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Axis etric Viscid-Inviscid Interaction by a
Frozen Vorticity Approximation

See Page 33

numerical solution procedure capable of a high degree of
automation is presented for calculating the flow field
associated with viscid-inviscid interaction on a body of
revolution. The method makes use of ideas from
asymptotic triple deck analysis of the trailing edge
problem. A simpler problem is solved in which two layers
are postulated, an outer inviscid, rotational layer (¥%frozen
vorticity&) which largely governs the pressure in the
trailing edge region, and an inner turbulent layer which is
modeled in a simple manner. These two layers are patched at
a fixed distance from the wall and wake centerline rather
than asymptotically matched. The method allows the viscid-
inviscid interaction solution to be computed in four
iterations, none of which require any user intervention. A
high degree of automation is achieved in the computer code
because of three factors: (1) the solution cycle is very
stable, (2) all calculations use a common streamwise grid,
and (3) information is transferred to successive stages of
the calculation by computer generated files. Numerical
solutions are presented for three bodies and the results
compared with published experimental data
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Gilbert H. Hoffman Page 2

Introduction

The standard approach for solving the axisymmetric viscid-inviscid
interaction problem is the displacement body method of which numercus
examples have appeared in the literature [1~3]. 1In this procedure the
boundary-layer displacement thickness is added to the body to obtain an
approximation to the strong interaction pressure distribution. Since the
displacement thickness depends on knowing the pressure distribution,
iteration is required to find the solution. In the direct mode (pressure
distribution given) the boundary-layer solution invariably produces a
displacement thickness which has numerical noise in the strong
interaction region. This "noise" is then amplified inte pressure wiggles
in the potential flow solution. To obtain convergence, numerical
smoothing of the pressure distribution is required between each
iteration. This process requires intervention by the user and is thus
difficult to automate. A variation of the displacement body method is to
solve the boundary-laver portion in the inverse mode which results in a
numerical smoothing effect. An example of this approach is the work of
Carter and Wornom [4].

A promising alternative approach for the solution of the
axisvmmetric viscid-inviscid interaction problem is to adopt the main
ideas of asvmptotic analvsis as applied to the two-dimensional trailing
edge problem. This approach has a firm foundation mathematically and, as
it turns out, can be readily automated.

The turbulent flow near a 2-D trailing edge was first analyzed using

asvmptotic methods by Melnick, Chow and Mead [5] who found that a three-
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Gilbert H. Hoffman Page 3 K
layer structure develops which extands over a streamwise distanca of th by

- order of (1/1n Re). In the outer layer, because of the small streamwise )
length scale, viscous terms can be neglected leaving only the inertial

terms. Thus the flow in this layer is inviscid but rotational, the ..

vorticity arising from the upstream boundary layer. An inner viscous
layer is required to satisfy the no-slip condition and an intermediate, i

or blending, laver accounts for the different rates of growth of the

o e A NV

t inner and outer layers. Although the extent of the streamwise effect may {
differ, the same type of three-layer structure arises in the vicinitv of

an axisymmetric trailing edge.

. . Analytical solutions of the 2-D turbulent trailing edge using the !
three-laver asymptotic approach have been obtained by Melnick, Chow and 5

Mead for a cusped trailing edge and bv Melnick and Grossman [6] for a

T T Tl N

small but nonzero trailing edge angle. These solutions clearly )
demonstrate the importance of normal pressure gradient (via the outer

rotational inviscid layer) in the correct description of the flow at the

S e e

trailing edge. :

' Prior to the work of Melnick et al., the only other analytical

,
-
treatment of the 2-D turbulent trailing edge was by Kuchemann [7]. He o
'l

. % A

considered a wedge-shaped trailing edge of finite angle in the presence
of rotational, inviscid flow with constant vorticity. Since the inner

layers were neglected, a slip velocity at the wall was required to avoid

a constant pressure on the wedge surface. His main finding was that the
, velocity field induced by the vorticity in the wake retarded the flow on

the wedge upstream of the trailing edge which led to separation if the

.
o

.
.
.
.

'
-
vy

wedge angle was large enough.
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In the axisymmetric case, Geller [8] and Hoffman [9] have made use
of an outer rotational, inviscid layer to determine flow near the
trailing edge. In Geller's procedure a local body oriented Cartesian
coordinate system is used and 3v/5x is neglected in the vorticity. As a
result, the velocity profile at a given body station is obtained by
solving an ordinary differential equation rather than an elliptic partial
differential equation, as is ordinarilv the case. He patches th
inviscid, rotational profile at a given normal distance from the body
surface with a one-seventh power law turbulent boundary-laver
representation in the inner region. Agreement of calculated velocity
profiles near the trailing edge with experimental data is very good. He
also finds that the computed velocity profile in the outer region is not
sensitive to the assumed profile in the inner region. Hoffman solves the
elliptic problem in terms of the stream function. His solution, which
neglects patching with the inner layer, allows for velocity slip at the

wall, as in the 2-D treatment by Kuchemann. As a result of this neglect,

he finds the solution to be fairly sensitive to choice of the initial

T

station where the rotational calculation begins.

In the present work the findings of 2-D asymptotic analysis are

AR S 3 S S |

applied in a approximate fashion to the axisymmetric trailing edge.

Instead of a full triple deck treatment, only the outer laver is solved

£ O Yy

exactly, the intermediate laver is neglected and the inner laver is
modeled in a simple manner. This work, therefore, represents an
extension of Reference 9.

Since asymptotic matching is inappropriate in the present scheme,

the inner and outer layers are ''patched" at a small, fixed distance from
P
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Gilbert H. Hoffman Page 5
the body surface and wake centerline. The inner layer is modeled using a
pover-law velocity profile to represent the lower portion of the
turbulent boundary layer, the same as used by Geller. Because the wake
cannot be neglected in the elliptic problem, a simplifying assumption is
required for its inner laver. The assumption is made that close to the
. wake centerline the vorticity varies linearly with radial distance. The
& presence of the inner laver results in a boundary condition of the third
kind at the lower edge of the outer layer (the "patch boundarv"). Once
the solution in the inviscid, rotational domain is known, the pressure on
’ : tie body and wake centerline is obtained by integrating the normal
. momentum equation downward from the patch boundary.
e The reasons why the "frozen vorticity" approach can be highly

¥ automated and thus yield an easv-to-use computer code are (1) a

considerable commonality exists in computational grids for the inviscid

= irrotational and rotational flowfields as well as the boundary laver, (2)
x«‘f
N k
i) the same body curve fit is used for all three flows, and (3) the starting
'.l

> profile for the inviscid rotational solution is generated automatically
A using ccmputer-generated data files. The boundary-laver solution with
A viscid-inviscid interaction effects included takes only four steps: (1)
i a potential flow solution, (2) a corzesponding boundarv-laver solution,

o (3) a frozen vorticity solution, and (4) a final boundaryv-laver solution.

» T R T - A R T P et T o P P R W e
Tt T 8 e e e R0 E VTN Y SN 08 Byg Vo Yy 1 8% ¢ "\i\::?i i\:'r:.'!:.\'Jﬁ'ﬁ\"\,.'ﬁ_."i\' a '-_{\.“-_.\ -\.."‘\_-"..\ﬁq
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Gilbert H. Hoffman Page 6

Equations of Motion

In cylindrical coordinates, (x,r,8) were 3/88 = 0 (axial syvmmetcy)

inviscid potential or rotational flow is governed by the equaticn

Gy + G

XX rr ° % Gp = - IZF(W) ’ (1)

where a lower case subscript denotes partial differentiation and G is the

perturcation stream function delined by

G=y-3r2 . (2)

The perturbation stream function is used because it is bounded as r => o,

The reduced vorticity F is related to the wvorticity { by

g = rF(y) . (3)
The quantity F is uniquely determined by the upstream boundary condition.
For potential flow F = 0.

A body fitted coordinate system is introduced by the following

general transformation:
x=x(§,n) , r=r(g,n) , (4)

where the coordinates (,n) may or may not be orthogonal. Transiorming

to (g,n) coordinates, Eq. (1) becomes

Gnn - AGn - ZBGsn + CBss + DG’S = - E N (S)

[ g
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Gilbert H. Hoffman Page 7

where
1 X_r’
A= ((I8)g - W)y + 1 (6)
B =% R (7)
a
c== ,
Y (8)
b= L () - 8y, + (9)
= JY [0 E, n T ’
-
2
E = F , (10)
JZY
"
and 2
,
J = Jacobian = (xgr, - xnrg)°l , (11) ‘
Y
2 ¢
@ = x + -, (12) Q
L-
&n
B = XEXn + r,;rn y (13) &.
2 N
Y = X% + (14)
g 3
Bodv Fitted Coordinates
A C-grid is the appropriate coordinate system in the present problem
for proper flow resolution at the nose and downstream of the tail. A
suitable C-grid, consisting of three regions, can be generated
aralvtically, as illustrated in Fig. 1. The transformations are as
folilows:
(I) Orthogonal wrap-around grid, 0 S £ £ EM -
x = xp(E) - n sin ¢(§) (15)
r = r,(§) + n cos ¢(§) (16)
\)
where Xy, ry, and ¢ as well as § and n are defined in Fig. 2. r
A
>
A
-
b
\'
-

Wy ? 5 LT r T NN R e e -
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Gilbert H. Hoffman Page 8 .
>3
(II) Sheared grid, gy < § S & . oy
05

5

dx = cos o(g)de (17)

} ]
T = rb(E) +n . (18) 2.}
o
)
Note that for Regions I and II to be compatible, the junction must cccur ,.
at the maximum body diameter. 1;
(III) Cartesian grid, £p S £ € &) . 3
-~
o

W,

X =g (19) $x
r=n . (20)
R
The metric coefficients Xg, Xn, etc. are obtained analytically from ::.
Egs. (15) through (20). 23
N

. N
".

Potential Flow Boundarv Conditions }:

i i

e

For the potential flow case Dirichlet boundary conditions are

specified on three sides of the computational domain (consisting of

Al
3

Regions I, II and III) and a Neumann condition on the fourth side. On

Bk N
[

the stagnation line (left boundarv) v = 0 and hence

A A

7
NN Y
- -, - -

G(0,m) =0 , O

n s ”U . (21)
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Gilber< H. Hoffman Page 9
Since the body and wake are part of the same streamline as the stagnation

line, the condition ¥ = 0 holds which leads to
{

» Csg sy, (z2a)

1
N

"
o 1o

i
!
o(z,0) = |
[ 0 » ET S &S &R . (22b)

At the outfiow plane (rignt bouncdarv) the flow is assumed to be uniform

and parallel, the same as the free stream, and hence
G(gg,n) =0 , 0snsny . (23)

Finally, the outer boundary is positioned far enough from the bodv so

that the free-stream condition on velocity prevails, viz.
Gn(E’nU) = 0 ’ 0 s E s ER . (:’.-’*)

Equation (24) produces a better behaved numerical solution procedure that

its Dirichlet counterpart G(§,ny) = 0.

Frozen Vorzigci4~ 3oundar~ Conditions

In the frozen vortizisy case the ccortutational domain consists o
part of Region II and all of Region III with the lower boundary disclaced
upward a distance A from the body and wake centerline. The boundary
condition on the upper boundary n = nj is the same as in the potential
flow case. On the left or inflow boundarv the stream function and
vorticity are specified as a composite function of the potential flow and

boundary-~layer solutions, viz.

i o

R T A

e DRI

£ LS OELT

~ e, Y
A
e




Gilbert H. Hoffman Page 10

G(EFV)”) = Gc(n)

F(EFV)“) = Fc(n)

On the outflow plane (right boundary) parallel flow is assumed, as in th

potential flow case. This assumption leads to

> u

Y

~,

- s -
cplfr,m) =0, (2¢) ~a

o

]

. . . o

plus the following quadrature relation between r and ¥ : !

&

T »

1 3 -

p = 5 J( dr=- on ER » 0sn s ny s (27) ey

o] X

where from Bernoulli's equation and Eq. (26) ;u
N

.:_\

= c ('U) 40 .*:,

u Po . (-8,) .)‘;

. ‘o
L3

The numerical details of evaluating the inflow and cutflow boundary e
conditions will be given later. NG
a

The boundary condition on the lower ('patch'") boundary is obtained S

.

from considerations in the modeled turbulent boundary laver. The assumed f:
s

"power law' velocity profile in this laver mayv be written as o
-"-.1

x._\
1 i“
v.n -

u=u, (3) , (29)

.
e
«

PO R )

where u, is the axial velocity at y = 4 and is determined from the frozen

‘l'

vorticity solution. The stream function and axial velocityv are related = ¢
N
~7
° by ~-._‘4
<y
i
o)
L
]
L]
o
LS
N
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N
N
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s
i) o
Ry Yy = TU . (30)
Ly
§$ . Intagration of Eq. (30), using Eq. (29), between y = 0 and v = A yields
y
s . n n
) b = Uy G Tt T A) (31)
AT
ﬁ%‘ With the aid of Egs. (2) and (30), u, is found to be related to the n-
Ve derivative of G by
e
" uy =1+ = (32
R i
A The required boundary condition, upstream of the tail, is obtained by
1':'|
j?‘ : combining Eq. (2), evaluated at y = 4 , with Eqs. (31) and (32). The
R
:gg . result is
il
o K Ll 2
'..‘ N
R where
_ n n
"y K=a(15r0 ot T+228 (34)
Y Y
W
¥
B ry =Ty tA . (35)
e
In the wake the assumption is made that near y = 0 the vorticity is
W
'zf linear in y,
o
W v -
ﬁh L=2Ch 37 - (36)

Using Eq. (36) and neglecting 5v/5x (in keeping with the boundary-laver
ﬁy' approximation), the vorticity definition can be integrated to yield the

?" following expression for the centerline velocity:

;:
hAN =y, + L Catl (37)
N uc A 2 5A .

N N "o
LY IR LGA HL N RGO LLER TSNS,

"s"x',','!'4”'1’.‘503‘1'..1's._. ’n“i' l. l. l. ﬁ. AA l‘- ' . . nl.-l' .‘l ‘t () Mﬁiﬁﬁﬁﬁﬁ
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f

The integral of Eq. (1) between y = 0 and y = & , making use of Egqs. (3) "
and (37), gives E
v

. 1 2 .1 4 , ’
WA S'Z_UA.A- +'8'F(w).A . (38) L

. . z

When rewritten in terms of G, and (Gn)A the wake boundary condition on :
y = A is obtained, viz. L
v
1 l . f

Gy = 58°(Gp)y =g Flu)s®, £ 2¢yp (39) '_3

’
Al

Numerical Algorithm o

:J'

o
N

The main features of the numerical method used to solve the

'
)

potential flow/frozen vorticity equation are as follows: M
¥
§
(1) The transformed vorticity equation, Eq. (5), is written as a firsc- -
order system. i
Py

(2) A fourth-order accurate spline, S1(4,0), is used in the n direction b
to resolve the vortical laver with as few nodal points as possible. -
(3) Second-order accurate finite difference formulas are used in the .
)

g-direction. ::
]
(4) A nonuniform grid in n is generated bv the use of a stretching 4

function. !
N

- oo L . . . ‘n N
(5) The resulting svstem of algedraic equations is solved bv SLCR, {2
-~

sweeping in the £-direction. ~
“

To write Eq. (5) as a first-order system the following auxiliarv E»
variable is defined: o
-

:I

)

S

Y

-~

Y

LY

b

\n
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\:‘
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T N R .a::-;.:_‘:r_‘ N



Gilbert H. Hoffman

H=G, .

Then Eq. (5) may be written

Hn'AH'ZBHE+CGE;—+DGE="E

The next step is the definition of the following spline first

derivatives:

G a
A Gp

B 5

L H,1

Then the governing equations, (40) and (41), become
C-H=0 ,

and

eH - ag - 2BH; + CGgz + DG + E = 0

The finite difference expressions used for the f{-derivatives are those

given by Blottner [10] for a nonuniform grid, namely

o) Giv1,5 - Gi-1,j
84, Eivl - 8i-1 ’

and

(4
t
<

Page 13

\7'1“
Y

(40)

W,
»

" A :! e

~

‘_\

[

g
o
s

u#ﬁ}\ 3

7JO i

.

(42)

Ry, -,A -.’;-{
- T o S

o

(43)

i

.

0y
-, -_-

o

(44)

P

I’,-{

77

I’y
5

,\
&~
wn
3

re

2" 1" [N
Y REP LY

0y

Ay
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Gilbert H. Hoffman Page 14

"~

Giv1,j5 = 61,5 Gz,5 = Gi-1,j
1, &4+ - 8- i+l - B &3 " &3-1 7

(Gg:)

plus an expression similar to Eq. (46) for (Hﬁ)i,j' The £ discretization

of Eq. (45) leads to the following expression for unknowns at point

(i,j):
H _ ;
bi,5 7 205005 7 Py = Ry (48)
where
2 \ 1
a. = = ) C . (.’49)
1rd €i#l - 8i-1 Eiv1 ~ &1 &1 - &i-y0 TEe
and
2C: -
1 1,]
R; [« D; :) G;._ +
e B R e e M2
2C: 28. .
1,] 1,]
( #D: +) Giiy i1 + 2 —————t— (Hiiq s - Hiiy i) -
Biep - 6y 1rd7 TiFL §isl - 8i-p  TThd TATh
Ei,; - (51)

The unknowns at node point (i,j) are G, QG, H and 2H. Therefore, to
complete the system two spline relations are needed. The governing
equation has been written in first-order form so that the same spline
ralation, 51(4,0), can be usad twice. The expression for 51(&,0) is
(with i subscript understood) [11]

3 209, Y 299, . ¢, ., =
AAjO5 ) + 0%2%5) + BBjds + (1 + 0)%2®y + CCsd54y + 2%54y = 0, (52)

where ¢ denotes G or H, and

232(2 + a)

sl Anj_l(l + 0) ’
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iy ‘
AN
B 2(1 - o)(1 + 0)? |
BB: = (54) ‘
1 : ,
KS . J AnJ_lo
e . 2(1 + 20)
W . - - 35
e 3= WL d+o0 32
ool J
My
W
and

;;i;
4*"
i - (38)
Q.‘ g=c. = » >0
i R !
X
!31 Anj = nj+1 - ﬂj . (57)
o~
;ﬂ‘!
“5 \
B The number of unknowns at node point (i,j) is reduced from four to

§° - : :
k& two by solving Egs. (44) and (43) for QGi’j and ZHi’j, then substituting
B
;ﬁ' into the two tridiagonal spline relations. The resulting set may be
‘s
5"

D) PR . :
Sk ' written as the following tridiagonal matrix equation:
i

W .
)

U] - - - -
A
Ot . 2. ..c = Ds . < i g ;
;3: 31,321,3-1 + Al,le,J + Cl,JZI,J+l Dl,J, 2sjsN, (58)
»kh where the two-component column vector of unknowns Zi,j is defined by
N
R

§
)

!“
1

0 -
I T, . = .
W Z'i,; = [GH]y 5 - (39)
;sa The 2 x 2 matrix elements A, B and C and the two-component column vector
)
Ay
K D contain known quantities. These elements and ccmponents can be
el
) . y .
B obtained from a combination of Egs. (44), (45) and (52).
?ﬂ The boundary condition on the lower boundarvy (n = 0 or n = 4) can be
Y

U .
;f written in the general form, valid for both potential and frozen
gk . vorticity cases,
o
i3

)g\:

X

,':'
MY

- I N AP I AR R R LR e | E T T - v T g o v
CAC WYL ’ NU’ I\I,J‘_-ﬁ " *ﬁiﬁi}:'r:b_ﬁi'-_':'.‘:\_.:".-"_A'.‘A"_\\.a-)i\.':n '_-":\J\nﬁ.a\.-'?.p\‘.'.ﬂ.hﬂ\.u“




.
-
.
'S
t
g
0
-
‘¢
-~
‘-
-
*
-
»
-
]
.
3
L
-
‘3

b

',/'\
”
Gilbert H. Hoffman Page 16 i
- - . ’
where a and 38 are, except in one instance, funczions of 5. The exception 0
-
\J
is Eq. (39) where B depends on G. N
The boundary conditions on the lower and upper boundaries together ]
+
4
with a two point spline relation at each boundary close the system of .
!'.
L]
equations at line i. The two-point spline relation used here is Eq. (16) af'
of Reference 11, which in the present variables is ]
. 'k
\"~
2 2 -
Rt S5 St . A PTS o
1,2 7 74,1 2 il 2 4,27 12 ti2 120 Ti,LT * y
]
and ;\
2 2 !
Any AHN Any AnN >
G -Gy y - H P -— =0 &
i,N+1 i,N 2 Yi,N 2 Hi,N+1 2 Ci,N+1 2 .Ui,N . 7
(62) o
4
rod
rod
The above equations are fifth-order accurate in Anj and have been found e
in the present application to maintain better overall solution accuracy ;:
then their lower-order cousins. ﬂQ
'
.

Upon elimination of oH using Eq. (45), the following matrix

relations result at the boundaries:

AT el

-
v

J Aj 125,10 +C4,125,2=D5,1 (63)

[

and

- -

By n+1Zi,N * Ag,N+1Z1,8+1 = Di,N#1 - (64)

’ T
ey s"'. oy

For potential flow the singularity at the tail point and on the wake v
centerline requires special treatment. As can be seen, Eq. (3) at r = 0
A ) reduces to Gn = 0. This condition, written as Hi,j = 0, replaces spline
relation (61). -

Along any line i = constant the set of block tridiagcnal equations ':

-..-.. N e - ‘J“)' \'
. M .
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For potential flow the singularity at the tail point and on the wake A

v ‘v

centerline requires special tresatment. As can be seen, Zq. (5) at r = 0
reduces to Gn = 0. This condition, written as Hi,j = 0, replaces spline
relation (61).

Along any line i = constant the set of block tridiagonal equations
(58), (63) and (64) is solved by L-U decomposition using case (i) of

Reference 12.

Mao Junction Lines

Lot WA RAXRA QY o0 Vr il

For the coordinate system used in the present problem, the metric

S

<

coefficients will be discontinuous at the junction of Regions I and II

-~
and the junction of Regions II and III. When a body has a series of .
. . ces . - . -4
1 curvature discontinuities, then Regions I and II are re-zoned with .
. ™
additional map junctions introduced at each curvature discontinuity. A k
o
: "mapping region' is defined here to mean that portion of a map described -
by a coordinate transformation, Eq. (4), with continuous first and second RS
Yy
derivatives. X
h :\
: At map junctions where the metric coefficients are discontinuous, )
3
Eq. (48) must be modified to account for such discontinuities. This ;
process is performed using the generalized Chmielewski-Hoffman method of e,
o
Reference 13. The author has found that ignoring these discontinuities e
“~ 4
leads to errors as large as 37 percent in the potential flow pressure 4
1
coefficient. Eiy
™~
’
In the C-H method, each adjoining domain is extended one step into )
-
the other to form a line of fictitious nodes. The equation of motion, -
¥
1
N
o
'I
-
&

Tt Al a1 0% 2" [ & gt [P IAIRIT AT R R AT RS A RS 4 AT BT R SR R N e AR T,y
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Eq. (5), is then written separately in the left and right regions at the
junction. A condition of smoothness of derivatives of the solution must
alsc exist across the junction. By combining the left and right forms of
the governing equation with the smoothness condition, a single spline-
finite-difference (SFD) equation is obtained at the junction line which
accounts for the discontinuity in metric coefficients. For the algebraic

details, the reader is refer-ed to Reference 9.

Inflow and Cutflow Conditions

For the frozen vorticity case the conditions on the inflow boundary
are extremely important in determining the behavior of the solution near
the body and wake centerline. Thus, care must be taken to determine
these conditions accurately.

As already mentioned, these conditions are a composite of the
potential flow and boundary-layer sclutions at the initial line. This

composite is calculated as follows:

(1) The boundary-laver velocity and total head profiles for 4 S n £ ny
are merged smoothly with their potential flow counterparts. For the
velocity, smooth mergzing occurs in a natural manner. For the total head,
the merging peoint is taken where cpo in the boundary laver just becomes
unity. As y increases, the total head in the boundarv layver will exceed

unity because the vertical component of velocity continues to increase.
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(2) With u known on the inflow boundary (denoted by upy), the streanm

function is determined by numerical integration of

v
~ = (ru)FV .

or

The integrations is carried out using the trapezoidal rule formula:

(B4FV).y
wwj = wFVj-l - —_— (‘-1£vj.l + uE'Vj) , (63)
where
A= (66)
BAj = A5 < Aoy (67)

The perturbation stream function on the initial line is computed from
Eq. (2).

(3) With (®pg)py known, the reduced vorticity distribution, Fey(r), is
determined from the relation:

3ce
1 oy

Fpy = - 57— ——— (68
kv 2ru or ! )
where the derivative of (CPO)FV with respect to r is calculated using a
three-joint uneguallv spaced finite difference formula.

The outflow stream function distribution R is also calculated using
the trapezoidal rule, viz.

(AAR)j-l
VYR, = VR, ug. UR.
Ry = ¥Ry + — (YRy-1 + URy), (69)
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where ug depends on Yy through Iq. (28). Thus for each integration step,
iteraticn is required to determine ij during which uRj is allcwed to lag
one cycle. The foregoing procedure is much simpler and produces results

almost as accurate as solving for yg from a two-point boundary value

problem using spline discretization.

:
3
A
?

Pressure on the 3ocdv Surface and wake Centerlin

For the frozen vorticity case the normal momentum equation, with
viscous terms neglected, is used to determine the pressure on the body
and wake centerline. Upon transformation to (£,n) coordinates and noting

that in Regions II and III x = x(§), this equation becomes

dc Tr av T, av
P 5 ” -
- = =2(v-—u)— +2—uT . (70)
on Xc an Xe or
- A -

The finite difference form of Eq. (70) is obtained by centering at § = &
and n = 4/2 and approximating n-derivatives by central differences.

Then, applying the no-slip conditions at the wall and using egs. (17) and
(18) to determine the metric coefficients, the expression for the wall

pressure is found to be

(o4 = C Ac -
Pi,w = Pi,at Py (71)
where
Ac ' 1 ‘2
py = (vorpu)g 4 vi,a ¥+ 3 Ui, 1+ Th; (VE)i,A .\
1} drb
rb = ax . ( 7 2 )
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Gilbert H. Hoffman Page 21
The derivative of v with respect to £ is computed by a second-order
accurate three-point formula for unevenly spaced points. At the ends of

the interval, second-order accurate one-sided formulas are used.

Results and Discussion

The main advantage of the frozen vorticityv approximation over its
competitors for solving the viscid-inviscid interaction problem is the
high degree of automation possible. The kev to automation is

communication through automatically generated data files between the two

computer codes that perform the various calculations. The twe codes are:

AXFLO4 -~ This code performs potential flow-frozen vorticity
calculations using the method given in this paper.

BL20O - This code computes laminar/turbulent boundarwv lavers using
the Keller Box Method [14]. The algebraic turbulence model

of Reference 15 is used.

The steps in a complete viscid-inviscid interaction calculation are
as follows:
(1) Using AXFLO4 in the potential flow mode, a body pressure
distribution is generated. Two data files are created, one for BLIZO
containing the pressure distribution and body curve fit, and the other
for AXFLO4 (frozen vorticity mode) containing the potential flow velocity

profile at the initial value line.
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-

(2) BL20 is run next to obtain a boundary-layer soluticn using the

potential flow pressure distribution from AXFLO4 which contains the

boundary-layer velocitv profile at the initial value line.

b

A double

£

55

interpolation procedure is used to obtain values in cylindrical

P ]
2

coordinates from those in boundary-layer coordinates.

HE A
5

(3) AXFLO4 is now run in the frozen vorticity mode to compute a modified
bodv pressure distribution in the viscid-inviscid interaction region.

The code automatically forms a composite initial value profile using data

iy

from steps 1 and 2. A data file is created for BL20 which contains the

N

\I

viscid-inviscid interaction body pressure distribution. :i
)

v

(4) Using the pressure distribution from step 3, BL20 is re-run for the By

viscid-inviscid interaction body pressure distribution.

At

_q‘

-

A nonuniform point distribution in n is generated using a one-sided e

“'-'

Vinokur stretching function [16]. The stretching function of Vinokur was 0%

v
)

2

chosen because it produces a grid with a uniform truncation error

el

independent of the governing equation or difference algorithm.

Although the same E-distribution is used in the potential and frozen

2 re

vorticity calculations, the n distributions differ considerably. For

s

v ®

proper resolution in the frozen vorticity case, about a third of the grid

»
rs

points must be placed in the thin vortical layer (the same thickness as

the boundarwv laver). To do this requires a rapidly expanding gzid in ~

.

TNLNER

since typically ny - 2. This is the main reason splines rather than

'-l
(L

finite differences were chosen to approximate flow derivatives in n.

Vs

An accurate body curve fit, a prerequisite in obtaining an accurate

'd

7?

-
b

.
Tafata

potential, boundary-laver and frozen vorticity solution, is achieved as
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follows: With the body shape rb(x) given either analvtically or
discretely, the corresponding arc length distribution  is computed using

the spline formula

"
hy hy
i = &i-1 + 3 (ugoy +vuy) - 3lmg - m5)) (73)

where the two cases that must be considered are shown in the following

table:
I (
case range u l m h l
| | ‘
l 1
I I 1 [ ’
' Xp Xb
xy = xp(r) ry | > 1 (1 + x'Hl/2 ary
u l
| |
I
' ! ! rbrb
rb = fb(x) 0 S,rb > 1 (1 + rb2)1/2 Axb
P m |

Table 1. Body Arc Length Parameters

The first case, x = x(ry), is appropriate in the nose region of a blunt-

t ot ! tt
nose body. The quantities Xps Xps Tp and Th» required in the

calculations, are computed in terms of arc length derivatives of these
quantities which in turn are computed using a three-point uneven spacing

formula.
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Since m; depends on §;, Eq. (73) must be solved at each step by
iteration. convergence is very rapid, usually requirirng about four
cycles. The use of Eq. (73) will produce a £ distribution accurate to
about four decimal places which assures that the derivatives required in
the mapping are accurate and smooth. Test calculations have shown that
Eq. (73) produces a & distribution three to four times more accurate than
the chord formula in regions where r; is largze and changing rapidly. In
the process of determining £, the various mnarping derivatives involving
ryp will automatically be determined. For the boundary-laver solution,
the derivative due/ds is computed in the same wav as body derivatives,
using a three-point formula with unequal spacing.

The three bodies used as test cases in this paper are the same ones
used in Reference 15, namely, the F-57 low-drag bodv of Parsons and
Goodson (17], the modified spheroid of Patel [18] and the NSRDC
streamlined body number 1 [19]. These bodies were chosen because of the
high quality of the experimental data available for each.

The grid parameters used in the SFD solutions presented here are
given in Tables 2 and 3 for potential flow and frozen vorticity cases
respectively. Revnolds number for each test body (based on chord length)

appears in Table 3. These Revnolds numbers correspond to values given in

References 18-20.
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F-57 Spheroid NSRDC No. 1 o
N
i
| h
i :..‘
: Xg 1.5 1.3 1.5 ‘-
( o
ny 2.0 2.0 2.0 ‘-
Ne 49 54 104 |
iy
0
(Np)g 35 39 78 .
N, 20 20 20
Any 0.01119 0.01119 0.01119
t

\("" /

x

Table 2. Potential Flow Solution Parameters.
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{
F-57 Spheroid NSRDC No. 1
Xpy 0.707 0.681 0.687
xg 1.5 1.5 1.5
ny 2.0 2.0 2.0
Ne 32 31 51
(Np e 14 16 25
N, 40 40 40
any 0.00053 0.000553 0.00055
A 0.005 0.005 0.003
Re 1.2 x 109 1.262 x 109 6.6 x 100

Table 3. Frozen Vorticity Solution Parameters

The need for splines in the n-direction is clearly seen by contrasting
values for anj in Tables 2 and 3. The frozen vorticity value is one
twentieth as large as the potential flow value.

The number of grid points used for the NSRDC bodv is about twice
that used for each of the others. The reason for this was %o obtain
adequate definition of the body pressure in the tail region where the
NSRDC body has a double reflex.

Relaxation factors of 1.3 and 1.0 were used on G and H in all

calculations. No optimization was attempted for these factors.
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Convergence was considered accomplished in both potential and frozen
vorticity runs when the absolute maximum change in H was less than

5 x 10 "8, The number of iterations required to reach convergence varied
from 90 to 110 with typical CPU times on a VAX 11/780 computer ranging
from two to three minutes. In all cases the maximum residual decreased
smoothly as the number of iterations increased.

Boundarv-laver solutions used the same £ spacing as the potential
flow calculations (as already mentioned). The number of points in the
normal direction ranged from 30 at the nose to about 50 near the tail.

To resolve the turbulent boundary laver properly, points were
nonuniformly spaced using a geometric progress .on, with the smallest mesh
at the wall. Typical CPU times were about 45 seconds. Thus, a completa
viscid-inviscid solution cycle of four runs (potential flow, boundary
laver, frozen vorticity and final boundary layer) took at most seven and
a half minutes of CPU.

The frozen vorticity solution, having a truncated domain of
dependence, will depend on the location of its initial value line, i.e.,
on the parameter xpy. Experience has shown that at Reynolds numbers
between 105 and 107, (the range covered here) that the viscid-inviscid
interaction region begins about 70 percent of the chord back from the
nose. Thus a suitable choice for xgy is about 0.7. Since the onset of
the interaction region is gradual, the solution snould not depend
strongly on xpy. To show that this is the case, different values of xpy
were tried for two of the three test bodies. The change in the maximum
body pressure coefficient (which occurs near the tail) was taken as a

measure of the sensitivity of the solution to changes in xyy. For the
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Gilbert H. Hoffman Page 28
Modified Spheroid, a change in xgy from 0.681 to 0.716 produced a change
in maximum p of 1.9 percent while for the NSRDC body, a change in Xry
from 0.687 to 0.747 resulted in a change of 2.0 percent.

Since the solution is relatively insensitive to Xpy, the implication
is that the reduced vorticity distribution on the initial value surface
is essentially "frozen". This is indeed the case and is illustrated by
Figure 3. The results in this figure are for the NSRDC bodv, but are
tvpical for the other cases studied. The figure shows the variation of
reduced vorticity F with stream function ¢ for two choices of XFy (0.687
and 0.747).

The "patching' of the inner and outer layers is responsible for
introducing the parameter 4 into frozen vorticity solution. But what is
47 1Is it merely a calibration parameter or does it correspond to some
physical quantity in the turbulent boundary layer? To try to find the
answer to this question, A was first assumed to be a calibration constant
dependent only on Reynolds number. The calibration was performed using
the F-57 body by requiring the predicted maximum body cp to be the same
as the experimental value. Using this procedure A was found to be 0.005.
The same value was also used to compute the solution for the Modified
Spheroid (since the Reynolds numbers are nearly the same). The value of
A was reduced to 0.003 for the NSRDC body to account for the thinning of
the boundary layer with increasing Reynolds number. At the initial vaiue
line the previously determined values of A in law-of-the-wall units
varied from 200 to 750 whereas in terms of the boundary-laver thickness
the range was from 0.15 to 0.20. When applied to the computed turbulent

boundary layer at the initial plane, the calibrated values of A were
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Gilbert H. Hoffman Page 99
found not to correspond in any consistent manner to a mearingful length
(such as the location of maximum Reynolds stress or the outer edge of the
logarithmic region). Thus A seems merely to serve as a model calibration
parameter.

As an indication of the sensitivity of the frozen vorticity solution
to changes in A, several values were run for each body. Table 4 is a
summary of the maximum pressure coefficient for these runs. The table
shows that for twc of the three test cases the solution is quite
sensitive to variations in 4. As A decreases maximum p is seen teo

increase with the percentage increase depending on the type of bodv. The

Spheroid is by far the least sensitive.

|
|
Body A ®Ppax x-Location {
}
F-57 0.002 0.1986 0.889 =
F-57 0.003 0.1701 0.889 i
F-57 0.005 0.1613 0.889
l
Spheroid 0.002 0.2195 0.978
Spheroid 0.003 0.2184 | 0.978
|
Spheroid 0.005 0.2225 | 0.978
|
NSRDC 0.001 0.1793 | 0.963
l
NSRDC 0.003 0.1606 0.968

Table 4. Sensitivity of Computed ®pp,, to 4.
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The computed body pressure distributions, both potential and frozen
vorticity, are compared with experiment in Figures 4-6 for the F-37,
Modified Spheroid and NSRDC bodies respectively. The values of A used
are those given previously in this paper. In all cases the frozen
vorticity pressure closely follows the experimental distribution. For
the Spheroid the computed maximum p is too high. This is also the case
in Reference 3 which uses the displacement bodv method (the present value
is 0.223, Reference 3 gives 0.210 and experiment, from Reference 18 is
0.180).

Another item of interest in the present calculation scheme is the
magnitude of the pressure change across the modeled turbulent layer.

This change has been found to be quite small. In a typical run (the F-57

body with 4 = 0.003) the increment, in terms of the surface pressure, N,
)
reached a maximum of 1.8 percent very close to the tail. :
R,
The calculations of Geller [8], using a simplified frozen vorticity ’
technique, show that the computed velocity profile (for the F-57 body)
and the experimental profile develop almost identically with downstream
distance. To check this observation, velocity profiles (frozen vorticity
and turbulent boundary layer) were computed with the present procedure at
several downstream stations. Since cylindrical coordinates are used in
the comparison, a double interpolation procedure was necessary to obtain
the boundary-layer profiles. The comparisons are shown for the F-37 in ‘i
Figures 7-9 at three successive stations, x = 0.844, 0.933 and 0.978. o
)
The frozen vorticity profile is seen to evolve differently from its <
A‘:
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turbulent counterpart, becoming ever more concave as X increases.
Apparently the poorer agreement with experiment in the present casa is a

result of the full elliptic problem being solved.

Concluding Remarks

A method for solving the axisymmetric viscid-inviscid interaction
problem has been presented which predicts body pressure distributions
with considerable accuracy and which is capable of a high degree of
automation. In the method the flowfield is divided into an outer
inviscid, rotational region where the vorticity is "frozen" and an inner

. viscous/turbulent region which is modeled by a power-law velocity
profile. The solution to the frozen vorticity problem gives the viscid-
inviscid interaction body pressure distribution which is then used as
input to the standard axisymmetric turbulent boundary-layer equations.
With this formulation, a complete solution to the viscid-inviscid
interaction problem is obtained in four computation cycles. The method
requires no user intervention between cycles and is more economical than
solving the complete Navier-Stokes equations or the displacement body
problem.

Results with the present method show that the outer rotational laver
(frozen vorticity solution) controls the pressure in the viscid-inviscid
interaction region near a bodv surface. is observation is in agreement
with the findings of triple deck theory.

The present method is an approximate application of a triple deck in

which the middle layer is ignored and, instead of asymptotic matching,

the inner and outer layers are patched. The outer layver is solved in a
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truncated computational domain with the initial value line positioned
slightly upstream of the start of the interaction region. Thus, the
outer solution depends on two geometric parameters, the patch distance
and the axial location of the initial value line. Numerical tests have
shown that the solution is relatively insensitive to the location of the
initial value line but is affected significantly by the patch distance.
Initial calculations indicate that the patch distance, which serves as a
calibration parameter, depends only on Revnolds number. Once this
parameter was determined, computed bodv pressure distributions in the
viscid-inviscid interaction region (for three test bodies) were found to

follow the experimental values very well.
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Nomenclature
<5 static pressure coefficient "
. - '~
¢ total head o
PO Ny
N
F reduced vorticity - defined by Eq. (3) .
. 2
G perturbation stream function -- defined by Eq. {2) !
H derivative of G with respect to n - see Egq. (40) =
s
. N S . 3G it
eG spline derivative approximation of %; ;—
Q
»
A
bo! . . . . . oH o
L spline derivative approximation of 5; ;
:.r
¥
I3 s . -a \
NE number of nodes in the £-direction i
(Nb)a number of £ nodes on the body ':?
o
N, nunber of nodes in the n-direction b
N
. . 4
r radial coordinate i'
i_'
. L)
Ty body radius .
“
,
Y
Re Reynolds number, based on body length and free-stream speed ;«
u velocity component in x-direction i‘
o
v velocity component in r-direction {i
e
X axial coordinate o
C vorticity magnitude E
7.
£ transformed coordinate aleng body and centerline o
o
n transformed coordinate away from body and centerline :
¥ stream function ‘
T
= LS
¢ angle of tangent to body surface \-i
oY,
8 meridian angle bﬂ
-
=~
[ ]
All other quantities are defined in the text. 3y
N
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Figure Captions

C-Grip Mapping.

Coordinates in Nose Region.

Reduced Vorticity Distribution on Initial Value Line, NSRDC Body.
Viscid-Inviscid Interaction Body Pressure Distribution, F-57 Body.

Viscid-Inviscid Interaction Bodv Pressure Distribution, Mcdified
Spneroid.

Viscid-Inviscid Interaction Body Pressure Distribution, NSRLC Body
No. 1.

Comparison of Turbulent Boundary-Laver and Frozen Vorticity
Velocity Profiles at x = 0.844, F-37 Body.

Comparison of Turbulent Boundary-Layer and Frozen Vorticity
Velocity Profiles at x = 0.933, F-37 Body.

Comparison of Turbulent Boundarv-Laver and Frozen Vorticity
Velocity Profiles at x = 0.978, F-37 Body.
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Figure 3. Reduced Vorczicicy Distribution on Initial Value Line,
NSRZC Body.
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Figure 7. Comparison of Turbulent Boundary-lLayver and Frozen
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