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EXACT TESTS FOR VARIANCE COMPONENT MODELS WITH UNEQUAL CELL
FREQUENCIES IN THE LAST STAGE

Andre 1. KHURI

Department of Statistics, University of Florida, Gainesville, FL 32611, USA

Abstract: Khuri and Littell (1987) derived exact tests for testing hypotheses concerning the

variance components in an unbalanced random two-way model. The method used in the

development of these tests can be extended to more general unbalanced random models. In this

article, such an extension is established for models that are unbalanced only with respect to the

last stage of their associated designs. A numerical example is given to illustrate the

implementation of the proposed methodology.

AMS Subject Classification: Primary 62J10; Secondary 62F03.

Key words and phrases: Unbalanced random models; Hypothesis testing; Power of exact tests;

Nested and crossed classification models.

1. Introduction

The traditional analysis of data from an unbalanced random model uses approximate F tests

that are based on sums of squares, which, in general, are neither independent nor distributed as scaled

chi-square variates. The true critical values and power functions of these tests are unknown and *or

depend on variance components other than those under consideration. Furthermore, the tests,

particularly those that depend on Satterthwaite's procedure, can be quite unreliable. This was

demonstrated by Tietjen (1974), in the case of the unbalanced random two-fold nested model,,and by

Cummings and Gaylor (1974). . Availabilit Code
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The method developed by Khuri and Littell (1987) produced exact tests for the variance

components in an unbalanced random two-way classification with interaction model. This method is

based on a particular transformation that reduces the analysis of the unbalanced model to that of a

balanced one. In this article, a demonstration is given of the applicability of the same kind of

transformation to any unbalanced random model provided that the imbalance occurs only in the last

stage of the associated design.

2. Notation and preliminaries

The model for a general unbalanced design whose imbalance is caused by unequal cell

frequencies in the last stage can be written in the form

o Y i-topi(i) + f0' (2.1)

where 0 = (kI, k2 , .... ks) is a complete set of subscripts that identify a typical response y. The term,

,0 i(oi), denotes the ith effect in the model, where 0i and 0 i are, respectively, the corresponding sets of

rightmost and nonrightmost bracket subscripts (see Section 2 in Khuri (1982)). By definition,

0i = i = , the empty set, for i=0 and the corresponding -, is the grand mean, usually denoted by it.

It is assumed that -(Oi(i) , for i=l,2, ... ,v, and co are independent and normally distributed random

variables with zero means and variances el, 2, ..... O2, and or, respectively.

Since the design is balanced except for its last stage, the ranges of subscripts k1 , k2 , .... ks can

be expressed in the form

1, 2, .... aj, for j=1,2,. .. ,s-1

j 1, 2 ... nr, for j=s,

where r is a subset of 0 consisting of the first s-I subscripts, that is,

-2-
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r = (kl, k9 , ... , ksl). (2.3)

Except for co, all the effects on the right side of (2.1) are indexed by the subscripts in r. Let T be the

set of all (s-l)-tuples as in (2.3), and let c denote the number of elements in T, that is,

T= {r =(kl, k ks-l : k. = 1 , 2 , ... , a j j=1, 2, ..., s-1 (2.4)

s-i
c - f1 a.. (2.5)

j=1 
J

It is assumed that nr > 1 for all rcT and, for reasons to be seen later, that

N > 2c-1, (2.6)

where N = nr is the total number of observations. Let Oi = (Pi : 0i ) be the set of subscripts
reT

associated with the ith effect, which results from combining the elements of ei and #i (i=0I,.....v).

The complement of Oi with respect to r is denoted by i (i0,1.. .
We note that if it were not for co, the model in (2.1) would be of the same form as that of a

balanced model (see Khuri (1982) for a general representation of a balanced model ). This fact will be

quite useful in the development of the exact tests in Section 3.

The model in (2.1) can be written in matrix form as

y = o ii + E. (2.7)
Si=

where y and c are the vectors of observations and random errors, respectively, Xi is a matrix of zeros

-3-
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and ones of order Nxci (i=0,1, ... ,v) with X 0 being equal to lN' the vector of ones of order N× I, and

is a vector consisting of the ci elements of The integer ci is given by

ci = i a., i= 0,l .... ,v, (2.8)

where, if we recall, Oi is the set of subscripts associated with the ith effect. Note that ci = 1 for i = 0.

Let Yr denote the mean of y9 averaged over the range of subscript ks for a given

r = (k1 , k2 9 .... ks_1 ) in T, that is,

nr(
Yr = E y 0 , rcT. (2.9)

kis

From (2.1) we have

Yr -op, ) + r, (2.10)
i=0 O (~

nr-

where r -(sE cO)/nr. Formula (2.10) may be written in matrix form as

k"=i5=
i 1 + g  (.1

V
Y = LIA T,(2.11)

i=0

where H . is a matrix of order cxc.. Since & Y-i#i in (2.10) is of the same form as in a balanced

model, the matrix Hi can be expressed as a direct product of the form (see Khuri (1982), p. 2908)

s-IL
i lij i =0, 1,... v, (2.12)

Iw
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[at, k E 0i i = 0, 1 .... V;(2.13)-~~L ae, ke E Of e = 1,2, ..... s-l. (.3

In (2.13), !aI and lat denote, respectively, the identity matrix of order axa1 and the vector of ones of

order atxl. We recall that in (2.13) is the complement of Oi with respect to r. Let Ai = Hi.H.,

then

A i = • i = 0, 1, ... v, (2.14)

where

Iae, ke E i i= 0, 1. (2.15)
"-i=.at, ke e 1, 2, s-1.

In (2.15), Jae denotes the matrix of ones of order axat.

The variance-covariance matrix of y in (2.11) can now be written as

Var(y) = l riAi + dr2K, (2.16)

where

K = diag(-lr)rcT. (2.17)

The right side of (2.17) denotes a diagonal matrix of order cxc. Its diagonal elements are the

reciprocals of the nr's for reT, the set of all values of r in (2.3). It can be verified that AiAi, =AiA i

for i$i f. It follows that there exists an orthogonal matrix, Q, of order cxc such that

9Ai9' = Ai, i = 0, 1 , (2.18)

where A i is a diagonal matrix. The construction of the matrix Q will be described in Section 3.

-.-
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3. The development of the exact tests

Let us again consider model (2.10). As was noted earlier in Section 2, the first part to the

right of this model, namely, YO is not affected by the imbalance in the last stage of the design,~i=O i iI '

that is, in the r-cells, where r is described in (2.3). Let us therefore consider the derived model

Zr i--70i(i (3.1)

Model (3.1) is balanced with one observation in each r-cell. Let Pi be a cxc matrix associated with

the sum of squares for the ith effect (i=0,1..... ). From Khuri (1982) we have the following lemmas:

Lemma 3.1.

(i) Pi is idempotent (i=0,1.. .

(ii) = for iii t .

(iii) c-
i=0

Lemma 3.2. The matrix Pi can be expressed in terms of the Ai's in (2.14) as

EP = ( A ( j/h.), i = 0, 1 .... v, (3.2)
=-0

where A is a known constant equal to the coefficient of the jth admissible in the ith

* for the balanced model in (3.1) (possible values of Aij are -1, 0, and I), and bj is given by

b I r[ at ,  j =  0, 1, ..... v, (3.3)

where t, is the complement of V). with respect to r.
w J

Lemma 3.3. The Aj and Pi matrices in (3.2) are related by the following identity:__---- r -6-



L.P. =.P i0, 1,.(3.4)
3-I u-" j =0, 1,.. V,(34

where ocij is given by

0 1 1 P3 
3 5

and Oiis the set of subscripts associated with the ith effect in (3.1), i =0, 1,..,.

a,
Let mi be the rank of P. (i=0919. .. .v), then by Lemma 3.1, L mi = c. Let Qibe a matrix of

-I =0

order mi xc and rank mi whose rows are orthonormal and span the row space of Pi (i0,1, , The

matrix Qican be easily obtained as the result of a Gram-Schmidt orthonormal factorization of the

rows (or columns) of P i. The proof of the following lemma is given in Appendix A:

Lemma 3.4. The matrices Q0 , Q1 , ... , QaV have the following properties:

(i) Q0 = !

(ii) 9I9 m 1  i=,,.,
9i 91, 0, iAil.

Let us now define the matrix

Q [910 Q_ 1 QIV](3.6)

which is of order c xc. By Lemma 3.1. Q is an orthogonal matrix and diagonalizes AO, 1%.Av

simultaneously as in (2.18). From (2.16) we have

£ ~~~Var(Qi 2=Q(~.A + ol)9!, i = 1, 2, .. ,

--



- - #WS fS W ~ l W

= o, + i =1,2..., , (3.7)

j=

where Y is the vector of all r-cell means defined in (2.11). But, by Lemma 3.4 ((ii), (iii))

? (QiA.Qi) = ,bijm, i = 1, 2, ..., v, (3.8)

where

b, =E b, 2? (3.9)
jEW.

In (3.9), Wi is the set

* wi={J" : ,iC 0j, ,s<j_V}.

From (3.7) and (3.8) we obtain

Var(Qiy) = 6jim + ff(Q.KQ), i = 1, 2, .. , U. (3.10)

Furthermore, for i9 i',

Cov(giy, y'Q!,): = , + o-)Q

2 uf(q+KQ',). (3.11)

Let u be a vector of order (c-1)x I defined as

-91 -2 . - I"'ll Q(3.12)

By (3.10) and (3.11), the variance-covariance matrix of u is of the form

Var(y) = diag(6 1 m1 , 
6 21m 2 , .... 6vlm,) + O2G, (3.13)

where~-8-



N

G = Q~iQ',(3.14)

Now, the vector y can be expressed as y = Dy, where y is the vector of observations in (2.7) and D is

the direct sum

D= (n,/n.- ) , (3.15)

where r is defined in (2.3) and T is the set of all values of r. The matrix D is of order cxN, where N

is the total number of observations. Also, the residual sum of squares for the original unbalanced

model in (2.1) can be written as

SSE =E(Y - Yr) 2

E 0

=E~E(Y0- Yr)2, (3.16)reT[ks=l~y

where, if we recall, 0 = (r, ks). Formula (3.16) can be rewritten as

SSE= v'Ry, (3.17)

where

wr T - Jnr1 /nr). (3.18)

Lemma 3.5.

(i) R is idempotent of rank N-c.

(ii) DR = 0.

(iii) RX=0, i = 1, 2,...,,

-9-
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where X, X ..... , are the matrices given in (2.7).

Proof. See Appendix B.

From Lemma 3.5 we conclude that

DER = 0, (3.19)

where E is the variance-covariance matrix of y in (2.7), which is equal to

-- 2XiX_ + '21 (3.20)
i- I

* Furthermore,

2 = R. (3.21)

It follows from (3.19) and (3.21) that y = Dy is independent of SSE and that SSE/ has the chi-

square distribution with N-c degrees of freedom, the rank of R.

Since R is idempotent of rank N-c, then it can be written as

R = (AC', (3.22)

S where C is an orthogonal matrix and A is a diagonal matrix with N-c ones and c zeros. By the

assumption in (2.6), A can be partitioned as

A = diag(,l 2, Q), (3.23)

where

1= c-i

42 = N - 2c+1>0, 
(3.24)

-10-



and 0 in (3.23) is a zero matrix of order cxc. Accordingly, the matrix C in (3.22) can be partitioned

as C = [ : C: C3], where C, C2, and 03 are of orders Nx~l, Nx 2 , and Nxc, respectively. We

then have

R I= CC1 + C2 C2' (3.25)

Note that

C[C i [  i= 1, 2, 3;
= , ii'.(3.26)

Let us now define the random vector w as

S=- u + (AmaxItl - (3.27)

1

where G is the matrix in (3.14) and Ama x is its largest eigenvalue, (Amaxl - is a symmetric

matrix with eigenvalues equal to the square roots of the eigenvalues of Amaxill - G, which are

nonnegative. Let w be partitioned just like u in (3.12) as

2 ..... '(3.28)

where wi is of order mi xl and mi is the number of rows 9i (i=1,2,...,L,) in (3.12). The distributional

properties of the wits are given in the following lemma:

Lemma 3.6.

(i) E(wi) = 0, i = 1,2..

(ii) W 2' .W are independently distributed as normal random vectors with wi having

the variance-covariance matrix -.11-



Var(. i ) = (6i + Amax )Imi, j= 1,2..... , (3.29)

where 6i is defined in (3.9).

(iii) el, -,2 ... , ;t v are independent of SS(2), where SS ) th p oE2 E - -22Y is the ortion of the

residual sum of squares, SSE, in (3.17), which corresponds to the matrix C2 in (3.25).

Proof.

(i) From (2.11) and Lemma 3.4, E(Qiy) = QiJ00 = Qic/,3 0 = 0 for i = 1, 2, ..., v. Hence,

E(u) = 0 by (3.12). From (3.18) we also have that R1N = 0, which by (3.25) can be

rewritten as

-. (3.30)

Using (3.26) in (3.30) we get C'N = 0. It follows from (2.7) that E(Cly) = CINP 0 =

* 0. The mean of w in (3.27) is therefore equal to zero.

(ii) It is clear that y is normally distributed. Now, the vector u in (3.27) is independent of

C# y. To show this, we note from (3.19), (3.25), and (3.26) that

DEC 1  0.- (3.31)

Hence.

Cov(Y,'C) Dc 1 = ,

since y = Dy. It follows that y, and hence u in (3.12), is independent of C' y.

The variance-covariance matrix of w can therefore be expressed as

Var(w) = Var(u) + (2maxl - G) C(Amaxt l - G)1. (3.32)

But, from (3.21) we have

-12-



.~f ~ n l . ~ f r s s

4:r-4 = u,1. (3.33)

Also, from (3.25), (3.26), and (3.33) it can be verified that

gi EC CI C I  1 # l"(3.34)

From (3.32) and (3.34) we then have

Var(y) = Var(u) + o(Amaxl~ - G). (3.35)

By using (3.13) in (3.35) we get

Var(y) = diag(6 1lml , 
621m2 1 .... 6ivlmv) + Amax4T2i 1 l. (3.36)

From (3.36) we conclude that w1, w2 , ..., Wl, are independent and that Var(Wi) has the

form described in (3.29).

(iii) SS(2) is independent of u (since SS is independent of V by (3.19)) and is also

independent of Cly. This is true because

(3.37)

which follows from (3.25), (3.26), and (3.33). Consequently, SSE and - in (3.27) are

independent.

From Lemma 3.6 we conclude that if SSi = 1w i (i-1,2 .. v), then the sums of squares, SSI,

SS2 , ... SSv are independent and SSi/(6i+Amaxc 2 ) is distributed as a central chi-square variate
c(2) €2whh

with m i degrees of freedom (i=l,2,...,v). Furthermore, the SSi's are independent of SSE &, which

-13-



has the chi-square distribution with 2 degrees of freedom, where 4,) is defined in (3.24).

It follows that SS 1, SS ... , SSv and SS(2 ) act like sums of squares in an ANOVA table for a

balanced random model. In other words, the analysis concerning the variance components,

' 1 a), ..... L2, can proceed using these sums of squares just like in a balanced data situation.

In particular, if the data set is balanced, that is, if nr = n, then K = Ic/n (see (2.17)) and G

= l/n, where G and 1 are defined in (3.14) and (3.24), respectively. Consequently, Amax, the

largest eigenvalue of G, is equal to I/n. The vectors w and u in (3.27) are therefore identical. In this

case,

.d = u Qi (by (3.12))

= Y'(!c - Jc/c)Y (by Lemma 3.4)

= ,'(,= , (by Lemma 3.1(iii) and the fact that P0 c/c by formula (3.2)).

g

Thus,

Now, from (3.2) we can write

=

[(A./b|)( so-'M )] Y. (by (2.14)) (3.38)

Since - (Ic®l')y/n, formula (3.38) can be expressed as

-14-
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h= F MLJ t) 0®R n (3.39)

Formula (3.39) shows that ny'Piy is the usual sum of squares for the ith effect in a balanced model of

the form given in (2.1). In other words, nSS1 , nSS2 , ..., and nSSv reduce to the usual balanced

ANOVA sums of squares associated with the corresponding v effects whenever the data set is balanced.

4. Power of the exact tests

Power values for the exact tests in Section 3 can be easily obtained just like in a balanced

model situation. As in Khuri and Littell (1987), it is easy to show that such power values are

monotone decreasing with respect to Amax, the largest eigenvalue of the matrix G in (3.14). Upper

and lower bounds on \max are given by the double inequality

1 ________

-< % -. :5 1(4.1)
rcT

where nr is the frequency of the T-cell (see (2.3)), and T is the set of all values of r. The proof of

(4.1) is similar to the one given in Lemma 2 in Khuri and Littell (1987) and will, therefore, be omitted.

We note that the lower bound in (4.1) is the reciprocal of the harmonic mean of the r-cell frequencies.

5. A numerical example

An example is given in Milliken and Johnson (1984, p. 264) of a study concerning the efficiency

of workers in assembly lines at several plants. Three plants were randomly selected. Four assembly

sites and three workers were randomly selected in each plant. For convenience, the efficiency scores are

reproduced in Table 1.

The model for this experiment is

I -15-
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Yijki = P + ai + #i(j) + ri(k) + (/3y)ijk) + fijkg'

where ai is the effect of the ith plant (i=1,2,3),/3i(j) is the effect of the jth site within the ith plant
(j=1,2,3,4), 7 i(k) is the effect of the kth worker within the ith plant (k=1,2,3), (/1T)i'k) is the

interaction effect of sites and workers within plant i, and fijkl is the error term. The variance

~2 2 2 ancomponents are ., Y , or I and ol, respectively.

To facilitate the understanding of the application of the exact testing procedure to this

example, the reader is referred to Table 2 which lists the values of some key quantities used in the

development of the exact tests. The expected mean square values of MSi = SSi/m i (i=1,2,3,4) and

MSE ) = SS()/ 2 are given in Table 3.

From Tables 2 and 3 it can be seen that the value of the exact F-statistic for testing the

hypothesis H: a,7y = 0 versus Ila: 0 > 0 is F = NIS = 7.090 with 18 and 47 degrees of

freedom. The significance level is 3.4 x 10"8. The second hypothesis to be tested is H0 : 01$ = 0 versus

Ha: T'3 > 0. The corresponding value of the F-statistic is F = MS 2 /MS 4 = .994 with 9 and 18

degrees of freedom. This is a nonsignificant test. Next, the value of the F-statistic for the hypothesis

H0: 01 = 0 is F = MS3 /MS 4 = 3.293 with 6 and 18 degrees of freedom. The level of significance in

this case is .023.

92
Finally, the testing of the hypothesis 110: 0 = 0 versus Ila: a, > 0 requires the use of

Satterthwaite's procedure since no mean square exists in Table 3 with an expected value equal to that

of MS, under H0 . The test statistic in this case is given by

F = M = 5.184,M2 + MS3 -S 4

which is approximately distributed as an F random variable with 2 and q degrees of freedom, where

-16-
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17 ~(MS')+ MS 3 - MS 4 )2  547

(MS 9))
2 /9 + (MS )2/6 + (MS 4 ) 2 /18

The level of significance is .055.

Appendix A

P This appendix gives the proof of Lemma 3.4.

Proof.

(i) From (3.2), P0 = 4 0 /bo and bo= c by (3.3) since 10is the empty set, hence =~

But, by (2.14), A0 = 4!c. It follows that P0 = jc/c. Consequently, Q0 = ll4c

(ii) 9 -I mi This follows by the definition of Qi. Furthermore, Qi = Yiifor some

matrix V. of order mixc (i=0,I,...,v). Since Pie.,,= for i 96i', then

= -- PV =-0.

(iii) From (3.4) and (3.5) it can be seen that A.Q! A.P-V! = 0,ifv.i tVjan

A.Q! = A.P.V' = b.P.V! = b.Q!, if Vi C .

Appendix B

This appendix gives the proof of Lemma 3.5.

Proof.

(i) This is straightforward.

(ii) ["'9 1 [rTiI/TIN T n')1(by (3.15) and (3.18))

-17-



(iii) The matrix Xi can be partitioned into c submatrices that correspond to the values of

r in (2.3). The submatrix corresponding to a particular r is of order nr xc i, where ci is the number of

columns of X i (i=1,2....v). Let us denote such a submatrix by Ur. Each column of Ur consists of

either nr zeros or nr ones. Therefore, RXi can be partitioned into c submatrices of orders nrxci for

the different values of r. For a particular r, the corresponding submatrix is of the form

(in, - :n,/nT)VT = VT - :

by the property of U r described earlier. It follows that RX. - 0 for i=1,2 .. v.
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Table I

Data for the numerical example

Plant 1
WVorker Site

12 3 4

100.6 110.0 100.0 98.2
106.8 105.8 102.5 99.5

1 100.6 97.6
98.7
98.7

92.3 103.2 96.4 108.0
92.0 100.5 108.9

2 97.2 100.2 107.9
93.9 97.7
93.0
96.9 92.5 86.8 94.4
96.1 85.9 93.0

*3 100.8 85.2 91.0
89.4
88.7

*Plant 2 82.6 96.5 87.9 83.6
100.1 93.5 82.7

1 101.9 88.9 87.7
97.9 92.8 88.0
95.9 82.5

72.7 71.7 78.4 82.1
72.1 80.4 79.9

2 72.4 83.8 81.9
71.4 77.7 82.6

81.2 78.6
82.5 80.9 96.3 77.7
82.1 84.0 92.4 78.6

3 82.0 82.2 92.0 77.2
83.4 95.8 78.8
81.5 80.5

*Plant 3 107.6 96.1 101.1 109.1
108.8 98.5

1 107.2 97.3
104.2 93.5

______

97.1 91.9 88.0 89.6
94.2 91.4 86.0

2 91.5 90.3 91.2
99.2 91.5 87.4

85.7
87.1 97.8 95.9 101.4

3 95.9 89.7 100.1
102.1



Table 2

Some key quantities used in the development of the exact tests for the numerical example

Quantity Formula cited Corresponding value
1' (2.1) 4

r (2.3) (ij,k)

c (2.5) 36

N (2.6) 118

*bo (3.3) 36

b.(3.3) 12

b2(3.3) 3

b3  (3.3) 4

b4(3.3) 1

el(3.2) (130'12)/12 '36/36

P2(3.2) (!120J3)/3 - (130412)/12

F3  (3.2) (130J 4 013 )/4 - (130J12)/12

P4  (3.2) !36 - (!120J3)/3 - (13044013 )/4 + (130J-12)/12

Mi(3.29) 2

M2(3.29) 9

m3(3.29) 6

M4(3.29) 18

6(3.9) 12A~ + U 4,

b2 (3.9)U2+2

b3 (3.9)4A+2

64 (3.9) &2

1(3.24) 35

Am .7 (3.24) 47

Ss1 = Lemma 3.6 1265.96

S2  '' Lemma 3.6 332.313

Ss3  w Lemma 3.6 733.949

SS =-Y Lemma 3.6 668.634

SSM - Lemma 3.6 246.245
-:itu-



Table 3

Expected mean square values for the numerical example

Mean square Expected value

2 2 4 2 +o2 2
MS 1 = SS/2 12&uo+ 3or +4o, + o 1 ~ + or

MS 3 = SS 3 /6 4A+ f2+ o5'

MIS = SS/8 2+2

ms 2)=ss 2) 47A
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