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GRAM-SCHMIDT IMPLEMENTATION OF A
LINEARLY CONSTRAINED ADAPTIVE ARRAY

I. INTRODUCTION

Unconstrained adaptive antenna arrays for certain external noise interference scenarios can result
in the cancellation of a desired signal along with the cancellation of the interfering signals. Frost
11,21 introduced a constrained optimization procedure such that certain main beam antenna properties
are maintained during the adaptation process thus preserving the desired signal.

Consider an N input adaptive antenna array as shown in Fig. 1. We define a vector of weights
w as

W - (WI, W42, WN)7

where T denotes the vector transpose operation. Frost [1] shows that if the weights are constrained to
satisfy the following linear constraint equation

--. " C w = f ,(1)

where

M is the number of constraint equations,
*' C is the N x M constraint matrix.
. f is the M x I column constraint vector,

and t denotes the conjugate transpose vector operation, then the average output noise power residue
of z = w'x is minimized if

%w = RC(C'RiC)-tf, (2)

%., where

, x = (x1 , x2 ,  X,) ,

R, = Elxx' I is the input covariance matrix, and ElI denotes the expected value.

In this report we develop an open-loop Gram-Schmidt (GS) implementation of w'x where w is
-,,, defined by Eq. (2) or equivalently an implementation such that

" . -z = f (C R , 'C )-,C R x . (3)

The GS implementation of a linearly constrained adaptive array offers many advantages. The
GS open-loop technique has been shown to yield superior performance simultaneously in arithmetic

Manuscript approved June 18, 1987.
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Wi x W 2 * W

+

Fig. I -- Adaptie arra

efficiency, stability, and convergence rate [3-71 over other adaptive algorithms. In particular, the sta-
bility of the GS algorithm is enhanced because it does not require the calculation of an inverse covari-
ance matrix as does the Sample Matrix Inversion (SMI) algorithm 181. Also the GS canceller
algorithm is very suitable for a non-stationary noise environment because the adaptive weights can be
updated in a numerically efficient manner, using "sliding window" or systolic techniques on the input
data instead of "batch" processing.

Jim. Griffiths. and Buckley 19.10,111 have shown that the constrained minimization problem can
be reduced to an unconstrained implementation called the generalized sidelobe canceller (GSC). In
this report, we develop an equivalent implementation of this technique. It had been previously shown
that the steady state solution for the optimal weights is identical for both constrained and reduced

-, unconstrained problems. In this report, it is shown that if the SMI or GS algorithms are employed.
*" then the transient weighting vector solution for the constrained problem is identical to equivalent tran-

sient weighting vector solution for the reduced unconstrained implementation. In Sections II through
.V. we develop the basic building blocks for the GS implementation of the linearly constrained adap-

-' tive array. In Section VI, the implementation is presented. In Section VII, the special case when
there is only one constraint is discussed. In Section VIII the multiple constraint implementation is
significantly simplified. In Section IX, the Jim. Griffiths, and Buckley implementation is derived.
Finally. in Section X, analytical results are presented for the convergence rate of the constrained
minimization implementation when the SMI algorithm is employed.

"* II. GS CANCELLERS

Consider the general N-input open-loop GS canceller structure as seen in Fig. 2(a). Let x1 , x2,
4 " ". xrepresent the complex data in the Ist, 2nd. Nth channels, respectively. We call the leftmost

input (x). the main channel, and we call the remaining N - I inputs the auxiliary channels. The
canceller operates so as to decorrelate the auxiliary inputs one at a time from the other inputs by
using the basic two-input GS processor shown in Fig. 2(b). For example, as seen in Fig. 2(a), in the
first level of decomposition, Ny is decorrelated with x1 , xi.. ' , ...- . Next, the output channel that
results from decorrelating -.y with r.v I is decorrelated with the other outputs of the first level GSs.
The decomposition proceeds until a final output channel is generated. If the decorrelation weights in
each of the two input GSs are computed from an infinite number of input samples, then this output
channel is totally decorrelated with the input: _v. , ... ..

Let x, represent the outputs of the two input GSs on the ?n - I th level. Then outputs of the
two-input GSs at the mth level are given by

(rl III-I FT n = 1, 2 . .,N - n m4x (,,, ' I .(nm __ p71 1
X- -N 'I1 m = ,.2. N-I. (4)

2i

, , , , , -- - % % -, , -
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MAIN
CHANNEL AUXILIARY CHANNELS

Level 1 GS GS G S G

%Level 2 GS GS S G

Level 3 3G S GS
X 4) X(4)X 4

LeveIN -2 GS GS

2 N ) X(N -1)

v--,Leve N -1 GS

'a 
x IN)

'"aI

R

% Fig. 2(a) G S structure

SG

W X1lX 2 */X 2

Fig. 2(h) - Basic two-input GS canceller
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Note that rt - x, The weight vv (, seen in Eq. (1), is computed so as to decorrelate x (m+i) with
Nm) For K input samples per channel, this weight is estimated as

-~N ) -r(k )xn)(k)
(M)" k =I

"n) K =t (5)

XN. (k)

where * denotes the complex conjugate and is the complex magnitude. Here k indexes the
time-sampled data.

• We simplify the N-input GS canceller structure by the representation as seen in Fig. 3.

X1  X2  XN

0 GS

Y

Fig. 3 GS reprecntaticn

!l1. NORMALIZED GS CANCELLER

The (iS canceller, as represented in Fig. 3. effectively weights the vector x with a vector
[ . ,  such that v = , where

0()

a,.-

0.

%.%t I  . and i,, a scalar constant to he dletermined H t o, i thc ,alar &,,ntant i ha, a

0. spccitIc ,aluc. It

R,, ( , . " . % . . .-7)

4

S%
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-",' where r '" are the elements of R., then we can show

= 1 (8)

5,. Hence

0

w =R 1  (9)
'"

0

Consider a configuration where we normalize the output y by the average power of y as seen in
Fig. 4. Note that the average power after normalization is not one. Thus

1 1x. (10)
I ly I El ly I'

However,

El lY I 2 = El w'x1 21 (11)

= w'Elxxlw

-'5 = W'R~w

',p

54a' 0

@(I = (lnn , 0, "' 0)Rx; Rxr Rx;

-(I/lr()*, 0,0, 0)R,;'

0

*, 5

, ,, ... " " % . '
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X1  X2  XN

GS

Fig. 4 - Normalized GS canceller

Y

El I y121Iz

A--

Now since R,, is hermitian, then R,; is hermitian and r I1 is real. Thus
A,.

* ElIy I= (12)
r(ll)

* °Hence

z = r~l)wtx, (13)

or substituting Eq. (9) into Eq. (13),

z =(1 0," O) RU'x. (14)

- IV. NORMALIZED FAST ORTHOGONALIZATION NETWORK (FON)

A FON is a numerically efficient implementation of a complete GS network where each input is
orthogonalized with every other input [121. In essence, the FON implements the network seen in Fig.
5. The ordering of the input channels for decorrelation as seen in Fig. 5 was arbitrary. Reference 12
shows that the input channels can be ordered so as to greatly reduce the required number of arith-
metic operations. If there were no logic behind choosing the ordering of the input channels, it can be
shown that the number of weights that are calculated by using this decorrelation procedure is 0.5N 2

(N - I). In Ref. 12 an algorithm was developed that requires approximately 1.5N (N - I) weights

* for the same decorrelation process.

We represent the FON implementation of Fig. 5 as seen in Fig. 6. Consider an implementation
%%here each output of the FON is normalized with respect to the power of that output as shown in Fig.

- 7. We call this configuration a normalized FON. If we define z = (zI, Z2, " ZN). then we can
• .show that the normalized FON is equivalent to multiplying the vector x by an N x N matrix of

S u%&eights w such that

= wtx. (15)

6

. .. . . . . A.'; *0%*. -S
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X, x 2  N ~~ x x x

2 N  X2 X N X X X 1 N-1

G S GS .. G

1 Y2 Y N

Fig. 5 - Orthogonalization network

1  X2  XN

* FON
NXN

Y1  Y2  YN

Fig. 6 - FON representation

N.

NXN

"1 2 N

O.- "'" I

z' 12 ' YN ZN

:, . . Fig. 7 -- Normalized FON
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where

w = R£7. (16)

Note that we used the methodology of the previous section. Hence

z = RJ'x. (17)

We represent a normalized FON as shown in Fig. 8.

FON
" " NXN

O- .r NORMALIzERPOE

Z" 1l Z 2  Z N

V. NORMALIZED REDUCED FONS

A normalized reduced FON orthogonalizes only a fraction of the inputs with respect to one
another. For example if we desire only to orthogonalize xj, x2,., x , where M <N. then a
reduced FON would efficiently implement the configuration as seen in Fig. 9. If
Z (c: C,, . ZM) then we can show that a normalized reduced FON is equivalent to multiply-
ing the vector x by an M x N matrix such that

Z = wIX (18)

• and

w ""R i\.M• 119)

where

1 0 0
. 1 0

0 0

N.M = I N x Mmatrix.

0 00

0

-. ; P" .~* r r . . % . 4 - '.* r. -- %:

go N 1. 1.
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iY ir Y 2V Y M r '

*!a POWER NORMALIZER

- Z1 jZ 2  ~ ZMI

Fig. q - Normalized reduced FON

".' '1 0 ]

For example. 13. = 0 I

0 0

* Hence

Z =4lNRXV x (20)

We represent a normalized reduced FONas seen in Fig. 10.

X1  X2  XN

REDUCED FON
NXM

Y Y2 YN

POWER

NORMALIZER

4 F Z2
1  ZN

S-ig 10 - Normalized reduced
FON representation

VI. GS IMPLEMENTATION

We now present the GS implementation of the linearly constrained adaptive array. First, we
S.define an N x N augmented matrix, C,,,,g, such that

Ca,., = ICID] (21)

0 "9

% %N
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where D is an N x (N - M matrix such that Ca,, is nonsingular and hence invertible. We discuss
the choice of D in more detail in Section IX.4,

The GS implementation of the linearly constrained adaptive array is shown in Fig. 11. Note
that

X = (X 1 , X 2 , XN)T

U = (U 1 , U2, ,

V = (Vl, i' , T' ) (22)

Y = ( Y I , Y 2 , " , Mv ) r
.-

P = (P1, P2, ' pA)

z -scalar.

x

aug

REDUCED FON
NXM

p

POWER

NORMALIZER

4. V

FON

.4.

%,. H II G GS implementation ot a linearly MXM
I ',constrained adapte array

POWER
* NORMALIZER

4., Y

' f .

ZZ

10
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From our preceding discussion in FONs and reduced FONs, we know that

= aug x, (23)

V = IM N Ru (24)

y = R, v, (25)

z = fty. (26)

Now

R,,= E[C,-'x (CaX)'I = Ca,,- Cg , (27)

or

Ruzu Cag Rx; 1 Caug (28)

Hence

V = IM.N Cug R,;' Caug Ca,, x (29)

= IMN Cug RU.1 x.

We can show that

C = IM.N Cug. (30)

Thus

v =C RJI x. (31)

Now

R,.,.= EI(C' R,-'x) (C' RJ-1x)'l

= C'R.' " Etxx'l !RJ_1 C

= C' R.-J1 " R. , R' C

" C'R 'C.

Thus

R = (C' RJ C) - . (33)

II
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Hence

y = (C' R~iC ) Lv (34)

= (C' RJ1 C) -' C' Rx; x.

Finally, by using Eq. (26),

f (C' R C) C' RJ'x. (35)

Note that this is the same weighting of x as given by Eq. (3).

VII. SINGLE CONSTRAINT IMPLEMENTATION EXAMPLE

Note that when M = 1, we set z = p (see Fig. 11) and the function blocks after p are not
used. This results because the M x M FON seen in Fig. 11 is not used, f = I, and data passing

through successive power normalizations is unchanged. We can show that

Z1 C t R, IX. (36)
Ct R I Ct

For this case C = (cI, c2, , CN) = c, a vector. Note that the reduced FON is just a single GS

canceller. Hence for a single constraint, the configuration is shown in Fig. 12.

X1 X2  XN

C 1
aug

Fig. 12 - GS implementation for a GS

single linear constraint

PPZ

61

r.W.V.

% % 1.%% %z

I% 
%

0.. *'P . e -P -
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We arbitraril, set c= I and augment C as shown below:

S0 0 ... 0 1 0 0. 0

C c2  1 0 ... 0 -C' 1 0 ... 0

Ca.. . (37)

_]c . 0 0 ... 1 -Cv 0 0 ... I

Hence the single constraint processor of Fig. 12 can be implemented as shown in Fig. 13.

X, X X3 X N

x X-v.-- -cN
J2 1 -3 -N

+ + ... +

.1
/,,

1F3i I, - ficicnt GS implementation ot a inglc
lineark constrained adaptike arra

VIII. SIMPII FIEI) MULTIPLE CONSTRAINT IMPLEMENTATION

The GS structure of the linearly constrained array given in Fig. II can be significantly simpli-
fied as tllou,, The N x M reduced FON structure can be functionally decomposed as shown in

O." [ig 14 Here. v~c denote u , u,, . ut as the inputs associated with the outputs of the N x M
reduced FON. We call u , u,. " uo the primary channels and write them as an M length vector,

Wt' We also denote u,. u u. - u, as the auxiliar, channels and write them as an N - M
-" Icnth vector. u,,u\. Note that embedded in the N x M reduced FON is an M x M FON. Hence

Fig. II can he redrawn as seen in Fig. 15.

. Nom it is easy to show that the operation of two successive M x M normalized FONs is
equivalent to multiplying the input data to these FONs by an M x M identity matrix. Hence. the
implementation seen in Fig. 15 reduces to that shown in Fig. 16. Moreover, this structure can be

O 13
-" " " " ' ' ' . _%.NNON

% %% %%
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IU

0U 2  Ua U Ua

J GS GS GS

• %.

MXM FON

(b)

Fig. 14 Equivalent N x M FON structures. (a) Reduced N x M FON.
(b) Functional decomposition of reduced N x M FON
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0.
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C'aug

Uu Uaux U2 Uaux UM Uaux

MXM FON

aP

F POWER NORMALIE

MXM FON

F [u, ILnctionaiI Lqutlc lo

:anccllcr - ccn in F-i I I

E :EoPOWER NORMALIZFR]

Jlj 16 Simiplified cquiI\ en ofcn

cdinccisc \C in F~ig I I

15
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further simplified to the structure shown in Fig. 17. where the main channel input to the (iS .an-

celler, u,,, is given by

.11,, =, . 38)

.G 4

I " Siipli ied (is if] .lemental If

A IX. THE AUGMENTED CONSTRAINT MATRIX

Here we show that the generalized sidelohe canceller (GSC) implementation of a linearly con-
* strained array presented in Refs. 9, 10. and I I is equivalent to the implementation discussed in Sec-

tion V111. We define

IA

Al (39)
,B

A here A is an M x N matrix and B is an (N -M) x N matrix. Thus

C C'= - - -V IC;DI (--------l0 IV ArAC A 1  (40)
B BC BDI

where 1, and at are M xM and (N -lM) x (N - M) identify matrices. respectively. As a
result

* 16

.-4.; %(9 )

O. ,her A s a M N mtri an B s a (N M)x Nmatix.Thu

% AC % AD % % 0
% % %,.~~~~~~- "Ne ,. =I"oI. . .. (o%, ...%b Io
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AC 'Al' (41)

AD = 0, (42)

BC = 0, (43)

BD = 'N-M (44)

The solutions for A and D using pseudoinverses are

A = (CC) - ' C + H (45)

D = B'(BB') - ' + G (46)

where H is any M x N matrix satisfying the Londition

HC = 0 (47)

0 and G is any (N - M) x N matrix satisfying the equation

BG = 0. (48)

Note from Eq. (43) that rows of B are orthogonal to C, the constraint matrix. In the literature
I10,111, B is called the blocking matrix. We can eliminate having to find Ca-,, by merely defining a
B that satisfies Eq. (42) and an A that is given by Eq. (45) where H satisfies (47).

The linearly constrained canceller now has the form as shown in Fig. 18. If we set H = 0 and
define wq to be the quiescent weighting (no external noise, R, = I), then

wq =C(Ct C) f. (49)

Thus the linearly constrained processor can be implemented as shown in Fig. 19, which is identical to
the GSC presented in Refs. 9, 10, and I1

X. CONVERGENCE RATE

One technique for estimating the optimal weighting vector for a linearly constrained adaptive
array i the Sampled Matrix Inver,inn (SMI) algorithm [8). We will show in this section that this
technique has fast convergence properties when applied to an adaptive array with linear constraints.
This open loop algorithm is implemented by estimating the input covariance matrix, R,, , using the
samples of data in the input channels. The estimated R, is then substituted into Eq. (2) and the con-

@'" strained optimal weights, w, are then estimated. Call this estimate *sml. It is easy to show using an
analssis similar to that presented in Section VI that the multiple constraint GS implementation using
the same ,amples as the linearly constrained SMI algorithm yields an exact equivalent estimated linear
weighting vector, 4 (;S. as the SMI algorithm; i.e., *(is = .sk. This is done by merely substituting

, tor F 1- *.' 1 = R,, in the equations given in Section IV. Hence the GS and SMI implementa-
41.4 tions of the linearly contrained adaptive array are identical in the transient state as well as the steady
V,- state. The convergence rate properties of GS implementation of a linearly constrained array (and also

the SMI implementation) as shown in Fig. 18 can be easily analyzed. This is because the open-loop

17

'. J. F'# "r -.1 1.,i "le 4~4~A

-W 00 %



K\RL GEiRLACH

V-.
X

(C C) 1 
C+H B

.5.."
Uprime

"I ." ft X UaiX

C,;

7GS

NOTE BC = 0

HC = 0

-. /VZ

Fig IX -- Special cae of the lin 'ar, .ontramnecd

canceller inplementation

0 ~ X

W q

Uaux

GS

, z

Z

" Fig, 19 GSC configuration

GS canceller is the exact equivalent of the mainbeam gain constrained open-loop SMI algorithm 171
whose convergence properties are well known 18,131. The gain in the steering vector direction is
constrained to equal one, which is equivalent to setting the weight in the main channel equal to one
for the GS canceller. We quote these convergence results. Let there be L input channels and K zero
mean Gaussian samples per channel, where the samples are independent from time sample to time
sample across all channels. Let * be the estimate of the optimum weights w0 , using the SMI algo-
rithm, and let R be the input covariance matrix (including main and auxiliary channels). Define

O" = * t R , (50)

mr= E w',,, R w J, (51)

18
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and
-z(52)

We note that a2 is a random variable and the output noise power residue caused by finite sampling
when the weights are applied to a data set independent of the data set used to calculate the weights.

Under the conditions stated, Brennan and Reed [13] showed that z has the following probability

density function (p.d.f.)

K! (z - 1)/-2

-S 
(L - 2)! (K - L + 1)! ZK-1 ' -1Z<0

p(z) to, otherwise. (53)

The mean of z is given by

,E z}- K -L +1 (54)

We can apply these results to the adaptive linearly constrained array implementation shown in

Fig. 18. If the input channels are zero mean, Gaussian, and independent from time sample to time
sample. then the output channels after transformation by the N x N matrix, - are also zero mean
Gaussian and independent from time sample to time sample. Moreover. ui, as given by Eq. (38), is
also a zero mean Gaussian random variable. Hence the inputs to the GS canceller satisfy the condi-
tions given by the Brennan and Reed analysis 131.

For the constrained implementation, L = N - M + 1. Thus if z is the normalized output
noise power of the linearly constrained array as defined by Eq. (52), then z has the following p.d.f.
and mean

rK! (Z 10, -M-I

p(z) N M - )! (K - N + M)! K,1

, otherwise. (55)

.- K
E tz- (56)

K -N + M

Let K be the number of samples needed so that averge output noise Power is within 3 dB of the
optimum. Using Eq. (56), we can show that

K 2N - MI. (57)

Now for an unconstrained adaptive array with N inputs, it has been shown that K 2N -2-.
Hence. we see from Eq. (57) that a constrained array converges faster for M > 2 than an uncon-

* " strained array under the assumptions previously stated.
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