §, H
and t. To generate corresponding difference schemes for Q%, Q+2 and E?, the correspondence

aQ? [ 36 ]
ds ds
, Q' | _p| 9H (4.12)
' - ds ds
2 OF? ot
:j. ds L 9s |
:- is used. Equation (3.10) is then an appropriate difference scheme where
;' (fly f2, IS) = (taqlz»Ez) (413)
! i: and
P
" D =B(A"'B)B"'Az/As=BA"'Az/As (4.14)
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Y If it is assumed that the profile functions depend only on H, further simplifications are

‘-::.:: possible. In this case one has

-~;.- A= gT(VIC+tVE)F ; B= gT(V'C+tVLiIE)F (4.15)

‘:- where ‘

D 100 100 |

b T=|0¢t 0| , F=|0 6§ 0 (4.16) |
i 00 1 0056 4
-
¢
20 hyy A}y, O hiz hi, ki
o~
e C=|hau By ha | » E=| hy hhy 2hy (4.17) 1

[ oy }

by ky ki 0 k; kY  ky

Wy

, The primes denote differentiation with respect to H. Substitution into equation (4.15) gives
::::: BA—I - T(v2C +tvl2E)(VIC +th.1E)-1T—l ‘
~ Nn |
oy T(VZ+tV2EC)(V! +tvHIECY) 17! (4.18) |
..‘\-t .

o Since the z coordinate lines are assumed to lie roughly along the potential “.ow streamlines, ‘

o and since t is usually (though not invariably) significantly smaller than 1.0, it is reasonable to |

o assume that tV 4! << V! and retain only first order terms in equation (4.18). j

v: viyiz_ylip2 |
e -1 _ y- -1

; ’ BA T [Vl + Wiy tG| T i

£ 2 2 !

i .'-.‘. = Y_ L (_q.) -1

Z‘::: = T [Vl + NA\Z G|T (4.19)

! "-::: where

L\) G =EC™! (4.20)

o and U is the magnitude of the potential flow velocity. The last equality in equation (4.19)

- follows from the relations between V and V. (see Appendix A.5 in Hally[2]).

’ ’ :: The matrix G depends only on H. Its components may be written explicitly in terms of

A the profile functions as follows
@ :

" kyi(kyhay — koh
§ G 1 2h21 - k2 21') (4.21)

o ha1(hyy k1 — hi1ky)

) kz

h Gz = 1+— 4.22 )

c::. ‘ 12 ha1 ( )

hiG
9. Gy = --2u (4.23)
-"l‘;-' kl
% ky(hhaha1 — haghly) — hoa(hh k1 — kot k'

b7 Gy = 1(h3sh21 — ha2 ’21) 22( 2k~ ha 1) (4.24)

Ling ha1(hys k1 — hyak})

b
9.,

POy, 10
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A G = —= 4.25
22 ha1 (4.25)
S Gas = haz (Ao h11 ~ h21h%1) - hu(hfz'zhn — hazhY,) (4.26)
- hz1(hy k1 — h11k))

. Ggl = Gll (427)

) " Gi2 = Gp2-—-1 (4.28)
<2 Gss Gis (4.29)
o,

‘:_'- . where use has been made of the identity
hi2 = ha1 + k2 (4.30)

::. For the particular case of power law profiles with Mager’s cross-flow assumption (see
5 Hally(2]), the profile functions are
~

) H-1
. hi = —/——— 4.31
- u H(H+1) (4.31)
o hiz = hu+k; (4.32)
o h 2 4.33
v T HH+1)(H+2) (4.33)

-24
o hoy = 4.34

B 2 H(H+1)(H +2)(H +3)(H +4) (4.34)

L ky = —— (4.35)

'\'1 H+1

‘F
) 16
ko, = 4.36

( 2 (H+1)(H+3)(H +5) (4.36)
N and the components of G are
i
~3 96H(H?+ 5H + 5)

o5 ' ne (H +2)(H +3)}(H +5)? (4.37)

(H - 1)(TH + 15)

V.- G = = 4.38
o 12 (H+3)(H +5) (4.38)
. —48(H — 1)(H? + 5H +5)

e Gis=Gss = 4.39

- 137 s (H +2)(H +3)*(H +5)° (439)
~ 24(5H? + 24H + 24)
® Gn = - 4.40
7 2 (H + 2)2(H + 3)2(H + 4)? (4.40)
t 24

= G = 4.41

~ = H+3)H+4) (4.41)

e 24(3H? + 14H + 13

S G = ( 3 hs 3 +13) 3 (4.42)

(H +2)*(H +3)*(H + 4)

e 8H(H +2)

5 Gs: - 4.43

h :: (H+3)(H+5) (443)
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To a very good approximation, G is linear in H over the range of interest (H is usually
in the range 1.2 to 1.5). A linear approximation for G was generated using a least squares fit
for the range H € [1.2,1.5], yielding

0.46785  0.84360 0.19553 0.16237 -0.85387 -0.21027
G =~ | -0.56021 1.61323 0.31568 | + H | 0.22268 -0.43032 -0.12418 (4.44)
0.46786 -0.15638 0.19553 0.16237 —-0.85389 -0.21027

The components of G and the approximations to them are shown in Figure 4.1.

Substitution of the above approximations into equation (3.10) with the identificati~ns in
equation (4.13) yields the following approximation to the stable scheme with a, = AnAz/As;
therefore it should be stable for all reasonable values of the boundary layer parameters.

3(Q?) 1 Viaz\ . 2 1 Viaz\ __
3y 2 1-vias | P79 + 3\ M via, D ¢?

1 +A2 _ 2 +Al?2 _ p-pl2
2\[( ) [fou(p*@? - 7" + Gu(D*@* - D@
+Gist(D*E? - D™ EY)| (4.45)
aQ.L2 1 VIAZ \ + .1.2 1 Viaz - 12
I 5( VIA)DQ 2\t vias ) P ¢
t +2 +nL2 12
2\/_( ) [thlDQ D™ Q%) + Gpn(D*Q*? - D™Q*Y)
+tGas(D*E? - D™ E?)| (4.46)
9Et 1, VIAz) g L VIAZ) hop
dy 2 V1iAs 2 V1As

1

2\/_( ) [tci*l (D*Q* - D™Q*) + G3(D*Q** - D™Q*?)

+tGs3(D* E? - D™ EY)] (4.47)

This scheme is efficient to calculate (since all the boundary layer parameters are known),
has small truncation error and small artifical viscosity, and is continuous with respect to all
boundary layer and potential flow parameters.

When the cross-flow is large, when the shape factor lies outside the range [1.2,1.5], or
when profiles other than the power law profiles are used, a stable differencing scheme can be
generating by calculating BA~! explicitly and using equations (3.10) and (4.14). While not as
efficient as using equations (4.45) ~ (4.47), the computational effort is not high as A and B are
only 3x3.
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5 Concluding Remarks

A differencing scheme for the cross-stream derivatives of integral boundary layer equations !
has been discussed. In comparison with upwinding differencing, the new scheme has better
stability properties, smaller truncation error, smaller artificial viscosity, and is continuous with
respect to the direction of flow. Hence, it is a more accurate and more reliable method for the
solution of the boundary layer equations.

When applied to the boundary layer equations used by the DREA HLLFLO programs,
it has been shown that the improved differencing scheme can be written in a form which is
straightforward and efficient to calculate.

14




References

(1] D. Hally, “HLLFLO User’s Guide,” DREA Technical Communication 86/306, 1986.

[2] D. Hally, “An Integral Method for the Calculation of Boundary Layer Growth on a Ship

Hull,” DREA Report 85/107, 1985.

- [3] R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow (Springer Verlag, New

York, 1983), Ch. 2.6.

'.‘ -l'I‘ Il.

I.l I‘

.‘

. @
..~

o

LA
LN AN

LRI AN

Ty

15

e e N T A = A e =

!%’:‘:'.:&‘:k’:‘:.'!ﬁ’:%‘:




."v . N D e Ria e 20e She Ste oo ST Son SRL SN RE Bh -aeb Bul Aed Aall lie? el Bub ] 8 S Aeh Aah 005 Bl Ret Sav se) ot sut Anc AT KR oA e SR ol oW oth S 4 A4 A A il LPal S
E'n

p -
e
B

Unclassified

SECURITY CLASSIFICATION OF FORM
{hughest clessification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

(Security classification of title, body Of sbSract end Indexing SNNOtE1ION Must be entered when the overal! document s class:fied

1. ORGINATOR (the name sn¢ address of the orgamzstion preparing the document | 2. SECURITY CLASSIFICATION

Organizations for whom the document was prepared, e g Establishment Sponsoring {overstl security classification of the document
8 conrector's report. of Wsking gency. e entered mn section §) ncluding special warning terms 1f apphicable)
Defence Research Establishment Atlantic Unclassified

3. TITLE (the compiete document title as indicated on the ttle page I1s classification should be indicated by the eppropriste
sbbreviation (S.C.R or Ul in parentheses after the title)

CROSS STREAM DIFFERENCING FOR INTEGRAL BOUNDARY LAYER EQUATIONS

4  AUTHORS  (Last neme. first name, middie imtial. [f military, show rank, e.g Doe, Ma; John £}

Hally, David

At S DATE OF PUB.ICATION (month an¢ yes: of pubication of 6a NO OF PAGES (10wl 6b NO OF REFS (tota' ¢rted n
e gocument) conteining information Include document)

.e November 1987 Annexes. Appendices, etc)

a 23 3

S
o

DESCRIPTIVE NOTES tthe category of the document. e g technical report, techmical note or memorsndum. |f sppropruate. enter the type ef
report, eg snterim, progress. summary, sanysl or final. Give the inclusive dates when & specific reporting period s Covered)

DREA Technical Memorandum

8. SPONSORING ACTIVITY (the name of the department project office or laboratory spomsoring the research snd development include the
address.)

Defence Research Establishment Atlantic

Sa PROJECT OR GRANT NO. (if sppropriate, the apphicadie research | Sb. CONTRACT NO. (if sppropriste. the spplicable number under
an¢ development project or grant number unger which the document which the document was written)
was written. Piesse specify whether project or grant)

10a ORIGINATOR'S DOCUMENT NUMBER (the officia! document 10b. OTHER DOCUMENT NOS.  (Any other numbers which may
number by which the document 18 identfied by the originating be esSigned this document either by the originstor of by the
sctivity. This number must be unique 10 this document} sponsor)

DRFA Technical Memorandum 87/217

hY

» ¥

v 5

A

11. DOCUMENT AVAILABILITY {sny imistions on further dissemination of the document, other than those imposed by security ciassification)

(X} Unlimited distribution

} Distribution Limuted to defence depertments and defence contraciors, further distribution only a3 approved

) Distribution limited 1o defence departments and Canadian defence contractors: {urther distribution only 8s spproved
) Distribution limited to government departments and agencies. further distribution only as spproved

) Distbution limited to defence deparimens, further distribution only as approved

) Other (piease specify):

. *.:.'.'..’;-" LN l.'\"

12. DOCUMENT ANNOUNCEMENT {any hmitation to the bibliographic snnouncement of this document This will normally correspons to
the Document Avarlsbilty (11). However. where further distribution (beyend the sudience specified m 11) 15 possidie. 8 wider
snnoyncement sudience may be Selected!)

Unclassified
SECURITY CLASSIFICATION OF FORWM

17 pCcCo3  2/06/87




R

Pl

E A
N'.,.'.'.'S.

' P
& .“ ’, . s, ‘D\N-
B P DR A

AR
B

RN

«

-

e &
- -

.,
.

Lnclassified.
SECURITY CLASSIFICATION OF FORM

13 ABSTRACT { a drief and factusl summary of the document It may also sppear elsewhere in the body of the document snself It s highty

desirabie that the abstract of classitied documents be unciessified Eoch paragrapr. of the abstract shall begin with an indicatior of the
security classification of the information in the paragraph {unless the document nsett s unciassified) represented as (S} (Cl. (R), or (U}
11 15 not necessary to :nclude here sbstracts n botr eotfical languages unless the text 15 biinguail

An efficient, stable, explicit, first-order cross-stream differencing scheme having low
truncation error is derived and applied to three dimensional integral boundary laver
equations. The analysis is considered in detail for the particular case of the
momentum integral equations and Head's entrainment equation with power law profiles

and Mager's cross flow assumption. In comparison with upwinding differencing, the

new scheme has better stability properties, smaller truncation error, and smaller
arrificial viscosity.

14 KEYWORDS, DESCRIPTORS o- IDENTIFIERS ftechnically mesningful terms or short phrases thar character.ze » document and coulc be

heipful 1n cataloguing the document They should be selected so that no security classification is required igentifiers. such as equioment
model designation. trade name, Muinary project code name. geographic location may aiso be inciuded i possible keywords shou'd be selezted
from & published thessurus e g Thesaurus of Engineering and Scientific Terms (TEST) snd thst thesaurus-tgentified ' 11 15 not possible 1o
seiect «ndexing te'ms which sre Unclassified. the classificaton of each should de indicated as with the utle )

Boundary Layers
Turbulence
Differential Equations

Unclassified

SECURITY CLASSIFICATION OF FORM

18

L WA
‘-h_'- \."‘-

L »
'.\ >




T NI T TR O TR TR ORI WL W W, W W, WV Wk W W WA TN

END

] R =

N LY e e

c .
. |

.. [ s

e ey

v

2] e N

.

-y

-
-

- T e s aw

(Y

O
|

-

NN

Ly
AT O T, WL LA . &

TN A - T T R R N L A S S A Tt A N NN N A Y A
SR O N A A A A L O R (P L ¢ o > LT ¢ > Nt

o) R "~ WO L s N N ; T n, " nY -!'. ¢

L TN TS W A T A B Al N N AT A AN m 3 5:..&* ‘m& AN e .. In i




