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A CONSTRAINT ALGORITHM FOR MAINTAINING RIGID BONDS IN

MOLECULAR DYNAMICS SIMULATIONS OF LARGE MOLECULES h '

I. INTRODUCTION '.‘:;E

"

Accurate integration of particle trajectories in molecular dynamics (MD) simu- "::.:
lations requires timesteps small enough to resolve numerical representations of the i
second-order differential equation :n
% = F(X,1). (1) e

. ’ W

Common algorithms for integrating Eq. (1) include Runge-Kutta and other multistep :':.‘:
methods, various predictor-corrector methods and central differencing schemes. The ':':‘:
Verlet!, Beeman?, and leapfrog algorithms®*® are commonly used to integrate the -.;
equations of motion in MD simulations. The simplest leapfrog method, which inte- :
grates Eq. (1) using only second-order central differences of X and dX/dt, has several ‘v
advantages. It is reversible with respect to the independent variable (¢ in Eq. (1)). It £x
requires fewer operations and less computer rﬁemory because it does not have to keep &y
track of particle positions at several previous timesteps. Finally, the leapfrog algorithm > :,
tends to conserve energy better than other methods. :
The maximum timestep size for accurately integrating the equations of motion in ,_

MD simulations is given by ‘.::
it = __Cf_’ (2) ::W

max 45| ‘
where max(dF;/dX) is the maximum of the gradient of the force of all interparticle -:-':_
forces in the system, and a is a parameter related to the accuracy of the numerical ;?:
integration. A derivation of Eq. (2) is given in Appendix 1. In simulations of molecular b
systems, the short timescale of intramolecular for-ces usually determines the timestep. o
The associated degrees of freedom represent fast modes, such as vibrations. Resolving ;'-‘
these modes is generally not important for simulating slower modes such as intermolecu- E}‘
lar vibrations, torsional angle transitions, or molecular reorientations. When the fastest o
Mamscrip spproved December 3, 1987 e
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degrees of freedom can be ignored, the computational efficiency can be increased by

using constraint algorithms that eliminate motions on the fast scales.

Various iterative and noniterative methods have been developed for maintaining
rigid bonds in MD simulations of large molecules. For example, two commonly used
a.lgor'ithms are SHAKE®~1%, which is iterative, and the matrix method,® which is non-
iterative. The matrix method inverts a matrix to solve for Lagrangian multipliers
that satisfy the constraint conditions, and so becomes computationally expensive for
very large molecules. The SHAKE algorithm avoids matrix inversion by iteratively
adjusting particle coordinates until the system satisfies all the constraints to within a
given tolerance. In addition to maintaining rigid bonds, constraint algorithms must
counteract the increasing departure from the fixed distances, called constraint decay,
resulting from the accumulation of numerical errors. Iterative algorithms counteract
constraint decay implicitly by requiring convergence to within a specified tolerance at
each timestep. Deviations in the constrained distances from their initial values are
continually checked and corrected. Noniterative algorithms require an explicit scheme
for counteracting constraint decay because there is no inherent feedback mechanism for
monitoring changes in distance.

Recently Edberg et al.!! developed a noniterative élgorithm for maintaining fixed
distances between particles. In conjunction with this algorithm, they developed a
criterion to ensure that constrained distances only deviate from their assigned values
by amounts small enough that the algorithm remains stable. This approach defines
penalty functions that monitor constraint deviations. When the penalty functions
reach some specified value, the penalties are minimized by correcting the deviations
according to Gauss’ principle of least constraint!?. By relaxing the constraint slightly,
the computational cost is reduced because the accumulation of numerical errors is not

corrected every timestep.

In this paper, we present a new algorithm for enforcing holonomic constraints that
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can be used in conjunction with the leapfrog algorithm. We show that it is extremely
efficient, gives constraint forces explicitly, and provides flexibility for computing con-
straint forces according to the most efficient programming structures for a given prob-
lem or computer. A Multiple Constraint Force (MCF) function is derived using the
reversible leapfrog integration algorithm with constraint conditions applied pairwise
to all restricted particles. This algorithm is similar to that developed by Memon et
" al.’? in that it is based on the leapfrog integration algorithm and is iterative. Rather
o than solving for constaint forces in a matrix inversion, however, the MCF algorithm
t applies the two-body constraint force function iteratively to each restricted distance
in the polyatomic molecule. The constraint force is added to the other forces acting
on each particle, so the value of the constraint force function decreases with successive

i iterations. The test simulations using this algorithm show that the MCF algorithm

’ converges rapidly, and numerical errors do not accumulate, so there is no unstable
t

t;‘} constraint decay. Rather, the constraint error fluctuates stably. The constraint fluctu-
'Q
:;j: ations are caused by small errors in the constraint forces resulting from: the incomplete

convergence of the constraint-force functions when using a small number of iterations;

o approximations in the constraint force function for the purpose of increasing computa-

o purp g comp

‘-‘ g . . . 3 . . .

;ggi: tional eficiency; and numerical errors due to discretization, roundoff and truncation.
8!

R In principle, any two-particle constraint algorithm could serve as the basis of an
\ iterative multiple-constraint algorithm since the evaluation of any two-particle con-

G

s:: straint force can include other constraint forces as external forces. For example, Singer
(L

e et al.!* have developed an efficient and widely used two-particle constraint algorithm.

% g

The Singer algorithm, however, treats the dynamics of the center-of-mass separately
iy from the rotational motion, thus treating the dynamics of the two linked particles im-
4, plicitly. Consequently, this method does not permit a simple extension to a system

with multiple constraints.
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II. Derivation of the Constraint Force Function

A constraint force function for maintaining rigid bonds can be derived by applying
the leapfrog algorithm to solve Eq. (1) numerically. This is done by modifying the
leapfrog procedure to include the forces of constraint, §F;;, so that the position X and
the velocity V of each particle are given by: |

X2+ = X7 4+ VItis (3)
n n— n &t
vitt=vrt e+ SFG)—, (4)

where JF:; is the constraint force for the fixed distance separating particles : and j and
F? is the sum of all forces on particle i. The masses of particles ¢ and j are given by
m; and m;, respectively. The superscripts in Egs. (3) and (4) indicate that X and V
are central differenced in time. After n timesteps of size 6t, V and X are computed at
times (n + 3)6t and (n + 1)6t, respectively.
The velocity of particle j at step n + % is

vitt vt (mp -arz;-)i—tj. (5)

The constraint force §F7; must be such that the condition

|x;_l+1 - x?+1|2 = 13’ (6)

is maintained, where [, = |l,| is the fixed distance between particles : and j. However,

the errors accumulate at each timestep in any real simulation so that
X7 - XP1? =12, (7)

where |, # l,. Equation 6 may be written in expanded form using the identities (3) to

7,

n n .. n 2 2
2 =X} -X}) +(V}'"* - V,'."*)ét + (F - 1':‘”_‘—")(&)2 - M., 0F (8t . (8)

J
m; mgmj
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where M.J = m; + m; and [, is incorporated in 6F:‘J Because the constraint force acts

along the interparticle bond, 6F7; has the form

n _ mim; (le
5F:]" M;; (l¢>a’ (9)

where a is a function of the velocities of particles i and j, the forces acting upon
them, the actual separation [, of the particles, and the specified constrained distance

l,. Equation 8 can be rewritten as

2
2 _ _ (6t)%al
;= (le+ Al 1 (10)
where
— (vt _ynt F? F? 2
Al=(V; V, st + (m,- m.->(6t) . (11)
Letting
2
b= a(‘lst) , (12)

Eq. (10) can be rewritten as a quadratic equation in &,

1. - Al a2 +21,-A1=-12
2 o
b -2(1+——'l3 )b+(1+ é =0. (13)

Solving for b, an expression for a follows from Eq. (12):

1 1 - Al 1. - Al?
a=(6t)2[l¢+ T :t\/1§+(—-12—)-—(A1)2}. (14)

Substituting a into Eq. (9) (taking the negative root in Eq. (14)), we obtain the con-

straint force function

_ mimjl, 1 - Al 2 (-an® A
6Fl] = M.'j(&t)z [1 + 13 - 13 + i 13 . (15)
S
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A geometric interpretation of the constraint force function Eq. (15) is given in Appendix
2. The negative root in Eq. (15) gives the physically reasonable value for a. The square-
root term in Eq. (15) is the magnitude of the projection of the displacement vector at
time ¢t + 8t onto the displacement vector at time t. Because Al <« I, the constraint

force function is given by the approximation

6F;; =

M@ |3t TE T an (16)

m;m;l, [1 I, - Al 1 Lg_jl
which for a given timestep is less accurate than Eq. (15), but which is more computa-
tionally efficient because it is not necessary to compute a square root.

The constraint force function 6F;; given by Eq. (15) is sufficient for maintaining the
specified bond distance 1, if §F;; is applied to a system of two rigidly bound particles.
For a system of particles where each particle may be bound to more than one other
particle, §F';; given by Eq. (15) is not sufficient for maintaining bond distances because
it assumes only a two-body constraint condition and neglects the cumulative effect of
multiple connections. The constraint force function Eq. (15) is, however, the basis of an
iterative procedure that maintains multiple rigid connections and also counteracts the
accumulation of errors due to discretization or approximations in the constraint force
functions. For a small number of iterations, the computed constraint force function
may not converge completely to its limiting value every timestep.

The resulting small error in the computed value of §F;; combined with errors
resulting from discretization produce two types of constraint decay: deviations of the
bond lengths from their assigned values and nonzero velocity between constrained pairs
of particles along the direction of the bond. The constraint force function Eq. (15) has
two features that counteract constraint decay. These are the conditions imposed by
1. Eq. (6) that helps §F;; to maintain an assigned bond length, and the contribution of
: the first term in Al (given by Eq. (11)) to §F,; that helps to minimize any relative
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velocity components along bonds. These two factors contribute to the stability of the
algorithm and give the algorithm the ability to correct for the accumulation of small
errors resulting from discretization or any approximations in §F;.

The second term in Al, given by Eq. (11), provides the feedback mechanism for
a convergent iterative procedure for multiple connections. Once a constraint force
for a particular bond is calculated, it is treated as an external force acting on the
pair of particles. Thus at successive iterations, all the constraint forces maintaining
other bonds attached to either of the two linked particles add to the constraint force
maintaining that bond.

The mathematical basis of the algorithm presented here is the same as that for
all other iterative constraint algorithms. For each multiply connected particle in the
system, a force AF;, the sum of all constraint forces acting on the particle 1, is added

to the total force F;. The quantity AF; may be given by

K;
AF; = Za.'jl.'j, (17)

j=1
where the a;; are constants that specify the magnitude of each constraint force and
the 1;; are vectors that specify the K; bonds linked to each particle i. If there are
N bonds, the constrained system has N unknowns a;;. Because there are then N
constraint conditions, the system is solvable. Memon et al.!® have discussed efficient
matrix methods for determining these unknowns using constraint equations obtained
using the leapfrog integration scheme. Ryckaert et al.® have pointed out that because
the solution to the constraint system of equations is unique, any convergent procedure

that satisfies all geometric constraint conditions by displacements of the form

Ki oii(66)2
aX;i=S ﬂ@l-l.-,-, (18)

= T

is equivalent to results obtained through direct solution, i.e., the matrix method. It-
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erative constraint algorithms differ in that some adjust Eq. (17), e.g., Memon et al.}3,
and others adjust Eq. (18), e.g., SHAKE®®. Each algorithm, however, permits different
types of programming structures which may be optimal for particular types of problems
and computers. We find that by using an exact two-particle algorithm as the basis of
the MCF iteration, the accuracy and convergence are both improved, and convenient
and efficient programming structures can be used to evaluate constraint forces.

An important aspect of the MCF algorithm is that it retains the reversibility
property of the leapfrog algorithm. This is an important guarantee of qualitatively and
quantitatively faithful Hamiltonian behavior'*, as previously shown for integration of
relativistic charged particle orbits in electromagnetic fields.

Another important aspect of the MCF algorithm is that

§F() — 0 (19)

for increasing (i), independent of the order in which the §F;; are computed. The su-
perscript (i) in Eq. (19) designates the value of the constraint force function at the
ith iteration. This property provides flexibility for computing §F;; at each iteration
because it is possible to partition the calculation of constraint force functions accord-
ing to what is more efficient for a given problem or computer. Further, Ff; ) can be
evaluated unambiguously before the iteration begins.

The constraint force function F;; is an explicit function of all forces acting on the
linked particles. An important optimization permitted by the MCF algorithm, as well
as other iterative constraint procedures such as SHAKE®?, is to set the forces between
all linked particles to zero. This step reduces the magnitude of the maximum gradient

of the constraint forces evaluated for the system and larger timesteps can be used.
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II1. Procedure for Calculating Constraint Forces

A flow chart describing the MCF algorithm is displayed in Fig. 1. For each particle

in the system:

(1) Compute the sum of all the forces acting on each particle due to the other particles

in the system.

One important feature of this stage of the calculation is that the force between
constrained particles is set to zero. This is not necessary in principle because the
constraint force counteracts any mutual interaction. However, short-range interactions,
typically at bond-length separations, are relatively large and result in a large value for
terms containing l. - Al, in the constraint force function. Because the gradient of the
force is large at short range, if we included these short-range interactions, we would

need a very small timestep.

(2) Compute the displacement vector Al given by Eq. (11) for each bond in the system.

The computation of Al for the various bonds must be independent of the order
of computation in any convergent iterative scheme. That is, the convergence does
not depend on whether Al is computed for the different bonds according to a specific
procedure. Although different modes of computing the displacement vector Al might
result in different sets of values of Al for the first iteration, successive iterations should

diminish this difference.

(3) The constraint force for maintaining each constrained distance is computed ac-

cording to the constraint force function Eq. (15) or Eq. (16).

(4) The constraint force for each constrained distance is added, with the appropriate

sign, to the total force acting on the two constrained particles.
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(5) If the maximum constraint force calculated in the ith iteration is less than the con-

vergence condition, or if the iteration counter exceeds the iteration limit, proceed

to integrate the equations of motion; otherwise, repeat steps (2) to (4).

The development of the constraint forces during the first two iterations.is illus-
trated in Fig. 2. For this example, we have chosen to compute the displacement vector
sequentially from top to bottom. As the timestep 6t decreases, the order of evaluation
has less of an effect on the total force eventually applied to each particle. The constraint
conditions are coupled to one another by treating constraint forces as external forces

(1;) depends only on external forces, Fgg)

(2)
12

for subsequent calculations. Thus, while §F
depends on external forces and the constraint force 6F§12). On the second iteration, F
depends on the external forces and F%). This coupling leads to overall convergence of

the constraint force function.
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IV. Tests of the Algorithm

We conducted a series of simulations to test our algorithm. The purpose of these
simulations was to

(1) examine the stability and accuracy of the algorithm;

(2) test those aspects of the algorithm that contribute to its general efficiency;

(3) generate an initial version of a computer program based on this algorithm to

be used for large scale simulations.
The model consisted of a 12 x 12 array of rigid tetra-atomic molecules in three-
dimensional space. The configuration of each tetra-atomic molecule is shown in Fig. 3.
The bond lengths and angles were fixed at the normal carbon-carbon single bond length
of 1.54 A and at the tetrahedral angle, respectively. Non-bonded interactions were
given by a Lennard-Jones potential with parameters taken from atomic nitrogen?®,
¢ = 0.5143 x 10~* erg and o = 3.310 A. The boundary conditions were periodic in
the plane of the initial array. The system was confined in the third dimension by a
pair of walls with the same LJ parameters as the particles themselves. Each molecule
in the system was given a random initial velocity, and the motion was calculated with
timesteps varying between 2 x 10™!¢ and 2 x 10™!*s. The deviation of actual distances
(l) from their proper values (/,) was monitored during each calculation. The number of

distances deviating by more than 1% and the identity of the deviating pairs of particles
were stored.

Figure 4 shows the system in its initial configuration, i.e., t = 0. Figures 4a, 4b
and 4c are the XZ, YZ, and XY projections of the system, respectively, at t = 0. The
“periodic boundaries” are at 0 A and 60 A along X and Y, while the walls in Z are at
-4 A and +8 A.

The energy and constraint deviations are displayed in Fig. 5a and Fig. 5b, respec-
tively, for a calculation of 42000 steps of 5 x 10™!%s each, using the complete constraint

force function Eq. (15). The constraint force was evaluated with five iterations at each
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timestep. The mean velocity of the atoms and centers of mass of the molecules, along
with the corresponding standard deviations, are given in Table 1 (state 1). Also shown
are the values of the mean and standard deviation of the total, kinetic, and potential
energies. The reader will note the stability and rather narrow range of fluctuations in
all these values. Figure 6b shows the number of constrained bonds that deviate from
their proper values by more than 1%. The maximum deviation found under these con-
ditions was about 2%. The average number of deviations per timestep is about 3, and
the maximum recorded is 12, out of 720 bonds in the whole system. The identity of the
constrained particles responsible for these deviations does not stay the same for many
timesteps. Both the small number and the fluctuating identity of deviations demon-
strate the ability of the MCF algorithm to counteract constraint decay. Under these
conditions, we prefer to speak of “constraint fluctuation,” since there is no tendency

for the number or magnitude of the deviations to grow.

A similar calculation of 20000 steps using the approximate version of the constraint
force function given by Eq. (16) is presented in Fig. 6. The state of the system (state
1, in Table 1) remained the same, well within the standard deviations. The number of
constraint violations at the 1% level is a factor of thirty larger, but the magnitude of
any single deviation is about the same, the largest deviation observed being about 2%.
In this case too, the identity of the deviating bonds persisted over approximately 100

timesteps.

Figure 7 shows the energies of a system described by the parameters listed for state
2 in Table 1 over 3000 steps of 1 x 10™!%s (3 x 10725 total time) with the constraint
force function evaluated over 10 iterations in reverse order from the other runs shown
thus far. This shows that the stability of the algorithm does not depend on the order of
the evaluation of the constraint force. A comparison of the calculation shown in Fig. 7
and a calculation starting from the same initial state, but with the constraint forces

calculated in the standard sequence, is shown in Table 2. Although the centers of mass
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of the molecules move 4.30 A on average, the final states corresponding to the “forward”
and “backward”evaluation differ by 1 part in 10% in the mean displacements. The mean
velocities and energies of the particles and molecules show a similar agreement. Table
2 also presents the results for forward versus backward runs at timesteps of 1 x 107145
and 2.5 x 107'%s. Although the total energy is conserved for all runs, the 1 x 10~ s
timestep is too large under these circumstances and there is a significant dependence
on the order of evaluating the constré.int force functions.

Figure 8 shows the absolute magnitude of the constraint force as a function of
iteration for one timestep of 2 x 10™1% sec, in state 2 of Table 1. The solid lines show
the values of the largest constraint forces in the entire system, and the dashed line
shows the average constraint force. The average constraint force is approximately an
order of magnitude less than the maximum constraint force. Also, both the average and
the maximum fall off exponentially at about the same rate of two orders of magnitude
in ten iterations. Furthermore, the standard deviation about the mean constraint force
is of the same order as the mean force itself (Table 3). Thus max (6}7',-(;)) appears to
be a good diagnostic for the convergence of the constraint force evaluation. Figure
8 also shows that the constraint force does not decrease monotonically with iteration
number, and that the identity of the pair of particles requiring the maximum constraint
force changes with the number of iterations. An examination of the behavior of the
constraint force function over many timesteps shows that those particle pairs requiring
the largest constraint forces at early iterations change identity slowly, over several
hundred timesteps under the present conditions (state 2), and that the magnitude
of these forces also changes slowly. These last observations suggest that a predictor-
corrector version of the algorithm, in which a previous evaluation of the constraint force
is used as the initial estimate, would be very efficient. Preliminary tests support this

idea.
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V. Conclusion )

We have derived and tested a new algorithm for constrained dynamics. The nu- .
merical basis of the algorithm is established by applying a constraint condition to the
equations of motion in the central-difference leapfrog integration scheme, and solving
for the forces of constraint. A geometric interpretation is provided in Appendix 2 that .
provides physical insight to the terms of the constraint force function. An approximate
version of the constraint force function that eliminates the need to evaluate a square
, root saves approximately 10% in execution time. However, the ultimate cost of the !
decrease in accuracy has yet to be assessed. The algorithm, which is exact for two-
body systems such as rigid rotors, is applied iteratively in simulations of polyatomic )
X molecules. At the end of each iteration, the calculated constraint forces are added to 4
the forces acting on the system. The largest constraint force falls off exponentially with
iteration number, and may be used as a diagnostic of convergence. .
We are developing and testing several simple extensions and improvements of the .
MCF algorithm that.seem worthy of consideration for future implementation. Storing v
the composite constants {a;;} for each of the constrained distances, rather than the
total constraint force derived from these constants, allows calculation of better approx-

imations to the constraint force in the first iteration at the next timestep, when the

¥
geometry has changed somewhat. Using the total constraint force suffers from the fact
that the orientation of the atoms can be different and hence the vector constraint force b\
W}
must change, even though its magnitude along the line of centers may be identical. )
; Using the constants {a;;} has the added advantage that only one scalar constant has hy
to be stored for each constrained distance rather than the three components of the N
ht
corresponding vector force. 2
L) .
: If the constraint constants {«;;} are kept for the two previous steps rather than one, .
a simple extrapolation to the next timestep should give a good (linear) approximation ,
i i
! to the inevitable changes in the values of {a;;} that occur. This extrapolation should '
N
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work best for the slowly changing parts of {a;;} for which the most iterations are
required. The iteration procedure treats the rapid changes in the constraint constants
that arise from close interactions and impulses with inherent efficiency. Thus it should
be possible to reduce the number of iterations required appreciably, with improved

accuracy, at essentially no additional computer cost.

The approximation to the square root used in Eq. (16) reduces the overall com-
putation noticeably; but, as the differences between figures 5 and 6 imply, it is rather
crude. Since a few iterations are necessary to obtain the constraint force anyway, the
solution can be obtained to the roundoff limit by using a quadratically convergent iter-
ative approximation to the square root. This procedure should be more efficient than
Eq. (15) and equally accurate.

The constrained equations of motion obtained here are ultimately the same as
those obtained by other constraint algorithms, an especially clear summary of which
is presented by Levitt and Meirovitch!”. A constraint force evaluated at a previous
timestep can be stored as a particle attribute to be used for subsequent information
processing, as in predictor-corrector schemes!® or interparticle state transitions??.

Although much of our approach has been influenced by the work of Edberg et
al.l?| particularly the concepf of penalty functions, such functions are not necessary in
our formulation. We attribute this to the remarkable stability, demonstrated in part
IV of this paper, of the reversible leapfrog integration scheme. We note, however, that
energy conservation is not a sufficient indicator of the accuracy of the algorithm. A
better test is that the statistical properties sought should not be unduly perturbed
by the choice of timestep size. We have also derived a simple relation between the
maximum force gradient experienced by the system, and the maximum timestep to
integrate the equations of motion accurately (see Appendix 1).

Finally, we have written a computer program that uses the MCF algorithm to

conduct molecular dynamics simulations of large assemblies of molecules. Among the

T T R T T .r.-\ J_\__'-_, ‘_.__-
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issues we are addressing are: development of optimum programming structures based
on the two-particle constraint force approach of the MCF algorithm; development of
efficient vector procedures based on the property that the MCF method converges
independent of the order in which the F;; are computed; and extending the MCF

method to predictor-corrector schemes for computing constraint forces as described

above.
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COMPUTE TOTAL FORCE ON EACH PARTICLE
IN THE SYSTEM.

\

: SET EQUAL TO ZERO ANY FORCES
BETWEEN CONSTRAINED PARTICLES.
: y

‘ ITERATION

y i=1

\i

4 COMPUTE VECTOR Al FOR EACH CONTRAINT
; IN THE SYSTEM AND COMPUTE CONSTRAINT FORCE
A FOR EACH CONSTRAINED PARTICLE.

'y )
K : ADD CONTRAINT FORCE §F') FOR EACH CONSTRAlNED
. PARTICLE TO TOTAL FORCE ACTING ON THAT PARTICLE.

RPN S d

CHECK
CONVERGENCE CRITERION.
MAX | 6Fli'| <¢ OR

- ..

NO

L

UPDATE PARTICLE POSITIONS
AND VELOCITIES.

Figure 1. Sequence of operations required for maintaining constrained distances using

) Eqgs. (11) and (15).
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Figure 3. Configuration of bound system of particles to which constraint algorithm is

applied.
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Figure 5a. Energy as a function of time. Upper curve - total energy (kinetic + po-
tential). Lower curve - total kinetic energy. (The constraint force is given by exact

expression Eq. (15)).
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Figure 5b. Number of constraint deviations as a function of time. (The constraint force

is given by exact expression Eq. (15)).
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Appendix 1.

Derivation of Eq. (2): Maximum Timestep for Accurately

Integrating Equations of Motion

The trajectory of a particle of mass m in a force field F(X) is determined by

2X
m—d7-=F(z\), (A1 -1)

where X is the position. In general, F/(X) is a nonlinear function of X. However, an
accurate approximation of Eq. (Al-1) by difference equations depends on the form of
F(X) in some small neighborhood §X. Applying a perturbation to Eq. (Al-1) and

expanding F' in a Taylor series about X, we obtain

(X +6X) dF
—_— ' 7Y ' iy . -9
m e F(X4+66X)=F(X)+6X I (41 -2)
Subtracting Eq. (A1l-1) from Eq. (A}2), we obtain
d*(6X) ,dF
mT~6Ad7 (.-11 —3)

The quantity d?(6§X)/dt? can be approximated by applying central differences to 6§.X,

ma”(&X) m&X(t + 6t) — 26X (t) + 86X (¢t - 6t)

~

dt? 6t? ’ (41-4)

for 6t sufficiently small. Bounds on the size of §t are determined by expanding § X (¢ £6t)

in a Taylor series about ¢,
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™

i i dX  (6t)? d*(6X) i} ¥

5.X(ti5t)~5}\(t):t5tﬁ+ TRETY (Al - 3) N

5

(6¢) d®(6X) = (8t) d*(8X) £ ...

, 3t ded 4! dtt :
| Re-
!

Substituting Eq. (A1-5) into the right side of Eq. (A1-4), we obtain '

; . -

L}

§X(t+6t) —26X(8) +6X(t - 6t)  d*(86X) N 8§t2 d*(8X) (41— 6) ¥

&t? T dt? 12 dts ’ ]

.:'.
‘f Equation A1-6 shows that the approximation given by Eq. (A1-4) is accurate only if :':
, ‘:

582 dA(8X) (d2(6X)\ ! !

- = Al -7 :
12 det < dt? ) Rk ( ) N
where v €« 1. It follows from Eq. (A1-3) that u.
': 3

! '
, d*(6X) 1 d*éX)dF X
' dtt ~ m dt2 dX’ (41 =8) N
Substituting Eq. (A1-8) into Eq. (A1-7) and letting a = (12m~v)!/2, we obtain E
a W]

6t = , (A1 -9) ¢

[gﬂ] H ’

dX o
Q

which is Eq. (2) in the text. i
=
(S 4

h)

>

~
3

&t .
RESEUCAOOON KN AR g RXIUO0A Wy Yo



. 5 tat 08 A" aAa” ' NP it a'h’ 28 2¥8 2R’
e o ae g s TN N o TN Y o (ot g0 o R ! w

L&

. &
oy
P

m

RS

Appendix 2.

S %
") as

Geometric Interpretation of Eq. (15)

v e
= % 4
LA

The constraint force maintaining a fixed bond length between two particles given
by Eq. (15) can also be obtained by considering the relative motion of these particles.
The motion of a particle of mass m; relative to a particle of mass m; is equivalent

to the motion of a particle of mass y = m;m;/(: ; + m;) moving relative to a fixed

Ol ANy SN
@ AR PR

point in space in the center-of-mass coordinate system. We therefore consider the force

required to constrain the motion of a particle of mass u to a fixed orbit about a point ‘E::
A )
in space. ;‘E-u
' L]
The constraint force function Eq. (15) may be expressed as the sum of two forces.
<
:::'\.
§Fij = 6Fc1 + 8F 2. (A2 - 1) N
The force §F; counteracts the external forces that tend to cause deviations from the }-‘;';
oo
fixed bond length. The force §F .2 both gives the bound particle a trajectory consistent ;:;;’.
oA
with the rigid-bond constraint and counteracts the influence of accumulated numerical _,:
errors that cause the bond length to deviate from its fixed value. The force §F;, given o
in terms of the geometric quantities defined in Section III, '_;EZ-
:::
IJ l( * Al l( .:.'
6Fq = —_— =], A2 -2
P
is explained by Fig. Al-1. The quantity Al, given by Eq. (11), is the displacement :
vector of the particle in the center-of-mass system. As can be seen in Fig. A2-1, the :‘:
quantity Inc is the position of the particle at time t + §t if the constraint force Eq. (A2- .
.r_:
2) is not applied. The force §F .2, where s
."v-
.'.\,
o Ny
Y . s
§F e = ——(1, - 1,), 42 -3 y
c2 (5t)2 ( € C) l ) .
*
\}\
N,
N,
»\' !
\
31 '."‘
o
. \4
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is also explained by Fig. Al-1. Note that in principle [I¢| = |l,|, but in actual simulations
the accumulation of numerical errors destroys this equality. The quantity 1. is the '
N

projection of the displacement vector at time ¢+t onto the displacement vector at time
t. Because we desire a fixed-orbit trajectory of orbital radius |l,|, the force Eq. (A2-3) b
must be applied with 3
1 1 - Al)? '

== 24+ (- al7 — (A2, (A2 - 4)
l 2 N
~
Figure Al-1 gives a geometric description of Eq. (A2-4). Note that in addition to 3.
adjusting the trajectory in accordance with the constraint distance, the constraint 4
force also adjusts the trajectory to correct for any deviations due to numerical error. :‘
1
Substituting Eq. (A2-4) into Eq. (A2-3) and adding Eq. (A2-2), we obtain Eq. (15). h
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Table 1. Average states of system used to test stability and accuracy of algorithm.

State 1 refers to figures 6 and 7. State 2 refers to figures 8 and 9. Velocities are

averaged over the entire system at one timestep. Energies are averaged over an entire

run. State 1 energies averages are over 20000 timesteps; state 2 energy averages are

over 3000 timesteps.

Mean Particle

Mean Molecular Total Kinetic Potential
Velocity Velocity Ener Encrgg Energy
(cm/s) (cm/s) (erg (erg (erg)
State 1: 1.98x10° 1.27x10° 3.66x10-10 3.32x10-10  3.38x10-10
+8.88x104 +4.91x104
State 2: 2.05x104 1.37x10%4 -3.65x10°12 3.41x10°12  .7.05x10-12
+9.41x103 +5.52x103
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Table 2. Average displacements of particles, (6r,¢), and centers-of-mass, (§rcm), be-
tween forward (F) and reverse (R) evaluation of the constraint force functions. The

total period simulated was 3 x 10712 sec in all cases.

timestep” 1x10-14 ‘ 1x10-13 s 1x10-16
direction F R F R F R

<drat> 7.60+£14.92 7.45+£14.96 5.38+12.96 5.38+12.96 5.98+14.07 5.98+14.07

<8fem> S.77+ 749 5.67+ 747 431+ 6.52 431+ 6.52 444+ 671 444+ 6.71
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Table 3. Maximum and average constraint force as a function of iteration.

Iteration  Bond Index  Maximum 6F;; Average §F;;
1 269 7.049 x 106 9.735 x 107
2 212 2.674 x 10~¢ 4.387 x 10~7
3 267 1.622 x 10~ 2.690 x 10”7
4 149 1.044 x 10~ 1.605 x 107
5 149 6.896 x 10~7 9.524 x 108
6 149 4.489 x 107 5.692 x 108
7 149 2.879 x 10”7 3.397 x 10~
8 149 1.825 x 10~7 2.028 x 108
9 149 1.145 x 10~7 1.205 x 108

10 149 7.126 x 108 7.120 x 10~°
11 149 4.400 x 10~8 4.201 x 10~°
12 149 2.699 x 108 2.473 x 10~°
13 149 1.645 x 10~8 1.454 x 10~°
14 241 1.031 x 10~8 8.555 » 101°
15 241 6.799 x 10~*° 5.030 x 1010
16 241 4.486 x 10~ 2.064 x 10~1°
17 241 2.960 x 10~° 1.753 x 10-10
18 241 1.953 x 10~° 1.040 x 1010
19 241 1.289 x 10~* 6.175 x 10~
20 241 8.503 x 1010 3.678 x 10~1!!
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