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1. General

-- The long-term goal of our research at the Weizmann Institute is the devel-
opment of multi-level methods for solving all types of large-scale problems in sci-
ence and engineering. In addition to an extensive and diverse development of
multigrid solvers for differential and integral equations, completely new multilevel
approaches have recently been introduced to the areas of large-scale global opti-
mization, statistical physics and calculation of many-body interactions (see our
review.[1I).

j The three-year contract summarized below has undertaken two multigrid
themes: grid adaptation and time-dependent problems. Due to some personnel
reasons, it turned out that during the first year and part of the second the main
advance had been in the first theme, while in the second phase effort has been
concentrated in the latter. The paper summarizing our work on grid adaptation
has already appeared [2], while the final paper on time-dependent problems is still
in preparation, and will be sent later. For scientific reports attached herein -

see the list of references.

2. Grid adaptation

Since our research on multigrid mesh refinement techniques is fully reported
in [2], we confine the present description to a brief summary.

'-- The purpose of our study was to provide criteria for optimizing meshsizes near
singularities and to develop fast and flexible multigrid methods for creating the
nonuniform grids, their difference equations and their solutions. For simplicity, the
Poisson problem was studied, with singularities introduced either in the forcing
terms (algebraic singularities or sources) or in the shape of the boundaries (re-
entrant comers). Local refinements were created by multigrid structures in which
some extra finer levels cover increasingly narrower neighborhoods of the singularity,
as proposed in-f. The main innovations developed under the present contract
are described below.

2.1 Local relaxation sweeps

Structural singularities, such as reentrant comers or discontinuities in co-
efficients (of the interior or boundary differential operators) result in degraded
multigrid performance for the following two reasons: 1) Error components slow
to converge in relaxation are approximate solutions of the homogeneous differ-
ential equation. Near a structural singularity components of this type can have
large derivatives and hence large errors in their interpolation from any coarse-grid



approximation. 2) When transferring residuals from a fine grid to a coarse one,
unusual weighting should be given to residuals near the singularity.

Experiments show that the asymptotic convergence degrades only when V
cycles (not when W cycles) are used, and especially when the number of levels is
large. Which is why this trouble particularly bothers us when local refinements
(needed near structural singularities for accuracy purposes) are used: With local
refinements many levels are usually introduced, and W cycles are prohibitively
expensive (since the number of points on coarse levels is not necessarily small
compared to that on fine levels).

We have therefore developed a general approach to obtain the full efficiency
of multigrid V cycles despite structural singularities. The technique is to make
special local relaxation passes over a small number of points near the singularity.
This eliminates the large interpolation errors (which are large only locally there)
and reduces large local residuals, hence making their correct weighting immaterial.

Experiments with this approach were conducted on the Poisson problem with
Dirichlet boundary conditions in a domain with a 27r re-entrant boundary. They
showed that the same asymptotic convergence rates as in regular problems (i.e., as
in the Poisson problem on regular domains) can be obtained by applying, on each
grid at its turn, one local relaxation pass over a few points near the singularity
before each usual relaxation sweep over the entire grid. The number of points
where the local relaxation should be performed is a small fraction of the entire
grid, hence the amount of extra computations involved in the special passes is
negligible compared to the usual multigrid work.

Incidentally, the technique of extra relaxation sweeps over a small region near
the boundary was later incorporated into a general rigorous theory of multigrid
solvers. It is used even in some cases without structural singularities, to ensure
that the "interior convergence factor" is always attained (see [4]).

2.2 The \-FMG algorithm

A general technique for treating singularities is by local mesh refinement. As
mentioned above, a method for creating local refinements as a natural part of
multigrid fast solvers had been suggested in [3, §8] and [5, §9], and was further
studied by us as part of this contract.

The main question we first treated is how to modify the FMG algorithm
[5, §7] for the situation where many levels of local refinements are created. In
that situation, when finer levels cover much smaller subdomains, the number of
gridpoints on coarser levels is not necessarily small in comparison to their number
on finer levels, hence the work expended on coarser levels by the usual FMG
algorithm is much too large.
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A modified algorithm, called A-FMG, has been devised. It is based on the
same exchange rate (the Lagrange multiplier A) used in the grid-adaptation equa-
tions (see [3, §8]). For each value of A these equations determine a set of local-
refinement grids on which the problem should be discretized. The A-FMG algo-
rithm uses a sequence A0 > Al > A2 > ... of exchange-rate values, where A0 is
large so that its set of local-refinement grids is relatively coarse, giving a crude
solution for a small amount of work, and Ai = aAi- 1 , with constant factor a < 1.
For each Ai (i > 1), the first approximation is obtained by interpolating the Ai_ 1
solution from the Ai- 1 set of grids into the Ai set. Assuming Ai- 1 to be close
enough to Ai, this first approximation is such that a multigrid cycle with only a
small number of relaxation sweeps on each grid of Ai is required to obtain the Xi
solution to within truncation errors.

A detailed analysis shows that the efficiency of the algorithms is not sensitive
to the exact value of a = Ai/A,i_. For example, for second-order problems in two
dimensions, any value of a roughly in the range .02 < a < .25 will give results
close to optimal. In our numerical experiments a = 1/16 = .0625 was taken.

The numerical experiments were first carried out for a problem with right-
hand side singularity, in order to separate the above question (the efficiency of
FMG) from other questions (specific to structural singularities; see §2.1). Namely,
we have solved the equation Au = 92r-2 on the square {0 < z < Ro, 0 <
y -5 RO} where r is the distance from the corner (0,0). The Dirichlet boundary
conditions were such that the exact solution is u = r 7t. The known solution allows
us to make precise comparisons of algebraic errors with truncation errors.

We then experimented also with the problem with 27r reentrant corner, aided
by local relaxation sweeps as described above (§2.1). The boundary conditions
were chosen so that the exact solution of the differential equations was u =
rl/2 sin o/2, where (r, o) are radial coordinates such that the re-entrant corner
is at r = 0 and the re-entrant boundary is at W = 0 and po = 27r. This solution
exhibits the typical singularity at such a corner.

The grid-adaptation equations [3, §8] yield for each of these problems a set
of grids where the finest meshsize h at distance r from the singularity is given by
a known rule h = h(r, A). For example, for the right-hand singularity problem
h = O(X1/ 4 r( 2-- y)/4). We have used for each A a set of grids approximately
satisfying this rule, and applied the A-FMG algorithm described above. Two
important results were established:

1. The A-FMG algorithm solves the equations in linear times; i.e., for each prob-
lem, the solution time is proportional to the total number of gridpoints on all
levels. (The usual FMG algorithm falls far behind such linear dependence in
the case under study, because of the many levels of local refinements).

2. Due to the optimal choice of h as a function of r and the above efficiency
of the A-FMG, each problem was solved in the same over-all accuracy-to-
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work convergence rate as a regular problem. Namely, despite the singularity,
the error E in approximating the true differential solution decreases as W - 1,
where W is the over-all computational work; this rate E = O(W - 1 ) is the best
possible for any second-order approximation to any two-dimensional problem.

2.3 Interior singularity. Conservative local refinement

Source singularities and other interior singularities appear in many applica-
tions. As a model we took the equation Au(x, y) = 47r6, where 6 is the Dirac's
distribution, with boundary conditions that yield the solution u = log(z 2 + y 2).
The singularity is at (0, 0), which was placed at the center of the square domain.
We tested local refinement techniques on this model. This led to some modifica-
tions of those techniques.

First we found that no local refinement is really needed to obtain regular ac-
curacy far from the source: if the second-order differencing is in conservation form,
and if the correct source strength is represented, then solution errors are always
O(h2 /r 2 ) at distance r from the source. Furthermore, adding non-conservative
local refinements very substantially increases these errors - proportionately in
fact to the spurious (numerically created) fluxes. It is therefore important to use
conservative local refinements.

We have developed a general approach to maintain conservation where local
refinements are introduced. The FAS coarse grid equations near the refinement
boundary are suitably modified for this purpose: a special term is added to the
fine-to-coarse defect correction r.

Using such conservative refinements for the above model problem gave the
accuracy one should expect. That is, the solution error at distance r from the
source is O(h(r)2 /r 2), where h(r) is the largest meshsize at distances up to r from
the source.

It was also realized that the general criteria for grid refinement [5, §9.5] should
be modified in case of interior singularities, so as to take into account the large
cancellations among the large contributions to the error functional from the local
truncation errors rT) near the singularity. Such cancellations are typically achieved
if conservative discretization is used.

3. Multigrid for time-dependent problems

A preliminary description of the results of our contract work on time-dependent
(primarily parabolic) problems is contained in [ 6]. Two detailed papers are under
preparation, containing results from more extensive numerical studies. It has taken
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longer than expected, since a student who worked on this project (E. Gendler)
could not stay with us, and his ad-hoc programs needed major re-writing. In fact,
we are still busy calculating results and producing graphs needed to present a
comprehensive and convincing account of the new techniques. We will send this
account to the U.S. Army as soon as it is completed. Here we summarize the main
points; for detailed formulae and sample tests see [6].

3.1 Multigrid solvers for implicit systems

Some time-dependent problems may need no multileveling. These are hyper-
bolic schemes where all the characteristic velocities are comparable to each other,
and their explicit discretization on one grid is therefore fully effective: the amount
of processing is essentially equal to the amount of physical information. However,
as soon as any stiffness enters, implicit discretization and multigrid techniques
become important.

The multigrid algorithm can first simply be used at each time step as a fast
solver for the system of equations arising from the implicit descretization. This
use could be considered quite straightforward, but it did produce some confusion
among several investigators, mainly with regard to the following two questions:

(i) In the usual full-multigrid (FMG) algorithm for steady-state problems, the
first approximation to the solution on a fine grid is obtained by interpolating from
a coarse-grid approximation (see [1, §4] or details in [5, §7]). In case of evolution
problems, should the first approximation still be taken from the coarser grid, or
should it simply be the solution at the previous time step?

(ii) The FMG algorithm in case of steady-state problems usually solves the
problem in one cycle; i.e., starting from the above first approximation, one multi-
grid correction cycle (usually a V cycle; for some problems a W cycle) is all
one needs to obtain algebraic errors small compared with the truncation (dis-
cretization) errors. Hence the algorithm is called 1-FMG (op.cit.). In case of
time-dependent problems, at each time step one needs to solve to the level of the
incremental truncation error, i.e., the (much smaller) discretization error added at
that time step, not to the level of the accumulated truncation error. Is the 1-FMG
powerful enough to do that?

The simultaneous answer to these two questions is that the 1-FMG algorithm
should be consistently applied to the incremental problem, and then it will easily
obtain algebraic errors small compared to the incremental truncation error. In
case of linear problems this can be done by writing the system of equations as
equations for the increment (the difference between the solution and the solution
at the previous time step), and applying the 1-FMG algorithm for this new system.
As a result, for example, the first approximation on the fine grid will effectively be
the sum of the previous-time solution and an interpolated-from-the-coarser-grid
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first approximation to the increment In case of nonlinear problems, the same can
be done by using the FAS-type multigrid formulation ([1, §7] or [5, §8]).

To demonstrate the above, we have conducted detailed tests with second-
order Crank-Nicolson discretization of the heat equations, with various types of
initial conditions: smooth, highly oscillatory, and discontinuous. In all cases a 1-
FMG algorithm, employing V(1, 1) (i.e., a V cycle with one pre-relaxation and one
post-relaxation; cf. [1, §4] or [5, Fig. 1.1]) or V(2, 0) cycles, was used at each time
step. We tested cases where the errors can be exactly calculated, and showed that
the remaining algebraic errors were indeed negligible compared to the truncation
errors. We have also showed that some wrong multigrid approaches produce far
worse results.

The computational cost of the 1-FMG solver at each time step is several
(typically 6) "work units", independently of h and k (the meshsize and the time-
step-size), where the work unit is the computational work of one explicit time step.
For many types of problems, advanced multigrid techniques, discussed next, even
reduce the required work much further, to a fraction of a work unit per time step,
while other multigrid procedures (discussed in Secs. 3.3 and 3.4) inexpensively

enhance accuracy and cure some possible bad features of the usual discretization.

3.2 Frozen r techniques

In many problems, notably in parabolic ones, at most locations during most
of the time the increment function is very smooth, hence seldom requires fine-grid
processing. In the heat equation ut = Au + F, for example, the increment can
be non-smooth only near non-smooth initial or boundary conditions or near non-
smooth changes in F, where "near" means distance O(h) in space and O(h 2 ) in
time.

The frozen-r technique is a method to avoid unnecessary fine-grid processing.
It was described in [7, §3.9]. It is based on the FAS multigrid formulation [5
§8]. The finest grid is employed only once per many times steps. When it is
not employed, its r corrections to the next-coarser-grid equations (see [5, §8.21)
are calculated from previous times (assuming their decay in time is proportional
to the decay shown in the coarser-grid solution norm). The next coarser grid is
similarly skipped: It is employed only twice as often as the finest; and so on.
Returning to a grid after an unemployment interval, its values are first calculated
from its former values (assuming again a decay proportional to the decay in the
coarser-grid solution norm), and then corrected from the coarser grid values by
FAS interpolation (Eq. (8.6) in [5]).

Automatic criteria to decide at what time a return should be made to a finer
level have been described in [7, §3.9]. Since the criteria can be employed locally,
finer levels can be activated only when and where needed.

V.. * * *~*4. W



In the present research the automatic criteria were not implemented. Our
primary aim was to demonstrate, through a simple example, the huge reduction
obtainable in the computational effort by a uniform use of frozen-r techniques for
uniform problems. For this purpose we chose the above heat equation in a square
domain with periodic boundary conditions and with arbitrary initial conditions.
Since we want to solve to the level of fine-grid truncation errors, the more difficult
case is F = 0, where the solution, and hence also the truncation errors, tend to zero
as t -+ oo. We thus examined this case in particular. In this case exact solutions
to the differential and discrete equations based on Fourier series can be calculated.
They have been incorporated into our programs for comparison purposes.

We defined as our target truncation errors the spatial truncation error; i.e., the
difference between the true differential solution and the solution obtained when our
space discretization (the usual 5-point 0(h 2) discretization) is used with vanishing
time step (the "method of lines"). This is the error level below which we wanted
to solve, by applying the Crank-Nicolson discretization together with the frozen r
approach.

Simple order-of-magnitude analysis shows that, if our finest meshsize is h,
any grid with meshsize H should be visited once per time interval 6t = 0(tH/h3 ),
where t is the time from the (potentially non-smooth) initial conditions. Imple-
menting this rule in our algorithm, we have indeed confirmed that our differential
error (the difference between our solution and the differential solution) was always
comparable to the spatial truncation error. This has been demonstrated for both
smooth and non-smooth initial conditions.

From the rule we implemented, it is readily seen that the total work in solving
(to the level of spatial truncation error) our evolution problem from t = 0 to t = T
requires only O(log(T/h 2 )) work units.

3.3 Double discretization technique

The Crank-Nicolson (CN) discretization is the least expensive and most con-
venient stable scheme with second order accuracy in both the meshsize h and the
time step k. It has, however, one serious flaw for k > h2 : Transient highest spatial
frequencies (transient Fourier components with wavelength close to 2h), which in
the differential solution decay almost completely in time k, hardly decay at all at
each time step (only their sign is flipped). In another simple stable discretization,
the Fully-Implicit (FI) scheme, such components properly decay in one time step,
but accuracy is only first order in k (hence k >' h2 does not really make sense).

This situation can be described as a conflict between low frequencies (for which
CN is better) and high ones (for which FI is better; accuracy order is irrelevant
for non-smooth components). In multigrid processing the latter are treated only
at fine-grid relaxation, while the former are effectively determined by the coarse-
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grid corrections. It is therefore possible to resolve the conflict by using the two
discretization schemes at different parts of the algorithm (similar to the "double
discretization" schemes in steady-state multigrid solvers; see [5, §10.2]): CN is used
in most places, but it is replaced by FI at relaxation on the finest grids during the
first time steps. CN is still used, even on each of those finest grids even during the
first time steps, for calculating the residuals transferred to the next coarser grid.

We have tested this approach on our model heat problem, and found the
expected behavior: while slowly decaying high frequencies were completely elimi-
nated, the CN accuracy was always maintained, both for smooth and discontinuous
initial data.

Not concluded yet are tests which combine this double discretization approach
with frozen -r (Sec. 3.2). We expect this to be a powerful combination.

3.4 r extrapolation

In multigrid solvers for steady-state problems, ",r extrapolation" [5, §8.4] is a
local h extrapolation based on the fine-to-coarse correction rj" appearing in the
FAS formulation. It is used to obtain a higher order approximation for little extra
work, without employing higher order discretization formulae. It is more useful
than the Richardson extrapolation since it is local (extrapolating the equation, not
the solution), hence it can be used even when global extrapolation is not available.
It can be used for example together with any procedure of local refinements.

We have developed and tested a similar method for time dependent problems.
The FAS multigrid formulation is used as in the frozen r technique, so its fine-
to-coarse defect correction hK is calculated, where H = 2h is -the coarse-grid
meshsize and K is the time step for which the correction is calculated. Choosing
K = 2k in case of CN discretization, and replacing H,K by 4 HK , can be shown

'hk ~Thk cnb hw
to formally raise the approximation order from O(h 2 + k 2) to O(h 4 + k4 ).

We have tried doing this for the model heat problem described above. It was
found that this r extrapolation indeed considerably reduced truncation errors, but
to obtain real fourth order approximation we had to use fourth-order restriction
(fine-to-coarse transfer).

The reduced truncation errors of course makes the task of solving to the level
of these errors more difficult, hence requires modification in how often a finer grid
should be visited in a frozen-r method (see Sec. 3.2). This question, as well as the
combination of r extrapolations with the CN-FI double discretization technique,
require further investigations.

-9-
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