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From: G. H. Hoffman

Subject: Axisymmetric Viscid-Inviscid Interaction by a

Frozen Vorticity Approximation

References: < ee Page 33
Abstract: 1A numerical solution procedure capable of a high degree of

automation is presented for calculating the flow field
associated with viscid-inviscid interaction on a body of
revolution. The method makes use of ideas from
asymptotic triple deck analysis of the trailing edge
problem. A simpler problem is solved in which two layers
are postulated, an outer inviscid, rotational layer (Ifrozen
vorticityA) which largely governs the pressure in the
trailing edge region, and an inner turbulent layer which is
modeled in a simple manner. These two layers are patched at
a fixed distance from the wall and wake centerline rather
than asymptotically matched. The method allows the viscid-

inviscid interaction solution to be computed in four
iterations, none of which require any user intervention. A
high degree of automation is achieved in the computer code
because of three factors: (1) the solution cycle is very
stable, (2) all calculations use a common streamwise grid,
and (3) information is transferred to successive stages of
the calculation by computer generated files. Numerical
solutions are presented for three bodies and the results
compared with published experimental data
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Introduction
k

The standard approach for solving the axisymmetric viscid-inviscid

interaction problem is the displacement body method of which numerous %

examples have appeared in the literature [1-3]. In this procedure the

boundary-layer displacement thickness is added to the body to obtain an

approximation to the strong interaction pressure distribution. Since the

displacement thickness depends on knowing the pressure distribution,
I

iteration is required to find the solution. In the direct mode (pressure

distribution given) the boundary-layer solution invariably produces a

displacement thickness which has numerical noise in the strong

interaction region. This "noise" is then amplified into pressure wiggles

in the potential flow solution. To obtain convergence, numerical

smoothing of the pressure distribution is required between each

iteration. This process requires intervention by the user and is thus

difficult to automate. A variation of the displacement body method is to

solve the boundary-layer portion in the inverse mode which results in a

numerical smoothing effect. An example of this approach is the work of

Carter and Wornom [4].

A promising alternative approach for the solution of the

axisvamnetric viscid-inviscid interaction problem is to adopt the main

ideas of asymptotic analysis as applied to the two-dimensional trailing

edge problem. This approach has a firm foundation mathematically and, as

it turns out, can be readily automated.

The turbulent flow near a 2-D trailing edge was first analyzed using

asymptotic methods by Melnick, Chow and Mead [5] who found that a three-

I & 
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layer structure develops which extends over a streamwise distance of the

order of (l!ln Re). In the outer layer, because of the small streamwise

length scale, viscous terms can be neglected leaving only the inertial

terms. Thus the flow in this layer is inviscid but rotational, the

vorticity arising from the upstream boundary layer. An inner viscous

layer is required to satisfy the no-slip condition and an intermediate,

or blending, layer accounts for the different rates of growth of the

inner and outer layers. Although the extent of the streamwise effect may

differ, the same type of three-layer structure arises in the vicinity of

an axisymmetric trailing edge.

Analytical solutions of the 2-D turbulent trailing edge using the

three-layer asymptotic approach have been obtained by Melnick, Chow and

Mead for a cusped trailing edge and by Melnick and Grossman [6] for a

small but nonzero trailing edge angle. These solutions clearly

demonstrate the importance of normal pressure gradient (via the outer

rotational inviscid layer) in the correct description of the flow at the

trailing edge.

Prior to the work of Melnick et al., the only other analytical

treatment of the 2-D turbulent trailing edge was by Kuchemann [7]. He

considered a wedge-shaped trailing edge of finite angle in the presence

of rotational, inviscid flow with constant vorticity. Since the inner

layers were neglected, a slip velocity at the wall was required to avoid

a constant pressure on the wedge surface. His main finding was that the

velocity field induced by the vorticity in the wake retarded the flow on

the wedge upstream of the trailing edge which led to separation if the

wedge angle was large enough.
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in the axisymmetric case, Geller [8] and Hoffman [9] have made use

of an outer rotational, inviscid layer to determine flow near the

trailing edge. In Geller's procedure a local body oriented Cartesian

coordinate system is used and v/ax is neglected in the vorticity. As a

result, the velocity profile at a given body station is obtained by

solving an ordinary differential equation rather than an elliptic partial

differential equation, as is ordinarily the case. He patches the

inviscid, rotational profile at a given normal distance from the body

surface with a one-seventh power law turbulent boundary-layer

representation in the inner region. Agreement of calculated velocity

profiles near the trailing edge with experimental data is very good. He

also finds that the computed velocity profile in the outer region is not

sensitive to the assumed profile in the inner region. Hoffman solves the

elliptic problem in terms of the stream function. His solution, which

neglects patching with the inner layer, allows for velocity slip at the

wall, as in the 2-D treatment by Kuchemann. As a result of this neglect,

he finds the solution to be fairly sensitive to choice of the initial

station where the rotational calculation begins.

In the present work the findings of 2-D asymptotic analysis are

applied in a approximate fashion to the axisymmetric trailing edge.

Instead of a full triple deck treatment, only the outer layer is solved

exactly, the intermediate laver is neglected and the inner laver is

modeled in a simple manner. This work, therefore, represents an

extension of Reference 9.

Since asymptotic matching is inappropriate in the present scheme,

the inner and outer layers are "patched" at a small, fixed distance from

S1 1 01F I R Jl' F
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the body surface and wake centerline. The inner layer is modeled using a

power-law velocity profile to represent the lower portion of the

turbulent boundary layer, the same as used by Geller. Because the wake

cannot be neglected in the elliptic problem, a simplifying assumption is

required for its inner layer. The assumption is made that close to the

wake centerline the vorticity varies linearly with radial distance. The

presence of the inner layer results in a boundary condition of the third

kind at the lower edge of the outer layer (the "patch boundary"). Once

the solution in the inviscid, rotational domain is known, the pressure on

the body and wake centerline is obtained by integrating the normal

momentum equation downward from the patch boundary.

The reasons why the "frozen vorticity" approach can be highly

automated and thus yield an easy-to-use computer code are (1) a

considerable commonality exists in computational grids for the inviscid

irrotational and rotational flowfields as well as the boundary layer, (2)

the same body curve fit is used for all three flows, and (3) the starting

profile for the inviscid rotational solution is generated automatically

using computer-generated data files. The boundary-layer solution with

viscid-inviscid interaction effects included takes only four steps: (1)

a potential flow solution, (2) a corresponding boundary-layer solution,

(3) a frozen vorticity solution, and (4) a final boundary-layer solution.

-



Gilbert H. Hoffman Page 6

Eauations of Motion

In cylindrical coordinates, (x,r,e) were a/&8 = 0 (axial symmetry)

inviscid potential or rotational flow is governed by the equation

Gx Gr. - Gr  r2F(p)

where a lower case subscript denotes partial differentiation and G is the

perturbation stream function defined by

G t - r (2)

The perturbation stream function is used because it is bounded as r -> .

The reduced vorticity F is related to the vorticity C by

(3)

The quantity F is uniquely determined by the upstream boundary condition. %

For potential flow F = 0.

A body fitted coordinate system is introduced by the following

general transformation:
p

x = x(j,n) , r = r(r,n) , (4)

where the coordinates (%,n) may or may not be orthogonal. Transforming

to (&,n) coordinates, Eq. (1) becomes

GT AG 2BG + CB + DGr E (5)

'a

p .~\ * v:. a, 5' ~ a ~ * . ' .v ~'V~..~ % \' 5... .* ' 'a
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where
1 xr.

A - + -] (6)
jy r

B (7)

'Y %

c, (8)Y

D = i(J)_ (JB)n + -_ (9)

E = -F , (:0)J-Y r
r27

and

J = Jacobian = (x~r, -xr) -  (11)

2 r2 (
= x +r (12)

S= x~x, + rgr. (13)

= x2 + r2 (14)

Body Fitted Coordinates

A C-grid is the appropriate coordinate system in the present problem

for proper flow resolution at the nose and downstream of the tail. A

suitable C-grid, consisting of three regions, can be generated

analytically, as illustrated in Fig. 1. The transforzations are as

follows:

(I) Orthogonal wrap-around grid, 0 1& &M•

x = Xb( ) - r sin ( ) (15)

r = rb(&) + n cos OW ) (16)

where xb, rb and 0 as well as & and n are defined in Fig. 2.

%".
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(I:) Sheared grid, &M < •
ZTq

dx = cos o(Z)dc (17)

r = rb(p)+1 (18)

Note that for Regions I and II to be compatible, the junction must occur

at the maximum body diameter.

(III) Cartesian grid, ZT 1 Z 1 ZR

x =(19)

r =(20)

The metric coefficients x&, x., etc. are obtained analytically from

Eqs. (15) through (20).

Potential Flow Boundar; Conditions

For the potential flow case Dirichlet boundary conditions are

specified on three sides of the computational domain (consisting of

Regions I, Ii and III) and a Neumann condition on the fourth side. On

the stagnation line (left boundary) = 0 and hence

G (0,n) =0 ,0 1 n n u (

A-0
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Since the body and wake are part of the same streamline as the stagnation

line, the condition 9 = 0 holds which leads to

1 12
"I r rb  (22a)

G(Z,0) = f1 0 &T I &R  (22b)

At the outflow olane (right boundary) the flow is assumed to be unifor_

and parallel, the same as the free stream, and hence

G(&R,n) = 0 , 0 < q < nU (23)

Finally, the outer boundary is positioned far enough from the body so

that the free-stream condition on velocity prevails, viz.

G(&,nU) = 0 , 0 . (2) 

Equation (24) produces a better behaved numerical solution procedure that

its Dirichlet counterpart G(&,nU) = 0.

Frozen V orticit : oundar', Conditions

In the frozen vort-_izit- case the c=z=uta-tinal domain ccnsists cf

part of Region II and all of Region III with the lower boundary displaced

upward a distance a from the body and wake centerline. The boundary

condition on the upper boundary n = nU is the same as in the potential

flow case. On the left or inflow boundary the stream function and

vorticity are specified as a composite function of the potential flow and

boundary-layer solutions, vi-z.



Gilbert H. Hoffman Page 10

G(ZV,n) G Fc( ) ..-

, 0 <. <-nu  .( .

On the outflow plane (right boundary) parallel flow is assumed, as in the

potential flow case. This assumption leads to
.J,

c PIF ) =0 ,( .

plus the following quadrature relation between r and

= f dr2  on &R , 0 < < (27)

where from Bernoulli's equation and Eq. (26)

u = Cp()(2) "."

The numerical details of evaluating the inflow and outflow boundary

conditions will be given later.

The boundary condition on the lower ("patch") boundary is obtained

from considerations in the modeled turbulent boundary layer. The assumed

power law" velocity profile in this layer may be written as

u = U()f , (29)-

where u, is the axial velocity at v = a and is determined from the frozen

vorticit solution. The stream function and axial velocity: are related

by

I fop
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Ivy = ru . (30)

Integration of Eq. (30), using Eq. (29), between y = 0 and y = A yields

n n
I = UA** (-7 n rb + 1 +.--2 A) " (31)

With the aid of Eqs. (2) and (30), uA is found to be related to the n-

derivative of G by
=- ( )A(2:)

The required boundary condition, upstream of the tail, is obtained by

combining Eq. (2), evaluated at y = , with Eqs. (31) and (32). The

result is

GA - = K r A 2 , FV I & T (33)

where

K A( n rb + n 1) (34)
1 + n 1 + 2n

rA= rb + A . (35)

In the wake the assumption is made that near y 0 the vorticity is

linear in y,

S•(36)

Using Eq. (36) and neglecting 3v/3x (in keeping with the bcundary-laver

approximation), the vorticity definition can be integrated to yield the

following expression for the centerline velocity:

Uc  "A + i A (37)

2 ~
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The integral of Eq. (2) between y 0 and y = , making use of Eqs. (3)

and (37), gives

VA U''6 +~ ~F(tp).A4  
.(38)2 . 8

When rewritten in terms of GA and (G.)A the wake boundary condition on

y = A is obtained, viz.

'A

G- A (GQ) = F( )' , (39)

Numerical Algorith'

The main features of the numerical method used to solve the

potential flow/frozen vorticity equation are as follows:

(1) The transformed vorticity equation, Eq. (5), is written as a first-

order system.

(2) A fourth-order accurate spline, SI(4,0), is used in the n direction

to resolve the vortical layer with as few nodal points as possible.

(3) Second-order accurate finite difference formulas are used in the

&-direction.

(4) A nonuniform grid in q is generated by the use of a stretching

function.

(5) The resulting system of algebraic equations is solved bv SLOR,

sweeping in the &-direction.

To write Eq. (5) as a first-order system the following auxiliary

variable is defined:

I

I
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Ii = Gn (40) A

Then Eq. (5) may be written

The nlext steD is the definition of the following spline firs:

derivatives:

ZG-G)(42)

9.H H (43)

Then the governing equations, (40) and (41), become

G HO 0 (44)

and

ZH H 2BH +C Gr+ D~ + E 0 (45)

The finite difference expressions used for the &-derivatives are those

given by Blottner [101 for a nonuniform grid, namely

(G ). = 1i, (46)
ii+1

and

pr
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2 Gi+l, j -Gi, G.' Gi
( )ij &i+i - &i-I &i+1 i -&4 i -I(

plus an expression similar to Eq. (46) for (Hr)i,j . The discretization

of Eq. (45) leads to the following expression for unknowns at point

(i,j)-

H
9,j ai,j bi,jzH., : RiJ

where

- 2 .+ 1 i i (49)

bi, j -- Ai'j  (50)

and
2C 2Ci 2Ri'j = i ii [  i - i- - D i 'j ) Gi-,,J + "",

2Ci,j 2Bi,j -

( i i +Di  )  + + - i- (H 1i-J - -%"

El'j  (51)

The unknowns at node point (i,j) are G, ZG, H and ZH. Therefore, to '

complete the system two spline relations are needed. The governing

equation has been written in first-order form so that the same spline

relation, SI(4,0), can be used twice. The exDression for 51(4,0) is

(with i subscript understood) [111

?-
A~~1  

2 j-.j + BBj4 j + (I + G)22.%D + 4 It + z 'j+I= 0, (52)

where 0 denotes G or H, and

2g2(2 + a)

AAj + a) (53)

A -jw( -- w..........
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2(1 - a)(1 + a)
2

BBj = a-ja, (54)

2(1 + 2a)
CCi = - Ani-I(I + G)a (55)

and

C = - j =36J I  , 5 )A'

a nj = nj+ l - j (57)

The number of unknowns at node point (i,j) is reduced from four to

two by solving Eqs. (44) and (45) for ZGi, j and ZHi, j , then substituting

into the two tridiagonal spline relations. The resulting set may be

written as the following tridiagonal matrix equation:

Bi,jZij-i + Ai,jZi,j + Ci,jZi,j+i = Di' j , 2 j N , (58)

where the two-component column vector of unknowns Zi, j is defined by

zTi' j = [G,Hli,j . (59)

The 2 x 2 matrix elements A, B and C and the two-component column vector

D contain known quantities. These elements and components can be

obtained from a combination of Eqs. (44), (45) and (52).

The boundary condition on the lower boundary (n = 0 or n = A) can be

written in the general form, valid for both potential and frozen

vorticity cases,

- - -.w -W
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where a and $ are, except in one instance, functions of . The exception

is Eq. (39) where a depends on G.

The boundary conditions on the lower and upper boundaries together

with a two point spline relation at each boundary close the system of

equations at line i. The two-point spline relation used here is Eq. (16)

of Reference 11, which in the present variables is

" H A~ H

Gi,2 - Gi,1 - - Hi,1  - -2- Hj,2 + 2- i Z - -- z I= 0 (61)

and

2 2
AnN  N  H AANH

Gi,N+ - Gi,N " -- Hi,N - -- Hi,N + I + 2- Zi,N+ -2-, i,N

(62)

The above equations are fifth-order accurate in Anj and have been found

in the present application to maintain better overall solution accuracy

then their lower-order cousins.

Upon elimination of ZH using Eq. (45), the following matrix

relations result at the boundaries:

Ai,1Zi,1 + Ci ,Zi,2 = D2 ,l , (63)

and

Bi,N+lZi,N + Ai,N+lZi,N+1 = qi,N+l (64)

For potential flow the singularity at the tail point and on the wake

centerline requires special treatment. As can be seen, Eq. (5) at r = 0

reduces to Gn = 0. This condition, written as Hi' j - 0, replaces spline

relation (61).

Along any line i constant the set of block tridiagcnal equations
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For potential flow the singularity at the tail point and on the wake

center!ine requires special treatment. As can be seen, Zq. (5) at r = 0

reduces to G = 0. This condition, written as Hi,j = 0, replaces spline

relation (61).

Along any line i = constant the set of block tridiagonal equations

(58), (63) and (64) is solved by L-U decomposition using case (i) of
a.

Reference 12.

MaD Junction Lines

For the coordinate system used in the present problem, the metric

coefficients will be discontinuous at the junction of Regions I and II

and the junction of Regions Ii and III. When a body has a series of

curvature discontinuities, then Regions I and Ii are re-zoned with

additional map junctions introduced at each curvature discontinuity. A

"mapping region" is defined here to mean that portion of a map described

by a coordinate transformation, Eq. (4), with continuous first and second

derivatives.

At map junctions where the metric coefficients are discontinuous,

Eq. (48) must be modified to account for such discontinuities. This

process is performed using the generalized C'hmielewski-Hoffman method of

Reference 13. The author has found that ignoring these discontinuities

leads to errors as large as 37 percent in the potential flow pressure

coefficient.

In the C-H method, each adjoining domain is extended one step into

Ji.
the other to form a line of fictitious nodes. The equation of motion,
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Eq. (5), is then written separately in the left and right regions at the

junction. A condition of smoothness of derivatives of the solution must

also exist across the junction. By combining the left and right forms of

the governing equation with the smoothness condition, a single spline-

finite-difference (SFD) equation is obtained at the junction line which

accounts for the discontinuity in metric coefficients. For the algebraic

details, the reader is referred to Reference 9.

Inflow and Outf.ow Conditions

For the frozen vorticity case the conditions on the inflow boundary

are extremely important in determining the behavior of the solution near

the body and wake centerline. Thus, care must be taken to determine

these conditions accurately.

As already mentioned, these conditions are a composite of the

potential flow and boundary-layer solutions at the initial line. This
I

composite is calculated as follows:

(1) The boundary-laver velocity and total head profiles for a 1 q ! nU
are merged smoothly with their potential flow counterparts. For the

velocity, smooth merging occurs in a natural manner. For the total head,

the merging point is taken where cpo in the boundary layer just becomes

unity. As y increases, the total head in the boundary layer will exceed

unity because the vertical component of velocity continues to increase.

%'

'I
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(2) With u known on the inflow boundary (denoted by ur) h temS

function is determined by numerical integration of

V

or (ru'F

The integrations is carried out using the trapezoidal rule formula:

~PV.= #- u + UFVP

where

r2= (66)

6A j= A.-X.j (67.)

The perturbation stream function on the initial line is computed from %

Eq. (2).

(3) With (cpO)FV known, the reduced vorticity distribution, F-rj(r), is

determined from the relation:

F N M- - (68)

where the derivative of (CP0)Fv with resnect to r is calculated using a

three-joint un~equally spaced finite difference fo~ula.

The outflow stream function distribution VRis also calculated using

the trapezoidal rule, viz.

4)R 1PR(AR. (uR- + uR.), (69)J - 4

% % b
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where uR depends on 'R through Eq. (28). Thus for each integration step,

iteration is required to determine WR. during which u*j is allowed to lag

one cycle. The foregoing procedure is much simpler and produces results

almost as accurate as solving for ?R from a two-point boundary value

problem using spline discretization.

Pressure on the Body Surface and Wake Centerline

For the frozen vorticity case the normal momentum equation, with

viscous terms neglected, is used to determine the pressure on the body

and wake centerline. Upon transformation to (&,n) coordinates and noting

that in Regions II and III x = x(&), this equation becomes

acp rr av r1  av
a- 2(v u) a + -U (70)

a ofl Xc n x

The finite difference form of Eq. (70) is obtained by centering at =

and n = 6/2 and approximating n-derivatives by central differences.

Then, applying the no-slip conditions at the wall and using eqs. (17) and

(18) to determine the metric coefficients, the expression for the wall

pressure is found to be

cpiw = c pi, + AC (71)

I

where

Ac =upi (v-rbu)i,A vi,A ui, A  + rbi (vi,A

drb
rb  = x (72) .

.

. -S J

d% ~ P %~ *~S *J . . - ,';' ; -,'2. . ' .'? . S ' v '-'-" " - ".,-.". -", . S..-'. € .- - % .. , .*% ,



Gilbert H. Hoffman Page 21

The derivative of v with respect to is computed by a second-order

accurate three-point formula for unevenly spaced points. At the ends of

the interval, second-order accurate one-sided formulas are used.

Results and Discussion

The main advantage of the frozen vorticity7 approximation over its

comoetitors for solving the viscid-inviscid interaction problem is the

high degree of automation possible. The key to automation is

communication through automatically generated data files between the two

computer codes that perform the various calculations. The two codes are:

AXFL04 - This code performs potential flow-frozen vorticitv

calculations using the method given in this paper.

BLZO - This code computes laminar/turbulent boundary layers using

the Keller Box Method [14]. The algebraic turbulence model

of Reference 15 is used.

The steps in a complete viscid-inviscid interaction calculation are

as follows:

(1) Using AXFLO4 in the potential flow mode, a body pressure

distribution is generated. Two data files are created, one for BL2O

containing the pressure distribution and body curve fit, and the other

for AXLO4 (frozen vorticity mode) containing the potential flow velocity

profile at the initial value line.
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(2) BLZO is run next to obtain a boundary-laver solu:ion using the

potential flow pressure distribution from AXYL04 which contains the
S

boundary-laver velocity profile at the initial value line. A double

interpolation procedure is used to obtain values in cylindrical

coordinates from those in boundary-layer coordinates.

(3) AXFLO4 is now run in the frozen vorticity mode to compute a modified

body pressure distribution in the viscid-inviscid interaction region.

The code automatically forms a composite initial value profile using data
I

from steps 1 and 2. A data file is created for BL20 which contains the

viscid-inviscid interaction body pressure distribution. s

(4) Using the pressure distribution from step 3, BL20 is re-run for the

viscid-inviscid interaction body pressure distribution.

A nonuniform point distribution in n is generated using a one-sided

Vinokur stretching function [16]. The stretching function of Vinokur was :%

chosen because it produces a grid with a uniform truncation error
.%

independent of the governing equation or difference algorithm. %
I

Although the same &-distribution is used in the potential and frozen %

vorticity calculations, the n distributions differ considerably. For

proper resolution in the frozen vorticity case, about a third of the grid

points must be placed in the thin vortical layer (the same thickness as

the boundary layer). To do this requires a rapidly expanding grid in i

since typically nU - 2. This is the main reason splines rather than

finite differences were chosen to approximate flow derivatives in n.

An accurate body curve fit, a prerequisite in obtaining an accurate N.

potential, boundary-layer and frozen vorticity solution, is achieved as
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follows: With the body shape rb(x) given either analytically or

discretely, the corresponding arc length distribution i is computed using

the spline formula

2U

hi  hi
Ei - &i-1 + 7- (ui-I + ui) - (Mi - mi. I )  ,(73)12

where the two cases that must be considered are shown in the following

table:

case range u m h

] ,x b  xb "
Xb  xb(r) Irb > 1 (I + x12)1 /2 ArbJu

Srb(x) 0 I > (+ rb2 )1/2 rbrbr b < r bx b

I i u '

Table 1. Body Arc Length Parameters

The first case, x = x(rb), is appropriate in the nose region of a blunt-

nose body. The quantities xb' xb, rb and rb, required in the

calculations, are computed in terms of arc length derivatives of these

quantities which in turn are computed using a three-point uneven spacing

formula.

Ilk
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Since mi deoends on &i, Eq. (73) must be solved at each step by N

iteration. convergence is very rapid, usually requiring about four

cycles. The use of Eq. (73) will produce a distribution accurate to

about four decimal places which assures that the derivatives required in

the mapping are accurate and smooth. Test calculations have shown that

Eq. (73) produces a & distribution three to four times more accurate than

the chord formula in regions where rb is large and changing rapidly. in V

the process of determining P, the various mapping derivatives involving .

rb will automatically be determined. For the boundary-layer solution,

the derivative due/d& is computed in the same way as body derivatives,

using a three-point formula with unequal spacing.

The three bodies used as test cases in this paper are the same ones

used in Reference 15, namely, the F-57 low-drag body of Parsons and e.

Goodson [17], the modified spheroid of Patel [18] and the NSRDC

streamlined body number 1 [19]. These bodies were chosen because of the

high quality of the experimental data available for each.

The grid parameters used in the SFD solutions presented here are %

given in Tables 2 and 3 for potential flow and frozen vorticity cases

respectively. Reynolds number for each test body (based on chord length)

appears in Table 3. These Reynolds numbers correspond to values given in 'a

References 18-20.

v,
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. *4

F..,

F-57 Spheroid NSRDC No. 1

xR 1.55 1.5

T 2o2.0 21.0

N 49 54 10'4

(Nb)& 35 39 78

N20 20 20

0.01119 0.01119 0.01119

Table 2. Potential Flow Solution Parameters. 4

fA6 A- -I
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lU

F-57 Spheroid NSR.DC No. 1

IS

xFv  0.707 0.681 0.687

xR 1.5 1.5 1.5

nU 2.0 2.0 2.0

N, 32 31

(Nb) 14 16 25

NI. 40 40 40

An1  0.00055 0.00055 0.00055

4 0.005 0.005 0.003

Re 1.2 x 106 1.262 x 106 6.6 x 106

Table 3. Frozen Vorticity Solution Parameters

The need for splines in the n-direction is clearly seen by contrasting

values for an, in Tables 2 and 3. The frozen vorticity value is one

twentieth as large as the potential flow value.

The number of grid points used for the NSRDC body is about twice

that used for each of the others. The reason for this was to obtain

adequate definition of the body pressure in the tail region where the

NSRDC body has a double reflex.

Relaxation factors of 1.5 and 1.0 were used on G and H in all

calculations. No optimization was attempted for these factors.
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Convergence was considered accomplished in both potential and frozen

vorticity runs when the absolute maximum change in H was less than I
5 x 10 -6. The number of iterations required to reach convergence varied

from 90 to 110 with typical CPU times on a VAX 11/780 computer ranging

from two to three minutes. In all cases the maximum residual decreased

smoothly as the number of iterations increased.

Boundary-layer solutions used the same & spacing as the potential

flow calculations (as already mentioned). The number of points in the

normal direction ranged from 30 at the nose to about 50 near the tail.

To resolve the turbulent boundary layer properly, points were

nonuniformly spaced using a geometric progress on, with the smallest mesh

at the wall. Typical CPU times were about 45 seconds. Thus, a complete

viscid-inviscid solution cycle of four runs (potential flow, boundary

layer, frozen vor:icity and final boundary layer) took at most seven and

a half minutes of CPU.

The frozen vorticity solution, having a truncated domain of

dependence, will depend on the location of its initial value line, i.e.,

on the parameter xFv. Experience has shown that at Reynolds numbers

between 106 and 107, (the range covered here) that the viscid-inviscid

interaction region begins about 70 percent of the chord back from the

nose. Thus a suitable choice for xrV is about 0.7. Since the onset of

the interaction region is gradual, the solution should not depend

strongly on xFV. To show that this is the case, different values of xFV

were tried for two of the three test bodies. The change in the maximum

body pressure coefficient (which occurs near the tail) was taken as a

measure of the sensitivity of the solution to changes in xFV. For the

pp-

: -9 r % W V' ; . ; ; . ;:. .... p..,-, . <.<...... -. •-
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Modified Spheroid, a change in XFV from 0.681 to 0.716 produced a change

in maximum cp of 1.9 percent while for the NSRDC body, a change in xF.

from 0.687 to 0.747 resulted in a change of 2.0 percent.

Since the solution is relatively insensitive to xFV, the implication

is that the reduced vorticity distribution on the initial value surface

is essentially "frozen". This is indeed the case and is illustrated by

Figure 3. The results in this figure are for the NSRDC body, but are

typical for the other cases studied. The figure shows the variation of

reduced vorticity F with stream function lp for two choices of xFV (0.687

and 0.747).

The "patching" of the inner and outer layers is responsible for

introducing the parameter A into frozen vorticity solution. But what is

A? Is it merely a calibration parameter or does it correspond to some

physical quantity in the turbulent boundary layer? To try to find the

answer to this question, A was first assumed to be a calibration constant

dependent only on Reynolds number. The calibration was performed using

the F-57 body by requiring the predicted maximum body cp to be the same

as the experimental value. Using this procedure a was found to be 0.005.

The same value was also used to compute the solution for the Modified

Spheroid (since the Reynolds numbers are nearly the same). The value of

A was reduced to 0.003 for the NSRDC body to account for the thinning of

the boundary layer with increasing Reynolds number. At the initial value

line the previously determined values of A in law-of-the-wall units

varied from 200 to 750 whereas in terms of the boundary-layer thickness

the range was from 0.15 to 0.20. When applied to the computed turbulent

boundary layer at the initial plane, the calibrated values of A were

.~~ . . . . .s . . . . . . . ....... '.
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found not to correspond in any consistent manner to a mear.ingful length

(such as the location of maximum Reynolds stress or the outer edge of the

logarithmic region). Thus a seems merely to serve as a model calibration

parameter.

As an indication of the sensitivity of the frozen vorticity solution

to changes in A, several values were run for each body. Table 4 is a

sumary of the maximum pressure coef:c4ent for these rans. The table

shows that for two of the three test cases the solution is quite

sensitive to variations in A. As A decreases maximum cp is seen to

increase with the percentage increase depending on the type of body. The

Spheroid is by far the least sensitive.

Body C pmax x-Location

F-57 0.002 0.1986 0.889

F-57 0.003 0.1701 0.889

F-57 0.005 0.1613 0.889

Spheroid 0.002 0.2195 0.978

Spheroid 0.003 0.2184 0.978

Spheroid 0.005 0.2225 0.978

NSRDC 0.001 0.1793 0.968

NSRDC 0.003 0.1606 0.968

Table 4. Sensitivity of Computed cpmax to A.



Gilbert H. Hoffman Page 30

The computed body pressure distributions, both potential and frozen

vorticity, are compared with experiment in Figures 4-6 for the F-57,

Modified Spheroid and NSRDC bodies respectively. The values of A used

are those given previously in this paper. In all cases the frozen

vorticity pressure closely follows the experimental distribution. For

the Spheroid the computed maximum cp is too high. This is also the case

ppin Reference 3 which uses the displacement bad,. method (the present value .

is 0.223, Reference 3 gives 0.210 and experiment, from Reference 18 is

0.180).

Another item of interest in the present calculation scheme is the

magnitude of the pressure change across the modeled turbulent layer.

This change has been found to be quite small. In a typical run (the F-57

body with a = 0.003) the increment, in terms of the surface pressure,

reached a maximum of 1.8 percent very close to the tail.

The calculations of Geller [8], using a simplified frozen vorticity

technique, show that the computed velocity profile (for the F-57 body)

and the experimental profile develop almost identically with downstream

distance. To check this observation, velocity profiles (frozen vorticity

and turbulent boundary layer) were computed with the present procedure at

several downstream stations. Since cylindrical coordinates are used in

the comparison, a double interpolation procedure was necessary to obtain I
the boundary-layer profiles. The comparisons are shown for the F-57 in

Figures 7-9 at three successive stations, x = 0.844, 0.933 and 0.978.

The frozen vorricity profile is seen to evolve differently from its

.*
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turbulent counterpart, becoming ever more concave as x increases.

Apparently the poorer agreement with experiment in the present case is a

result of the full elliptic problem being solved.

Concluding Remarks

A method for solving the axisymmetric viscid-inviscid interaction

probleam has been presented which predicts body pressure distributions

with considerable accuracy and which is capable of a high degree of

automation. In the method the flowfield is divided into an outer I

inviscid, rotational region where the vorticity is "frozen" and an inner

viscous/turbulent region which is modeled by a power-law velocity

profile. The solution to the frozen vorticity problem gives the viscid-

inviscid interaction body pressure distribution which is then used as E,

input to the standard axisymmetric turbulent boundary-layer equations.

With this formulation, a complete solution to the viscid-inviscid

interaction problem is obtained in four computation cycles. The method

requires no user intervention between cycles and is more economical than .

solving the complete Navier-Stokes equations or the displacement body

problem.

Results with the present method show that the outer rotational layer

(frozen vorticity solution) controls the pressure in the viscid-inviscid

interaction region near a body surface. This observation is in agreemen:

with the findings of triple deck theory.

The present method is an approximate application of a triple deck in

which the middle layer is ignored and, instead of asymptotic matching, -

the inner and outer layers are patched. The outer layer is solved in a

I.N. - h*A c~r _I
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truncated computational domain with the initial value line positioned

slightly upstream of the start of the interaction region. Thus, the
I

outer solution depends on two geometric parameters, the patch distance

and the axial location of the initial value line. Numerical tests have

shown that the solution is relatively insensitive to the location of the

initial value line but is affected significantly by the patch distance.

Initial calculations indicate that the patch distance, which serves as a

calibration parameter, depends only on Reynolds number. Once this

parameter was determined, computed body pressure distributions in the

viscid-inviscid interaction region (for three test bodies) were found to P

follow the experimental values very well.
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Nomenclature

IV

Cp static pressure coefficient

C PO total head

F reduced vorticity -defined by Eq. (3)

G perturbation stream function -- defined by Eq. (2)

H derivative of S with respect to n - see E . (40)

spline derivative approximation of _GG.

spline derivative approximation of Mi

N number of nodes in the i-direction

(Nb) number of & nodes on the body ,.

N number of nodes in the n-direction

r radial coordinate

rb body radius

Re Reynolds number, based on body length and free-stream speed

u velocity component in x-direction

v velocity component in r-direction
N,

x axial coordinate

vorticity magnitude
transformed coordinate along body and centerline.

transformed coordinate away from body and centerline

stream function

angle of tangent to body surface

e meridian angle

All other quantities are defined in the text.

%
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Figure Caotions

1. C-Grip Mapping.

2. Coordinates in Nose Region.

3. Reduced Vorticity Distribution on Initial Value Line, NSRDC Bodv.

4. Viscid-Inviscid Interaction Body Pressure Distribution, F-57 Body.

5. Viscid-!nviscid Interaction Body Pressure Distribution, Modified
Soheroid.

6. Viscid-inviscid Interaction Body Pressure Distribution, NSRZC Body
No. 1.

7. Comparison of Turbulent Boundary-Laver and Frozen Vorticitv
Velocity Profiles at x 0.844, F-57 Body.

8. Comparison of Turbulent Boundary-Layer and Frozen Vorticity
Velocity Profiles at x = 0.933, F-57 Body.

9. Comparison of Turbulent Boundary-Layer and Frozen Vorticity
Velocity Profiles at x = 0.978, F-57 Body.
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Figure 3. Reduced Vor:ici- Distribution on lni-ial Value Line,
NSRZC Body.
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Figure 7. Coparison of Turbulent Boundar7-Tayer and Frozen
VorticiC7 Velocity ?r.of-Iles at x .344, F-37 Body.
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