
91£S RA TO mN) I
tICUA SYTE M) CTD TIC VALIDATIRONRUIR SYSEN I

MIT -PRSY TESDON V (U) R ATCA L SALYDT EM O2JU Y

UNCLASSIFIED F/G 12/5 U

mo EomEEEEEEE I
EEEEEEEEmhhEEE

1--

- ~ a.ISIll M1
MAN I- S

UNCLASSIFIED OR' FILE COPY*SECLQI'y !'ASS1F:CAT !ON 0: THS PAGE rii''e Data fqte-ed)
IENTAT ION PAGE 3 cyREr!--_E%'FR

AD -A 191 636 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITL E (ad Subtttle) 5. TYPE OF REPORT & PERIOD COVERED
'Ada Copler Validation Sunimary Report: 22 June 1987 to 22 June 1988
TLD Systems Ltd. TLD VAX/1750A Ada Compiler System.Ver
1.O.O.,NicroVAX 11 Host and TLD 1750A Instruction 6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(sL 8. CONTRACT OR GRANT NUMBER(s)
Wight-atterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENJT. PROJECT, TASK
Ada Validation Facility C'~'~ AREA & WORK UNIT NUMBERS
ASD/SI1OL
Wright-Patterson AFB OH 45433-6503

11. CONTROL.LING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 22 June 1987
United States Department of Defense 13. NUMBLK UkFAE
Washington, DC 20301-3081 35

14. MONITORINGAGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson -UNCLASSIFIED

15a. REkEFICATION/DOWNGRADING

_ __ ___ ____ ___ __N/A

6.~ DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 2. if different from Report) D T iC
UNCLASSIFIED E E -"-

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

DO 'ON" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
* SECURITY CLASSIFICATION OF THI PAGE fVWWData Entq'..d

...... 1

EXECUTIVE SUMMAR!

This Validation Summary Report 44FR summarizes the results and conclusions
of validation testing performed on the TLD.VAX/1750A Ada Compiler System,
Version 1.0.0, using Version 1.8 of the Ada Compiler Validation Capability
(ACVC). The TLD VAX/1750A Ada Compiler System is hosted on a MicroVAX II
operating under MicroVMS, Version 4.5. Programs processed by this compiler
may be executed on a TLD 1750A Instruction Level Simulator, Version 0.4.4
running the TLD 1750A Single Program Kernel.

On-site testing was performed 19 June 1987 through 22 June 1987 at TLD
Systems Ltd., Torrance CA, under the direction of Validation
Facility (AVF), according to Ada Validation OrganizationemAqpolicies and
procedures. The AVF identified 2102 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 278 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2102 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 185 of the processed tests determined to be inapplicable. The
remaining 1917 tests were passed. -

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 A _45 8_A 10 11 12 14

Passed 93 205 280 244 159 97 135 261 124 32 218 69 1917

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 3 2 0 4 1 6 0 0 164 463

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

eAda is a registered trademark of the United States Government
(Ada Joint Program Office).

5
i

AVF Control Number: AVF-VSR-89.0887
87-03-09-TLD

Ada'9 COMPILER
VALIDATION SUMMARY REPORT:

TLD Systems Ltd.
TLD VAX/1750A Ada Compiler System

Version 1.0.0
MircoVAX II Host

and
TLD 1750A Instruction

Level Simulator Target *~'±OiFor

Completion of On-Site Testing: DTC ,31
22 June 1987 U...j.0.

!3y

Prepared By: IilPiT
Ada Validation Facility I~

ASD/SCOL[
Wright-Patterson AFB OH 45433-6503 I

Prepared For:
Ada Joint Program Office

United States Department ot Defense
Washington, D.C.

8Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+ Place NTIS form here +~

..............

Ada® Compiler Validation Summary Report:

Compiler Name: TLD VAX/1750A Ada Compiler System, Version 1.0.0

Host: MicroVAX II Target: TLD 1750A Instruction Level
under MicroVMS, Simulator, Version 0.4.4 under
Version 4.5 TLD 1750A Single Program Kernel

Testing Completed 22 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

[daiValidation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada .XTnt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

Ada is a registered trademark of the United States Goverment
(Ada Joint Program Office).

t I

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the TLD VAX/1750A Ada Compiler System,
Version 1.0.0, using Version 1.8 of the Ada® Compiler Validation Capability

(ACVC). The TLD VAX/1750A Ada Compiler System is hosted on a MicroVAX II
operating under MicroVMS, Version 4.5. Programs processed by this compiler
may be executed on a TLD 1750A Instruction Level Simulator, Version 0.4.4
running the TLD 1750A Single Program Kernel.

On-site testing was performed 19 June 1987 through 22 June 1987 at TLD
Systems Ltd., Torrance CA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2102 of the 2399 tests in ACVC Version 1.8

to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 278 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2102 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 185 of the processed tests determined to be inapplicable. The
remaining 1917 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

_g- 4 5 7 _7 _I8 10 11 12 14

Passed 93 205 280 244 159 97 135 261 124 32 218 69 1917

Failed 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 3 2 0 4 1 6 0 0 164 463

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

"Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

i

. M M O S

TABLE OF CONTENTS

CHATER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES . 1-3
1.4 DEFINITION OF TERMS9.9. 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED99.99.*9 .92-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BYCLASS.. . . . 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS - o o 3-2
3.5 INAPPLICAB ETS o.o3-2
3.6 SPLIT TESTS . . o o o * * . . . -

3o7 ADDITIONAL TESTING INFORMA TION o N...... 9.o9o3-5
3.7.1 Prevalidation . . 3-5
3.7.2 Test Meth~od 0 0 3-5
3.7.3 Test Site . o o o o o o o . . . o o o - 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and reject's
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

.4

:NTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMAFY RZEPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
19 June 1987 through 22 June 1987 at TLD Systems Ltd., Torrance CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this repcrt do not
", represent or warrant that all statements set forth in this report are

accurate and complete, or that the subject compiler has no nonconformities

to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DIC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-

i 1-2

:NTRCDUCTI N

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

0 ~,

. INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

C' ss B tests check that a compiler detects illegal language usage. Class
* B tests are not executable. Each test in this class is compiled and the

resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

O0t11111

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because; the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checKing and produces a PASSED or
FA:LED message during execution.

Each Class E test is self-checking and prcjuces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.

* .i. .,A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any

-~ declarations in the main program or any units referenced by the main
program are elaborated.

C' Two library units, the package REPORT and the procedure CHECK _ILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_-FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests makze use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features thst may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

1

I 1-6

I

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TLD VAX/1750A Ada Compiler System, Version 1.0.0

ACVC Version: 1.8

Certificate Number: 870622W1.08085

Host Computer:

Machine: MicroVAX II

Operating System: MicroVMS, Version 4.5

Memory Size: 9 megabytes

Target Computer:

Machine: TLD 1750A Instruction Level
Simulator, Version 0.4.4

Operating System: TLD 1750A Single Program Kernel

Memory Size: 64K 16 bit words

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other
classes also characterize an implementation. This compiler is
characterized by the following interpretations of the Ada Standard:

Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 8 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55AO3A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4AOO2B, D4AO04A, and
D4AOO4B.)

. Predefined types.

This implementation supports the additional predefined type
LONG INTEGER in the package STANDARD. (See tests B86001C and
B866OO1D.)

. Based literals.

An implementation is allowed to resect a based lite.'al with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC ERROR or CONSTRAINT ERROR during execution. This

implementation raises NUMERIC ERROR during execution. (See
test E24101A.)

* . Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds

* STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

2-2

I

CONFIGURAT:3N INFORYMATIDN

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when one packed
boolean array is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINT ERROR eitner
when declared or assigned. Alternatively, an implementation
may accept the declaration. However, lengths must match in
array slice assignments. This implementation raises
NUMERIC ERROR when the array type is declared. (See test
E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression appears to be

evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index
subtype checks appear to be made as choices are evaluated.
(See tests C43207A and C43207B.)

*In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are not evaluated before CONSTRAINT ERROR is raised
if a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

2-3

@!&

CONFIGURATION INFOA"ATIDN

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
declaration. If it accepts the function declaration, the use
of the enumeration literal's identifier denotes the function.
This implementation rejects the declaration. (See test
E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language
features. This implementation accepts 'SIZE and 'STORAGE SIZE
for tasks; it rejects 'STORAGE SIZE for collections, and 'SMALL
clauses. Enumeration representation clauses, including those
that specify noncontiguous values, appear to be supported.

* (See tests C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

" Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

" Input/output.

This implementation supports only the package TEXT 10 for file
operations on STANDARDINPUT and STANDARDOUTPUT.

The package SEQUENTIAL.IO can be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. However, any call to OPEN or CREATE of such
instances of SEQUENTIAL 10 or DIRECT 10 with these types raises
an exception. (See tests AE2101C, AE21OIH, CE2201D, CE2201E,
and CE2401D.)

" Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

2-4

St

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the TLD VAX/1750A Ada Compiler System was performed, 19 tests had been
withdrawn. The remaining 2380 tests were potentially applicable to this
validation. The AVF determined that 463 tests were inapplicable to this
implementation, and that the 1917 applicable tests were passed by the
implementation.

VThe AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_____A__.. B C D E L -

Passed 68 864 916 15 10 44 1917

Failed 0 0 0 0 0 0 0

Inapplicable 1 3 452 2 3 2 463

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

-EST :NTDRMAT7:N

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 o 11 12 14

Passed 93 205 280 244 159 97 135 261 124 32 218 69 1917

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 3 2 0 4 1 6 0 0 164 463

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A B37401A B49006A C92005A
B33203C C41404A B4AO10C C940ACA
C34018A B45116A B74101B CA3005A..D (4 tests)
C35904A C48008A c87B50A BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one

* validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 463 tests were inapplicable for the
reasons indicated:

• C34001D, B52004E, B55B09D, and C55B07B use SHORT-INTEGER which is
not supported by this compiler.

* C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

3-2

TEST 1 : -. A:....

. C34001G and C35702B use LONG-FLOAT which is not supported by tnis
compiler.

D64005F and D64005G are inapplicable because they make use of
nested procedures as subunits to levels of 10 and 17 which exceed
the capacity of the compiler.

. B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

" C87B62B..C (2 tests) use length clauses which are not supported by
this compiler. The length clauses 'STORAGE SIZE for access types
and 'SMALL are rejected during compilation.

C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and

* largest values in DURATION's base type. This is not the case for
this implementation.

. CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

" The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

C24113C..Y (23 tests) C35708C..Y (23 tests) C45421C..Y (23 tests)
C35705C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests)
C35706C..Y (23 tests) C45241C..Y (23 tests) C45521C..Z (24 tests)
C35707C..Y (23 tests) C45321C..Y (23 tests) C45621C..Z (24 tests)S

3-3

0

TEST :NFJRMAT:CN

The following 164 tests require the use of external files. This
implementation supports only the files STANDARDINPUT and
STANDARDOUTPUT:

CE2102C CE3104A CE3411A
CE2102G CE3107A CE3412A
CE2104A..D (4 tests) CE3108A..B (2 tests) CE3413A
CE2105A CE3109A CE3413C
CE2106A CE3110A CE3602A..D (4 tests
CE2107A..F (6 tests) CE3111A..E (5 tests) CE3603A
CE2108A..D (4 tests; CE3112A..B (2 tests) CE3604A
CE2109A CE3114A..B (2 tests) CE3605A..E (5 tests
CE2110A..C (3 tests) CE3115A CE3606A..B (2 tests
CE2111A..E (5 tests) CE3203A CE3704A..B (2 tests
CE2111G..H (2 tests) CE3208A CE3704D..F (3 tests
CE2201A..F (6 tests) CE3301A..C (3 tests) CE3704M..O (3 tests
CE2204A..B (2 tests) CE3302A CE3706D
CE2210A CE3305A CE3706F
CE2401A..F (6 tests) CE3402A..D (4 tests) CE3804A..E (5 tests
CE2404A CE3403A..C (3 tests) CE3804G
CE2405B CE3403E..F (2 tests) CE3804I
CE2406A CE3404A..C (3 tests) CE3804K
CE2407A CE3405A..D (4 tests) CE3804M
CE2408A CE3406A..D (4 tests) CE3805A..B (2 tests
CE2409A CE3407A..C (3 tests) CE3806A
CE2410A CE3408A..C (3 tests) CE3806D..E (2 tests
AE3101A CE3409A CE3905A..C (3 tests
CE3102B CE3409C..F (4 tests) CE3905L
EE3102C CE3410A CE3906A..C (3 tests
CE3103A CE3410C..F (4 tests) CE3906E..F (2 tests

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undeteoted errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for three Class B tests:

B59001A B59001E B59001F

3-4

0t
'V ll 'l

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the TLD VAX/1750A Ada Compiler System was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and that the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TLD VAX/1750A Ada Compiler System using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a MicroVAX II host operating under MicroVMS, Version 4.5, and
a TLD 1750A Instruction Level Simulator, Version 0.4.4 target operating
under the TLD 1750A Single Program Kernel.

A magnetic tape, containing all tests except for withdrawn tests, tests
requiring unsupported floating-point precisions, and tests requiring
external files, was taken on-site by the validation team for processing.
Tests that make use of implementation-specific values were customized
before being written to the magnetic tape. Tests requiring splits during
the prevalidation testing were included in their split form on the magnetic
tape. After reading the tape, all of the tests were grouped into larger
tests by producing an enclosing procedure containing an Ada block statement
for each ACVC test enclosed.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the MicroVAX II, and all executable tests were linked and
run on the TLD 1750A Instruction Level Simulator. Results were printed
from the host computer.

The compiler was tested using command scripts provided by TLD Systems Ltd.,
and was reviewed by the validation team. All of the default options were
in effect for testing except for the following:

Option Effect

NOCODOGEN The NOCODEGEN switch causes the compiler to check
syntax and update the Ada Program Library, but no
code is generated. This option is only used for
B tests.

LISOT The LIST switch generates a listing file. The
listing-file-spec can be completely, partially, or
optionally specified. If only the listing file
name is specified, the default listing file type,
".LIS", is utilized to form the listing-file-spec.
If only the file type is specified, the file name

3-5
-0 y

TEST INFORMATION

of the input-file-spec is used to form the listing-
file-spec. if no listing-file-spec is specified, the
listing file name is formed from the file name of
the input-file-spec and the default
listing file type, ".LIS". This option was only
used for B and E tests.

NOPHASETIME The NOPHASETIME switch suppresses the output of the

CPU time at the beginning of each compiler phase.

Test output, compilation listings, and job logs were captured on magnetic

tape and archived at the AVF. The listings examined on-site by the
. validation team were also archived.

3.7.3 Test Site

The validation team arrived at TLD Systems Ltd., Torrance CA on 19 June
1987, and departed after testing was completed on 22 June 1987.

3

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

TLD Systems Ltd. has submitted the following
declaration of conformance concerning the TLD VAX/1750A
Ada Compiler System.

A-i

DELCARATION OF CONFORMANCE

Cot;-ler Implementor: TLD Systems, Ltd.
Ada Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

% Base Configuration

Base Compiler Name: TLD VAX/1750A Ada Compiler System Version: 1.0.0

Host Architecture ISA: MicroVAX II
VI OS&VER #: MicroVMS, Version 4.5

Target Architecture ISA: TLD 1750A Instruction Level Simulator
OS&VER #: TLD 1750A Single Program Kernel Version: 0.4.4

Implementor's Declaration

I, the undersigned, representing TLD Systems Ltd., have implemented no
'- deliberate extensions to the Ada Language Standard kNSI/MIL-STD-1815A in the

* compiler listed in this declaration. I declare that TLD Systems Ltd. is the
owner of record of the Ada language compiler listed above and, as such, is
responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for the Ada language
compiler listed in this declaration shall be made only in the owner's

A corporate name.

Date: ? / 'ZTL ~D S~rstsL.

Terry L. Dunbar, President

Owner's Declaration

I, the undersigned, representing TLD Systems Ltd., take full responsibility
for implementation and maintenance of the Ada compiler listed above, and agree
to the public disclosure of the final Validation Summary Report. I further
agree to continue to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada

eSt ANSIMIL-STD-1815A.

Date:_

Terry L. Dunbar, President

"Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

111A 11 Man

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to inplementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the TLD VAX/1750A Ada Compiler System, Version 1.0.0, are described in the
following sections which discuss topics in Appendix F of the Ada Language
Reference Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG-INTEGER is range -1_073_741_824 .. 1_073_741_823;

type FLOAT is digits 6 range -1.0*2.0'127 .. 0.99999902.00'127;
type DURATION is delta 2.00'(-12) range -86_400.0 .. 86_400.0;

end STANDARD;

B-I

o

APPENDIX F-

The Ada language definition allows for certain machine_dependencies in a
controlled manner. No machine-dependent syntax of semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementaton-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in chapter 13, and certain allowed
restrictions on representation clauses.

The full definition of the implementation-dependent characteristics of the TLD
VAX/1750A Ada Compiler System is presented in this Appendix F.

Implemuntaton-Dependent Pragmas

The TLD ACS supports pragma identifiers Interface, its logical complement,
Export; Compress; and integrated preprocessor commands in the form of pragma
syntax: If, Elsif, Else, EndIf, and Include.

Pragma Export(Language, Name {, Optional.String});

This pragma is used to identify a static object name or procedure name that is
to be exposed to the linker for reference by object modules written in other
than the Ada Language. The third parameter is the name by uhich the Ada
entity named by the second parameter may be referenced rather than a name
assigned by the compiler. The only language supported at present is
Assembly. If the entity named is a subprogram, this pragma must be placed in
the declarative region of the subprogram. If the entity named is an Ada
object, this pragma must appear following the declaration of the object but
within the same declarative region as the object.

Pragma Compress (Subtype-Name);

This pragma is used to instruct the compiler to minimize the storage occupied
by the indicated subtype. This pragma must occur following the declaration of
the subtype but prior to any use of the subtype and in the same declarative
region as the subtype declaration.

Pragma Include (FilePath-Name..String);

This directive in the form of a language pragma is processed by the source
preprocessor to permit inclusion of another source file in place of the
pragma. This pragma may occur any place a language defined pragma, statement,
or declaration may occur. This directive is used to facilitate source program
portability and configurability.

B-2

]/@

Pragma If (CompileTimeExpression);
Pragma Elsif (CompileTime_Expression);
Pragma Else;
Pragma Endif;

These source preprocessor directives may be used to enclose ccnditionally
compiled source to enhance prograr portability and configuration adaptation.
These directives may occur at the place that language defined pragmas,
statements, or declarations may occur. Source occurring following these
pragmas will be compiled or ignored similar to the semantics of the
corresponding Ada statements depending upon whether the compile time
expression is true or false, respectively. The primary difference between
these directives and the corresponding Ada statements are that the directives
may enclose declarations and other pragmas.

Implmentation-Dependent Attributes

None.

Package System

*The following declarations are defined in package System:

type name is (none, ns16000, vax, af1750, z8002, z8001, gould, pdp11,
m68000, pe3200, caps, amdahl, 18086, 180286, i80386, z80000,
ns32000, ibmsl, m68020, nebula, name_x, hp);

- system..name: constant name :z name'af1750;

subtype priority is integer range 1..16#3FEE#; -- I is default priority.

type address is range 0..65535
for address'size use 16

subtype unsigned is address

-- Language Defined Constants

storageunit: constant :- 16;
* memory-,size: constant := 65536;

mirn._int: constant :z -20031+1;
maxint: constant :a 2031-1;
maxdigits: constant :z 6;
maxpantissa: constant := 31;
finedelta: constant :- 2.0'@(-30);
tick: constant := 1.0/200.0; -- Clock ticks are 5 mseCs.

o, B-3

Representation Clause Restrictions

Pragma Pack is not supported.

Length clauses are supported for 'size applied to objects other than task and
access type objects and denote the number of bits allocated to the object.

Length clauses are not supported for 'Storage-Size when applied to access
types.

Length clauses are supported for 'Storage-Size when applied to a task type and

denote the number of words of stack to be allocated to the task.

Length clauses are not supported for 'Small.

Enumeration representation clauses are supported for value ranges of
Integer'First to Integer'Last.

Record representation clauses are supported to arrange record components
within a record. Record components may not be specified to cross a word
boundary unless they are arranged to encompass two or more whole words. A
record component of type record that has itself been *rep specificationed" may
only be allocated at bit 0. Bits are numbered from left to right with bit 0
indicating the sign bit.

The alignment clause is not supported.

*Address clauses are supported for both variable and constant objects and
designate the virtual address of the object. The TLD Ada Compiler System
treats the address specification as a means to access objects allocated by
other than Ada means and accordingly does not treat the clause as a request to
allocate the object at the indi±ated address.

Address clauses are not supported for packages, tasks, or task entries.

Implementation-Generated Nms

The TLD Ada Compiler System defines no implementation dependent names for
compiler generated components.

Address Clause Expressions

Address expression values and type Address represent a location in logical
memory, (the program's current address state). For objects, the address
specifies a location within the 64K word logical operand space. The 'Address
attribute applied to a subprogram represents a 16 bit word address within the
logical instruction space.

O B-4

Uncbecked Conversion Restrictions

None

I/0 Package Characteristics

The following implementation-defined types are declared in TextIo.

subtype Count is integer range 0 *. 511;

subtype Field is Integer range 0 .. 127;

The implementation-defined types of package Standard are:

type Integer is range -32,768 .. 32_767;
type Long_Integer is range -_073-,741_82 .. 1_073_741_823;
type Float is digits 6 range -1.02.0*e127 .. 0.99999902.000127;
type Duration is delta 2.000(-12) range -86_400.0..86_400.0;

0B-5

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (1..119 => 'A', 120 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..119 Z> 'A', 120 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..59161..120 => 'A',
Identifier the size of the 60 > '4')
maximum input line length with
varying middle character.

$BIGID4 (l..59161..120 => 'A',
Identifier the size of the 60 => '4');
maximum input line length with
varying middle character.

$BIG INT LIT (1..117 > '0', 118..120 => "298")
An integer literal of value 298
with enough leading zeroes 30
that it is the size of the
maximum line length.

c-1

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT 'l..114 => '0', 115..120 =>

A real literal that can be "69.OE1")
either of floating- or fixed-
point type, has value 690.0, an!
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..100 => '

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT LAST 511
A universal integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "w$%?@[\]A{}-
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 127
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS "X)] ! #$-&-Y"
An illegal- external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR "XYZ'"
An external file name that
either contains a wild card
character, or is too lon& if no
wild card character exists.

$GREATER THAN DURATION 524287.5
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASE LAST 524288.0
The unliversal real value that is
greater than DURATION'BASE LAST,
if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNALFILENAMEI "BADCHARACTER*^"
An illegal external file name.

$ILLEGALEXTERNAL FILENAME2 "THISFILENAMEISONETOO LONG-" &
An illegal external file name "FOR_AFILE"
that is different from
$ ILLEGALEXTERNAL FILENAME I.

$INTEGERFIRST -32768
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGERLAST 32767
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHANDURATION -524_287.5
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHAN DURATION BASE FIRST -524 288.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAXDIGITS 6
The universal integer literal
whose value is the maximum
digits supported for floating-
point types.

$MAXINLEN 120
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 20031-1
The universal integer literal
whose value is SYSTEM.MAXINT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME LONG_L.ONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER
if one exists, otherwise any
undefined name.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose

.4 highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NONASCIICHAR TYPE (NONNULL)
An enumerated type definitionV for a character type whose

literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

c-4

u"p .. ' ' '' I I ' " ' T 'T ' ' '

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• C32114A: An unterminated string literal occurs at line 62.

" B33203C: The reserved word "IS" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

C35904A: The elaboration of subtype declarations SFX3 and SFX4
Imay raise NUMERICERROR instead 2f CONSTRAINTERROR as expected in

the test.

" B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

" C41404A: The values of 'LAST and 'LENGTH ere incorrect in the if
statements from line 74 to the end of the test.

" B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOLTYPE--at line
41.

C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

" B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B4kA01OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

- ,~ WI. ..DRAWN TESTS

" B74101B: The begin at line 9 causes a declarative part to be

treated as a sequence of statements.

" C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

. C92005A: The "/=" for type PACK.BIGINT at line 40 is not visible
without a use clause for the package PACK.

" C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" BC3204C: The body of BC3204C0 is missing.

D-2

LA(

0)r

4l~ ii ,II N A N M

