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EXACT TESTS FOR VARIANCE COMPONENT MODELS WITH UNEQUAL CELL
FREQUENCIES IN THE LAST STAGE

Andre I. KHURI

Department of Statistics, University of Florida, Gainesville, FL 32611, USA

Abstract: Khuri and Littell (1987) derived exact tests for testing hypotheses concerning the
variance components in an unbalanced random two-way model. The method used in the
development of these tests can be extended to more general unbalanced random models. In this
article, such an extension is established for models that are unbalanced only with respect to the
last stage of their associated designs. A numerical example is given to illustrate the

implementation of the proposed methodology.

AMS Subject Classification: Primary 62J10; Secondary 62F03.

Key words and phrases: Unbalanced random models; Hypothesis testing; Power of exact tests;

Nested and crossed classification models.

1. Introduction

The traditional analysis of data from an unbalanced random model uses approximate F tests

that are based on sums of squares, which, in general, are neither independent nor distributed as scaled

——
chi-square variates. The true critical values and power functions of these tests are unknown and ‘or
depend on variance components other than those under consideration. Furthermore, the tests, C

! C
particularly those that depend on Satterthwaite’s procedure, can be quite unreliable. This was on__

B ———

demonstrated by Tietjen (1974), in the case of the unbalanced random two-fold nested model, and by

pirstribution/ i
Cummings and Gaylor (1974). 3"";\—9;171'&51.11”.‘(;.60—&1
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The method developed by Khuri and Littell (1987) produced exact tests for the variance
components in an unbalanced random two-way classification with interaction model. This method is
based on a particular transformation that reduces the analysis of the unbalanced model to that of a
balanced one. In this article, a demonstration is given of the applicability of the same kind of
transformation to any unbalanced random model provided that the imbalance occurs only in the last

stage of the associated design.

2.  Notation and preliminaries

The model for a general unbalanced design whose imbalance is caused by unequal cell

frequencies in the last stage can be written in the form

174
y = 2 Y a4 + ¢ ’ (2'1)
07 20,8, " 0

where § = (kl’ kg, ..., kg) is a complete set of subscripts that identify a typical response y. The term,
th

denotes the i'" effect in the model, where 5i and 0i are, respectively, the corresponding sets of

rightmost and nonrightmost bracket subscripts (see Section 2 in Khuri (1982)). By definition,

0i =9 ;= ¢, the empty set, for i=0 and the corresponding v is the grand mean, usually denoted by .

It is assumed that ! @.y for i=1,2,...,v, and €y are independent and normally distributed random
ivi

variables with zero means and variances d%, ag, - 0,2,, and a?, respectively.
Since the design is balanced except for its last stage, the ranges of subscripts ks koo oo ks can

be expressed in the form

1,2,..,a, for)=12,. .1

k. = J .
i~ 1,2,..,npe, forj=s,

(2.2)

where r is a subset of # consisting of the first s-1 subscripts, that is,

.92-




7= (kpy koo oo kg ). (2.3)

Except for ¢, all the effects on the right side of (2.1) are indexed by the subscripts in 7. Let T be the

set of all (s-1)-tuples as in (2.3), and let ¢ denote the number of elements in T, that is,

T= {r =(kp gy kg ) k= L2025 J=12 0, s-l} (2.4)
s-1

c=1] a (2.5)
=1

It is assumed that ny > 1 for all r¢T and, for reasons to be seen later, that
N > 2e-1, (2.6)

where N = ¥~ ng is the total number of observations. Let ¥, =(9: Ei) be the set of subscripts
reT
associated with the ith effect, which results from combining the elements of 0i and 5i (i=0,1,...,v).

The complement of ¥, with respect to 7 is denoted by wic (i=0,1,...,v).

We note that if it were not for €p the model in (2.1) would be of the same form as that of a
balanced model (see Khuri (1982) for a general representation of a balanced model). This fact will be

quite useful in the development of the exact tests in Section 3.

The model in (2.1) can be written in matrix form as

(2.7)

e
[]
L
.\
=
+
Lﬂ\

where y and ¢ are the vectors of observations and random ertors, respectively, ,‘_(i is a matrix of zeros

-3-
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and ones of order NXci (i=0,1,...,v) with )_(0 being equal to Ino the vector of ones of order Nx1, and

B, is a vector consisting of the c; elements of ¥ 0.(8.) The integer c; is given by
ivi

¢ = I[N a, i=01..,v, (2.8)
k. € ¢; 1
] i

where, if we recall, wi is the set of subscripts associated with the ith effect. Note that ¢ = 1fori=0.

Let ¥ denote the mean of y, averaged over the range of subscript kg for a given

T = (kl’ k2, e ks-l) in T, that is,

1 &
Vr=n; X yg TeT. (2.9)
kszl
From (2.1) we have
i + (2.10)
yr= 76.(3 €r .
i=0 (%)

y=3HE +1, 2.11)

y
where I_{i is a matrix of order cxe;. Since }_ v in (2.10) is of the same form as in a balanced

= 70.(8.)
i=0 "iVi
model, the matrix l_{i can be expressed as a direct product of the form (see Khuri (1982), p. 2908)

Lp i=01..v, (2.12)

where [~‘i ¢ is given by

4
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1= ..
c ~1.9 (2.13)
keew e_lq aq...,S‘l.

In (2.13), Ia ’ and 15 ¢ denote, respectively, the identity matrix of order ayxay and the vector of ones of

order apgx1. We recall that w;: in (2.13) is the complement of ¥; with respect to r. Let Ai = [_{i[jf,

then
A = s-1 M . _ 2
°i‘¢§1~i¢’ i=0,1..,», (2.14)
where
oo M€Y iz ols
0= g0, kpewt =12 051 (213)
) i
In (2.15), .]ae denotes the matrix of ones of order apxa,.
The variance-covariance matrix of § in (2.11) can now be written as
7) = 3= o2 2
Var(y) = 3. o7A; + 02K, (2.16)
Tzl
where
K= diag(ﬁl;)nT. (2.17)

The right side of (2.17) denotes a diagonal matrix of order cxc. Its diagonal elements are the

reciprocals of the ny's for 7¢T, the sct of all values of 7 in (2.3). It can be verified that éif_\,, = A_,:_\i e
i i

for i;éi'. It follows that there exists an orthogonal matrix, Q, of order cxc such that

QAQ =4, i=o0.1,..v, (2.18)

where A, is a diagonal matrix. The construction of the matrix Q will be described in Section 3.
-5-
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3.  The development of the exact tests

Let us again consider model (2.10). As was noted earlier in Section 2, the first part to the

v
right of this model. namely, .207 0.3.y is not affected by the imbalance in the last stage of the design,
=0 "i‘"i

that is, in the r-cells, where 7 is described in (2.3). Let us therefore consider the derived model

zp =Y 70i(§i).

3.1)
i=0

Model (3.1) is balanced with one observation in each r-cell. Let P, be a cxc matrix associated with

the sum of squares for the ith effect (i=0,1,...,v). From Khuri (1982) we have the following lemmas:

Lemma 3.1.

(1) Pi is idempotent (i=0,1,...,v).
(ii)
(iii)

lig°)

P, =0 forigi,
1

P.
=i

Le.

Tt

Lemma 3.2. The matrix P, can be expressed in terms of the éi’s in (2.14) as

= (A./b A, =0
l_)i _jzz:o( ij/ j)'j’ i=0,1,.... v,

3.2)
where '\ij is a known constant equal to the coefficient of the jt‘h admissible mean in the it'h component
for the balanced model in (3.1) (possible values of Aij are -1, 0, and l), and bj is given by

b.= T[] ap J= 0,1,...,v, (3.3)
J c

where wJF is the complement of wj with respect to 7.

Lemma 3.3. The éj and P, matrices in (3.2) are related by the following identity:
-6-
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(3.4)

.
—
-
[
?
-
-
(S
i

>

3 where Kij is given by

3% K = . . . (3'5)
“'! :: l.l b]’ 'I’IC'I’J,

and ¥ is the set of subscripts associated with the i! effect in (3.1),i=0, 1, .., ¥

::": Let m; be the rank of P, (i=0,1,...,»), then by Lemma 3.1, Zom =c. Let Q be a matrix of
; :. order m; xc and rank m, whose rows are orthonormal and span the row space of l_’i (i=0,1,...,»). The
ey matrix Qi can be easily obtained as the result of a Gram-Schmidt orthonormal factorization of the
A*, rows (or columns) of P;. The proof of the following lemma is given in Appendix A:

‘\?\ Lemma 3.4. The matrices 90’ gl' e Qu have the following properties:

) (i) Qg =L/
Q Q= Im,

0,1,..,v
N (i) AQ!= 0. 1

vy Vo

i Qz[Q(']:Q'l e :Q{,]’, (3.6)

which is of order cxc. By Lemma 3.4, Q is an orthogonal matrix and diagonalizes Ag, Ay, ... Ay

."': simultaneously as in (2.18). From (2.16) we have

e V“'(Qif) —Qg a2A +a?K)_i'. i=1,2...0,

Byl g e R A0 1 1 UMMM NN K
DRI AN W, KA S NI ‘c"'n L R T i‘c' Gy »'ﬂ.‘i‘ ‘l' pit!
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=¥ o3(Q;4,0]) + o¥(QKQY). i=12..u

J=l ] 1= 1
where
6;=3 bo?
jGW-l

In (3.9), Wi is the set
wi={i:v,co 1gisv}
From (3.7) and (3.8) we obtain

var(Q7) = §Im, + o¥(QKQ]), i=12 .»

Furthermore, for i i)

Cov(glg, y'gl',) = Ql(jZi:lafAj + a?K)Qi':
= o?(QK Q)

By (3.10) and (3.11), the variance-covariance matrix of u is of the form

Var(y) = diag(8)Im,, Solmy, -« 6ulm, ) + 02G,

where

oy

1 ' DAONCODOOONE
RS MU OL MR OLIOGIOLN A IR 4
‘-'a’.‘f‘p‘.,'l"‘a"'a‘?‘a. "r’x‘v‘ ‘4‘;"“."“' ”f%‘*‘tblf!hh‘v“\i

ANARSARIAOAGAOAOHOOUGOOUNNEES
‘i.‘“‘.t“‘.'z‘ﬂ .‘ﬂ‘.‘y"'li'vjl'.‘.lg b

3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



o?*a
=
oy}
i
1O

(3.14)
‘ x '

- and @ =[Q]:Qh: - QL]

eyt Now, the vector § can be expressed as ¥ = Dy, where y is the vector of observations in (2.7) and D is

il the direct sum

D= o
Te

T(LQ,/nr), (3.15)

SRIRSHLL.

where 7 is defined in (2.3) and T is the set of all values of . The matrix D is of order cxN, where N

%

is the total number of observations. Also, the residual sum of squares for the original unbalanced

e O

model in (2.1) can be written as

oo
KN AShS

SSgp= %(Yg - YT)2
Oy 9
1 = E 2 (.VQ - YT) ' (3.16)
TeT| kg=1
b where, if we recall, § = (7, kg). Formula (3.16) can be rewritten as

o SSp = v'Ry, (3.17)

oy where

.;c
o,
e

& (In, - dng/nr) (3.18)
u..-t‘ Lemma 3.5.
(i) R is idempotent of rank N-c.

R (i) DR=0.

(i) RX




where X, X, ..., X, are the matrices given in (2.7).

Proof. See Appendix B.

From Lemma 3.5 we conclude that

DIR =0, (3.19)
where ¥ is the variance-covariance matrix of y in (2.7), which is equal to
£ =% o2X.X! + ol 3.20
T=2 XX + ey (3.20)
Furthermore,
RE/o? = R. (3.21)

It follows {rom (3.19) and {3.21) that y = Dy is independent of SSE and that SSE/ag has the chi-

square distribution with N-c degrees of freedom, the rank of R.

Since R is idempotent of rank N-c, then it can be written as

R = CAC, (3.22)
where C is an orthogonal matrix and A is a diagonal matrix with N-c ones and ¢ zeros. By the

assumption in (2.6), A can be partitioned as

A = diag(1, o ley 0), (3.23)

where
fl =c-1
£y = N - 2c+1>0, (3.24)

-10-




and 0 in (3.23) is a zero matrix of order cxc. Accordingly, the matrix C in (3.22) can be partitioned

as G = [(_'Jl :Cq: (_)'3], where C,, Co and (_33 are of orders Nx§,, Nx§,, and Nxc, respectively. We

then have
_ / /
R =C,C1 + CyCo. (3.25)
Note that
CiC, =1, i=123 396
gi,gil =0, '?ﬁi’- (3.26)
Let us now define the random vector w as
b
w=u+{Mmaxlg -G})°Cyy, 3.27)
(Amaxle - G)'Cly (

1
where G is the matrix in (3.14) and Aqgax is its largest eigenvalue, (*\max! £ - G)i is a symmetric

matrix with eigenvalues equal to the square roots of the eigenvalues of Amax] £ - G, which are

nonnegative. Let w be partitioned just like y in (3.12) as
W= (w’l wWhe oo g{,)’, (3.28)

where w; is of order m; x1 and m, is the number of rows gi (i=1,2,...,v) in (3.12). The distributional

properties of the w.’s are given in the following lemma:

Lemma 3.6.
(i) E(w) =0, i=12..,.
(i)  wy) woy ... wy are independently distributed as normal random vectors with w, having

the variance-covariance matrix

-11-
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vM@Q=(q+Amuaahm. i=1,2... 0, (3.29)
where 6i is defined in (3.9).

(2) (2) _

(ii1) W]» @gs ... Wy are independent of SSE » where SS,

'C2C2y is the portion of the
residual sum of squares, SSg., in (3.17), which corresponds to the matrix Co in (3.25).

Proof.

(i) From (2.11) and Lemma 3.4, E(Qiy) = Qilj = 9 leBg=0fori=1,2,.., v. Hence,

E(u) = 0 by (3.12). From (3.18) we also have that R1, = 0, which by (3.25) can be
N

rewritten as

(C1C + CaCh)iy = 0. (3:30)

Using (3.26) in (3.30) we get Cl N = 0. It follows from (2.7) that E(C y)= (_]'llNﬂo =
0. The mean of w in (3.27) is therefore equal to zero.

(ii) It is clear that w is normally distributed. Now, the vector u in (3.27) is independent of

(_J'l!. To show this, we note from (3.19), (3.25), and (3.26) that

DEC, =0. (3.31)

Hence,

since y = Dy. It follows that §, and hence u in (3.12), is independent of g'ﬂ

The variance-covariance matrix of w can therefore be expressed as

1 1
Var() = Var(y) + (Amaxlg, - GJ'CIEC)(Amaxle - G (332)

But, from (3.21) we have

-12-
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RIR = o7R (3.33)
Also, from (3.25), (3.26), and (3.33) it can be verified that
CIEC, = oéCICy = oi I - (3:34)
From (3.32) and (3.34) we then have
Var(w) = Var(u) + a‘g’(,\max; - g). (3.35)
By using (3.13) in (3.35) we get
Var(w) = diag(&llm 1 Salmys oo 6,,1",”) + Amaxo?l x (3.36)

From (3.36) we conclude that Wy Woy .. Wy are independent and that Var(w;) has the
form described in (3.29).
(iii) ssg) is independent of u (since SSE is independent of ¥ by (3.19)) and is also

independent of (_3'1!. This is true because
C{ECy =0, (3.37)

which follows from (3.25), (3.26), and (3.33). Consequently, SS(I,;Z) and w in (3.27) are

independent.

From Lemma 3.6 we conclude that if SSi = ‘!i,"'i (i=1,2,...,v), then the sums of squares, SSl.

S84, ..., SSy are independent and SSi /(ﬂ‘“max’? ) is disteibuted as a central chi-square variate

with m, degrees of freedom (i=1,2,...,v). Furthermore, the SSi’s are independent of ssg)/a% which
-13-
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has the chi-square distribution with £, degrees of freedom, where 62 is defined in (3.24).

‘)
It follows that SS,, SS,. .... S5, and SS(E-) act like sums of squares in an ANOVA table for a

balanced random model. In other words, the analysis concerning the variance components,

92 2 . L. 0 . .
O O3 oo 0,2,, can proceed using these sums of squates just like in a balanced data situation.

In particular, if the data set is balanced, that is, if ny = n, then K = I¢/n (see (2.17)) and G
= [El/n, where G and {; are defined in (3.14) and (3.24), respectively. Consequently, Amax, the
largest eigenvalue of G, is equal to 1/n. The vectors w and u in (3.27) are therefore identical. In this

case,
sw=u"v = :7'( 5 Q{Qi)i (by (3-12))
= Y’(!c - .]c/c)y (by Lemma 3.4)

v
= z:'( 3 Ei)z (by Lemma 3.1(iii) and the fact that P = J¢/c by formula (3'2))'

Now, from (3.2) we can write

!
B

(|
[ <]
Il
]

Y'[.'_l:"-o(*ij/ "3)41]

J

g'[j}i:o(xij/bj)( :gllmn)]z. (by (2.19)) (3.38)

Since § = ([c®1{|)¥/n, formula (3.38) can be expressed as

-14-




A
<lp = _ _1- /) 14 J s-1
Y'BY = ny L‘gﬂ“"j (eglee)®Jn}j]¥- (3.39)
Formula (3.39) shows that ny_"l?-ly is the usual sum of squares for the ith effect in a balanced model of

the form given in (2.1). In other words, nSSl. nSSQ, ..., and nSS,, reduce to the usual balanced

ANOVA sums of squares associated with the corresponding v effects whenever the data set is balanced.

4. Power of the exact tests

Power values for the exact tests in Section 3 can be easily obtained just like in a balanced
model situation. As in Khuri and Littell (1987), it is easy to show that such power values are
monotone decreasing with respect to Amax, the largest eigenvalue of the matrix G in (3.14). Upper

and lower bounds on Ay ax are given by the double inequality

1 1
rcET iy < dmax £ ——— (4.1)

1
< - '
TG

where ny is the frequency of the r-cell (see (2.3)), and T is the set of all values of r. The proof of
(4.1) is similar to the one given in Lemma 2 in Khuri and Littell (1987) and will, therefore, be omitted.

We note that the lower bound in (4.1) is the reciprocal of the harmonic mean of the 7-cell frequencies.

5. A numerical example

An example is given in Milliken and Johnson (1984, p. 264) of a study concerning the efficiency
of workers in assembly lines at several plants. Three plants were randomly selected. Four assembly

sites and three workers were randomly selected in each plant. For convenience, the efficiency scores are

reproduced in Table 1.

The model for this experiment is




yl_]ke =u+ ai + ﬂlu) + 7l(k) + (ﬂ.y)l(Jk) + ‘ijke'
where a; is the effect of the ith plant (i=1,2.3), ﬂi(j) is the effect of the j‘h site within the ith plant
(3=1,2,3,4), 7i(k) is the effect of the k'P worker within the ith plant (k=1,2,3), (’B'r)i(jk) is the
interaction effect of sites and workers within plant i, and €jke is the error term. The variance

components are cg, a%, a%, d% ¥ and cg. respectively.

To facilitate the understanding of the application of the exact testing procedure to this
example, the reader is referred to Table 2 which lists the values of some key quantities used in the
development of the exact tests. The expected mean square values of MSi = 5§, /mi (i=1,2,3,4) and

(2) _ (D o
MSp " = SSg /62 are given in Table 3.

From Tables 2 and 3 it can be seen that the value of the exact F-statistic for testing the

CH g2 = 2 R (2) _. .
hypothesis Hy: T3y = 0 versus Hy: T3y > OisF = MS4/MSE = 7.090 with 18 and 47 degrees of
freedom. The significance level is 3.4x10°8. The second hypothesis to be tested is Hy: a‘f’ = 0 versus
Hy: a% > 0. The corresponding value of the F-statistic is F = MS2/ MS, = .994 with 9 and 18
degrees of freedom. This is a nonsignificant test. Next, the value of the F-statistic for the hypothesis

Hy: a% =0isF = MS4/MS, = 3.293 with 6 and 18 degrees of freedom. The level of significance in

this case is .023.

. . . 9 .
Finally, the testing of the hypothesis Hy: ag = 0 versus H,: 05 > 0 requites the use of
Satterthwaite’s procedure since no mean square exists in Table 3 with an expected value equal to that

of MS, under Ho. The test statistic in this case is given by

F T—M'ssl—s-““s“
M2+M3-M4 T

which is approximately distributed as an F random variable with 2 and n degrees of freedom, where




(MS, + MSg - MS, )?

= - - = 5.477.
7T (MS,)%/9 + (MS5)%/6 + (MS,)2/18

The level of significance is .055.

Appendix A

This appendix gives the proof of Lemma 3.4.

Proof.
(i)  From (3.2), Py = Ay/by and by = ¢ by (3.3) since v is the empty set, hence vg =T
But, by (2.14), Ay = Jc. It follows that Py = Jc/c. Consequently, Qg = 1L/\e.
(i1) QIQ: = !mi. This follows by the definition of Q;. Furthermore, Q, = VP, for some
matrix V, of order m, xc (i=0,1,...,v). Since E_’il_’i, =0 for i #i', then
o ' _
QQl) = VB,V =0.
(ili) From (3.4) and (3.5) it can be seen that Ajgi, = Ajl_’i\.’i' =0,ifl ¥ ¢ ‘bj’ and
' _ ' _ I _ vl
éjgi = A-P-V. = b.P.V. = bjgi, lf wi C wj.

SRR T )R

Appendix B

This appendix gives the proof of Lemma 3.5.
Proof.

(i)  This is straightforward.

G O& =] g (th/ne)[in- @p(tnr/nr)]  (br 315 and 318)

SO CRRD
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{ili) The matrix X, can be partitioned into ¢ submatrices that correspond to the values of
7 in (2.3). The submatrix corresponding to a particular r is of order nrxc, where < is the number of
columns of X, (i=L2,...,v). Let us denote such a submatrix by Ur. Each column of U consists of
either ny zeros or ny ones. Therefore, BX; can be partitioned into ¢ submatrices of orders nrXc for
the different values of 7. For a particular 7, the corresponding submatrix is of the form
(!n-,- - Jn,/"r)Ur =Ur-Ur=0,

by the property of U, described earlier. It follows that I.U.(i =0 fori=1.2,..,v.
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Table 1

Data for the numerical example

Plant 1
Worker Site
1 2 3 4
100.6 110.0 100.0 98.2
106.8 105.8 102.5 99.5
1 100.6 97.6
98.7
98.7
92.3 103.2 96.4 108.0
92.0 100.5 108.9
2 97.2 100.2 107.9
93.9 97.7
93.0 1
96.9 92.5 86.8 94.4 d
96.1 85.9 93.0
3 100.8 85.2 91.0
89.4
88.7
Plant 2 82.6 96.5 87.9 83.6
100.1 93.5 82.7
1 101.9 88.9 87.7
97.9 92.8 88.0
95.9 82.5
72.7 7.7 78.4 82.1
72.1 80.4 79.9
2 72.4 83.8 81.9
71.4 77.7 82.6
81.2 78.6
82.5 80.9 96.3 7.7
82.1 84.0 92.4 78.6
3 82.0 82.2 92.0 77.2
83.4 95.8 78.8
81.5 80.5
Plant 3 107.6 96.1 101.1 109.1
108.8 98.5
1 107.2 97.3
104.2 93.5
105.4
97.1 91.9 88.0 89.6
94.2 914 86.0
2 91.5 90.3 91.2
99.2 91.5 874
85.7
87.1 97.8 95.9 101.4
3 95.9 89.7 100.1
n 102.1
N 98.4
-19-




Table 2

T T O WIS T T . ¥ NN — WO .- --—.——-.—-—.-1
-

Some key quantities used in the development of the exact tests for the numerical example

Quantity Formula cited Corresponding value

v (2.1) 4

T (2.3) (ij,k)

c (2.5) 36

N (2.6) 118

by (3.3) 36

by (3.3) 12

by (3.3) 3

by (3.3) 4

by (3.3) 1

P, (3.2) (130319)/12 - 136/36
P, (3.2) (!12®'!3)/3 - (!3@!12)/12
Py (3:2) (13814013)/4 - (1301)5)/12
P, (3.2) I3 - !12®-!3)/3 - (l3®~14 ®!3)/4 + (!3@’!12)/12
m, (3.29) 2

my (3.29) 9

mg (3.29) 6

m, (3.29) 18

5, (3.9) 1203 + 305 +403+0%

2, 2
5 (3.9) Sogtag,
2, 2

54 (3.9) %

3 (3.24) 35

28 (3.24) 47

Amax (3.27) 1

SS, = wiw; Lemma 3.6 1265.96

§Sp = g§g2 Lemma 3.6 332.313

583 = g:’,gs Lemma 3.6 733.949
ss?z)= Wiy Lemma 3.6 668.634
SSE Lemma 3.6 246.245
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Table 3

Expected mean square values for the numerical example

Mean square Expected value

MS; = S§,/2 1202 + 3"26 +40% + a'f,,/ s
MS, = $5,/9 304 + 0% +o?

MS, = SS,/6 103 + o8, +o?

MS, = SS,/18 0% +of

Ms\D= 55247 o?

xf‘ -21-







