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Generalization and the Backward
Propagation Neural Network

Charles M. Bachmann

December 19, 1987

1 Introduction

The capacity of model neural networks to generalize from a partial set of
information is an area of much current interest. In some sense it addresses
the very issue of how accurate current models are of higher cognitive pro-
cesses, for the ability to categorize input, to make generalizations based on
a limited set of information, is one of the hallmarks of these processes.

In this context, we-have been investigating the Backward Propagation
of Error Model due to Rumelhart et. al'%: The model is a deterministic
approach which seeks to teach a desired input-output mapping by repeated
presentation of the desired mapping to the system, correcting the system
connections based on the error in output. We have begun to address the
generalization capability of this system. Specifically, we have studied to
what extent the set of connections which evolve in learning a partial set of
patterns are a general solution to a given mapping. That is, if we teach
several examples of a mapping to the system, will the solutions that the
system discovers for these patterns be capable of generalizing and correctly
identifying other input states that have not been seen. The results of some
simulations undertaken to address this question are discussed and some
modifications to the model which we have proposed are indicated.
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2 Rumelhart's Backward Propagation

Rumelhart's model[2] consists of an input and output layer of neurons with
one or several layers of neurons, "hidden units", in between. A set of input

1. states, P-, s = 1,...,p, is presented repeatedly to the system until the system
reaches an output for each input pattern which is close to the target. ' The
output of the system, 6', is compared with the target P, and the weights
between the output layer and the last hidden layer are modified. The error
signal is then propagated back accross these modified weights to the next
layer of connections, where the weights are modified. In this way, the error
signal at the output layer is passed backward layer by layer to modify all of

*% the connections systematically. A simple example with one "hidden layer"
* of neurons is shown in figure 1. For figure 1, the equations summarizing

Output Layer

h "Hidden" Layer

J

Figure 1: The ot label the output units, the h label the "hidden
units", and the f, label the input units. Only some of the connections

* are shown. Superscripts on synaptic weights denote layer index.

the forward propagation of an input signal f (presentation of the training _

pattern f') are n For
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.'p 'Since the targets are usually binary-valued and can only be reached asymptotically, a
"''p distance from target learning cutoff must be specified. We typically chose 0.1
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h = (2)
N 2

S= 2 ,h, + ,(2) (3)

0 = (Yt) (4)

where O(z) is the sigmoid input-output function given by: 23

V b(Z) = 1 (5)
" 1 + C- AS "

In effect, to learn the correct response, the system must minimize the
difference between the target output, P, and the output 6' for each pattern.
The modifications to the connections, therefore, are made as a gradient

0 descent in the energy function:

N 2 2

E = oo -r) . (6)
. .2 8.=1 k=1

To simplify computation modifications are made after each pattern is pre-
sented, so that as an approximation to true gradient descent, the gradient
is computed actually from the partial energy

N2
E _ s 2 (7)

In the above example, the modification to the weights w } after the pre-
sentation of pattern s is given by:

J * aw (2a•O )  8~
a c. o, ay.

= oi, ay aw (2
= -cA(oi - r,)o*(1 - o',)h, (8)

21n Rumelhart's original model there is no gain parameter A, but we have found it useful

to introduce this parameter to study the effect of varying the strength of the nonlinearity
4-'. •by using it to change the size of the region over which the function is in fact approximately

4- linear, which is - 0(-).
% -Hopfield also used a gain parameter in the continuous version of his model [I] to study

.F the effect of changing the character of the nonlinearity.
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where we have used the fact that the derivative of the sigmoid input-output
function in equation 5 is 0'(z) = AO(z)(1 - O(z)); a is a small positive
constant. Similarly, after the weights between the last layer and the hidden
layer have been updated, the error signal is propagated back across these
new weights, and the weights between the input layer and the hidden layer
are then updated, according to:

ae,

%'Si

:,,, Nae, ao[t ay, ah iaxt
,--'" -o ao,, ay, ah!' a w a,,,} )

N2

= aA 2 E(ol - T)ol( - ol)w()h'(1- h:)f;'. (9)
k=1

In the model biases are treated as being the connection strength from
units which always have the output value 1; as a consequence, they are
also modified when the error signal is propagated backward. One addi-
tional feature of the modification procedure is a "momentum" term which
is added at each step of the modification procedure to diminish the effect
of oscillation in the gradient descent search for the minimum; the "momen-
turn" term consists of adding a small amount proportional to the previous
modiciation, so that the actual modification at time step t for the nth layer
of synaptic connections is:

- a,,(.--) + ,.,-,i(,(,[ ) (10)

where s(t) denotes the index of the pattern presented at time step t and r.
is a small positive constant less than 1. One can also write this in a slightly

different form:
'.t ac t-L -(, ,

4 This form is more suggestive in showing that the use of a momentum term
is equivalent to a discrete approximation to a "temporal" integral aver-
age with an exponentially decaying kernel. The kernel has the effect of
weighting the influence of the patterns most recently presented, assigning
exponentially less weight to those patterns presented earlier in time.
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3 Simulations and Results

In simulations of the Backward Propagation of Error Model, we have stud-
ied the ability of the model to generalize based on a limited training set. We

have studied several paradigms thus far. In the realm of discrete binary-
valued pattern identification, we have considered two problems: (1)the iden-

tification of the parity of the input vector with four and eight input units
and (2)the boolean mapping AND on two input units in a four-dimensional
input space. At the same time we have also begun to consider pattern
recognition of patterns in continuous spaces, specifically the identification
and separation of geometrical shapes and regions which are not necessarily

simply connected. Contrasting the results of the discrete pattern spaces
* with those of the continuous space problems offers some insight into the

generalization properties of the Backward Propagation network.

The problem of the AND mapping for binary input consists of train-
ing the network to respond with a one if two particular bits in the input

.* pattern are both on but to respond with a zero otherwise. This problem
then is equivalent to identification of a subspace; for example, for a four-
dimensional input vector, the network is asked to isolate the subspace con-
sisting of one particlur two-dimensional lattice from the rest of the space.

* -. :For the AND problem, the decision space, therefore, is not terribly com-

plex (a single hyperplane separates the two subspaces), and the Backward
Propagation network is capable of some generalization.

In contrast, for the parity problem, where the pattern class boundaries
are more complex and are, in fact, disjoint, the system is incapable of gener-

-A. alization. Specifically, the parity problem consists of determining whether
a binary input vector has an an even or an odd number of ones. For an
odd number of ones, the correct response is one, and for an even number
of ones, the correct response is zero. The problem has a solution provided
that there are a sufficient number of hidden units (_ N) [11 and provided
that the entire training set of 2 N patterns is specified. We have found,
however, that when the neural network is trained on a subset of the 2 N

patterns, it will usually not correctly identify patterns which were not pre-
sented to it during the training phase, regardless of what percentage of the

"*-* possible patterns have previously been shown. In fact, the network tends
to respond as if the previously unseen pattern had a parity dichotomous to

N."
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its actual parity. Comparing this result with that obtained for the AND
problem suggests that the disjoint decision boundaries make it difficult for
the system to arrive at a truly "general" solution. However, comparing this
outcome with a paradigm for a continuous space problem, which we will
presently describe, can help make the distinction more precise.

In the realm of continuous space generalization, we have begun to study
a paradigm which consists of teaching the network a geometric to distin-
guish different regions, not all of which are simply connected, in a con-
tinuous space. The value of each input neuron corresponds to one of the
cartesian coordinates of a given point in the space. The inputs,therefore,
can take on both positive and negative real values. As an example of this,
we have considered a problem, in which concentric circles define two re-
gions, an inner disk and an outer annulus. The mapping to be learned
consists of identifying any point(pattern) in the inner disk with an out-
put of one and any point(pattern) in the outer annulus with an output of
zero. Training patterns are selected randomly and uniformly throughout
the two regions; the x- and y- coordinates are the values of the two input
neurons respectively for each pattern. After training we find that when
we select new unseen patterns at random, the system will generalize what
it has learned and correctly identify a large fraction of the previously un-
seen inputs. In the following figure, we show a generalization curve for a
simulation which had four hidden units and which was trained with 150
randomly chosen patterns. The concentric circles had inner and outer radii
of 1 and 2 respectively. The generalization curve plots output versus ra-
dius at incremental radii of (1/15) for patterns not seen during the training
phase. At each radius, 100 patterns are chosen at random angles, the x and
y coordinates of each point are presented to the network, and an output is
determined; the generalization curve plots the mean and standard deviation
of the 100 patterns at each radius. Provided a sufficient number of patterns
are chosen and also provided that we do not saturate the system with too
many training patterns, the network develops a generalization curve ap-
proaching step-function which would occur if the network were performing
the ideal mapping.

If we compare the concentric circle problem with the two discrete-input
paradigms, we may infer some of the limitations of the limitations of the
generalization capabilities of the current Backward Propagation Model. It

6

*' V



-1

.5 - . . ". --

*%° "6

-5
-'

I.%'H

..



0

is logical that the problem in the continuous space with continuously con-
nected regions should be easier for the network to learn about. Except near
the boundary, any point and another point sufficiently close to it will have
the same output. Thus, provided that enough random points are selected
in the two regions, the system can learn to identify unseen points from what
it has seen previously because there are training patterns that have been
learned which will be sufficiently close to it with the same output. Indeed
in the example shown, the only region of ambiguity and large standard de-
viation is near the boundary. In contrast, in the discrete lattice defined by
the parity problem, for any point on the lattice with a given parity, all of
its nearest neighbors will have the opposite parity. This leads to problems
in generalization, then, because the level of analysis on which the system
appears to discriminate is to assign an output for an unseen pattern equal
to that of training pattern(s) which are closest; in the parity problem, this
will very often be a nearest-neighbor pattern, which will have the oppo-
site parity. In the simulations which we ran for the parity problem with
a four-dimensional input space, we ran simulations in which we presented
12 of the 16 possible binary inputs, which meant that for each of the four
patterns not presented until after the learning phase, there was at least one
nearest neighbor, which of course had opposite parity, and which had been
used in training. The AND problem, on the other hand, is similar to the
concentric circle problem in that neighboring states through much of the

I. lattice will have the same output; also, pattern class boundaries are not
disjoint, and only near the boundary can there be potential confusion.

4 Conclusions and Future Directions

If the Backward Propagation Model is to be useful for problems like that
of parity, it must be improved to the point where it analyzes incoming data

in a more sophisticated manner than its current formulation. It is not sur-
* prising that it has difficulty learning a problem like parity. The learning

procedure considers only one pattern at a time, with only a weak memory
of previous modifications being provided by the "momentum" term. Es-
sentially, it treats the gradient descent by descending down the individual
pattern troughs instead of a global trough. If we only care about learning

8
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the training set in a problem like parity, this will be sufficient usually; how-
ever, if we wish the network to generalize, it must have a better means of
comparing and/or storing information about more than pattern.

One approach that we hope to try, therefore, is a modified energy func-
tional and learning procedure. We propose a procedure in which patterns
are optimized in random pairs and the energy functional is either a product
of the square errors of each of the two patterns,

.(..' - r (052 -s2)
2 , (12)

or else a linear sum of the two energies:

*0 1 a - rj2+ (o52 -To2)
2 . (13)

In the latter case, the principal difference between the suggested imple-
mentation and the original algorithm is that of ordering. But this may
be an important point, for consider the following. In the binary learning

paradigms in which the value of inputs take on only the value of 1 or 0,
the sign of the modification of a given weight is entirely determined by the
difference (r' - o'). This means in effect that patterns in different classes
are always trying to modify the weights in the opposite direction. In the
original algorithm, the patterns are always presented in the same order,
which means that in effect patterns which are very far apart on the list are
never really compared. By choosing pairs at random (perhaps one from
each class), the system may be able to "compare" many different pairs of
data and draw better class distinctions. The product energy functional
may also have some additional merits, but this is unclear at this time.

0" An alternative approach may also be to add additional symmetry search-
ing terms to the energy functional." However, an appropriate form for such
terms has yet to be constructed.

O,"

." 4 An approach suggested by Amir Dembo and Ofer Zeitouni, personal communication
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