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EXECUTIVE SUMMARY

In an air traffic control system where aircraft separation is

maintained by controlling the trajectories of stereographic

representations of aircraft in a plane tangent to a sphere with a

center collocated with the center of the earth, dilation is one
of many factors that adversely affect system performance. The

length of the stereographic image of an arc on the mean sea level

surface of the earth (i.e., the surface of an ellipsoid that

approximates the geoid) differs from the length of the arc, and
this dilation phenomenon is nonuniform in the sense that the

lengths of the images of distinct equilength arcs need not be the

same (i.e., the length of the image of an arc is a function of
both the arc length and the position of the arc on the surface of

the earth). As a result, the stereographic representation of the P
relative separation associated with a pair of aircraft at the

same altitude varies with the absolute position of either member
of the pair as well as with the relative separation itself.

Also, the stereographic image of an aircraft exhibits an
acceleration that reflects the change in the dilation with

position rather than the physical characteristics of the actual
flight trajectory. Indeed, if steps are not taken to minimize

the variation of dilation over the portion of the surface of the

earth underlying controlled airspace, dilation effects may
seriously impact the design of automatic tracking and separation

assurance features that are supposed to provide accurate
forecasts of future positions of aircraft images in the
stereographic plane.

The dilation at any point on the mean sea level surface of the

earth is customarily expressed in terms of the ratio of the

length of an infinitesimal arc through the point to the length of
the stereographic image of the arc. The functional behavior of

this measure of dilation over the control jurisdiction of a
control facility is governeu by the location of the tangency
point and the radius of the sphere that supports the
stereographic plane. The maximum value of the magnitude of the
rate of change of the measure with respect to distance in the
floor of the control jurisdiction (i.e., the portion of the

surface of the earth underlying the control jurisdiction) is
strongly dependent on the latitude and longitude of the tangency
point. Since the magnitude of the acceleration of an aircraft

image due to dilation tends to increase with the magnitude of the

dilation rate, it makes sense to select a latitude-longitude pair
for which the maximum value of the magnitude of the rate is
small. Depending upon the shape of the floor, this criterion for

tangency point selection may result in a latitude-longitude pair
corresponding to a point in the floor or outside the floor. In

any event, determination of a latitude-longitude pair for the
tangency point automatically fixes the ratio of the maximum and
minimum values of the dilation on the floor. Subsequent to the
selection of the latitude and longitude of the point of tangency
the absolute values of these extremums are completely controlled
by the radius of the sphere that supports the stereographic
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plane. Thus, the radius can be viewed as a parameter associated

with the selection of a target value for dilation over the floor

of the control jurisdiction.

This report discloses some techniques for selecting the tangency

point and the spherical support radius for the stereographic
plane. Among all possible latitude-longitude pairs that might be
used to identify the tangency point there are some for which the

maximum value of the magnitude of the dilation rate is least, and

these are optimal in the sense that the corresponding
acceleration induced in the stereographic plane is minimized. It

is shown that there is only one optimal latitude-longitude pair

in the case where the extent of the floor of the control
jurisdiction falls within the design limit of the Advanced
Automation System on the size of the coverage region of an area
control facility. In addition, it is shown that the optimal
latitude-longitude pair can be found as the solution to a linear
programming problem whenever the extent of the floor is specified
in terms of a finite number of points (e.g., the points on the
mean sea level surface of the earth defined by the latitude-

longitude pairs representing the locations of the radars that
support the surveillance function of an area control facility or
a finite collection of points that are more or less uniformly
distributed over the floor). Since the solution of such a
problem can be easily obtained by means of well known techniques

(e.g., the simplex method) this result can be used to formulate
an algorithm for determining the latitude and longitude of the
tangency point. Also, under the assumption that the latitude and
longitude of the tangency point are known, it is shown how to
select the spherical support radius so that the maximum deviation
of the dilation over the control jurisdiction from a
predetermined design constant is a minimum. In effect, the
spherical support radius is adjusted so that the constant falls
midway between the minimum and maximum values of the dilation on
the floor of the control jurisdiction, and it turns out that the
magnitude of the ratio of the difference between the extremums to
the constant is invariant to whatever numerical value is assigned
to the constant. Finally, it is shown that this ratio is at most
0.0705 for any area control facility that might be commissioned
in the Advanced Automation System. Consequently, the design
constant can be viewed as an effective measure of the scale of
the map formed by the image of the floor of the control
jurisdiction in the stereographic plane.

vi



IL

r

1. INTRODUCTION.

In an air traffic control (ATC) environment like the National
Airspace System (NAS) aircraft are separated in at least one of
the three dimensions of altitude, latitude, and longitude by
means of commands transmitted from a ground facility. Aircraft
altitude is conveyed to the ground facility by voice
communication or transponder replies to radar interrogation
messages. The remaining dimensions are obtained indirectly
through a projection algorithm that manipulates raw surveillance
information (i.e., reported altitude and radar measurements of
slant range and azimuth). The objective of the projection
algorithm is to provide a point on a plane surface (i.e., the
system plane of the control facility) that is a stereographic
representation of aircraft latitude and longitude with respect to
some ellipsoidal earth model. The control facility attempts to
separate aircraft in one or both of the dimensions of latitude
and longitude by keeping whatever points are provided by the
projection scheme a prescribed distance (e.g., 5 nautical miles
(nmi)) apart.

There are two factors, among many others, that adversely affect
the ability of the control facility to maintain separation
standards. These are projection error (i.e., the difference
between the actual stereographic representation of an aircraft
and the point representation provided by the projection
algorithm) and dilation (i.e., the discrepancy between the
distance separating points on the surface of the earth model and
the aistance oetween the stereographic representations of these
points in the system plane). If the projection error is large
then there is some question as to what is being controlled (i.e.,
latitude and longitude or something else). If it is small then
there is no sucn question. Dilation adversely affects the
ability of the control facility to maintain separation standards
in the sense that it gives the facility a false impression of the
actual distarce measured over the surface of the earth model
between one location and another that cannot be corrected by a
constant scale factor.

Projection errors are pretty much a function of the projection-
algorithm. Cn the other hand, dilation is determined by the
geometric relationship between the system plane and the earth
model. In particular, the system plane is tangent to a conformal
sphere (i.e., a sphere with a center collocated with that of the
earth locel, - nd dilation is dependent upon the location of the
)oint .)t tanaencv and the radius of the sphere. In other words,
tnere a-e tvo o.siz joos involvea in the design of a
stereographic projection system in ATC applications. First, the
lesj e- must select a conformal sphere and a point of tangency
that provioce a reasonabie dilation characteristic over the
control jurisdiction. Second, the designer must provide an
algorithm that is capable of converting raw surveillance
information into a point on the system plane with little or no
projection error. In the case of the Advanced Automation System
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(AAS) it is a requirement that the projection error not exceed
.005 nmi (reference 1) for any aircraft under radar control

within the jurisdiction of an area control facility (ACF). There

exists a projection algorithm that satisfies the AAS error
requirement (reference 2). This report deals with some

techniques for creating a near optimal dilation characteristic
over the breadth of the floor of an ACF control jurisdiction
(i.e., the portion of the surface of the earth model underlying
the airspace controlled by the ACF).

The remainder of the report is divided into six sections. The
next section is concerned with several aspects of the .%
quantitative expression of dilation that can be exploited in the
design of an ATC projection system. Although there exists an
exact mathematical expression for the dilation at any point of an
ellipsoidal earth model, it is not too useful in the design
process. Section 3 deals with some practical formulas for
estimating the dilation. In section 4 it is shown how these
formulas can be employed in the selection of the radius of the
sphere that supports the system plane under the assumption that
the tocation of the point of tangency is known to within a radial
line segment emanating from the center of the earth model. %
Section 5 is concerned with the problem of selecting this radial
line segment, and there it is revealed how the selection process
can be formulated as a linear programming problem. Regardless of
what procedure is used to select the point of tangency and the
radius of the spherical support for the system plane, the

dilation will vary from point to point on the floor of the
control jurisdiction. Also, the total variation (i.e., the
difference between the maximum and minimum values of the dilation
on the floor) tends to increase with increasing floor size.
Section 6 discloses a constraint on the total variation implied
by tne AAS aesign limit with respect to the size of the

surveiliance coverage region associated with an ACF. Concluding
remarks appear in section 7, and details of a mathematical nature
are relegated to 10 appendices. Finally, numerical results
presented in the report are based on an ellipsoidal earth model
characterized by a polar radius of 3432.372 nmi and an equatorial
radius of 3443.919 nmi (i.e., the earth model is assumed to be

the reference ellipsoid chosen for the North American-Datum of
1993 (reference 3)).

2. QUANTIFICATION OF DILATION.

The dilation m, at a point p on the earth model can be quantified

in cermrn cf the length as, of an infinitesinal arc on the model
surface that contains the point and the length ds, of the N
stereoaraphic representation of the arc in the system plane. The
accepted measure of dilation is tne limit of the ratio of ds:. to
ds, as the latter approaches zero. The limit can be expressed as
a product of three factors (reference 4). One of these is the

function :%
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f(g )-. 2/[1 + cos(g=)] (1)

where g., is the angle subtended at the center of the earth model

by the point of tangency of the system plane and a conformal
representation of the point p (i.e., the point on the surface of

a conformal sphere at the conformal latitude and longitude of p).
Another is the ratio of the radius E of the sphere that supports
the system plane to the equatorial radius a of the earth model.
The remaining factor is a function h(J) of the geodetic latitude

J of p that increases monotonically from 1 to a number just under
1.0034 as the magnitude of the latitude increases from 0- to 90-.
Unfortunately, this function is complicated, and as a result, the
formula

m, = h(J)(E/a)f(g,) (2)

is not too useful in the design of ATC projection systems.

Although the function h(J) is somewhat complicated, it is clear
that dilation is nearly proportional to the simple function I

f(g.), and hence, the shape of the dilation characteristic over
the floor of a control jurisdiction is strongly dependent on the
parameter g-. As will be seen, there are two aspects of this
parameter that are significant from the standpoint of projection
system design. One of these is based on the fact that there are
infinitely many conformal representations of the same point on
the surface of the earth model. The other stems from the fact
that the angle subtended at the center of the earth model by two
points on the model surface is essentially the same as the angle
subtended at the same location by conformal representations of
the points.

The angle g. and the specific conformal sphere of radius E that

supports the system plane are independent entities. There are as
many conformal representations of a point on the surface of the
earth model as there are conformal spheres, and all of these
representations lie on the same radial line segment emanating
from the center of the earth. Consequently, there are infinitely
many conformal representations of the floor of a control
jurisdiction, and regardless of whether the point p is a member
of the floor, g, is the unique angle subtended at the center of
the earth model by the point of tangency and any conformal
representation of p. Also, if q is the earth model
representation of the point of tangency (i.e., the location on
the model surface specified by the geodetic latitude and
longitude of the tangency point) then the same angle is subtended
at the center of the earth by any conformal representation of the
point p and any conformal representation of q, including the
tangency point itself. For example, the angle g.. is the same as
the angle subtended at the center of the earth by the conformai 5

representations of p and q on the unit sphere (i.e., the
conformal sphere characterized by a radius of 1 in whatever units
the dimension of length is expressed). This concept can be
exploited in the selection of the tangency point.
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The angle g,. is a rather abstract entity. Fortunately, it can be
replaced with near impunity by other parameters of a more
concrete nature. One of these is the angle g subtended at the
center of the earth by the point p and the earth model
representation q of the point of tangency. Another can be
defined in terms of the great circle distance between two points
on the surface of the earth model (i.e., the length of the
shortest curve connecting the points that can be formed from the
intersection of the model surface and the plane containing both
points and the center of the earth). If the great circle
distance d separating p from q is expressed in nmi then the ratio
of d to 60 is a fairly accurate estimate of the degree measure of
either of the angles g and g.. As shown in appendix A, the
magnitude of the difference between the ratio and g is less than
0.18 percent of the former. Likewise, if g is known then d is
known to the extent that the magnitude of the difference between
d and the product of 60 and g cannot exceed 0.18 percent of the
product. The inequalities

mag(g - g,) < 0.000282 (3)

and

mag(d/60 - g,) < 0.0018(d/60) + 0.000262 ()

express the accuracies of g and d/60 as estimates of g, when
distance is expressed in nmi and angle measures are specified in
degrees. For example, if d is 1800 nmi then g_ is known to the
extent that it is somewhere between 29.946- and 30.054"'. On the
other hand, if g is known to be 30- then g. cannot differ from
30 by more than 0.000282-. A derivation of inequalities (3) and
(4) is provided in appendix B.

The utility of the degree measure d/60 as an estimate of g,, does
not depend so much on the difference between the measure and g,
as it does upon the difference between f(d/60) and f(g,=).
Similarly, in the case of g as an estimate of g , the difference
between f(g) and f(g.) is of primary importance. Table 1
demonstrates that the replacement of g, by d/60 or g in the
dilation formula results in numbers that are essentially the same
as m., In each row of the table the entry B1 (d) in the third
column is an upper bound on the magnitude of the difference
between 1 and the ratio f(g.)/f(d/60), and the entry in the
fourth column upper bounds the magnitude of the difference
between 1 and f(g,)/f(g). In other words, the actual dilatio at
point p is not significantlv different from the number generated
by the dilation formula when g, is replaced by either one of the th
estimates g and d/60. For example, if the point p is separated
from the earth model representation of the point of tangency by a
great circle distance of 1800 nmi then the magnitude of the
difference between the actual dilation m, at p and the estimate
obtained from the dilation formula by replacing g. with the ratio
of 1800 to 60 is at most 0.025413 percent of the estimate.
Appendix C discloses the procedure used to generate the bounds in

4
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table 1. Approximations of angles like g. by parameters of the
type d/60 and g are useful in the selection of a near :ptimal
radius for the conformal sphere that supports the system plane.

TABLE 1. ESTIMATION ACCURACIES OF d/60 AND g.

d g Bi(d) Be(g) '

(nmi) (deg) (10 - 7 )  (10 - 7 )  o0o

60 1 3.2 1 0.4
120 2 11.9 0.9 -'

180 3 26.0 1.3

240 4 45.6 1.7 -

300 5 70.8 2.2
600 10 279.4 4.3
900 15 627.5 6.5
1200 20 1117.7 8.7
1500 25 1753.9 10.9
1800 30 2541.3 13.2
2100 35 3486.4 15.5
2400 40 4597.3 17.9

3. ESTIMATION OF DILATION.

The dilation at any point in the floor of the control
jurisdiction is closely approximated by the function

m(g,) = k(E/a)f(g-) (5)

where k is the arithmetic mean of upper and lower bounds in the
interval from 1 to 1.0034 on the set of values of the function
h(J) associated with the geodetic latitudes of the points in the
floor. Indeed, if h1 is a lower bound, he is an upper bound, and

k (h, + hm)/2 (6) %

then, as shown in appendix D, the dilation at any point in the
floor must satisfy the inequality

mag~m, - m(g,)] < C(he - h1 )/(h1  + hm)]m(g,). (7)

Thus, if the bounds are I and 1.0034 (i.e., k is 1.0017) then the
use of m(g,) as an esimate of the dilation at any point on the
surface of the earth model results in an estimation error that is
at most 0.17 percent of the estimate. Table 2 implies that
tighter bounds than these apply to smaller regions of the surface
of the earth. Consequently, as demonstrated in examples I and 2,
oreater estimation accuracies can be realized over the floor of
an ACF control jurisdiction.

N. I.".. . .



TABLE 2. VARIATION OF h(J) WITH THE MAGNITUDE OF J.

mag(J) (deg) h(J)

15 1.000223

25 1.000595
35 1.001097

45 1.001670

55 1.002245

65 1.002752
75 1.003130

Example 1.

If the floor falls between the north geodetic latitudes of
35" and 45 =. then the function h(J) is not less than 1.001097 nor
greater than 1.001670 on the floor. Thus, the arithmetic mean of
these numbers, 1.001384, is an acceptable value for the constant
k, and the corresponding estimation error at any point on the
floor cannot exceed 0.029 percent of m(g-).

Example 2.

If the floor extends from 5- south geodetic latitude to 15-
north geodetic latitude then the minimum and maximum values of
h(J) on the floor are I and 1.000223. Consequently, 1.000112 is
the value to be assigned to k, and the maximum error associated
with m(g.) as an estimate of the dilation at any point in the
floor is 0.011 percent of the estimate.

From the point of view of a controller charged with the
separation of aircraft it is important that the separation
between points in the floor of the control jurisdiction be
accurately portrayed by the separation of the stereographic
representations of the points in the system plane. For this
reason a constant dilation over the entire control jurisdiction
is highly desirable. Unfortunately, the estimate m(g,=), as well
as the dilation itself, is a variable. In fact, the estimate
increases from k(E/a) to infinity as the angle g., increases from
0- to 180c'. Thus, thfe magnitude of the difference between the
dilation and a predetermined design constant n (i.e., a design
goal for the value of dilation on the floor of the control
jurisdiction) is as significant a design factor as the dilation
itself. Consequently, if m(g,-) is to serve as a useful estimate
of dilaticn then

v(n,g.) = mag[m(g-) - n] k3)

must be close to

uF,(n) = mag(m, - n). (9

In appendix D it is shown that
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magEu,(n) - v(n,g.)] <C(h, - h1 )l(h1 + h.)]Ev(n,g,) + n] (10)

for every point p in the floor of the control jurisdiction. As
will be seen, it is possible to keep v(n,g,) below 0.0352n on the
floor of an ACF control jurisdiction that fulfills the size
requirements of the AAS specification. Stated another way, if
the system plane point of tangency and the radius of the
conformal sphere supporting the system plane are properly
selected then v(n,gc) will diffpr from the magnitude of the
difference between the dilation and n by at most

V(n) = 1.0352[(hm - hl)/(h ,  + hm)]n. (11)

Since h. - h, is at most 0.0034 and h , + h. is never less than 2
it follows that V(n) is at most 0.176 percent of n. In practice,
the value of V(n) can be made much smaller than this. For
instance, V(n) is 0.000296n in example 1 and it is 0.000115n in

example 2.

4. SELECTION OF THE SPHERICAL SUPPORT RADIUS.

Assuming that the earth model representation of the point of
tangency is known (i.e., the angle g. is defined) the estimate
m(g.) can be viewed as a function of the parameters E and g.., and
it is clear that to each positive number that might be used as
the radius of the spherical support for the system plane there
corresponds some maximum value, other than 0, of v(n,g,-) on the
floor of the control jurisdiction. Fortunately, among all such
numbers it is easy to locate one for which the maximum is least.
As shown in appendix E, this optimal radius is

Eo(n,F.,G.) = 2n(a/k)/Cf(F,) + f(G-)] (12)

where F,- and G. represent the minimum and maximum angles,
respectively, subtended at the center of the earth model by the
system plane point of tangency and a point within any conformal
representation of the floor. Using r to represent the ratio of
f(G,) to f(F,), the formula

v,,(n,r) = n[(r - l)/(r + 1)] (13)

supplies the corresponding maximum value of the magnitude of the
difference between n and the estimate of dilation on the floor of
the control jurisdiction. If the earth model representation of
the point of tangency is located in the floor then f(F, ) is I
(i.e., F. is 0) and v,(n,r) takes on the value

v, (n,f(G- ) = nw(G-) 14)

where

w(G ) = Ef(G-) - 1]/[f(G,:) + 1]. (15)
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The inequality ..

0 < vo(nr) < nw(G.) (16)

is a direct consequence of the fact that the function f(g-)
increases as g. increases from 0- to 180- and v.(n,r) is an
increasing function of r. Thus, the dilation estimate associated
with the optimal radius differs from the design constant n by at

most 100w(G,) percent of the constant at any point in the control
jurisdiction.

While it is fairly obvious that the angle G, is not too different
from the largest angle G subtended at the center of the earth by
a point in the floor of the control jurisdiction and the earth
model representation q of the point of tangency, it is not
altogether clear that the magnitude of the difference between the
two angles is bounded above Ly the right side of the inequality
(3) that expresses the accuracy of either one of the parameters g
and g. as an estimate of the other. The problem is that it may
be difficult to establish the existance of a point t in the floor
such that G is the angle subtended at the center of the earth by
t and q and that G. is the angle subtended at the same location
by conformal representations of t and q. Similar remarks apply
to the difference between F,. and the smallest angle F subtended
at the center of the earth by q and a point in the floor.
Nevertheless, it can be Shown that the accuracy expressed by the
inequality (3) for g as an estimate of g. applies to F and G as
estimates of F and G., respectively. Also, the accuracy
expressed by the inequality (4) that is associated with d/60 as %
an estimate of g. applies to the estimation of G- by the product ",
of 1/60 and the largest great circle distance Dc, in nmi
separating q from a point in the floor. Likewise, the inequality
formed from (4) by replacing g,- with F, and a with the snortest
great circle distance D, between q and a point in the floor
expresses the accuracy of Dw/60 as an estimate of F,. An
argument supporting these assertions is provided in appendix F.

The utility of the degree measures D,-/60 and D,/60 as estimates

of the angles F, and G, does not depend so much on the difference
between the measures and the angles as it does upon the dilations
(or more precisely, the estimates of dilation) associated with
the optimal radius E,.(n,F.,G) and the suboptimal radius
E.(n,Dw/60,Dc,/60). Similarly, the dilations associated with the
optimal radius and the suboptimal radius E-(n,F,G) are of primary
importance. Table 3 illustrates the difference between the
estimates of the maximum deviation of the dilation from the
design constant n on the floor associated with the optimal radius
E.(n,0,G-) and the suboptimal radii E,,(n,O,D,/,60) and E_(n,0,G)
in the case where the earth model representation of the targency
point is in the floor of the control jurisdiction. It also
demonstrates the accuracy of w(G) and w(D)/60) as estimates of
w(G.). In each row of the table the entry B,(D 4 ) in the fourth
column is an upper bound on the magnitude of the difference

between w(G.) and w(Dn/60), and the entry B,(G) in the fifth

M !
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column upper bounds the magnitude of the difference between w(G,)
and w(G). As demcnstrated by the table, the estimate of the
maximum deviation of the dilation from n associated with the
optimal radius is not significantly different from the deviations
associated with the suboptimal radii. In other words, if the
great circle distances Do and D, are available then there is
little reason for one to be reluctant about employing
Eo(n,D,/60,Do/60) as the radius of the spherical support for the

TABLE 3. BOUNDS ON mag~w(G.) - w(G)] AND
maglw(G.) - w(D/60)]

D G w(DO/60) or w(G) B(Do) B,(G)
(nmi) (deg) (10- -) (10 -

1-
)  (10 -

4
)

300 5.00 9.5 0.0354 0.0011
600 10.00 38.1 0.1397 0.0022
900 15.00 85.9 0.3137 0.0032
1200 20.00 153.1 0.5587 0.0043
1500 25.00 239.8 0.8764 0.0055
1800 30.00 346.5 1.2689 0.0066
1815 30.25 352.4 1.2906 0.0066
2100 35.00 473.5 1.7390 0.0077
2400 40.00 621.2 2.2892 0.0089

system plane. Likewise, E,.(nF,G) can be used as the radius of
the supporting sphere whenever the angles G and F are available.
Appendix G discloses the procedure used to generate the bounds in
table 3.

The parameters D., Do, F, and G may not be readily available.
For example, there is always some inherent distortion associated
with any planar representation of a portion of the surface of the
earth, and so it is not possible to obtain an exact determination
of the distances D. and Do from a standard map illustrating the
boundary of the floor of the control jurisdiction. On the other
hand, the latitude and longitude of each radar in the network of
radars supporting the surveillance function of an ACF will most
certainly be known. This information together with the latitude
and longitude of the tangency point can be used to compute the
degree measures of the minimum and maximum angles Am, and A ...
subtended at the center of the earth by the earth model
representation of the point of tangency and a location on the
model surface corresponding to the latitude and longitude of a
member of the radar network. Also, it is most likely that some
reasonable upper bound S on the ranges of the network radars will
be available. For example, the maximum effective range of the
search radars employed in NAS is often quoted as being 200 nmi.
Consequently, the sum of the degree measure of A,., and the ratio
of S in nmi to 60 can be viewed as a reasonable estimate of the
degree measure of G. In like manner, the angle F can be taken to
be the maximum of the numbers 0 and A.,, - S/60. In those cases
where the members of the radar network are not endowed with the
same effective range, this technique can be extended to provide

9



even better estimates of F.and G when the range of each radar is
known. In fact, procedures of this nature may be the only means

for acquiring realistic measures of F and G.

5. SELECTION OF THE TANGENCY POINT.

Since v,.(n,r), the maximum deviation of the dilation estimate
from the design constant n on the floor of the control
jurisdiction that is associated with the optimal radius

Eo,(n,F=,G 4 ), is an increasing function of the ratio r of f(G.) to

f(F.) and the parameter r is determined by the location of the
tangency point, there is some reason to believe that from among

all possible locations for the point of tangency one should be

selected for which the ratio is least. Unfortunately, this may
be a difficult problem to solve. Also, there is good reason to
believe that it is not the proper problem to solve.

Both the dilation and the rate of change of dilation with respect

to distance play important roles in projection system
performance. As already indicated, departures of the dilation
from the design constant n result in a stereographic image of air
traffic that does not exactly portray the separation between
aircraft relative to the earth model. On the other hand,
departures of the dilation rate from 0 introduce undesirable
acceleration effects in the system plane. The slope of the
dilation estimate (i.e., the derivative of m(g.) with respect to
the angle g,) is a measure of dilation rate. Since

s(g,) = m(g,)tan(g,/2) (17)

is the formula for the slope in (radians)-', it is clear that
large departures of the rate from 0 are possible. Example 3
illustrates the manner in which dilation rate affects system
plane representations of moving vehicles. Indeed, if no effort
is made to control the dilation rate on the floor of the control
jurisdiction then it may be impossible to construct an automatic
aircraft tracking system with current tracking technology that
will satisfy the performance requirements of the AAS.

Example 3.

Suppose a particle is moving with constant speed over the
surface of the earth model along the intersection of the model
surface with a plane containing the earth model representation q
of the point of tanqency and the center of the earth. If the

great circle distance d separating the particle from q is
measured in nmi and c is the particle speed then (to the extent
that d/60 represents the degree measure of the angle subtended at
the center of the earth by the tangency point and a conformal
representation of the particle) the corresponding speed of the
system plane representation of the particle is nearly the same as
the product of m(d/60) and c. In addition, the system plane

representation of the particle is accelerating in the direction
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of motion of the representaetion, and the magnitude of the
acceleration is in the neighborhood of the product of 1/60,
pi/180, s(d/60), and the square of c.

Minimization of the parameter r does not guarantee that the
maximum value of the slope of the dilation estimate on the floor
of the control jurisdiction will be a minimum. The maximum value
of the estimate on the floor associated with the optimal radius
is the sum of v,,(n,r) and n. Thus,

s,,(n,r,G) = [vq(n,r) + n~tan(G./2) (18)

is the maximum value of the slope of the estimate on the floor
associated with the optimal radius. Since G, is not necessarily
a monotone increasing function of r there is little reason to
believe that the best position for the point of tangency is a
location that renders r a minimum.

A good position for the tangency point is any location that
minimizes the maximum angle G. subtended by the point of tangency
and a point in a conformal representation of the floor.
Regardless of the location of the tangency point, the parameter r
is at least I and at most f(G,). As a result,

s0 (nf(G9),G=,) = n[w(G.) + 1]tan(G,/2) (19)

bounds the maximum slope so,(n,r,G.) from above and

s.(n,l,G ) = ntan(G,/2) (20)

bounds it from below. Since w(G,) is an increasing function of
G, the same is also true for the magnitude of the difference
between these bounds. Also, (19) implies that the maximum slope
s.,(n,r,G,) differs from the lower bound by at most l00w(G,-)
percent of that bound. Finally, as shown in the previous
section, nw(G,) upper bounds v.(n,r). Thus, there is ample
reason to view the function w(G,) as a measure of goodness of the
location of the point of tangency, and much can be gained by
selecting a location for the tangency point for which the angle
G,, is least.

Table 3 illustrates that the sensitivity of the measure w(G,) to
the position of the earth model representation of the point of
tangency is not so critical that one needs to resort to powerful
optimization techniques in order to find an appropriate location
for the tangency point. For example, w(Do/60) increases from
0.02398 to 0.04735 as D,, increases from 1500 nmi to 2100 nmi.
Thus, the rate of change of the measure per unit change in
distance is roughly 0.00004 nmi -1 when the largest great circle
distance separating a point in the floor of the control
jurisdiction from the earth model representation of the point of
tangency is in the neighborhood of 1800 nmi. Consequently, an 87
nmi movement of q will result in a change in the measure w(D,,/60)
of about 10 percent. In fact, the value of w(Dn/60) increases

11



from 0.03465 to 0.03813 as:-.o increases from 1600 nmi to 1887 nmi
and it is 0.03135 when D, is 1713 nmi. Table 4 provides a more
detailed view of the sensitivity of w(Do/60) to changes in the
location of the earth model representation of the point of
tangency in terms of the first derivative of the function

y(Do) = w([pi/180][Do/60J) (21)

and its natural logarithm . Except in those cases, if any exist,
where there is an overriding need for strict optimality in terms
of minimization of the angle Ge, it appears that a satisfactory

TABLE 4. DILATION SENSITIVITY

Do : (d/dDo)y(D,) (d/dDo)logEy(Dm)]
(nmi) (10 - 6 nmi - 1 )  (10 -' nmi - 1 )

300 6.4 66.7
600 12.7 33.4
900 19.1 22.3
1200 25.6 16.7
1500 32.2 13.4
1800 38.9 11.2
2100 45.8 9.7
2400 52.7 8.5

location for the tangency point can be found by means of the
application of a reasonably healthy eyeball to a map (e.g., a
Lambert conformal projection) of the floor of the control
jurisdiction.

While there may be no overriding technical need for an explicit
algorithm that automatically provides a tangency point that is in
some sense optimal, a good algorithm is usually a welcome
replacement for a subjective procedure that might go awry in the
wrong hands. In the case of control jurisdictions meeting the
size requirements of the AAS there exists an algorithm for
determining an optimal tangency point under a rather practical
set of conditions. As shown in appendix H, if the extent of the
floor of the control jurisdiction is fairly represented by a
topologically closed subset R of the surface of the earth model
then there is one, and only one, location q. for the earth model
representation of the system plane point of tangency that is
compatible with a design requirement that the maximum angle G_.
subtended at the center of the earth by the tangency point and a
point in any conformal representation of the floor be minimal.
If the floor is closed (i.e., all boundary points of the floor
are members of the floor) then R can be the floor itself. The
set R can also be a finite set-of points on the surface of the
earth model (e.g., the set of all points on the model surface
corresponding to the latitude-longitude pairs that define the
locations of the radars that support the surveillance function of
the control facility). With the exception of some special cases,
it may be extremely difficult to compute the latitude and
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longitude of qo. when the nymber of points in the set R is
infinite. On the other hand, if R is finite then the

determination of the latitude and longitude of q,, reduces to a

linear programming problem. The following algorithm is a

prescription for setting up the linear programming problem and
acquiring the conformal latitude and longitude of q_. from the
problem solution. A detailed development of the algorithm is
provided in appendix I.

Algorithm. Tangency point selection via linear programming.

Input data for the algorithm consists of n oairs of numbers
(L2, MI),...,(L-, M_) where L. and Mk are the longitude and
conformal latitude, respectively, of the kth (k = 1,...,n) member

pk of a finite set R of n points on the surface of the earth
model that represents the extent of the floor of the control
jurisdiction. In effect, the pair (Lk, M.) represents the
spherical coordinates of the conformal representation of p,, on
the unit sphere. It is assumed that the conformal representation

of the entire set R on the surface of the unit spnere ;s a soset
of a hemisphere. Since the floor of a controi juriscictin

meeting the AAS design limit on the size of the coverage region
of an ACF is much less than half the surface of the earth model,
this assumption is satisfied in any case where R is a subset of
any portion of the model surface that qualifies as the floor of a
control jurisdiction in the context of the AAS specification.

a. Construct a 3xn matrix B such that the elements of the
kth column of the matrix are the Cartesian coordinates of the
kth element of the set R on the unit sphere. Thus, the 3x1
matrix

cos(Mk)coskLw)

=k cos(Mp.)sin(L.) (22)
sin(M,,)

is the kth column of B.

b. Construct the nxn symmetric matrix A that is the result
of premultiplying the matrix B by its transpose.

c. Letting I represent the nxl matrix with identical
elements equal to 1, 1 T the transpose of 1, and 0 the nxl matrix
with identical elements equal to 0, find an nxl matrix x and a
scalar r such that the scalar is a mini-um subject to the

constraints that r and all the elements of x are non-negative,

Ax - ri = 0, (23

and

lTX= 1. (24)

This is a linear programming problem in n + 1 variables (i.e., r

13 .*
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and the n elements of the nxl matrix x) and it can be solved by
means of the simplex method (reference 5).

d. Construct the 3x1 matrix

u = r')x(25)

where x and r are solutions of the linear programming problem of
step c. As shown in Appendix I, u is a unit vector and the
elements of u are the direction cosines of the optimal tangency
point (i.e., the Cartesian coordinates of the optimal tangency
point are just the elements of the 3x1 matrix formed by the

scalar multiplication of h by the radius of the sphere that

supports the system plane).

e. Letting u, represent the element in the jth row of the
3x1 matrix , determine the longitude L and conformal latitude M

of the earth model representation of the optimal tangency point

from the relationships

M = arc sin(u3 ),

u= 0 and um = 0 implies L = 0, (27)

u, = 0 and u, > 0 implies L = 90, (2e)

u, = 0 and u, < 0 implies L = -90-, (29)

ul > 0 implies L = arc tan(ue/u,), (30)

and S

u, < 0 implies L = 180 ° + arc tan(u"/ut). 31)

6. DILATION AND THE AAS DESIGN LIMIT.

The AAS specification (reference 1, page 44) places a design

limit of "2500X2500" square nmi on "the surveillance coverage
area" of an ACF. Unfortunately, the description of the limit
provided by the specification is not easy to interpret. There

are many regions of the surface of the earth involving an area of '

6,250,000 square nmi that cannot possibly serve as the floor of a

control jurisdiction. Thus, it is unreasonable to view the limit
as a restriction on area alone. In other words, there exists a
factor of shape that cannot be ignored, and so it is reasonable
to assume that the expression '2500X2500" refers to a square
region with a side length of 2500 nmi. However, it is impossible

to construct a square on the surface of an ellipsoidal earth
model. As a result, the meaning of the design limit is some~hat
unclear.

A reasonable interpretation of the design limit can be formulated
in terms of the smaller of the two regions bounded by a simple

O%
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closed curve constructed o the surface of a specific conformal
sphere. The radius of the sphere is the arithmetic mean of the
equatorial and polar radii of the earth model (i.e., 3,438.146
nmi) and the curve consists of four great circle arcs each of
which is exactly 2500 nmi in length. As shown in appendix J, the
center of the smaller of the two regions bounded by the four arcs
is separated from each vertex of the boundary by a great circle
distance of 1,811.774 nmi. If the AAS design limit is
interpreted to be the radial projection of the smaller region
onto the surface of the earth model then the limit corresponds to
the somewhat fuzzy, but nevertheless realistic, notion of a
region of the model surface having a square-like perimeter that
is approximately 10,000 nmi in length and a centrally located
point that is roughly 1,812 nmi from each vertex of the
perimeter. In fact, as shown in appendix J, adjacent vertices of
the perimeter are separated by a great circle distance that is
between 2,495.802 nmi and 2,504.196 nmi, and the great circle
distance between the centrally located point and any vertex of
the perimeter is not less than 1,808.732 nmi nor more than
1,814.817 nmi. Needless to say, the maximum great circle
distance separating the centrally located point from any other

point in the square-like region cannot exceed the upper bound of
1,814.817 nmi.

Some very definite implications with respect to dilation are
associated with a design limit that is a region of the surface of
the earth model with a centrally located point that is separated
from any other point in the region by a great circle distance
less than or equal to a prescribed maximum DL that is itself
known to be less than 1,815 nmi. Specifically, the floor of any

ACF control jurisdiction commissioned in the AAS can be
envisioned as being embedded in the design limit. Thus,
regardless of the location of the point of tangency and the size
of the radius of the sphere that supports the system plane, the
euclidean norm of the difference between the dilation and the
design constant n on the floor of the control jurisdiction will
not exceed the maximum value of the norm of the difference on the
design limit. Consequently, there is no reason why the norm of
the difference on the floor should ever exceed the maximum value
of the norm on the limit in the case where the point of tangency
is centrally located with respect to the limiting region and the
size of the conformal radius is the subobtimal value
Eo(n,0,DL/60). Since DL is less than 1815 nmi, it follows from
table 3 that this maximum norm is less than 0.0352n. As a
result, it can be concluded that the magnitude of the difference
between the dilation and n on the floor of a control jurisdiction

falling within the AAS design limit can be kept below 0.0352n by
(1) assigning a location to the point of tangency such that among
all possible positions for the tangency point the maximum angle

subtended at the center of the earth by the assigned location and
a point in a conformal representation of the floor is essentially
minimal and (2) using either one of the numbers E,.(n,D /60,Dr/60)
and E,.(nF,G) as the radius of the conformal support for the
system plane.
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7. CONCLUDING REMARKS.

Selection of the location of the tangency point can be reduced to

an optimization problem involving the conformal representation of
the floor of the control jurisdiction on the surface of the unit

sphere of euclidean 3-space. Each element of the sphere is a
unit vector that can be viewed as the direction cosine vector of
a possible location for the tangency point. The maximum angle

subtended at the center of the sphere by any such element and a

point in the conformal representation of the floor is a measure
of the worth of that element as the direction cosine vector of
the tangency point. Any unit vector for which the maximum angle
is least has maximum worth in terms of limiting the magnitude of
the rate of change of dilation with distance on the floor. In
effect, minimizing the maximum angle is consistent with the

notion that the best dilation characteristic over the control
jurisdiction is a constant. In the case where the extent of the
floor is represented by a closed subset of the surface of the
earth model (i.e., all boundary points of the set are members of
the set) and the size of the floor meets the design limit of the
AAS specification there is one, and only one, unit vector for
which the maximum angle is least. If the set is finite (e.g.,
the collection of points in the floor representing the radar
sites that support the surveillance function of the control
facility or any finite set of points that are distributed in a
more or less uniform fashion over the floor) then this unique

vector can be found in terms of the solution of a linear
programming problem via the simplex method or any other technique
that is available for solving such oroblems.

Regardless of what unit vector is used as the direction cosine

vector of the tangency point, there is always some variation of

the dilation over the floor of the control jurisdiction, and the
difference between the maximum and minimum values of the dilation

on the floor is proportional to the radius of the conformal
sphere that supports the system plane. By means of a judicious
choice of the conformal support radius it is possible to minimize
the maximum deviation of the dilation on the floor from a
prescribed design constant. This criterion for selection of the
spherical support radius is consistent with the notion that the
representation in the system plane of the separation associated

with a pair of points in the floor should be close to a known
multiple of the separation. For example, if the design constant

is 1/185200 nmi per nmi then there should be some assurance that
a distance of 5 centimeters between the system plane
representations of two aircraft within the control jurisdiction

is truely indicative of a separation of 5 nmi over the surface of

the earth.

Finally, assuming that the target value for dilation over the

floor of the control jurisdiction is n and that the floor meets
the AAS design limit on the size of the coverage region of an
ACF, it is possible to provide a tangency point and a spherical

support radius such that the maximum dilation on the floor is at



most 1.0352n and the minimum dilation is at least 0.9648n. In
other words, if the tanqenc, pcint and the spherical supoort
radius are selected in accord with the techniques outlined in
this report then the dilation will deviate from the dilation
design constant by at most 3.52 percent of the constant over the
control jurisdiction of any ACF commissioned in the AAS.
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APPENDIX A. GRET CIRCLE DISTANCE AND ANGLE

There exists a simple relationship between the great circle
distance d in nmi between two points p and q on the surface of an N
ellipsoidal earth model characterized by equatorial and polar
radii a and b, respectively, and the degree measure g of the
angle subtended at the center of the earth model by the points.
The distance d is the shorter of the two curves on the model
surface connecting p and q that are formed by the intersection of
the surface and the plane containing the points and the center of
the earth. If g is known then d is also known to the extent that
it must lie between b(pi/180)g and a(pi/180)g. Also, knowledge of
d determines g to the extent that the latter is not greater than
(d/b)(180/pi) nor less than (d/a)(180/pi). In other words, d and .

g satisfy the expressions I

[b(pi/180)-60]g . d - 60g . [a(pi/180) - 603g (A-1)

and
5'

C(18/pi)/a - 1/603d < g - d/60 < [(180/pii/b - 1/603o. A-2:

In the case of the reference ellipsoid chosen for the North
American Datum of 1983 (where a is 3443.919 nmi and b is 3432.372
nmi) these inequalities imply that 0.0018(60g) is an upper bound
of mag(d - 60g) and that mag(g - d/60) is not greater than
0.0018(d/60).
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APPENDIX B°. ANGLE ESTIMATION ERROR

The angle g subtended at the center of the earth model by points
p and q on the model surface is a fairly good estimate of the
angle g. subtended at the same location by conformal
representations of the points. Since the longitude of a point on
the earth model is the same as the longitude of the conformal
representation of the point, the difference between the two
angles is due solely to the fact that the geocentric and
conformal latitudes of the same point on the model surface are
not necessarily the same. In fact,

cos(g) = sin(x)sin(y) + A[cos(x)cos(y)] (B-I)

where x and y are the geocentric latitudes of points p and q,
respectively, and A is the cosine of the difference between the
longitudes of the two points. The corresponding formula for
cos(g.) can be obtained from the expression for cos(g) by

replacing x with the conformal latitude x. of the point p and y
with the conformal latitude y. of the point q. Since the
geocentric and conformal latitudes of a point on the surface of
the earth differ by at most 0.000141- it is apparent that the
difference between the angles g and g, is small.

As already shown in appendix A, the magnitude of the difference
between the degree measure of g and the product of 1/60 and the
great circle distance d in nmi separating the points p and q is
at most 0.18 percent of d/60, and so the ratio d/60 should
provide a good estimate of g,. In fact, since g, - d/60 is the
same as the sum of g. - g and g - d/60 it follows that

mag(g - d/60) < mag(g, - g) + mag(g - d/60). (B-2)

As a result, mag(g - d/60) is bounded above by the sum of the
bound 0.0018(d/60) on mag(g - d/60) and any upper bound on the
degree measure of mag(g. - g).

A numerical bound on the difference between the angles g and g.
can be derived in terms of the gradient vector of the function
arc cos(g) with respect to the arguments x and y. Specifically,
if C is an upper bound on the magnitude of the gradient vector
for all possible values of x, y, and A then

mag(g - g,) < CE(x - x.>O + (y - y.]3 1 '- (8-3)

Since 0.000141- is an upper bound on the degree measures of
mag(x - x.) and mag(y - y-) it follows that the degree measure of
the magnitude of the difference between g and g,, cannot exceed
the bound

B = C[2(0.000141)'r'"'. (B-

It only remains to provide a numerical value for C.
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The square of the magnitude M(A) of the gradient vector of

arc cos(g) with respect to x and y is given by the expression

MO(A) = N(A)/D(A( B-5)

where N(A) and D(A) are the nonnegative functions defined by the

formulas

N(A) (1 + A2)[cosO(x)sin (y) + sin (x)cose(y)]

- 4Asin(x)cos(x)sin(y)cos(y) (B-6)

and

D(A)= 1- [sin(x)sin(y) + Acos(x)cos(y)] . (B-7)

The parameter A is not greater than 1 nor less than -1, and so

there is a number v between 0 and 1 such that

A = v(-l) + (1 - v)(l). (B-S

Also, the values of the functions N(A)/2 and D(A) at the extreme

values of the argument A are

N(-1)/2 = D(-1) = sinO(x + y) (B-9)

and

N(1)/2 = D(1) sinFe(x - y). (B-l0

In addition, the second derivative of N(A)/2 with respect to A is

nonnegative and the second derivative of D(A) is nonpositive. In

other words, N(A)/2 is a convex up function of A and D(A) is a

convex down function of A. It follows that

N(A)/2 < v[N(-l)/2] + (I - v)[N(1)/2] (B-11)

and

D(A) > vD(-l) + (I - v)D(1). (B-12)

Since the right side of each of these inequalities is equal to

the sum of (v)sine(x + y) and (I - v)sinL(x - y) it is clear that

the ratio of N(A)/2 to D(A) is no greater than I for all A in the
interval extending from -1 to 1. Consequently, the magnitude M(A)

of the gradient vector must be bounded above by the square root

of 2. In other words, the number 2'' can Oe assigned to the

bound C. The corresponding value of the bound B on mag(g - g,

is 0.000282-. Thus, the degree measure of the magnitude of the

difference between the angles g and g, is bounded above by twice
the limit of 0.000141- that upper bounds the magnitude of the

difference between the degree measures of the geocentric and
conformal latitudes of any point on the surface of the earth
model.



APPENDIX C. EFFFCT OF ANGLE ESTIMATION ERROR
ON THE COMPUTATION OF DILATION

If x is the degree measure of an angle that is less than 180-,, y
is the degree measure of a like angle, and x and y differ at most
by a positive number p(x) such that the sum of x and p(x) is less
than 180- then the ratio f(x) of 2 to 1 + cos(x) must satisfy the
inequality

magEf(y)/f(x) - 1) < B(x,p(x)) (C-1)

where

B(x,p(x)) = f(x + p(x))/f(x) -1. (C-2)

Indeed, f(x) is a positive function of the degree measure x on
the interval I of nonnegative numbers less than 180, and so

maglf(y)/f(x) - 1] = [1/f(x)]maglf(y) - f(x)]. (C-3)

Also, the first and second derivatives of f(x) with respect to x
are nonnegative functions on I. Thus,

maglf(y) - f(x)] < f(x + p(x)) - f(x) (C-4)

and the bound B(x,p(x)) follows directly upon dividing both sides
of the inequality by f(x).

As shown in appendix B, the great circle distance d in nmi
separating points p and q on the surface of the earth model and
the degree measure of the angle g. subtended at the center of the
earth by conformal representations of p and q satisfy the
inequality

mag[d/60 - g,=] < pt(d/60) (C-5)

where

p1 (d/60) = 0.0016(d/60) + 0.000282. (C-6)

If the sum of d/60 and p i (d/60) is less than 180 (i.e., d is
less than 10780.58 nmi) then

Bi(d) = B(d/60,p1 (d/60)) (C-7)

is an upper bound of the magnitude of the difference between 1
and the ratio of f(g,) to f(d/oO).

In aopendix B it is shown that the degree measures of g_. and the
angle g subtended at the center of the earth by the points p and
q differ at most by

pe(g) = 0.000282. (C-B)
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Consequently, if the degr-e~. measure of g is less than
180~ - .~se(g) (i.e., 179.999716~) then

mag~f(g~)/f(g) - I] < B~(g) (C-9)

p

where B~(g) is the same as B(gp~(g).
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APPENDIX D. ACCURACY OF THE DILATION ESTIMATE

Suppose that x, and xe are numbers such that the former is less I
than the latter, x., is halfway between the limits x,. and x,., t is
somewhere between the limits, and n is any number inside or
outside of the interval extending from x, to xa. If both x- and
t lie on the same side of n then the distance separating
mag(x0 - n) from mag(t - n) is the same as the distance

separating x, from t. Otherwise, the distance separating
mag(x=. - n) from mag(t - n) cannot exceed half the distance
separating x, from x!. In any case, the distance separating x-
and t can never be greater than half the distance between x, and
xM. In other words, the inequality

mag[mag(x. - n) - mag(t - n)] < (x, - x1 )/2 (D-1)

is valid for any number .n.

If factor h(J) in (2) is bounded below by h, and above by h- then

the dilation m, lies between the limits

x, = [him(g )]/k (D-2)
and

xe = [hzm(g,)]/k. (D-3)

If, in addition, k is the arithmetic mean of h, and hz then m(g:)
is halfway between the limits, and the distance separating mag(m,
- n) and mag[m(g,) - n] cannot exceed

(xe - x)/2 = (1/2)[(he -hi)/klm(g,:). (D-4)

Moreover, if m(g.) is not less than n then it is the same as the
sum of mag[m(g-) - n] and n. Otherwise, the sum exceeds m(g,,-).
In any event,

(xe - x)/2 < (1/2)[(he - h,)/k](mag[m(g,:) - n] + n) (D-5)

for any number n, including 0.

.
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APPENDIX E. OPTIMAL RADIUS

Suppose that gi.(x) is an increasing function of x, gr.!(x) is a
decreasing function of x, and the graphs of the two functions
cross one another when the independent variable takes on the
value xo,. Also, let g(x) represent the maximum of the magnitude
of the numbers g1 (x) and ge(x). Clearly, 

g(x) > g(x.) (E-1

for all values of the argument x. Hence, the minimum value of
g(x) occurs at the intersection point x..

The minimum and maximum angles F, and G,, respectively, subtended
at the center of the earth by the point of tangency and a point "
in a conformal representation of the floor of the control
jurisdiction are completely determined by the location of the
earth model representation q of the tangency point. Thus, once q
has been determined, the maximum value of the magnitude of the
difference between the dilation estimate and the design constant
n on the floor can be viewed as a function g(E) of the radius E
of the sphere that supports the system plane. Since f(g,>)
defined by (1) increases as g., moves from 0- to 180, g(E) is
just the maximum of the magnitude of the numbers

gi(E) = k(E/a)f(G-) - n (E-2)

and .,.,
ge(E) = n - k(E/a)f(F.). (E-3)

Consequently, the value of the argument E that satisfies the
equation

gi(E) = gm(E) (E-4)

renders g(E) a minimum.
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APPENDIX F. ESTIIATION OF ANGULAR EXTREMUMS

Let ang(x,y) represent the degree measure of the angle subtended

at the center of the earth by any two points x and y. Also, let

G represent the least upper bound of the set A of all numbers of

the form ang(qp) where q is the earth model representation of
the point of tangency and p is a point in the floor K of the

control jurisdiction. If there is a point s in the floor such

that ang(qs) is the same as G then G is the maximum angle

subtended at the center of the earth by q and a point in the

floor. Otherwise, the notion of a maximum angle is meaningless

and it is necessary to resort to the concept of a least upper

bound. In any event, an inequality identical to (3) can be

established for G and the least upper bound G, of the set A- of
all numbers of the form ang(q_,p,:) where q- is the tangency point
and p= is a member of the conformal representation K,- on the unit
sphere of the floor K. Likewise, it can be shown that the same
inequality applies to the greatest lower bounds F and F-. of the

sets A and A,, respectively.

The mapping angkq,p) is a continuous function of p on tne surface
of the earth model, and the closure of K (i.e., the set of all

points that are in the floor and the boundary of the floor) is a
bounded closed set in euclidean 3-space. Thus, ang(q,p) attains
absolute minimum and maximum values on the closure of the floor,
and so there exists a point t in the closure such that ang(q,t)

is G. The inequality (3) implies that

ang(q :, G - z (F-1)

where t. is the conformal representation on the unit sphere of t

and the symbol z represents 0.000282-. Since the relationship
between geodetic and conformal latitudes is a homeomorphism
(i.e., R bijective function for which both the function and its
inverse are continuous) the same is true of the transformation T
that maps the surface of the earth model into the conformal
representation of the model surface on the unit sphere. Thus,

the closure of the conformal representation K_ of the floor is
the image of the closure of the floor under the mapping T.

Consequently, t. is a member of the closure of K,, and it follows
that

ang(q.,t,) < G,. (F-2)

Clearly, (F-I) contradicts (F-2) under the assumption that G

exceeds the sum of G, and z. As a result, it must be concluded
that

G < G. + z. F-3)

The inequality

F > F, - z (F-4)
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can be established by a sim:ilar argument. It remains to show

that G is not less than C, - z 3nd that F is r'ot greater than

F, + z.

By virtue of the continuity of the function ang(q,:,pc) on the

unit sphere, there exists at least one point r,- in the closure of
K. such that ang(q,r.) is the same as G . Also, the fact that

the closure of K, is the image of the closure of K under the

transformation T implies that the point r- is the image under T

of some point r in the closure of the floor. Thus, by virtue of

inequality (3),

ang(q,,r) < G + z. (F-5)

Under the assumption that G is less than G. - z the inequality

(F-5) implies that ang(q,,r,) is strictly less than G. Since

this result contradicts the fact that ang(q,,r.) is exactly equal
to G., it follows that

G > G - z. (F-s)

The inequality

F < F, + z (F-7)

can be established in a similar fashion.

Let dist(x,y) represent the great circle distance in nmi
between points x and y on the surface of the earth model. Also,

let Dn and D,- be the least upper bound and greatest lower bound

of the set of all numbers of the type dist(q,p) where, as before,

q is the earth model representation of the tangency point and p

is a member of the floor. Clearly,

mag(D/60 - G-) < mag(DL/60 - G) + mag(G - G,), (F-8)
1%

mag(D/60 - F.) < mag(D/60 - F) + mag(F - F,), (F-9)

and each of the factors mag(G - G,) and mag(F - F,-) is bounded
above by z. Hence, in order to establish an inequality like (4)

for the pair D,3 and G. and the pair Dr= and F.,, it is only

necessary to show that mag(D./60 - G) is bounded above by 0.l

percent of D /60 and that 0.18 percent of Dr/60 is an upper bound
of mag(D /60 - F).

As already pointed out, there is a member t of the closure of the
floor such that ang(q,t) is G. Also, dist(q,p) is a continuous

function of p on tne surface of the earth model, ano so there .s

a point s in the closure of the floor such that dist(q,s) is D,.,.
Thus,

b(pi/180)ang(q,s) < Dt < a(pi/180)ang(q,s) (F-10)

and
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b(pi/180)G Kdist(q,t) < a(pi/1630)G (-i

where a is the equatorial radius of the earth model in nmi and b
is the polar radius in nmi. Since D., is at least dist(q,t) and

ang(qls) cannot exceed 6, it follows that

b(pi/160)G < Dc, < a(pi/160)G. (F-12)

Following the argument in appendix A, it is now a simple matter
to show that

mag(Do/60 G ) < 0.0018(Dc,/60) (F-13)

and

mag(606 - DL ) < 0.0018(60G). (F-14)

In like manner, it can be shown that mag(Dr-/60 - F) cannot exceed

0.18 percent of D,/60 and mag(60F -, is never greater than
0.16 percent of 60F.

0a
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APPENDIX G. EFFECT OF. ANGULAR EXTREMUM APPROXIMATIONS
ON THE ESTIMATION OF DILATION EXTREMUMS

If x and y represent the degree measures of two angles, the sum
of x and an upper bound p(x) on the magnitude of the difference
between x and y is no greater than 124.16-, and w(x) is the ratio
of f(x) - 1 to f(x) + 1 where f(x) represents the function
2/[l + cos(x)] then

mag[w(x) - w(y)] < C(x,p(x)) (G-1)

where

C(xp(x)) = w(x + p(x)) - w(x). (G-2)

The bound C(x,p(x)) is a result of the fact that both the first
and second derivatives of w(x) with respect to x are nonnegative
functions on the interval extending from 0- to 124.16,.

Let D, represent the least upper bound in nmi of the set of
great circle distances separating the earth model representation
of the point of tangency from a point in the floor of the cuntrol
jurisdiction. Also, let G- represent the least upper bound of
the set of degree measures of the angles subtended at the center
of the earth by the tangency point and a point in any conformal
representation of the floor. As shown in appendix F,

mag(G, - D./60) < pi(D./60) (G-3)

where

pi(Dm/60) = 0.0018(DL/60) + 0.0002e2. (G-4)

Consequently, if the sum of D,,/60 and pi(D,/60) is not greater
than 124.l161 (i.e., D,, < 7,436.20 nmi) then

B ,(Dv,) = C(DrI60, pi (D,.,/60) >(G-5)

is an upper bound of the magnitude of the difference between
w(G_) and w(Dr3/60).

Let G represent the least upper bound of the set of degree
measures of the angles subtended at the center of the earth by
the earth model representation of the tangency point and a point
in the floor. As shown in appendix F,

mag(G,, - G) < pr(G>)

where

P140G) =0.000282.(G7

Thus, the magnitude of the difference between w(G. ) and w(G) is
bounded above by
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B (G) = C(G,pi.(G)) (G-8)

whenever the sum of G and p,_(G) does not exceed 124.16'.
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APPENDIX H. UNIQUENESS OF THE OPTIMAL TANGENCY POINT

The results of this appendix are based on two assumptions with

respect to the topology of the subset R of the surface of the

earth model that is used to describe the extent of the floor of

the control jurisdiction. First, the earth model is viewed as an

ellpsoid with center collocated with the origin of euclidean 3-

space EO , and it is assumed that R is closed with respect to the

topology induced in E 3 by the euclidean norm. Second, it is

assumed that the size of the set R is restricted in the sense

that there exists a vector z (i.e., a member of El with a length

of 1) in the conformal reoresentation R- of R on the unit sphere

and a positive number t, not greater than 1, such that the inner
product (z,y) of z and any vector y in R. is not less than t. In

other words, the maximum angle subtended at the origin (i.e., the

center of the earth) by the point representation of z and any
point in the conformal representation R, of the floor is less
than 90-. Since the size of a coverage region of an ACF meeting

the design limit of the AAS is a good deal less than half the
surface of the earth model, the existance of the unit vector z

ano the positive numoer t is assured for any subset cf the

surface of the earth that fairly represents the extent of the
floor of a control jurisdiction that might eventually be

commissioned in the AAS.

Under the assumptions of the preceding paragraph this appendix

supports two assertions concerning the tangency point of the
system plane. First, it is shown that there exists a unit vector
x- such that the smallest inner product in the set ((x.-,y:_y in
R.) is at least as great as the smallest inner product in the set
(x,y):__ in R,) for any unit vector x. Since the inner product
of unit vectors x and y is just the cosine of the angle subtended
at the center of the earth by the point representations of tne
two vectors on the unit sphere, it follows that x,. is a conformal
representation of the earth model representation q_>. of an optimal

tangency point. In particular, the earth model representation of
xo is just the image of x.- under the inverse of the bijection T

that maps the surface of the earth model into the conformal
representation of the model surface on the unit sphere. In

effect, the geocentric latitude of x. is the conformal latitude
of T-'(c) (i.e., q.) and the longitude of x, is the longitude of
T-'(co). Thus, the determination of xi, is equivalent to the

determination of an optimal tangency point. Second, it is shown
that x, is a scalar multiple of the unique point w in the convex

hull of the conformal representation of R that is nearest the
origin of E7. This result implies that there is one, and only '

one, point on the surface of the earth model for which the Y
maximum angle subtended at the center of the earth model by any

conformal representation of the point and a member of any
conformal representation of the set R is least, and this point is

q. In other words, there is only one point on the surface of
the conformal sphere supporting the system plane that meets the
criteria of an optimal tangency point, and this point is the
product of w and the ratio of the radius of the spherical support
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to the norm of w.

The conformal representation R- of the set R is closed and

bounded. Specifically, the norm of each element of R,- is bounded

above by 1, and so R_= is certainly bounded. Also, the bijection
T and its inverse T- are continuous functions. Consequently,

since R is closed, the image of R under the transformation T

(i.e., R.) is itself closed.

Among all the vectors in the convex hull H(R,) of the set R-

there exists one, and only one, vector w_ with a norm that is less

than the norm of any other vector in the hull. The assumption

that there is a unit vector z and a positive number t such that

y in R,_ implies (z,y) > t (H-I)

guarantees that R,, and hence, the convex hull of R,-, is a subset
of the convex set

J = (y: norm(y) < 1 and (z,y) 2 t). (H-2)

Since t exceeds 0, the origin of E7 is not a member of J. Also,
since R,- is closed and bounded, the set H(R,) is closed and

bounded. Thus, by virtue of a well known theorm on the minimum
distance to a convex set (Luenberger, D., Optimization by Vector
Space Methods, John Wiley, 1969, page 69) there exists one, and

only one, vector w in the convex hull of R,. such that

y in R- implies (w,y) > [norm(w)]3-, (H-3)

and the norm of w is strictly less than the norm of any other
member of H(R,).

If x is a unit vector then there exists a vector s(x) in R_ such
that

y in R, implies (x,s(x)) < (x,y.), (H-4)

and (x,s(x)) is a continuous function of x on the set U of all
unit vectors. As a result, there exists a unit vector x. and a
member y. of R- such that

(xo,X) > (. oy-) > min((x,y): y in R-3 (H-5)

for every unit vector x and every member y of R- . The existance
of s(x) is guaranteed by the fact the inner product (x,y) is a
continuous function of y and the set R.- is both clcsed and
bounded (i.e., a continuous function attains an absolute minimum
and an absolute maximum on a closed and bounded set in E ').
Also, like R, , the set U is closed and bounded. Thus, the
product set UxR. is a closed and bounded subset of the product

space E-OxE 3 . Since the inner product of two vectors is a

continuous function on this space, the inner product is uniformly

continuous on UxR.. As a result, the function (x,s(x)) is
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continuous on the set U, and so it must attain an absolute
maximum at some point x- of U. Finally, the vector y, is just

the vector s(x_).

The inner product of x,. and y- is equal to the norm of the

minimum norm vector w in the convex hull of R-. The inequality
(H-3) implies that

([norm(w)]- w, ) > norm(w) (H-6)

for all y in R.. Since [norm(w)]-w_ is a unit vector, it follows

directly from (H-5) that

(x-,y ) > norm(w). (H-7)

In order to establish that (x,,,y,,) cannot exceed norm(w) it is
sufficient to recognize that (H-5) implies that R,,, and hence,
the convex hull of R.., is a subset of the convex set

K = (y: norm(y) < 1 and (x.,) > _ (H-8)

Clearly,

norm'(y- (x,,. ,)x.o) = norm-(y) + (x y_)' - 2(x_..,.)(x.,y)

< norm-(y) - ( (H-16

for any member y_ of K. Hence, among all elements of K the norm
of the vector (x.,y)xo is least. The inequality

norm(w) > (x_,y (H-10)

follows directly from the fact that the convex null of R_ is a
subset of K and w is a member of H(R,>.

The vectors w and [norm(w)Jx. are the same. Specifically, the
square of the norm of the difference between these two vectors

can be expressed in the form

normO(Enorm(w)]x - W)

=2[norm(w)][norm(w) - (x,,w)]. (H-Il)

Since w is in the convex hull of R, and the latter is a subset of

K, it follows from (H-8) that (x_,,w) is at least (xo,y_) which is

itself the same as norm(w). Thus, the norm of the difference

between w and [norm(w)]x, is 0.
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APPENDIX I. A LINEAR PROGRAMMING APPROACH TO
TANGENCY PCINT SELECTION

In this appendix it is assumed that the extent of the floor of
the control jurisdiction is fairly represented by a finite set R
of n points on the surface of the earth model. For example, each
member of R might be a location on the model surface defined by
the geodetic latitude and longitude of a radar or it might
consist of a group of points more or less uniformly scattered
over the floor. In addition, it is assumed that there exists at
least one unit vector z such that the angle subtended at the
center of the eart,, by :! and any one of the n members of the
conformal representation R, of R on the unit sphere is less than
90c'. As pointed out in appendix H, this assumption is satisfied
in any case where R fairly represents the extent of the floor of
a control jurisdiction meeting the AAS design limit on the size
of the coverage region of an ACF. Also, as established in
appendix H, the closed nature of R and the existance of the
vector z imply that the optimal tangency point is merely a scalar
multiple of the minimum norm vector w in the convex null H(R.. of
R.. Consequently, the longitude of w is the longitude of tne
earth model representation q. of the optimal tangency point, and
the geocentric latitude of w is the conformal latitude of q ,. As
will be seen, this appendix discloses a practical technique for
finding h, and hence, q-, in terms of the solution of a linear
programming problem.

The set R, is represented by a 3xn matrix B. The kth column of B
is a function of the longitude L,, and the conformal latitude M,
of the kth member of the set R that describes the extent of the
floor of the control jurisdiction. As indicated in figure 1-1,
the center of the earth is viewed as the origin of a Cartesian
coordinate system with axes 1,2, and 3 where axis 3 coincides
with the polar axis of the earth and the positive direction along
axis 3 is from the South Pole to the North Pole. The element b.,,,
in the jth row and kth column of the matrix B is defined in terms
of the formulas

= cos(M,)cos(L,.), (1-I)

be. = cos(M,.)sin(L ), (1-2)

and

b=-, = sin(M.). (1-3)

Thus, the kth column of the matrix 2 is a 3xi matrix 0,. with
elements bik, bw, and bi.

The mimimum norm member of the convex hull HkR,) of R, is a 3xl
matrix obtained by postmultiplying B by an nxl probability
matrix. An nxl matrix x is a probability matrix if all
components of the matrix are non-negative (denoted by x > 0) and
a sum of 1 is obtained when the transpose x1 of x is
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postmultiplied by the nxt Vector 1 with identical components
equal to 1. Since the convex hull of a finite set is just the
collection of all convex linear combinations of the elements of
the set, H(R.) is equivalent to the set of all 3xl matrices of
the form Bx such that x > 0 and x T l = 1.

Letting A represent the nxn symmetric semipositive definite
matrix formed by premultiplying B by its transpose B T , the

minimum norm element of the convex hull of R, is a 3x1 matrix of
the form Bx where x is any nxl matrix that minimizes the function

G(x) = x7T Ax (I-4)

subject to the constraints

xT 1 1 = 0 (1-5)

and

x > 0. (1-6)

The constraints merely restrict x to the set of nxl probablity
matrices. The function G(x) is the result of premultiplying the
3xl matrix Bx by its transpose, and so it is just the square of
the norm of Bx.

Every solution of the constrained minimization problem is a

probability matrix x satisfying the equation

Ax - r = 0 (1-7)

where r is a scalar and 0 is the nxl null matrix (i.e., the
elements of 0 are identical and equal to 0). This result follows
directly from a straight forward application of the generalized
method of Lagrange multipliers to the problem of minimizing G(x)
subject to the constraints (1-5) and (1-6).

Any solution of the linear programing problem in n + 1
variables of minimizing the linear functional r subject to the

constraints

A 1 x 0
S I I . . . -. . . . I ( -8

1T 0 -r 1

and

X
> 0. (1-9)

r

is a solution to the problem of minimizing G(x) subject to the
constraints (1-5) and (1-6). The scalar r in equation (1-7) is
merely the square of the norm of Bx. This fact can be verified
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by premultiplying (1-7) by.the transpose of the probability
vector x. In other words, the desired solution of (I-') Is the
(n + l)xl matrix formed from the concatenation of the components

of the vector x and the scalar r in which the scalar is minimal
subject to the constraints that the vector is a probability
matrix (i.e., the components of x are non-negative and sum to 1)
and the scalar, the square of a norm, is non-negative. These 2
constraints and equation (1-7) are embodied in the matrix
relationships (1-8) and (1-9). A solution to the linear
programming problem is guaranteed by the fact that it involves
the minimization of a functional that is bounded below by 0.
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APPENDIXSJ. SPHERICAL SQUARES

If x is a positive number not greater than 90 then there exists a
spherical square on the surface of a conformal sphere in the

sense that it is possible to select four distinct points p,,, PL9
pe, and pm (i.e., the vertices of the square) on the surface of

the sphere such that x is the degree measure of the angle

subtended at the center of the earth by any pair of adjacent
vertices (i.e., vertices pm and pm( ii, where i is any
nonnegative integer and m(i) represents the integer i modulo 4).
The spherical coordinates of a point on the sphere consist of the %

radius of the sphere, the latitude of the point, and the

longitude of the point. Let x/2 represent the latitude of p, and

pm, -(x/2) the latitude of p0 and p., L the longitude of p" and
pz, and -L the longitude of p, and pi. The degree measure A of

the angle subtended at the center of the earth by p, and p. is

the same as the degree measure of the angle subtended at the same

location by p, and pa. The cosine of this angle is just the

inner product of the direction cosine vectors of pi and p:?.

Thus,

cos(A) = cose(x/2)[2cosO(L) - 1) + sin'(x/2), (J-1)

and so cos(A) decreases from I to -cos(x) as L increases from 0,;..
to 90-. Since x is not greater than 90" it follows that A

increases from 0- to at least 90" as L moves from 0- to 90".
Consequently, there exists a degree measure L_ not greater than
90"* such that A is x when L takes on the value L,-, and (J-1)
implies that

cos(L.) = cos(x)/cosL(x/2). (J-2)

In other words, the points p.., pi, pe, and p. oecome tne vertices
of a spherical square when L is La.

There is a point t on the surface of the sphere associated with

the spherical square defined by the vertices p-.,pi,pr, and p7
that is centrally located with respect to the square in the sense
that the degree measure B of the angle subtended at the center of

the earth by t and a vertex of the square is the same for all
vertices of the square, the cosine of B is the square root of the

cosine of the angle subtended at the center of the earth by

adjacent vertices, and the angle subtended at the center of the

earth by t and any point p on the shortest great circle arc
connecting adjacent vertices is at most B. Let t be the point on

the sphere correspondinq to 0' latitude and 0- longitude. From
considerations of symmetry it is apparent that the degree measure
B of the angle subtended at the center of the earth by t and a

vertex is the same for all vertices.- Also, the cosine of B is
just the inner product of the directicn cosine vectors of t and

any one of the vertices, and so

cos(B) = cos(x/2)cos(L.,) = [cos(x)]/ e . (J-3)
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Finally, let p be any point, on the sphere with longitude L:, and a
latitude of y degrees such that the magnitude of y does not
exceed half the degree measure x of a side of the square. If C
is the angle subtended at the center of the earth by t and p then

cos(C) = cos(y)cos(L.). (J-4)

Since mag(y) is not greater than x/2 it follows that C cannot

exceed B.

Suppose now that the vertices of the spherical square are located
on the surface of a conformal sphere with a radius R that is the
arithmetic mean of the equatorial radius a and the polar raoius 0

of the earth model, q, is the radial projection of the vertex p,
onto the model surface, and s is the radial projection of the
center t of the square onto the surface of the earth model.
Clearly, the angle subtended at the center of the earth by any
pair of vertices is the same as the angle subtended at the same
location by the projections of the vertices onto the earth model.
Likewise, the angle subtenoed at t-e center of the eartn by t and
a vertex of the square is ne same as the corresponoing angle
formed by s and the projection of the vertex onto the model
surface. Consequently, if D is the great circle distance between
the adjacent vertices pmc) and pC - 1) of the spherical
square, then the degree measure of the angle subtended at the
center of the earth by these points is

x = (D/R)(180/pi), (J-5)

and the great circle distance separating the points q,,.> and

qm 1) on the surface of the earth model is not greater than
a(pi/180)x nor less than b(pi/180)x.
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