[
[
m
O
-
-
<
-4
"

D
0..
1

CAL CENTER ATLANT
DOT/FAR/CT-TNG?/




o : R
m,..,”.\.nuw-w % \”..nu...w\r.....u.\m. .
‘ 2 mw I XAXEER

<
- %V& - R ) -hs- -W

;......._&
\rka w&l\e\*\.-u..... ...M»

LR R S S I

..,.-'-...'-. -. \..\-

.
. LN L
~.-\.F'J" 3

-
-

-
»
u'}.n_.r

-
e

.

vm——
E——
—_—
==

add

SEEE!

13

‘.‘Hw—w—w_umu....u

°)

Y

LUTION 1ES1 CHART

e
1
==
—

cooF STANDARDS 196 %

LZ ]

MICROCOPY RESO
NATIONAL BURER

=
I

et
S

R)

1% Faa g
ot ’a‘i.il ‘hl

3

by

v
KR

W

*
»

W

1
‘,Y,




Optimization of the Dilation e
Characteristic on the '»
Control Jurisdiction of an S
Area Control Facility 335

AD-A191 720

-

[ note techn

_Robert G. Mulholland )

_ ity
DTI C NS
ELECTE s

APR 0 1 1988 ¥
< iy

August 1987 cA H

DOT/FAA/CT-TN87/39 g{-*t \

ca

fén‘e techn

This document is available to the U.S. public
through the National Technical Information o
Service, Springfield, Virginia 22161. Yy

v

Q

US Department of Transportahon
Federal Aviation Administration

Technical Center
Atlantic Cit, International Airport, N.J. 08405

DISTRIBUTION STATEMENT A
Approved for public relrme;

DY et 38 4 i US9D -

B AL




Ly a t ot e B T I W U o T O R OO O e oY T O T O R T T T O TR

C e e mbem el i emie o meem e e awen s e . e e

v ) Technical Report Documentation Page

By 1. Repert No. J 2. Gevernment Accession No. 3. Recipient's Ceteleg Neo.

DOT/FAA/CT-TN87/39
4. Title snd Subtitle . s, imrl Dete

August 1987
6. Porferming Orgenisetion Code
ACT-130

8. Porlorming Orgenizarion Rapert No.

Optimization of the Dilation Characteristic on the
o Control Jurisdiction of an Area Control Facility

7. Auther's)
R Robert G. Mulholland DOT/FAA/CT-TN87/39
W 9. Perlorming Orgenizetion Nome end Address 10. Werk Unit No. (TRAIS)
%: U.S. Department of Transportation
;g: Federal Aviation Administration Technical Center 17. Contrecs or Gront Ne.
et Atlantic City International Airport, New Jersey 08405

13. Type of Repert ond Perioé Covered

t 12. Spensering Agency Nome end Address

:f U.S. Department of Transportation Technical Note

1 Federal Aviation Administration

Q::; Advanced Automation Program Office 14. Spensering Agency Cede
ey Washington, DC 20590

ok 15. Supplementery Netes

a5
"
iR
(\ 16. Abstrect

In an air traffic control enviromment such as the National Airspace System the control

5

ha‘ function is based on stereographic representations of aircraft positions in a plane

5% tangent to a sphere with a center collocated with the center of an eliipsoidal model
,ﬁt of the geoid. The variation of the dilation (i.e., the discrepancy between the length
ﬁﬁ of an infinitesimal arc on the model surface and the image of the arc in the plane)

Y over the control jurisdiction of an air traffic control facility is one of many

factors that adversely affect the ability of the facility to maintain separation
standards. Techniques are disclosed for selecting a tangency point and a radius for

aﬁ the spherical support of the stereographic plane that minimize the variation of the
:ﬁ» dilation over the control jurisdiction about a predetermined constant. The constant
ﬁy can be viewed as a specification of the scale of the map that is the stereographic
W image in the plane of the portion of the surface of the earth model underlying
4 . controlled airspace.
P
C‘.
e
!.'): ’
-
'.‘
0
)
[5::
i’ 17. Koy Words 18. Diswibution Stetemen?
K Air Traffic Control, Stereographic This document is available to the U,S.
. Projection, Dilation, Conformal Sphere, public through the National Technical
o Tangency Point Information Service, Springfield, Va. 22161
o
w |
':, 19. Security Clessif. (of this repert) 2. Security Clessil. {of this pege) 2). Ne. of Peges | 22. Price
.‘,’
38
" Form DOT F 1700.7 (s-72) }

i Reproduction of complored page autherized

C Tt T ke Y T S N R Ry o bt S [ '.,-l\l 'mmﬁﬁ:ﬁ'u\:\:\iﬁi\ﬁiﬁzﬁ{‘:\M\:ﬁ‘:\: '..‘\1‘-%\&




RIS T A M i R O SR VA L A KX AR KRR VU W WUV VT R T S oS, g 3. o

TABLE OF CONTENTS
Page
EXECUTIVE SUMMARY v
INTRODUCTION | 1
QUANTIFICATION OF DILATION =
ESTIMATION OF DILATION 5
. SELECTION OF THE SPHERICAL SUPPORT RADIUS 7
SELECTION OF THE TANGENCY POINT 19
) DILATION AND THE AAS DESIGN LIMIT 14
CONCLUDING REMARKS 16
APPENDICES 18
= Breat Circle Distance and Angle

- Angle Estimation Error

- Effect of Angle Estimation Error

on the Computation of Dilation

Accuracy of the Dilation Estimate

- Optimal Radius

- Estimation of Angular Extremums

- Effect of Angular Extremum Approximations

on the Estimation of Dilation Extremums

uniqueness of cthe Jptimai Tangency fPoint

- A Linear Programming Approach to
Tangency Point Selection

J - Spherical Squares

Ommo OowD
1

~ T
}

Accesstion For
— .
. NTIS GRA&T—?L
DTIC TAB 0
Unannocunced 0

Justification
H

!

By ...
Distrituticn/

~—

Availalbility Coulrg

f—_A‘ lAvail ané/ee
‘Dist ] Sper 111,«-\\

I
il

Tt

~
|

iii

A R R )

-t

A

‘,‘;;‘; =,

AL

G'

e s i e’

b Yo%

- m_ e

<3

A0 W N I N CA I A PR PL PG L A O (N i G S ER I T PR TNV {



Table

- WIST OF TABLES

Page
Estimation Accuracies of d/é6@ and g S
Variation of h(J) with the Magnitude of J &6
Bounds on maglw(G:) - w(BG)] and
maglw(Be) - wi(Ds/60)1 9
Dilation Sensitivity ie

iv




EXECUTIVE SUMMARY

In an air traffic control system where aircraft separation is
maintained by controlling the trajectories of stereographic
representations of aircraft in a plane tangent to a sphere with a
center collocated with the center of the earth, dilation is ore
of many factors that adversely affect system performance. The
length of the stereographic image of an arc on the mean sea level
surface of the earth (i.e., the surface of an ellipsoid that
approximates the geoid) differs from the length of the arc, and
this dilation phenaomenon is nonuniform in the sense that the
lengths of the images of distinct equilength arcs need not be the
same (i.e., the length of the image of an arc is a function of
both the arc length and the position of the arc on the surface of
the earth). As a result, the stereographic representation of the
relative separation associated with a pair of aircraft at the
same altitude varies with the absolute position of either member
of the pair as well as with the relative separation itself.

Also, the stereographic image of an aircraft exhibits an
acceleration that reflects the change in the dilation with
position rather than the physical characteristics of the actual
flight trajectory. Indeed, if steps are not taken to minimize
the variation of dilation over the portion of the surface of the
earth underlying controlled airspace, dilation effects may
seriously impact the design of automatic tracking and separation
assurance features that are supposed to provide accurate
forecasts of future pasitions of aircraft images in the
stereographic plane.

The dilation at any point on the mean sea level surface of the
earth is customarily expressed in terms of the ratio of the
length of an infinitesimal arc through the point to the length of
the sterecgraphic image of the arc. The functional behavior aof
this measure of dilation over the control jurisdiction of a
coantrol facility is governeu by the location of the tangency
point and the radius of the sphere that supports the
stereographic plane. The maximum value of the magnitude of the
rate of change of the measure with respect to distance in the
floor of the control jurisdiction (i.e., the portion of the
surface of the earth underlying the control jurisdiction) is
strongly dependent on the latitude and langitude of the tangency
point. Since the magnitude of the acceleration of an aircraft
image due to dilation tends to increase with the magnitude of the
dilation rate, it makes sense to select a latitude-longitude pair
for which the maximum value of the magnitude of the rate is
small. Depending upon the shape of the floor, this criterion for
tangency point selection may result in a latitude-longitude pair
corresponding to a point in the floor or ocutside the floor. In
any event, determination of a latitude-longitude pair for the
tangency point automatically fixes the ratio of the maximum and
minimum values of the dilation on the floor. Subsequent to the
selection of the latitude and longitude aof the point of tangency
the absolute values of these extremums are completely controlled
by the radius of the sphere that supports the stereographic
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plane. Thus, the radius can be viewed as a parameter associated PR e’
with the selection of a target value for dilation over the floor o
of the control jurisdiction.

This report discloses some technigques for selecting the tangency
point and the spherical support radius for the stereographic .
plane. Among all possible latitude-longitude pairs that might be
used to identify the tangency point there are some for which the e
maximum value of the magnitude of the dilation rate is least, and

these are optimal in the sense that the corresponding

acceleration induced in the stereographic plane is minimized. It )
is shown that there is only one optimal latitude-longitude pair ]
in the case where the extent of the floor of the control ]
jurisdiction falls within the design limit of the Advanced
Automation System on the size of the coverage region of an area
control facility. In additiony, it is shown that the optimal

latitude-longitude pair can be found as the solution to a linear \
programming problem whenever the extent of the floor is specified - -ﬁ
in terms of a finite number of points (e.g., the points on the i
mean sea level surface of the earth defined by the latitude- 2

longitude pairs representing the locations of the radars that

support the surveillance function of an area control facility or "
a finite collection of points that are more or less uniformly h
distributed over the floor). Since the solution of such a )
problem can be easily obtained by means of well known techniques }
(e.g., the simplex method) this result can be used to formulate y
an algorithm for determining the latitude and longitude of the ;
tangency point. Alsos under the assumption that the latitude and -
longitude of the tangency point are known, it is shown how to '
select the spherical support radius so that the maximum deviation h

of the dilation over the control jurisdiction from a .
predetermined design constant is a minimum. In effect, the .
spherical support radius is adjusted so that the constant falls

midway between the minimum and maximum values of the dilation on N
the floor of the control jurisdiction, and it turns out that the t
magn.tude of the ratio of the difference between the extremums to -
the constant is invariant to whatever numerical value is assigned i
to the constant. Finally, it is shown that this ratio is at most LS
2.9079S for any area control facility that might be commissicned i

in the Advanced Automation System. Consequently, the design g
constant can be viewed as an effective measure of the scale of ¢,
the map formed by the image of the floor of the control \
jurisdiction in the stereagraphic plane. ;
i
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1. INTRODUCTION,. T

In an air traffic control (ATC) environment like the National
Airspace System (NAS) aircraft are separated in at least one of hatyt
the three dimensions of altitude, latitude, and longitude by o
means of commands transmitted from a ground facility. Aircraft '
altitude is conveyed to the ground facility by voice

communication or transponder replies to radar interrogation

-
-
-

iz

messages. The remaining dimensions are obtained indirectly
through a projection algorithm that manipulates raw surveillance N
information (i.e.s reported altitude and radar measurements of -
slant range and azimuth). The objective of the projection ;
algorithm is to provide a point on a plane surface (i.e., the o
X system plane of the control facility) that is a stereographic 2
representation of aircraft latitude and longitude with respect to
some ellipsoidal earth model. The control facility attempts to o
separate aircraft in one or both of the dimensions of latitude k
and longitude by keeping whatever points are provided by the L
projection scheme a prescribed distance (e.g.s S nautical miles a:
(nmi)) apart. v
There are two factors, among many others, that adversely affect r:
the ability of the control facility to maintain separation i‘
standards. These are projection error (i.e., the difference ?‘
between the actual stereographic representation of an aircraft N
and the point representation provided by the projection gw
algarithm) and dilation (i.e., the discrepancy between the !.
distance separating points on the surface of the earth model and o
the adistance between the stereographic representations of these ;
points in the system plane). If the projection error is large I
then there is some question as to what is being controlled (i.e., 4
latitude and longitude or something else). If it is small then v
there 1s no sucn question. Dilation adversely affects the
ability of the control facility to maintain separation standards 3
in the sense that it gives the facility a false impression of the Q
actual distarc2 measured over the surface of the earth model h
between one location and another that cannot be corrected by a *f
constant scale factor. i
Projection errors are pretty much a function of the projectionm :q
algorithm. Cn the other hand, dilation is determined by the -
geometric relationship between the system plane and the earth }j
model. In particular, the system plane is tangent to a confarmal T
sphere (i.e., a sphere with a center collocated with that of the o
earth aodel. ind dilation is dependent upon the location of the )
J2aint ot tangencv and the radius of the sphere. In other words. ~
there are two DusSiI 00S 1nvolvea in the design of a :f
stereographic projection system in ATC applications. First, the v
1esigner must select a conformal sphere and a point of tangency o
that provide a reasonable dilation characteristic over the \ﬂ
control jurisdiction. Secand, the designer must provide an 5
algorithm that is capable of converting raw surveillance "
information into a point on the system plane with little or no )
projection error. In the case of the Advanced Automation System :{
Y
1 -
- b
o~
A S R AR SRS GO T AT




(AAS) it 1s a requirement that the projection error not exceed
J2.905 rmi (reference 1) for any aircraft under radar control
within the jurisdiction of an area control facility (ACF). There
exists a projection algorithm that satisfies the AAS error
requirement (reference 2). This report deals with some
techniques for creating a near optimal dilation characteristic
over the breadth of the floor of an ACF control jurisdiction
(i.e., the portion of the surface of the earth model underlying
the airspace controlled by the ACF).

The remainder of the report is divided into six sections. The
next section is concerned with several aspects of the
quantitative expression of dilation that can be exploited in the
design of an ATC projection system. Although there exists an
exact mathematical expression for the dilation at any point of an
ellipsoidal earth model, it is not too useful in the design
process. Section 3 deals with some practical formulas for
estimating the dilation. In section 4 it is shown how these
formulas can be employed in the selection of the radius of the
sphere that supports the system plane under the assumption that
the (acation of the point of tangency is known to within a radial
line segment emanating from the center of the earth model.
Section S is concerned with the problem of selecting this radial
line segment, and there it is revealed how the selection process
can be formulated as a linear programming problem. Regardless aof
what procedure is used to select the point of tangency and the
radius of the spherical support for the system plane, the
dilation will vary from point to point on the floor of the
controi jurisdiction. Also, the total variation (i.e., the
difference between the maximum and minimum values of the dilation
on the floor) tends to increase with increasing floor size.
Section 6 discloses a constraint on the total variation implied
by tne AARS aesign limit with respect to the size of the
surveiliance coverage region associated with an ACF. Concluding
remarks appear in section 7, and details of a mathematical nature
are relegated to 10 appendices. Finally, numerical results
presented in the report are based on an ellipsoidal earth model
characterized by a polar radius of 3432.372 nmi and an equatorial
radius of 3443.919 nmi (i.e., the earth model is assumed to be
the reference ellipsoid chosen for the North American-Datum of
1983 (reference 3)).

2. QUANTIFICATION OF DILATION.

The 4dilation m, at a point p on the earth model can be quantified
in terms cf the length gs, of an infinitesinal arc on the model
surface that contains the point and the length ds. of the
stereoaraphic representation of the arc in the system plane. The
accepted measure of dilation is tne limit of the ratio of ds.~ to
ds. as the latter approaches zero. The limit can be expressed as
a product of three factors (reference 4). One of these is the
function
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flgs).= 2/01 + cos({ge)] (1)

where g is the angle subtended at the ceinter of the earth model

by the point of tangency of the system plane and a conformal

representation of the point p (i.e., the point on the surface of
i a conformal sphere at the conformal latitude and longitude of p).
Another is the ratio of the radius E of the sphere that supports
the system plane to the equatorial radius a of the earth model.
The remaining factor is a function h(J) of the geodetic latitude
J of p that increases monotonically fraoam 1 to a number just under
1.0034 as the magnitude of the latitude increases from @< to 90<.
Unfortunatelys this function is complicated, and as a result, the
formula

M = h(J)Y(E/a)f(ge) (2)
is not too useful in the design of ATC projection systems.

Although the function h(J) is somewhat complicated, it is clear
that dilation is nearly proportional to the simple function
f{g-)s and hence, the shape of the dilation characteristic aover
the floor of a control jurisdiction is strongly dependent on the
parameter g.. As will be seen, there are two aspects of this
parameter that are significant from the standpoint aof projection
system design. One of these is based on the fact that there are
infinitely many conformal representations of the same point on

the surface of the earth model. The other stems from the fact 'y
that the angle subtended at the center of the earth model by twa K
points on the model surface is essentially the same as the angle {
subtended at the same location by conformal representations of ;y
the points. ;{

The angle g. and the specific conformal sphere of radius E that
supports the system plane are independent entities. There are as

Ly

»

“

many conformal representations of a point on the surface of the -~
earth model as there are conformal spheres,; and all of these O
representations lie on the same radial line segment emanating :C
from the center of the earth. Consequently, there are infinitely o
. many conformal representations of the floor of a control i

jurisdiction, and regardless of whether the point p is a member
of the floor, g. is the unique angle subtended at the center of
the earth model by the point of tangency and any conformal
representation of p. Also, if g is the earth model
representation of the point of tangency (i.e., the location aon
the model surface specified by the geodetic latitude and
longitude of the tangency point) then the same angle is subtended
at the center of the earth by any conformal representation of the
point p and any conformal representation of q, including the

-

?
-

." SS AT n." :".'_'-,

tangency point itself. For example, the angle g. is the same as o
the angle subtended at the center of the earth by the conformai -~
representations of p and g on the unit sphere (i.e., the )
confarmal sphere characterized by a radius of 1| in whatever units -
the dimension of length is expressed). This concept can be S
exploited in the selection of the tangency point. o>
'l
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K The angle g is a rather abstract entity. Fortunately, it can be

. replaced with near impunity by ather parameters of a mare
concrete nature. One of these is the angle g subtended at the

! center of the earth by the point p and the earth model

representation q aof the point of tangency. Another can be W

defined in terms of the great circle distance between two points

on the surface of the earth mocdel (i.e., the length of the

v shortest curve connecting the points that can be formed from the !

intersection of the model surface and the plane containing both

points and the center of the earth). If the great circle

distance d separating p from g is expressed in nmi then the ratio

of d to 49 is a fairly accurate estimate of the degree measure of

either of the angles g and g.. As shown in appendix A, the

magnitude of the difference between the ratio and g is less than

.18 percent of the former. Likewise, if g is known then d is

: known to the extent that the magnitude of the difference between

Q d and the product of 68 and g cannot exceed @.18 percent of the

( product. The inequalities

Y
-~

> e
"

o

mag(g - g.) £ ©0.000282 (3)

mag(d/6@ - g.) £ 9.0018(d/6@) + ©.000282 (&) X

express the accuracies of g and d/60 as estimates of g. when
distance is expressed in nmi and angle measures are specified in

N degrees. For example, if d is 1800 nmi then g. is known toc the .
N extent that it is somewhere between 29.946 and 39.054<., On the 8
other hand, if g is known to be 3@< then g. cannot differ from

4 30= by more than @.000282=. A derivation of inequalities (3) and

o (4) is provided in appendix B.

The utility of the degree measure d/&@ as an estimate of g. does

not depend so much on the difference between the measure and g.

as it does upon the difference between f(d/4@) and f(g.).

Similarly, in the case of g as an estimate of g., the difference

between f(g) and f(g-) is of primary importance. Table 1

demonstrates that the replacement of g. by d/6@ or g in the

s ' dilation formula results in numbers that are essentially the same

' as Mg. In each row of the table the entry B.(d) in the third

column is an upper bound on the magnitude of the difference

4 between 1 and the ratio f(g:)/f(d/é6@), and the entry in the

g fourth column upper bounds the magnitude of the difference
between 1 and f(g.)/f(g). In other words, the actual dilation at

point p is nat significantly different from the number generated

PO S

by the dilation formula when g. is replaced by either one of the >~
estimates g and d/4@. For example, if the point p is separated .
K from the earth model representation of the point of tangency by a X
v great circle distance of 1809 nmi then the magnitude af the .

difference between the actual dilation m, at p and the estimate
obtained from the dilationm faormula by replacing g.. with the ratio
of 1800 to 4@ is at most 0.025413 percent of the estimate.
Appendix C discloses the procedure used to generate the bounds in
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table 1. Approximations of: angles like g by parameters of the
type d/68 and g are useful in the selection of a rear zgtimal
radius for the conformal sphere that supports the system plane.

TABLE 1. ESTIMATION ACCURACIES OF d/&6@ AND g.

d ' g : B.(d) | Bge(g)

(nmi) | (deqg) { (1@—7) | (1@~7)

68 1 ] 3.2 ! .4

12 | 2 | 11,9 ! 2.9

180 | 3 ! 26.90 | 1.3

2490 | 4 ' 45.6 | 1.7

300 5 : 7.8 | 2.2

i 600 19 | 279.4 | 4.3

0T 15 v 627.5 1 &.9

1200 | 20 1 1117.7 1 8.7

1500 ' es i 1753.9 | 190.9

1802 | 30 i 2541.3 ¢ 13.2

2100 35 i 3486.4 | 15.5

2400 4@ i 4597.3 17.9
3. ESTIMATION OF DILATION. N
.."-
The dilation at any point in the floor of the control gf
jurisdiction is closely approximated by the functian i
'-
m(ga) = k(E/a)flga) (s) e
o
PN
where k is the arithmetic mean of upper and lower bounds in the o
interval from 1 to 1.0034 on the set of values of the function ;ﬂ

h(J) associated with the geodetic latitudes of the points in the
floor. Indeed, if h, is a lower bound, hs is an upper bound, a&and

2

5, 4 5 T

e

k = (h, + he=)/2 (&)

NN
P

then, as shown in appendix D, the dilation at any point in the
floor must satisfy the inegquality

maglmy, — mi(gc?l € ((ha = h,)/(h; + he)lm(ge). (7

....
Sl
e

Thus, if the bounds are I and 1.0@34 (i.e., k is 1.0d17) then the e
use of m(g.) as an esimate of the dilation at amy point on the
surface of the earth model results in an estimation error that is
at most B.17 percent of the estimate. Table 2 implies that
tighter bounds than these apply to smaller regions of the surface
of the earth. Consequently, as demonstrated in examples 1 and 2,
areater estimation accuracies can be realized over the floor of
an ACF control jurisdiction.
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TABLE 2. VARIATION OF h(J) WITH THE MAGNITUDE OF 7J. "
RS
mag(J) (deg) | h(JI) 1
13 i 1.09¢223 :
25 1 1.09083593 "AJ
35 i 1.001097 .:*
45 V 1.001679 :
335 i 1.9002243
65 v 1,002752 3
75 v 1.,003139 3
Example 1. '
If the floor falls between the north geodetic latitudes of R |
35« and 45 then the function h{(J) is not less than 1.881097 nor g
greater than 1.0014670@ on the floor. Thus, the arithmetic mean of ¥
these numbers, 1.00138B4, is an acceptable value for the constant - .
ky and the corresponding estimation error at any point on the
floor cannot exceed 9.029 percent of m(g.).
)
Example 2. {;
If the floor extends from 5¢ south geodetic latitude to 15- ~
north gecdetic latitude then the minimum and maximum values of '
h(J) on the floor are 1 and 1.00@223. Consequently, 1.000112 is ?,
the value to be assigned to ks, and the maximum error associated 2
with m(g.) as an estimate of the dilation at any point in the :}
floor is @.011 percent of the estimate. »
i
From the point of view of a controller charged with the :r‘
separation of aircraft it is important that the separaticon .

between points in the floor of the control jurisdiction be
accurately portrayed by the separation of the stereographic
representations of the points in the system plane. For this
reason a constant dilation over the entire cantrol jurisdiction
is highly desirable. Unfortunately, the estimate m(g.), as well
as the dilation itself, is a variable. In fact, the estimate
increases from k(E/a) to infinity as the angle g. increases from
@= to 18@=, Thus, tHe magnitude of the difference between the
dilation and a predetermined design constant n (i.e., a design
goal for the value of dilation on the floor of the control
jurisdiction) is as significant a design factor as the dilation
itself. Consequently, if m(g.) is to serve as a useful estimate
of dilaticn then

o TE

': AR

o o B4
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ATl o

vin,ge) magi{m(ge) - nl =]

must be close to

Upin) mag(m, = n). (9

In appendix D it is shown that
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maglus(n) - vinsgc)?l < f{h= - hi}/(hys + he)llvin,g:) + nl (1&)

for every paoint p in the floor of the control jurisdiction. As
D will be seen, it is possible to keep v(n,g.) below @.8352n on the
floor of an ACF control jurisdiction that fulfills the si:ze
i requirements of the AAS specification. Stated another way, if
KX the system plane point of tangency and the radius of the
o conformal sphere supporting the system plane are properly
selected then vi(n,g:) will differ from the magnitude of the

$ difference between the dilation and n by at most

B ':

% Vin) = 1.8352C(hm - hy)/(hy; + h=)1n. (11)
L

U

L . Since h= - h; is at most ©.0@34 and h, + h= is never less than 2
A it follows that V(n) is at most @.176 percent of n. In practice,
@ the value of V(n) can be made much smal.ler than this. For

% instance, V(n) 1s 0.0092%96n in example 1 and it is @.983115n in

i

example 2.

4. SELECTION OF THE SPHERICAL SUPPORT RADIUS.

)

$ Assuming that the earth model representation of the point of

ﬁ tangency is known (i.e., the angle g. is defined) the estimate

& m(g=) can be viewed as a function of the parameters £ and g., and
b it is clear that to each positive number that might be used as

e the radius of the spherical support for the system plane there

) carresponds some maximum value, other than &, of vin;g.) on the

? floaor of the control jurisdiction. Fortunately, among all such
ﬁ‘ numbers it is easy to locate one for which the maximum is least.
" As shown in appendix E, this optimal radius is

!

. Eol(nyFesGe) = 2nla/sk)/[f(F.) + fiGc) ] (1)
)

\"

b where F. and G. represent the minimum and maximum angles,

Xy respectively, subtended at the center of the earth model by the
&. system plane point of tangency and a point within any conformal

B representation of the floor. Using r to represent the ratio of
< - f(G:) to f(F.), the formula

,I

ot

? volnsr) = nlir = 1)/4(r + 1)1 (13
. ‘A

s

ﬁ. supplies the corresponding maximum value of the magnitude of the
ﬁ difference between n and the estimate of dilation on the floor of
d the control jurisdiction. If the earth model representation of
g the point of tangency is located in the floor then f(F.) is 1|

] (i.e.y, Fec is @) and v.(n,r) takes on the value

Y

$ Ve Ny F(G:)) = nw(Ge) (149
%

j where

« W(Be) = [f(Ge) = 11/0f(Ge) + 113, (15)
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The inequality T

@ < volnyr) £ nw(Ge) (169

is a direct consequence of the fact that the function f(g:)
increases as g. increases from P~ to 188° and ve(n,r) is an
increasing function of r. Thus, the dilation estimate associated
with the optimal radius differs from the design constant n by at
most 1900w(G.) percent of the constant at any point in the control
jurisdiction,

While it is fairly obvious that the angle G- is not too different
from the largest angle G subtended at the center of the earth by
a point in the floor of the control jurisdiction and the earth
model representation g of the point of tangency, it is not
altogether clear that the magnitude of the difference between the
two angles is bounded above by the right side of the inequality
(3) that expresses the accuracy of either one of the parameters g
and g as an estimate of the other. The problem is that i1t may
be difficult to establish the existance of a point t in the floor
such that G is the angle subtended at the center of the earth by
t and q and that G. is the angle subtended at the same location
by conformal representations of t and q. Similar remarks apply
to the difference between F. and the smallest angle F subtended
at the center of the earth by q and a point in the floor.
Nevertheless, it can be shown that the accuracy expressed by the
inequality (3) for g as an estimate of g. applies to F and G as
estimates of F. and G., respectively. Also, the accuracy
expressed by the inequality (4) that is associated with d/60 as
an estimate of g. applies to the estimation of G- by the product
of 1/60 and the largest great circle distance D, in nmi
separating g from a point in the floor. Likewise, the inequality
formed from (4) by replacing g« with Fc and da with the snortest
great circle distance D= between g and a point in the floor
expresses the accuracy of De./60 as an estimate of fF.. An
argument supporting these assertions is provided in appendix F.

The utility of the degree measures De./60 and Dn/6@ as estimates
of the angles F. and G. does not depend so much on the difference
between the measures and the angles as i1t does upon the dilations
(or more precisely, the estimates of dilation) associated with
the optimal radius E.(n,F.,G.) and the suboptimal radius
Ee(nyDw/60,D/6@). Similarly, the dilations associated with the
optimal radius and the suboptimal radius E.(n,F,5) are of primary
importance. Table 3 illustrates the difference between the
estimates of the maximum deviation of the dilation from the
design constant n on the floor asscciated with the optimal radius
Eol(n,@,6.) and the suboptimal radii E,.(n,@,Da/60) and E,.(Nn,3,06)
in the case where the earth model representation of the tangency
point is in the floor of the control jurisdiction. It also
demonstrates the accuracy of w(G) and w(D,/6@) as estimates of
wi(G.). In each row of the table the entry Bna(Dw) in the fourth
column is an upper bound on the magnitude of the difference
between w(G.) and w(Dx/6@), and the entry B.(G) in the fifth
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column upper bounds the magnitude of the difference between w(G.)
and wi(GB). As demcnstrated by the table, the estimate of the
maximum deviation of the dilation from n associated with the
o optimal radius is not significantly different from the deviations

§| associated with the suboptimal radii. In other words, if the
§= great circle distances Dy and D~ are available then there is

Ay little reason for one to be reluctant about employing
' Ec(nyDe/69,De/6@) as the radius of the spherical support for the

o TABLE 3. BOUNDS ON maglw(G.) - w(G)1 AND

ﬁ: maglw(G:) - w(Dn/6@)1

v"

" Do ! G | w(Da/6®) or w(B) | Bm(Da) ! Bu(G)
‘. (nmi) | (deg) ! (1@~<) P1gTe) L (187%)
a 00 ! S.00 ! 9.5 ! 9.0354 | ©.0011
& 600 | 10.00 ! 38.1 ! ©.1397 | @0.0022
N 908 | 15.00 ! 85.9 ! 8.3137 | ©.0032
2 1200 | 20.00 ! 153.1 ! ©.5587 | 2.0043
v 1500 | 25.00 ! 239.8 ! 2.8764 | 0.0055
o 1800 | 30.00 ! 346.5 | 1.2689 | @.0066
N 1815 ! 36.85 ! 352.4 ! 1.2906 | 0.0066
s 21006 ! 35.00 ! 473.5 1 1.7390 | 2.0077
h 2400 | 40.00 ! 621.2 ! 2.2892 ! @.0089

system plane. Likewise, E.(nyF,G) can be used as the radius of
the supporting sphere whenever the angles G and F are available.

?; Appendix G discloses the procedure used to generate the bounds in
ﬁ: table 3.

S

?' The parameters Dwy Dmy F, and G may not be readily available.

For example, there is always some inherent distortion associated
with any planar representation of a portion of the surface of the

S earth, and so it is not possible ta obtain an exact determination
ﬁ of the distances De and De from a standard map illustrating the
¢‘ boundary of the floor of the contral jurisdiction. On the other
ﬁ hand, the latitude and longitude of each radar in the network of

radars supporting the surveillance function of an ACF will most
certainly be known. This information together with the latitude
and longitude of the tangency point can be used to compute the
degree measures of the minimum and maximum angles Anyw aNd Aruix
- subtended at the center of the earth by the earth model

b representation of the point of tangency and a location on the
model surface corresponding to the latitude and longitude of a
member of the radar network. Also, it is most likely that some
4 reasonable upper bound S5 on the ranges of the network radars will
be available. For example, the maximum effective range of the

iy search radars employed in NAS is often quoted as being 208 nmi.
1) Consequently, the sum of the degree measure of A,.. and the ratio
of S in nmi to &9 can be viewed as a reasonable estimate of the
degree measure of G. In like marner, the angle F can be taken to
be the maximum of the numbers @ and Ami... — S/60. In those cases
where the members of the radar network are not endowed with the
same effective range, this technique can be extended to provide

C?
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even better estimates of F.and G when the renge of each radar is
known. In fact, procedures of this nature may be the only means
for acquiring realistic measures of F and G.

S. SELECTION OF THE TANGENCY PQOINT.

Since valnsr), the maximum deviation of the dilation estimate
from the design constant n on the floor of the control
jurisdiction that is associated with the aptimal radius
Eac(nyFc3Be)y is an increasing function of the ratio r of f(Gz) to
f(F.) and the parameter r is determined by the location of the
tangency point, there is some reason to believe that from among
all possible locations for the point of tangency one should be
selected for which the ratio is least. Unfortunately, this may
be a difficult problem to solve. Also, there is good reason <o
believe that it is not the proper problem to solve.

Both the dilation and the rate of change of dilation with respect
to distance play important roles in projection system
performance. As already indicated, departures of the dilation
from the design constant n result in a stereographic image of air
traffic that does not exactly portray the separation between
aircraft relative to the earth model. On the other hand,
departures of the dilation rate from @ introduce undesirable
acceleration effects in the system plane. The slope of the
dilation estimate (i.e., the derivative of m(g.) with respect to
the angle g.) is a measure of dilation rate. Since

P AARS

s(g=) = m{ge)tan(gc/2) (17) .
is the formula for the slope in (radians)—*, it is clear that o
large departures of the rate from @ are possible. Example 3 i
illustrates the manner in which dilation rate affects system t
plane representations of moving vehicles. Indeed, if no effort -
is made to control the dilation rate on the floor of the control Q
jurisdiction then it may be impossible to construct an automatic Q

aircraft tracking system with current tracking technolagy that
will satisfy the performance requirements aof the AAS.

Example 3.

Suppose a particle is moving with constant speed over the
surface of the earth model along the intersection of the model
surface with a plane containing the earth model representation q
of the point of tangency and the center of the earth. If the
great circle distance d separating the particle from g is
measured in nmi and c is the particle speed then (to the extent
that d/6@ represents the degree measure of the angle subtended at .
the center of the earth by the tangency point and a conformal o™
representation of the particle) the corresponding speed of the ‘
system plane representation of the particle is nearly the same as W
the product of m{(d/é6@2) and c. In addition, the system plane
representation of the particle is accelerating in the direction -

14
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ﬁf of motion of the representation, and the magnitude of the
| acceleration is in the neighborhood of the product of 1/69,
pi/188, s(d/68), and the square aof c.

- Minimization of the parameter r does not guarantee that the

B maximum value of the slope of the dilation estimate on the floor
L of the control jurisdiction will be a minimum. The maximum value
of the estimate on the floor associated with the optimal radius
is the sum of va(n,r) and n. Thus,

iﬁ' Sa(nNsryBe) = [valn,r) + nltan(G./2) (18)
B

Q(.‘

W? is the maximum value of the slope of the estimate on the flaoor

associated with the optimal radius. Since G. is not necessarily
a monotone increasing function of r there is little reascon to
believe that the best position for the point of tangency is a

= location that renders r a minimum.

vy A good position for the tangency point is any location that
' minimizes the maximum angle G. subtended by the point of tangency
& and a point in a conformal representation of the floor.

R? Regardless of the location of the tangency point, the parameter r
32' is at least 1 and at most f(G.). As a result,

%z Se (M) f(Be)sBa) = nlw(Be) + 131tan(Ge/2) (19)
;; bounds the maximum slaope s.{(n,r,G.) from above and

Ek’ Sa(ns1;6e) = ntan(G./2) (20)
;*"

bounds it from below. Since w(G.) is an increasing function of

e G the same is also true for the magnitude of the difference

between these bounds. Alsos (19) implies that the maximum slope

Sc(nsryGe:) differs from the lower bound by at most 100w(G.)

' percent of that bound. Finally, as shown in the previous

1 section, nw(G.) upper bounds veo(nsr). Thus, there is ample
reason to view the function w(G.) as a measure of goodness of the

L location of the point of tangency, and much can be gained by

- selecting a location for the tangency point for which the angle

My G is least.

.. l"

Ry

;m: . Table 3 illustrates that the sensitivity of the measure w(G.) to
'$= the position of the earth model representation of the point of

tangency is not so critical that one needs to resort to powerful
optimization techniques in order to find an appropriate location

{F for the tangency point. For example, w(Dwn/6@) increases from
it 2.02398 to ©.94735 as Ds increases fraom 15@@ nmi to 219@ rmi.
QQ Thus, the rate of change of the measure per unit change in

) distance is roughly 0.00004 nmi~!' when the largest great circle

distance separating a point in the floor of the control
jurisdiction from the earth model representation of the point of
tangency is in the neighborhood of 180@ nmi. Cansequently, an 87
nmi movement of q will result in a change in the measure w(Dy/6@)
of about 12 percent. In fact, the value of w(Dg/b60@) increases

11
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from B.03465 to 9.03813 as.D» increases from 18900 nmi to 1887 nmi
and it is 2.903135 when Dy is 1713 nmi. Table & provides a more
detailed view of the sensitivity of w(De/60) to changes in the
location of the earth model representation of the point of
tangency in terms of the first derivative of the function

yY(Da) = w(lpi/1801[Da/601) (21)
and its natural logarithm . Except in those cases, if any exist,
where there is an overriding need for strict optimality in terms

of minimization of the angle G.s it appears that a satisfactory

TABLE 4. DILATION SENSITIVITY

De ' (d/dDe)y(Dw) '@ (d/dDe)logiy(De)]
(nmi) ! (1@—* nmi—1) ! (18~% nmi—*)
300 b.4 : 66.7
600 | 12.7 : 33.4
900 ! 19.1 ; 22.3
1200 | 25.6 ; 16.7
1500 ! 32.2 ; 13.4
18090 ! 38.9 : 11.2
2100 | 45.8 : 9.7
2400 ! Ssa.7 : 8.5

location for the tangency point can be found by means of the
application of a reasonably healthy eyeball to a map (e.g., a
Lambert conformal projection) of the floor of the control
jurisdiction.

While there may be no overriding technical need for an explicit
algorithm that automatically provides a tangency peoint that is in
some sense optimal, a good algorithm is usually a welcome
replacement for a subjective procedure that might go awry in the
wrong hands. In the case of control jurisdictions meeting the
size requirements of the AAS there exists an algorithm for
determining an optimal tangency point under a rather practical
set of conditions. As shown in appendix H, if the extent of the
floor of the control jurisdiction is fairly represented by a
topologically closed subset R of the surface of the earth model
then there is one, and only one, location gqo for the earth model
representation of the system plane point of tangency that is
compatible with a design requirement that the maximum angle G«
subtended at the center of the earth by the tangency point and a
point in any conformal representation of the floor be minimal.

If the floor is closed (i.e.s all boundary points of the fioor
are members of the floor) thenm R can be the floor itself. The
set R can also be a finite set of points on the surface of the
earth model (e.g.s the set of all points on the model surface
corresponding to the latitude-longitude pairs that define the
locations of the radars that support the surveillance function aof
the control facility). With the exception of some special cases,
it may be extremely difficult to compute the latitude and

12
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longitude of q. when the nymber of points in the set R is
infinite. 0On the other hand, if R is firite ther the
determination of the latitude and longitude of q. reduces to a
linear programming problem. The following algorithm is a
prescription for setting up the linear programming problem and
acquiring the conformal latitude and longitude of g. from the
problem solution. A detailed development of the algorithm is
provided in appendix 1.

Algorithm. Tangency point selection via linear programming.

Input data for the algorithm consists of n pairs of numbers
(Liy Midys.ooos{llny My) where L. and M. are the longitude and
conformal latitude, respectively, of the kth (k = 1,...,n) member
Pw. of a finite set R of n points on the surface of the earth
model that represents the extent of the floor of the control
jurisdiction. In effect, the pair (L., M.) represents the
spherical coordinates of the conformal representation of p. on
the unit sphere. It is assumed that the conformal representation
of the entire set R on the surftace of the unit spnere :s a subset
of a hemisphere. Since the floor of a controi jurisciciicon
meeting the AAS design limit on the size of the coverage region
of an ACF is much less than half the surface of the earth model,
this assumption 1is satisfied in any case where R is a subset of
any portion of the model surface that qualifies as the floor of a
control jurisdiction in the context of the AAS specification,

a. Construct a 3xn matrix B such that the elements of the
kth column of the matrix are the Cartesian coordinates of the
kth element of the set R on the unit sphere. Thus, the 3xl
matrix

v cos(Mulcostilw)
b, = | cos{Mu)sin(L.)
: sin(M,.)

(22)

is the kth column of B.

b. Construct the nxn symmetric matrix A that is the result
of premultiplying the matrix B by its transpose.

c. Letting 1 represent the nx! matrix with identical
elements equal to 1, 17 the transpose of 1, and @ the nxl matrix
with identical elements equal to 9, find an nxl matrix x and a
scalar r such that the scalar is a mini~wum subject to the
constraints that r and all the elements of x are non-negative,

Ax - rl = @, (232
and
1™x = 1. (24)
This is a linear programming problem in n + 1 variables (i1.e., r
13
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LR

and the n elements of the nxl matrix x) and it can be solved by
means of the simplex method (reference S5!.

]

d. Construct the 3x1 matrix

LR

N u = (r-172)Bx (23)

E R g W 4

' where x and r are solutions of the linear programming problem of
step c. As shown in appendix [, u is a unit vector and the

B elements of u are the direction cosines of the optimal tangency

K point (i.e.s the Cartesian coordinates of the optimal tangency ,

) point are just the elements of the 3x1 matrix formed by the

scalar multiplication of 4 by the radius of the sphere that

supports the system plane).

o o

PR AL

e. Letting u, represent the element in the jth row of the R
Ax1l matrix uy, determine the longitude L and conformal latitude M
of the earth model representatiaon of the optimal tangency point
from the relationships

M = arc sini{ua)l, N=I-W

U, = @ and u= = @ implies L = @, 27)

=
-
"

@ and u= > 9 implies L @, (28

MR R Y

-93=, (299

c
-
"

@ and u= < @ implies L
u, > ® implies L = arc tan(u=/ui), (30)

and

BASYSS YN

uy < @ implies L = 180° + arc tan(umiu.). (31

6. DILATION AND THE AAS DESIGN LIMIT.

JOLSE T T

The AARS specification (reference 1, page 44) places a design
limit of "2500X2508" square nmi on "the surveillance coverage

) area" of an ACF. Unfortunately, the description aof the limit
provided by the specification is not easy to interpret. There
are many regions of the surface of the earth involving an area of
6,250,000 square nmi that cannot possibly serve as the floor of a
control jurisdiction. Thus, it is unreasonable to view the limit
as a restriction on area alone. In other words, there exists a
factor of shape that cannot be ignored, and so it is reasonable
to assume that the expression '"'250@X25900" refers to a square
region with a side length of 2508 nmi. However, it is impossible
to counstruct a square on the surface of an ellipsoidal earth
model. As a result, the meaning of the design limit 1s somewhat
unclear.

-

R N R AL

<

A reasonable interpretation of the design limit can be formulated
in terms of the smaller of the two regions bounded by a simple

o - - -
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closed curve constructed on the surface of a specific conformal
sphere. The radius of the sphere is the arithmetic mean of the
equatorial and polar radii of the earth model (i.e., 3,438.146
nmi) and the curve consists of four great circle arcs each of
which is exactly 2509 nmi in length. As shown in appendix J, the
o center of the smaller of the two regions bounded by the four arcs
X is separated from each vertex of the boundary by a great circle
K distance of 1,811.774 nmi. If the AAS design limit is
interpreted to be the radial projection of the smaller region

Kq onto the surface of the earth model then the limit corresponds to
;$ the somewhat fuzzy, but nevertheless realistic, notion of a

44 region of the model surface having a square-like perimeter that
oF is approximately 190,209 nmi in length and a centrally laocated

point that is roughly 1,812 nmi from each vertex of the
perimeter. In fact, as shown in appendix J, adjacent vertices of
iy the perimeter are separated by a great circle distance that is

pé 7 between 2,495.802 nmi and 2,504.198 nmi, and the great circle

gq distance between the centrally located point and any vertex of

aﬂ the perimeter is not less than 1,808.732 nmi nor more than

! 1,814.817 nmi. Needless to say, the maximum great circle

) distance separating the centrally located point from any other

o point in the square-like region cannot exceed the upper bound of

k) 1,814.817 nmi,

ol

am Some very definite implications with respect to dilation are

e associated with a design limit that is a region of the surface of
the earth model with a centrally located point that is separated

KA . . . . .

,Q from any other point in the region by a great circle distance

Jh less than or equal to a prescribed maximum D_ that is itself

{t known to be less than 1,815 nmi. Specifically, the floor of any

W ACF control jurisdiction commissioned in the AAS can be

envisioned as being embedded in the design limit. Thus,
regardless of the location of the point of tangency and the size
of the radius of the sphere that supports the system plane, the
4 euclidean norm of the difference between the dilation and the
design constant n on the floor of the control jurisdiction will
iy not exceed the maximum value of the norm of the difference on the
' design limit. Consequently, there is no reason why the norm of
the difference on the floor should ever exceed the maximum value

{ﬁ of the norm on the limit in the case where the point of tangency
jﬁ is centrally located with respect to the limiting region and the
’g size of the conformal radius is the subobtimal value

\> Eoc(ny@,D. . /760). Since D_ is less than 1815 nmi, it follows from
. table 3 that this maximum norm is less than 0.0352n. As a

.~ result, it can be concluded that the magnitude of the difference
gﬁ between the dilation and n on the floor aof a control jurisdiction
> falling within the AAS design limit can be kept below ©.0352n by
e (1) assigning a location to the point of tangency such that among
‘; all possible positions for the tangency point the maximum angle

e subtended at the center of the earth by the assigned location and
- a point in a conformal representation of the floor i1s essentially
:% minimal and (2) using either one of the numbers E.(n,Dx/60,D,/60)
,y. and E.(nyF,G) as the radius of the conformal support for the

I system plane.
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7. CONCLUDING REMARKS.

¥ ¢ & K 4 9 @

<

Selection of the location of the tangency point can be reduced to
an optimization problem involving the conformal representation of
the floor of the control jurisdiction on the surface of the unit
sphere of euclidean 3-space. Each element of the sphere is a
unit vector that can be viewed as the direction cosine vector of
a possible location for the tangency point. The maximum angle
subtended at the center of the sphere by any such element and a
paoint in the conformal representation of the floor is a measure
of the worth of that element as the direction cosine vector of .
the tangency point. Any unit vector for which the maximum angle
is least has maximum worth in terms of limiting the magnitude of

-

A pAS 8

the rate of change of dilation with distance on the floor. In -

effect, minimizing the maximum angle is consistent with the |

notion that the best dilation characteristic over the control Y,
jurisdiction is a constant. In the case where the extent of the ﬂ
floor is represented by a closed subset of the surface of the )
earth model (i.e., all boundary points of the set are members of !
the set) and the size of the floor meets the design limit of the Iy

AAS specification there 1s cne, and only one, unit vector for )
which the maximum angle is least. If the set is finite (e.g.»
the collection of points in the floor representing the radar
sites that support the surveillance function of the control
facility or anry finite set of points that are distributed in a
more or less uniform fashion over the floer) then this unigue
vector can be found in terms of the solution of a linear
programming problem via the simplex method or any other technique
that is available for solving such oJroblems.

e T

-,

Regardless of what unit vector is used as the direction cosine
vector of the tangency point, there is always some variatiaon of
the dilation over the floor of the control jurisdiction, ana the
difference between the maximum and minimum values of the dilation
on the floor is proportional to the radius of the conformal
sphere that supports the system plane. By means of a judicious
choice of the conformal support radius it is possible to minimize
the maximum deviation of the dilation on the floor from a ,
prescribed design constant. This criterion for selection of the 1
spherical support radius is consistent with the notion that the i
representation in the system plane of the separation associated ")
with a pair of points in the floor should be close to a known TE
multiple of the separation. For example, if the design caonstant ' L
is 171835200 nmi per nmi then there should be some assurance that -
a distance of 5 centimeters between the system plane )
representations of two aircraft within the control jurisdiction
is truely indicative of a separation of S nmi over the surface of
the earth.

-. Mt W P

o

Finally, assuming that the target value for dilation over the
floor of the cantrol jurisdiction is n and that the floor meets
the AAS design limit oan the size of the coverage region of an
ACF, it is possible to provide a tangency point and a spherical
support radius such that the maximum dilation on the floor is at

16
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most 1.9352n and the minimym dilation is at least @.95648n. In ;
other words, if the tangency scint and the spherical support ~

radius are selected in accord with the techniques outlined in $
this repart then the dilation will deviate from the dilation }
design constant by at most 3.52 percent of the constant over the A,
control jurisdiction of any ACF commissioned in the AAS. b
o)
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APPENDIX A. GREAT CIRCLE DISTANCE AND ANGLE $

There exists a simple relationship between the great circle 1

distance d in nmi between two points p and q on the surface of an ﬂ!

ellipsoidal earth model characterized by equatorial and polar t‘

radii a and b, respectively, and the degree measure g of the a3

angle subtended at the center of the earth model by the points. t,

The distance 4 is the shorter of the two curves on the model »3

surface connecting p and q that are formed by the intersection of i

the surface and the plane containing the points and the center of )

the earth. I[If g is known then d is also known to the extent that -3

it must lie hetween b(pi/180)g and a(pi/180)g. Alsa, knowledge of o

d determines g to the extent that the latter is not greater than 2
(d/b)(18@/pi) nor less than (d/a)(18@/pi). In other words,s d and

g satisfy the expressiaons )

[(b(pi/18@)-681g < d - 6@g < [a(pi/180) - 6@1g (A-1) ;"

and \¢

Y

[(1B@/pi)/a ~ 1/601d < g - d/60 £ [(180/pi//b - 1l/68]1a. tR-2° E

In the case of the reference ellipsoid chosen for the North
American Datum of 1983 (where a is 3443.9192 nmi and b is 3432.372
nmi) these inequalities imply that 2.0018(60g) is an upper bound
of mag(d - 4@g) and that mag(g - d/6@) is not greater than
2.0018(d/69).
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APPENDIX ‘B,. ANGLE ESTIMATION ERROR

The angle g subtended at the center of the earth model by points
p and q on the model surface is a fairly good estimate of the
angle g subtended at the same location by conformal
representations of the points. Since the longitude of a point an
the earth model is the same as the longitude of the conformal
representation of the point, the difference between the two
angles is due solely to the fact that the geocentric and
conformal latitudes of the same point on the model surface are
not necessarily the same. In fact,

cos(g) = sin(x)sin(y) + Alcos(x)cos(y)1} (B-1)

where x and y are the geocentric latitudes cf points p and q,
respectively, and A is the cosine of the difference between the
longitudes of the two points. The corresponding formula for
cos(g.) can be obtained from the expression for cos(g) by
replacing x with the conformal latitude x. of the point p and vy
with the conformal latitude y. of the point g. Since the
geccentric and conformal latitudes of a point on the surface of
the earth differ by at most 9.000141° it is apparent that the
difference between the angles g and g. is small.

As already shown in appendix A, the magnitude of the difference
between the degree measure of g and the product of 1/60 and the
great circle distance d in nmi separating the points p and g is
at most 2.18 percent of d/&60, and so the ratio d/6@ should
provide a gaood estimate of g.. In fact, since g - d/5%50 is the
same as the sum of g - g and g — d/6@ it follows that

mag(g. - d/60) £ mag(g. - g) + mag(g - d/60). (B-2)»

As a result, mag(ge. - d/6@) is bounded above by the sum of the
bound @2.0018(d/49) on mag{(g - d/é@) and any upper bound cn the
degree measure of mag(g. - g).

A numerical bound on the difference between the angles g anrnd g
can be derived in terms of the gradient vector of the function
arc cos(g) with respect to the arguments x and vy. Specifically,
if C is an upper bound on the magnitude of the gradient vector
for all possible values of x, y, and A then

mag(g — gc) L Clix = x)8 + (y - y)R]r72, (B-3)
Since 0.000141< is an upper bound on the degree measures of
mag(x — x<) and magl(y - y.) it follows that the degree measure of
the magnitude of the difference between g and g. cannot exceed
the bound
B = Cl2(@.000141)"] 77, (B-4)

It only remains to provide a numerical value for C.
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The square of the magnitude M(A) of the gradient vector of
arc cos{(g) with respect to x and y is given by the expression

ME(A) = N(A)/D(A) (B-3)

where N(A) and D(A) are the nannegative functions defined by the
formulas

N(AR) = (1 + AR)[cos®(x)sin®(y) + sin®(x)cas®(y)]
- 4Asin(x)cos{x)sin(ylcos(y) (B-6)
and
D(A) = 1 - [sin(x)sin(y) + Acos(x)cos(y)l=, (B-7)

The parameter A is not greater than 1 nor less than -1, and so
there is a number v between @ and ! such that

A = v(=-1) + (1 = v)(l). (B-5)

Alsao, the values of the functions N(A)/2 and D(A) at the extreme
values of the argument A are

o d
.

-
S
N(~1)/2 = D(=-1) = sinfF(x + y) (B-9) "
and I
]

N(1)/2 = D(1) = sin®(x - y). (B-1a

In addition, the second derivative of N(A)/2 with respect to A 1is
nonnegative and the second derivative of D(A) is nonpositive. In
other words, N(A)/2 is a convex up function of A and D(A) 1s a
convex down function of A. It follows that

REEAR A

"' T"l"\-”

N(AY/2 < vIN(=12/21 + (1 - v)IN(1) /2] (B-11)

A

and

D(A)Y > vD(-1) + (1 = v)DC1). (B-12)

Since the right side of each of these inequalities is egual to
the sum of (v)sin®(x + y) and (1 - v)sin®(x - y) it 1s clear that
the ratio of N(A)/2 to D(A) is no greater than 1 for all A In the
interval extending from -1 to 1. Consequently, the magnitude M(A)
of the gradient vector must be bounded above by the square root
of 2. In other words, the number 2% can be assigned to the
bound C. The carresponding value of the bound B on mag(g - g
is 2.2002682=. Thus, the degree measure of the magnitude of the
difference between the angles g and g. 1s bounded above bv twice
the limit of 0.009141% that upper bounds the magnitude of the
difference between the degree measures of the geocentric and
conformal latitudes of any point on the surface of the earth
model.
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APPENDIX C. EFFECT OF ANGLE ESTIMATION ERROR

X ON THE COMPUTATION OF DILATION '

,? If x is the degree measure of an angle that is less than 189, vy

ﬁe is the degree measure of a like angle, and x and y differ at mast

M by @ positive number p(x) such that the sum of x and p(x) is less

& than 189« then the ratio fix) of 2 to 1 + cos(x) must satisfy the

W, inequality

" maglfly)/f(x) — 11 < Bix,p(x)) (C~1)

5

i)

K where

i

\

K Bix,p(x)) = fix + p(x))/fix) - 1. (c-2)

gg Indeed, f(x) is a positive function of the degree measure x on

:q the interval I of nonnegative numbers less than 180, and so

|.; .

0

® maglf(y)/fi(x) — 11 = [1/f(x)Imaglf(y) - f(x)1. (C~-3)

¢

§ Also, the first and secaond derivatives of f{x) with respect to x

Al are nonnegative functions on 1. Thus,

fy

3|

?- maglf(y) — F(x)1 < fix + pix)) = fix) (C~&)

'

N

1! and the bound Bi(x,p(x)) follows directly upon dividing both sides
of the inequality by fix).

‘.‘!

@ As shown in appendix B, the great circle distance d in nmi

) -

! separating points p and g on the surface of the earth model and X

é the degree measure of the angle g. subtended at the center of the ‘

earth by conformal representations of p and q satisfy the
inequality

o magld/60 - g.1 < p.(d/6@) (C-5)
(

0 where

)

. . P.1(d/60) = @.0018(d/60) + @.0002862. (C-6
"

4 If the sum of d/60 and p,(d/60) is less tham 180° (i.e., d is
I less than 10780.58 nmi) then

)

¢

' Bi(d) = B(d/6@,p.(d/69)) (C-7)
w

ﬁ is an upper bound of the magnitude of the difference between 1

@ and the ratio of f(g.) to fi(d/od).

by,

'

v In appendix B it is shown that the degree measures of g. and the
! angle g subtended at the center of the earth by the points p anrd
i q differ at most by

v

'.l h
g; p=(g) = ©.000282. (C-8) j
]"
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Consequently, if the degree measure of g
180= -~ pw=(g) (i.e., 179.999718<) then

1s less than

magl(f(g)/fl(g) - 11 £ Ba(g)

where Be(g) is the same as B(g,pe={(g)).
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APPENDIX D. ACCURACY OF THE DILATION ESTIMATE

Suppose that x, and x= are numbers such that the former is less
than the latter, x. is halfway between the limits x, and x=, t is
somewhere between the limits, and n is any number inside or
outside of the interval extending from x, to x=. If both x- and
t lie on the same side of n then the distance separating

magi(xe = n) from mag{(t - n) is the same as the distance
separating x. from t. Otherwise, the distance separating
magi{xe — n) from mag(t - n) cannot exceed half the distance

separating x, from x=. In any case, the distance separating x.
and t can never be greater than half the distance between x, and
X In other words, the inequality

maglmag(x. — n) — mag(t — n)l £ (xm= — x,)/2 (D-1)

is valid for any number .

If factor h(J) in (2) is bounded below by h, and above by h= then
the dilation m, lies between the limits

LB Y [h],m(gc;)]/k (D-2)

and
xe2 = [ham(ge)l/k, (D-3)

If, in addition, k is the arithmetic mean of h, and h= then m(g.)
is halfway between the limits, and the distance separating mag(m,
- n) and magim(g.) - n] cannot exceed

(X = %3)/2 = (1/2)L(he -h,)/klm(g.:). (D-4&)
Moreover, if m(g.) is not less tham n then it is the same as the
sum of maglm(g.) - nl] and n. Otherwise, the sum exceeds m{g.).
In any event,

(xe — x1)/2 £ (1/2)0(hes - hy)/klimagim(gs) - n]l + n) (D-35)

for any number n, including 0.
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APPENDIX E. OPTIMAL RADIUS

Suppose that g,(x) is an increasing function of x, gm(x) is a
decreasing function of x, and the graphs of the two functions
cross one another when the independent variable takes on the
value xo. Also, let gi(x) represent the maximum of the magnitude
of the numbers g, (x) and g=(x). Clearly,

gi{x) > gixg) (E-1)

for all values of the argument x. Hence, the minimum value of
g(x) occurs at the intersection point xo.

The minimum and maximum angles F. and G., respectively, subtended
at the center of the earth by the point of tangency and a point
in a conformal representatiaon of the floor of the control
jurisdiction are completely determined by the location of the
earth model representation q of the tangency point. Thus, once g
has been determined, the maximum value of the magnitude of the
difference between the dilation estimate and the design constant
n on the floor can be viewed as a function g(E) of the radius E
of the sphere that supports the system plane. Since f(g:)
defined by (1) increases as g. moves from @< to 18@-, g(E) is
just the maximum of the magnitude of the numbers

g.(E) k(E/a)f(Ge) - n (E-2)

and

g=(E) n - k(E/a)f(Fa). (E-3)

Consequently, the value of the argument E that satisfies the
equation

g1 (E) = ga(E) (E-4)

renders g(E) a minimum.
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) APPENDIX F. ESTIMATION OF ANGULAR EXTREMUMS

Let ang{(x,y) represent the degree measure of the angle subtended
at the center of the earth by any two points x and y. Alsc, let
G represent the least upper bound of the set A of all numbers of
the form ang(gsp) where g is the earth model representation of
the point of tangency and p is a point in the floor K of the
control jurisdiction. If there is a point s in the floor such
that ang(q,s) is the same as G then G is the maximum angle
subtended at the center of the earth by q and a point in the
floor. Otherwise, the notion of a maximum angle is meaningless
and it is necessary to resort to the concept of a least upper
bound. In any event, an inequality identical to (3) can be
established for G and the least upper bound G. of the set A. of
all numbers of the faoarm ang(g.sp..) where g is the tangency point
and p. is a member of the conformal representation K. on the unit
sphere of the floor K. Likewise, it can be shown that the same
inequality applies to the greatest lower bounds F and F. of the
sets A and A., respectively.

The mapping angigsp’ 1S a continuous functicn of p on the surTace
of the earth model, and the closure of K (i.e.s, the set of all
points that are in the floor and the baundary of the floar) is a
bounded closed set in euclidean 3-space. Thus,s ang(gsp) attains
absolute minimum and maximum values on the closure of the floor,
and so there exists a point t in the closure such that ang(g,t)
is G. The inequality (3) implies that

ang(Qe:ste’) 2 6 — 2 (F-1)

where t. is the conformal representation on the unit sphere of t
and the symbol 2z represents 9.999282~. Since the relationship
between geodetic and contormal latitudes is a haomeomorphism
(i.e., a bijective function for which both the function and its
inverse are continuous) the same is true of the transformation T
that maps the surface of the earth madel intc the conformal

representation of the model surface aon the unit sphere. Thus,
the closure of the conformal representation K. of the floor is
. the image of the closure of the floaor under the mapping T.

Consequently, t. is a member of the closure of K.y and it follows
that

ang(gests?) £ Ge. (F-2)
Clearly, (F-1) contradicts (F-2) under the assumption that G
exceeds the sum of G. and z. As a result, it must be concluded
that

G £ G- + z. (F-20

The inequality

Fe — 2 (F-4)
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can be established by a similar argument. It remains to
that G is nct less than G, - 2z and that F is rot greater
Fo + 2.

By virtue of the continuity of the function ang(g«sp.) on the
unit sphere, there exists at least one point r. in the clasure of
Ko such that ang(g.sr.) is the same as G.. Also, the fact that
the closure of K. is the image of the closure of K under the
transformation T implies that the point r. is the image under T
of some point r in the closure of the floor. Thus, by virtue of
inequality (3),

ang({qecsre) £ G + z. (F-3)

Under the assumption that G is less than G. - z the inequality
(F-S) implies that ang(Q.sr.) is strictly less than G=. Since
this result contradicts the fact that ang(q.sr.) is exactly equal
to Gz,y it follows that

G > G - 2. (F-6)

The 1nequality
F < Fe + 2
can be established in a similar fashion.

Let distix,y) represent the great circle distance in nmi
between points x and y on the surface of the earth model. Also,
let Do ana De be the least upper bound and greatest lower bound
of the set of all numbers of the type dist(gq,p) where, as before,
q is the earth model representation of the tangency point and p
is a member of the floor. Clearly,

mag(Da/6@ - G:) £ mag(De/6@ - G) + mag(G - G, (F-8)
mag(De/6@ - F.) £ mag(De/50 - F) + mag(F - F_.), (F—~9)

and each of the factors mag(G - G.) and mag(F - F.) is bounded
above by z. Hence, in order to establish an inequality like (4)
for the pair Dm and G. and the pair De and F.y it is only
necessary to show that mag(Dw/6@ - G) is bounded above by ©.18
percent of Da/60 and that .18 percent of De/60 is an upper bound
of mag(De/60 - F).

fs already pointed out, there is a member t of the closure of the
floor such that ang(g,t) is G. Also, dist(q,p) 1s a continuous
function of p on the surface of the earth modeil, anad so there .s
a point s in the closure of the floor such that dist(q,s) 1s Dn.
Thus,

b(pi/18&rang(q,s) £ Da £ a(pi/slB8®langi(q,s) (F-10)
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b(pi/180)G ¢ dist(g,t) < a(pi/180)G (F-11)

where a is the equatorial radius of the earth model in nmi and b
is the polar radius in nmi. Since Dy, is at least dist(q,t) and
ang{q,s) cannat exceed G, it follows that

b(pi/180)G < Du < a(pi/18@)G. (F-12)

Following the argument in appendix A, it is now a simple matter
to show that

mag(De/6@0 - G) £ 0.9018(Dw/60) (F-13)
and

mag(68G — D) £ 9.001B(60G). (F-14)
In like manner, it can be shown that maq(D-/60 —~ F) cannot exceed

Z.18 percent of De/68 and mag(édF - De!) is never greater than
@.18 percent of 6&OF.



APPENDIX G. EFFECT 0OF. ANGULAR EXTREMUM APPROXIMATIONS
ON THE ESTIMATION OF DILATION EXTREMUMS

If x and y represent the degree measures of twoc angles, the sum
of x and an upper bound p(x) on the magnrnitude of the difference
between x and y is no greater than 124.16%, and wi(x) is the ratio
of fi(x) - 1 to f(x) + 1 where f(x) represents the function

2/01 + cos(x)] then

maglwi(x) — wiy)l < Cix,p(x)) (G-1)
where
Cixyp(x)) = wix + plx)) — wix). (G-2)

The bound C(x,p(x)) is a result of the fact that both the first
and secand derivatives of w(x) with respect to x are nonnegative
functions on the interval extending from @~ to 124.16°,

Let Ds represent the least upper bound in nmi of the set of
great circle distances separating the earth maodel representation
of the point of tangency fram a point in the floor of the contraol
jurisdiction. Also, let G. represent the least upper bound of
the set of degree measures of the anmgles subtended at the center
of the earth by the tangency point and a point in any conformal

representation of the floor. As shown in appendix F,
mag(G.: - Dwu/60) £ p1(Du/bd) (G-3)
where
P1(Da/608) = 2.001B(Dn/60) + 0.000282. (G-&)

Consequently, if the sum of Dn/6@ and p.(Da/6@) is not greater
than 124.16% (i.e.s Do < 7,436.20 nmi) then

B3 (Do) = C(Dn/6@, pl(Dm/ée)) (G-5)

is an upper bound of the magnitude of the difference between
W(Gc) and W(Dg/bz)-

Let G represent the least upper bound of the set of degree
measures of the angles subtended at the center of the earth by
the earth model representation of the tangency point and a point

in the floor. As shown in appendix F,

mag(G. - G) £ pe(G) G-6
where

pr(B) = 0.000282. (G-7)

Thus, the magnitude aof the difference between w(G.) and w(G) is
bounded above by

28
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whenever the sum of G and p=(G) does not exceed 124.16".
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APPENDIX H. UNIQUENESS OF THE OPTIMAL TANGENCY POINT

The results of this appendix are based on two assumptions with
respect to the topology of the subset R of the surface of the
earth model that is used to describe the extent of the floor of
the control jurisdiction. First, the earth model is viewed as an
ellpsoid with center collocated with the origin of euclidean 3-
space E3, and it is assumed that R is closed with respect to the
topology induced in E® by the euclidean norm. Second, it is
assumed that the size of the set R is restricted in the sense
that there exists a vector z (i.e., a member of E® with a length
of 1) in the conformal representation R. of R on the unit sphere
and a positive number t, not greater than 1, such that the inner
product (z,y) of z and any vector y in R: is not less than t. In
other waords, the maximum angle subtended at the origin (i.e., the
center of the earth) by the point representation of z and any
point in the conformal representation R. of the floor is less
than 99=. Since the size of a coverage region of an ACF meeting
the design limit of the AAS is a good deal less than half the
surface of the earth mogel, the existance of the unit vector 2z
ang the positive numoer t is assured for any subset cf the
surface of the earth that fairly represents the extent of the
floor of a control jurisdiction that might eventually be
commissioned in the AARS.

Under the assumptions of the preceding paragraph this appendix
supports two assertions concerning the tangency point of the
system plane. First, it is shown that there exists a unit vector
X such that the smallest inner product in the set {((x.,y):_y in
R-} is at least as great as the smallest inner product in the set
{xsy):_y in Rc} for any unit vector x. Since the inmner product
of unit vectars x and y is just the cosine of the angle subtended
at the center of the earth by the point representations oT tne
two vectors on the unit sphere, it follows that x. is a conformal
representation of the earth model representation q. of an optimal
tangency point. In particular, the earth model representation of
Xe 15 just the image of x. under the inverse of the bijection T
that maps the surface of the earth model into the conformal
representation of the model surface on the unit sphere. In
effect, the geocentric latitude of x. is the conformal latitude
of T-*(x-) (i.e., Qo) and the longitude of x. is the longitude of
T-*(xs). Thus, the determination of x. is equivalent to the
determination of an optimal tangency point. Second, it is shown
that x, is a scalar multiple of the unigue point w in the convex
hull of the conformal representation af R that i1s nearest the
origin of E3, This result implies that there is one, and only
one, point on the surface of the earth model for which the
maximum angle subtended at the center of the earth model by any
conformal representation of the point and a member of any
conformal representation of the set R is least, and %this point 1s
Qe o In other words, there is only one point on the surface of
the conformal sphere supporting the system plane that meets the
criteria of an optimal tangency point, and this point is the
product of w and the ratio of the radius of the spherical support
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to the norm of w. S
The conformal representation R. of the set R is closed and
bounded. Specifically, the norm of each element of R. 1s bounded
above by 1, and so R. is certainly bounded. Also, the biljection
T and 1ts inverse T-* are continuous functions. Cansequently,
since R is closed, the image of R under the transformation T
(i.e,y, Rc) is itself closed.

Among all the vectaors in the convex hull H(R:) of the set R.
there exists one, and only one, vector w with a norm that is less
than the norm of any other vector in the hull. The assumption
that there is a unit vector z and a positive number t such that

y in R. implies (z,y) 2 t (H=-1)

guarantees that R., and hence, the convex hull of R., is a subset
of the convex set

-

J = (y: norm(y) < 1 and (z,y) 2> tl. (H-2)

o

Since t exceeds @, the origin of E® is not a member of J. Also,
since R-. is closed and bounded, the set H(R:) is closed and
bounded. Thus, by virtue of a well known theorm on the minimum
distance to a convex set (Luenberger, D., Optimization by Vector
Space Methods, John Wiley, 1969, page &9) there exists one, and
only one, vector w in the convex hull of Rc such that

Y in R: implies (w,y) > [norm(w)1®, (H-3)

and the norm of w is strictly less than the norm of any other
member of H(R.)

If x is a unit vector then there exists a vector s(x) in R. such
that

Yy in R. implies (x,5(x)) < (x3y), (H=-4&)

and (x,s(x)) is a continuous furmction of x on the set U of all
unit vectnrs. As a result, there exists a unit vector x. and a
member y., of R. such that

(XxorY) 2 (Xos¥e) 2 min{ix,y): y in R2 (H=-5)

for every unit vector x and every member y of R.. The existance
of s(x) is guaranteed by the fact the inner product (x,y) 1is a
continuous function of y and the set R. is both clcsed and
bounded (i.e., a continuous function attains an absolute minimum
and an absolute maximum on a closed and bounded set in E™).

Also, like R., the set U is closed and bounded. Thus, the
product set UxR. is a closed and bounded subset of the product
space E2xE®, Since the inner product of two vectors is a
continuous functiaon on this space, the inner product is uniformly

continuous on UxRz. As a result, the function (x,s5(x)) 1%
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continuous on the set U, and so it must attain an absolute
maximum at some point x. of U. Finally, the vector y. is just
the vector s(x.).

The inner product of x. and y. is equal to the norm of the
minimum norm vector w in the convex hull of R.. The inequality
(H-3) implies that

(norm{w) I " *w,y) > normiw) (H-6)

for all y in R.. Since [norm{(w)J-'w is a unit vector, it follows
directly from (H-3) that

(ﬁc"xc) Z_norm(ﬁ). (H=7)
In order to establish that (x.sY«) cannot exceed normi(w) it is

sufficient to recognize that (H-3) implies that R., and hence,
the convex hull of R., is a subset of the convex set

K = {y: norm(y) £ 1 and (xcsY¥) 2 (XosYe)l. (H-8" 5

Clearly, g
<

NOrmM=(y = (XesYedXe) = NOTME(y) + (XorYe)T — 2(Xasye) (Xesry) :f.

.

L norm®(y) = (Xeasyo)?® (H=-9) ;:,

]

for any member y of K. Hence, among all elements of K the norm p
of the vector (xorYe)Xe is least. The ineqgquality ?
e

normiw) > (xesYe) (H-1@) -

Ty -

follows directly from the fact that the convex hull of R. 1s a

subset of K and w is a member of H(R<). -~
The vectors w and [(norm(w)lx. are the same. Specifically, the 2
square of the norm of the difference between these two vectors o
can be expressed in the form -
i

norm@(lnorm{w)Ixe — w) s

o

= 2lnorm(w) Ilnormiw) = (xoow)l. (H=11) }:

\‘:

Since w is in the convex hull of R. and the latter is a subset of :}
Ks it follows from (H-8) that (x.,w) is at least (x.sy.) which is )

itself the same as norm(w). Thus, the norm of the difference
between w and [norm(w)lx. 1s .

AR ”




PR O O WU WL W W U WX OV O TN VA AN N O O KT W‘?W-"r.?'-lw;.“fﬁq

+ [ U

h . .

X
&| APPENDIX I. A LINEAR PROGRAMMING APPROACH TO
D% TANGENCY PQINT SELECTION
‘ﬁ In this appendix it is assumed that the extent of the floor of
;b the control jurisdiction is fairly represented by a finite set R
u' of n points on the surface of the earth model. For example, each
ﬂ member of R might be a location on the model surface defined by
W the geodetic latitude and longitude of a radar or it might
i cansist of a group of points more or less uniformly scattered ‘
l~ over the floor. In addition, it is assumed that there exists at
hy least one unit vector z such that the angle subtended at the
M) center of the eart: bv 2z and any one of the n members of the
» conformal representation Rc of R on the unit sphere is less than
b 99=. As pointed out in appendix H,; this assumption is satisfied
‘ in any case where R fairly represents the extent of the floar of

”ﬁ a control jurisdiction meeting the AAS design limit on the size
?c of the coverage region of an ACF. Also, as established in
;ﬁ ‘ appendix H, the closed nature of R and the existance of the
i? vector z imply that the optimal tangency point is merely a scalar
W, multiple aof the minimum norm vector w in the convex null H(R.: of
. Rz. Consequently, the longituge of w is the longitude of tne
)J earth model representation gq. of the optimal tangency point, and
ds the geocentric latitude of w is the conformal latitude of dg.. As ]
\ will be seen, this appendix discloses a practical technique for
=¢ finding ws and hence, g, in terms of the solution of a linear k
g programming problem. !
&N The set R. is represented by a 3xn matrix B. The kth column of B
:. is a function of the longitude L. and the conformal latitude M.

' of the kth member of the set R that describes the extent of the
e floor of the control jurisdiction. As indicated in figure [-1,

L the center of the earth is viewed as the arigin of a Cartesian
coordinate system with axes 1,28, and 3 where axis 3 colincides
with the polar axis of the earth and the positive direction along
axis 3 is from the South Pole to the Narth Pole. The element b,.

- s
Cd

Y in the jth row and kth column of the matrix B is defined in terms

Q, of the formulas

o

)

E. ’ biw = cos(M Jcos(bL.u), (I-1)

N

o baw = cos(M.)sin(L.), (I-2)

#. and

L

( Baw = sin(Mu)., (I-2)

D)

4

)

0 Thus, the kth column of the matrix B 1s a 3x1 matrix b. with

,':‘“ elements b,.; baw, and ba..

ah

W

) The mimimum norm member of the convex hull H(R.) of R, 15 a 3xIl
matrix obtained by postmultiplying B by an nx!1 probability

Y matrix. An nxl matrix x is a probability matrix if all

Q components of the matrix are non-regative (dernoted by x > @) and

- a sum of 1 is obtained when the transpose x¥ of x is

’:’v .
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< postmultiplied by the nxl wvector ] with identical components
K equal to 1. Since the convex hull of a finite set is just the
collection of all convex linear combinations of the elements of

go the set, H(R:) is equivalent to the set of all 3x1 matrices of
% the form Bx such that x > @ and x71 = 1.

N

&

&Y Letting A represent the nxn symmetric semipositive definite

matrix formed by premultiplying B by its transpose BT, the
minimum norm element of the convex hull of R. is a 3x1 matrix of
the form Bx where x is any nxl matrix that minimizes the function

%
4 G(x) = xTAx (I-4)
i

* . sub ject to the constraints

b xTL -1 =290 (1-5)
%

n* *

o and

ﬁ

gl x > @. (1-6)
f The constraints merely restrict x to the set of nxl1 probablity

W matrices. The function G(x) is the result of premultiplying the

» 3x1 matrix Bx by its transposes and so it is just the square of

the norm of Bx.

Every solution of the constrained minimization problem is a
H probability matrix x satisfying the equation
0
Y Ax ~rl =@ (1-7)
D
! where r is a scalar and @ is the nx! null matrix (i.e., the
elements of @ are identical and equal to @). This result follows
directly from a straight forward application of the generalized

5 method of Lagrange multipliers to the problem of minimizing G(x)
W subject ta the constraints (I-5) and (I-6).

Any solution of the linear programing problem in n + 1

ﬁ * variables of minimizing the linear functional r subject to the

% constraints

)

)

;}: A L L ko S B

by P pmmmmm R b= e : (1-8)
% A UL R B B A S T

& and

",

Y

b H x

i bm— - by 2. (1-9)
1 ' '

“ 1 r )

' is a solution to the problem of minimizing G(x) subject to the
constraints (I-5) and (I-6). The scalar r in equation (I-7) is
merely the square of the norm of Bx. This fact can be verified

235
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by premultiplying (I-7) by, the transpose of the probability
vector x. In other words, the desired solution of (I-7) s *tre
(n + 1)xl matrix formed from the concatenation of the compcnents
of the vector x and the scalar r 1n which the scalar is minimal
sub ject to the canstraints that the vector 1s a probability
matrix (i.e., the components of x are non-negative and sum ta 1)
and the scalar, the square of a norm, is non—-negative. These &2
constraints and equation ([-7) are embodied in the matrix
relationships (I-8) and (I-9). A solution to the linear
programming problem is guaranteed by the fact that it

invaolves
the minimization of a functional that

is bounded below by @.
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APPENDIX. J. SPHERICAL SRUARES

If x is a positive number not greater than 99 then there exists a
spherical square on the surface of a conformal sphere in the
sense that 1t is possible to select four distinct points pws P>
Pay and pPs (i.e.y the vertices of the square) on the surface of
the sphere such that x is the degree measure of the angle
subtended at the center of the earth by any pair of adjacent
vertices (i.e., vertices Pmcs> a8nd Pmecs + 1> wWhere i is any
nonnegative integer and m(i) represents the integer i modula 4).
The spherical coordinates of a point on the sphere consist of the
radius of the sphere,; the latitude of the point, and the
longitude of the point. Let x/2 represent the latitude of p, and
Pey —(x/2) the latitude of pw and pwy L the longitude of p= and
p=ss and -L the longitude of pw and p.. The degree measure A of
the angle subtended at the center of the earth by p. and p= is
the same as the degree measure of the angle subtended at the same
location by po and ps. The cosine of this angle is just the
inner product of the direction cosine vectors of p. and pe=.

Thus,

cos{A) = cos®(x/2)[2cosB(L) ~ 1] + sin?(x/2), (J-1)

and so cos(A) decreases from 1 to —-cos(x) as L increases ¥from O«
to 9¢=. Since x is not greater thanm 929~ it follows that A
increases from 9= to at least 99« as L moves from @< to 90-<.
Consequently, there exists a degree measure L. not greater than
9= such that A is x when L takes on the value L.y and (J-1)
implies that

cos®(L.) = cos(x)/cos®(x/2). (J-2)

In other words,; the points p.s P.s Pms and pm become the verctices
of a spherical square when L is L..

There is a point t on the surface of the sphere assaociated with
the spherical square defined by the vertices pesspissP=s and po
that is centrally located with respect to the square in the sense
that the degree measure B of the angle subtended at the center of
the earth by t and a vertex of the square is the same for all
vertices of the square, the cosine of B is the square root of the
cosine aof the angle subtended at the center of the earth by
adjacent vertices, and the angle subtended at the center of the
earth by t and any point p on the shortest great circle arc
connecting adjacent vertices is at most B. Let t be the point on
the sphere corresponding to ©= latitude and @~ longitude. From
considerations of symmetry it i:s apparent that the degree measure
B of the angle subtended at the center of the earth by t and a
vertex is the same for all vertices. Also, the cosine of B is
just the inner product cf the directicn cosine vectors of ¢t and
any one of the vertices, and so

cos(B) = cos(x/2)cos(lL,) = [cos(x)]r7&, (J-3)
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Finally, let p be any point on the sphere with longitude L. and a
latitude of y degrees such that the magnitude of y does not
exceed half the degree measure x of a side of the square. If C
is the angle subtended at the center of the earth by t and p then

cos(C) = cos(y)cos(Le). (J-4)

Since mag(y) is not greater than x/2 it follows that C cannot
exceed B.

Suppose naw that the vertices of the spherical square are located
on the surface of a confarmal sphere with a radius R that is the
arithmetic mean of the equatorial radius a and the polar raaius b
of the earth model, g, is the radial projection of the vertex p,
onto the model surface, and s is the radial projection of the
center t of the square onto the surface of the earth model.
Clearly, the angle subtended at the center of the earth by any
pair of vertices is the same as the angle subtended at the same
location by the projections of the vertices onto the earth model.
Likewise, the angle subtenaded at tne center of the eartn by t and
a vertex of the sguare is ne same as the corresponding angle
formed by s and the projection of the vertex onto the model
surface. Consequently, if D is the great circle distance between
the adjacent vertices pmcis and Pmcs + 215 of the spherical
square, then the degree measure of the angle subtended at the
center of the earth by these points is

x = (D/R)(18@/pi), (J-5)
and the great circle distance separating the points gQm¢., and

Qme¢s + 15 ONn the surface of the earth model is not greater than
a(pi/188)x nor less than b(pi/18@)x.
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