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RESEARCH OBJECTIVES

Many solid rocket propellants and other energetic materials consist of complex chemical compounds
of carbon, hydrogen, oxygen and nitrogen. The decomposition of these solid reactants leads to
the formation of gaseous hydrocarbons and oxides of nitrogen which cen react to support a flame
above the surface of the solid. These flames can provide heat which is fed back to the propel-
lant surface and thereby influence the burning rate of the solid. In the case of nitramine based
solid rocket propellants, the gas phase decomposition products include significant amounts of
CH,0. HCN, NO,, NO, and N,O0 (Kubota, 1982, Kuo and Summerficld, 1984 and Schroeder,
1985).

Several distinct luminous flame zones are observed in the combustion of nitramine propellants
which have also been seen in hydrocarbon flames with NO, as an oxidizer. A very rapid, lumi-
nous reaction zone is found adjacent to the surface of the propellant followed by a dark, nonlu-
minous zone at greater distances from the surface. Finally, an additional visible flame zone
appears after the dark zone. The detailed chemistry of this flame structure is not known at the
present time.

In early studies of fuel/NQ, flames, Parker and Wolfhard (1953) qualitatively characterized flames
supported by NO and NO,. They observed multiple luminous zones in flames with a number of
different hydrocarbons as fuels and they also were able to establish a pure NO decomposition
flame. More quantitative data have been reported on methyl nitrite, methyl nitrate and ethyl nit-
rate decomposition flames (Hall and Wolfhard, 1957) which also show multiple luminous zones.
Arden et al, (1957) and Hicks (1962) measured stable species composition profiles in a variety of
these flames and provide some insight into the structure of the multiple luminous zones. The
fuel evaporates froin the liquid pool and rapidly decomposes into a variety of products which then
react in the gas phase. In the case of the nitrites the products are hydrocarbons and NO. In
the case of the nitrates the products are hydrocarbons and NO,. When NO, is formed as » dec-
omposition product, rapid reaction between the hydrocarbon intermediates and NO, is observed
leading to the formation of NO. In all of the flames where NO is formed, there is the possi-
bility of the exothermic decomposition of NO if the temperature is sufficiently high.

This study is intended to provide experimental data on the structure of hydrocarbon flames sup-
ported by oxides of nitrogen in order to establish the reaction mechanism for such flames. Lam-
inar, premixed, flat flames of Ch,/NO,/O, and CH,Q/NO,/O, mixtures have been investigated and
a reaction mechanism is suggestesd which accounts for all of the major obsorvations in the flame
data, These measurements represent the first data on intermediates in the reaction of hydrocar-
bons with NO, in {lames. '

STATUS OF RESEARCH
Burner Assembly

Flame reactions are followed experimentally by precise, spatially resolved moasurements of species
concentration and temperature profiles above a one-dimensional, laminar flat flame burner. Reac-
tant gases are metered by Tylan electronic, lincar mass flow controllers sccurate to 1% and repro-
ducible to 0.3%.  The flame resulting from the reactant wmixture is stabilized above the burner
which is housed in a rveaction chamber at a pressure of 50 torr.  The chamber allows low pres-
sure operation 1o distribute the flame reaction spatially and thus enhance spatisl resolution of the
measurements, '
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Gas temperature measurements are made using silica coated 0.0076 cm diameter Pt/Pt-13% Rh ther-
mocouples. The coating recommended by Fristrom and Westenberg (1965) is followed in order to
minimize the catalytic effects associated with bare platinum wires. Gas samples are withdrawn by
quenching quartz microprobes and analyzed by a Varian 3700 gas chromatograph. Possible errors
and limitations associated with flame probing have been described by Fristrom and Westenberg
(1965) and procedures for minimizing these errors are in common use. The burner is mounted
on a micrometer positioning mechanism accurate to 0.01 cm. A reliable gas chromatographic con-
centration measurement technique for the nitrogenous species N,, NO NH,, HCN and N,O and
the combustion products CQ, CO,, CH, and H, has becn developed (Banna and Branch, 1978).

Formaldehyde Generator

Formaldehyde is an intermediate in the combustion of most hydrocarbon fuels and a major reac-
tant ir the combustion of energetic materials. It has not been studied as extensively as other
species, however, because it is so difficult to generate in the gas phase. We have developed a
new technique for the generation of a steady flow of gascous. monomeric formaldehyde for use in
combustion studies (Sadeqi and Branch, 1987).

The major difficulty in the generation of gascous formaldehyde is its extreme reactivity, even with
itseif, at ordinary temperatures. Therefore, formaldehyde is usually supplied commercially either in
a liquid solution with methanol or as a solid polymer such as paraformaldehyde. A second diffi-
cully in the production of gaseous formaldehyde for use in combustion experiments is in obtaining
a steady flow rate for long periods of time. The system that we have developed was designed to
overcome these difficulties and provide a relatively pure. continuous supply of gasecous formal-
dehyde.

A mixture of 70 grams of pargformaldehyde powder per liter of caster oil is supplied to a 2.5
liter stainless stee] formaldehyde generator housed in a conventional oven. The generator is
approximately half filled with the liquid suspension and half filled with gas. When the oven is
heated to 423 K. the suspension evolves gaseous formaldehyde which is bled out a hested outlet
line, through a variable area flow metering valve and to the flame burner system. 'The formal-
dehyde generator can be maintained at a pressure of 2.0 atm with little interference while continu-
ously extracting scversl standard liters per minute from the vessel. Considerable care had to be
taken in the design of the generator to davoid polymerization of the gascous formaldehyde and
clogging of lines leading from the gonerator.

The system has demonstrated long term stability with little operational interference.  Repeated
measurements over lime of flames estublished with the formaldehyde generator have shown that the
sysiens can be operated stably for over eight hours. The generator makes possible a varlety of
studies of continuous combustion systems with {ormaldehyde as the primary roactant or as an in-
dependently variable intermediate,

Laser Induced Fluorescence Spectroscopy

The reactive intermediates which are of interest in this study are primarily OH, H, NH, NH,,
CH, and CN. [Identification and quantitative measurements of most of these specivs and of NO
is possible by laser spectroscopy. In addition, gis temperature can be measured by spectroscopy
for comparison (o thermocouple readings.

The optical arrangement for the laser absorption and laser induced fluoresconce measurements is
given in Branch ot al., 1987. A Lambda Physik EMG 53 MSG Excimer Qas Laser is used to
pump a Lambda Physik FLX00! Dye Laser. The excimer laser pulses at 0.1 to 100 Hz and has a
pulse enoegy of S0 mJ at 308 nm. The Lambda Physik FL200I Dye laser has a wavelenglh range
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of 320 to 970 nm and a pulsewidth of § to 20 nsec with a background of less than 1. The

combination of the excimer laser and the dve laser with the dyes available, provides high pulse
encrgy, narrow bandwidth and extremely low background.

The laser light output from the dye laser is filtered and a beam splitter used to divert part of
the becam to a power meter monitor. Light then passes through the burner pressure vessel and is
focused through the flame. Separate focusing arrangements and mirrors are used for the laser
absorption and laser fluorescence measurements.  The collected light from fluorescence or the
attenuated light from absorption is then focused onto the entrance slit of the SPEX 1401, 0.75 m
double monochrometer.  The signal from the photomultiplier tube is processed by a Stanford
Rescarch Systems signal averager and recorder. The Hewlett-Packard 9816S computer is available

for controlling the spectrometer scan and other experimental variables and analysis of data from
the experiments.

The flame which is being studied is a premixed, laminar, flat flame. The flame is thercfore
nonsooting to minimize soot extinction and limit background luminosity and laser induced particu-
latc fluorescence. Since the path length through the flome is 8 cm, defocusing is minimal. Lam-
inar flow and the use of electronic mass flow controllers accurate to 1% also eliminate temporal
variations in the flowfield. Beam trapping helps avoid spurious scattering of laser light.

The species of interest in the flame studies we are conducting generally have known absorption
and emission spectra and are all accessible by the turnable dye laser system. They also have pre-
viously detcrmined lifetimes for radiative decay. The spectral lines used were selected so the cor-
rection for the effect of temperature on the line intensity was a minimum. Data from the previ-
ous observations of these specics in other chemical systems aid in the interpretation of the fluo-
rescence and absorption spectra. In addition, the measurement of stable species concentration and
of temperature in the flames by gas sampling and gas analysis also aids in interpretation of the
fluorescence data. These and other requirements of signal interpretation are discussed in detail in
Eckbreth (1981), Bonczyk et al. (1979) and Crosley (1979). Although all necessary corrections are
not completely characterized, saturated fluorescence and fluorescence calibrated by absorption or

some other technique have been successful in giving reliable species concentration data for labora-
tory flames.

The accuracy of the stable species composition measurements is approximately 8%, the accuracy of
the unstable species measurements is estimated to be 20% and the accuracy of the temperature
mecasurcments is about 3%. The flame sampling position is determined by moving the burner rela-
tive to the probes or the laser beam with a positioning micrometer. The use of slits in the laser
fluorescence collection system gives a position accuracy of 200 microns and is comparable to the
dimension of the probe flow disturbance.

Flame Modeling

The data generated by the experimental measurements consist of one-dimensional profiles of species
composition and temperature throughout the flame. The data can then be compared to a numeri-
cal model of the multicomponent reacting flow including an elementary reaction mechanism for the
detailed chemistry of major species and intermediates. The comparison between the experimental
profiles and those gencrated by the numerical model provide insight into the appropriatcness of
the reaction mechanism and fluid mechanics of the process.

~
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RESULTS AND DISCUSSION

The flames of CH,//NO,/O, mixtures were characterized by two distinct luminous zones separated
by dark zones. At the face of the burner where the gas temperature was generally low, there
was a dark or nonluminous zone usually a few mm in thickness. Next there was a yellow/orange
region which was typically 3 or 4 mm thick followed by the second dark zone. Finally there was
a violet luminous zone about 5§ mm in thickness. The thickness of the zones could be changed
by changing the relative proportion of the reactants. For example, if NO, is increased and O,
decreased the yellow region becomes wider and brighter while the violet region becomes thinner
and less bright. A complete listing of the flames studied thus far is given in Table I.

Mecasured flame profiles for a lean CH,/NO,/O, flame are given in Figure | and for a lean
CH,0/NO,/O, flame in Figure 2. The flames both demonstrate that NO, is much less effective as
an oxidizer than O,. The O, in both {lames is completely reacted and much of the No, remains
unrcacted in the burnt gas mixture. With pure CH,/NO, flames rich mixtures could not be sta-
bilized on the burner. Measurements of CH,/O, and CH,0/0, flames show that the reaction rate
of ecither fuel with O, alone is much more rapid than with NO,.

There are significant differences in the final products in the methane and the formaldehyde flames.
With methane there is some reduction of the NO which is formed from NO, into molecular nit-
rogen whereas with formaldehyde little molecular nitrogen was detected. The limited reduction of
NO to N, contributes to the {lame temperature being much lower than the adiabatic flame temper-
ature since NO decomposition is exothermic.  Another difference between the two flames is that
H, remains in the burnt gas with formaldehyde even though the {lame is lean whereas H, is only
an intermediate at lower concentration in the methane flames.

The intermediate species measured in the methane flame are CH., NH, CN. NH,, and OH. Al
but the OH rise to a peak and then decrease quickly in the reaction zone. The CH radical is
observed carliest in the flame and the profile has two peaks.
These reactant. intermediate and product species measurementis snd other recent studies of the kin-
etics of similar systems (Le and Vanpee. 1985: Vandooren et al.. 1986; Thorne et al.. 1987,
make it possible to suggest a reaction mechanism for both of the flames. Methane conversion
proceeds by the sequence
CH, + R = CH, + RH )
CH, + R « CH,O + RH (2)

which leads to the formation of formaldchyde. Once formed. formaldehyde reacts according to.
(Thorme ¢t al.. 1987 :

CH, + R «» CHO + RH ]

o form HCO which is comumed by the reactions

CHO « R = CHO + RH @
CHO + M « CO » H ()
CHO + O, = CO + HO, e

The formation of CO, may result from vither of the reactions




Table 1

Reactant Mole Fractions of

Methane Flames

Mole Fractions

Flame <, NO, 0, Ar
1 0.11 - 0.2¢ 0.65
2 0.2¢ 0.56 0.26 -
3 0.16 0.73 0.1 -

4 0.12 0.88 0.03 -
Reactant Mole Fractions of
Formaldehyde Flames

Mole Fraction
mm ‘0 C (] ol
[ 0.247 - 0.6 0.126
6 0.9 - 0.0 -
9 0.61 .o . 0.3
8 0.5  OUS  e 0.49
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CO + OH =CO, + H n
CO + HO, = CO, + OH (8)

Some of the CH, formed above can react by another path to form CH, for cxample
CH, = CH, = CH
The major reaction consuming NO, is
NO, + H = NO + OH 9

Once CH and NO are formed the other intermediates observed in the flames with methane can
result from

CH + NO = NH + CO (10)
CH « NO = HCN + O = CN + OH (1
The molecular nitrogen results from
NH + NO = N, + OH | $3)]
CN + NO = N, + CO {13)

This mechanism has the virtue of being able to explain nearly all of the observations. on the
flames we have studied. The limited elffectiveness of NO, as an oxidizer results from the impor-
tance of the chain propagating Reaction 9 when No, is oxidizer versus the chain branching reac-
tion ' S

O,+H+0+0H | o m

which dominates when O, is oxidizer, This also'explaim why NO, remains in cxeéss in these.
flames in comparison to the more compjleie consuraption of O,

The lact that formaldehyde reacts more readily with NO, than methane reacts with No, results
from the fact that methane must first form farmaidehyde in order to complete its oxidation. The
initial aitack on the methane is well known to be relatively slow, :

The observation that N, is not found in significant quantities in the formaldehyde flames arises
because CHO cannot be converted to CH.  Therefore there is no simple path to the formation of
CH in the flames with Tormaldel: o and the path to molecular nitrogen cannol proceed.

CONCLUSIONS

Flames of methane and formaldehyde have bscen stabilized with mixtures of NO, and O, a8 oxi-
dizer, the flame stnture méasured and the kinctiss discussed.  Nitrogen dioxide is 3 poor oxi-
dizer in relation to O, duc 0 ihe chain propagiting resétion of No, with H atoms in contrast
with the chain branching reaction of O, with H stoms. ln the methane Tlames come reduction of
NO 10 N, is possidle because of the formation of CH. In the formaldchyde system ke Cil is
formed and the lormation of molecular nitrogen is much more difficult.
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