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INTRODUCTION

It is known that when projectiles are fired from gun tubes, the lateral

forces of constraint may become so large as to cause engraving of the projectile

body and excessive wear of the rifling of the tube - usually at the muzzle where

the projectile velocity is highest, thus giving rise to the term muzzle wear.

Normally, a projectile will, at some time during its travel down the bore uf a

cannon tube, come to bear against a particular rifling land and follow that land

out to the muzzle; and when the same land is borne avainst with great enough

force by a large enough number of projectiles, the result may be what is some-

times referred to as spiral wear. In any case, the result is undesirable and we

wish to understand it so that it can be avoided.

All projectiles do not necessarily ride on the same land for the full

length of travel down the bore, and when the balance or alignment of a projec-

tile is such or becomes such that the shift from one land to another is violent

enough to cause rebound, then the phenomenon called balloting may have begun.

Since it is widely held that projectile balloting can have serious consequences,

it has been the subject of much study, initially by Reno (ref 1), and Thomas

(ref 2), and more recently by Perdreauville (ref 3), Chu and Soechting (ref 4),

Walker (ref 5), and Soifer and Becker (ref 6). Although it is not tUe purpose

of this study to go into the subject of balloting, there may be some application

of the results to the problem of determining the necessary conditions of projec-

tile balance and alignment and tube motion and curvature for balloting to occur.

The problem that is addressed here, however, is rather that of determining

the combined effect of projectile balance and alignment and tube motion and cur-

vature on the bearing (constraint) forces between the projectile and the tube

References are listed at the end of this report.



when stable projectile motion tRkes place. Darpas (ret 7) used some simplifying

approximations in order to isolqte the various effects and estimate their rela-

tive maximum magnitudes. His conclusion was that the dynamic unbalance of the

projectile would most likely have the greatest effect. Dynamic unbalance would

occur when a projectile becomes cocked in the bore, which as discussed by Gay

(ref 8) and Montgomery (ref 9), is the more usual case. The following six-

degree of freedom treatment of the problem is intended to establisn the magni-

tudes of the various effects of specified projectile and tube conditions.

ASSUMPTIONS OF THE MODEL

The projectile is constrained by the inner wall of the tube and the rifling

t, move in the direction of and rotate about the axis of the tube. In general,

the principal axis of inertia of the projectile is skewed with respect to the

spin axis. The gas pressure driving force acts along the tube axis, the land

driving force acts around the circumference of the bore and perpendicular to the

rifling, ano the lateral constraint forces act at the point of contact of the

rotating band and bourrelet with the bore and in a direction perpendicular to

the bore axis.

In addition, there are three frictional resistance forces normal to the

land driing and lateral constraint forcsc nM nnppnaee to the direction of pro-

jectile motion at the point of contact. The band engraving resistance force

which acts around the circumference of the bore and opposite to the direction of

projectile motion is assumed to be known, as is the gas pressure, axial veloc-

ities of projectile and tube, mass, center of gravity (c.g.) location, axial and

transverse moments of inertia of the projectile, and coefficients of friction

between the rotating band and the tube, and between the projectile body ana the

tube.

2
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COORDINATE SYSTEMS

Three coordinate systems are defined. Referring to Figure 1, the inertial

reference frame with axes X, Y, and Z is designated the B coordinate system.

The b coordinate system with axes x, y, and z originates on and moves along the

tube axis (projectile spin axis) such that the center of mass of the projectile

lies in the y-z plane and the x-axis is tangent to the tube axis. In general,

the b coordinate system has rotational velocity relative to the inertial axes of

(b/B whose component in the direction of the spin axis m 0. Finally, there is

the body-fixed coordinate system with origin at the center of gravity of the

projectile and axes 1, 2, and 3, which are the principal axes of inertia of the

projectile.

T

X

Figure 1. Inertial (X,Y,Z), moving (x,y,z), and body-fixed (1,2,3)
coordinate systems.

3
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Three force equations written with reference to the inertial coordinate

system and three moment equations written with reference to the body-fixed coor-

dinate system constitute the six equations used to solve for the six unknowns of

the problem. The six unknowns are the two components of each of the two lateral

forces of constraint (four unknowns), the driving torque around the spin axis

(one unknown), and the acceleration in the direction of the spin axis (one

unknown).

KINEMATIC RELATIONSHIPS

The relative velocity of the projectile and the tube is given by

vb - ds (1)

Since the rifling twist is a function of di.. _ along the bore, we may write

- I , .1

W 6 -= f'(s)s , (2a)r

and

1 [f"(s)(s)2 + f'(s)sJ] (2b)

For constant twist rifling we have

f(s) = s , f'(s) = and f"(s) = 0
NN

so that

PN ' (3a)
rN

and

~= - .(3b)
RN

From Figure 1 it can be seen that

RB SB + PB (4)

where the subscript B indicates reference to the B coordinate system.

Differentiating twice with respect to time gives directly

4



RB -SB + PB (5)

Texts on dynamics (ref 10) give the formula

PB = Pb + Ob/B x Pb + 2Wb/e X Pb + wb/B X WDb/B X Pb (6)

for rotating coordinate systems where the subscript b/B indicates rotation of

the b coordinate system with respect to the B coordinate system. If em is the

magnitude of the eccentricity of the projectile c.g. with respect to the spin

axis, then Pb, Pb, and Pb can be expressed as

e= m (cosej + sinek) (7)

Pb= emG (-sinej + cos~k) , (7a)
and

Pb - e,[-(O sinO + 02 cosO)j + (9 cosO - Oz sin6)k] (7b)

where 6 is as shown in Fioure 2.

Figure 2. Position vector for the projectile c.g. in the moving

Since the spin axis is taken in general to be the tangent to a curve moving

4n space, it will be convenient to refer to the Frenet-Serret Formulas of dif-

ferential geometry. These are

dBdT -dd -Tr d K- zN ,and N TB Kr (8a,b,c)

5 d



where

- - dR 1

B= N. , =a , and x p

The velocity of a point moving along a curve in space is expressed as

(t) =dR ds dR
= dt = dt ds (9)

Making use of the Frenet-Serret formulas allows the velocity to be written as

v(t) T T (10)

and the acceleration to be written as

=ds d + s
a(t) - dt2 T + ( !L) 2AN .(1

Now since sB is the sum of the acceleration of the origin of the b coor-

dinate system relative to its path and the acceleration of the point on the path

coincident to the b coordinate system origin, we can write

S2 =T + (dEs T + KN (12)

Also note that wb/18 is the sum of the angular velocities due to rotation of the

spin axis at the point coincident with the -rigin of the b coordinate system and

motion of the coordinate system origin relative to its path. Therefore, if we

designate by the subscript b'. a coordinate system wh~ch is coincident to the b

coordinate system but fixed to the spin axis, we can write

cab/B - wb'/B + wb/b' (13)

Recalling that wb/B has no component in the direction of the spin axis, it

follows that
ds ×dT ds x

wbb tTxcs c (14)

6



so that

- ds ds-
Wh/ B = 1/B' +aTXKNab B + KB(15)

Differentiating with respect to time gives

-4 d ds
Wb/B = Wb'/B + t [--B (16)

which, after some manipulation, results in

"" b d~s dK d ds
wb/B -'b'/B + [C + ( B K dt (17)

COORDINATE TRANSFORMATION

First of all, by observing that T m i, and N = Nyj + Nzk, it follows that

B2Tx Nyk Nzj. Also,

QB = (QB)xi + (QB)yJ + (QB)zk , (18a)

•b'!B = ("b'/B)yJ + (wb'/B)zk , (18b)
and

(%'/B = (wb'/B)yJ + (wb'/B)zk • (1c)

Therefore,

d's ds
SB= [(QB)x + a•"]i + [(QB)y + (c~)KNy]j

+ (B)z + (ds) 'KNz]k (19a)

a/nd= [((bl/B)y - KNZ]j + C(&b'/B)z+ dt KNy]k, (19b)

and

ds di ds K 
ds)ýb/B = {(•b'/B)y - 1K _- + L- (!L• ]Nz - KT (d-) Ny)j

d's dK ds =ds
+{((Jb'/S)z + [r, a-ta + C7 (p) ]Ny - KT(Ft) Nz~k .(19C)

The total angular velocity of the projectile is the vector sum of the pro-

jectile spin velocity and the angular velocity of the b coordinate system, or

w + = W/ • (20)

7
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In the b coordinate system, the components of 2 are then

lx= M , (21a)

Oy = (w'/B)y + ! oNz , and (21b)
ds

Qz = (wb'/B)z + t KNy (21c)

Similarly, the angular acceleration and its components are given by

0 = W + Wb/B (22)

6X = , (23a)

das dKE ds 2 ds 2
Qy = (wb'/B)y - [CK U + a-s 1t) ]NZ - KT(3) NY , (23b)

and

d2s dK ds 2 CIS 2
6z X ( b'/B)z + [K U2 *+ d-s (d') ]Ny - KT(F)-) Nz (23c)

It remains now to express the projectile angular velocity and acceleration

in terms of their components in the body-fixed coordinate system. For the arigu-

lar velocity

21 - cos6lxQx + cOS6 1 Y.0y + coS6 1zaz (24a)

$2 = cOs62 xflx + cOs 6 2y9Y + cOS62zZz • (24b)

and

C3 - cOS 6 3xQx + COS63yfly + COS 6 3zQz (24c)

Remembering that 61x, 6 2x, and 63x are assumed to remain constant, we get by

differentiation

61 = cOS61x~x + d (cosoiy)Qy + cos61yy

dt

+ S (cos 6 1z)Qz + cos 6 1zli , (25a)

cos6x~x4 (c°S5 2 y)Qy + cosa62y~y

d

dt!- (cos6 2z)az + COS62z~z , (25b)

8 =



and

63zcOS63x~x + d (cos63y)&7 + cos63,fyh

dd
+d (cosO3 z)12z + cos 6 3zS~Z. (25c)

Of the nine direction cosines appearing in the above equations, only two

are actually independent. The other seven are expressible in terms of these two

and are therefore eliminated as physical parameters. Because the conversion is

lengthy, it is presented separately in the Appendix, and only the results are

shown here.

cos6ly = sin61 x cos r (26a)
rN

cos•lz - sin6ix sin !!? (26b)
rN

ffS 7rs

- COS6lx COS62X COS R.j - sin ý-N cos63x
Co5s2y = SorIX (26c)

NrS 7TS
- coS6ax cos62x sin R' + cos R- cos63x

cos62z = sin~x, (26d)

7rS ?FS

- cosA,.. rnA-. r~ns +~ * zn :-. t-nr

Co563y = , (26e)

7rs its
- cos61 x cos6 3 x sin • - cos RN c0s62x

c0s63Z = sinil (26f)

and

cos26 1, + cos202x + COs26 3 x = 1 . (27)

Performing the differentiation indicated on the direction cosines in the

formulas for the angular acceleration components reveals the following:



d (coz,51y) z -~ cos6lz (is (28a)

d (CS1z )sl (28b)

d (28c))= ~si

Ft (CO562y) = - C0562Z (ffF-) ' k28c

d 7rs
jt (COSO2z) = COS62y ~ (28d)

d s
Ft (COS63y) = - COS.53Z (IS) .(28e)

and

d (7r(;f
it- (CO563z) = COS 6 3y rR(2f

Therefore,

Il CQS6flxsl +4 cosaiy(Qy + (U)SIZ]

+ cos6 1z[Q - ')n'Y] (29a)

iSI

$2cOSO2x1~x + cOS62y(l y + (Nj)Sz

ad+ COS62z[1gz - ('rN)Q2Y] (29b)

=3 cOs 6 3x(gx + cOs6 3y[Qy + (-)z

+ cOsO3z[flz Sl~)~y] -(29c)

FORCES ON THE PROJEC~TILE

Three of the six equations reeded for solution of the problem are available

from the equation of motion

n

Fi pRB (30)

10



Of the six forces acting on the projectile, one is the known gas oressure

driving force and two are the u~known lateral constraint forces of the problem.

The three remaining forces are frictional resistance forces which arise from the

band pressure force, spinning torque, and constraint force applied between the

projectile and tube in relative motion.

Axisymmetric Band Drag Force

e

t a n ' l f ( S ) 
' c os s

Fni

F xS77J

DX

1) 11,9(g,'FV.D)SinW

Figure 3. Forces in the developea circumferential (x-0) plane.

Figure 3 is a development of the rifling curve onto the plane defined by

the x and 0 axes. The band pressure drag force is denoted by D, the normal land

driving force is denoted by Fn, and the angle between the tangent to the rifling

curve and the x-axis is denoted by *. If we assume that D is proportional to

the width of the rotating band in the direction of its movement relative to the

tube, then we can write

D = B/cos* . (31)

Summing forces in the x direction gives

Fx = - Fn sirf - (MBFn+D)cos5 , (32)

and since the sum of the forces in the 6 direction are equal to the spinning

torque divided by the radius of the bore, we have

]; Mx
r- Fn costj - (FBFn+D)sin* 

(33)

S~11
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Fn can be eliminated between Eq. (32) and Eq. (33) by rearranging and dividing

one by the other

- Fx - D cos* = sinq + pB cost34

Mx + 0 sinnip cosW - lB sinq(

r

Dividing the numerator and denominator of the right side of the above equation

by cos * gives

- Fx - B V'(S) + AB ( 5
____ ___' ' -ff' s (35)

S+ Bf'(s) A Bf (s)
r

For constant pitch rifling f'(s) so that

Mx B n r-IIBN

F (rx N - - B . (36)

Lateral Force Friction Components

The lateral force, FR, at the n ant•he th terint l force, FF, Q- thl

bourrelet have frictional forces associated with them which have magnitude ABFR

and psFF, respectively. These frictional forces act along the bore surface

opposite in direction to the motion of the projectile and therefore have axial

and tangential components as shown in Figure 4.

I1le

Figure 4. Components of the lateral force associated friction forces.

12



Again, for constant pitch rifling tanS = fV(s) ! , so we have

cos* - 1 = 1 (37)
,'tanaW + 1 )((7r/N)2 + 1

and

sin* cos•i tan = -,/N (38)
/(Yr/N)=+ 2

The tangential component can now be broken up into y and z components as in

Figure 5.

For right thand twist

z

9BF,

+1 N

Figure 5. Lateral force components in the moving coordinate system.

13
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From the similarity of the force triangles in Figure 5, the following is

derived:

r BFR:/N) = BFR(/N) (FR)z = _B(FR)z(/N (39a
(X/N) .1J _(/N) 2 + 1 FR V(n/N)2 +

f(7r/N) 2 + 1-

L BFR(n/N) - UBFRI( /N) (F-R = pB(FR)y(7T/N) '39b)

Vt(-7/N)2 -+ 1] V(-(,/N)2 .. 1 FR Vf- N -+ 1

and similarly for the force, FF.

"OMENTS ABOUT THE BODY-FIXED AXES

In addition to the three equations derived from the equation of motion, we

require three more equations to give us the six necessary for a solution. These

additional equations are derived from Euler's equations which are written with

respect to the body-fixed axes as follows:

M1 x LJIJ - 2Q23 (I 2 -I 3 ) , (40a)

M2 = h2I2 - S 3Q1 (I 3 -1 1 ) , (40b)

and
M3 = L3 13 - }102(Il-I2) . (40c)

Note that the quantities I, and 12 are the transverse moments of inertia of the

projectile. Now since our concern is with repeatable conditions that occur with

regularity, there is little point in differentiating between the two transverse

moments of inertia of projectiles which are usually loaded with random angular

orientction and are in any case nominally equal. Therefore, we shall say I, =

12 - IT and redesignate the axial moment of inertia, 13, as IA. The Euler

equations then become

1



M1 E 61IT - 020 3(IT-IA) , (41a)

M2 = 021T - 0321(IA-IT) , (41b)

and
M3 = 63 1 A . (41c)

The moments about these axes are given by the triple product

Mn = M - Un = (rxF) - Un , (42)

where r is the position vector from the origin of the body-fixed axes to the

point of application of the force, F, and the unit vectors, un, for the body-

fixed axes'are expressed in terms of the direction cosines as follows:

Uf Z COS6nx i + COO6ny j + cOs6nz k (n=1,2,3) (43)

For the axial forces, the unit force vector is i so that

r - Pb - em(sin j k + cos - N) (44)

r x i U - em (sn ý- J - cos -" ) , (45)

(rxi) U. 0 , (46a)
SCOS523X

(rxi) • u2 = em • , (46b)

and

cOs 62x; • co•62x(46c)
x u= m sin 6,x

The unit moment vector for the rotating band torque is , so that for right-hand

twist we have

i - U] V CoS61x , (47a)

I u2 = cos 6 2x , (47b)
and

I • u3 - cos63x - (47c)

15



The position vectors of the points of application of the lateral constraint

forces and their associated forces are shown in Figure 6. The distances from

the c.g. of the projectile along the x-axis to the rotating band and the

bourrelet are given b, b and a, respectively.

ROTATING V
BAND -)BQURREWET

-N.
bi oi x

r

Figure 6. Application points of the lateral constraint forces and their
associated friction forces.

From Figure 6 it can be seen that

S rF

rR = - g• [(FR)yi + (FR)zk] , (4Gb)

The position vectors are then written as- •s rF rs rFai - [e6 cos n + p (FF)y]i - (er sin force (FFdtek

and

I.s r. 7s r -
ai [e co rN +iLF (Fp)yJi-(m i rN- +-F(F~

- bi - [em cos R + (FR)y]3 - [em sin -s + FR (FR)zjk

Taking the vector product of the position vectors and the respective force vec-

tors yields the moment vectors

16
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.Is coS .;z, IFyem[(FF)y sin ir- Ci - a(F,)zj + a(FF)yk

and

em[(FR)ysin ( - COS r-D + b(FR)zj - b(FR)yk

For the sake of convenience, make the following abbreviations:

IPB

+1

and

YV(r/N)Z + 1

Using the above notation, the frictional forces associated with the lateral

forces are

"'s[-FFi (FF)Z(!)j + (FF)y(p)k]

and

9'B[-FRi (FR)z()j + (FR)y( • )k

And the vector products of the respective position vectors and the above forces

are

- A's(!)[em(FF)y cos si+ em(FF)z n - rFF]i

- A'S[*(o)((F)y - emFF sin F- - r(FF)z]j

- g'S~a(!)(FF)z + emFF cos L-+ r(FF)y]k

IT ar
- IA1B( )[em(FR)y cos + em(IR)z sin U+ rFRirN emF+ r FN

+ A'B[b(!)(FR)y + emFR sin * + r(FR)z]j

+ ÷L Bb(N)(-R)z - emFR cos FN - r(FR)y]k

The moment of the lateral constraint forces and the associated friction

forces about the origin of the body-fixed axis coordinate system is then

expressed as:

17



{e((F) ~lir - rs 7-

em[(FF)y sin - (FF)z Cos F• + (FR)y sin US - ( cR)z cos F-N]

- M's(•)[eml(FFy cos + em(FF)z sin + rFF]

Irs
- Ig'B()[em(FR)y COS F-' em(FR)z sin is+ rFR)

(- m(FF)z + b(FR)z - I'S[a(!)(FF)y - emFF sin f-l - r(FF)z]

+ 9'B[b(!)(FR)y + emFR sin +s + r(FR)z]Ij

+ {a(FF)y - b(FR)y - u's[a(h)(FF)z + emFF cos F-N + r(FF)y]

+ 9'B[b(!)(FR)z - emFR cos L- r(FR)y]}

The components of this moment vector in the direction of the body-fixed

coordinate axes are determined by taking the scalar products with the unit

vectors of the body-fixed axes cosanxi + COS6nyj + cosQnzk (n = 1,2,3) and

adding to the axial force moment and the spinning-up torque for substitution

into the Euler equations. These components of the moment vector take the form

LnFy(FF)y + LnFz(FF)z + LnRy(FR)y + LnRz(FR)z (n = 1,2,3)

where LnFy, LnFz, LnRy, and LnRz are functions of the known parameters of the

problem only. For the sake of brevity in writing the equations of constraint.

the coefficients are given here as:

LIFy " em cos6ix[sin r - PS(7) cos r-]

"1M'sa(A) sin61 xCOS i + (a-p'sr) sina1 × sin s (49a)
~ r-s '(4 a

sin

1LFz= -em cos61x[C°S r• + M's(j )sn rl]

+ (a-A'sr) sin6 1x cos E-s + p sa(ý) sinOlx sin - (49b)

18



Irs i irs]LlRy w em cOs51 x [sinl r-& n COS I-1

N rN

L -em(~ Sifl4 lx cos E- (+ g'B8r) sin~ is-n,4c

-(b+p.'Br') sif~lOxcos E- - mjeb(7) sinflx si 'Si (49d)

L2Fy - em c0S62x(sifl p Is(7) Cos fs

+ P'.sa(7)(:.OSulX COS62x COS I-+ sin I- COS63x)/sin6lx

I , , r s 7 r s
(a-pIsr)(cos6lx cos62x si rN- iN COS Nco53x)/Sifl6l)( (49e)

L2Fz 0 -em cos62x(cOs !- + A s jflsn 5

(-A'esr)(co' ly ' s12 COS Is' in Mr. cos53v)/5lfl6i,

ir Rs irSI
4 .L'sa(!4)(cos~l, cOs52x sin F- -Cos -N cos63x)/sin~ilx (49f)

,~IirIS irsir

L2Ry = em cOS62x(CSi J + l"(7) CS rT4

1971



L3Fy a em cOS6 3 x[sin p - J" s(!) cou-

+ W'sa ý)(cos6lx cos63, Cos F - sin a-s cos62>)/sinlx

NN rN
(a-Ji'sr)(cos6lx coS63x sin -+ cos I- cOs62x)/sinflb (49i)

ji' a~)' crM rN 6x/~Ox(J

L3Fz = -em cos6 3 x[CS it + f's(l) sin i-r

itS VS
(a-1I'sr)bcos51x cOs63x cOs F- - sin cos6 2x)/sin6ix

C+'sa*()(cos6lx cos63x sin t- ffs cs62x)/sislx (49i)
N- r + Cos R- c

L3Ry = em coS63x[sin is - 'B(7) cos i-]

- ( Bb(!)(cos51x cOsb3x cOs 1 - sin Us cOs62x)/sin6lx

NrN rN

Yrs irs

+ (b+g'er~fcOS~ cos6iý sin - + COS 0-n cos6i2)/sin6f ,(49k)

and

L3Rz v -'em c°s63x[C°S 7T + PIB(7) sin Yr--

ITS ffS

+(b+P'Br)(cos~ix cos63x cos FA - sin FN- cos62x)/sin~lx

- 'Bb(7)(cos61x cos63x sin is + cos Yr cos62x)/sin61x .(491)

THE EQUATIMC OF CONSTRAINT

We are now in a position to write the six equations of constraint. This

w;13 bi done here for the special cases of a perfectly straight tube (K=O), and

a perfectly babnc.ad and aligned projectile (em = 5 3x = 0). It is not necessary

to make either one o-ý t6se simplifications in order to obtain the equations,

but by making oiie or the other, we avoid th- very tediously complex equations of

20



the general case. Furthermore, this arrangement permits the study of the iso-

lated effects.

In both cases it will be assumed that the only motion of the tube is that

of free recoil in the axial direction. Observing that (QB)x = vt, and that for

free recoil the only forces acting on the tube are the gas pressure force and

the mutually opposite tube to projectile forces, we have

Vt 1 [B - (M-x - Br 7rM ) + W'BFR + II'SFF - PcA] (50)

For the straight tube case (K=O) where (QB)y = (QB)z = (wb'/B)y =

(('/B)z (aib'/B)y (wb'/B)z v,

RB = SB + Pe [(QB)x + s]i

-emirs-- sin !-S + (Ls)2 cos U-s

S + COS s

+ em[! cos S - ( )2 sin E]k . (51)
NrN F rN

The force equations then become

(Pb + 24~mt PC)A + (I + 2 )[U-- - B-)(ir - BN

- B - M'BFR - L'sFF] = mps , (52)

(FF)y - P's(l))(F)z + (FR)y - A'B(7)IFR)z

-mpem[r[ sin 1-F + (-i) Cos (52a)

and

(F)z + PA'SN) (FF)y + (FiR)z + p'B(ji)(FR)y

=pem[m- cos rN - (rUN sin M-] (52b)

21
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Also,

if;
W~~ - y= , ,0 Q

The moment equations are then:

coS61xMx

+ LIFy(FF)y + LJFz(FF)z + LlRy(FR)y + L1JRz(FR)z

c~sIx(S-)T -C052xCOS63x(Is) (IT-IA)(5a

COS63x Mtx Bir (n - ABNcos62x14x + em( i--I(-~lPbA + r N sjMBT- N~ B]

+ L2FY(FF)y + L2Fz(FF)z + L2Ry(FR)y + L2Rz(FR)z

iLS 2
c0562x(IS-)IT - COS63x C0545lx rN AT 5b

and rA

COS62v Mx B.t 7r - PBN
Cos63xMx -em( -=[PbA + r H'' B]sin6lx -~ - N

+ L3Fy(FF)y + L3Fz(FF)z + L3Ry(FR)y + L3Rz(FR)z

*COS63x(7Fr)IA -(53c)

For the bal~anced and aligned projectile case (em = 63x =0) where

(QB)y =(QB)z (wb'/B)y =('Jb'/B)z =(WJbI/B)y =((aib'/B)z =0

RB - SB + pB

[(Bx+ 9]i + (k(s)zN~]j + [k(s)gNy]k (54)

The force equations are therefore

( ýb Pc)A + (I + -)- Bt) 7'~ - WBN(P tMt r N AUBi -N
- - I.'BFR - IPLSFF] mp (55)
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(FFy - IAs(ý4)0Fz + (FR)y - W ý R

W MpK(;)'Ny (55a)
and

(FF)z + IJ'sL(*)F)y + (FR)z + I.1'8(7)(Ry

aMPK(;)tNz

Also, 63x 0 )
61x - 62x =900 so that sin~jx = si6x= cos6 3x 1, and

COSOIx = COS62x -sjfl6 3x - 0.

From the above and the formulas relating the direction cosines, wie get:

is Vrs
COSa1y Cos 1-,cosal1 sin

COSO2y -sinl FN ,cos6 2z CS

cos63y = 0 cos63y, 0

The moment equations therefore become

J~Fyrz I. L1ZF~ + 1y~~ LIRz(FR)z

K§ + !L (J)2 ](Ny~ sin U- Nz cos U

- ICT(i)R(Ny cos Is+N sin 12)1
rN rN

+ K;(S-)(Ny cos 1 - Nz sinl Is)IIT

- csy-) (N~ cos S:+ Nz sin I)(IT-IA) .(56a)

-4 - rN rN

L2Fy(FF)y + L2Fz(FF)z + L2Ry(FR)y + L2Rz(FR)z J

* (Kt + !L (s'(NY cos 1-+ Nz si 7s

+ KT(;)*(Ny si - N cos U)

-Ki(A)(NY sin is+ NZ cos Ls)IIT

1ic(I-)(N sin ý - NZ n)I-A

- rN Y rN - zcos R)I-A (56b)
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and

Mx + L3Fy(FF)y + L3Fz(FF)z + L3Ry(FR)y + L3Rz(FR)z = Is- IA . (56c)

A brief note and suggestion concerning the solution of the equations would

seem to be in order here. In the first force equations, there appear the terms

FR and FF which as nonlinear functions

FR -(FR)y + (FR);

and

FF /(FF)y + (FF)zF z

of the unknowns would seem to present a difficulty. This difficulty should be

fairly easy to circumvent by first substituting estimates for FR and FF and

solving the equations for 9. Estimates of FR and FF can be based on their imme-

diately previous up-bore calculation (FR = FF = 0 at s = 0) and, as inspection

of the equations show, are not critical. Then, after integrating to get

and substitution of its value and that of s where required in the remaining

equations, the simultaneous solution for (FF)y, (FF)z, (FR)y, (FR)z, and M. is

obtained. FR and FF are then calculated and compared to the original estimate.

If too different from the estimate, the calculated values can be used and the

above repeated. Following this solution outline, the equations hav been

programmed for computer solution for a spictrum of gun and ammunition com-

binations, as wiNl be reported in a subsequent report.

Also, it should be noted, in arriving at these demonstration equations, the

terms that couple the dynamic response of the tube and the constraint forces

were dismissed by assumption. In reality, of course, the force of the projec-

tile bearing against the tube causes motion and flexure of the tube which in

turn have an effect on the forces which are their cause. For some studies this

24
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may not be Important. But for others, it would be a requirement to solve the

equations of constraint and the tube dynamics equations simultaneously. This

suggests the utility the equations of constraint may have in tube dynamics

studies.
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APPENDIX

DERIVATION OF THE DIRECTION COSINE RELATIONSHIPS

Since we shall be concerned here only with axially symmetric projectiles,

it will be permissible to arbitrarily establish the initial position of one of

the transverse axes of inertia with respect to the b coordinate system. Thus,

the number of rotational degrees of freedom of the body-fixed coordinate system

with respect to the b coordinate system is reduced from three to two. Because

of the simplification in analysis that is affected, we shall select the I-axis

to 14e initially in the x-y plane as shown in Figure A-i.

0
6 0

Figure A-!. initial position of the body-fixed coordinatc. sstem in

relation to the moving coordinate system.

The direction cosines of the initial position of the i-axis are related

according to

cos26°lx + cos'6"ly + COS961lz = 1 . (A-i)

Now since 6°x = 6 1x = constant, and 6 *1z = 90', we have

cos26*ly = 1 - cos• 6 1x - sinA6lx • (A-2)

Figure A-2 shows an axis parallel to the 1-axis and an axis originally

parallel to the y-axis, but fixed in the body and therefore rotated through the

angle 0, the angle of rotation of the projectile.
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CCA

Figure A-2. Auxiliary axes fixed in the body.

In the figure the plane defined by triangle AOC is perpendicular to the

plane defined by triangle BOC, and the plane defined by triangle ABC is perpen-

dicular to line 5y'. Therefor'e, the angles ACB, ACO, and BCO are right angles

and if we set OC = 1, then CA = tanG, BC = tan6=ly, OA = 1/cosO, and 05 =

l/cOs6 ly. From the law of cosines

(08)2 + (OA), - (BC)2 -(CA)2 A3
cosaly 2= ,)(-A (A-3)

2(08) (OA)

Now since

tanze = 1 -cos ,

and
1 - cos'.51

tan2ly a I - cos26.ly
COSS601y

we get
Cosa 1y Cos*aY2 cos L I Io + cos I.Y - 1 cos 2'

CS1/2 Cos 69Y + Cosa 6

= cos6*ly cos6 = t sin6lx cosO . (A-4)

The positive sign is appropriate here and so for con3tant twist rifling

cos61y = sin6jx cos .r" (A-5)
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Also

COS86 1z -1 - Cos&6lx - sifl6jx cos21(A6
rN(A)

so that

cos#51z -siflOIX sin ! . (A-7)
rN

The four remaining direction cosine variables can now be determined with two

equations of the normalization condition and two equations of the orthogonality

condition:

-cO0a 26x + C0516 2 y + COS2 6z 1 ,(A-6a)

COS2 63x + cos'63y + COS'63z = 1I (A-8b)

cOs~lx cOS62x + COS61y COS62y + Cos61z COS62z = 0 *(A-9a)

COS6lx C0S63x + cosaly COS63 y + COS61z cOs63z =0 .(A-gb)

Solving for COS62z in Eq. (A-9a) gives

cosa1 w COS61V + COSBJij C05402,,
COSO2z - C,51z (A-10)

Substitution into Eq. (A-8a) and rearrangement then gives

cO5'l5Iy cOS12Oy + COS&62y cOsaOlz

+ 2COS6ix cOs62x cOsOly 0050 2y

*C053 02x COsti6iz + COS'dix COS26 2 x - C0S261z =0 .(A-11)

if e eta os-A 4 l11, 2CS"x CG6x ---ZI'IY aluL u 2x

C05351z + COS261x + COS262x - cOs261z, then by the quadratic formula

-b ± 6 -2i4COSd2y rz 2a

COSO~y -Cos~ix COS62 x cOsO1 y ± cos6lz~cos261z+cos261 y-c0s34262 A-2COS62y ~~C05'Oly + COS251z x- (12

Now since

coSsalx + cosal1y + cos6iz = 1 =cOs'51x + cos'26x + cos263x
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we have

COS'Oiz + COS'Ojy - cOS'52x =COS'53x .(A-13)

The expression under the radical in Eq. (A-12) is thus simplified so we now have

COS6 - COSdix COSO2x cos81y ± COs6lz COSO3x (A-14)

cos5~ -cos 1 oLy + Cos POfl

Substitution into the expression for cos62 Z and rearrangement now gives

COS62 CO56lx COSO2x COSCiz ± C0551yC0503x (A-i5)
cos'61Y + C05'5iz

The ± signs in these expressions for the direction cosines can be resolved

by expressing mathematically the fact that the 1, 2, 3, coordinate system is a

right-handed certesian system. That is, if the 1 axis is crossed into the 2-

axis the resu~lt is the 3-axis.

(COS6ixi * cosO1jj + cosbizk) x (coOz6xi + cos5 2yj + coso2Zk)

=cosbIx cos62yk - cos~ix cosd2zj - cos51y cos62Xk

+ cos51y cosO2zi + cos~iz cOsO2xj - cos~iz coO62yi

COS53ui + COsO3yJ + cosO3Zk .(A-16)

Equating the coefficients of the same unit vectors of both sides of the equation

gives for the i unit vector

COS6jy COS'zz - COS~iz cOsO2y -COS6ax . A7

Substitution of Eqs. (A-14) and (A-is) and rearrangement gives the following:

-Cos~py cosoix cosO2x COs~iz ± cos261Y cosb3x,

+COS~iz cOs~ix ccstzx cos61iy cosdiz coso3x

- 0568x(cosuiaiy + cos'617) .(A-18)

For equality to exist in the above equation, it is clear that the signs

must be as follows:

COS62y CO551x coso2x cos51ly - CO5Oiz CO563x (-9
cos62~ a' cos'Oly * cos'aiZ a(-9
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and

COS2,L- C0561x COS62x COSO1z + C0S61 y COS63X A9b
CC.ISO~z COS*61Y + COS261Z (Alb

In the same way as above, it can be shown that

cosh - cQS6ix cOs63x cOs61ly + C0SO1z c0s62x (-0
cos5 3~ - COs26 1 y + cos 26iz '(-0

and

cos63z c0S61x c0s453x cos61z - cOs61X cOs62x
cOS63, -COS'6 1y + COS26iz

Now since

COS6ly = sin51 COS

and

irscos6iz x sin6jx sin -

for constant pitch rifling we also have

CO26y+ os6Z sn6,~cs rN+ sin' - (A-21)

so that finally we have the direction cosine relationships shown as Eqs. (26a)

through (26f).
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RB = SB + PB (5)

Texts on dynamics (ref 10) give the formula

PB = Pb + Wb/B X Pb + 2 Wb/B X Pb + Wb/B X GJb/B X Pb (6)

for rotating coordinate systems where the subscript b/B indicates rotation of

the b coordinate system with respect to the B coordinate system. If em is the

magnitude of the eccentricity of the projectile c.g. with respect to the spin

axis, then Pb, Pb, and Pb can be expressed as

Pb = em (cosOj + sinek) (7)

Pb = em& (-sinfj + cosek) , (7a)

and

Pb = em[-(e sinO + O• cosG)j + (0 cosO - 0 sinO)k] (7b)

where 0 is as shown in Fig1;re 2.

Figure 2. Position vector for the projectile c.g. in the moving
coordinate system.

Since the spin axis is taken in general to be thr: tangent to a curve moving

in space, it will be convenient to refer to the Frenet-Serret Formulas of dif-

ferential geometry. These are

dB dT _dN

= -rN dT = KN , and T- = TB - KT (8a,b,c)
ds 'S



where
-. . . . dR dc 1 .
B = T x N , TK=a ,an

The velocity of a point moving along a curve in space is expressed as

R ds dR
v(t) = -- = (9)

Making use of the Frenet-Serret formulas allows the velocity to be written as

v(t) = (10)

and the acceleration to be written as

- gs + ds.K (11)a(t) = T c

Now since sB is the sum of thy acceleration of the origin of the b coor-

dinate system relative to its path and the acceleration of the point on the path

coincident to the b coordinate system origin, we can write

ds ds

s1= QB + dt (a)iN . (12)

Also note that Wb/B is the sum of the angular velocities due to rotation of the

spin axis at the point coincident with the origin of the b coordinate syst3m and

motion of the coordinate system origin relative to its path. Therefore, if we

designate by the subscript 0', a coordinate system which is coincident to the b

coordinate system but fixed to the spin axis, we can write

wb/B = G0b'/B + bib/b' (13)

Recalling that Wb/B has no component in the direction of the spin axis, it

follows that

ds' dT dswb/b'= - T x (14)
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so that

- ds ds
Wb/B = Wb'/B + Tl T x KN Wb'/B + at KB (15)

Differentiating with respect to time gives

Sd ds (16)
Wb/B = Wb'/B + aT t KB]

which, after some manipulation, results in

+ d2s dc ds dsWbD/B = 6b'/B + [K a + d(t)]- Ta) N.(17)

COORDINATE TRANSFORMATION

First of all, by observing that T - i, and N Nyj + Nzk, it follows that

B = T'N - Nzj. Also,

QB = (QB)xi + (QB)yj + (QB)zk (18a)

Wb'/B = ((b'/B)yJ + (Nb'/B)z , (18b)
and

Therefore,

d 2s ds 2
s8 :(QB)x + aiJ + [(QB)y + (ai) KNy]j

- ds 2 4

+ [(B)z + (s)2 KNz]k (19a)

ds - d% -d
iWb/B (w°b'/B)y - a KNzJ] + [(wb'/B)z + at KNyjK , (19b)

and

d2s dK d ds2
Wb/B = ((Wb'/B)y - [K --- + -- (d) ]Nz - KT(at) NyIj

d 2 s dc ds I dsT 2
+i((e'/B)z + [K a~i + as (ad) ]Ny - KT(di) Nz~k (19c)

The total angular velocity of the projectile is the vector sum of the pro-

jectile spin velocity and the angular velocity of the b coordinate system, or

S= h + Gb/B • (20)
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In the b coordinate system, the components of Z are then

Qx = W , (21a)
S~ds

=(bL/B)y+ -KNz and (21b)

ds ,"Y = (wb'/B)z + dt (21c)

Similarly, the angular acceleration and its crrmponents are given by

4 .

W + b 3 , (22)

x = • (23a)

Sd2 d K d!s 2 ds L'Q =K 2 -S + d (•) 2 ]Nz - KT(a•) Ny (23b)
y=(WAb'/B)y dtzaecd

and

das d K ds 2 ds 2
(Wb'/B)z + [K + d (t)]Ny - KT(at) Nz (23c)

It remains now to express the projectile angular velocity and accelerat 4on

in terms of their components in the body-fixed coordinate system. For the angu-

lar velocity

91 = CoS6i1x + COS 6 1yQy + coS61zQz , (24a)

92 = CoS62x~x + cos62ysly + cos62zaz , (24b)

and

93 = c°S63x'lx + cos6 3 yQy + cosaszsz (24c)

Remembering that 6 1x, 6 2x, and 63x are assumed to remain constant, we get by

differentiation

LO = cS(1xlx + L (C0S 6 1y)Qy + coS6 1 y/y

+dL (cos61z)Qz + cos61z z (25a)

i2 = COS6 2 xQfx + (c°s6 2 y )Qy + COS 6 2yay

d(
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