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FINAL REPORT FOR 5470, A PORTABLE NATURAL

LANGUAGE INTERFACE

1. INTRODUCTION

The purpose of the 5470 project was to create a natural language interface for
expert systems that would be portable across different backends, that would be
capable of reasoning about user goals, and that would integrate graphics,
mouse deixis, and natural language. Although the project was originally
intended to last several years, it has been brought to a close after one year.
Despite this, the 5470 staff has accomplished, at least in part, all three of the
above goals.

1.1 PROGRAM RATIONALE
In order to use an expert system a user must communicate with it through
some kind of interface. Designers of such interfaces have a wide variety of
media they can choose to serve as the vehicle for such communication; they
can provide graphical interfaces, menu driven interfaces, query languages and
specialized command languages, natural language, or a combination of any or
all of these media. Graphics can provide a rich, information dense vehicle of
communication that is particularly useful in providing geographical
information. Unfortunately, graphical means of communication have restricted
expressive power; it is difficult to ask questions using pictures, for example,
Menus are convenient, simple to use, and "safe" since they can keep a user
out of trouble by restricting him to a given path, but they are also rigid, and
they can be very slow since the user must often go through a long series of
clicks and submenus before composing the command or question that he had
in mind. They also are hard to use if the user wishes to do more than one thing
in a single interaction. Query languages have great expressive power, but they
require training and sharply limit the pool of users of an expert system.

Natural language, especially when combined with graphics and menus, is the
ideal form of communication with most expert systems for several reasons. In
the first place, the ability to use English or some other natural language
enables all perspective users to issue commands and questions to a backend
system regardless of training or experience. Natural language is also fast;
there is no risk of wandering down the wrong path of a set of menus only to
find that one has made a wrong choice somewhere and has to backtrack. A
single sentence can also order a backend to do many things; one can say "Hit
Dresden at 7:30 hours with 4 f-4cs from Hahn." Note that this command
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actually instructs the backend (KRS) to do five things: fill in the target slot, the
homebase slot, the aircraft slot, the aircraft number slot, and the departure
time slot. When speech understanding becomes a reality, linguistic
communication will become so fast and so much mot e natural than other
forms of communication that users will insist that it be provided in most expert
system interfaces.

Having said all this, however, one must acknowledge that as of 1986 many of
the advantages of using natural language are undercut by the weaknesses and
shortcomings of implementations. Not all of the problems involved in
producing natural language interfaces have been solved; there are still gaps in
both theory and in implementation. No natural language interface yet
implemented has full linguistic coverage; all of them have various
embarrassing (or worse) bugs, and each such program requires a user to get
acquainted with its foibles. The promise of no learning period, therefore,
exists in theory but has not been realized in practice.

What all this means is that research in natural language interfaces must
continue. The problems must be solved soon because the need will become
ever more pressing as more and more users wish to communicate with expert
systems and as speech understanding comes closer to becoming a reality. If
the problems are not solved, the difficulty of communicating with expert
systems will become an obstacle to their increased use, and Al in general will
suffer.

1.2 HISTORY
5470 was a successor to project 6070, which was itself a spinoff of the KNOBS
project funded by RADC and developed at NITRE. 6070 produced a natural
language interface for the KNOBS/KRS mission planning program, an expert
system used to plan air attack missions for the Air Force. This interface
combined English with graphics and mouse deixis and enabled KNOBS/KRS
users to communicate easily with the backend. However, the interface had a
number of deficiencies, some of which were so deeply embedded in the system
architecture that correcting them was impossible.

Chief among these was a complete lack of portability. The 6070 interface was
an implementation of conceptual dependency theory. All parsing was driven by
a bottom up semantic analysis of the meaning of each word in the sentence,
and the parser's job was to look up conceptual dependency definitions in its
dictionary and attempt to match semantic expectations associated with each
definition to what was actually present in the sentence. In order for the parser
to be able to understand a sentence's meaning, the dictionary entries had to
contain very large quantities of domain specific "clues" about the sort of
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structures expected to precede and follow the defined word. As a result of this,
it was very difficult indeed to define new words, and there was virtually no
generality in the parser that would cat y over from one domain to another.

As the preceding statements suggest, extending the parser was no easy task
either because of the difficulty in defining new words. In fact, the dictionary
for the parser eventually reached a given size and then froze; even the most
dedicated researchers were not able to figure out the necessary tricks needed
to be able to add new definitions.

Another serious deficiency, which was not related to the choice of theoretical
model but rather to a wrong turn in the development of the system, was an
inability to understand user intentions and goals. The interface designers
originally hoped that the interface would be capable of producing intelligent
responses of the form illustrated by the following dialogue:

User: What is the range of an f-4c?

KRS: 600 miles.

User: How far is Hahn from the target?

KRS: 200 miles. This is within the range of an f-4c at Hahn.

In answering the question, the interface assumes that the user's intention in
asking about the distance between the friendly airbase Hahn and the target was
to find out if the target were in range of the attack plane, f-4c.

The 6070 developers hoped to represent user intentions by instantiating a
script representing the actions involved in carrying out an air attack.
Unfortunately, they were never able to match the user inputs with scenes in the
script; this process, a form of plan recognition, is difficult, slow, and prone to
error. As a result, the use of scripts to guide goal recognition never worked in
6070.

Because of these various problems, the developers of 5470 decided to turn to a

new theoretical model, a new architecture, and a new approach to scripts.
They developed a three part system that combined syntactic analysis, a case
frame based semantic analysis, and a discourse analysis. This system was
designed to have as much backend independence and thus generality as
possible. It was also designed to use discourse principles to capture
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information about context an to enable the production of intelligent responses
to user questions.

2. SYSTEM ARCHITECTURE
The system can be divided into three parts: the scenes and scene controller,
the syntactic parser, and the semantic and relational dictionary. Each of these
components is in charge of a specific function. The scenes are used to handle
discourse phenomena and to keep track of context. The parser performs a
syntactic analysis (and applies some semantic processing as well), and the
vocabulary component takes care of figuring out the meaning of the input
question or command. The three components were designed to work together
rather than strictly sequentially because no part of linguistic analysis can be
completely separated from any other part. In other words, one cannot
understand the meaning of a word without considering the context in which it
was uttered as well as the structure of the phrase in which it appears.

2.1 THE THEORETICAL BACKGROUND
Our work in this project was influenced by several linguistic theories, most
notably, the theory of relational grammar developed by Perlmutter and his
associates, and the theory of discourse developed by Barbara Grosz and
Candace Sidner. The discussions of the various components of the interface
below will frequently refer to these researchers and their work.

2.2 THE SCENES
One of the goals of this interface is to provide the user with intelligent
responses to user input. To respond intelligently to a query, the system
should provide relevant data that was not specifically requested. Similarly, an
intelligent response to a command should execute all appropriate expert
system operations without requiring the user to explicitly mention each. An
interface that demonstrates this behavior must be able to capture the
i.nderlying intention of an utterance. Grosz and Sidner (1985) claim that any
discourse has three main constituents: 1) the structure of the actual sequence
of discourse utterances; 2) a structure of intentions; 3) an attentional state.
We developed the scene mechanism in order to capture the latter two
constituents of a discourse and use them to provide intelligent responses.
Specifically, we claim that for restricted, well-defined domains (e.g.
specialized expert systems), a library of structures can be compiled and
utilized to provide intelligent responses. This is achieved by tracking the
intentional and attentional states of a user's interaction with an expert system.
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2.2.1 Intention and Attention
Grosz and Sidner distinguish between the intentional state of discourse and the
attentional state. Intentional structure captures the purposes behind any
utterance. These purposes shape coherent discourse. Utterances are causally
related by associating them with intentional states. Attentional state captures
the focus of attention in the discourse at any one moment. It is a dynamic
structure that records the salient objects and relationships.

2.2.2 Intentional Structure
Discourses can be partitioned into segments, each representing some purpose
or intention. These discourse segment purposes (DSP's) can be related in
special ways. Grosz and Sidner (1985) concentrate on two kinds of DSP
relationships: dominance and satisfaction-precedence. The
satisfaction-precedence relation represents one DSP being a prerequisite of
another. The dominance relation states that satisfying one DSP contributes to
the satisfaction of another. This relation establishes a hierarchical structure of
DSP's representing their dependencies. According to the type of discourse (eg.
general conversatiou vs. task-oriented dialogue), the dominance relation can
be more precisely defined. An expert system interface is primarily concerned
with the computer accomplishing tasks. Therefore, the DSP dominance
relation, in an expert system interface, adopts the rule for a task-oriented
dialogue. This rule is presented here in the guise of an expert system-human
interaction:

vx i = 1, ... n [ Intend( human, Intend( computer, Do(A))) A
Intend( human, Intend( computer, Do(a i))) A

Believe( human, Generates( A, a i, a 2, ... , a n))]

Dominates( Intend( human, Intend( computer, Do(A)))
Intend( human, Intend( computer, Do(a i))))

A general interpretation of the above is: If the user intends that the expert
system needs to accomplish tasks A and a i, and the human believes that the
performance of task a i contributes to task A, then the intention concerning
task A dominates the intention of task a .

2.2.3 Attentional Structure
The attentional structure captures the focus of attention in a discourse. It
represents the prominent objects and relationships that are dynamically
encountered in conversation. The attentional state is modeled by a set of focus
spaces and rules for transitioning among them. Focus spaces also contain the
DSP they are associated with. Abstractly, a focus space represents what the

S5-



discourse participant is talking about, in addition to why he is talking about
those things.

2.3 DATA STRUCTURE - SCENES
Scenes are data structures that represent the intentional and attentional states
of discourse. They are schema representations (Minsky75, Bobrow75,
Schank77) of stereotypical interactions with the expert system. An interaction
is represented as a set of intended actions for the expert system to accomplish.
The dependencies of these actions are represented by the hierarchical
structure of scenes. This hierarchy is determined by the dominance relation
defined for intentional structure. For example, consider scenes A and B.
Assume scene A is superior to scene B. Then the set of actions represented by
scene B contribute to the satisfaction of the actions represented by scene A.
The root of a scene hierarchy represents the overall discourse purpose (DP) of
the dialogue.

In addition to intentional structure, scenes also set up the attentional structure.
This is accomplished by defining the kinds of objects that would be prominent
if a scene were active in some discourse. These object classes are called the
roles of a scene. They are used to determine whether a proposed scene is
suitable. This filtering process will be fully described later.

When a scene is appropriate (i.e. recognized as the current intentional state), it
is instantiated. At this point the scene represents attentional state. Its roles are
filled with the referents of the objects in the current clause and other objects
already present in the discourse. The preceding current scene is linked to the
new one, maintaining a network of scenes modeling the discourse. An
instantiated scene holds the salient objects (i.e. role-fillers) of the discourse,
the current intentional context and a model of the conversational flow.

The following figure presents the salient fields that an instantiated scene

possesses:

Scenes

, The Intentional Structure

Field Description
- Name The type of scene.

Roles The prominent object classes.
Inferiors The scenes that this one dominates.
Superior The scene dominating this one
Precedes The post-requisite scenes.
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Preceded-by The pre-requisite scenes.
Triggers The lexical items that are

recognized for this scene and
their filtering maps.

The Attentional Structure
P ~'liDescription

Vic semantic re/)tLsentati ..Pns orf
thuwe ob)'ccts Jilinw rlie ro!u K

Prs 7 The sccrtes pre edino 17i:s -ne in

'0;lit uH -h cs. t cexpcrt svwtr ac:" 'is

K nicr -. ~>'cmade bktweccn a plan and an intentioiru.
T'i sccne- 'pesn stereotypical interacti:1S % " at an

\, rt I; l IK IeI" t thcv do not rpceothe sequonce of actiens tan
7; :':e ;,1 take. 1,11:1 1nformiation is captured in the expert system 's

)als anJ problemn-solving strategies. Only data relevant to the
i!svrr machine interface is captured hy the scene hierarchy.

, larify the exposition of a scene hierarchy, the following figures present
examples of scenes from the KRS mission planning application. The primary
goal of this application Is to plan an OCA mission task In order to complete
the )!an, among other things, a tar get, an airbase, and a type of aircraft must
be cho; en. The following scenes represent the interactions of a user planning a
mission (as opposed to the system). The first figure presents the intentional
st! icture of the scenes while the second illustrates the attentional state of a
specific interaction. Here is the discourse that transpired:

1. Build a mission
2. Leave from Halfort.
3. Send F-4cs.
4. Make Mermin the target.
5. What is the range of an F-4c.

-7-



Attentlonal Structure - The Network of Predecessor/Successor Unks

Instance of Mission-Sa
Roles Ocat-Mission#

filled by
#< OCA1001 >

Focu-Cace Fcuse ft The #< foo> notationFocs-CcheFocsedItoe- sianifie a emanticE.S-Action AllI rejwesnatlonjaq
opposed to a lxical

Instance of Airbase-Scene Instance of Target-Scenve
Rols Ocat-Airbase Role* Ocat-Target

filled byfildb
#< Halfort> <Mwnn

FoocsCs-cacheu~ Fos tes Fou-ah Foua -efnce.
ES-Actioni:F :Ft11s Ir s~Atarn herF bselo

________________Th focusgl csn e l the Ilterr.
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By capturing both intentional and attentional state, our expert system interface
demonstrates the ability to derive intelligent responses. Intentional structure
(i.e. scene hierarchies) allow the response handler to perform limited plan
recognition (Allen 1980). Attentional structure provides the dynamic
information encountered in conversation. Scenes also facilitate the handling of
interruptions as well as focusing for referring expressions. The next section
describes how the attentional state is maintained (i.e. how to choose the
current scene). Then the recognition and handling of interruptions is
described. Subsequently, a demonstration of the system is shown, followed by
an in-depth look at the response mechanism which draws inferences based on
intentional and attentional structure.

2.4 SCENE RECOGNITION
Scene recognition is the process of finding the currently active scene. At any
point in the discourse, there is only one current scene. Recognition of
attentional state is failure driven. Hence, a new scene is found if the response
mechanism is unable to derive a response in the current scene. The response
handler can either tell the scene controller what scene to transfer to, or it can
instruct the scene controller to use its discourse heuristics to find the new
attentional state.

2.4.1 General Control Flow
The scene heuristics utilize both intentional and attentional structure to resolve
a response failure. Using these heuristics a scene is proposed. Then the
current input clause is tested against the lexical triggers of the scene. These
triggers define a mapping between the head verb of the sentence and its
arguments, to the roles of the scene. If the role filter is successful, the
prop osed scene becomes the new current scene and is inserted into the
predecessor/successor network. If the heuristics fail to provide a current scene,
the user is asked what context his question pertained to (ie. which scene is
appropriate) and then requested to re-phrase his input. More research is
necessary to provide intelligent failure mechanisms with the ability to learn
new scene triggers. In summary, the scene recognition process is a generate
and test process where the scene heuristics guide the generation of possibilities
and the role filter tests those possibilities.

2.4.2 Scene Heuristics
The following scene heuristics are currently driving the scene controller:

1. Check intentional structure.
2. Go back in the predecessor/successor network.
3. Lexical Triggering.

-9 -
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4. Exhaustively search the scene directory.
5. Ask the user.

1. Check intentional structure - The scene controller actually has a
few heuristics that are based on intentional structure:

superior - Check the parent scene (i.e. the more abstract task).
inferiors - Check the child scenes (i.e. the more specific tasks).
siblings - Check the scenes on the same intentional level.
all-relatives - Check all the scenes that share the same overall DSP.
precedes - Check all scenes that this satisfaction-precedes.
preceded-by - Check all scenes that satisfaction-precedes this.

An interesting analogy can be made with the first two heuristics above and
some of Allen's planning rules (Allen 1980). Informally, two of his heuristics
are:
1. If one wants to perform a task A, one might want to perform the tasks
satisfying the preconditions of A. (Action-Precondition Rule).

2. If an agent wants to perform some task that satisfys a precondition of task
A, then one could infer that the agent really wants to perform task A.
(Precondition-Action Rule).

If one draws an analogy between the intentional relationships of scenes (i.e.
dominance and satisfaction-precedence) with Allen's notion of a plan's
preconditions, the superior and inferior heuristics encompass Allen's planning
heuristics.

2. Go back in the predecessor/successor network - There are two
heuristics for traversing back in the predecessor chain.

predecessor - Try the last n scenes accessed.
predecessors-tree - Try the last n scene trees accessed.

Check the scene lexicon
lexical-triggers - Try all the scenes that are triggered by the main

verb of the sentence.

Exhaustive Search
Other-Contexts - Try all the scenes in defined.

- -
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Ask the user
Ask-user - Query the user for advice.

In the interest of flexibility, the order and collection of heuristics are highly
declarative so that new heuristics can be added and the order of their
application can be updated without major revisions.

2.4.3 Scene Filter
The scene filter tests the possibilities generated by the heuristics above. The
scene filter is a role consistency check. For each verb defined in a scene,
there is a mapping from the case frame representation of the parse to the roles
of the scene. This mapping stipulates where to extract a role filler from the
sentence. The semantic arguments of the verb are found in a case frame,
while modifiers of the case fillers take a relational representation. Scene roles
can be filled by both semantic arguments as well as their modifiers. When
mapping from a modifier to a scene role, the following information is
necessary:

1. Semantic Argument - The case role that is being modified.
2. Relation - The type of modifier. (e.g., time, space-destination,

possession).
3. Arguments - The arguments of the relation where the fillers can

be found.
4. Scene Role - The scene role to fill.

Simple mappings do not involve modifiers. They need the following
information:

1. Semantic Argument.
2. Scene Role.

These expectation mappings are stored along side the verbs on the triggers list
of a scene.

To summarize, the role checking process first finds the head verb of the
clause. Then the expected role fillers are extracted from the semantic
arguments (and their modifiers) of the case frame. Let #<f-4c> be the the
referent of the noun phrase that is found in the position specified by the
mapping. If #<f-4c> can play the scene role specified in the mapping (e.g.
ocat-aircraft), then the role is consistently filled. If #<f-4c> were a referent
that was inconsistent with the specified role, the current scene would be
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rejected. If the semantic argument were empty, the role would still be
considered consistent (i.e. not a cause a rejection).

Taking a step back, role checking is a pattern match on the expected semantic
interpretation of a verb and its arguments. When the expectations of a scene
are correct, the role fillers are stored in the scene. Inconsistent role fillers lead
to scene failure.

To recapitulate, in the event of a response failure, a new scene must be found.
The scene recognition process, which achieves this, is a generate and test
algorithm. Possibilities are generated through the application of heuristics
which utilize the intentional and attentional states of the discourse. These
possibilities are tested by applying the role filtering procedure. This procedure
compares the verb and its arguments in the current clause with the trigger
maps defined for a scene. The possibility is only accepted if a consistent
mapping is found.

In the following examples, the first four columns of the chart represent the
mappings found in the triggers field of a scene indexed by the verb they are
associated with (i.e. send and leave). The fifth column is the referent of the
object specified in the map. The first two examples are successful because the
referent can be classified as the scene role specified. However, the third clause
would result in a scene failure because a Kc-135 is not a valid ocat-aircraft
(its refueling plane) and Hartfort is a friendly airbase.

1
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1. Send an F-4c to Mermin

Semantic Role Relation Arguments Scene Role Referent
Object Ocat-Aircraft #<F-4c>
Event Space-Destination (position) Ocat-Target #<Mermin>

2. Leave Halfort at noon.

Semantic Role Relation Arguments Scene Role Referent
Object Ocat-Airbase #<Halfort>

Event Time-Destination (position) Ocat-Departure #<noon>

3. Send a KC-135 to Halfort.

Semantic Role Relation Arguments Scene Role Referent
Object Ocat-Aircraft #<Kc- 135>
Event Space-Destination (position) Ocat-Target #<Halfort>

The event semantic role means the modifier is attatched to the entire case frame.
For an explanation of the relational modifiers see Bayer (1986).

2.4.4 Implementation
The entire interface is implemented in Zetalisp on Symbolics lisp machines.
Scene instances are represented as flavor instances. Each scene has instance
variables for the fields presented and methods for executing the heuristics. To
apply one of the heuristics, the name of the heuristic is sent as a message to
the current scene. This will return a list of proposed scenes. Scene recognition
is handled by the scene controller which is also implemented as a flavor
instance in order to retain dynamic information and also to facilitate
integration with the expert system's i/o loop. The overall control structure
takes the following form. The scene controller is sent a :process-input message
which takes the following steps:

1. Accept a clause.
2. Parse the clause.
3. Perform semantic analysis.
4. Try to fill roles from the current clause.

5. Call the response handler.
6. Upon success go to step 1.
7. Otherwise, send the scene controller a :next-possibility message
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which performs the generate and test algorithm presented
previously.
8. Go to step 5.

2.5 INTERRUPTIONS
Grosz and Sidner have categorized the different type of interruptions occurring
in discourse and define the following kinds

1. True Interruptions.
2. Flashbacks.
3. Digressions.
4. Semantic Returns.

True interruptions are sudden jumps to utterances which share no intentions
with the interrupted segment. For example, "what do you want for dinner ?",
"Wait a minute son, take his trash out also !", ... "manicotti or moo shu
chicken." The command to take out the garbage is obviously completely
unrelated to the discussion about dinner.

Flashbacks are jumps to relevant parts of the conversation that need to be
filled in and probably signify a satisfaction-precedence violation. For
example, "Install the experiment in the casing." "Oops, first unpack the
experiment." The "Oops" and "first" designate the flashback. Unpacking an
experiment is a pre-requisite to installing it. The speaker realizes this and
performs the flashback.

Digressions are interruptions in which the interrupted segment shares a salient
object with the interruption. For example "Send an f-4c to Halfort," "By the
way, has the F-4c maintenance crew arrived yet." In this case the maintenance
schedule and a mission planning choice are disjoint DSP's but they do share
the F-4c as a prominent object.

The last type of interruptions, called semantic returns, occurs when discourses
from the past are explicitly re-introduced. For example, "Remember, the
discussion of the airbase," "Why was Halfort inappropriate?" The
conversation is recalled and the discourse is continued.

2.5.1 Stack-based Model
Grosz and Sidner utilize a stack-based model to manage the focus spaces.
This facilitates interruption handling and the correct resolution of referring
expressions. The scene mechanism achieves similar behavior by marking
scenes in the predecessor/successor network. We suspect this method is more
appropriate for expert system interactions because it allows the system to
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retrieve a specific attentional state for both interruptions and normal focus
space movements. This will be discussed further when the processing of
semantic returns is discussed. In the following paragraphs, the management
of each interruption type will be presented. In some cases, this process will be
compared to the stack-based model.

2.5.2 Clue Words
Another difference between the scene mechanism and the Grosz and Sidner
model is the emphasis on clue words. We have deemphasized the use of clue
words because they are less prevalent in user-expert system interactions. This
is simply due to the fact that users tend to type in the actions they want
accomplished. They are not concerned with the machine understanding why
they are requesting some information or action which is characteristic of
human-human spoken discourse. Therefore, the scene mechanism attempts to
recognize the type of interruption using the scene heuristic that lead to the
interruption instead of recognizing clue words. Ideally, both methods should be
used, however, we have not yet implemented any clue word handler.

2.5.3 True Interruptions
Handling a true interruption requires focusing the prominent objects of the
interruption but then forgetting those objects when the interrupted segment is
returned to. In the stack model this is accomplished by pushing the
interruption on to the stack and then popping the stack which leaves the
interrupted segment at the top of the stack. In the scene mechanism the
predecessor/successor links are annotated with flags representing the
interruption barriers. The crucial point is that the interruption can be
recognized when traversing back through the chain and therefore skipped if
necessary. This would exhibit the same behavior as the stack model without
enforcing the strict control structure exhibited by stacks.

In the implementation, true interruptions are recognized when the "other
contexts" or "lexical-triggers" heuristic is successful. More specifically , when
the attentional state encountered differs in the overall discourse purpose (DP)
from the interrupted segment (i.e. they are part of different scene trees), the
movement is flagged as an interruption. Later, when the "predecessor" or
"predecessor-tree" heuristics return the attentional state to the interrupted
segment, the interruption barrier is flagged. Hence, the beginning and end of
the interruptions are flagged in the predecessor/successor chain. See the
interruption example in the sample interaction.

2.5.4 Flashbacks
To date, flashbacks have not been handled by our implementation. However,
the following presents a proposed strategy which is very similar to the handling
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of interruptions. They differ in that the flashback is realized by the
"enabled-by" scene heuristic and, the beginning and end of the interruption is
marked as a flashback. Grosz and Sidner present three plausible models of
flashbacks which will not be deeply explained here. They are handling the
flashback as normal focus space stacking, or handling the flashback like an
interruption, or using an auxiliary stack. However, it should be noted that by
marking the flashback boundaries, one can process it using any of their
strategies.

2.5.5 Digressions
Digression handling is trivial in the implementation. The new attentional state
is found using the scene heuristics and the role checking filter. After a new
scene is found its roles are filled accordingly. The role-filler in the interrupted
segment could be the same referent as the interruption's role filler. This is how
the digression shares the prominent object from the old scene. Further the
name of the role is probably different in both scenes since the different focus
spaces represent different intentions. Grosz and Sidner handle digressions as
interruptions which have prominent objects in common which is precisely the
scene mechanism's strategy.

2.5.6 Semantic Returns
Especially in expert systems that solve planning problems, users often return
to an attentional state that was part of an interruption. In other words, users
describe objects in the retrieved attentional state with referring expressions
that need the focussed objects of the old attentional state.

2.5.7 Focus Space History
The use of a planning system as a backend forced us to handle discourses
about hypothetical situations. A hypothetical situation is one in which the
attentional state changes but the intentional state does not. More specifically,
the relevant objects change but they serve the same purpose. For example, in
the aircraft scene, an f-llle is introduced. Then later in the discourse, the
user inquires about the speed of an f-4c. There are basically two strategies one
can take in this situation:

1. Retain the old focus-space but replace the f-l le with the f-4c.
2. Build a new focus space for the f-4c and save the old focus space

away.

Only the second strategy retains enough information to allow a reference to the
old state of affairs:

1. Use the old choice for the aircraft.
2. Remember the f-I 11 e.
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3. Remember when the aircraft was an f-tlle.
4. What aircraft have been discussed.

In the first example a new focus space with the old choice would be inserted
into the current intentional hierarchy and perform the :change expert system
action. The second example is identical less the expert system action. The
third example creates a completely new focus hierarchy representing the state
of the discourse the last time an f-ilie was relevant. The last example would
traverse the focus space history and retrieve the appropriate role fillers. All of
this behavior utilizes the focus history which is maintained during scene
changes. When a role is about to be overwritten, a snapshot of the current
state is taken (i.e. the complete list of active role fillers) and pushed onto the
current history. Then a new focus space is created (for the new filler) and the
history is stored in the new scene.

3. THE PARSER
Two strategies for parsing natural language dominate the research scene; one
strategy relies most heavily on syntax, the other on semantics. The
syntactically based schemes usually contain a phrase structure grammar for
the target language along with a series of syntactic rules to handle structural
transformations. The semantic parsers often make use both of local,
word-based meaning representations like CD's and more global
representations such as scripts, plans, or tau's. We have combined these
approaches through the use of relational grammar, a theory of language which
ties syntax and semantics together through the medium of relational categories
such as subject and direct object. Our approach uses both a formal grammar
for the syntax of English and also CD-like structures (case frames) to
represent word meanings, but the case frame slots are filled through the
application of mapping rules based on grammatical relations, which associate
semantic categories like "actor" with relational categories like "subject." This
hybrid approach enables us to overcome many of the weaknesses associated
with other parsing strategies. A brief sketch of some recent work in natural
language parsing and text understanding will provide some context.

During the 1970's, Woods, and Bresnan and Kaplan among others developed
syntax driven parsers based on various kinds of augmented transition
networks. The theoretical linguistic base for these parsers was provided by
theories of syntax which to a greater or lesser extent grew out of
transformational grammar. This is perhaps more true of Woods's system than
of Bresnan and Kaplan's parser since the latter relied on an unusually rich
lexical component which provided information about subcategorization and
semantic slot filling in addition to a syntactic component. A later approach to
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syntax driven parsing is represented by Marcus's work, which, unlike ATN's,
does no backtracking and builds permanent structure through manipulation of
a (basically) 3-position buffer. These three parsers, which are only a subset of
the many syntax-based attempts to deal with natural language, share some of
the same flaws as well as the same strengths. One of the principal difficuhies
with the type of parser represented by Woods's wNork and Marcus's work, and
also to a lesser extent of Bresnan's and Kaplan's, is illustrated by the problems
associated with garden path sentences. In such sentences, an example of
which is "The horse raced past the barn fell," the early part of the sentence
lures the reader/listener down a false path of understanding. Somewhere in the
middle of the sentence information appears which indicates that the parse up
to now is incorrect and must be replaced. in o),her words, one must backtrack
Backtracking is expensive in ATN directed parsers; as we noted aboxt, in
Marcus's parser it is impossible. One excuse that develop/rs of this type of

parser offer is that since human beings have so much trouble with gard::i

paths it is not unreasonable that automatic parsers confronted by such
sentences should come to grief as well.

Prepositional phrase attachment represents another problem for syntactic

parsers since this phenomenon is primarily semantic in nature and as such
does not lend itself to syntactic solutions. More abstractly, one can say that
syntactic parsers generally have trouble dealing with sentences with multiple
interpretations, where the ambiguity involves the placement of constituents.
Marcus uses a related problem, that of locating the source of a moved

WH-phrase, to argue that semantic as well as syntactic information is
necessary for an accurate syntactic parse and appeals to Woods' (1973)
procedure of Selective Modifier Placement, although he does not formally

incorporate it.

One syntactic parser, the CHART parser, developed by Kay for the MIND

system, dealt extensively with this type of problem. The solution chosen was
to keep several possibilities open at once by building constituents and, in
effect, treating them as building blocks which could be put together in a variety

of ways. The final parse would be the result not only of the identification and

analysis of the constituents but also of the choice of how to put them together.
The CHART parser relied on some semantic knowledge to make this choice
and was in a way a hybrid of syntactic and semantic approaches to parsing.

Another approach to ambiguity is offered by members of the semantic school

of parsing, among them Schank, Abelson, and their students. The developers
of such semantic parsers as MARGIE, SAM, PAM, and BORIS concentrated

on the problem of disambiguation by recognizing and keeping multiple senses
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from the start. Typically, these parsers reduced the array of multiple word
senses and their consequent inferences to a "path" of consistent senses that
represented the meaning of the input sentence. Attachment problems were
resolved either by reference to larger meaning structures such as a scripts or
by lexical expectations. SAM, PAM, and BORIS used other structures to
represent information about plans and goals as well as the kind of stereotyped
behavior captured by a script.

The ability to handle ambiguity is the great advantage of semantically oriented
parsers, but this ability comes at a high price. Not only are syntactic
generalizations lost, a serious theoretical liability, but, even more important,
the need to keep track of many word senses and inferences leads to a serious
implementation problem involving heavy time and space costs. These
problems proved to be particularly intractable for MARGIE, SAM, and PAM,
in effect, crippling them as true text understanding programs.

The 5470 parser differs from most parsers in that it recognizes not two but
three levels of representation: the level of structure, the level of meaning, and
the level of grammatical relations (subject, object, indirect object), which
mediates between the first two for the purpose of identification of semantic
roles. This notion is based mainly on work in Bayer (1984), although a similar
approach in a different framework has been suggested in Wasow (1978). The
premise of this approach is that there is no straightforward mapping between
structural information (which, in typical CD approaches, seems to amount to
no more than appeals to position) and semantic roles. This is clear even in
English, a language whose structure is quite rigid and yields more clues than
most languages about the mapping between structure and semantic roles.

An approach in terms of grammatical relations may be justified by i)
simplification of syntactic generalizations, ii) simplification of identification of
semantic roles, and iii) generality with respect to complex sentences.

In English, as in other languages, various syntactic facts are best expressed in
terms of grammatical relations. The facts of verb agreement, for example, are
most elegantly captured through appeals to the categories subject, object, and
indirect object (in English as well as languages with richer case marking).
Semantic subcategorization facts, such as the requirement that the verb "walk"
be predicated of an animate being, are also most easily expressed in terms of
grammatical relations. Since final grammatical relations are deduced from
surface structure almost solely by positional and morphological information,
one might claim that a statement of the facts of verb agreement and
subcategorization in terms of this sort of information would be adequate.
While it is true that this sort of description can be made, its awkwardness calls
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its intuitiveness and usefulness into question. The term "subject" in English is
isomorphic with the phrase "the np directly preceding the verb in an
uninverted clause, or the np directly following the initial verb in an inverted
clause," but the fact that this disjunction must be employed in all those
references where the word "subject" would be naturally used suggests that an
important generalization is being missed. And this is in one of the best
possible situations, where structure is strict and fairly unambiguous. In a
language where case-marking and word-order combine to identify the subject,
description of the above phenomena in structural and morphological terms
becomes much harder.

Analogously, the explicit identification of subject aids in the identification of
semantic roles. Generalizations or defaults, such as the mapping into the
ACTOR slot, can be greatly simplified by referring to the notion of subject
rather than to the positions the np in question may occupy. The mapping
properties of classes of exceptions can also be described easily, when the
group of np's conveniently labeled "subject" map into the OBJECT slot
instead, for example.

We referred earlier to the notion of final grammatical relations. This phrase
hints at the idea, central to a relational approach to syntax, that grammatical
relations may CHANGE. This is how, in the passive sentence "John was struck
by Mary," it is the surface subject which gets mapped into the OBJECT slot
instead of the surface direct object in the corresponding declarative sentence
"Mary struck John" (violent girl, that Mary). The operation of Passive, on this
view, is that of a direct object becoming a subject, with concomitant
displacement of the original subject (into the "by"-phrase in English, for
example). In order to identify the original relations, we apply the operation
backward in order to "undo" the application of Passive. Although English has
relatively few rules which change grammatical relations, these few rules
interact to derive complicated multi-clause sentences which positional
approaches are hard-pressed to analyze elegantly or easily.

Consider two more of these relation-changing rules: Subject-to-Subject

Raising, which makes the subject of a clause in subject position the subject of
the dominating clause, relating "That John will go is likely" and "John is likely
to go," and Subject-to-Object Raising, which makes the subject of a clause in
direct object position the direct object of the dominating clause, relating "I
believe that John left" and "I believe John to have left." These two rules,
combined with the rule of Passive above, may cooperate in their application to
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yield quite complex sentences. For example,

i) John is believed by Mary to be likely to have left.

is derived by Subject-to-Subject Raising in the most embedded clause,
followed by Subject-to-Object Raising in the next clause up, and finally
Passive in the matrix clause. While a relational approach can, having identified
and extracted those np's which bear the relevant grammatical relations, simply
change the grammatical relations of the np's involved when they undo these
operations, a positional/structural approach must physically move the np's or
try to develop a set of complicated conditions which alter the slot-mappings
for a verb. Both these approaches are, in our view, unwieldy, an uninsightful
alternative to the relational approach to these operations; the intuitive appeal
of grammatical relations is demonstrated even in the names of the raising
operations just described, names which were coined not by relational
grammarians but by the classical transformational grammarians of the '50's
and '60's, notably Noam Chomsky, for whom grammatical relations were (and
still are) derivative.

3.1 PARSER IMPLEMENTATION
The current implementation of the 5470 parser contains a Marcus-type
syntactic parser coupled with mechanisms for manipulating grammatical
relations and semantic roles. It also relies on a semantic representation
scheme in which case frame structures are embedded in a semantic net
consisting of similarity and function links to other case frames. As the
syntactic parse progresses, the grammatical relations of the np's in the
sentence are identified. Once the syntactic parser has completed its task, it
calls the function DO-RELATIONAL-RULES, which is handed a disembodied
p-list which represents the relational network. This function "undoes" the
relational operations as we outlined in our discussion of grammatical relations
through a series of PUTPROPs and REMPROPs. Once the initial relations have
been reached, the function FILL-CD takes the relational network, along with a
set of slot-mappings (which are produced by modifying a set of global
defaults, such as SUBJ -> ACTOR, DOBJ -> OBJECT, with whatever
verb-specific mappings are appropriate) and maps in the values for the case
frames.

The dictionary entries contain both syntactic and relational slots. The
"part-of-speech" slot for verbs contains subcategorization information, and
the "features" slot specifies syntactic/morphological properties peculiar to this
particular word. Two fields "gr<->slots" and "slot-completions" contain
crucial information which ties the semantic properties of "fly" to its syntactic

-21 -



properties. They rely on the relational categories "subject" and "object" and
also on the functional/semantic notions of "command," "control," and
"instrumentality." The latter concepts are used to guide the choice of
constituents to fill the case frame slots "actor," "object," and "instrument."
An actor, for example, must be able to command an action in the sense that
he must be able to cause the action to occur. A true actor must also be able to
control the action in the sense of being able to implement it himself without
benefit of some instrument. Any candidate for the actor slot that does not meet
these conditions should rightfully be relegated to the object or instrument slot.
The set of word-specific slot-mappings, together with the default
specifications, specify the possible sources for these roles; the
slot-completions apply to provide information about the relationship between
semantic roles. An example may clarify this.

The verb fly has a number of senses as is illustrated by the following
sentences:

1. The businessman flew the plane to Cairo. - The businessman was a
passenger.

2. The pilot flew the plane to Cairo. - The pilot actually manipulated the
plane's controls.

3. The mummy flew to Cairo. - The mummy was cargo.
4. The plane flew to Cairo. - The plane was the instrument of its own

motion.
5. The pigeon flew to Cairo. - The bird not only was the instrument of its own

motion but also willed its motion.

The filled caqe frames for the verb fly within sentences 1-5 are as follows:

1. fly: actor
object businessman
instrument plane
2. fly: actor pilot
object plane
instrument plane
3. fly: actor
object mummy
instrument
4. fly: act( r
object plaiac
instrument plane
5. fly: actor pigeon
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object pigeon
instrument pigeon

As one can see from this example, one needs information about command,
control, and instrumentality to make these choices. There is some evidence to
suggest that these three concepts have cross-linguistic validity and are thus not
an ad hoc solution to the problem.

4. PORTING THE INTERFACE

4.1 THE TOOLS
Porting the intelligent interface from one expert system backend to another
will always be a demanding task requiring several months of high level effort
and considerable thought. However, the job has been made easier by the
development of several software tools specifically provided by the 5470
developers to help in porting. Broadly speaking, porting the interface to a new
domain requires three things: writing a new vocabulary to define domain
specific concepts, defining a new set of scenes for the target backend, and
"gluing" the interface onto the new backend by writing the code to connect the
interface's output to the backend routines that users wish to invoke. Writing
the "glue" is a tedious but not very challenging task that must be done by hand
whenever the system is ported. The process cannot be automated because it
involves no generality; the whole process is specific to each backend.
Vocabulary definition and scene definition, however, exhibit a great deal of
generality from domain to domain, and the intelligent interface developers
were able to build tools to simplify and speed both tasks.

4.2 THE VOCABULARY DEFINITION TOOL
The purpose of this tool is help system maintainers to define new words. Two
considerations guided the design of this tool: the developers wanted to capture
as many generalizations about word definition as possible, and they wanted to
guide the word definer so that he would neither have to write code nor be
forced to make ad hoc decisions about meaning.

There is one caveat that must be offered to users of the system, and that is that
no amount of clever toolsmithing can alter the fact that defining new words
requires thought and some training in whatever formalism is chosen to
represent dictionary entries. Neither machines nor people learn new words by
telepathy; if one considers the amount of knowledge a human being requires to
understand an entry in a typical dictionary one realizes that it is considerable.
The entry, below, for example, is taken from the definition of the word
crumble in Webster's Ninth New Collegiate Dictionary:
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crumb ble vb crum bled crum bUng [alter. of ME kremelen, freq.
of OE gecrymian to crumble, fr. cruma] vt (15c): to break into small pieces -
vi: 1. to fall into small pieces :DISINTEGRATE 2. to fall into ruin
(COLLAPSE) <marriages -> - crumble n.

Even after disregarding the etymological obscurities, one can see that the
reader needs to know what nouns, verbs, transitive and intransitive verbs are
and also how to interpret the morphological information provided by the past
and present participles. This not a job for the uneducated; neither is defining
words for the intelligent interface.

Defining words using the King Kong Vocabulary Definition Package is a
two-step process. First, the definer defines the morphological and syntactic
properties of a word, then he defines the meaning of the word in the context of
a scene.

V• The definer invokes the tool by hitting Select-V on the Lisp Machine keyboard.

The tool then brings a many-paned window that covers the entire screen
display. Each pane contains information about word definitions. One pane
contains documentation about the entire definition process; if the user gets
confused at any time he can scroll through this window in order to obtain
documentation about how the vocabulary definition tool works.

The first thing that happens is that a small write in window appears on the
display to ask the user what word he wishes to define. After the user has typed
the word in, the system asks him if the word is a synonym of any word already
in the dictionary. If it is a synonym, the system simply asks to user to define
any irregular forms the new word has and then enters the word into the
dictionary. Defining synonyms is trivially easy and takes seconds.

In most cases, the user needs to define a non-synonym. In this case he must
specify the part of speech of the word and its syntactic behavior such as
subcategorization. Menus pop up to guide each step in the specification of
syntactic behavior, and there is a heavy use of defaults. The process is still
complex and requires a college level understanding of English grammar, but
there is always on-line documentation, and the use of menus means that even
if the user makes a mistake, he can gracefully and quickly recover. No
programming whatsoever is required; the user can make only choices
permitted by the menus, and there is no place for him to go really wrong. With
training users quickly become comfortable with the system, and the 5470
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research team has shown that, with the tool, it is possible to define words in a
matter of minutes (see the description of porting the interface to ISFI below.)

When the user has finished specifying the morphological/syntactic behavior of
the word he must tell the system what it means. In the world of the King Kong
Vocabulary Tool this means that the user must define word meanings in the
context of the scenes. The tool guides the user by popping up a menu of all the
scenes that have been defined for the backend. Th-e user chooses a scene, and
menus appear asking him to specify the roles ef that scene and what relation
they have to the direct object, subject, indirect object, and other arguments of
the word. This process is necessary for verbs, but not for other parts of
speech. For example, if the user were defining the verb "leave" in the context
of the "choose homebase" scene, a menu would pop up directing him to relate
the direct object of the verb with a scene role. He would relate the direct object
to the role "homebase" because typical uses of the verb would be in sentences
like "leave Hahn."

This is all there is to defining a word. By giving a command to the tool to
install the new definition, the user can enter the word permanently in the
dictionary and turn to defining another. Using this tool, the 5470 developers
were able to create a 400 word dictionary in ten days. This is a much faster
and much less error prone process than that of creating word definitions in CD
oriented systems and requires no programming at all.

4.3 SCENE DEFINITION
The scene definition tool has the same window/menu organization that the
vocabulary definition tool does, but has an additional graphic capability which
is used to display the tree structure representing the scene hierarchy. Usrs can
enter a new scene into the hierarchy graphically by pointing the mouse at a
node in the tree and clicking to open up a new node. They can enter scene
information such as roles and role fillers via windows; any updates to the
hierarchy are automatically made to the tree and graphically displayed as they
are made. All the petty details of scene definition are handled without the
need for writing flavor definitions or any other type of code; the user is freed
to do the hard part: choosing appropriate scenes for a backend and deciding
what their roles and relationships should be.

This is probably the hardest part of porting, requiring good sense, creativity,
and a sound understanding of the backend and of the needs of its users. Our
own experience in porting the system to a new backend, the automatic
programming system, showed that this was indeed the most demanding phase
of porting.
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5. PORTING THE INTERFACE TO ISFI
The job of poning the interface to a new backend was entrusted to one staffer
who was given four months in which to get the interface onto a new backend
and to bring it to the point at which it could handle user questions about the
new expert system's domain. We chose the MITRE automatic programming
expert system, ISFI, as our target backend because it differed dramatically
both in domain and in architecture from KRS. It remains our belief that if we
can port the interface to ISFI, we can certainly port it to expert systems more
like KRS.

Within four months the chosen developer had defined a large dictionary for
ISFI, a preliminary set of scenes, and the bulk of the interface to backend glue.
Because ISFI already has a sophisticated graphical interface which enables its
users to issue commands to the automatic programming system, we
concentrated on giving the linguistic interface the ability to understand
questions. ISFI is now capable of responding to a variety of English questions
about the objects in its domain, furthermore, ISFI users have found that they
are able to access information about ISFI using English that would otherwise
be very hard to obtain. In this way, the addition of a linguistic interface to the
preexisting graphical interface has greatly enriched the user's ability to
communicate with the expert system.

However, we discovered in the course of talking to the ISFI developers and in
playing with the system ourselves, that the sorts of questions that one would be
most interested in asking ISFI were quite different from those that one would
be likely to ask KRS. Users would prefer to ask ISFI "why" questions such as
"Why did propagation fail?" rather than "what" or "how" questions. This
poses a problem - not so much to the interface staff as to the developers of
ISFI. The problem is that ISM frequently does not record the reasons it does
things. This means that there is no way for the interface to answer "why"
questions even though the interface is fully capable of understanding them. In
order for such questions to be answerable, the ISFI staff must extend ISFI,
and, in fact, they are in the process of doing so. Here is an example of an
interface driving the development, in part, of a backend system.

Some work remains to be done in scene definition and inference specification
for ISFI. The porting is not quite complete. However, the relative speed and
ease with which so much has been accomplished indicates that we have met
our goal in creating a portable interface. No porting will ever be painless, and
all will take time, but the combination of the system's architecture and its tools
greatly simplify this demanding task.
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6. WEAKNESSES OF THE INTERFACE
Although the 5470 project can justifiably be viewed as successful, it has
several weaknesses. The most serious failing is that the parser lacks full
syntactic coverage of English. In particular, the parser cannot handle
conjunction or lexical ambiguity. In order to deal with these phenomena it will
be necessary to select a faster parsing algorithm than is used by the current
parser because conjunction and lexical ambiguity require the parser to search
amongs a very large space of possible parse trees. Fortunately, one can still
communicate in a fairly natural manner without resorting to conjunction, and
one can restrict word definitions to a single part of speech without losing
essential expressive power. Furthermore, one can at least predict the types of
input likely to cause the parser to fail; this means that a user will not be
mystified such failure and can quickly be trained to avoid certain
constructions. This is much less painful than a situation in which the user has
no idea whatsoever which constructions will work and which will not.

Nonetheless, the staff of 5470 regards the lack of full syntactic coverage to be
a serious failing. Extending the parser would have been a top priority for a
third year of effort had the project continued.

The interface also has at least one serious semantic gap: it cannot handle the
meaning of quantifiers. This weakness, unfortunately, seriously undermines
the useability of the system as an interface to databases since quantified
questions are extremely common in database interactions. Again, this
problem would have been a top priority for a third year of project effort.

Finally, we would have liked to have had the time to polish up the error
messages. It is very important to provide the user with helpful messages when
the system for whatever reason is unable to understand an input. We have
provided some helpful messages, but there are still many cases in which
messages are obscure or inadequate. That we were unable to improve this
feature of the system remains one of our regrets.
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