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~f. Abstract
Sensitivity analysis is an integral part of virtually every study of system reliability.

This paper describes a Monte Carlo sampling plan for estimating this sensitivity in system

rel~abi~y•'o~ci• 'n component reliabilities. The unique feature of the approach is that

stunple data collected on K inde-ndent replications using a specified component reliability

%v&:•r p are transformed by an impoitance function into unbiased estimates of system

reliability for each component reliability vector q in a set of vector. .2. Moreover, this

importance function together with available prior information about the given system

eiables one to produce estimates that require considerably less computing time to achieve a

bpeclfled accuracy for all I J I reliability estimates than a set of I I I crude Monte Carlo

sampliug experiments would require to estimate each of the I,. I system reliabilities

separately. As the number of components in the system grows, the relative efficiency

continues to favor the proposed method.

The paper shows the intimate relationship between the proposal and the meth od of

control variates. It next relates the proposal to the estimation of coefflcienv;s in a reliability

polynomial and indicates how this concept can be used to improve computing efficiency in

certain cases. It also describes a procedure that determines the p vector, to be used in the

sampling experiment, that minimizes a bound on the worst case variance. The paper also

derives individual and 'himitandous confidence intervals that hold for every fixed sample

size K. An examniilustrates how the pmoposal works in an s-t connt-ctedness problem.
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AbstrAt

G Senitivity analysis is an integral part of virtually every study of system reliability.

rT'du paper describe a Monte Carlo sampling plan for estimating this sensitivity in system

nbl~ltty to chane In component reliabilities. The unique feature of the appro&ch is that

sampl data collected on K independent replications using a specified. component reliability
U

velr p are traafamed by an importance fuction into unbiased estimates of system

rdIallity for eah component reliability vector q in a set of vectors J. Moreover, this

iportance functI together with available prior information about the given system

enabes one to produce estimates that require considerably less computing time to achieve a

o a s aIaccuracyfor all Ii I reliability estimates than a set of Ii I crude Monte Carlo

"sM t acpe lf"'to would requre to estimate each of the I1A I system reliabilities

slostely. As the number of components in the system grows, the relative efficiency

cotinus to favor the proposed method.

The pap shows the intimate relationship between the proposal and the method of

emt" vwww It next relats the proposal to the estimation of coefficients in a reliability

polymmial and Ldlicatcs how this concept can be used to improve computing efficiency in

certain ces. It also describes a procedure that determines the p vector, to be used in the

sampling oxperim t, that minimism a bound on the worst case variance. The paper ,Jso

derives individual and simultaneous confidence intervals that hold for every fixed sample

sine K. An example illustrates how the proposal works in aw s-t connectedness problem.

Ke•Woar& 9-t reliability, system reliability, importance sampling, Monte Carlo

method, control variates



Sesitivity analysis, which represents an integral part of virtually every study of

Bystm rellaMbility, measure variation in this quantity in response to changes in component

reliabiliti•s or in system design. Replacing old components with new ones with higher relia-

k., bilitles affcts system relability. As time elapses, system reliability deteriorates when a

nora e t policy for component fuilures is in force. Deleting, adding or rearanging

cmnponents all affect system reliability. Sampling variation in component reliability esti-

mates induce sampling variation in the corresponding system reliability estimate. Having

access to a model that accurately predicts these changes in system behavior allows one to

make considerably more well ipfgLned decisions for maintaining or enhancing performance)

• Tbls paper presents a method for estimating variation in system reliability in res-

Poms to variation in component rellabilities. It describes a Monte Carlo sampling plan that

on each replication provides sample data that contribute to the estimation of system relia-

bility for each of w sets of distinct component reliabilities. The sets may represent alter-

native omAPmOnJ rlacement plans, deteriorating component reliabilities at a succession

of time points or extrenal points of simultaneous component reliability intervai estimates

(Fishman 1987). For purposes of exposition, we focus on s-t reliability but emphasize that

the concepts dlicussed here also apply to otLer definitions of system reliability. ( 'k °r* •:

To understand the significance of this approach, we first discuss the computation of

s-- reliability at a point. Consider a system representable by an undirected network G ="

(r5,s) where rdenots the set of nodes all of which function perfectly and 9 denotes-the set

of edges each of which falis randomly and independently. The concept 4-t reliability

principally focuse on the probability that at least one pa of functioning edges

(commoents) connects nodes s and tE7, and it is this qua y that we wish to compute.

Since the exact computation of s-ti&elbility from a single set of component

reliabilities belongs to the class of NF"ard problems (Valiant 1979), attempts to shed

light ou this computation have bid to exploit special structure, rely on bounds or use the

I-



Moate Carlo method. The polynomial time algorithm of Agrawaw Pad Satyanarayana

(104) fIr the exact reliability computaton for seres- allel systems exemplifies a highly

aftial an of special structure, Bounds such as those of Eury and Proschan (1966), Van

,y. m•ad Frank (19) and Wall and Provan (1983) offer interval approxinations to the

relaity. The Monte Carlo method aloo exploits special structure and bounds. In

particular, the sampling plans in Van Slyke and Frank (1972), Kumamoto, Tanaka and

lam (1917), Easton and Wou5 (1900), Kumamoto, Ta a, Inoue and Henley (1980),

Karp and Luby (1M) and Fishman (1986) describe how to derive statistical estimates of

reliability that are gmeneally more accurate than a crude Monte Carlo samplng experiment

wouid provke bamed on the iarme amount of work.

With reSWrd to the exact computation of s-t reliability for w>1 sets of alternative

cumpomnt reliabiitis, the r time complexity has the same form as tbht for a

al reIabift co-mptaon increamsi by the multiplicative factor w. Also, whereas any

of the ashum ead Monte Carlo proposals allow oe to astimate " reliability for each

of the w points, repettably an observation on a trial fo on point in no way contributes to

estimaing system reliability at the remai w-1 points. The presant paper overcomes

this last inalequacy. It describes a Monte Carlo sampling pla that on each trial generates

data that contribute to estimating all w system reliabilities simultaneously. Most

Ioratly, t e timate, at all w points, are owsiderably more accurate than

Correponding estimates that crude sampling can produce for the -ame amount of work.

The proposed method exploits ftxportana smphij, a technique that Kahn (1950)

and Kahn and Harris (1951) first described for reducing the variance of a Monte Carlo esti-

maur 4 a point. The present account extends this technique to reliability function estima-

tion and, in particula, shows how one can us. knowledge available to the analyst before

exprimentatlon to enhance the accuracy of the estimated function at all w points for a



ive. ample• in K. Section 1 introduces relevant network nomenclature. Section 2 then

ducribu syevtem reliability estimation at a point using crude Monte Carlo sampling, as a

bush., and a highly efficient alternative method described in Fishman (10986). Section 3

utmiA the altrnxtive method to simultaneous estimation at all w points, Section 4 shows

how to se the statistical efficiency of the proposed method and Section 5 shows the

intimate relationship betwee the proposed importance sampling technique and the rethod

•ection 6 offers an alternative interpretation of the estimation procedure that

rOs Ite relationship to estimating coefficients in a reliability polynomial and shows how

rids zeposentation may save computation time when a small or moderate number of

components vary their reliabilities. Section 7 discusses how to perform the importance

s mpalig o$iusdt given the set of component reliability vectors of interest. Sections 8

and 9 deIve Individual and simultaneus confidence Intervals. Section 10 describes

esential step for implemetation and Section 11 provides a comprehensive example that

illMstrates many of the features of the proposed technique.

1. pmbb gting

Coesider a network G = (P,) with node set r and edge set 9. Assume that

nodes huection perfectly and that edges fail randomly and independently. Let

r = number of distinct types of edges

qi =probability that a node of type i functions i=1,...,r

q (ql,..., )

-i set of edges of type i

k = = number of edgesoftype l

k = f ed
eij -jth edge of type i j=1,...,ki;il,.r

xij -- i f edge eij functions



o0 otberwwIKi =x Em zur numu of -fnctioning edges of type i
X as (X ... Alkl;.;Xrl,...•4kr)

S-s t of all edge sAtux
r k i• iq+IXj(~i r x. k.-'t

P(xq) W[xH +(1-x)(q) qi(1-) (1)
ial Jul aul

= probability mass favcton. (p.m.f.) of state XES,

•=) 1 If the sytstn functions when in state x

=0 otherwise

g(4) = _• O(z) P(zXq) (2)

-- probsility that the sytem functions

We alo &W that ( describes a cahereW system. A system of components is coherent if

Il aWmeture fnction {#(z)) is nanec urong and each component is relevant (Barlow and

Pmucham 1961, p. 6).

For psmet purposes, the system functions (O(x)-I) when at least one minimal s-t

path (8,tEP) exist and faWis (#(x)-O) when no such path exists. Let I denote a set of w

oompoMnt ri~Ality vectors of interest. Then the nurpose of analysis is to estimate the

-reaty function (g(q), qe

2. R01masa at a Point

Crude Monte Carlo samping offers a baseline against which potentially more

dmimt sampling plhn can be compared. Let X('),...X(l) denote K independent samples

drawn fromI {P(xkq), zEA}I. Then

) K
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19 an mzblewd etimt of g(q) with

var j(q) = g(q)[1-g(q)j/K. (4)

To compute 4(q), owe performs K trials on each of which sampling X from

(P(x,k,q)) takes 0(1t1) time and determination of O(X) takes O(max(I -1,1 19)) time,

usin a depth-first march as described in Aho, Hopcroft and Ullman (1974). These are

west c�u times. One can also show that the 'oean total computationi time has the form

T(k(q)) = & + K[al+a 2 l 91 +&(.9 k,q)]

where

t(.X kq) = ,.P(xk,q) C(x)
ZEN

C(x) - expected search time given the component state vector x

The quantities ot0, ol, ý ,and o3(.1 klq) are machine dependent.

All Monte Carlo methods described in the previously cited referen,-es improve on

the variance (4). In ia'ticular, the method described in Kunamoto, et al. (1977) and

Fishman (1966) xhleves this reduction by exploiting bounds on the structure function

(#x)) and it is this approach that we now describe and later extend in Section 3. We

fow the development in Fishman (1986).

Suppose that there exist 0-1 binary functions {OL(X), xE.Z} and {d1(x), xEA such

that

0L~x) (x) < u(x ) 5 O.•

Then the system reliability g(q) has lower and upper bounds gL(q) and g,(q), respectively,

where

- -- --- - --- -



Suppos that one now sampl; X(C),. 7.,X(Z) independen t ly from zhe alternative probability

Q(•"kq) L 'A(q) P(xk,q) X(5)

whbe

--q = g(•q) -(6).)

Then

' g (q) = L(q) + A() TC (6)

Is alo an unbiase estimator of g(q), but with variance

var g1 (q) = [g,(q)-g(q)j[g(q}-.gL(q)]/K < A2 (q)/4K. (7)

Compared to crude Monte Carlo sampling, one has

varj-(q , iI[{(•i(-•]}l - {g-(it-•g(qJ'] (8)

var 4q

Ž 1,

indicating that gl(q) always has a variance no larger that var 4(q).

Cheudag Bowx

The choice of bounds gL(q) and %(q) depends on the reliability computation under

consideration. As an example for the s-t connectedness problem, let denote
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edge-disjoint minimal s-t paths of G and let V, denote edge-disjoint minimal s-

cutaets of G. Let

1.1 1-rl 1.11CL(X) = I -A xi k

e. .E 9-.r9

J r k.

0U-)1 -1 j l

e..EJ$f.$'¢u(• = - r i (1-xij
=1 1 j=e..-E 9'.nf

which are lower and upper bounds, respectively, for O(x). Then

9Lq = 1 - 1

and

are lower and upper bounds, respectively, on g(q). One can determine 5j,..., in

0(119 1) time using a network flcw algorithm with unit capacities, as in Wagner (1975,

p. 954), and ifl,...,Ij in 0(1 51) time by beginning at node s and appropriately labeling

arcs. Note that

I < size of the smallest minimal s-t cutset in G

and

J < size of the smallest minimal s-t path in G.

Moreover, the resulting form of (Q(x,k,q)} in (5) enables one to use Procedure Q in

Fishman (1986) to sample x in 0( 1 5]) time.

To comp-ý,0-, g (q) using precomputed bounds based on edge--disjoint minimal s-t

paths and cutsets, one performs K trials on each of which sampling X fr3m {Q,x,k,q)}

occurs in 0(1 1) time using Procedure Q in Fishman (1986), and determination of O(X)

again takes 0(max( I 71, 1 9)) time. Also, mean total time assumes the form



T(gk(q)) - B0 + K[01+0212 1 +a 3(,l,kp)/A(q)]

where
AI= {JS: OL(x)=O and 0(x)=l

and 00,...,02 denote machine dependent constants.

Observe that

K(q) = K var j1,(q)/var g1,(q)

denotes the numne of trials one would have to take with crude Monte Carlo to achieve the

same variance that arises in K trials using {Q(xk,p)). Then AI(q) =

T(j(q))/T(k(q)) measures the efficiency of g1 (q) relative to k(q) and for large K and

I II hu the approximate form

k, q)/I 1 g(q)[1-g(q)]

AI(q) [ 2+e 3(kq)A ) N i (9)

where e3(GSklq)/1 I1) and 03('%1 ,kq)/ 11 are bounded from above. A ratio greater than

unity favors the alternative sampling plan. Experience (Fishman 1986a) has shown this

usually to be the case by a large margin.

3. FAstmatom at a Set of Points

This section extends the technique based on bounds for a single point to estimation

at a set of w = I A points. In particular, it shows that at least two estimators deserve

attention and later Section 5 shows how a linear combination of these estimators is, in fact,

a control variate estimator. Let p = (pl,..pr) O<pi<l for i=l,...,r and let

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



R(x*k,q~p) -P(x~kq)/P(x~kp)

Lgmu 1. Let X be sampled from the p.m.f. {Q(x~k,p)} in (5). Then

E[#(X) R(X~k~qp)] = [g(q)-gL(q)]/A(P) (11)

and

E[#(X) R(X~kq~p)]2 = ~p[~*-S~7]AP (12)

where
r k .

c(q6p) = II Cl

=c(qi,pi) _ 1qi)2/(1-pi)

and

q= (qj/cjp1,... c~d

The Appendix contains the proof.

Theorem 1 shows how these properties relate to reliability estimation.

Theorem 1. Let X be sampled from the p.m.f. {Q(xk~p)}I in (5) and' let

0.(Xlq'p) = 9q)+ A(P) O(x)R(x~kqp) (13)

and
ob(x,q,p) = gU(q) - A(p)[1-0(x)]R(x~k,q,p)] qEI£ (14)
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Then for each qE A

E*i(X,q,p) = Eob(X,qp) = g(q) (15)

var 0,(X, q,p) = va(q,p) = c(qp)A(p)[g(q *)--g(q*)]-[g()-(q)]' (16)

var b(X,q,p) = vb(q,p) = c(q ),(p)tgU(q ).. (q )-g (17)

and

cov[*a(X,qp), Ob(X,q,p)] = v (qp) = [gu(q)-g(q)][g(a)-gL(q)I. (18)

The proof follows from Lemma 1.

Observe that the importance function R corrects the expectations (15) to the desired

value, thereby inducing the variances in (16) and (17). The implication is immediate. Let

X(') now denote the ith sample drawn from {Q(xk,p)} and observe that one now has two

potential estimators of g(q), namely

ijl(q,p) = E 1j(X ,q,p) (19)i=1

with

var gjl(qp) = var Oj(X,q,p)/K jt=fa,b}. (20)

Most importantly, note that merely sampling with edge reliabilities p enables one to

generate two unbiased estimators of the entire reliability function {g(q), qE.}. By

contrast, all Monte Cado sampling plans cited in the introduction require 1.£1 separate

experiments to estimate (g(q), qE2}.

4. Efficiency

Measuring the statistical efficiency of {g.,(q,p), qE.} and {gbi(q,p), qE-2} as



Otl In_ of (g(q), qEj• cals for r more daborate analysis than that for estimation at a

do&e pdot. In perticular, the sobering observation that c(q.p) in (16) and (17) increases

eqimmtlally with 1I1 makes one drcumspwt about the benefit of the proposed method as

tUe she of G pow. We now show that this benefit is assured for finite I LI and number of

edge types r, pmvided that ple.

L e i A {q= ,...,Oqjv where qj = (qlj,...,qrj) and qij is the reliability assigned to

Pn Is of type i in the jth component reliability vector for j=-1,...,w. Let XV

{1,...,r) and

JV* (14iE#V: pi~klij for at least one j; j=l,..., I Al• 1,

so that I .'I compoient rdiailty types vary in A. Algorithm A describes the steps for

computing the etmats and provides the bask for measuring efficiency. In addition to

computing {4(q6p), g(q&p); qF., it computes {V[&j(qp)], V[bl(qp)]; qE.4 as

unbiased asnmtors of (vat g[,ýp), var gi,(q&p); qE 1. Observe that preprocessing in

sep 1 takes o(1 iX l tme, postprocesing in step 3 takes O(i )time and, on each

-eplication, samping in step 2a takes 0(19I1) time, summation in step 2c takes

0( E k.) 5 0(1 1) time, determination of O(X) in step 2b takes O(max 11, 18)) andiE.r* 1

step 2d takes o(I'1I I) time. One can also show that the mean total time for K

replications using Algorithm A has the form

T({g•(qp),gbK(qp)}) = wo+wl [w*I .V* 1 L+w 2 [ I +K[w3 +i#1,1I +I 3(W01,k,p)/A(p)

+w4  V X*I11+w 5 E kil

time where w0,...,w5 demote machine dependent constants and #2 is identical with 02 in

T(k(q)). To reduce numerical error, all computation in step 3 should be performed in

double precision arithmetic.



V~~: ~ estiute the Toliabilit; feactiom gq) 4

bpoka Network 2a(7 ) eof type of convomostsr; k numberof components of

*M I feril..r suplin distribution {j(x,k,p), xe.*; set of .S~=set of

Ping Mm type. that vary in i; lower and ifer bouude {SL(q), s(q); qe.IU~p));

an uwhe- .1f indepemimt replicationms 1.

logo: 6 w).wVs(~)] ~~qp] qc.% as unbiased estimates of

1.q) Taraitialisimeatie.) 44

b. Fonr sw qc A:
S(mJ.Sze3 zV(e itV (q)4-0.

a (q) *- 1u~q (I-p )/p (1-q and mmii(q) -l(-q)1p)J

2. ftsadof I immiepemdmat trials:

a. sele in,.., iF,.,io{~~~)m ishmmai '1986).

b. Determine #(I).

C. hor suchieA*: I E I

d. for quit:

T(q) -0.

for each ie6: T(e) T(q) +k, (q) +Iem

S (ii e4-S(q)] .T(q) T+-j V(q) +- T(q); V~() ?(q) + ()T(q).
T q I (-epTq)J + 5)Tq;VI ( q)-0-q) IT(q); V (q) '-(q) + ()T(q);

3. Coqietatios of summry statistics

for each qc A:

ga 4-p gL(q) + A(p) V(,q)/K.

v[S.K~q~'- +_&2(p) ([V I(q)-K[V(q)/KJ2 )/K(K--1).

End of procedure
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L~ u now c.apm this apRoeAc to estimating {g(q), qE 1) with the alternative

appIO'C bued an the 1 .4 pOdnt estimates igK(q6P (q), qE4* using (3), where one choose
the sampl slm {K(q~p), qe * to achieve equal va,%Pances. That is,

VUt gK(%)(q) -g(q)[l-S(q)J/K(q~p) (21)

AMer

K(q~p) K A(q~p)

A(qp) = g(q) [ 1-g(q)]
min var Vjq6P)'

Observ that

and, except in special cues, for any adg- type iE .V*

lI m A(q~p) = 0 for q#p.

This last limit follws from the growth of c(q~p) with k.

Let
A(p) =E A(q~p). (22)

qEJ

and observe tha

Ilim A(p) =A(p,p). (23)

Obsemv that the time ratio
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k_-.
*' 

'(A p',P( °) 
(24)

: ~T ( l Sk lIwP)(q) }) fi E T ( lq,6p)(q))

isunm the efficiency of the proposed method relative to using crude Monte Carlo

smplinS with (3) Ii times to obtain estimates with equal variances var 4(qp)(q) -

min va t zL t(qop) for qEit. As ki Increases, (24) asumes the form

E [a2 +a3(5;k,q)/k~jA(q,p),'JP)t (25)
A1 (SJ'P) m /62 +a3 ( •t k,P)/A(P)ki+w5  (5

Pract idice at t u<<#r Then provided pei, (25) generally satisfies A-(S ,p) Ž

A,(p) for Impeki (iE2),imnplying that Algorithm Ais atleast as efficient as (6) atz

single point. As the example in Section 11 shows, the realized efficiency can be

coniderably greater.

5. The OpunI Edhostor

The rpresentations of gg(qp) and gbg(qp) in (19) suggest that these quantities

conceptualy are alternative forms of a more comprehensive estimator. Theorem 2 confirms

this observation.

Thmmn 2. Let X denote a sample from {Q(x,k,p)} and define

O(x,q,Pe) - 00x,q,p) + (1--0) •(xqp) - (26)
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I. Ef(X~qjpk) -g(q)

1 . e(46P) -[v,,(q6P)--,(q6P)I/[v 1 (q6P)+v (q~p)-2vb(q,p))

-1/( 1+[vW(q6P)-Vb(q~p)]/ [vb(q~P)-ir(q'p)I}

ill. Var *(X4q6p&((q~P)) - I.q)b b

TMe prodf fdiow directly from the minimisatlon of var io(X~qp,9) with respect to E).
Tiwdore, am tl~ong tm- of the form

g~qpe)- g~q~)+ (1--0) gM(q~p), (27)

k~qp,9(q~))has minilmal variance.

Observe that

0 *(q6p) = 1 if v.(qp) = vb(q,p) # Vb(q,p)

= 0 if v b(q2P) = v,,(q,p) J v,(q,p),

revealing that jj(q~p) is optimal if

var g.(q~p) = var g,(q~)

and gbg(q~p) is optimal if

vat 9bI(q~p) =var Kq



qf Md va aMe defined in (6) and (7) reWpeclwey.

Wultlng (26) in the altenative form

00446~PA) 0j,(z~qp) + O[R(x,k~q6P))--A(q)] (28)

revealsta R(X( 1',k,q6P),...,R(X(Z~vk~qbp) act as csmtrl wneta with known mean A(q)

and, by anpgo~xat ubstitutlou, that

vat O(X~qp,&4(q6P)) = Var *b(X~qp){1--coff2 [*b(X~qp),R(X~k~qp)J},

whee aorr(AtB) dowtes the coefficent of correlation betwee A and B. Note that this

variamc diminishes as the correlation between Ob(X~qp) and R(X~k,q,p) increases in

'A Practice {e(qb) q'E4 is Unknown but can be estimated unbiaeedly for q#p by

* (q~ xf-Kv[ýA(qp)I-Z 1 (q,p)}/[c(q,p)A&(p)A&(q')-.A 2 41 (29)

and V~iM(oaP)I is -omputed in stop 3 of Algorithmr A. Althiou~rh one may incline to use the

eltimator

= E>~Ih g(q,p) + [1-4*(q,p)]^(q~p) (30)

for g(q), one Puickdy sees that
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3g~q~pe(q~p)) - u(q) + coy [G (qp), g,[(qp)J

-a [A(q,p), ~gl(qp)J.

Thbre, &S(q•p'(qp)) genraly is blued. While this bias diminishes as K increases,

td rate id ssipmotio deMpds Oa the particular system under study. As a result, no

8Mal s&tmit Is pos-ible rgarding how large K must be in order to treat bias as

& Becam Of "this limitation, the remAinder Of this paper focuses an choosing

betwess g,(qp) and U(qp). We return to the imue of choosing a point estimator for

g(q) Ithebeznwpe of Section 11.

6. An Altunatlue a

This sectiM describes an alternative representation for g(q) that offers

co lb coeptual value for function estimation. Let

k.
( .{*Sl E'x.. z.. l=1....r} (31)

j=1 Ij

smid

aE, = () (32)
xE'(s 1 ,...)

= the number of possible ways that the system can

function (O(x)=1) when z1 ,...,zr components of types

1,...,r, respectively, function and k,--z ,...,kr-zr

components of types 1,...,r, respectively, fail.

Then one can write

k k

g(q) -E E f 1(kj,ql)"-. 'E-r - fr(kr'qr )u(z,."" 'Zr) (33)

1 r



ohms

f(kq) - (k) q3(l-)k- z=O,1,...,k; Oq~l, k=l,2,...
ad

r k.

... - M(zA,...,•r)I . 1 (

Oberw that sine we are working with a coherent system

u(0,...,0) - 0

.rU(211,...,Is,...-,Sd 5 u~l..s+,.,r) ~,.,

u(k,,.... - 1,

so th•t{u((l3,..,Sr); O5iki, =-, ....r Is is muktivariate distribution function.

If oe wer to Perform crude Monte Carlo sampling, then the estimation of g(q)

wonid be equivalent to estimating the coeffidclts {u(z1,...,Zr). In the case of r=1, M(z1 )

deots the r w b connecting cutset of G when zI arcs function and k,-z, arcs fail.

Flaman (1967) describes a method of estimating M(zl) in this special case. As we now

show, the present proposal corresponds to the implicit estimation of analogous quantities.

Let

U= (i... - (1 )]E ) j(x) jE(L,U} (34)i- " xE.S(ZI9,...,IZr)

K.(zl,...*'r) f number of replications on which the system (35)

functions when z1,...,2r components of types 1,...,r,

respectively, function and k1-z ,...,kr-zr components

of types 1,...,r, respectively, fail

and
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Kbl...,s,-, - numbe of replications on which the system (36)

falls when 1',...,'r components of types l,...,r,

respectively, function and k1 --zl,...,kr--Zr components

of types 1,...,r, respectively, fail.

Th i (qp) hfld gjb(q,p) in (6) have the equivalent forms

. k. kglIZ(q~p) "g"(q) + A(p) rlER (x,k,q,p) (2 1,...,Zr)/K (37)

2 =0 a =01 r

and
. k. k ,

igt(q~p) =gu(q) - A(p) El... ErR (zsk,q,p) KbZ•...r)K3)
~r

whoe
Sr s. k.--i.Rsk(liP) = fl (q 1/Pi) 1 [(1--qi)/(1--p.)] 1 1

EK&sz...,Sr)/K u5(z1...,z) = u(z,...,Zr)- u(z 1... ,Zr)

and

EKb(szl...z)/K = Ub(z-...,Zr) = u0(zd...,z) - u(zI... ,zr)

Therdore, using g,(q~p) is equivalent to estimating the coefficients U,(Z1,...,Zr)

implicitly and using g,•(q p) is equivalent to estimating the coefficients {ub(zl,...,Zr)}

implicitly.

Expressions (19), on the one hand, and (37) and (38), on the other, have beneficial

and limiting features. If one uses Algorithm A, then the sample reliability functions

(ga,(q,p), gbK(q,p); qEiJ available for study have ordinates only at the points in £

specified in the sampling experiment. However, if one alternatively records {Ka(Zi,..IZr),
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t(slq,... s}J, then (37) and (38) enle one to conhtruc. the sample functions for any q in

[0 ,1]r which may be of interest at any time after the sampling experiment terinnates. Also,

w Section 9 sows shortly, for a given network G, the widths of confidence intervals for

(g(q), qE* based on either {g,(q), qC-A or {gbg(q), qe14 as in (19) increase with I1

wham confidnce intervals based on {Ka(zi,...,Zr), Kb(zl,...,Zr)) have widths independent

This alternative approach requires a space of fl k. counters to accumulate

{K.(.)) and & like space to accumulate {Kb(.)). Moreover, a modified Algorithm A based

on this approach would replace the time components O(K I'I IX J) and O(K E ki) in

T({i.(qp), bg(q,p)}) by O(j11 HI ki) 5 O(I l/I ,;)I 1) thus eliminating their

dependence on the sample size K. If fl k. is large, this may limit the extent to which

cm can store the sample sums {K(.), Kb(.)). However, when they are storable, their

availability offers considerable post-experimental discretion for computing quantities of

interest.

7. ChoosingtheSampling Vector p

The forms of the variances (16) and (17) de,-ly indicate that the choice of p affects

the statistical accuracies of gd(qp) and gN[(q,p). While no unequivocal rule exists for

choosing p, minimizing max [min var g.1 (q,p)] is one reasonable objective. Unfortu-
qEJ j EJ,b}J

nately, the unknown variances render this minimization impossible. An immediate alter-

native uses the upper bound

c(q,p) A(p) A(q*) ? max bvr -jK(q,p)

and finds, by grid search, the p that minimizes A(p) max c(q,p) A(q*). However, a
qx E2

---I..
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considerably better bound h(qp) exists when either pq or pq so that sampling with the p

that minimizes max h(qp) can produce considerably better worst case results.
qEJ

This section derives h(qp) explicitly for var ob(X,q,p). It makes use of the

observation that for a coherent system pq for all qE £ implies g(p) 5 g(q) and g.(p) 5 gj(q)

for jE{L,TJ} and pq for all qE. implies g(p) ? g(q) and gj(p) ? gj(q) for j{L,U}. A

completely analogous approach holds for var g,(qp). Also, the Appendix extends the

analysis (Theorem 4 and 5) to cases in which the coefficients of variation

71j(qp) = [var 0,(X,q,p)]1/g(q)

and

72j(qp) = [var Oj(X,q,p)]/j[1--g(q)] jE{a,b}

are the criteria of accuracy.

Loema 2. Define

h,(z) = h1(z,q,.p) = c(q,p)A(p)A(q*) -- [gU(q)-z] 2

and (39)

h2(z) = h2(zqp) = c(qp)A(p)[g,(q* )-z] - [gu(q)-z] 2

Then for either pq or pq

I. .. .. __ _ 
_.. 

... .. 1• • 4
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var #(X,q,p) _ h(qp) = max( max ...(z), max h2(z)] (40a)[gL(q)-5<z-<gL(q )" gL(q) )-z-<g,(q) I

if gL(q)_SgL(q*)_<gU(q)

- max h (z) otherwise. (40b)gL(q) _< z_<gCq)

The Appendix contains the proof.

Thewu 3. For h1 and h2 as defined in (39), p>_q or p~q, and

Z gu(q) - c(qp)A(p)/2,

var Ob(X~q,p) S h(qp) = max[h1 (gL(q*)), h2 (max(z*,gL(q*)))]

if gL(q)_gL(q*)5gu(q) (41)

= hl(gu(q)) otherwise.

See the Appendix for the proof. To derive the analogous upper bound for var 0,a(X,q,p),

one replaces z by 1-z, gL(q) by 1-gu(q), gu(q) by 1-gL(q), gL(q*) by 1-gu(q*) and gu(q*)

by 1-gL(q*) everywhere in (38), (39) and (40).

Recall from Section 4 that choo3ing p from .2 is beneficial from the viewpoint of

efficiency as any of the ki grows. Then one can compute max h(q,p) by enumeration
qEI

for every p in .£ and select the p that minimizes the maxima. In total 1 12 points are

evalatiýed. As the example in Section 11 shows, this method of choosing p can lead to

significant improvements iu statistical efficiency.

8. Individual Confidence Interval

Although the distribution of lgjK(q 7p)-g(q)]/[var g, 1 (q,p)]4 converges to the

na rhafl.N A ý A nM-- MlA V'- .A r IL A .R3.l fA . nrM
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standard normal distribution as K -,4 this result, at best, can only lead to a rough

confidence interval for g(q). To avoid the errors of approximation inherent in the normal

approach to confidence intervals, we use an alternative technique.

Theagesn 6. Let

S= {fzES: OL(X)O, #x)=1

R (k~q,p) = max R(x~k~qap),
a

Y1(q,p) = [ig(q,p)--gL(q)]/A(p)Ra(k,q,p),

m(z,w) = z log(w/z) + (1-z) log [(1--)/(1-z)] O<z,w<l,

let 4z,6/2,K) denote the solution to m(z,w) = 1 ln(6/2) for fixed zE(0,1] and &(0,1), and let

w*(z,6/2,K) = 4.z,6/2,K) if O<z<l
(42)

= 0 otherwise.

Then, the interval

(gL(q)+-/(P)R.(k,q,P) w*(Yi[(q,P),b/2,K), gL(q)-tA(p)R.(k,q,p)w * (1--¥C(q,p), b/2,K)) (43)

covers g(q) with probability > 1 - 6.

Theorem 7. Let

"Isb = (x•,.: Ox)=O, Ou(X)=I},

RN(k,q,p) = max R(xk,qp),
XE-"b
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and

ZK(qp) = [gu(q-b(qp)j/A(p)Rb(k,qp).

Then the interval

S(g("--(p)l(kq~p) (1-*(qp),6/2,K),gu(*-A(p)Rb(kqp)w*(h(qP),6/2,K)) (44)

covers g(q) with probability > 1 - 6.

S.Prof ofTheomiis 6 and 7. Inspection of (13) and (14) makes clear that

pr[gL(q) _(•(X,q'p) gL(q)+ A(P)Ra(kIqip)]J 1

and (45)

F ' pr[gU(q)-A(p)Rb(kq,p) 5 O(.Xq,p) . gU(q)] = 1.

The resulting confidence intervals follow from Theorem 1 in Fishman (1988).

Although these intervals generally are wider than the corresponding normal

ccnfidence intervals would be for given K and 6, they are free of the error of approximation

inherent in normal intervals.

To use these intervals in practice, one needs to know {Rj(k,qp),Rb(k,q,p); q}.21.

Theorems 8 and 9 formulate mat:iematical programs aimed at computing these quantities.

Since experience with several networks for the s-t connectedness problem with 1 =

{q15 ... 5qr} has ohown that p = q, usually uinimizes the worst case bound (42), we focus

on the case pq,

Thecrem 8. Let .9 denote the set of all minimal s-t cutsets of smallest cardinality, let
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• "d~a (•i'i~l,..I9• a_ •(X*)}

or' if = E S•: 9'C At(.J*) and 1•1- IA1

"a log [qi(1-pi)/pi(l-.qi)] iEo*

ud ausume q pi for V iEX'*. Then

k. * Z*k.-E z. E z9.
Rl(k,q,p) = i 1 (q./P.) ( (46)

where z solves the integer program

minE a. E z. (47a)q irc dr* jE .I.

snbject to

F, z. > 1 V 51E.A (47b)

jE9 1J a

and
z.E{O,1} V jE g(,'*). (47d)

The Appendix contains the proof.

Tbmm 9. Let Ydenote the set of all minimal s-t paths of smallest cardinality, let

)#-=- ({3ri, iE=l,.,:J: Ifik C 9 *)I )

Xt= {.-PE: .9c 9(r(,*), 1.-91 JAI.)1
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and usume q, pi for Yl EX*. Then

Sz. z.1 • j•t. j

Rb(kqp) • (qi/pi) [(-qi)/(-Pi) (48)
i1 1

whre a solves the integer program

min E a. E z. (49a)
3 iEj'* jE9.

subject to

jEV

z V P-.b (49c)

and

z.E{O,1} V jE 5•(U*). (49d)

The proof follows analogously to that for Theorem 8.

Recall that since are edge disjoint, I < I the size of the minimal s-t

cutset of smallest cardinality. Therefore, if I oi < I*, then I[ora = 0 so that the

constraints in (47c) vanish and

R%(k,q,p) 1[1 (qi/pi)] exp( - E min a.). (50)
1 1 9EA iE•9



The case of i4 A I* requires more detail. If the minimal s-t cutsets in X are

edge-disjoint, then (47) has the form of a transportation problem with I "A -< J* a the size

of the minimal a-t path of smallest cardinality and can be solved using a special purpose

algorithm as In Dantzig (1963, p. 308). If the cutsets are not edge-disjoint, X.a potentially

can have an exponential number of members, limiting one's capacity to enumerate them

all. This possibility suggests an iterative approach.

Suppose one begins by relaxing (47c). This gives the candidate solution (50). If the

set of arms chosen there do not form a minimal s-t cutset in .W, then the problem is solved.

If they do form a cutset e, then one activates the corresponding constraint. Let i* denote

the edge in if with the largest a.. Then [11 (qi/pi)] exp( - E E min a.)

solves the problem provided that the selected edges do not form a minimal s-t cutset in .0

* If they do form a cutset, then continued iteration becomes more complicated and one

may elect to drop one of the edge-disjoint paths .0 in A from the lower bound (q)
0 a 9

thereby reducing the size of .A and making

R (k,qp) H -[il (qi/pi)] exp( - m•n ai)
1EOV Y.ýL\A9ViEJP

the solution.

The solution to (49) proceeds in an analogous manner. If A < J*, then

Rb(k,qkp)- [1,• (qi/pi)] exp( - E E min a.). (51)
iE X* 1E $eb iE if

If I .A -- J*, then one can eitLer drop a cutset le0 in A6 from the upper bound gu(q) and

use



Rb(kwq~)= n (q./p.)] exp(-- mE Min )

as the solution, or again proceed iteratively. With (49c) relaxed, (51) is the candidate

solution. If the set of selected edges do not form a path in ,Ab, then (51) is the minimum.

If they do form a path P * with edge i* giving the largest a,, then the solution

[I n ( q!p)I exp( - E min a.) needs to be checked, etc. One anticipates

t chosit edge-4isjoint paths and cut,', such that X and A'

an eapty geerally will have small effect on the bounds gL(q) and gu(q) for large

retworks.

9. SlmuiCta msI Inteayw

Although eac confidence interval in Section 8 holds with probability > 1-6, the

",.lnt confidence intervals for {g(q), qe,% hold simultaneously only with probability >

1- A.& This result follows from a Bonferroni inequality. See Miller (1981, p. 8). To

restore the joint confidence level to 1-4, one replaces log (6/2) by log (6/21 .1 1 in (43) and

,'44) and determines the corresponding solutions. The effect of this substitution is to

increas the constant of proportionality in the approximate interval widths from

t, )g(2/6)J] to [2log(2IJl/6)1] (see Fishman 1986). For 6-=.01 and I.4=20 one has

3(21A/6)/log(2/6)J* = 1.25. For 6=.01 and 1=100, it is 1.37 and for 6=.01 and

12f =1000 it is 1.52. Moreover, if I denotes a continuous region in the I nI-dimensional

hypercube (0,1)1 1I, then the resulting confidence intervals have infinite widths and are

therefore useless.

An alternative approach derives simultaneous confidence intervals for {g(q), qE.4}

using the representation of g(q) in (44). In particular, it implicitly finds simultaneous
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a mWdeMce intafvals fir the coefficients {uj(zi,...,zr)} of which there are N n II k. in

(34). For convenlence of notation we take IV *j = r but note the relatively

straightforward adjustment for I*'*I < r. Let z = (z,...,Zr) and recall the definitions of

Ka(s) and Kb(3) in (35) and (36). Then ((w 0(K(s)/K,6/2N,K), w*(1-Kj(s)/K,6/2N,K);
V.s, where w(.,.,.) Is defined in (42), provide confidence intervals for {uj(z)} that hold

almultanewaly with probability > 1--.

Observe that all coefficients uj(z) are nonnegative and that {w*(Kj(z)/K,6/2N,K),

w (1-K (z)/K,6/2N,K} are independent of q. Therefore, for all qE A

Sk I
(gL(q)-A(P) 1; r . ER (zk,qp)w (K (z)/K,6/2N,K),

21=0 Xr=O
(52)

k1. k .

SL(q)+ A(p) " R s ((z5q2p)W)(1-K,(z)/K,6/2N,K))
Sl=0 Sr:0

simultaneously covers {g(q), qEJ# with probability > 1-6 and likewise

k k,(g~q)+&(p) E'. rR*(z~k,q~p)w*(1-K (z)/K,b/2NK),

5 =0 xr=0b
(53)

k1. k..
gU(q)-- A(p) •'. trR*(s,k,q~p)w (Kb(z)/K,b/2N,K))

z =0 Zr=0

simultaneously covers {g(q), qE.4 with probability > 1-6.

The most desirable feature of this alternative approach is that the resulting

intervals are unaffected in width or confidence level by the size of I£. However, since the

number of quantities Kj(z) to be collected is 0(i nki), this alternative approach

becomes less feasible to implement as the k. and r increase.



F.
To impaenent the proposed sampling plan to estimate reliability for s-t

oonnectediass, one procees as follows:

1. Determine a et of edge-asjoint minimal " paths ,"3

k2. Determbne a ad of edge-disjoint minimal " cutacts "",,"
3. Conpute {st(q), go(q); qE.J).

4. Drtermki a sarplin vector p fom as in Section 7.

5. Using Algorithm A, perform K independent repvications.

6. For each qE A: compute Rb(k~qp) if V[ga(qp)] > V[gt(q,p)]; otherwise compute

Rl(klqp) (Section 8).

7. Using the bounds (R1 (k,qp); qE4 or {Rb(kq,p); qE.4 in step 6, compute

individual or simultaneous confidence intervals fo {g(q), qE J4 (Sections 8 and 9).

Although these steps require more work than crude Monte Carlo function estimation

does, one can develop computer programs with sufficient generality to compute all

quantties in steps I through 7 for many different network designs, Reusing the programs

aiable one to distribute the fixed cost of their development over all such network, making

the cost per network incidental.

11. En.ii

An analysis of the network in Fig. 1 illustrates the proposed method. The network

has 30 edges and 20 nodes. Also, the example assumes r=1 so that all edges have identical

reliabilities, allowing us to write q-q. Note that any other specification with r> 1 can also

Insert Fig. I about here.

be accommodated easily. The objective is to estimate {g(q), q=.80+.O1(i-1) i=1,...,20}
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who* gIq) " probability that node s=I and t=20 are connected when edge reliabilities are

qq. ft sampling, we use pmp, again merely as i convenience. The selected edge-disjoint

pathn ad cutets are

- (39,1827,28) = (1,5,12,21,29)

"1 {2,7,15,24,30) 11•- =1,2,3)

02 - (28,29,30) 13 = {11,12,14,15,17,18}

V4 -- (4,5,6,7,8,9) '5 = (19,21,22,24,25,271.

As a preliminary step, Table 1 shows the worst case upper bound on var ob(X,q,p)

as given in (41). Observe that the choice p=.80 minimizes this worst case bound and it is

Insert Tables 1,2, and 3 about here.

this component reliability that we use for sampling. A parallel analysis for var 1O.(X,q,p)

also chose p=.80.

Table 2 compares the estimates of var gK(qp) and var g•(qp) for a sample size K

f 1048576 and shows the estimated control variate coefficient E*(q,p), as in (29). These

results strongly favor relying on g•(qp), if the choice is between this quantity and

g[(q~p). Table 3 shows the resulting estimates in col. 1 along wi*h variance estimates in

col. 5 and individual 99% confidence intervals in cols. 6-8. In contrast to the exact results

in col. 3 which took slightly more than one hour each to compute, all results in cols. 1,2,4

and 5 took 72.7 minutes in total, o: 4.16 milliseconds per replication. Computation of the

confidence intervals took incidental time. Whereas the calculated exact results in col. 3

were accurate to sixteen significant digits (reduced to four digits here for comparative

purposes), the confidence intervals suggest an accuracy to two significant digits at the .99

level. If two significant digits is acceptable for purposes of analysis, then the Monte Carlo

approach clearly prevails.

----------------------------------------- -----------
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Table 4 shows the effect of sampling at an arbitrary point p=.90 rather than at

pm.80. Althoug sampling at p=.90 does produce better results for q~p, the deficiency of

sampling at p-SO in this Interval is considerably less than the corresponding deficiency for

sampling with p-.90 fer .905q5.89.

Insert Fig. 2 about here.

Fgu 2 displays several variance ratios that reveal how (bg(q,.80)} performs

compred to the crude estimator (&l(q)) in (3), the estimator {((q)l in (6), and the

Soptimal estimator (4&(q'P,§*(q,"80))) in (30). First, note that {gbl(q,p))

Performs almost as well as {f(q,p,O*(q,.80))}. Second, observe that uniformly superior

muor (g.(q,p)) when compared to ({(q)). In particular, note that these ratios exceed

100 for q>.95.

We now turn to the efficiency measure (22). Since V[ .,(q,.80)] > V[g•(q,.80)] for

all qE.S% Fig. 2 makes dear that A,(p) > 105, indicating the clear superiority of

({ (q,.8o)) over the crude estimator {()} in (3).
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Table It

max h(q,p) for .J- {.8+.01(i-1) i=I,...,20} and pE{.5+.02(i-1) i=I,...,25}q ES

p q. max h(q,p) p q. max h(q,p)
qc.2 qES

.50 .89 .3801D+03 .76 .83 .7496D-01

.52 .89 .1561D+03 .78 .84 .4985D-01

.54 .89 .6867D+02 .80 .84 .3234D-01

.56 .89 .2953D+02 .82 .80 .8818D-01

.58 .88 .1363D+02 .84 .80 .1090D+00

.60 .88 .6519D+01 .86 .80 .1642D+00

.62 .88 .3222D+01 .88 .80 .3255D+00

.64 .88 .1545D 1-01 .90 .80 .6961D+00

.66 .87 .Y75D+00 .92 .80 .5410D+01

.68 .87 .4824D+0V .92 .80 .9111D+02

.70 .86 .2790D+00 .96 .80 .1400D+05

.72 .84 .1709D+00 .98 .80 .7866D+09

.74 .83 .1116D+00

tq. = q in ., at which h(q,p) achieves its maximum for specified p.



Tabae 2

Comparison of V i,(q,p)] and V bK(q,p)]

(p=.80, K=1048576)

q V[ig(qp) q V[gia(q,p)]
q[* )*(q,p)V[g•K(q,p)] V[ibK(q,p)]

.80 1.00 .90 214.0 .0001

.81 1.58 -. 4941 .91 319.0 .0005

.82 3.04 -1799 .92 475.5 .0006

.83 6.07 -. 0852 .93 713.8 .0006

.84 11.61 -. 0440 .94 1097.0 .0005

.85 20.97 -. 0233 .95 1755.0 .0003

.86 35.92 -. 01292 .96 2995.0 .0002

.87 58.78 -. 0060 .97 5727.0 .0001

.88 92.67 -. 0026 .98 13665.0 .0001

.89 142.10 -. 0008 .99 57108.0 .0000
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Table 4

A(q) var g (q,.90)/var g 1(q.80)t

(K=1048576)

q A(q) tA(q)]' q A(q) [A(q)]•

.80 39.18 6.26 .90 .9821 .9910

.81 46.80 6.84 .91 .7072 .8410

.82 29.78 5.46 .92 .2796 .5288

.83 18.87 4.34 .93 .4117 .6416

.84 11.96 3.46 .94 .333U .5774

.85 7.61 2,76 .95 .2808 .5299

.86 4.88 2.21 .96 .2452 .4951

.87 3.17 1.78 .97 .2217 .4709

.88 2.09 1.45 .98 .2061 .4540

.89 1.41 1.18 .99 .1989 .4460

t Estimated by V[gbK(q,.90)]/V[gbl(q,.80)].
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•7, 2

2 19

II1

Fig. 1 Netw~ork

All component reliabilities are identical.
p= .80

2 = {.80 + .o1(-1) i=1,...,22}

K=-22e-- 1048576
Lower bound based on 3 edge-disjoint paths
Upper bound based on 5 edge-disjoint cutsets

•i9. 4
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Fig. 2 Variance Ratios for Alternative Estimators

- 5 va (q)/var bK(qp) - .80

z-o-5 ,K - 1048576 1
£ 2 var IK(q)/var IbK(q'p) /

4• 0 3 var ft!:lqp,8 (q,p))/var (q.p)
, rbKKq 'P)gb"

L3 I

.10

.8 .85 .90 .95 .o6

q
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Appenft

Pncc of Immm I. Observe that

E[O(X)R(X~k~qp)J E 0(x)R(x,1k,q~p)Q(xý1k,p)

XES

= ~ ( oxuf~}[(x)-OL(X)] (' p

Slnum =()Lx 4ý(x) and 0(z)4ý(x) = #$x), one has

E[O(X)R(X~k~qp)] =[g(q)-gL(q)1/A(p).

E[O(X)R(X~k~qp)] 2 =E O(X)O 2 (Xk,q~p)Q(X~k,p)
xXE.

P 2X.L [ 0(X)-04(x)'
xE

Observ that

P2(Xk~q)/P~~p ) r (2p )Xi[1...q)2/(J_.)I k-x1

C(qp){ I (q,/c~p,) 1(q)/c(-p i).-x

so that {P2(Xjk~q)/C(qp)p(x~k,p), xE3$} is a p.m.f. Expression (12) follows.

Ptoaf of Lanma 2. We restrict z to [gL(q), gu(q)]. Consider the case p~q which implies

that q"'5q so that. g(q"') 5 g(q) and gL(q*) 5 L~) In this case h,(z) S h 2(z) so that (40b)

gives the tightest upper bound.

Since p-<q implies q<-q' so that g(q) 5 g(q) and g.i(q) ý gj(q*) for jE{L,Ul, one has

g(q) m ~ax[gL(q*), g~q)]. Also, either gL~) 5gq* g(q) or (qŽ )Sic
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q ~q) Implis g(q *) g(q), h,(z) h2(ý) so that (40b) gives the tightest bound. If Lq

sL~ gUq),it Is not clear whether g(q) < gj(q) or g(q) gŽ *) Therefore, (40a)

gves the best bound.

Naio of Timnin 3. The function h, has its unrestricted maximumn at z guq)

EMAX hj(z) =h 1(gU(q)) if g~ fg~)g~)

max *h 1(z) =h 1 (g(q if SLq)~LqUqj

The function h2 is CWcAVe with its maximum at %*g q) Therefore,

K - g~~(q* max h~2(z) = h2 (s)i ~q~<~q

= h2(gL(q*) if z<L(

Then Theoem W dlows directly from Lemma 2.

Thearaa 4. Define w1(z) = h,(z)/z2 and w2(z) =h 2(Z)/Z 2 for h,1 and 1h2 as in (39)
for - a<z<.. Let z=Uq - c(q~p)A(p)A(q7)/gU(qj), q2

[gU(q)Yc(aqp)JA(p)/2] and b2 2%U(q) - c(qp)A(p). Then

Ymax .), (qp) if gL(q*)ftgJ,(q),gU(q)1

- gL(q) 5 <gL(q*)1) Lg(q) z<zgU(q)2~

if gL(q*)E[gL(q)'gU(q)]
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In ax Wz)=wgLq if z1~gL(q)

= w(z 1) if gql

U.ma *W()=w if zg(q
gWZ)(W)SzLSq)) )%iq

=w 1(z1)) ~

=Wý(gL(a )) if zlgL(q)
amd 1

Wi. gq* MAX W2(z) =w 2 (gL(q*)) if z2 <0 and b2>O,

W2(gU~q))if Z2 <O and b2<0

w w2 gq) if O~z (jq )and >0

= 2(gL) 2ý ~ n 2>0

W if z Žgu(q) and >0

W w2(gU(q)) if O<zYgL(q*) and b<0

= max [w (~q )),w 2(gU(qJ)]

if gL(q )5Z2•gl 2rdb<0

W=(g~ if z2?gu(q) and b<0.

Proof ofpubtsi mlH. Since
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:wI(s) hj(g)/Bs' 3 al/s + b1/s-1

•:.- where

,a -gc(q(q)A(p)A) and b= 2gu(q),

then
dw2I -(2a 1/z+bl)/z2 b1(-.S11z+!)Iz2

andw
d- 2 -1 2(3a 1/z+b,)/z 3  2b,(-3z,/2z+1)/Z3.

If S(O, then w, is convex and decreasing on [0p) and w1 has its maximum at

S - (q). If z1>O, then w, is concave on [0,3Zl/21 and z1,g*(q) so that w1 has its

uwximum on [gt(q), gU(q)] at z = z, if zEte[(q), %(q)] and at z = g,(q) otherwise.

The result for purt ii follows immediately.

ProuOf Hi. Since

w2(s) = h2(z)/z 2 - a2/z2 + b2/z - 1

2wNN

2= c(qp)A(p) gu(q) gi(q) and b2 = 2gU(q) - c(q,p)A(p),

then

and

d 2  b- -b2(-3"2/z+1)/z .

CoWsider the interval [07,(q), gU(q)]. If Z2<0 and b2 >0 then w2 is convex on [O,®) and its

maximum occurs at z - gt(q*). If 2 <0 and b2 <0 then w2 is concave on [0,w) and has its

maximum at z g=(q). If z2 >0 and b2 >0, then w2 is concave on [0,3z2] so that the



maimu ocur atu Ifs~gjq),a- if gL(fq z25gu(q) and at z h= q if

If 32>0 and b2<0, the maximum occurs at z = gq)if z<g (q ), at q i
q

32?g(q) a"d a2 a = XL2(9L(q*)), W2(gU(qj)J if 9L( *)5Z259Uq')

Tbuý 5. Let w() __ý) and w (z) h __(1Z)2 for hland has defined

IL6(39). Let

33 - %(q) + c(q~p)A(p) &(q7m)/[l--gU~(q)],

% 1 - 2(c(q~p)A(p)[j-gU(q *) + [1-g,(q)] 2}/{c(q,p)A(p) +2[1-.gU(q)J}.

Then

-?,(q)p) 5 w*(q~p) mx qw( if 9~*Og~)g~)

- max (qw 3x(z) ) ~max w4Z

MAX WO)(z = w3(gL(q)) if z3>1
gL(q) 5 ~U~t

*max w w3(~q) if z >1

W- UN if z3<1



g * max W4(Z) =W 4(g.(q7)) if z 4sgL(q)

W w4(Z4) if 9~ )Z5Uq

W= U~) if z 4 Žgu(q).

Ptd of Thmý &. Since

W3(3) = %/(1-z)2 + b 3/(1--s) -

wherle

&3 =

and
d2w _2b 3  1=

(,_) 33a/b31--z+ii [r3(1.z,)2(1..z)+l].

Observ that =3 1 + 2a%/b 3 > gU(q). 'f Y"Ž1 then w3is convex on (,1,having its

maximum on [gL(q)I &U(q)J and On [gL(q)' 8L(q7)I at z = ILq) f X5,then w3 is convex

on [(3s371)/2.11 and w, has its maximum, on [gL(q), gh(q)] at z =gu(q) and on

gjý]at z = g(q), establishing i and ii. gql

Prod of Mi. Since

w4(z) = a4/(l--z)2 + b 4/('--Z)-1
where

%4 = c(qsp)A(p)[1-_g.(q*)J + [1-_gU(q)1 2

and
b4= 2[l-sg(q)J + c(q~p)A(p),
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~ then

dw 2  b b4 r1_b
- - 2ai/b 4(1-z)+1 ] - i-41--Zl)(-)

and (-) '(~)

d w 2b4 (1z+]=2
2 2 [Ubl4U +2 [-3(1-z 4 /2(1--z)+1].

* Cosidr te Iteral g~()) ~(~1. inc <1 is concave on [(-)/2,1]. Then

w4 hm RBmL mmazLif 1Z45ULW at z z 4if 9( )<z<59(q) and at z-

$U~q) if Z4ŽgU(q).

Proof of Thearn 8. Observe that

*x k.-x.
R (x~k,q~p) =II (qj/p1 ) [(l-qi)/(1-pi)]11

i E or

hax h alternative form

* k.
R (x~k,qp) =II (q1/p.) 'exp[- E a. E (l-yj)]

iEc,* iEA4 ' 1 jEs.

F with

E i y=xi ~~*
jE9.1 1

* The condition OL(x) = 0 requires that

*~ V YEy. Ž1A
jE~ 1a

and the condition O(x) =1 requires that

jEl I



-48-

Since

maxexp[-, a. (1-yi)]=exp[-min • a. E (l-y],y iE'* "1 y iENV* 1 jEi

one has the integer program (47) with yj (1--zj).


