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Abstract

Sensitivity analysis is an integral part of virtually every study of system reliability.
This paper describes a Monte Carlo sampling plan for estimating this sensitivity in system
reulabxlﬁ t§ch§ng<§5 in com;;or\ient rehab?htles The unique feature of the approach is that
sample data collected on X inder<ndent replications using a specified component reliability
| vestor p are transformed by an importance function into unbiased estimates (;f system

reliability for each component reliability vector q in a set of vectorc 2. Moreover, this
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importance function together with available prior information about the given system
enables one to produce estimates that require considerably less computing time to achieve a
specified accuracy for all | £ | reliability estimates than a set of | 2| crude Monte Carlo
sampling' experiments would requice to estimaie each of the | £ | system reliabilities
separately. As the number of components in the system grows, the relative efficiency
u continues to favor the proposed methcd.

The paper shows the intimate relationship between the proposal and the method of
control variates. Jt next relates the proposal to the estimation of coefficients in a reliability
polynomial and indicates how this concept can be used to improve computing efficiency in
certain cases. It aiso describes a procedure that determines the p vector, to be used in the
sampling experiment, that minimizes a bound on the worst case variance. The paper also
derives individual and "ﬁin;u.lt'anéons' confidence intervals that hold for every fixed sample
size K. An examle ﬁlustrates .h_ovw t‘heq proposal works in an s-t connectedness problem.
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Abstract

Sensitivity analysis is an integral part of virtually every study of system reliability.
Tuls paper describes a Monte Carlo sampling plan for estimating this sensitivity in system
reliability to changes in component reliabilities. The unique feature of the approach is that
sample data collacted on K independent replications using a specified component reliability
vecix P are trangformed by an importance function into unbiased estimates of system
reliability for each component reliability vector q in a set of vectors £. Moreover, this
importance function together with available prior information about the given system
enables one Lo produce estimates that require considerably less computing time to achieve a
specified accuracy for all | £ | reliability estimates than a set of | £ | crude Monte Carlo
sampling experiments- would require to estimate each of the |2 | system: reliabilities
separately. As the number of components in the system grows, the relative efficiency
continues to favor the proposed method.

The paper shows the intimate relationship between the proposal and the method of
conirel varistes. it next relates the proposal to the estimation of coefficients in a reliability
polynomial and indicatcs how this concept can be used to improve computing efficiency in
oertain cases. It also describes a procedure that determines the p vector, to be used in the
sampling ~xperiment, that minimizes a bound on the worst case variance. The paper also
derives individual and simultaneous confidence intervals that hold for every fixed sample
gise K. An example illustrates how the proposal works in a1 s-t connectedness problem.

Key Worde:  s-t reliability, system reliability, importance sampling, Monte Carlo
method, control variates
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Introduction
—) Sensitivity analysis, which represents an integral part of virtually every study of
gystem reliahility, measures variation in this quantity in response to changes in component
reliabilities or in system design. Replacing old components with new ones with higher relia-
bilities affects system reliability. As time elapses, system reliability deteriorates when a
nou replacement policy for component fuilures is in force. Deleting, adding or rearvanging
components all affect system reliability. Sampling variation in component reliability esti-

.
ke

TR T

mates induce sampling variation in the corresponding system reiiability estimate. Having

access to & model that accurately predicts these changes in system behavior allows one to

make considerably more well 2ll informed decisions for maintaining or enha.ncxng performa.nce D
— e .

C’l’;s paper presents a method for estimatmg variation in system reliability in res-
ponse to variation in component reliabilities. It describes a Monte Carlo sampling plan that

on each replication provides sample data that contribute to the estimation of system relia-
| bility for each of w sets of distinct compcnent reliabilities. The sets may represent alter-
_native componen*, replacement plans, deteriorating component reliabilities at a succession
of time points or extremal points of simvitaneous component reliabiiity intervai estimates
. (Fishman 1987). For purposes of exposition, we focus on s—t reliability but emphasize that
the concepts d'scussed here also apply to other definitions of system reliability. ( L?u prord 5! )
To understand the significance of this approach, we first discuss the computation of /
8~ reliability at a point. Consider a system representable by an undirected network C :
(7;8) where ¥ denotes the set of nodes all of which function perfectly and & denotes-the set
of edges each of which faiis randomly and independently. The concept of $—t reliability
principally focuses on the probability that at least one pa\b{ft:‘ctioning edges
(components) connects nodes s and te¥; and it is this qu y that we wish to compute.
Since the exact computation of s—g/reliag;hty from a single set of component
reliabilities belongs to the class of NP/a.rd problemns (Valiant 1979), attempts to shed
light o1: this computation have btd to exploit special structure, rely on bounds or use the

\,\,/.,-9 (7 - ”“r‘:,_, TRV ”,’ apfAere T "‘/’)I
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Moate Carlo method. The polynomial time algorithm of Agrawai and Satyanarayana
(1964) for the exact reliability computation for series--parallel systems exemplifics a highly
beneficial use of specia! structure. Bounds such as those of Esary and Proschan (1966), Van
Slyks cad Frank (1972) and Ball and Provan (1983) offer interval approximations to the
reiiability. The Moate Cario method aloo exploits special structure and bounds. In
particular, the sampling plans in Vaa Slyke and Frank (1972), Kumamoto, Tanaka and
Inoue (1977), Easton and Wong (19680), Kumamoto, Tanaka, Inoue and Henley (1980),
Karp and Luby (1983) and Fishman (1986) describe how to derive statistical estimates of
reliability that are generally more accurat= than a crude Monte Carlo sampling experiment
would provide hesed on the 3ame amount of work.

With regard to the exact computation of s-t reliability for w>1 sets of alternative
cumponent reliabilities, the corresponding time complexity has the same form as tbat for a
single reliability computation increased by the multiplicative factor w. Also, whereas any
of the aforementioned Monte Carlo proposals allow one to 2stimate s— reliability for each
of the w poirts, regrestably an observation on a trial for one point in no way contributes to
estimating system reliability at the remaining w—1 points. The presant paper overcoraes
this last inadequacy. It describes a Monte Carlo sampling plaz that on each trial generates
data that comtribute to estimating all w system reliabilities simultaneously. Most
importantly, these esiimates, at all w points, are considerably more accurate than
corresponding estimates that crude sampling can produce for the .ame amount of work.

The proposed method exploits importance sampling, & technique that Kahn (1950)
and Kahn and Harris (1951) first described for reducing the variance of a Monte Carlo esti-
mator of a point. The present account extends this technique to reliability function estima-
tion and, in particular, shows how one can use knowledge available to the analyst before
experimentation to enhance the accuracy of the estimated function at all w points for a
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given sumple sise K. Section 1 introduces relevant network nomenclature. Section 2 then
describes cya*.eln reliability estimation at a point using crude Mont2 Carlo sampling, as a
baseline, and a highly efficient alternative method described in Fishman (1986). Section 3
extends the alternative method to simultaneous estimation at all w points, Section 4 shows
how tO ussesy ltbe statistical efficiency of the proposed method and Section 5 shows the
intimate relationship between the proposed importance sampling technique and the method
of control variates.

Section 6 offers an alternative interpretation of the estimation procedure that
revzals ite relationship to estimating coefficients in a reliability polynomial and shows how
this reprosentation may save computation time when a small or moderate number of
components vary their reliabilities. Section 7 discusses how to perform the importance
sampling optimally given the set of component reliability vectors of interest. Sections 8
and 9 derive individual and siinultaneous confidence intervals. Section 10 describes
essential steps for implementation and Section 11 provides a comprehensive example that
illustrates many of the features of the proposed technique.

1. Problem Setting
Consider a network G = (7¥) with node set » and edge set & Assume that
nodes function perfectly and that edges fail randomly and independently. Let
r = number of distinct types of edges
q; = probability that a node of type i functions i=1,....r
qQ=(q,,-.q.)
¥, = set of edges of type i
k; = | &, | = number of edges of type i
k= (kl"“’kr)
e, =jthedgeof typei j=l,..k; i=l,..r
X = 1 ifodgeeij functions

S g VU U VUMY S SV,
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= 0 otherwise

k;
X, = E'x
ja1

b & (xn,...,x“‘;...;x“,...,xﬂr)

The numbx¢ of functioning edges of type i

S= get of all adge states x
r 'li rox ki—li
Prka) = 0 illx, 0, +(1-x;)(1-q,)] = I o, '01,) M

= probability mass furction (p.m.f.) of state xe.&
#(x) = 1 if the system functions when in state x
= 0 otherwise
(@ = E_¢x)P(xkq) ()
b (P 2
= probability that the system functions
We also assume that G deacribes a coherent system. A system of components is coherent if
its structure function {¢(x)} is nondecreasing and each component is relevant (Barlow and
Proschan 1981, p. 6).
For present purposes, the system functions (¢(x)=1) when at least ope minimal s—t
path (s,t€¥) exists and fails (¢(x)=0) when no such path exists. Let £ denote a set of w

component reliability vectors of interest. Then the nurpose of analysis is to estimate the
s—¢ reliability function {g(q), g€ 4.

2. Estimation at a Point
Crude Moate Carlo sampiing offers a baseline against which potentially more
efficient sampling plans can be compared. Let X!, ... X denote K independent samples

drawn from {P(x,kq), X€.8)}. Then

K .
&@ =g #x) 3




is an unblased estimator of g(q) with

var g,(0) = s(Q[1-8(Q)/K. (4)

To compute . (q), one performs K trials on each of which sampling X from
{P(x,k,q)} takes O(| ¥|) time and determination of ¢(X) takes O(max(|¥1,|&|)) iime,
using & depth—first search as described in Aho, Hopcroft and Ullman (1974). These are
worst case times. One can also show that the rnean total computation time has the form

T(g(2) = ay + K[a,+a,| 8| +ay(K k,q)]

oy(% k@) = T P(xka) C()

C(x) = expected search time given the component state vector x

The quantities “0, a,. a, and aa(x_ k.q) are machine dependent.

All Moute Carlo methods described in the previously cited referenes improve on
the variance (4). In particular. the method described in Kumamoto, et al. (1977) and
Fishman (1986) ichieves this reduction by exploiting bounds on the structure function
{#x)} and it is this approach that we now describe and later extend in Section 3. We
follow the development in Fishman (1986).

Suppoee that there exist 0—1 binary functions {¢L(x), x€.2} and {¢"(x), x€.3} such
that

$(x) < $(x) < 4y(x) Ve

Then the system reliability g(q) has lower and upper bounds g (q) and g(q), respectively,
where
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Supposé that one now samples x(”,. ..,x(" independently from ihe alternative probability
mass function

Q(xkq) = [ﬁ%);—#ﬂ} P(x,k,q) x€.¥ (5)
where
A(Q) = gy(@) - g (@)
Then

: L g gyl
b (@ =@+ A £ ) (6)
is also an unbiased estimator of g(q), but with variance

var g(@) = g (Q-g()lgla> 5, ())/K < A%(q)/4K. (7)

Compared to crude Monte Carlo sampling, one has

var El(q) . : 2
e 1/ [{g @15l - (g @b—g, (@] (8)

2 1,

indicating that g (q) always has a variance no larger that var &(Q).

Choosing Bounds
The choice of bounds gL(q) and gu(q) depends on the reliability computation under

consideration. As an example for the s—t connectedness problem, let .91,3'1 denote
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edge—lisjoint minimal s—t paths of G and let LR # denote edge—disjoint minimal st

cutsets of G. Let

which are lower and upper bounds, respectively, for ¢(x). Then

I r |%ﬂ5ﬂ
g@=1-T[1-Tq ' |

m=1 i=1 4
and

mn=1 i=1

J r |8.0n¥ |
a0 = T [1—,11 (1q) ! ]

are lower and upper bounds, respectively, on g(q). One can determine FpeerFy 0
0(I| #|]) time using a network flcw algorithm with unit capacities, as in Wagner (1975,
1}. 954), and -, ¥ in 0(| &|) time by beginning at node s and appropriately labeling
arcs. Note that

I < size of the smallest minimal s—t cutset in G
and

J < size of the smallest minimal s—t path in G.
Moreover, the resulting form of {Q(x,k,q)} in (5) enables one to use Procedure Q in
Fishman (1986) to sam.ple x in 0(| &|) time.

To comp*» éx(q) using precomputed bounds based ou edge—disjoint minimal s—t

paihs and cutsets, one performs K trials on each of which sampling X from {Q,xk,q)}
occurs 1n O(| #|) time using Procedure Q in Fishman (1986), and determination of ¢(X)

again takes O{(max(| ¥],| &|)) time. Also, mean total time assumes the form



T(g;(Q)) = B, + K[B,+8,| 8| +ay(% k.p)/ A(q)]

where

X, = {x€.5: ¢,(x)=0 and ¢,(x)=1)

and ﬂo"“’ﬂz denote machine dependent constants.
Obeerve that

K(q) = K var g (q)/var g,(q)

;‘ | denotes the number of trials one would have to take with crude Monte Carlo to achieve the
E same variance that arises in K trials using {Q(xkp)}. Then A (q =

| T(gy () (V)/T(85(Q)) measures the efficiency of g,(q) relative to g,(q) and for large K and
i | #| haa the approximate form

A(Qw a,+a,(X k,q)/| 8| g(q)(1-glq)] ©)
* BT e, (Kk,9)/A00) | 81 [g(0)-5(@)] (8(0)-g,(a)] |

} where ay(%,k,q)/| &]) and ay(% .k,q)/| &| are bounded from above. A ratio greater than
unity favors the alternative sampling plan. Experierce (Fishman 1986a) has shown this
usually to be the case by a large margin.

3. Estimation at a Set of Points

This section extends the technique based on bounds for a single point to estimation
at a set of w = | 2| points. In particular, it shows that at least two estimators deserve
attention and later Section 5 shows how a linear combination of these estimators is, in fact,

a control variate estimator. Let p = (pl,...,pr) °<pi<l for i=1,....,r and let
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R(xk,q,p) = P(xk,q)/P(x,k,p)

k.—x.

= _ll_il(qilpi)xi [(l—qi)/(l—pi)] 1 (10)

Lemma 1. Let X be sampled from tke p.m.f. {Q(x,k,p)} in (5). Then

E[#(X) R(X.k,q,p)] = [s(a)-g,(2)]/A(P) (11)
and
E[$(X) R(XXa.p)* = c(a,p)[x(a ), (a))/AP) (12)
k where
r k.
c(qp) = ~I-11 c,’
¢, = c(q.p;) = a/p; + 1—q)%/(1p,)  i=l,.r
and
q = (a}/c,p,-a/cp))
The Appendix contains the proof.

TLeorem 1 shows how these properties relate to reliability estimation.

Theorem 1. Let X be sampled from the p.m.f. {Q(x,k,p)} in (5) and let

¥,(x,a.p) = g, (@) + A(p) Hx)R(x,k,q,p) (13)

and
¥,(x,a.p) = gy(a) — A(p)[1-¢(x)|R(x.k,q,p)] qeZ2. (14)




k-
,_

Then for each qe 2

Ey,(X,q,p) = E¢,(X,q,p) = g(@) (15)
var ¥ ‘X,q.p) = v (4,p) = c(a,0)A(P)[8(a ), (2 )I-8(a)8, () (16)

var %,(X,,p) = v,(a,p) = c{a MA(P)[gy(a )80 )-g(@-g(@)l’ 7)

and
cov(y, (X,a,p), ¥, (X,a.p)] = v,,(a,p) = [g;(a)-&(Q)](g(a)—8,(a))- (18)
The proof follows froin Lemma 1.

Observe that the importance function R corrects the expectations (15) to the desired
value, thereby inducing the variances in (16) and (17). The implication is immediate. Let
X{) now denote the ith sample drawn from {Q(x,k,p)} and observe that one now has two
potential estimators of g(q), namely

(i)

. K
gjl(qap) = é 'E:l ¢J(x »@P) (19)

with

var g4 (q,p) = var ,(X,q,p)/K je{ab}. (20)

Most importantly, note that merely sampling with edge reliabilities p enables one to
generate two unbiased estimators of the entire reliability function {g(q), q€¢4}. By
contrast, all Monte Cailn sampling plans cited in the introduction require | 4| separate

experiments to estimate {g(q), q€ .4}.

4. Efficiency

Measuring the statistical efficiency of {é ax(q'p)’ q€4} and {gbx(q,p), q€ 4} as
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estimators of {g(q), g€ 8} calls for a more elaborate analysis than that for estimation at a
single point. In particular, the sobering observation that c(q.p) in (16) and (17) increases
exponentially with | ¥| makes one circumspect about the benefit of the proposed method as
the sise of G grows. We now show that this benefit is assured for finite | 2| and number of
edge types r, provided that pe.2.

Let $= {qi,...,q.} where q = (qu,...,qrj) and %; is the reliability assigned to
components of type i in the jth component reliability vector for j=1,...,w. Let ¥ =
{1,...,t} and

&+ = (ieH: pq, foratleastone i  j=1....| |},

30 that | &’*| compoment reliability types vary in £. Algorithm A describes the steps for
computing the estimates and provides the basis for measuring efficiency. In addition to
computing {§ (@), & (aP); *H, it computes {V[g (ap)l, V(g (aP); € f as
unbiased sstimators of {var g Jg(P), var é“(q,p); qcSL}. Obeerve that preprocessing in
step 1 takes O(| &'*|| 4|) time, postprocessing in step 3 takes O(| #|) time and, on each
veplication, sampling in step 2a takes O(|#|) time, summation in step 2c takes
o(igd‘ki) < O(]| 8]) time, determination of ¢(X) in step 2b takes O(max|¥],| &|)) and

step 2d takee O(| N*|| 2|) time. One can also show that the mean total time for K
replications using Algorithm A has the form

T({g (0P By (WD) = W+, | H*|| 3 +uy| 8 +Klug+B,| 8 +ay(%, kp)/Alp)

+w, | ¥ | Y+w, T k|
4 5. X

i
iEA*

time where W+ denote machine dependent constants and ﬂz is identical with 32 in
T(gg(q)). To reduce numerical error, all computation in step 3 should be performed in
double precision arithmetic.
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Algeritim A
To estimte the relishilit; function {g(q@), q¢ 8.

Netverk G = (7,¥); swmber of type of compoaeats r; kl = number of compoments of
type i fer isl,...,r; sempliag distribution {Q(x,k,p), xe.8}; set of ¥* = set of
compeneat typss that vary ia $; lover and upper bowsds {g, (V), &;(@); a¢2U{p}};
ad mxher of independent replications K.

{850, 8 (00, Vg (D], Vg (0.0]; @B as wbissed estimtes of
80, 8@, vor g (0.0), var g (0.P); B
Hethed:

1. Initialisstion

s AP g~ (0.
b. Pereach qed:

S$(@ = 3‘(0 =V(g = "(1) -0.
Por each ieW*:

'i(l) - 1'[‘1“"’:)/’1(1-"1)] and ﬁiiq) - ll[(l—qi)/ (l—p‘)]~

2. On each of K independent trials:
s. Semplel j=i,... ,kl i=l,...,r from {§(x,k,p)} as in Fishman (1986).
b. Determine ¢(X).

k
c. Poreach ieN*: Xit- pix |

j=1
d. Por qed:

T(q) +~ 0.

Por each ieW™*: 1T(Q +T(q) + k‘ﬂ‘(q) + X‘a‘(q) .

T(q) ~ exp[T(@)]; S(@) +~S(@) + T(@); V(q) ~ V(@) + ¢(X) T(a);
S0+ 8, (0 + (@ T@; ¥ (@ -V (@) + (D 1@ T(@).

3. Computation of summary statistics
Por each qe 2 :

8 5(%P) - 5 (@ + A(P) V(@/E.
Sz (1P - 8,(0 — A [S@-V@I/E.
Vs 5(a.P] - a%(p) (V (Q—K[¥(@)/K1?}/(E-1).
Vi (a:] - A2(){[S (0 (@I-X[(S(Q—¥iw) M} /KE-1).

BEnd of procedure
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the ssmple sizes {K(q,p), q¢ £} to achieve equal variances. That is,

var By o )@ = S(@U-5(@)/K(ap)

where
K(q.p) = K A(q,p)
and
g(a)[1-g(q)]
AQP) = s ——var v (0p)
i€{a,d ’
Obeerve that

A(p.p) = g(P)1-8(p)]/[gy()-5(P))(£(P)-5, (P)]
and, except in special cases, for any odge type i€ N*

iim A(q,p) =0 for q#p.

g
1

This last limit follows from the growtk of ¢(q,p) with k,.

Let
A(p) = T A(qp).
Q€S

and observe thai

lim A(p) = A(p.p).

.=t
1

Observe that the time ratio

Let us now compare this approach to estimating {g(q), g€ £} with the alternative
approach based on the | 8§ point estimates {il(.’. (q), q€ 4} using (3), where one chooses

(21)

(23)




T [
Al(-',P) - ‘(18[(‘,.!(Q)}) _ (24)
T({8 4(2:P):8,z(a:P)})
T({El(“)((l)}) = qE.’T(E[(".)(Q))
F measures the efficiency of the proposed method relative to using crude Monte Carlo

sampling with (3) | 2| times to obtain estimates with equal variances var 3,(“)(‘1) =

min mﬁj‘(q,p)forqe.s. As k, increases, (24) assumes the form
j€{ap}

I [ay+ay(Sk,q)/k ]A(q,p)
A(3,p)w ES : (25)
By+ay (X, .K.P)/A(DIK; +u

‘ Practice indicates that w,<<f,. Then provided pe 2, (25) generally satisfies A(2.p) 2
t A,(p) for large k, (ieM'*), implying thai Algorithm A is at least as efficient as (6) at =
E single point. As the example in Section 11 shows, the realized efficiency can be
r considerably greater.

5. The Optimal Estimator

The representations of g_,(q.p) and £,7(3:P) in (19) suggest that these quantities
conceptually are alternative forms of a more coniprehensive estimator. Theorem 2 confirms
this observation.

Theorem 2. Let X denote a sample from {Q(x,k,p)} and define

¥(x.q.p,0) = 8¢ (x,qp) + (1-6) ¥, (x,qp) - 2<O<w. (26)

Sl L
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Then for fixed piq

i  EW(X«qp0) =g

B O (ap) = [ (0P}, (GP))/[V,(0P)+¥,(@P)F2v,, (a.p)

= 1/{1+[v (a.p}v (a.p)})/[v,(aP), , (a.P)]}

minimises var ¥(X,q,p,0)

. var (X.ap0"(@p) = v (@p)v,(a.P)2,(ap))/[c(ap)AP)AQ -A%a)).

The proof follows directly from the minimirzation of var ¥(X,q,p,0) with respect to 6.
Therefore, among estim-tors of the form

£:(20.8) = 68 (a,p) + (1-6) g, (aP), (27)

é‘(q,p,e‘(q,p)) has minimal variance.
Obeerve that

0'(qp) =1 if v (ep) = v ,(ap) # v,(a,p)

=0 if Vb(Qap) = v.b(va) # va(qvp)r
revealing that g .y (@P) is optimal if

var § (a,p) = var g(q)

and é“(q,p) is optimal if 1

var Q“(Q,P) = var é‘(q}




S
;
4
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whate g (@) and var g, () are defined in (6) and (7) revpectively.
Writing (26) in the alternative form

¥(x,0,p.0) = ¥ (x.a.p) + 6[R(xk,qp))-A(q)] (28)

reveals that R(X(") k,q,p),....R(X®) k,q,p) act as control veriates with known mean A(q)
and, by appropriate substitution, that

var W(X,4.0.0 (4.p) = var ¥, (X.a.p){1—corr’[¢, (X,q.,p).R(X.k,q.p)]},

where corr(A,B) denotes the coefficient of correlation between A and B. Note that this
variance diminishes as the correlation between ¥%,(X.a,p) and R(X,k,q,p) increases in

magnitude.
In practice, {© (q,p), €8} is unknown but can be estimated unbiasedly for q#p by
&"(ep) = K{Vig (a2 (ap)}/[(ap)AP)A(Q A% q) (29)
where

Zy () = (8{Q-Byg(P)]ig (0,08, (@))/(K-1)

and Vﬁ“(mp)] is vomputed in step 3 of Algorithm A. Although one may incline to use the
estimator

g(and (ap) = 6" £4(ap) + 1-8° (P&, (ap) (30)

for g(q), one cuickly sees that

JUPI—
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Eg, (.0’ (4P)) = (a) + cov [87(a.p), § 4(a.p)]

- oov [67(ap), £,y (aP))-
Therebore, £ (..0 (¢,p)) generally is biased. While this bias diminishes as K increases,
the rate of dissipation depends on the particular system under study. As a result, no
gemeral statement is possible regarding bow large K must be in order to treat bias as
incidental. Because of this limitation, the remainder of this paper focuses on choosing
between i‘(q,p) and i“(q,p). We return to the issue of choosing a point estimator for
g(q) in the example of Section 11.

6. Aa Altermative Represestation
This section describes an alternative representation for g(q) that offers
considerable conceptual value for function estimation. Let

k.
F(s,,..8) = {xﬁ.ﬂjfixii =1, i=l,..r) (31)
and
M(s.,.,s )= L #(x) 32)
r r) xe.’(:l....,:r) (
= the number of possible ways that the system can
function (¢\x)=1) when 3,,-.-,2, components of types
1,...,r, respectively, function and kl—zl,...,kr—zr
components of types 1,...,r, respectively, fail.
Then one can write
(@ = B £, (k) B £, (k_a u )
gq = W, ) Quz,,...,.z 33
|l=0’lllz=0’rrqr 1 r ()

it e e~ m——nd



B

Lo ibinad

f-(ka) - (5) q.(l_q)H 3‘0,1,,k, OSQSL k=lv29

038 ) = M3y )/ ir:x1 (::).
Obeerve that since we are working with a coherent system
u(0,...,0) = 0
u(.l"""j"""r) < “('1"""j+l'°’°"r) J=1,...,r

“(kl'""kr) =1,

so that {n(:l,...,zr); 0<s.<k,, i=1,...,r} is ¢ muitivariate distribution function.
If one were to perform crude Monte Carlo sampling, then the estimation of g(q)
would be equivalent to estimating the coefficients {u(:l,...,zr)}. In the case of r=1, M(z,)
denotes the number of connecting cutsets of G when 3,
Fishman (1987) describes a method of estimating M(z,) in this special case. As we now
show, the present proposal corresponds to the implicit estimation of analogous quantities.
Let

arcs function and kl—zl arcs fail.

r k. ]-1
(2,..2)=| 1 (!} z . je{L,
U3 [i=l (’i)] x€ J(zl....,zr)¢3(x) oL} (3)

K.(:l,...,zr) = number of replications on which the system (35)
functions when Z,,...,8, components of types 1,..r,
respectively, function and kl—zl,...,kr—zr components
of types 1,....r, respectively, fail




R
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Kb('l"“"r) = number of replications on which the system (36)
fails when $,,..,3, components of types 1,..r,
respectively, function and kl—'zl,...,lcl_—-zr components
of types 1,...,r, respectively, fail.

Then g_,(q.,p) and g,,(q.p) in (6) have the equivalent forms

k k.
g4(aP) =5 (0) + A(p) z; 'R (ukap) K, (2,2)/K (3D

1 ¥
and
. k k. o
g (BP) = gyla) — A(p) E; E;R (3k,q,p) K (2,....2 ) /K (38)
5= 0=
where
. r s, k.—s.
R (sk,qp) = ,Hl(qi/pi) "-q)/(-p) * !
EK.(z‘,...,zr)/K = u.(zl,...,zr) = u(zl,...,zr) - uL(zl,...,zr)
and

EK,(z,,...3 )/K = u(2,502,) = U (2,002 ) — (2,12 ).

Therefore, using g .l(q,p) is equivalent to estimating the coefficients {ua(zl,...,z )}
implicitly and using éb‘(q..p) is equivalent to estimating the coefficients {u(z,,....z )}
implicitly.

Expressions (19), on the one hand, and (37) and (38), on the other, have beneficial
and limiting features. If one uses Algorithm A, then the sample reliability functions
(g x(BP) éu(q,p); Q€ 2} available for study have ordinates only at the points in 2
specified in the sampling experiment. However, if one alternatively records { Ka(zl,...,zr)

b




K"(s‘,...,:r)}, then (37) and (38) enable one to construct the sample functions for any q in
(0,1]F which may be of interest at any time after the sampling experiment terminates. Also,
o8 Section 9 shows shortly, for a given network G, the widths of confidence intervals for
{g(q), q€$} based on either {j.l(q), qe 4 or {jb‘(q), Q€Y as in (19) increase with | 2|
F whereas confidence intervals based on {K‘(zl,...,zr). Kb(zl,...,zr)} have widths independent
| of | 8.

This alternative approach requires a space of [el

1

5 ki counters to accumulate
Y

: {K,(-)} aad & like space to accumulate {K,(-)}. Moreover, a modified Algorithm A based
on this approach would replace the time components O(K|¥*|| 2|) and O(K T _ k.) in
i€

a't

T({8.x(aP): B(ap)D) by OCI S I _ k) < O(| 81/] A1) ¥ 1) thus eliminting their

s T—n ey -

dependence on the sample size K. If II* ki is large, this may limit the extent to which
i€ N

one can store the sample sums {K (:), K,(-)}. However, when they are storable, their
availability offers considerabie post—experimental discretion for computing quantities of
interest.

7. Choosing the Sampling Vector p
The forms of the variances (16) and (17) cle.cly indicate that the choice of p affects
the statistical accuracies of g_,(q,p) and g,,(q,p). While no unequivocal rule exists for

choosing p, minimizing max [min var g.(q,p)] is one reasonable objective. Unfortu-
qes jef{ap}

nately, the unknown variances render this minimization impossible. An immediate alter-

native uses the upper bound

c(q,p) A(p) A(q) 2 s gk (a.p)

and finds, by grid search, the p that minimizes A(p) mn.)-fz c(q,p) A(q‘). However, a
q€

- e m R AR A G LT M R SR W 4 e MR emm A8 MR AT AR AR M A R o4 MM MG A A A e
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considerably better bound h(q,p) exists when either p<q or p2q so that sampling with the p

% that minimizes ma).cz h(q,p) can produce considerably better worst case results.
q€

This section derives h(q,p) explicitly for var ¢b(x,q,p). It makes use of the
observation that for a coherent system p<q for all qe 2implies g(p) < g(q) and gj(p) < gj(q)
for je{L,U} and p>q for all qc.2 implies g(p) > g(q) and g(p) 2 g,(q) for j{L,U}. A
completely analogous approach holds for var g ax(q,p). Also, the Appendix extends the

analysis (Theorem 4 and 5) to cases in which the coefficients of variation

7,5(@p) = [var p,(X,ap)l/g(@

and

7,5(a:p) = [var ¥,(X,a.p)]*/{1-g(a)] je{a.b)

are the criteria of accuracy.

Lemma 2. Define
h (z) = h,(2:0.p) = c(aP)APIA(Q) - (g0
and (39)

h,(z) = h,(z,a.) = c(a,P)A(P)lg,(a )2 — [(0)2]"
— 0<zZ<mw.

Then for either p<q or p2q




{
<h(q,p) = « I, (2), * h,(z) (40a)
v han) <hap) m[&(e)?:’s‘s,,(q) i 8 (¢ <2y (@) *
if g, (q)<g, (a*)<gy(@)
= herwise. b
8L(q)r;uznsts“(q)hl(z) otherwise (40Db)
The Appendix contains the proof.

Theorem 3. For h, and h, as defined in (39), p2q or p2q, and
2 = gy(q) — c(a,P)A(P)/2,

var ,(X,a.p) < h(q,p) = maxfh, (g,(a)), hy(max(z"g,{a)))] :

if g; (a)<g, (a*)<gy(@) (41)

= hl(gu(q)) otherwise.

See the Appendix for the proof. To derive the analogous upper bound for var y, (X,q,p), ;
* *® *
one replaces z by 1-z, g, (q) by 1-gy(q), ;(a) by 1-g;(a), g (a) by 1-g,(a) and g(q )
by l—gL(q.) everywhere in (38), (39) and (40).
Recall from Section 4 that choosing p from £ is beneficial from the viewpeint of

efficiency as any of the k, grows. Then one can compute max h(q,p) by erumeration
q€e2 |
for every p in £ and select the p that minimizes the maxima. In total | 2 |2 points are S

evalatced. As the example in Section 11 shows, this method of choosing p can lead to

significant improvements iu statistical efficiency. |

8. Individual Confidence Intervals

Altbough the distribution of [éj‘(q,p)—g(q)]/ [var éjx(q,p)]’} converges to the

|
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standard normal distribution as K + «», this result, at best, can only lead to a rough
confidence interval for g(q). To avoid the errors of approximation inherent in the normal

approach to confidence intervals, we use an alternative technique.

Theorem 6. Let
& = {xe.8: ¢ (x)=0, §(x)=1},

R, (kqp) = il:;;ll(x,hq,p),

Y, {ap) = i5,(ap)8,(Q)/AP)R, (k.a.p),

m(2,w) = 2 log(w/z) + (1-2) log [(1-w)/(1-2)] 0<z,w<1,

let w(z,5/2,K) denote the solution to m(z,w) = g In(é/2) for fixed 2€(0,1] and 8¢(0,1), and let

W (2,0/2,K) = (z,6/2,K) if 0<a<1
(42)
=0 otherwise.

Then, the interval

(sL(Q)+A(p)R,(k,q,p)w‘(Yx(q,p),6/2,K), sL(q)+A(p)R,(k,q,p)w‘(I—Yx(q,p),6/2,K)) (43)
covers g(q) with probability > 1 — 4.
Theorem 7. Let

&, = {xe5: ¢(x)=0, ¢(x)=1},

R, (k,q,p) = max R(xk,q,p),
XEF,



Z,(:p) = ({08, (2:P))/A(P)R, (k:a,p).

Then the interval

(su(q)—A(p)Rb(k,q,p)w‘(l-Z,(q,p),5/2,K),s,,(q)—A(p)Rb(k,q,p)w'(Z,(q,p),6/2,K)) (44)

covers g(q) with probability > 1 — 4.

Proof of Theorems 6 and 7. Inspection of (13) and (14) makes clear that

prg;(a) < ¥,(X.ap) < g,(9)+ A(P)R,(kyq,p)] = 1

and (45)
 prigg(Q-ARIR, (kap) < %,(X,a.p) < gy(a)] = L

The resulting confidence intervals follow from Theorem 1 in Fishman (1988).

Although these intervals generally are wider than the corresponding normal
| ccnfidence intervals would be for given K and §, they are free of the error of approximation
- inherens in normal intervals.
| To use these intervals in practice, one needs to know {R‘(k,q,p),Rb(k,q,p); ec 9}
Theorems 8 and 9 formulate matiematical programs aimed at computing these quantities.
Since experience with several networks for the s-t connectedness problem with £ =

{qlg Sqr} has shown that p = q usually minimizes the worst case bound (42), we focus

on the case p<q,

Thecrem 8. Let & denote the set of all minimal s—t cutsets of smallest cardinality, let




E(MN*)= U g,
(4°) icw* *

L = {2, i=l..L 2CE8H)

A ={%cD: #CE(N)and |¥| =4[}

s, = log [q,(1-p,)/p,(1—q,)] i€ W™
and assume q2p; for VieN*. Then
k-3 z. T oz
' jes t A
R (kqp) = I _ (q;/p,) [(1—q;)/(1~p,)] (46)
i€ W™
where 5 solves the integer program
min £ a I z (47a)
s i€ ' e8!
mbject to
T oz.21 V Pek (47b)
€ 2
T z.<|¥|-1 Vees (47¢)
j€w ! 2
and
2,6{0,1) V je S H*).  (47d)
The Appendix contains the proof.

Theorem 9. Let Fdenote the set of all minimal s—t paths of smallest cardinality, let

A =¥, i=1,..J: ¥ C &(N)}

H={PeF PCE(H), |2 =|4])

Y v L Y P Y PNV TR TPy VLN VLYY VY




tndalmqizpiforVied‘. Then

o | k-3 z. Tz
' jed i€,
Rykad) =T (4,/p) [(1-a,)/(1-p,)] (48)
where s solves the integer program
3 min £ a I z (49a)
: 3 i€MN* ' jes !
subject to
T z.<|¥|-1 V&e (49b)
jew ? | 4
I z.21 V PeA (49c¢)
€2 ?
and
zje{o,l} V je 8(H*). (494)

The proof follows analogously to that for Theorem 8.

Recall that since .91,...,.91 are edge disjoint, I < I' = the size of the minimal s—t
cutset of smallest cardinality. Therefore, if || < I', then | 4| = 0 so that the
constraints in (47¢) vanish and

"

R (kq,p) =[II /p. -~ £ mina).
. (k,q,p) [i‘E *_(ql/pl)] exp( ek mizn, a,) (50)




) &

The case of | & | = I" requires more detail. If the minimal s—t cutsets in A, are

edge—disjoint, then (47) has the form of a transportation problem with | 4| < J” = the size
of the minimal s—t path of smallest cardinality and can be solved using a special purpose
g ] algorithm as in Dantzig (1963, p. 308). If the cutsets are not edge—disjoint, A, rotentially

| can have an exponential number of members, limiting one's capacity to enumerate them

all. This possibility suggests an iterative approach.

E Suppose one begins by relaxing (47¢c). This gives the candidate solution (50). If the
- set of arcs chosen there do not form a minimal s—t cutset in &, then the problem is solved.
;. ‘ If they do form a cutset 8’, then one activates the cocrresponding constraint. Let i denote

the edge in ¢ with the largest a.. Then [IT  (q./p,)]exp(— £ % min a,)
1 ieN* ! PeH i€ P\(i*) !

solves the problem provided that the selected edges do not form a minimal s—t cutset in &
. If they do form a cutset, then continued iteration becomes more complicated and one

may elect to drop one of the edge—disjoint paths % in 4 from the lower bound gL(q)
thereby reducing the size of 4 and making

3 R(kgp)=[N (q./p.)]exp(— & £ mina,
| J(k.a.p) [ie*‘(q,/pl)] p( 961‘\.90i6.?lmn a,)

the solution.

The solution to (49) proceeds in an analogous manner. If M <] *, then

Rykad) = (1 (a;/p)lexp(~ & T mina) (51)

i€

If |.lb| = J‘, then one can eitLer drop a cutset 30 in A from the upper bound gU(q) and
use
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%’ kap)=[II (q./p,))exp(-- & L mina))

E By ) [iE N i/P)l YEKL\Y, ic¥ !

b as the solution, or again proceed iteratively. With (49c) relaxed, (51) is the candidate
solution. If the set of selected edges do not form a path in A, then (51) is the minimum.
B

‘ K they do form a path & * with edge i giving the largest a., then the solution
1 11 Jp)lexp(— £ I min a.) needs to be checked, etc. One anticipates
7 [i ,'.(ql Y ¥EL i€¥\{i*) !

E. that choosing edge—disjoint paths ,..,% and cutsets ¢,,...,¥; such that 4 and A

are empty generally will have small effect on the bounds g (q) and gyl@) for large
L networks.

9. Simuiltanecus Confidence Intervals

Although each confidence interval in Section 8 holds with probability > 1-§, the
Jint confidence intervals for {g(q), g€ 4 hold simultaneously only with probability >
1-| #6. This result follows from a Bonferroni inequality. See Miller (1981, p. 8). To
restore the joint confidence level to 19, one replaces log (8/2) by log (§/2| £|} in (43) and
‘44) and determines the corresponding solutions. The effect of this substitution is to
increase the constant of proportionality in the approximate interval widths from
[ 2/ to [2og(2] #/8)]} (see Fishman 1986). For 6=.01 and |2=20 one has
. 3(218/6)1og(2/8)}! = 1.25. For =.01 and | £ =100, it is 1.37 and for 6=.01 and

| #/=1000 it is 1.52. Moreover, if £ denotes a continuous region in the | #|—dimensional

hypercube (0,1)| ", then the resulting confidence intervals have infinite widths and are
therefore useless.
An alternative approack derives simultaneous confidence intervals for {g(q), q¢ 4}

using the representation of g(q) in (44). In particular, it implicitly finds simultaneous

i
i
i

— -n;—-‘n-munq.m.—m--.v\.-y-.rn-;—.‘-J
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confidence intervals for the coefficients {uj(z .»2.)} of whick there are N < Ilo‘“k. in
i€

(34). For convenience of notation we take | *| = r but noie the relatively
straightforward adjustment for |N*| < r. Let 5 = (2,,--.z_) and recall the definitions of
K,(s) and K,(s) in (35) and (36). Then {(u‘(xj(.)/x,a/zn,x), u‘(l—xj(z)/x,s/zn,x);
Vs}, where w (-,-,-) is defined in (42), provide confidence intervals for {u;(2)} that hold
simultanecusly with probability > 1-4.

Obeerve that all coefficients uj(z) are nonnegative and that {w‘(Kj(z) /K,8/2N K),
u‘(l—xj(s)/x,a/zn,x} are independent of q. Therefore, for all g€ 2

k k. . *
(8,(@-A(p) I'.. FR'(zkap)w (K (3)/K,6/2NK),

:l=0 zr=0
(52)
g0+ Ap) §‘ FR(sk.ap)0(1-K,(5)/K,6/2N,K)
3,20 1=
simultaneously covers {g(q), g¢ & with probability > 1-§ and likewise
(sg(@+AW). z‘ Z'R (3k,qp)w (1=K, (2)/K,6/2N K),
l
(53)

g9~ A(p) . FR(kep) (K, (5)/K,8/2N,K))

:1-0 zr-

simultaneously covers {g(q), g€ 4} with probability > 1-6.
The most desirable feature of this alternative approach is that the resulting
intervals are unaffected in width or confidence level by the size of 2. However, since the

number of quantities K. (z) to be collected is O( IT A’k ), this alternative approach

becomes less feasible to implement as the ki and r increase.




10. Steps for Implementation
To implement the proposed sampling plan to estimate reliability for s—t
connectedness, one proceeds as follows:
Determine a set of edge~disjoint minimal s— paths #,..., 3.
Determine a set of edge—disjoint minimal s—t cutsets cl,...,q,.
Compute {g,(q), g,(q); q€ 3}
Determine a sampling vector p from £as in Section 7.
Using Algorithm A, perform K independent replications.
For each qe$: compute R, (k,q,p) if V(g ‘l(q,p)] > V[é“(q,p)]; otherwise compute
R, (kq.p) (Section 8).
2 7. Using the bounds {R (kqp); a8 or {R,(k.q,p); @€ 8 in step 6, compute
' individual or simultaneous confidence intervals for {g(q), g€ £} (Sections 8 and 9).

1R I S o v

Although these steps require more work than crude Monte Carlo function estimation
does, one can develop computer programs wita sufficient generality to compute all
quantities in steps 1 through 7 for many different network designs. Reusing the programs
enables one to distribute the fixed cost of their development over all such network, making
the cost per network incidental.

R

‘} 11. Example

An analysis of the network in Fig. 1 illustrates the proposed method. The network
| has 30 edges and 20 nodes. Also, the example assumes r=1 30 that all edges have identical
reliabilities, allowing us to write g=q. Note that any other specification with r>1 can also

Insert Fig. 1 about here.

be accommodated easily. The objective is to estimate {g(q), q=.80+.01(i—1) i=1,...,20}

act —— O D e . L' S g WV YL P T O X o rj
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whare g(q) = probability that nodes s=1 and t=20 are connected when edge reliabilities are
q- Por sampling, we use p=p, again merely as 3 convenience. The selected edge—disjoint

paths and cutsets are
| # = (3,9,18,27,28) 2 = {1,5,12,21,20)
2 = {2,7,15,24,30) ¥ = (1,23}
¥, = {28,29,30} ¥, = {11,12,14,15,17,18}
v, = {4,5,6,7,8,9) ¥, = {19,21,22,24,25,27}.

As a preliminary step, Table 1 shows the worst case upper bound on var qbb(x,q,p)
;‘ as given in (41). Obeerve that the choice p=.80 minimizes this worst case bound and it is

Insert Tables 1,2, and 3 about here.

this component reliability that we use for sampling. A parallel analysis for var q()‘(X,q,p)
F also chose p=.80.

- Table % compares the estimates of var g, (q,p) and var g, (q,p) for a sample size K
= 1048576 and shows the estimated control variate coefficient ©°(q,p), as in (29). These
results strongly favor relying on g,,(q,p), if the choice is between this quantity and
g 4(a.p). Table 3 shows the resulting estimates in col. 1 along with variance estimates in
col. 5 and individual 99% confidence intervals in cols. €~8. In contrast to the exact results
in col. 3 which took slightly more than one hour each to compute, all results in cols. 1,2,4
and 5 vook 72.7 minutes in total, or 4.16 milliseconds per replication. Computation of the
confidence intervals took incidental time. Whereas the calculated exact results in col. 3
were accurate to sixteen significant digits (reduced to four digits here for comparative
purposes), the confidence intervals suggest an accuracy to two significant digits at the .99

level. If two significant digits is acceptable for purposes of analysis, then the Monte Carlo
approach clearly prevails.




—32-

Table 4 shows the effect of sampling at an arbitrary point p=.90 rather than at
p=.80. Although sampling at p=.90 does produce better results for q>p, the deficiency of
sampling at p=.80 in this interval is considerably less than the corresponding deficiency for
sampling with p=.90 for .80<q<.89.

E Insert Fig. 2 about here.

Figure 2 displays several variance ratios that reveal how {g,;(q,.80)} performs
compared to the crude estimator {g (q)} in (3), the estimator {g (q)} in (6), and the
approxiinately optimal estimator {§,(q,p,6(q,-80))} in (30). First, note that {g, (q.,p)}

; performs almost as well as {é[(q,p,é‘(q,.SO))}. Second, observe that uniformly superior
E ratio for {é“(q,p)} when compared to {E'(Q)}- In particular, note that these ratios exceed

100 for q2.95.

We now turn to the efficiency measure (22). Since V(g ;(q,:80)] > V[g,,(q,-80)] for
all q¢4 Fig. 2 makes clear that A (p) > 108, indicating the clear superiority of
{8,5(:-80)} over the crude estimator {g,(@)} in (3).
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Table 11

mzen.c2 h(q,p) for 2 = {.8+.01(i-1) i=1,...,20} and pe{.5+.02(i-1) i=l,...,25}
: q
’ P Q- iy h(q,p) P ¢ mar h(g,p)
) 50 .89 .3801D+03 76 83  .7496D-01
52 .89 .1561D+03 78 84  .4985D-01
; 54 89 .6567D+02 80 .84  .3234D-01
.56 .89 .2953D+02 82 .80  .8818D-01
t} 58 .88 .1363D+-02 84 8¢ .1090D+00
; .60 .88 .6519D+01 .86 80  .1642D+00
| 62 88 .3222D+01 88 80  .3255D+00
: 64 .88 .1545D +01 .90 .80  .€961D+00

.66 87 .8754D-+00 92 80  .5410D+01

.68 87 4824D+0P 92 80  .9111D+02
| 70 86 2790D+00 .96 80  .1400D+05
& 12 84 .1709D+00 98 .80  .7866D+09

T4 83 .1116D+00
F,‘ Tq. = q in 2 at which h(q,p) achieves its maximum for specified p.
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Table 2

Comparison of V(g g(a,p)] and V(g (q,p)]

(p=.80, K=1048576)

? | o Jegel nen L Vel

] Vigyg(a,p)] Vigyg(a,p)]

80 1.00 - .90 214.0 0001

81 1.58 4941 91 319.0 0005
82 3.04 1799 92 475.5 0006
83 6.07 ~.0852 83 713.8 0006
84 1161 —.0440 94 1097.0 0005
85 2097 ~.0233 95 1755.0 0003
8 3592 ~.0122 96 2995.0 0002
87 58.78 ~.0060 97 5727.0 0001

,, 88 92.67 ~.0026 98  13665.0 0001

: 89 142,10 —~.0008 99 57108.0 .0000
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Table 4

Aq) = var g, (q,90)/var g,(q,80)"

t Estimated by Vig,;(0,.90)]/Vlgy(a,-80)}.

. (K=1048576)

q A i q A@ (A

.80 39.18 6.26 .90 9821 9910
81 46.80 6.84 91 7072 .8410
82 29.78 5.46 .92 2796 5288
83 18.87 4,34 93 4117 .6416
R.7 11.96 3.46 94 3334 5774
85 7.61 2.76 95 .2808 5299
.86 4.88 2.21 96 2452 .4951
87 3.17 1.78 a7 2217 .4709
88 2.09 1.45 98 2061 .4540
89 1.41 1.18 99 .1989 .4460




Fig. 1 Network

All component reliabilities are identical.
p=.80

2= {80 + .01(i-1) i=1,...,20}

K = 22 = 1048576

Lower bound based on 3 edge-disjoint paths
Upper bound based on 5 edge-disjoint cutsets
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Fig. 2 Variance Ratios for Alternative Estimators

1 var Ex(q)lvar ﬁbK(q,P) p = .80
2 var § (q)/var §,(a,p)

3 var ﬁK(Q.P.Q*(Q.P))IVlr ﬁbx(qu)

.,..r"'r
~_.___.__,...-—l*'

K = 1048576
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Appendix

Proof of Lemma 1. Observe that

E{¢(X)R(X,k,q,p)] = ngMX)R(Lk,q,p)Q(x,k,p)

P ¢y(x)—¢; (x)
= x!e:a?(x) p{':"’f%} [‘_E(F)'_] P(x,k,p).

Since ¢(x)¢l(x) = ¢L(x) and ¢(x)¢u(x) = ¢(x), one has
E[¢(X)R(X.k,q,p)] = [g(2)—8,(9)]/A(p)-

Also,
E[#X)R(Xkqp)’ = T #x)R*(xkqp)Q(xkp)
x€ ¥
_ p? $(x )¢, (x)
Observe that |

Pk a)/Plke) = 1 (@fpy) o) apl

= c(q,P){ilill(qz/cipi)‘i[(l_qif fe-p] E i),
s0 that {P%(x,k,q)/c(q,p)P(x.k,p), x€.8} is a p.m.f. Expression (12) follows.

Proof of Lamma 2. We restrict z to (8, (2), gu(q)]. Consider the case p>q which implies
that q*<q 50 that g(q') < g(q) and g,(q") < g,(q). In this case h (z) < h,(z) so that (40b)
gives the tightest upper bound.

Since p<q implies q<q* so that g(q) < g(q‘) and gj(q) < gj(q*) for je{L,U}, one has
5(a) 2 maxlg;(a), g(q)]- Also, either g, (q) < g,(a) < &() or g(a) 2 g,(a). Since g (q")
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2 (‘(q) implies g"(q‘) 2 g(q), h,(z) < h,(x) 80 that (40b) gives the tightest bound. If g (q)

< ;L(q.) < gu(q), it is not clear whether g(q) < 51.(‘;) or g(q) 2 gL(q'). Therefore, (40a)
gives the best bound.

Proof of Theorum 3. The function h, has its unrestricted maximum at z = gy(a)-

Therefore,

o 02 1 =) if 8,(a )¥lg, (0),g(0)]
and

- Al h,(g(a)) it 5,(a )eleg, (0).85(Q)]

The function b is concave with its maximum at »* <g,(q). Therefore,

&(q-)?:; q)h,(z) =hy(z) if g (q )<z <gy(a)

= h,(g,(a)) ifz <g,(q).

Then Thearem 2 fellows directly from Lemma 2.

Theorem 4. Define wl(zz)=hl(z)/z2 and w,(z) =h2(z)/z2 for h, and h, asin (39)
for —a<z<a. Let 3, = g(q) - c(aP)A(P)A( )/gy(Q), %, = [g2(@)—<(a,P)A(P)A(Q"))/
[gy(@)—<(a.P)]A(p)/2] and b, = 2g,(q) - c(q,p)A(p). Then

1792w (ap) = w,(@) g (a)elg,(2).8,(a)]

max
,(0) <2¢g,()

= max w (2)

) ’s,,(q‘)?:ggu(q)%m

max x
g, (2) <z<g (q)

if g (q")elg, (0).&,(a)]
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&(‘I)?:ggv(q)wl(z) = w,(g, (@)
= wl(zl)
&(Q)?:;gu(q*)"(z) =w, ,(®)
= wl(zl))
= '1(51,(‘1*))
and
B &(‘l’)?:gs.,(q)"(’) = wy(5(0)
= W,(&y(a))
= '2(51.(‘1*))
= Wz(z 2)
= W,(gy(2))
= Wy(8y(Q))

if 2, 2g, (9),
if zlSSL(q)
if sL(q)Szlss,,(q*)

*®
if 2,2g,(q )

if z2<0 and b2>0,

if 2,<0 and b, <0
. *
if 0$z2$gL(q ) and b2>0

*®
i §,( )$2,<gy(a) and b,>0

if z,2g,(q) and b,>0

*®
if OSzQSgL(q ) and b2<0

= max [wz(sh(q*))"’a(gv(q))]

= w,(8,(a))

Proof of parts i and ii. Since

x
if g (q )Sz2SgU(q) ard b, <0

if zzzgu(q) and b, <0.
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w,(s) = b (g)/s* = a /e + b /21
a, = c(a.p)A(P)A(Q) - g5(@) and b, = 2g,(q),

dW‘ 2 2
aT = —(2&1/2+b1)/’ = - bl(—l1/2+1)/z

d"l 3 3
;5_8 2(3a,/z+b,)/2” = 2b (32, /22+1)/2".

If 2<0, then w, is convex and decreasing on [0,») and w_, has its maximum at

1
:cgl‘(q). i 3,>0, then w, is concave on (0,32,/2] and zlsgv(q) so that w has its
maximum on (g, (q), gv(q)} at 2=z if z¢[g(q), g“(q)] and at z = g,(q) otherwise.

The result for part ii follows immediately.

Proof of iii. Since
w,(s) = hy(z)/s* = a,/5* + b /z -1
where
3, = c(aP)A(P) g(a) — () and b, = 2g,(@) ~ c(aP)AP),
then
dw, 9
T = —by(—2,/z+1) /2
and
dzw2 s
'&-‘—2—= 2b2(—3:2/z+1)/z .

Consider the interval [g, (q'), gy(@))- If z,<0 and b,>0 then w, is convex on [0,0) and its
maximum occurs at z = gL(q'). If z,<0 and b,<0 then w, is concave on [0,0) and has its

maximum at z = g,(q). If z,>0 and b,>0, then w, is concave on [0,3z:] so that the
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maximum occurs at 5 = &(q‘) if s,SgL(q.), g =3, if gL(q‘)SzQSgU(q) and at z = g,(q) if
2,28,(a). 1f 3,0 and b, <0, the maximum occurs at z = g(q) if 2,8, (q ), at = = g (q ) if

3,22,(q) and at 3 = max{w,(g,(q ), W,(g,(®)] if g, ( )<z, <g,(a).

Theotem 5. Let wy(s) = b, (s)/(1-2)* and w,(z) = b,/(1—2) for b, and b, as defined
i (39). Let

3, = (@) + (aP)A(P) A(Q)/[1-g,(a)),

3, = 1 = 2{c(aP)AP)[i-g,(a)] + 1-g(@))’}/{c(a.p)A(P) + 21— (@)}

Then
7 (ap) < ¥ (ap) = - A LI £,(4)¢(8,(2).y(a)]
= max max ws(z) « NAX w‘(z)
g(D<zgg(a) ° glq)<z<gyQ)
if g (a )elg, (2).8y(a)]
where
5,(@ <388 @) =) = v3(8(@) g2l
= W,(8y(q)) if 2,<1
U @) wy(z) = wy(g () if 2,21

= ws(g“(q)) if 23<1

—— 4



—46-

A0 )“‘!u(‘ﬂ " (8) = v (6,(0) if 2,48, (q)
= W4(34) if SL(q')Sz 4550(([)
= w4(80(q.)) if 24230(q)

Proof of Theorem 3. Since
wy(3) = ay/(1-%)* + by/(1-2) -1

where
ay = c(@PA(P) Alq) - [1-g, (@)’
and
b3 = 2[1-80(‘1)]:
dw
_ = (—1-)2 [28y/by(1-2)+1] = Z—_) |12/ (1)1

dzw

e )3 [38y/b,(10)+1] =

%,
3 [4(1—z3)/2(1—z)+1].

Obeerve that 5, = 1 + 2a,/by > gyy(@). If 2421, then w, is convex on (—w,1}, having its
maximum on (g (q), g,(q)] and on (g, (a), gL(q.)] at z = g (q). If z,<1, then w, is convex
on [(3s,-1)/2.1] and w, has its maximum on [g, (q), g;(@)] at z = gy(q) and on l8,(0),
£,(a")] st 2 = g (q"), establishing i and ii.

Proof of iii. Since
w (3) =a,/(1=2)" + b /(1) - 1
where
3, = c(@p)AP1-gy(a)] + [1gy (@)
and

b, = 2{1-gy(9)] + c(a:p)A(p),




SR AT T T

il T
s ,

IR~ ik <
SR Y .
[P

—~47-

then
dw2_ b4 _ b4
e [28,/0,1-2)+1] = T 1210241
and
dw, 2 2b,
dz’2 - _:)2 [38.4/b4(1—z)+2] - [—3(1—24)/2(1—z)+1].

Consider the interval [5L(q'), &,(@)]. Since z,<1 w,
w, has its maximum at z = gL(q.) if zégL(q'), at z =z, if gL(q‘)SzQSgU(q) and at z =
£(@) if 3,28,(0)

is concave on [«1-z,)/2,1]. Then

Proof of Theorem 8. Observe that

. X, k,—x.
R (xkgp)= I (q/p,) *[(1—q)/(1—p)] * *
i€ M

has the alternative form

» k.
,Q,p) = /p.) Ylexpl- T a % (1-y.
R (xk,q,p) [ifeI ”(qllpl) ] exp| g ‘EJi(l )

j
with
T y.=x. ieH¥*.
j€3i 1 i
The condition ¢, (x) = 0 requires that
T (1-y.)21 V Pe A
e ! .
and the condition ¢(x) = 1 requires that
(1-y.) < | ¥ -1 Vé&es.
je¥ 3 2
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max exp[— I (l—y ;)] = exp[~ min E oy
y i

y i€EMN* x j€

& , one has the integer program (47) with y; = (1--zj).

:

3 I (1-y)),

JEJ

St S S |



