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Tangent, normal and binormal vectors of the Frenet-Serret
Formulas

VbVt - Velocities in the direction tangent to the bore of the tube of
the projectile and the tube

K.p,1 - Curvature, rad'us of curvature, and torsion of a curve in space

1}

S1x,61y. 012 Angles between the directions of the body-fixed coordinate axes
S2x.62y. 622 and the b coordinate axes

83x: 83y 632

e} - Position vector of the origin of the body-fixed coordinates
relative to the origin of the b coordinate system

LT} - Argle between the tangent to the developed rifling curve and the
bore centerline

2] - Angle of twist of rifling or rotation of the projectile

Ug, ug - Coefficients of friction between the tube and the rotating band
and the tube and the bourrelet

D
\

Total angular velocity of the projectile

W -~ Rotational speed of the projectile




INTRODUCTION

It is known that when projectiles are fired from gun tubes, the lateral
forces of constraint may become so large as to cause engraving of the projectile
body and excessive wear of the rifling of the tube - usually at the muzzle where
the projectile velocity is highest, thus giving rise to the term muzzle wear,
Normally, a projectile will, at some time during its travel down the bore of a
cannon tube, come to bear against a particular rifling land and follow that land
out to the muzzle; and when the same land is borne ayainst with great enough
force by a large enough number of projéctiles, the result may be what is some-
times referred to as spiral wear. In any case, the result is undesirable and we
wish to understand it so that it can be avoided.

A1l projectiles do not necessarily ride on the same land for the full
length of travel down the bore, and when the balance or alignment of a projec-
tile is such or becoies such that the shift from one land to another is vioient
enough to cause rebound, then the phenomenon calied balloting may have begun.
Since it is widely held that projectile balloting can have sericus consequences,
it has been the subject of much study, initiaily by Reno (ref 1), and Thomas
(ref 2), and more recently by Perdresuville (ref 3), Chu and Soechting (ref 4},
Walker (ref 5), and Soifer and Becker (ref 6). Although it is not tae purpose
of this study to go into the subject of balloting, there may be some application
of the results to the problem of determining the necessary conditions of projec-
tile balance and alignment and tube motion and curvature for bajloting to occur.

The problem that is addressed here, however, is rather that of determining
the combined effect of projectile balance and alignment and tube motion and cur-

vature on the bearing (constraint) forces between the projectile and the tube

References are listed at the end of this report.
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when stable projectile motion takes place. Darpas (ref 7) used some simplifying
approximations in order to isolate the various effects and estimate their rela-
tive maximum magnitudes. His conclusion was that the dynamic unbalance of the
projectile would most likely have the greatest effect, Oynamic unbalance would
occur when a projectile becomes cocked in the bore, which as discussed by Gay
(ref 8) and Montgomery (ref 9), is the more usual case. The following six-
degree of freedom treatment of the problem is intended to establisn the magni-

tudes of the various effects of specified projectile and tube conditions.

ASSUMPTIONS OF THE MODEL

The projectile is constrained by the inner wall of the tube and the rifling

t move in the direction of and rotate about the axis of the tube. In general,

the principal axis of inertia of the projectile is skewed with respect to the

i
:

spin axis. The gas pressure driving force acts along the tube axis, the land
driving force acts around the circumference of the bore and perpendicular to the
rifling, ana the lateral constraint forces act at the point of contact of the

rotating band and bourrelet with the bore and in a direction perpendicular to

the bore axis.

:
\

In addition, there are three frictional resistance iorces normal to the

o N

land driving and lateral constraint forces and oppocite to the direction of pro-
jectile motion at the point of contact. The band engraving resistance force
which acts around the circumference of the bore and opposite to the direction of
projectile motion is assumed to be known, as is the gas pressure, axial veloc-

ities of projectilie and tube, mass, center of gravity (c.g.) location, axial and

NI I B P LA ATV

transverse moments of inertia of the projectile, and coefficients of friction
between the rotating band and the tube, and between the projectile body and the

tube.
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COORDINATE SYSTEMS

Three coordinate systems are defined. Referring to Figure 1, the inertial
reference frame with axes X, Y, and Z is designated the B coordinate system.
The b coordinate system with axes X, y, and zZ originates on and moves along the
tube axis (projectile spin axis) such that the center of mass of the projectile
lies in the y-2 plane and the x-axis is tangent to the tube axis. In general,
the b coordinate system has rotational velocity relative to the inertial axes of
ab/B whose component in the direction of the spin axis = 0. Finally, there is
the body-fixed coordinate system with origin at the center of gravity of the

projectile and axes 1, 2, and 3, which are the principal axes of inertia of the

projectile.
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Figure 1. Inertial (X,Y,Z), moving (x,y,z), and body-fixed (1,2,3)
coordinate systems.
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Three force equations written with reference to the inertial coordinate
system and three moment equations written with reference to the body-fixed coor-
dinate system constitute the six equations used to solve for the six unknowns of
the praoblem. The six unknowns are the two components of each of the two lateral
forces of constraint (four unknowns), the driving torque around the spin axis
(one unknown), and the acceleration in the direction of the spin axis (one

unknown) .

KINEMATIC RELATIONSHIPS

The relative velocity of the projectile and the tube is given by

Vp - Ve = 5 =8 (1)

Since the rifling twist is a function of di.t mc. along the bore, we may write

ré = f{s) , (2)
w=0=1f(ss, (2a) -
and
©=6=les)E)e + ()8 . (2b)
For constant twist rifling we have
n ] = 7_" " -
f(s) = NS ¢ f'(s) N ¢ and f'(s) =0
sc¢ that
: _ NS
w=60-= el (33)
and
. - .- _ n-s
w=6="=. (3p)
From Figure 1 it can be seen that
Rp = Sg + pg (4)

where the subscript B indicates reference to the B coordinate system.

Differentiating twice with respect to time gives directly
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Rg = Sg + pg (5)
Texts on dynamics {ref 10) give the formula
PB = Pb + Wp/g X Pp *+ 2Wp/g X Pp *+ Wp/B X Wp/B X Pb (6)
for rotating cocrdinate systems where the subscript b/B indicates rotation of

the b coordinate system with respect to the B coordinate system. If ey is the

magnitude of the eccentricity of the projectile c.g. with respect to the spin

. .
- -

axis, then py, gy, and pp can be expressed as

Fo = ey (cosdj + sindk) , (7)
Pp = emé (-sin8j + cosbk) , (7a)

and
Pb = enl-(6 sind + 02 cos)j + (6 cosé - 8% sing)k] (7b)

where 6 is as shown in Figure 2.
/—q
6 _~

e
b

Figure 2. Position vector for the projectile c.g. in the moving
coordinate systen.

Since the spin axis is taken in general to be the tangent to a curve moving

in space, it will be convenient to refer to the Frenet-Serret Formulas of dif-

ferential geometry. These are

dB ~ a7 _ = N _ =
as = -TN , ds = kN , and ds - ™ - «xT {(8a,b,c)
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where

-o-‘- - -.=d__R . al
B=TxN., , T ds,andx o

The velocity of a point moving along a curve in space is expressed as

-

Jie) o 9B ds dR
vit) = dt  dtds ° (9)

Making use of the Frenet-Serret formulas allows the velocity to be written as

vit) = g% T, (10)

and the acceleration to be written as

Q.

- 2 = -
a(t) = $2T 4 (gf)’nn . (11)

-

Now since sg is the sum of the acceleration of the origin of the b coor-
dinate system relative to its path and the acceleration of the point on the path

coincident to the b coordinate system origin, we can write
= = d2s = ds 2 =
sg = Qg + Pt T + (a¥) KN . (12)

Also note that wh/g is the sum of the angular velocities due to rotation of the
spin axis at the point coincident with the ~rigin of the b coordinate system and
motion of the coordinate system origin relative to its path. Therefore, if we
designate by the subscript b', a coordinate system which is coincident to the b
coordinate system but fixed to the spin axis, we can write

Op/B = Up'/B + Gp/b" - (13)
Recalling that ;b/B has no component in the direction of the spin axis, it

follows that .
- ds > dT ds 2 -
Wp/pt = at T x &= = dt T x kN (14)
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so0 that

- - - - e d d -
Wh/8 = Wph'/B.= + g% T X kN = wp /g + a% KB {15)
. Differentiating with respect to time gives
|
| - - d ds =
wh/g = Wp'yB * g7 LG *Bl (16)

which, after some manipulation, results in

- i dz d ds, 2.2 ds, o
Wh/Bg = Wh'/B * (x a—{é + a-g (d—i) 1B - KT(&%)N . (17)

COORDINATE TRANSFORMATION

First of all, by observing that ? = ;, and ﬁ = Nyg + Nz;, it follows that
Bz TxN = Ny; - NZE. Also,
Qg = (Qg)xi + (Q)yJj + (U)K . (18a) "
wpi/ = (Wpt/Blyi + (Wp'/B)zk (18b)
and !
Wpr/g = (wp'/Blyi + (wpr/g)zk (.9¢c) %
Therefore,
p p ds 2 p ds 2 37
sg = [(Q)x + Jm)i + [(Q)y + (FF) KNyl
= ds ¢ - :
+ [(Qg)z + (Fz) *NzJk , (19a) ,
- - ds s - ds - §
whsg = [(wp/Bly - g5 ®Nz1J + [wpr/B)z + g§ KNylk , (19b) E
and -
: . d*s _ dk ds, @ ds,2, |7 "Q
wo/g = {(wpr/Bly ~ [k g5 + o5 (o) Nz - xv(gp) MylJ
= d*s  dk ,ds.? ds.z, > :
+ {(upr/p)z + [k a-f"g + a-g (a%) Iny - "T(Eg) Np}k . (19¢)
. The total angular velecity of the projectile is the vector sum of the pro-

jectile spin velocity and the angular velocity of the b coordinate system, or

- - - -

Q=0+ upp - (20)

Y K] VA TR AL e T B U e g T e

B iiionisiarALANAR N ERARNENARNARNEAZALARY AV R RS L A VATAT A A A B U LU LW U W N W WY



In the b goordinate system, the components of Q are then

O = w, (21a)
- ds

ﬂy = (wbv/B)y + dc lLNz , and {21b)
- ds

Similarly, the angular acceleration and its components are given by

2 =w+uyp ., (22)
é,)( = (:’ . (233)
. ; d2s de ,ds, 2 ds.2
Q = (wpry/ply - Ik 577 + 32 (§7) INz - kT{37) Ny . (23b)
and
o - d2s dx ,ds,? ds,?
Q = (wprylz + [k 57 + G5 (g8) Ny - kT(53) Nz . (23¢)

It remains now to express the projectile angular velecity and acceleration
in terms of their components in the body-fixed coordinate system. For the angu-

lar velocity

Q1 = coss1xQy + cosdyyQy + coséyzl; , (24a)

Qy = cosbxfly + cosbpylly + c0sd2z%7 . (24b)
and

Q3 = cosbyxlly + COSd3yly + cosdzzQ; - (24c)

Remembering that &1y, 62y, and 63y are assumed to remain constant, we get by
differentiation

ﬁl = cos&lxﬁx + g? (cosdyy)fy + cosdlyﬁy
+ L (coss )R, + €C0Sb7,0 (25a)
dt 1z)%z 1zz »
. . d .
Ry = COSOxRY * Jt (cosdzy)Qy + cosbpyfy

d .
* g¢ (c0s627)Q; + cosbyyfz (25b)

PN




and

- . d [
Q3 = c0s83, Q¢ + e (cosdzy )y + cosdzyQy

d .
+ d—t (005632)92 + COSbazﬂz .

(25c)

Of the nine direction cosines appearing in the above equations, only two

are actuaily independent. The other seven are expressible in terms of these two

and are therefore eliminated as physical parameters. Because the conversion is

lengthy, it is presented separately in the Appendix, and only the results are

shown here.

cosbyy = sindy, cos = ,

. . NS
COSGlz = $1n6‘1x SN = ’

rN
s ns
- GOS8y COS62y COS pN - Sin pN COSS3x
cosé =
2y S'inblx ’
ns ns
= €058y COSb2y Sin px + COS N cosb3y
cosbéy, = - .
sindqy
RS ns
- €o0sdy,. cosdy,; cos mm o+ sin T cosdg,
cosdgy, = .
3y s'inolx !
ns ns
- €OSOqy COS63y SiIN pn - €CS [ COSS2x
COSéaz = ’

Sinalx
and

COS*8q, + COS2Py + COS?63y = 1 ,

(26a)

(26b)

{26c)

(26d)

(26€)

(26f)

(27)

Performing the differentiation indicated on the direction cosines in the

formulas for the angular acceleration components reveals the following:

~
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d : ns
‘at(°°351y) = - c0Sb1z (Fﬁ) '

ns
(coséyz) = coséyy () -

ﬂ.'ﬁ.
lad

ns
o7 (cosbyy) = - coséyz (Fﬁ) '

[s N ]
lad

ns
(cosbzz) = cosbyy (=f)

2je

, ns
\cosa3y) = - cosb3z (Fﬁ) . .

01Q
la d

and

(cosb3z) = cosbzy (2;) .

n1n
t

Therefore,
- - . né
1 = cosbyxlx + cosdyylly + (7)9Qz]

< e ne
+ c0s81,[0; - (7)) .
: . : ns
Q7 = cosdgullx + coséaylfy + (5R) 921

- ns
+ c0sb2,(0; - (F!0y]
and

. . . é
Q3 = cosdzxfly + cosdzy[fy + (gﬁ)ﬂz]
’ ns
+ cosd3z[Rz - (Fy) Q) .

FORCES ON THE PROJECTILE

Three of the six equations reeded for solution of the problem are available

from the equation of motion

n .
} ;i = mpEB .

i=]

10

(28a)
(28b})
(28¢) -
5
b
(28d) K
7
(28e)
(287)
(29a) gg
{29b) %
%
(29¢) &
W

(30)
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Of the six forces acting on the projectile, one is the known gas nressure
driving force and two are the unknown lateral constraint forces of the problen.
The three remaining forces are fricticnal resistance forces which arise from the
band pressure force, spinning torque, and constraint force applied between the
projectile and tube in relative motion.

Axisymmetric Band Drag Force

e
' (s)
tany =f'(s) g Fcosy ,’;s e
| Fosing\ 227 i
| —— X
. (uBF;"#D)CO_S’L/
HgFn “uBFn«rD)sm\y

>,

Figure 3, Forces in the deveioped circumferentiai (x-8) plane.

’ Figure 3 is a development of the rifling curve onto the plane defined by

; the x and 6 axes. The band pressure drag force is denoted by D, the normal land
driving force is denoted by F,, and the angle between the tangent to the rifling
curve and the x~axis is denoted by y. If we assume that D is proportional to
the width of the rotating band in the direction of its movement relative to the

N tube, then we can write

D = B/cosy . (31)

Summing forces in the x direction gives

-ayian Zad gy gl k4

Fy = - Fn sing - (ugFp+D)cosy , (32)
and since the sum of the forces in the 6 direction are equal to the spinning

torque divided by the radius of the bore, we have

. M
_ FE = F, cosy ~ (ugFp+B)simp (33)

11
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Fn can be eliminated between Eg. {32) and Eq. (33) by rearranging and dividing

one by the other

- Fx -~ D cosyp siny + pg cosy
=
cosy ~ ug siny

m (34)
X + D siny
.

Dividing the numerator and denominator of the right side of the above equation

by cos ¥ gives

- Fx -8B f'(s) +
— "1 f ) f":g) (38)
X + Bf'(s) B
r
For constant pitch rifling f‘(s) = ﬁ so that
My Bm, 7 - upN
Fx = (f'_ - ﬁ—)(u—_—an — N) -B . (36)

Lateral Force Friction_Components

- -
The lateral force, Fa, at the band and the lateral force, F

4 ¥ v Trva LK F, =
bourrelet have frictional forces associated with them which have magnitude ugfg
and pgFg, respectively. These frictional forces act along the bore surface
opposite in direction to the motion of the projectile and therefore have axial

and tangential components as shown in Figure 4.

[‘LBI,-'?sin b 4

HBIF?COS\}’ x

Figure 4. Components of the lateral force associated friction forces.
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Again, for constant pitch rifling tan = f'(s) = g , SO we have
cosy = 1 a 1 . (37)
Ytaniy + 1 V(n/N)2 + 1
and
siny = cosy tany = —N— (38)

V(n/N)2 + 1
The tangential component can now be broken up into y and z components as in

Figure 5.

For right hand twist

(%) |
/
u ’__(_1_7_) 7; (E?)UJ_‘
N

{1
xrl AN

Figure 5. Lateral force components in the moving coordinate system.
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From the similarity of the force triangles in Figure 5, the following is

derived:
weFR(V/N) | mgFROT/N)  (Fr)z _ _ ma(FR)z(W/N) 390)
| V({n/N)? + 1] v Yim/N)z +1 'R Vin/N)? + 1
HaFR(m/N) | mgFRUW/N) (FR)y _  HB(FR)y(m/N) ’ '30b)
Vr/N)* + 1J Yin/ny: + 1 TR V(n/N)z + 1

ol Z

and similarly for the force, Fg,

MOMENTS ABOUT THE BODY-FIXED AXES

In addition to the three equations derived from the equation of motion, we
require three more equations to give us the six necessary for a solution. These
additional equations are derived from Euler's equetions which are written with

respect to the body-fixed axes as follows:

My = @113 - G203(12-13) , (40a) N

. )

Mz = Q212 - 9393(I3-1) , (40b) ::::'.

|

and ) o
M3 = Q313 - Q302(I1-12) . (40c)

Note that the quantities I and I; are the transverse moments of inertia of the
projectiie. Now since our concern is with repeatabie conditions that occur with
regularity, there is little point in differentiating between the two transverse
moments of inertia of projectiles which are usuaily loaded with random angular

orientation and are in any case nominally equal., Therefore, we shall say I; =

I = Iy and redesignate the axial moment of inertia, I3, as Ia. The Euler

equations then become

14




My = QI - Q03(I7-1a) , (41a)

My = QpI7 - Q301 (Ip-I7) ., (41b)
i and .

M3 = Q315 . (41c)

The moments about these axes are given by the triple product

- - -

My = M ¢ uq = (rxF) « up , (42)
where r is the position vector from the origin of the body-fixed axes to the
l point of application of the force, F, and the unit vectors, u,, for the body-

fixed axes ‘are expressed in terms of the direction cosines as follows:

Up = cosbpy 1 + cosbpy j + cosbpz k (n=1,2,3) . (43)

For the axial forces, the unit force vector is 1 so that

- - - -

r=-opy=- eypsin gﬁ k + cos Eﬁ 3 . (44)
- ) ns ns =
rXx1=-eg(sin o j-cos 4 k), (45)
] (rxi) o u; = o, (46a)
‘ Y,
- = ~ cos 83y 2
{(rxi) uy; = ep ;{”—Fl_x ' (46b)
and
l':x-',.\ . :.— = =2 cos==6—ﬁ( {46C)
v 3 M sin 614 ° \8ov)

-

The unit moment vector for the rotating band torque is i, so that for right-hand

twist we have

i+ up w cosbyy . (47a) E‘R

i Ug = COS62y (47b) -

and \ﬂ
- - \_H

i+ u3 = cosdzy . (47¢) ;:S

1
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The position vectors of the points of application of the lateral constraint
forces and their associated forces are shown in Figure 6. The distances from
the c.g. of the projectile along the x-axis to the rotating band and the

bourrelet are given k£, b and a, respectively.

g /
BOURRELET
\ bi cf?h - x
- T
R Fl =2\
(%)%
A
AR
hY

Figure 6. Application points of the lateral constraint forces and their
associated friction forges.

From Figure 6 it can be seen that

g =- Fr [(FF)yJ + (FF)zk]l , (48a)
and —- PR -t —- - -
'R = - fp [(FRIyJ + (FR)ZK] . (48b)

The position vectors are then written as

Y ns TF = . .3 L WS - TR > e
ai [ey cos ot Fr (FFlyli - (ep sin i Fr (FE)z1k ,
and
T ns 'R 2 < ..ns TR = .°®
bi - [en cos = + R (FR)ylj = [ep sin 5 + = (FR)z1k .

Taking the vector product of the position vectors and the respective force vec-

tors yields the moment vectors
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eml(FF)y sin Bf - (Fr)z cos Ip 14 - a(Fe)z) + a(FE)yk .

and

- . MS = ns.> = = .7
eml(FR)ysin ™ (FR)z cos FN]1 + b(FR)zj - b(FR)yk .

For the sake of convenience, make the following abbreviations:
HB
H'g = ‘
Yin/N)t + 1

and
Hs
Y(r/N)? + 1

u's =
Using the above notation, the frictional forces associated with the lateral
forces are
' T = n-> = no
Hig[~Fpi - (FR)z(§)J + (FF)y(gikl ,
and

WBL-FRi = (FRIZ(R)S * (FRIy(FIK] .

And the vector products of the respective position vectors and the above forces

are
v T o ns e . TS e
= Kgly)lem(FF)y cos o + em(FE)z sin 5 + rFglid
1] SN . WS it -
- “'s[a(ﬁ)(FF)y - emFF S1Nn m - r\FF)z]J
' , S ns 2 -
- u s[a(ﬁ)(Fp)z + enFf cos i r{FFlylk .
and

n F ns o . s -
- M'B(ﬂ)[Em(FR)y Cos N + em(FR)z sin =Y + rFR1i

It - . - -t
+ w'gIb(R) (FR)y *+ enFR Sin o= + F(FR)z1j

+ waib(E)(FR)z - enFR €05 &= - r(FR)vIK
BLOIFI(FRIZ m"R N RlylKk -
The moment of the lateral constraint forces and the associated friction
forces about the origin of the body-fixed axis coordinate system is then

expressed as:
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ot . NS e s - . ons - s
{em[(FF)y AL I (FE)z cos mt (FR)y sin & - {Fr)z cos f‘-N]
il F ns e ., TS
- u's(n)[em(FF)y cos N + em(FF)z sin By + rFg]
n F 2 . ms -
- u'g(y) lem(FR)y cos ;ﬁ + ep(FR)z sin 55 + rFR1}i

+ {- a(Fg)z + b(FR)z - u's[a(g)(;F)y - eqFF sin ;; - r(EF)z]

SRR BEE T ERTT Bena KY

+ w'glb(R) (FR)y + epFR sin == + r(FR)z1}j
- = n UL =
+ {8(FE)y - B(FR)y - w'sla(g)(FE)z + egFe cos o + r(Fr)y]

+ u'glo(R)(FR)z ~ epFr cos &= - r(FRlyllk .

The components of this moment vector in the direction of the body-fixed
coordinate axes are determined by taking the scalar products witk the unit

vecters of the body-fixed axes cosdpyi + cosdpyj + cosdpzk (n = 1,2,3) and

adding to the axial force moment and the spinning-up torque for substitution

into the Euler equations. These components of the moment vector take the form
tnry(FEy + Lnrz(FF)z * Lnry(FR)y * Lnrz(FR)z (0 = 1,2,3)

e where LnFy, LnFz. Lnpy, and Lprz are functions of the known parameters of the

E problem only. For the sake of brevity in writing the equations of constraint,

the coefficients are given here as:

:
L
3
%
%
i

Liry = ey cosdix[sin ga - u's(g) cos 2;]

- u'sa(ﬁ) sin&qxcos ;E + (a-u'gr) sindyy sin gﬁ , {49a)
LiFz = -ey cosdixl[cos gﬁ + u's(g) sin ?ﬁ]

+ (a-u'gr) sindyy cos

ns wo_ . . TS
Nt Rsal(g) sindyx sin I, (49b)

18
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,_ 7S . L
Liry = em cosbix [sin FN - H'B(R) cos {l

. s . . <
. + u'Bb(g) sindyy cos N (b+u'gr) sindy1x sin N {(49c)
ns n. . T7s
i Lirz = -ep cosbjxlcos - + u'g(g) sin )
' . s . . TS
-(b+u'gr) sindjycos gﬁ - u'ab(g) sindyy sin o (49d)
. 7S n ns
L2Fry = ep cosépx[sin - K's(g) cos
+ u'sa(z)(:osalx €0sdyx cos ;% + sin gﬁ €0sd3x)/sinbqx
' . NS ns .
= (a-u'gr)(cosdyx cosbax sin = - cos <y cOSb3x)/Sindyyx . (49e)
ns n. . WS
L2rz = -~ep coséax[cos i + u's(f) sin ] 1
- (a-p'gr)(cosbiy cosdoy COS ?g + sin ;: €c0S82ay)/sind1y
LS . TS ns .
+ u'sa(ﬁ)(cosblx cosbay sin og - cos =p €osb3x)/sindyy . (49f) !
3
. MS n ns
ngy = eq co0sSzx[sin N u'g(ﬁ) cos ;ﬁ]
n n
- u'Bb(ﬁ)(cosdlx c0sb2y €OS F; + sin ;% Cc0OS63x)/sind1y
.. e . 7S e ]
* (D*U'grj(cosdyx €cosdax Sin mp =~ COS ¢ €O0Sb3x)/sindix (49g) )
\
ns . 7ms !
. L2rz = -eq cosdax[cos 7 + u'g(g) sin =)
\
+ (b+u'gr){cosbdyy cosbpx cOS ;ﬁ + sin 2% €0s63x)/sind1x i
L]
n .om
- H'Bb(ﬂ)(cosalx cosbyx Sin Fﬁ - cos ;ﬁ co583x)/sind1yx . (49h) :
i
(

19
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. 7S . s
L3Fy = en cosbax[sin N y S(ﬁ) cos Fn}
LS RS . TS .
+ u'sa(ﬁ)(cosélx CoS83x cos —p - sin ¢ €082y ) /Sind1x -
, . TS s . .
- (a-p'gr)(cosdx cosbzy sin o5 + cos o cosdax)/sinéyy | (491) -

ns n . NS,
LaFz = -ep cosbax[cos Nt u's(ﬁ) sin i

, ns . TS .
- (a-p'gr){coshiy cusbzy cos - sin I C0S62y)/5iN61 4

% . ., I T . :
+ u'sa(ﬁ)(cosblx cosdzyx sin F; + COS F% cosbox)/sind1y (493)

. TS n ns
Lary = em cusézxlsin o - n'gly) cos =l

n ns . TS .
- g'ab(ﬁ)(cosﬁlx cosbgy cos tm -~ sin o cosdpy)/sindyy
' .S ns -
+ (b+p'pr)(coséyy cosdyy sin == + cos = c0sbay)/sindiy {49K)

and

n . R R it
L3RZ = ~ep CO$63X[COS T'.N + M'B(ﬁ) s1in m]

ns . TS .
+ (b+u'gr) (cosbiy cosb3zx cOS MmoCSih €058y ) /S5ind1x

- u'Bb(g)(cosélx €osd3x sin g% + cos g; cosbay)/sindyx . (491)

THE EQUATICXS OF CONSTRAINT
We are now in & position to write the six eguations of constraint. This

well b2 done here for the special cases of a perfectly straight tube (x=0), and

a perfectly balsnved #nd aligned projectile (ey = 63x = 0). It is not necessary
to mure either one o7 tozse simplifications in order to obtain the equations,

but by making cue or the other, we avoid th- very tediously complex equations of
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the general case. Furthermore, this arrangement permits the study of the iso-

lated effects.

In both cases it will be assumed that the only mction of the tube is that
of free recoil in the axial direction. Observing that (SB)X = Qt, and that for
free recoil the only forces acting on the tube are the gas pressure force and

the mutually opposite tube to projectile forces, we have

. 1 Mx 8n, T - HgN . .
Ve = me (8 - (= - ﬁ-)(ﬁan —x! * #'8FR * B'sFF ~ PcAl (50)

For the straight tube case (k=0) where (aB)y = (BB)Z = (;b‘/B)y =

(wpr/8)z = (wpr/Bly = (wpr/Blz = v,

-

Rg = Sg + pg = [(QB)x *+ 511

Né "Ss .7,
FR)cos xy i

ns ., 7S
eml sin o + (2

ny ns né . WS.T”
+ em[Fﬁ cos i - (Fﬁ)z sin Fﬁ]k . (51)
The force equations then become
n m M n - upN
_P Pyrx _8nm T - HBY
(Po + g Pe)A + (1 + 2OV - ) ()
- B~ u'gFp - U'cFE] = mus , (52)

-

(Fedy - u's(R)(FF)z + (FR)y - u'a(}) (FR)z

ns . ms ns ns
= -Mpeplzg Sin oy + (Fﬁ)z cos 3l . (52a)
and

(Fe)z + w's(R(FR)y + (FR)z + w'B(3) (FR)y

ns ns ns . TS
= Mgep( = cos 5 - ()" sin I - (52b)
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Also,

ns
Q¥=w=r-:—Ner-0,Qz=0'
. . "s . -._
O ~0=02 , &=0 , 9,:=0.

The moment equations are then:
COSGIXMX

* LiFy(FR)y + L1Fz(Fr)z + Lipy(FR)y + Lipz(FR);

= cos81y () IT - cosday cosbay(m2) * (I1-1p) . (53a)
cosé3 -
COS52XMX + em(g?ﬁs——)[PbA + ('- - -‘)( ) - B]

+ LZFy(FF)y + Lopz(Fg); + LZRy(FR)y + L2rz(FR)2

ns
= cosézx( )IT - cosé3x cosb1y (=) (Ia-I7) . (53b)
and
€0S &9y Br m - pgN
COSGstx - (g?ﬁs——\[PbA + (-‘ "N =1 “‘;‘:‘ﬁ) B8]

* Lary(Fr)y + L3Fz(FE)z + L3py(FRly + L3rz(FR);

= cosbax(m=)Ip . (53¢)

For the balanced and aligned projectile case (eq = 63% = 0) where

(Qg)y = (Qg); = (wpr/Bly = (Wpr/g)z = (wp' /By = (wpr/B)z = 0,

Rg = 58 + pg
= [(Qg)x + 814 + [k(s)2Ny1j + [k(s)2Nylk . (54)
The force equations are therefore

m m My Br. W - uBN
(Pp + ,;E PIA + (1 + ,,—,E)[(w i) (=

= B - u'gFR - w'sFE] = mps , (55)
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(Fedy - u's(R)(Fr)z + (FR)y = w'e(F) (FR)z

g

= mpK(s) Ny |, (55a)
and

(Fe)g + ws (R (Fey + (FR)z + w'a(R)(FR)y
= mpx(é)zNz .
Also, 83 = 0 => 81y = 825 = 90° so that sindjy = sinyx = cosdzy = 1, and
Cosdqy = CcOsbgy = Sinbgy = 0.

From the above and the formulas relating the direction cosines, we get:

5 ns Cein TS

cosbyy = cos = , C€Oséyz = sin &,
. TS ns

cosbzy = - sin N + ©9Sb2z = cos =,

cos&ay =0 , cos&ay =0,

The moment equations therefore become

Liry(Friz + L1F2(FFiz + Liry(FR)y * LiRz(FRIZ

. dk . 7S ns
= {[k§ + = (s)’](Ny sin =5 - N, cos Fﬁ)

- xT(é)'(Ny cos EE + N sin Es)

. TS ns . RS
+ ks(Z) (Ny cos = - Nz sin )17

* RS . ns .. NS
- ks(Z{) (Ny cos = + Nz sin ) (I7-1a) (56a)
Lary(FE)y + Lorz(FF)z + L2py(FR)y *+ L2Rz(FR)z
dk ns

= {[k§ + s (5)3](Ny cOoSs g% + Nz sin Fﬁ)

+ nr(é)'(Ny sin = - Nz cos gﬁ)

rN
- xé(E%)(Ny sin ;ﬁ + Ny cos ;ﬁ)}IT
- xé(Eé)(Ny sin T - Nz cos =p)(I7-Ia) . (56b)
23
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and

- - - - ns
My + |-3Fy(FF)y + Lapz(FE)g + L3Ry(FR)y + L3pz(FR)z = ™~ In . (56c)

A brief note and suggestion concerning the solution of the equations would
seem to be in order here. In the first force equations, there appear the terms

Fr and Fg which as nonlinear functions

Fo = ',(FR); + (FR); .

and

Fe = V(FR)S + (FF)

of the unknowns would seem to present a difficulty. This difficulty should be
fairly easy to circumvent by first substituting estimates for Fp and Fg and
solving the equations for &. Estimates of Fp and Fg can be based on their imme-
diately previous up-bore calculation (Fg = Fp = 0 at s = 0) and, as inspection
of the equations sho;, are not critical. Then, after integrating to get s

and substitution of its value and that of s where required in the remaining
equations, the simultaneous solution for (Fp)y, (;p)z, (;R)y- (;R)z- and My is
obtained. Fg and Fg are then calculated and compared to the original estimate.
If too different from the estimate, the calculated values can be used and the
above repeated. Following this solution outline, the equations hav? been
programmed vor computer solution for a sp.ctrum of gun and ammunition com-
binations, as wiil be reported in a subsequent report.

Also, it should bz noted, in arriving at these demenstration equations, the
terms that couple the dynamic response of the tube and the constraint forces
vere dismissed by assumption. In reality, of course, the force of the projec-
tile bearing against the tube causes motion and flexure of the tube which in

turr have an effect on the forces which are their cause. For some studies this
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may not be important. But for others, it would be a reguirement to solve the

equations of constraint and the tube dynamics equations simuitaneously. This
suggests the utility the equations of constraint may have in tube dynamics

studies.
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APPENDIX
DERIVATION OF THE DIRECTION COSINE RELATIONSHIIS

Since we shall be concerned here only with axially symmetric projectiles,
it will be permissible to arbitrarily establish the initial position of one of
the transverse axes of inertia with respect to the b coordinate system. Thus,
the number of rotational degrees of freedom of the body-fixed coordinate system
with respect to the b coordinate system is reduced from three to two. Because
of the simplification in analysis that is affected, we shall select the 1-axis

to 14e initially in the x-y plane as shown in Figure A-1.

© y

@/ x

z/

Figure A-1. [Initial position of the body-fixed coordinate system in

relation to the moving coordinate system.
The direction cosines of the initial position of the l-axis are related
according to
CoS*6%1y + cos*é%yy + cosibtyz =1 . (A-1)
Now since &%y, = 61y = constant, and 6°1; = 90°, we have
COS*6°1y = 1 - cos?dyy = Sintdyy . (A-2)
Figure A-2 shows an axis parallel to the 1-axis and an axis originally
parallel to the y-axis, but fixed in the body and therefore rotated through the

angle 6, the angle of rotation of the projectiie.
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Fig

In the figure the plane defined by triangle AOC is perpendicular to the
plane defined by triangle BOC, and the plane defined by triangle ABC is perpen-
dicular to line Ey-. Therefoire, the angles ACB, ACO, and BCO are right angles

and if we set GC = 1, then CA = tan6é, BC = tané®yy, OA = 1/cos8, and OB =

1/cosé®1y. From the

Now since

and

we get

COSGly =

The positive sign is

ure A-2. Auxiliary axes fixed in the body.

law of cosines

. (0B)2 + (OA)* - (BC)® - (CA):

cosdyy —
2(0B) (0A)

- 2
tantg = L9378

rrae2l
et

1 - cos?é*
tan.G.ly = ———;E_x
cos 'ly

cos®8yy cos® 1 - 1 + cos?b®yy, 1 - 1+ cos?é
2 cos® &%y * cos? 6

® €0s6%1y cos8 = t sindyx cosh .
appropriate here and so for constant twist rifling

cosdyy = sind1x cos ;; .
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A1so

. ns
cos*byz = 1 - cos*by1x - sin?dyy cos? N (A-6)
so that
. . TS
cosbyz = sinbyy sin = . (A-T)

The four remaining direction cosine variables can now be determined with two

equations of the normalization condition and two equations of the orthogonality

condition:
CO3%82y + COS26y + COS283; = 1, (A-8a)
Cos?83y + costdyy + cosibyy =1, (A-8b)
€osb1y COSby + COSby COSSzy + COSE1z €OSS, = O, (A-9a)
€O0SO1y COS83y + cosbyy cosbyy + cosby; cosbzz = 0 {A-9b)
Solving for cosdy, in Eq. (A-9a) gives
. CoSO1y COSboy + c0sb1y COSbay g
Cosdy; = - R =T . (A-10) E
. WV
Substitution into Eq. (A~8a) and rearrangement then gives &
C0S?61y Cos*byy + COSiSy COS25y; N
+ 2c0S61y cosfy COSS1y COSS2y
+ COS%Hyy COS251; *+ COS®8y COSEdoy - COS3817 = 0 . (A-11)
If we et 2 = costSjy ¢ S05%037, b = 200881y 0SSy CUSS1y, and ¢ = Cosihpy
Ccos*S1z + cos?byy + €OS262x - €0S281z, then by the quadratic formula
-b ¢+ VYb2-4ac
COSGZV ] -_li-;———— L]
~C0S81, COSE2y cosbyy 2 cosalebos*611+cos'61y-cos'62x
cosbay = T COS38,y + COSZS - (A-12)
ly 1z
Now since

CoS?dyy + cosbyy + COS8%1, = 1 = COS28)y + COS28y + COS263y

R, e renrl ebdBSETY el aotm . . %k
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we have
cos*8yy + cos*dyy - COS*Spx = COS®S3y . (A-13)

The exprassion under the radical in Eg. (A-12) is thus simplified so we now have

- cosé cosd cosé + cosé cosé
cos&zy - 1X 2X 1y 1z 3X

. . (A-14)
COSiG1y + COS?61y

Substitution into the expression for cosd;, and rearrangement now gives

- COsé ceséd cosé * c0s61,C0OSd
cosdyy = 1x 22X 1z 1y 3Ix

(A-15)
cos*ély + cos?bqz

The & signs in these expressions for the direction cosines can be resolved
by expressing mathematically the fact that the 1, 2, 3, coordinate system is a
right-handed certesian system. That is, if the 1 axis is crossed into the 2-

axis the result is the 3-axis.

- -t -

(cosélx; + cosdyyj + cosbyzk) x (cosfaxi + cos62y3 + cos&zz;)
= cosbyyx cos&zy; - €osdix c0562z3 - cosdyy cosGZXE
+ cosbyy cosazz? + cosdiyz cos&zxg - cosbyy cos&zy:
= cosﬁ3x; + C°S53y3 + cosé3z; . (A-186)
Equating the coefficients of the same unit vectors of both sides of the eguation
gives for the ; unit vector
<e y C0802z - CUSG1z CUSOQy = COSG3x . {A-1T)
Substitution of Egs. (A-14) and (A~15) and rearrangement gives the following:
-€0s81y cosd1yx COSbyx COS&1z t cCOS281y cOSS3y
+cosby; cosdx coséax Cosbiy ¥ COS?8)z cosdjy
= cosézx(cos®byy + cos?byz) . (A-18)

For equality to exist in the above equation, it is clear that the signs

must be as follows:

-C0889, CcOSS2y €osb1y - €0sb1z cosbzy

cos&zy a (A-19)

cos*byy + cos?byy !




and

~C0S61y COSG2y C0SO1y + €OSS1y COSH3x

cosbaz = cos®éyy + COS261z

In the same way as above, it can be shown that

~C0381y €OS§3y COSbly + COSF1z COSx
cos?éyy + COS261; ’

cosb3y =

and

~C0s81y C0sd3y €OSS1z - COSOyy COSSox

cosbyz = CoS%byy + c0Sib1z

Now since

Coséjy = sindy1x cos = .

'1'24
484

cosdy1z; = sindiyx sin

for constant pitch rifling we also have

Cos*61y + COs2517 = Sin?b y(cos? ;E + sin? gg)

so that finally we have the direction cosine relationships shown as Egs.

through (26f).

31
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Rg = Sg + pg
Texts on dynamics (ref 10) give the formula

-

PB = Pp + Wph/B X Pp * 2wb/B X Pp *+ Wh/B X Wp/B X Pp

(5)

(6)

for rotating coordinate systems where the subscript b/B indicates rotation of

the b cocrdinate system with respect to the B coordinate system.

If ey is the

magnitude of the eccentricity of the projectile c.g. with respect to the spin

axis, then py, py,, and pp can be expressed as

Pn = ey (cosfj + sindk) ,
Py = emé (-sin8j + cosék) ,
and

Pp = em[-(é sing + 02 cos6)j + (é cos® - oz sin@)k]

where 8 is as shown in Figure 2.

Figure 2. Position vector for the projectile ¢.g. in the moving

coordinate system.

- n =N

(7)

(7a)

(7b)

Since the spin axis is taken in general to be the tangent to a curve moving

in space, it will be convenient to refer to the Frenet-Serret Formulas of dif-

ferential geometry. These are

= xﬁ , and o = TE - x?

dr
ds ds

(8a,b,c)




where
B=TxN , T=-=-, and kx = =

The velocity of a pouint moving along a curve in space is expressed as

-

> . _ R _ds R
VIt = 4% ¥ 4t ds - (9)

Making use of the Frenet-Serret formulas allows the velocity to be written as
vit) = == T, (10)

and the acceleration to be written as

- 2g = e 2
a(t) = dzs 1 , (ds,

dt? at’ N (11)

-

Now since sg is the sum of the acceleration of the origin of the b coor-
dinate system relative to its path and the acceleration of the point on the path

coincident to the b coordinate system oriyin, we can write

-

S dz
8 = % * gt

s 7 $,2 0 -
RN (i2)

Also note that wp,g is the sum of the angular velocities due to rotation of the
spin axis at the point coincident with the origin of the b coordinate syst2m and
motion of the ccordinate system origin relative to its path. Therefore, if we
designate Cy the subscript ', a coordinate system which 1s coincident to the b

coordinate system but fixed to the spin axis, we can write

Yb/g = Wb'/B * Wp/b' - (13)
Recalling that wp,g has no component in the direction of the spin axis, it

follows that

e

- ds dT ds 2 -
Wy /b = at T x as at T x kN (14)




-

so that

- - ds =
‘*’b/B=‘*’b'/B+aE1 xKN:(obl/B‘faE KB (15)
Cifferentiating with respect to time gives

d ds = ,
Wo/B = Wp'/B * gy [gg ¥BI {16)
which, after some manipulation, results in
- dzs dk
Wh/g = wb /8 * (K 533 * 33 ( ) 18 - KT(--)N . (17)

COORDINATE TRANSFORMATION

First of all, by observing that T = i, and N = Nyj + Nzk, it follows that

-

B = TN = Nyk - Nzj. Also,

Qg = (Qg)xi + (Q)yJ + (QB)zKk . (18a)

wpr/g = (wph'/Blyd + (wp'/B)zK (18b)
and

Wp'/B = (bo'/e)yj + (Wpr/Blzk . (18c)

Therefore,

S8 = [(Qulx + S5317 + [(@a)y + (3D)°kNy1]

. ds, 2 -
+ [(98)z + (§5) KNIk , (19a)
- .o . ds .. .~ ¢ . s -
wosg = [iwp'/Bly - gt KNzIJ + [iwo'/Blz + g KNylK . (19b)
and
= v d?2s  dx ds. 2 ds 2, .7
Wp/R = {(“b'/B)y - [k 533t gs (G3) Nz - xTiGE) Ny} i
> d2s de ,ds. 2 ds,? -
+* {lwpryglz + [ g33 + g3 (g3) Wy - &7(G) N bk . (19¢)

The total angular velocity of tre projectile is the vector sum of the pro-

jectile spin velocity and the angular velocity of the b coordinate system, or

- -

1=w+ Wy . (20)




In the b coordinate system, the components of @ are then

Q = w, (21a)
- ds .
9y = (wp'/g)y + g3 KNz . and (21b)
- d . ‘n
QZ = (wb'/B)Z + a‘i K.'x‘\.y . 121c)

Similarly, the angular acceleratio

Q

Qy = (wb'/B)y - [k

and

(wprylz + [k

#

4z

It remains now to express the
in terms of their components in th

lar velocity

91 = COSJIXQX

92 = COS&anx
and

13 = co863,8y

Remembering that 61y, &2y. and b3y

differentiation

ﬁl COSﬁlelx

+ d (co
dt

ﬁz COSGZxﬁx

, @
dt

n and its ¢ mponents are given by

=W+ Wy 3 ¢ (22)
2 = w, (23a)
dzsg dk ds, 2 ds, 2
d—s + a—s' ('d'{) ]Nz - KT(a?) Ny ’ (23b)
d2s dx . ds, 2 ds,?
a-;z + a-g ((‘R) ]Ny - KT(d—t) NZ . (230)

projectile angular velocity and acceleration

e body-fixed coordinate system. For the angu-

+ cosalyny + cosédq0z . {24a)
+ C0s62yQy + COSb2z17 (24b)
+ cosé3yﬂy + cosfyR7 . (24c)

are assumed to remain constant, we get by

d .
+ 3t (cosﬁly)ny + cosdlyﬂy

5511)91 + Cosalzflz ’ (256)

d .
* 3t (cosday )iy + cosbayfy

= (cosép, )G, + cO867,Q;, , (25b)




