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Abstract. Consider a matroid of rank n in which each element has a real-valued zost

and one of # > 1 colors. A class of matroid intersection problems is studied in which

one of the matroids is a partition matroid that specifies that a base have elements of

color Y, for j = 1, 2, •, d. Relationships are characterized among the solutions to the

family of problems generated when the vedtor t402, ', qd) is allowed to range over

all values that sum to n. A fast algorithm is given for solving such matroid intersection

problems when 4 is small. A characterization is presented for how the solution changes

when one element changes in cosL Data structures are given for updating the solution

on-line each time the cost of an arbitrary matroid element is modified. Efficient update

algorithms are given for maintaining a color-constrained minimum spanning tree in

either a general or a planar graph. An application of the techniques to finding a

minimum spanning tree with several degree-constrained vertices is described.

Keywords. data structures, degree-constrained spanning tree, matroid intersection,
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1. Introduction

._ Matroids are discrete mathematical structures that appear in a variety of applica-

tions. They are structures for which the greedy algorithm gives an optimal solution, and

when intersected characterize such problems as minimum weight maximum cardinalitv
/

bipartite matching [L-. In this paper we study a class of combinatorial problems from a

matroid point of view. Consider a matroid in which each element has a real-valued cost.

and one of d colors, for some constant d > 1. Given positive integers q 1,q2 , " qd, we

seek a base of the matroid that is of smallest cost subject to the constraint that it contain

qj elements of color j, for j = 12, "'" d. For example, we can generalize the minimum

spanning tree problem to a problem in which the edges have colors, and we desire a span-

ning tree of minimum cost subject to constraints on the number of edges of each color

that are in the tree.

A marroid M consists of a set E of elements, and rules describing a property.

called independence, of certain subsets of E. The rules satisfy axioms which may be

found in [Li, W]. A maximal independent subset of E is called a base. A matroid

optimization problem is the problem of finding a minimum cost base in a matroid in

which a cost is associated with each element. For example, finding a minimum spanning
tree of a connected graph is a matroid optimization problem, where the matroid consists

of the set of edges in the graph, and independence corresponds to acyclicity. As stated

above, matroid optimization problems can be solved by the greedy algorithm.

A matroid intersection involves two matroids defined on the same set E of ele-

ments, but with different sets of rules determining the independence of subsets in each

matroid. A inarrnid intersection :7r hiem is an ortirnization 7roblem whose soiution iN i

1 1 11 1 1 1 
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subset of E of maximum cardinality that is independent in both matroids simultaneously-,

and is of minimum cost among all such subsets of E. While there is an algorithm -'or

solving any given matroid intersection problem in polynomial time [L 1 L2], the polyno-

mial is large: at least 0 (n-m 2), where rn is the number of elements, and n is the cardi-

nality of the largest independent set. The special rype of matroid intersection problem

that we focus on in this paper is one in which each of the elements is labeled with one of

d colors, and one of the matroids (a parrition matroid) specifies that a certain number of

elements of each color must be in the solution. In the case of d = 2 colors, the problem

has been well studied. and more efficient solutions have been presented in [GT, G]. In

this paper we explore the structure of d-color problems which allows for their efficient

solution when d > 2.

The solution techniques of [GT, G] rely on finding a minimum cost solution from

among only red elements and a minimum cost solution from among only geen elements.

and then pairing these red elements and green elements. However, for d > 2 colors, the

anaiozue of such a pairing does not seem to exist. We overcome this difficulty bv gen-

eralizine other characterization results in [GT, G]. We characterize the relationships

among the solutions to a family of problems generated when the vector q , . q" is

allowed to var over all combinations which sum to n. The key relationship is the pro-

pertv of dominance, which allows us to search efficiently within the set of these

E(nd 'd! ) solutions. Dominance means that if one constrained minimum cost base dom-

inates another with respect to the color constraints, then all elements of a certain color in

the second base are in the first.

The dominance property makes possible a divide-and-conquer approach **or
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finding a constrained minimum cost base that is efficient for small values of d. The algo-

rithm runs in time in time Od T0om, n') + (d-f!) d' T(n. 2)), where Ti(m. n) is the

time to solve an uncolored version of the problem. and T(n, 2) is the time to solve the

2-color version given solutions for each color. For graphic matroids, it was shown in

[FT, GGSTJ that To(m, n) is slightly larger than proportional to m, and in [GTI] it was

shown that T(n, 2) is 0 (n log n.). The algorithm handles any d-color matroid intersec-

tion problem. such as scheduling unit-time jobs with release times and deadlines GT], in

essentially the same time bound. While the algorithm is factorial in d. it matches the

bound in [GT for d = 2 and is significantly more efficient than the previously known

algorithms when d is a small constant.

We also address the problem of updating a solution repeatedly, as the cost of ele-

ments change one at a time. This on-line updating problem is a generalization of the 2-

color update problem discussed in [FS]. We show how to use the dominance property to

generate and maintain efficiently a sparse description of the E(n d d!) solutions to ail

problems as the vector (q 1, " q). We can update a d-color minimum spanning tree in

0 (d2m 1i2 - d"'(d')2 n 1/3 log n) time, and in O(d 2(dI)- (logd')-" - _.og ,

(log n ) , time if the graph is planar. These match the update times in [FS' for the case

when d = 2.

Our d-color algorithm can be used to rind a multiple-degree-constrained spanning

tree of a communications network. Suppose the degrees of a number d of the nodes are

prespecified, because of the number of ports that they have. When d = I. the problem is

a special case of the 2-color minimum spanning tree problem IG'. However. many

interesting problem instances may require J degree-constrained nodes. hnere :s a

,'U,
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small constant greater than one. We reduce this problem :o a set of d-!)-color prob-

lems. one of which yields the solution. While the problem is NP-hard for general d [GJ.

p. 206], our algorithm is efficient for small d.

The remainder of the paper is organized as follows. In section 2 we introduce

some terminology and new concepts that facilitate the later discussion. In section 3 we

characterize the structure of d-color problem solutions, and establish the overall

minimum cost, convexity and dominance properties. In section 4 we apply these charac-

terizations to develop an efficient divide-and-conquer algorithm for the static d-color

problem, and illustrate its efficiency for graphic matroids. In sections 5 and 6 we gen-

eralize the 2-color results of [FS] to d colors, and describe how to maintain a sparse

description of certain arrangements of solutions to d-color problems to permit fast on-

line update. In section 7 we discuss applications of our methods to other matroids and

contexts.

2. Definitions

We identify some additional matroid terminology: a more complete discussion

can be found in [L I. W]. The rank of a set E'._E. denoted as rank (E'), is the cardinalitv

of a maximal independent subset of E'. Let B be a base, and f an element in E-B. The

circuit C (f, B) is the set consisting of every element that can be deleted from B .{f }

to restore independence. Let e be an element in B. The cocircuit C (e, B ) is the set con-

sisting of ever element that restores rank to B -{e }. We will sometimes refer to an ele-

ment in C (f. B as one :hat f can replace in B. and an element in C e. B as one :ha:

can replace e in B. Let Af E' denote the contracred matroid obtained from .f by con-

'.e

IB



tracting the elements E'c.E. The elements of M,'E' are E - E'. If E' is independent.

then the independent sets (bases) of M/E' are those sets X czE - E' for which X _E' is

independent (a base) in M. We note that rank (M IE') = rank (M) - rank (E').

For our problems on graphs, read edge for element. spanning tree for base. cycle

for circuit, and forest for independent set. The rank is the number of edges in a spanning

tree. Thus a minimum spanning tree is a minimum cost base of a graphic marroid. Sirai-

larly, for our unit-time job scheduling problem, read job for element. a set of jobs with a

feasible schedule for an independent set, a maximal such set of jobs for a base, and a

minimal infeasible set of jobs for a circuit. Thus a maximum-profit set of jobs with a

feasible schedule is a maximum-cost base of a job scheduling matroid. Let m = E and

n = rank (M).

We associate a colorj. jE {. . d} with each element in set E. For any set

E'c.E, let colors (E') be a d-tuple (i 1, i'N, id) giving the count of elements of each

color in E'. Let co(e ) be the positive, real-valued cost of element e. and co(E'" the totai

cost of elements in a set E'. For a adven cost function, we refer to a base B in such a

matroid as a constrained minimum cost base. or a minimum cost base for its vecter

colors (B), if B is of minimum cost over all bases with the same coiors vector. We

assume that E has been augmented with elements of cost - as necessary so that a base of

each color 1, d exists. Thus a monochromatic minimum cost base is a constrained

minimum cost base whose colors vector has exactly one nonzero component.

Following [GT], we find it advantageous to extend the cost function so that each

constrained minimum cost base B is unique for its vector 'olors B. We .,vke o dif-

ferent extensions. both similar to extensions given in 'GT'. We assume that a '.inicue

'.
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index is associated with each element. Let (x = rin({ Ic,)(E) - c,(E")!: E'. E" are

sets of elements. IE'! = IE", c0 E') : c0 (E")} . {co3e):e in E}). We define

c(e) = co(e) - a,' 3', where i is the index of e. By our choice of a. we note that for

any two distinct bases B and B,, c (B ) c (B,), and for any three distinct bases B z, B,

and B 3, 2c(B2 ) - c(B 1 ) + c(B 3).

The second extension crt) of Coy() is based on lexicoaraphy. Let = f-.

f... , fp(.)) be a d-tuple of convex functions, and let - be any permutation on d-

tuples. Let E' and E " be sets of edges. We assume that f(colors(E')) yields d-tupie

(f 1(i 1), " fd (id)). Let indices (E') be a sorted ordering of the indices of the elements

in E'. Then we say that cL (E') < CL (E ") if and only if one of the following holds. in

which tuples are compared by lexicography.

1. co(E" < co(E")

2cot(E' =co(E"" c~d'(f (colors (E ")) < rlf (colors (E"'

3. co(E') = co(E"), ,t~f (colors (E'))) = ,tf(coiors (E"), an

indices (E') < indices (E").

Note that for any two bases B, and B:, CLBI ) = cLB implies that B= B. It

is clear that for any two bases B, and B, with identical colors vectors, and any and "7

c(B1) < c(B ) if and only if CL (B) < CL (B2). Thus a constrained minimum cost base

under c (-) is a constrained minimum cost base under CL ('). We find c i. more convenient

in proving several key properties about d -color matroids. and CL (4" more appropriate to

use when designing algorithms for d-color matroids. When the cost function ensures

that there :s a unique base of minimum cost over all bases with c:,)iors vector . we 2 l

:his base B-.
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We next define the notion of a uniform cost adjustment with resDect -o each of ihe

extended cost functions. The notion of a uniform cost adjustment comes from [G], where

it was applied in handling 2-color matroids. A uniform cost adjustment with respect to

c () consists of adding a constant , to the cost of every element of color J in the

matroid. for j = 1, 2,-, d, and is specified by the d-tuple 6. A uniform cost adjust-

ment with respect to cL consists of adjusting costs according to a d -ruple 6 and into-

ducing a new d-ruple f of functions, along with permutation -. Since only differences 'n

cost between elements of a particular color are significant in determining any constrained

minimum cost base B-. the base B- remains of minimum cost over the vector, after a

uniform cost adjustment. Note that only differences in cost between various colors are

sig-nificant in determining the relative costs of bases with different colors vec:ors. FurTh- %

ermore, we can always assume without loss of generalitv that a uniform cost adjustment

in a d-color matroid has at most d-l nonzero components. The purpose of a uniform,

cost adjustment is to make some constrained minimum cost base B- of overall minimum

cost.

We say that a vector i' is a (j., j,-neighbor of = I., i-. -,

i,pr = i. - 1. ,,r = i_ - 1. and iC = i, for all other j. Let the j,-ne arive ne ic:oors

of be the set of all pj. ,j )-neighbors of i with j, 1 . Let the j I-posirive neighbors

of i be the set of all J,. j.)-ne.ghbors of; with W = . hen there :s a uniuue

minimum cost base for each vector i, we extend the notion of neighbor from vectors to

the bases that they index in the natural way. Let i and 'ne the :,)lors vectors ot :vko

hases. Sunrose : iercs a -niziue color "or which i. > '. Then we sav "hat "

J.IS : %Lt' a h 's ec: :t) , ir or ha -
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Given a base B. a swap s = (e, f) available in B is an ordered pair of lements.

where e ( B. f e B. e and f are of different colors, and C (f, B) contains e. Element;

can be swapped in to replace element e, resulting in a base B -{e }.{f } (denoted bv

B + s or B - e + f). Given a base B, we say that a sequence S of swaps s . s, is

available in B if B + s ..... B + s I + + s, are bases. Consider any cost function

on E. Suppose swap sequence S is available in a constrained minimum cost base B. Let

si= (e;, fi) for i = 1. r. We say that the sequence S is optimal if bases B - s,

.B + s1 + + s, are all constrained minimum cost bases. The sequence S is

coior-conserving if colors (f i)= colors (el j) for i = 1 .... , r-1. The sequence S is

acyclic if colors (ei ) colors (ej) for i, j { 1, . . . ,d } and i # j. Finally, the sequence

S is regular if it is optimal, acyclic, and color-conserving. Note that any subsequence of

a regrular swap sequence is reg ular. We refer to a regular swap sequence S with

colors (e 1) = j 1 and colors (e,) = J2 as a regular (j 1, j) sequence.

Let D be a set of bases with distinct colors vectors. The set D is tight if. for

every pair of bases B. and B, in D, B, and B2 are neighbors. A tight set D with

ID I = k > 1 is negative if colors Ii. k can be uniquely assigned to bases in D

such that for anv base B in D, if base B is assigned color j, then ever' base in D - {B }

is a j-negative neighbor of B. A positive tight set is defined analogously, using J-

postive neighbors instead of j-negative neighbors. If I D I = 1. then we arbitrarily assign

the single base in D the color 1, and call D negative. We say that hue B) is the color

assigned to B, and for any subset D' of D. hue (D') = .JB eD' hue (B). Let D be a nega-

tive tight set. B a base in D with colors (B =i. and r = h , Let hsDan D )be

the set of bases with colors vectors 7' such that x-K = r. and = .Ar
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je hue(D ). A tight set D is complete if D I = a. We denote the unique complete.

negative, tight set associated with a base B and color J by D (B. j). Note -hat if

B, B',ED(B, j) andB' is B's (j) neighbor, then D(B, j) = D(B'. 1).

Let D be a negative, tight set of bases. The swap graph GD associated with D

has vertex set D and contains an edge (B 1,BZ) if and only if bases B and B _ are related

by a single swap. If every constrained minimum cost base is unique for its colors vector.

then there is a close relationship between negative tight sets of minimum cost bases and S

regular swap sequences. If D is a negative tight set of minimum cost bases and GD Is its

swap graph. then every simple path in GD corresponds to a regular swap sequence.

3. Characterization results

We first give several properties of 2-color maroids identified in [GT. G]. We

then establish several important properties regarding constrained minimum cost bases

and their neighbors. which hold for modified cost function c (-). First. there is a uniform

cost adjustment that makes each constrained minimum cost base the overall tuncon-

strained) minimum cost base. Second. every pair of adjacent constrained minimum cos"

bases is related by a regular swap sequence of at most d-1 swaps. Third. if the colors

vector of one minimum cost base dominates that of another with respect to a certain

color, then all elements of that color in the dominated base are contained in the dominat-

ing base. Finally. we characterize how a constrained minimum cost base changes when

the cost of one element changes.

Lemma 1 [GT. Thm. 3.1]. Consider a matroid with elements of two colors. red and

.4.
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green. Consider any positive, real-valued cost function. Let B: be a cons-aine,

minimum cost base with i red elements. Executing a lowest zuost red-green swap avail-

able in B; transforms Bi into a constrained minimum cost base B;.. 1 with i-1 red ele-

ments. [

Lemma 2 [GT, Cor. 3.31. Consider a matroid with elements of two colors, red and

reen. Consider any positive, real-valued cost function c'(.'. Let B:-.. B. and B. be

constrained minimum cost bases with i-1, ; and iiI red elements, respec*veiv. Then-

c' (B; i- c'(Bi_.) < c'(Bi_,) - c'(Bi). 7

The following result is implicitly stated in [G]. We supply an explicit proof.

using Lemma 2.

Lemma 3. Consider a matroid with elements of two colors, red and green. Consider any

positive, real-valued cost function c'(-). Let B; be a constrained minimum cost base with

i red elements. There exists a uniform cost adjustment for red elements that makes the

cost of B; less than or equal to the cost of every other cost base.

Proof. Let I be the smallest ndex such that B,, exists, and u the largest index

such that B. exists. It is observed in [GTI that B; exists for each i. I < i < a. Assume

as boundary conditions that c'(B,, = 2cB 1 ) - c'(B, and c' (B.,)

= 2c'(B ) - c'(B,). Take 8.ed = c'(B.._1 ) - c'(Bi). It follows from Lemma 2 by induc-

tion that c'(B c' B;.j)=c''B.)<c'(B,,forI _i'< i andi < i"<u.

The following lemma. which is a variation of a lemma in [FS], establishes a fun-

damental property or bases n matroids.

,' '
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Lemma 4. Let B be a base and e-, e ,, f,,f: be distnct matroid elements. Suppose

B - e, + f , and B - e--- are bases. but B - e- e, - "" f - is not a base. Then

bothB - el -fandB - e, + f are bases.

Proof": The proof is similar to that of Lemma 3 of [FS]. C

We next present some lemmas that will be useful in the proof of the overall

minimum cost and dominance theorems for matroids with elements of d > 2 colors.

Lemma 5 establishes that if an overall minimum cost property holds for constrained

minimum cost bases. then the convexity prope-rt holds. Lemma 6 shows that if an

overall minimum cost property holds for a certain subset of constrained minimum cost

bases centered on a negative right set. then a stronger version of an overall minimum cost

propert holds. Lemma 7 uses Lemma 6 to establish how the overall minimum cost pro-

perry for a negative. tight set of constrained minimum cost bases impacts the connected-

ness of the corresponding swap graph. Finally, Lemma 8 uses the connectedness of the

swap graph to establish the exact relationship between two neighboring constrained

minimum cost bases for which the overall minimum cost property, holds.

Lemma 5. Consider a matroid with elements of d > 2 colors. Let B 1, B - and B - be con-

strained minimum cost bases with respect to cost function c(-), such that B is B 'S

(j 1 , j2) neighbor and B3 is B 's (j), j') neighbor. for some j,, j2. Suppose each of B .

B 2 and B 3 can be made an overall minimum cost base through some uniform cost adjust-

ment Then c (B,) - c (B 1 ) < c (B)- c (B).

Proof : Suppose in contradiction that c (B,) - c (B,) > c (B - c B,). Since B,.

B: and B-, are distinct, this ineoualitv must be strict. by definition of the modified cost



function. Without loss of generality, suppose that B. is an overall minimum cost base.

Let S be any cost adjustment vector that makes B, an overall minimum cost base. fBy

our initial assumption, 3 exists). Make all the adjustments of S except those for colors j 

and j2. Note that the new costs c'(B,j, c'(B), and c'(B 3) have the same relative values

as c(B 1), c (B,), and c(B 3). Now make the adjustments for colors JI and j), yielding
costs c"(B .), c" (B9, and c"(B3). Since B, becomes an overall minimum cost base, we

must have c' B2 ) - c'B,)<6.,, - 6. We also get c"(B3) - c"(B,)= c'(B -

c'(B1 ) - (5i - 8J,), which by the preceding argument is less than c'(B- c'(B.)-

1.- ), which is at most 6; -6i - (8ji - j2= 0. Thus c"(B 3) < c"(B-), which

contradicts our assumption that a suitable 5 exists. 03

Note that Lemma 5 will hold for any cost function c'(-) derived from c () by a

uniform cost adjustment.

Lemma 6. Consider a matroid with elements of d > 2 colors. Let D be a negative, tight

set of constrained minimum cost bases for cost function c ('). Suppose for each base B in

hspan (D), there is a uniform cost adjustment that makes B an overall minimum cost

base. Then there is a uniform cost adjustment that simultaneously makes every base in

D of overall minimum cost, and every base in hspan (D) - D not of overall minimum

cost.

Proof The proof is by induction on p = ID I. The basis case for p = I follows

from our assumption that every base in hspan (D), and therefore ever, base in D, can

individually be made of overall minimum cost through a uniform cost adjustment. For

the inductive step, assume p > 1. First perform a uniform cost adjustment to make some

IiI]



base B, in D, with hue j./ of overail minimum cost. Let B_ be a second base in D. with

hue j. Consider the negative. tight set of bases D: = D - {B }, which is of size p-i.

Since hspan (D ,) c hspan (D), by the induction hypothesis we can perform a uniform

cost adjustment such that every base in D 1, but no other base in hspan (D,), is of overall

minimum cost. We next adjust the cost of color ip so that the B 1 and B_ are of the same

cost. This does not affect which bases in hspan (D ,) are of minimum cost among those

in hspan (D,), since all bases in hspan (D:,) have the same number of elements of color

j,. Since any two bases in D are of the same cost, bv Lemma 5 the bases in D are the

only bases in hspan (D) of minimum cost within hspan (D). Now make all colors in

hue (D) red, and the rest green. Note that one of the constrained minimum cost bases B-

in this new problem is one of the bases of minimum cost in hspan (D . By Lemma 3.

there is a uniform cost adjustment that makes B 3 of overall minimum cost. This last

adjustment will not alter the relative costs of any bases in lispan (D), so that the bases in

D will all be of the same cost, which will be an overall minimum. ,:

Lemma 7. Consider a matroid with elements of d > 2 colors. Let D be a complete

negative tight set of constrained minimum cost bases with respect to c '). Let D I be a

negative tight subset of D such that every base in hspan (D,) can be made of overall

minimum cost through a uniform cost adjustment. and every base in D - D I cannot be

made of overall minimum cost by a uniform cost adjustment. Then the swap graph GD.

is connected.

Proof : The proof is by induction on I = p. The basis case. in which p = 1.

is seen to hold trivially. For the inductive hypothesis. assume that the 'emma hoids :or

any martroid with a :ornpiete negauve tiznt set. and a negative :1,grhc subset o) size .e,,
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than p. For the inductive step, consider a matroid and sets D and D., with

jDj =p > 1. Consider a connected componentD 2  D of GD.

We first argue that jDj > 1. Suppose IDzj = 1. Let BED, and without .oss

of generality assume that hue (B .) = green. By Lemma 6. we can adjust costs uniformiy

so that B I is a base of overall minimum cost. Temporarily change every color other than

green to red, so that the resulting matroid has only red and reen elements. Note that B

is the minimum cost base for its colors vector. Bv Lemma 1, B. is related by a swat -o

some constrained minimum cost base B 2 with one fewer reen element than B.. If we

restore the original element colors, it is apparent that B. is in D - {B: }, since :hese are

the only green-nezative minimum cost neighbors of B,. Bv the definition of swan

graphs, D should then include B2, a contradiction. Thus ID . :.

By Lemma 6, we can perform a uniform cost adjustment such that ever- base in

D, is of overall minimum cost, and no other base in hspan (D ) is of overall minimum

cost. We then change to green all colors in hue (D '). One of these bases, say B.- will

represent the component D, as a constrained minimum cost base in a matroid with

d - ID:I -1- I < d colors. Clearly, D 3 =D -D, {B. } is a complete negative tight

set of bases in this new matroid, and D, = D, - D {B, } is a negative tight subset of

D . Moreover, since hspan (D -_)chspan (D,), every base in hspan (D4 ) can be made of

overall minimum cost through some uniform cost adjustment, and since

D -D,=D -D , no base in D -D.t can be made of overall minimum cost. Note

that two bases in the same connected component of GD, will be in the same connected

component of GD,. By the inductve hypothesis. G0 , is connected. Since the bases :n

D.-DL,,B :- are in the same connected component of G9. and :he >ases of D, are .:'.

p1
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the same connected component of GD r, GD. is connected.

Lemma 8. Consider a matroid with elements of d > 2 colors. Let B and B be any two

constrained minimum cost bases with respect to c(-) such that B-. is B..'s j-negative

neighbor, for some ]. Let BED, D(B, , j). Suppose any base in hspanD:1 can

individually be made of overall minimum cost through a uniform cost adjustment, and

every base in D (B1, j) - D I cannot be made of of overall minimum cost by a uniform

cost adjustment. Then B I and B, are connected by a regular swap sequence of length at

most d-1.

Proof : Since D D (B ,, j), the swap graph GD, has at most d vertices. By

Lemma 7, GD. is connected. Thus there is a simple path p of length at most d-! between

B1 and B, in GD:. Let S be the corresponding swap sequence relating B, and B,. Since

p is acyclic and of length at most d-1. so is S. Since D1 is tight and negative. S s

color-conserving. Finally, since all bases in D, are constrained minimum cost bases. S is

optimal. 7

We now establish the overall minimum cost and dominance properties.

Theorem 1. (Overall Minimum Cost) Let M be a matroid with elements of d colors.

d > 1. Let B be a constrained minimum cost base with respect to cost function c.).
'b

There exists a uniform cost adjustment that makes B of overall minimum cost.

Proof : The proof is by double induction, with the outer induction on d. The

basis case, in which d = 2. follows from Lemma 3. For the inductive hypothesis, assume

that the theorem is true for all matroids that have elements of at most d-I colors. For -he

inductive step, consider a matroid of .1 > ' colors. We nrove -he nducnve ite v

~ - -=
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induction on k, the number of elements of color I. We will :efer :o color I as ;,reen.

For the basis, in which k = 0. we consider the ongnai matroid with all green e!e-

ments deleted. The basis case for k then follows from the inductive hypothesis for d.

For the inner inductive hypothesis, assume that the theorem is true for all constrained

minimum cost bases with at most k-I green elements. For the inductive step, suppose

k >0.

Suppose the overall minimum cost property did not hold for some base B. with k

green elements. We proceed to establish a contradiction. Consider the complete. nea-

tive, tight set D(B 1,1) and the negative, tight set D =D (B1 ,1) - {B 1}. Every base in

D, has k-I green elements. By the inner inductive hypothesis, every base in hspan (D)

can be made of overall minimum cost. Thus by Lemma 6. we can adjust costs uniforlv

such that every base in D. is of identical, overall tminimum cost in Al. and no other base

in hspan(D.) is of overall minimum cost. By temporarily changing every color other

than green to red and applying Lemma 1. we conclude that for every base B in D. there

is a base mate (B) with k green elements such that B and mate (B ) are related by a swap.

Bv Lemma 3. the cost of green elements can be uniformly adjusted, without disturbing

the overall minimum cost property of any base in D.. such that every base in

D, {mate (B) IB E D 1 is also of overall minimum cost. We have thus succeeded in

uniformly adjusting costs such that every base in D,,t.D is of identical. overall

minimum cost.

Now consider any base B, in D,. Suppose B, is B,'s (green.red) neighbor. and

mate (B- is B-'s (biue.green neighbor. (Since. by our assumption. B cannot be made

of overall minimurn cost and mate B. can. B. mare (B.I and :here:ore na,:c t -

.'I
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cannot be a (red.green; neighbor of B., Let ; 'e "he ,biue.,reen .xar :nat

transforms B- to matetB-,. Since B- and mare,B-; are of identicai :ost :w our -ariier

cost adjustment, c (s 1) = 0.

We claim that swap s. is available in any base in D.. In particular. s, is avail-

able in B 's (green.blue ) neighbor (and B -'s (red,blue i neighbor) B This provides the

desired contradiction: B- - s, has the same color combination as B, and :he same cost

as B 3, which is of overall minimum cost Thus c B. ( _>B-. ,... B. can be made of

overall minimum cost through a uniform cost adjustment.

To prove the claim, we consider the regular (red blue) swap sequence S 1 that. by

Lemma 8. transforms B - into B . Let IS, = p. Note that even. base in the sequence of

bases induced by B, and S I is in D :, and therefore every swap in S. is of zero cost. We

establish by induction on p that s, remains availabie in a base B that is obtained from B -

as a result of performing a sequence of . zero-cost swaps from a regular swap sequence.

The basis case for p =0 is trivial. For the inductive step. let S. = S _s:. where S-

is a regular (red .purpie ) swap sequence of length p -1 consisting of zero-cost swaps. and

s, is a (purple.biue) zero-cost swap. By the inductive hypothesis. s, is available in

B. = B2 - S,. which is in D .. Now suppose s. is not available in B= B - s-. Then.

by Lemma 4. a (blue.biue) swap s,' and a (purplegreen) swap s,' are available in B..

Since B 4-D,, it is of overall minimum cost. Therefore c(sl') >0. Since

c(s 1 ') + c(s:"=,(s. - cs-; = 0. cs_", 0. Since B - s,' has the same color com-

bination as B, it follows that c B.)< c(B 4 - s" c(B4 9  which is of overall

minimum cost. By our assumption about B. this is impossible. Thus s, is available in

,B .
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This completes the inductve step for k and the proof. 7

Theorem 2. (Dominance) Let M be a matroid with elements of d coiors. J > . Let B-

and B, be constrained minimum cost bases with respect to c (), such that i j-dominates

' Then every j-colored element in B.- is in B-.

Proof: If d = 2. then the theorem follows from Lemma 1 and the fact that each

constrained minimum cost base with respect to c (-i is unique for its colors index. If

d > 2 we can construct a sequence of k = 1, - ii'-1 constrained minimum cost bases

B., ••..B:, such that each base in the sequence is a j-negative neighbor of its predeces-

sor. Consider any two bases B , and B that are consecutive in this sequence, with B the

j-negative neighbor of B.. By Theorem 1, every constrained minimum cost base can be

made of overall minimum cost by a uniform cost adjustment. By Lemma 7. B I and B,

are connected by a regular swap sequence S. Since S is regular. it is acvclic, which

Implies that every element of color j in B, is in B ,- The theorem then follows bv induc-

ion on k.

To illustrate the properties of Theorems 1 and 2. we give an example of a graphic

matroid. The edges of the graph will be of three different colors. Figure 1 gives the

graph in terms of the three subgraphs of each color, red (solid lines), blue (dotted lines),

and -reen tdashed lines). Each edge is labelled with its cost. In Figure 2 we list the solu-

dons to all possible subproblems. each labeled with its cost. For example, the solution

with one red. one blue. and two geen edges is the third solution in the fourth row, and is

labeled with the cost 16. We illustrate the overall minimum cost property by making

base B- be :he unconstrained minimum-cost base over all bases, where is for examrie

'pT-
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. This can be done if we add 6 to the cost of ever, blue element, and -. o the

cost of evern red element. To lusu-ate dominance. consider the solutions for

I = O. 1. 3) and i' = 1. 2. 1). (ve assume that red is color 1, blue is color 2. and _green

is color 3.) Here ij = 3. i.e.. there are fewer green elements in B,-. than in B-, and at least

as man elements of every other color. Thus the one green edge (of cost 4) in B7 is in

B-.

We next examine the impact of chan.ng the cost of a single matroid element on

a constained minimum cost base. We bezin as before with an earlier 2-color result. and

proceed to generalize the result to d > 2 colors using the characterizations just

developed.

Lemma 9 [FS, Thin. 2]. Let M be a matroid of red and g-reen elements, with costs

extended lexicographically to break ties. Let B._, B: and B._ t be the constrained .

.1*

minimum cost bases with i-i. i and i-1 red elements. respeciveiv. If one element in 3,

changes cost. then B:'. the new minimum cost base with i red elements, will result from

either Bj-j, B; or B:-1, with at most one element replaced in the appropriate base.

Specifically. if a red element r: increases in cost. then B' is the minimum cost base

among the following three bases:

.-5

O. (or 3). B..

1. Bi-r:+r,. where r a is the smallest cost red element that can replace r: in B.

2. B,-.-r-ga., where g, is the smallest cost green element that can replace r, in

3,..

If a red element r. decreases in cost. then B is he minimum cost base amon, tne

.e
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following three bases:

0. (or 3). B.

1. B;-r --r: , where r. is the greatest cost red element that r. can replace in B..

2. B;.._i-g - r,, where ga is the greatest cost green element that r. can replace in

1%

The cases for a green element changing in cost are analogous. _

We now give the generalization of the above result from 2 colors to d colors.

Theorem 3. Let M be a matroid with elements of d colors, d > 1. Let B- be a con-

strained minimum cost base with respect to cost function c, If one element in Al

changes cost, then the new minimum-cost base B7 will result from either B7 or one of its

neighbors, with at most one element replaced in the appropriate base. Specifically. if a I

basic (nonbasic) element e (f) of color j increases (decreases) in cost. then one of -. e

followin. cases holds:

0. The new base B-' = B7.

1. B7' =B-- e +f . where e.f both have color j, and f (ej is the least

(greatest) cost element of color jI that can replace e (be replaced by f ) in B7

2. There is a color j, such that B-' = B,7- e -- f .where i is a (j1 , j)-neighbor

of i and f (e ) is the least (greatest) cost element of color j2 that can replace e (be

replaced by j') in B-.

Proof. We first consider the case where a basic element e of color . increases :n cosz.

or.

A~~ .,.%,1
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By Theorem I we zan make B7 the unconstrained minimum-cost base, and therefore also

the minimum-cost base over all bases with exactly i,, elements of color j , by uniformi .,

adjusting the costs of all elements of colors j # j 1. Temporarily change the color of all ,

j,.-colored elements to red and all other elements to green, so that B- corresponds to red-

areen base B;. We can then apply Lemma 9 with e in the role of r. If case 0 or 1 of

Lemma 9 holds. then the corresponding case of our theorem holds. If case 2 of Lemma 9

holds. then there is a red-green base B;.,,1 that differs from B-,,' by one element g. Let f

be the element corresponding to g, in the original matroid, and let j, = color Vf . Since

g, is the least cost replacement element over all green elements, f is certainly the least

cost replacement element of color Jr.

The symmetric case of a nonbasic element f decreasing in cost is handled simi-

iarlv. ,

Note that Theorems 1, 2 and 3 hold if cost function CL () replaces cost function 19
c () in the statement of the theorem. The use of CL () has the advantage that arbitrarily

element can affect the value of cx. which will alter the cost of every element.

4. Efficient solution of the static problem

We show how to find the constrained. lexicographically minimum cost base B7.

consisting of q, elements of color j, for j = 1, 2, , d, along with a uniform cost

adjustment vector 0 that makes B- of overall, unconstrained minimum cost. For

matroids in which the contracion operation is reasonably efficient, the time :o do :his

-•P-~P-... .. ~.



will be O(d To(m, n) + (d-l)! d! T(n.2)), where To(m. n) is the time to solve an

uncolored, or monochromatic, problem, and T(n ,2) is the time to solve a 2-color prob-

lem, given the constrained minimum cost bases for each -olor. Our algorithm first aug-

ments the set of elements with elements of large cost as necessary so that there is a base

of each color, and finds monochromatic minimum cost bases for each color. This step

accounts for the first term of the running time expression. The algorithm then calls a

recursive routine to find the desired base and associated vector 6. This step accounts for

the second term in the running time (xpression.

Our presentation is organized as follows. We first review the 2-color algorithm of
t

[GT], and explain how 6 can be computed in this case. We then augment the 2-color

algorithm of [GT] with lexicographic cost comparisons to help handle calls from our d-

color algorithm. We finally present our recursive routine to find a d -color base.

The 2-color algorithm in [GTJ is designed to find a minimum cost base con-

strained to have exactly s red elements, for some s. The algorithm calls a recursive rou-

tine to identifv what is called a restricted swap sequence, which transforms a constrained

minimum cost base of green elements to a constrained minimum cost base of red ele-

ments. The restricted swap sequence contains swaps in order of nondecreasing cost of

the red element in each swap. The algorithm then sorts the swaps in order of nondecreas-

ing cost of the swaps to yield an optimal swap sequence. The desired base is then formed

by taking the first portion of the swap sequence and applying it to the green constrained

minimum cost base. Since the cost of a minimum cost base with i red elements is a con-

vex function of i. the vector 6 can be readily determined by comoanng the cost of swars

I

- I I'
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adjacent to the desired base.

We augment the algorithm to enforce a lexicographic tie-breaking scheme. In

addition to its color, let each element have a unique index. Assign a tag to each element

consisting of the pair (j, index), where j is the original color of the element. Ties in ele-

ment costs are broken lexicographically using element tags. Ties in the costs of swaps
are broken lexicographically as follows. Consider two swaps (e, f ) and (e', f') of equal

cost. Swap (e. f) will be lexicographically less than (e', f') if and only if eitherf or e'

has the lexicographically smallest tag from among e, f, e ', and f '. We car incorporate

this lexicographic tie-breaking scheme into the 2-color algorithm of [GT at constant cost

for any comparison of two elements or two swaps.

We now describe our recursive routine to find a d-color base. The routine uses a

divide-and-conquer approach, recursing first on fewer colors, and then again on fewer

elements. The basis cases occur when either d = 2 or n < d (2d-3). If d = 2 we use the

augmented 2-color algorithm. We will discuss the other basis case later. If d > 2 and

n > d(2d-3), we do the following. Order the colors so that qi <qi-" for

j= I, 2. -, d-1. Find the constrained minimum cost base B7 where

= qj+ [ (qd+j-1)i(d-l)j for j = 1, 2, ,d-1, and id = 0. This is a problem in

d-1 colors, and is solved recursively by our routine. Note that i is defined so that for

each color j # d, B- has at least L n/(d(d-1))J more elements of color j than B,,.

Along with determining B7, the recursive call will supply the corresponding values 50",

for j = 1. . d-2 that make B- of minimum cost among bases with no elements of

color d.
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Once B- and 6 have been determined. temporarily add 5(j) to the cost of each ele-

ment of color j in B,-, for j = 1,, d-2. Define f such that for any d-ruple I 'f! i,',

Iij'-ij 1, for j- 1., d. For any choice of T, Br will be the minimum cost base

among those with no elements of color d, with respect to the adjusted version of the cost

function CL (), defined earlier.

Relabel the elements of base B,- with the color green, and label with the color red

the elements in the constrained minimum cost base of color d. Now use the 2-color aigo-

rithm of [GT], augmented to use tags lexicographically to break ties in the costs of ele-

ments and swaps, to find the constrained minimum cost base B' which has

" qdi(d-l)j -1 red elements and the rest green. Even though colors are reordered -o

satisfy qj < qj.,, a permutation 7c can be chosen that undoes this reordering, and hence

makes the use of the tags enforce CL (-). Thus any base generated by the augmented 2-

color algorithm will be a constrained minimum cost base with respect to cr 0., and thus

also c (), in the ori inal d-color matroid.

If we switch the elements in B' back to their origainal colors, we get a base B7

which kd = L qdi(d-l)J -1 and _ .qj+l forj = 1, 2. .d-1. It is clear that the set

of color vectors consisting of q- and its immediate neighbors dominate k with respect to

color d. By our dominance theorem, every element of color d in B,- is in B-, and also

in every constrained minimum cost base that is an immediate neighbor of B-. Contract

the matroid on these elements of color d, and decrease qa accordingly. Since

q> n,d'l, the number of elements is reduced by at least -n 1- ,

which is at least 1 if n > d(2d-,. For d > 2 and n > J U-_", note that the ne'.v valUe



of qj wil be -reater than 0. Solve the resultng smaller d -color problem recursivelv. and

union its solution elements with the elements of color d alreadv identified *o -ive :he

complete set of solution elements. Take as the 5(j) values the values returned by this

recursive call. This completes the procedure.

We justifv the contraction and union steps in the previous paragraph as follows.

Let D be the set of elements contracted. and MD the contracted matroid. Note that

D cB,., and B.-D is a base in M.D. Let B be a base in M 'D with the same index vec-

tor as B .- D but not equal to B -D. Now c (B) > c rB-D), since otherwise B tD

would be a base of M with index vector 4- but of smaller cost than Bp-, a contradiction to

the definition of B,5 .

We now discuss the other basis case, when n < d(2d-3). Here we use :he

weighted matroid intersection algorithm [LI, L2] to find B- directly. We also need o

determine the 5(j) values. This can be done by considering each of the elements not in

B-. For each such element f. find the best swap in B- for each color j = color tf .We

infer the values of 5(j) from the thresholds of these swaps as follows. Each best swap

(e, f) yields a constraint 6 colore ) - &(color (f)) <_ c (f) - c e ). Choosing heoj s

then reduces to the following shortest path problem. Consider a graph with J vertices

labeled from 1 to d. For each constraint 6(j]) - 5(j2) - c,,: there is an edge from j, to

j of cost c, n,,. In the case of multiple edges. only the shortest edge is retained. Then

choosing 5(j) to be the shortest distance from vertex d to vertex j, for all j, wvill Live a

consistent set of deltas. The shortest distances can be determined in 0 (d- , time using

the Bellman-Ford algorithm in J1]. This completes our presentation of the J-1oior

p ":



algorithm.

We claim that the above akaorithm solves any d-coior problem. Since the

number of elements contracted is at least 1 for n > d(2d-3), the algorithm terminates.

We next analyze the running time.

Theorem 4. Let M be a matroid of rank n with m elements of d > 2 colors. Let

To(m, n) be the time to solve the uncolored (monochromatic) problem. in V. Let

T(n, 2) the time to solve the 2-color problem in Ml with elements recolored to just 2

colors. If independence testing in Ml is polynomial, and the time to contract 0 (dn ) ele-

ments in M is O(d T(n. 2)), then the time to solve a d-color problem in M is

Old To(rn. n) - (d-l)! d' T(n, 2)).

Proof. Let T(n, d) be the time to solve a d-color problem in a matroid ofrank n. given

that the monochromatic bases are provided. The intersection algorithm in [LI. L2] uses

O(n -m(m+l(m))) time, where 1(m) is the time to test independence. By assumption.

I(m) = mk for some k. Since m = nd. this takes 0(dT(d'+d3)) time. Finding the

swaps to identify 5(j) values involves examining 0 (d') elements f. at 0(d- ) tdime per

element f. or 0(dS time altogether. Thus we have T(n. d) c ° '  for

n <_ d(2d-3). For n > d(2d-3), we have the recurrence

T(n, d) . c, nd + Tn. 2) + T(n, d-1) + C(n, d) 4- T(Fn(l -1/(d(d-l)))I , d)

where the c, 's are constants. and C(n. d) is the time required to contract a matroid con-

sisting of the union of J monochromatic minimum cost bases of rank ,i. recove-ing a

monochromatic minimum cost base of each color in :he contracted matroid. Since
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T (n, 2) 2 n . for d 2we have

Tn. d) 5 c,(2d! d-1)! - d) T(n. )-.- (d! (d-l)! -d)n

for an appropriately chosen constant c,. '

We discuss the motivation for assuming the bound of d T(n, 2) on the time to

contract 0 (dn) elements in a matroid. By assigning color d I to each element to be

contracted and solving d 2-color problems involving color d-;1 and each original color.

we can determine .he elements in each monochromatic base in the contracted matroid.

The correctness of this reduction follows from the definition of matroid contraction. It is

also necessary to determine the new attributes of each element (e.g.. endpoints of an

edge in the case of a graphic matroid) in the contracted matroid. For all the matroids dis-

cussed in [GT,, this can be done for each new base within time proportional to T(n .2).

Even though the running time involves factorials in terms of d, it is better than

the running time for the weighted matroid intersection algorithm of [L 1. L2] whenever d

is o ((log n )/(oglog n )).

We suggest a modification to the algorithm that may vield a faster al2orithm in

practice. The 2-color algorithm in [GT] generates in succinct form the sequence of con-

strained minimum cost bases between the base of all one color and all the other color. .

Instead of specifying the number of elements of color d that we want in B'. we take the

swap sequence generated. switch back to original colors and find the furthest base B7
%dt

represented in :he swap sequence such that A., 2 q,+l. for = 1-. 1d-. At least as

many elements will be contracted as before. b



2S

Finally, as an illustration, we apply the above algorithm to g-raphic matroids.

Here To(m ,n) is O (m log g(m ,n)) by the algorithm of [GGSTJ, where J(-, - is a cerain

slowly growing function [FT]. T(n, 2) is 0 (n log n) by the algorithm of [GT].

Independence is equivalent to acyclicity. and thus independence can be tested in 0 (m)

time. Contracting 0 (dn) elements can be implemented in O(dn) time. We therefore

have the time to find a constrained minimum cost spanning tree being

O (dm log P(m.n ) + (d-l)!d !n log n).

5. Basic on-line update strategy

In this section we give a basic description of our data structures for on-line updat-

ing of a constrained minimum cost base in a d-color matroid. This work is an extension

of the updating approach in [FS] which handled 2-color problems. Let B h represent .he

minimum cost base for colors vector i after h element cost updates have been per-

formed. We first discuss data structures that allow us to find quickly base B--h- 1 criven

B.Xhl and all of its neighbors after h updates. This operation. which relies on Theorem 3.

is crucial to our on-line update technique. However. to compute Bh- 2  by this method.

we need to have B" and its neighboring bases after h-1 updates, which in worst case

means we must have B-1h '. its neighbors after h updates, and also the neighbors' neigh-

bors after h updates. We therefore discuss how to maintain larger groups of neighboring

bases. and introduce the notion of an arrangement of bases, generalizing :he sequence,

employed in the 2-color algorithm. Since updating large grouPs of bases directly vould

be quite inefficient. we then discuss maintaining arrangements in an impi,:it forrn. :;

I
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allows for efficient updating. Finally, we illustrate the technique with the example of a

graphic matroid. Although our presentation of the d-color update technique is

sufficiently detailed to be self-contained, familiarity with the 2-color update technique of

[FS] will greatly help in understanding the details.

We recall from [FS] the definition of an update structure for a base in a matroid

with uncolored eilements. An update structure for a base B is a data strucure which sup-

ports the following operanons:

maxcirc (f ,B): finds the maximum cost element in the circuit C (f. B).

mincocirc (e ,B): finds the minimum cost element in the cocircuit C-(e, B).

swap (e.f B ): converts the update structure for B into an update structure for

B -e + " (assuming thatfEB and eeC(f. B)).

Let U tm .n ) represent the maximum of the execution times of these three operations for a

particular matroid. Thus a minimum cost base in a matroid with uncolored elements can

be updated in time at most 2U m,nh when the cost of a single matroid element is

modified. Let S (m .n) be the space required by the update structure.

In the case of a matroid with elements of d colors, the update structure is general-

ized -o allow the color of the appropriate element to be specified. Thus for

1 =1. 2, . d. the operation maxcirc (j .B) finds the maximum cost element of color

j in C (f. B ), and mincocirc tj e.B) finds the minimum cost element of color j in

C e. B ). The operation swap (e f . i is as before. The generalized update structure for

d-colored macroids can be derived from the corresponding su-ac:ure for uncoiored

macroids in a straightforward manner. For each field relating to costs in the uncolorec

.M
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update structure, maintain d fields in the new structure, with the j -rh ield accessed for

operations on color j. The values in the fields should be such that the cost of an element

not of color j should be treated as - in handling a maxcirc (j,- and - in handling a

mincocirc (j ,.,).

Using Theorem 3, a generalized update structure can be used to find an updated

base Bih from B h and its neighbors after h updates. For Instance, if a basic elementqq

e increased in cost, then B "l 'hl would be the least cost base in the set consisting of B'q

and B .' ) - e + mincocirc (j.e .B_0)), where either the color of e is not, and B- is a

neighbor of B- containing one fewer element of color j, or j is the color of e, and B- is

B5. If a cobasic element f decreased in cost. then B~h+l would be the least cost base in

the set consisting of Blh ) and B4h) - maxcirc (jJ ,Bl)) + f, where either the color of f

is not j, and B- is a neighbor of B- containing one more element of color j, or j is the

color off, and B- is B .. The update is concluded by performing the appropriate swap.

As stated at the beginning of the section, maintaining just B -and its neighbors

after h updates is not enough, since there is not sufficient information to compute

efficiently all neizhbors; of BiY,) after h+l updates. For I > 0, let R-. be the set ofq

bases {B.-I 1 ' < i +1-1, j = 1, 2, . d}. W e shall represent groups of bases in sets

such as R-,, which we call arrangements. We say that arrangement R-, is centered or,

and has radius 1. Our update p:ocedure is periodic with period :. By this we mean that

for the h-th element cost change the update procedure handles data in the same form H
(e.,.. radius of arrangement) as the data during the (h +: )-th element cost change, for anv

h > 0. H ere. is a param eter that w ill be spec ified later. w hen w e discuss the r7u.n:n, .-

"''
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time. Our update procedure consists of three parts. For clarity, we will uncover the parts

one by one.

Consider h to be an integer in the range from 0 to z. Suppose after the h -th

update we keep an arrangement Ash' R '2h. The superscript on R and on A() indi-

cates how many element cost changes have been supplied, and will be omitted unless the

context demands it. As lone as h < z, there is sufficient information to generate 11
no matter what type of element cost change occurs. Thus :-1 element cost

changes can be successfully handled, but when the :-th update occurs, B -is lost. This

q
follows, since A6' - ') is an arrangement consisting of one base B z - 1 ). so there is

insufficient information remaining in order to compute B_' We say that A decays dur-

ing this sequence of : updates. Of course. for large z, explicitly maintaining and updat- I
ing the arrangement A 0 requires considerable time per cost change. In due course, we

will show how to circumvent this problem by introducing an implicit representation for

When A ,) has completely decayed, we need to replace it by an arrangement con- I
taining m any bases. B ut this m eans that certain w ork m ust be done in advance, W e

therefore discuss the second part of our solution. We thus now consider unresticted

v a lu e s o f h . W h e n e v e r .A ,) is in itial iz e d , i.e . , h m o d =0 , w e in itia te a c o m p u ta ti o n to., 
."

solve a number of d-color problems on the current matroid, in order to generate a new 1
arrangement of bases. raiven the minimum cost base after h updates containing only ele- N
ments of oor '. ' = 1. 2, . .Note that any constrained base after h updates
contains only eiements from the union of these monochromatic bases. Let P (n.d be :he

V

ff . ._Y.: ' , 
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ime required to determine for a given d-color problem an arrangement of bases in an

appropriate form. Assume that copies of the d monochromatic bases are maintained

from one update to the next. Since just one of these monochromatic bases changes, a

cost of U (m n ) is charged to the update. Each static d -color problem will be solved dur-

ing the time in which A 0 decays, by performing 0 (P (n ,d)z) work over each of z update

steps.

However, when all static d-color problems are completed, after h = kz updates,

we cannot just reconstitute .4 0 with the appropriate bases. This is because each such base

will be out-of-date by z element cost changes, since the element costs used in solving the

static problems were extracted after (k-I)z updates. and : further element cost updates

have been applied to the matroid in the meantime. Thus we introduce the third part of

our update strategy. We use a second arrangement A 1, centered at B- and initially with

I = 3z, which is extracted from the out-of-date solution to the static d-color problems.

Thus when A is created after h = kz updates have occurred, we have A fh = Rh-z

Since the bases in A 1' will initially be out-of-date with respect to .4 )L1 by

element cost changes. we need to bring them up-to-date over the next : update steps of

A 0, using the : element cost changes that have not yet been applied to 4 1. These previ-

ous element cost Thanges can be saved in a queue as the static d-color problems are

being solved. Thus. when .4 kz is created, the queue will contain element cost changes

numbered (k-i)z -, 1, (k-I): + 2.. k:. Consider the h-th update step. that

transforms .4 .'h-', to.. h . Let h = k-:-r. where O<r . We first add the h-th e!ement

cost change to the rear of the 2ueue. We then delete the two element cost :hanz.s
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(namely, those numbered h-z-r-I and h-z-,-r i from the front of the queue and apply

:hem both toA h ,btaining A Thus A{) will be the arrangement R._--_. I

will then become up-to-date with respect to A O, and also be of the correct radius, pre-

cisely when A 0 has completely decayed. We then replace A 0 by the current arrangement

A1•

We can view our three-par update technique as three concurrent processes going

on at once. Times at which h. > 0 and h mod: = 0 are regarded as renewal points for

A 0. At a renewal point. A() has completely decayed, A 1 has caught up with A 0 and can

replace it, the static d-color problems have completed from which a new A I can be con-

stiruted, and new static problems can be initiated. ,,,°'

We now discuss how to avoid the expense of repeatedly updating each base in the

arrangements A0 and A . We do this by maintaining an implicit representation of each

arrangement. An exiremal base of color j of arrangement R., is a base B7 where

ij = q - (d-1)(1-1) and iJ, = qj + 1-1 for j' # j. We denote this base as B,,,. We

also use the base BTI.j and call this a near-emremal base of color j. For g = 0. 1 and

0 5 r < :, let a = g:-r), and b =z -r+g(2z-r). For each arrangement A withgm

h =kz+r, 0 5 r < : and g = 0. 1. except for when g = 0 and r = z-l, we maintain for

ih-aieach color J, B,, , and its j-positive neighbors, and B - and its -nezative neih-

bors. For d = 3, this amounts to four bases near (and including) each of three extrema

bases, for a total of twelve bases. For d > 3. there will be 2d bases near (and including)

each of d extremal bases, for a total of 2d2 bases. We call the set of these bases :he

extreme bases. For each extreme base we maintain its update str-ucture. U.sing :he

V % ','

I'
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algorithm from the previous section, each of the 2d-2 bases can be f.our,d in T n.d) time.

and thus P (n .d) is 0 (d 2T(n ,d)). One can actually find the set of bases faster, as we dis-

cuss in the proof of Theorem 5. All solutions to a 3-color problem with n = 24 are

shown symbolically in Figure 3. An arrangement centered at - = (9, 8, 7) with radius

I = 4 is shown in bold, with the extreme bases shown as the boldest.

We also maintain the set of all elements that are in some but not all bases of the

arrangement, and call this set the symmerric difference. We bound the size of this set as

follows. Consider some color j. By Theorem 2. all q, - Id-1)(/-1) elements of color.,,

in B ,z,- will be in every base in the arrangement. Consider a base B- which has

,j -" q] + (d-l)2(I-) elements of color j and i,, = q,, - (d-1)(1-1) elements of ever'

color j' t j. Also by Theorem 2, any element of color j in some base in the arrange-

ment will be in base B7. Subtracting, we infer that there will be at most d d-1)l-" eie-

ments of color j in the svmmetric difference, or at most dZd-l'(l) elements overall.

There are certain matrolds (for instance, graphic matroids) for which update

structures for bases in a contracted matroid can be maintained efficiently when elements

are inserted and deleted. In such cases. we can save both space and time if we construc:

a contracted matrold for each arrangement. For each color j, we contract every element

of color j that is guaranteed to be common to all bases in the arrangement. Thus "or

j = 1. d we contract all the j -colored elements in the extremal base of color j in the

arrangement. The total number of elements contracted will be Vq, - (d-1(1-l)I

= n- dld-i)Ul-l). Since the contracted elements are independent in the orncinai

matroid. the resuiting contracted matroid will have rank dUL-!)(l-1). We also note :na:

A° 1



since the original maroid has a monochromatic base of each coior. so will the con-ac:ed

matroid. In what follows we will assume that. whenever appropriate, update structures

are maintained for these smaller monochromatic bases in the contracted matroid.

To summarize, each update step h. where h = kz-r and 0 _< r < :. involves the

following operations. The monochromatic minimum cost base is updated for the color of

the element whose cost has chanzed. The arranzement A h-1) is transformed to .Ah) by"

applying :he h-th element cost change to it as follows. Depending on the type of element

cost change. the new version of one of the bases near the exremal base of each color is

computed. For each color j. either the extremal base B"_ and its -positive neigh-

bors. or the near-extremal base BJ-h 2 and its i-nezative neichbors are used. If the

cost of a basic element of color j' increases, then the new bases are generated using

extremal bases and their j-positive neighbors. In this case the new bases will be B-

and the J', j)-neighbor of B!h for all j :P j'. We have preViously discussed how

B . ma,' be obtained from Bh-1) and its j'-positive neighbors. When , Xe:

B denote B and B' denote B's (j'. j)-neighbor. Since the comnlete. positive.

tight set consisting of B' and its j'-positive neighbors is identical to the complete, posi-

:ive, tight set consisting of B and its j-positive neighbors. the sparse representation of :he

arrangement has sufficient information to generate the updated version of base B

If the cost of a nonbasic element of color j' decreases. then the near-extremal

bases and their j-negative neighbors are used. In this case the new bases will be

*- B ' '  and the J. j '-nei hbor of B '-h' . or all , The :e'. vztte:..

difference :s determined, as well as the contracted matroid if rn:inta ned,.

,<
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Let W(nd.:) be the time to perform the last two operations. A total of 2d--1

static d-color problems of rank n' = 8(dz) involving elements in the symmetric differ-

ence set are extracted in time Q (n ,d,z) (which is zero if the contracted matroid is main-

tained). Solving the 2d'+l static d-color problems each in time T(d :.d) then generates

Bh) and the extreme bases for the new arrangement Ah. The update structures for the
q0

extreme bases in A h- 1) are modified via swaps to yield update structures for these new

bases, resp. We then have the implicit representation for A (h) after the update step.

Finally, A hl) is transformed to A h). The h-th element cost change is added -o

the rear of the queue of element cost changes that we maintain for A 1. Two element cost

changes from the front of the queue are then deleted and each is applied to A $h-1) in the

same manner as the cost changes were applied to A 0 , obtaining A 1h)

Theorem 5. Let M be a matroid of rank n with m elements of d colors. Consider con-

strained minimum cost bases with respect to cost function CL(). The on-line update

problem for such bases can be solved in 0(d 2 U(m,n) + Q(nd,:) +d 2T(d-:.Jd ,

+W(n4,d,)+ d T(n,d)/z + d 2T(d 2 ,d)/ -) time and 0 (S(m .n)) space.

Proof. For each of the 0 (d- ) extreme bases of each arrangement. an update operation

will be performed. Then d new extreme bases in each arrangement are selected from

these 0 (d2 ) updated bases. An updated arrangement A (h ) is generated by solving 0 (d )

static d-color problems. This can be done by first finding the extreme bases for each

color on a contracted matroid of rank n' = 0 (d 2 h). Thus solving the static d-color prob-

lems will take time 0(d-T(d-z, d)). Thus each update step in .4,) or .4 will take

%
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0 (d ,U(m.n) - Q dn.d:) - d2T (d2 z ,d).. W n ,d,)) time.

In addition, 0(d 2) static d-color problems of rank n must be soived over

updates. For each color j, compute the extremal bases of color j. Then contract :he I
matroid to one of rank n' = 0 (d2z ). The remaining extreme bases can be found .n .he

contracted matroid. The time spent per update step on solving these static d -color prob-

lems is 0 ((d T(n ,d)d-T(d1'7_,d))/: ).

To illustrate the above technique, we describe the construction of update struc-

tures for graphic matroids and analyze their efficiency. The update structure for a

minimum spanning tree uses dynamic tree data structures [ST] and two-dimensional

topology trees [F]. The former allows us to perform the operations maxcirc and swan in

time 0 (log n ). The latter allows us to perform the operations mincocirc and swap :n

time 0(-.m ). Thus for this update structure U(m.n 0 (,.,m i. The space used by :he

structures is O (m.

A contracted matroid is maintained in the form of a contracted graph. A topology

tree [F] is used to maintain a heap of the edges incident on each vertex of :he conurac-eJ

graph. Each such vertex corresponds to a tree-structured connected component of :on-

tracted edges from the current constrained minimum spanning tree. Since topology trees

of size d- support insert. delete, split and merge operations in 0 (logd t time. updat-

ing the contracted graph can be implemented efficiently. The time to solve a static d-

color problem is T(n.d)= Od' (d-l)! nlog n We therefore have :he foilowing

theorem. I
Theorem 6. Lt ( be a -.arh with ,z vemce.,. and '.ith n -dges or :coiors. cnsdr..

. O- 10

Le~eZ:1::-
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constrained minimum spanning trees with respect to cost function c, . The on-ine

update problem for such spanning trees can be solved in O (d,%M - d ',-.n log n

time and 0 (m) space.

Proof. We have U(m.n = O('m ), T(n.d) = 0(d! (d-l)! n log n) and Q is equal zo

zero. W(n,d,z) will be O(d 2 log(d2 :)). Each update step in the arrangements will take

0 (d2'rm- + d 3(d ) z logd-:)) time. We must also replenish the second arrangement

by solving a number of static problems of rank n, which will cost 0(((d!>n 1og n

(d!)2 log(dz:))/.z) ime per update. We choose = 9(n The space bou

is evident from the data structures employed. E

6. A recursive representation of arrangements

We can achieve better update times by using a more complex representation of

arrangements. Consider the example in the last section involving gaphic matroids. We

can use a two-level approach for representing A 0 and A ,. Consider update step it. where

h = kz+r and 0 < r < z, Recall that Ash) = R7h), where R- i is the set of bases

{B~Ii1J  _ i--l-. j = 1. 2.. d}. Arrangement A 0 was represented implicitly by the

extreme bases. their associated data structures. the symmetric difference. and the con-

tracted matroid (if maintained). On an update step in A.), d new bases were determined.

the symmetric difference and the contracted matroid were updated using them. and

2d2+1 static problems of rank n' = 0 (d:) were solved to find the new extreme bases.

In our modified method, a base at each extreme is computed as before. However.

instead of solvi,.u a number of static problems with respect to A.) on each update te.
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A0, we do the following. We maintain smaller arrangements A., j = 2, 3..

centered near the extreme bases of -4 ,, and two smaller arrangements A0 and .4 ,3 cen-

tered at B . We call these smaller arrangements subarrangements. Only when the subar-

rangements A0j, j = 2, 3, -, d -l, decay to single bases are a number of static prob-

lems solved with respect to A o. A oo and A01 are maintained to be able to access B-

meanwhile.

Let I0/ be the radius of subarrangement Ao1. = 0, 1.--- d-1. For

j = 2.--- d- 1, A0 will be centered on qj, where qjk= qk-(d-2)(l0 -1j) for ,=C

and qj= qk+1o-1o) for k j. Let y be a parameter to be specified subsequently. At a

renewal point for A40 ,  10j =y if j=0, lo = 3y if I = 1, and l, =2 if

j = 2. 3,.-, d-L-l. Each subarrangement is represented implicitly by its 2d- extreme

bases, their associated data structures, the symmetric difference, and the contracted

matroid (if any). If the contracted matroid is maintained, the extreme bases are of rank

n= G(d':z) otherwise the bases are of rank n. After the A0j ,j = 2. , d--l. have

decayed to radius 1, 2d ' static problems with n' = d(d-1)(l-10 j) will be initiated to

determine the extreme bases for the new A 0 , j = 2.- d-,-1.

At a renewal point for A0, .4 0 will be up-to-date with respect to A 0, Ao,.

j = 1, 2.., d-l, will be out-of-date with respect to A (and therefore 4 0) by v ele-

ment cost changes. Times at which h mod : > 0 and h mod N, = 0 are regarded as

renewal points for for A Oj, j = 0. 1. . d+i. At a renewal point for.4 0, A o0 has corn-

piete!y decayed. .4t has caught up with Ay) and can replace it. arrangements ...

S. •. d-1. have caught up with A4 but have decayed :o single bases. :he fd-!,-
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static problems have completed. which yield the extreme bases for the new arrangements

.A0j j = !- . d--l. and a new set of static problems can be initiated using the single

bases from the previous Ao j = 2. , d+l. As before, two update steps in an out-

of-date arrangement will be performed for every update step in A o. We will assume that

z mod y = 0, so that A0 j, j = 1, 2, , d+l, will catch up with A0 precisely when A0

reaches its next renewal point. Arrangement A1 is represented in a similar fashion. 1"

Subarrangements A lj . j = 1,. d+l, will initially be out-of-date with respect to ,.

by y element cost changes. Since A, is itself out-of-date with respect to A 0, four update

steps will be performed in each ofA Ij j = 1,. • •, d+l, for every update step in A0.

We discuss how to perform an update in A 0. The update for .4 is similar. For

each of the extreme bases of A0 , an update operation is performed. Then d new extreme

bases are selected from those 0 (d 2) updated bases. The set of all elements that are in

some but not all of these d bases are computed, as well as the contracted matroid. In

addition. for all extreme bases of . 0, that are not extreme bases of . o, an update opera-

tion is performed. For each group of d bases in this set, a new extreme base is computed.

The sets of all elements that are in some but not all such bases of .40, for each

I = 0. 1. d--1. are computed. as well as the corresponding contracted matroids. A

total of 2d 2-1 static d-color problems of rank n' = e(d 2_'V are solved for each of the

d+1 subarrangements of Ao. From the extreme bases of the A0j that correspond to

extreme bases of .A0 , swaps :hat transform the old extreme bases of AO into the the new

extreme bases can be inferred. The new svmmetric differences and contracted matroids

for A ,) and its subarrangements can then be determined.
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In addition, the following static problems must be solved over a sequence of

updates. To generate the extreme bases for A :, 0(d 2 ) static i-color problems of rank ?

must be solved over : updates. To generate the extreme bases for A g = 0. 1 and

j = 1. 2," .d-1. 0 (d ) static d-color problems of rank n' = 9(d':) must be solved

over y updates.

Theorem 7. Let G be a graph with n ,vertices, and with m edges of d colors. Consider

constrained minimum spanning trees with respect to cost function CL ). The on-iine

update problem for such spanning trees can be solved in 0 (d2 ," + d8"'(d !) n "_'log n'

time and 0 (m) space.

Proof. For each of the 0 (d2 ) extreme bases of arrangements A0 and A , an update

operation wil be performed. Then d new extreme bases in each arrangernenc are

selected from these 0 (d2) updated bases. The time required is 0 (dzU (m n ). For each

of the 0(d 3) extreme bases of subarrangements AOj and A 1j, an update operation will be

performed. Then d new extreme bases in each subarrangement are selected from its

O(d-) updated bases. The total time required is O(d'U(d2:.n )). An updated arrange-

ment Ak, is generated by solving Od) static d-color problems. This can be done y

finding the extreme bases for each color on a contracted matroid of rank n' = 0 d- 2

Thus solving the static d-color problems will take time 0(d-T~dv.. d)). Thus each

update step in the arrangements and subarrangements will take

0 (d U (m.n Q (n.d.: d - U (d .n d T d-y J) + ))time.

In addition, 0Id static J-color problems must be solved over : updates. As 'r

.he proof of Theorem 5. this will ake O(d T 1.d',-d"Ttd:- .Jd time.
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.lso, 0 (d-) static d-color problems must be solved over v updates. The time

spent per update step on solving these static d-coior problems will be

O((d3T (d ,d))Iv).

The time spent handling each element cost change is O(d 2xn -d

((n log n)/z + d4 (z log z )iy + d4y log y)). Choosing z = E(n 2'3'd"') and

V= (9(n :!,'d 3) yields the theorem. 7

For fi ed d, the time for the above approach is limited by the 0 ('m ) time to

update a minimum spanning base in an uncolored graph. If the graph is planar however.

then the update time in an uncolored graph has been shown to be 0 (log n) in [GS], and

hence not a limiting factor. We thus extend recursively the implicit representation of

arrangements. The representations will be of two types, centered and uncentered. Let

a (d) be a value depending on d. which we shall specify subsequently. An arrangement.

centered or uncentered, of radius at most a (d), is the set of extreme bases. their associ-

ated data structures, the symmetric difference, and the contracted matroid. Let f be a

function to be defined subsequently. For an arrangement A % of radius 1% initially equal to

- > a (d), a centered representation consists of the above items. plus:

I. a centered representation of a subarrangement .4 W, which is centered on the

same position as A)A, with radius !-,( initially equal to ,: and which is up-to-date with

respect to A x-

2. a centered representation of a subarrangement A'Al, which is centered on the

same position as .4, with radius 1 .j initially equal to S/i:., and which is out-of-date

with respec: o A. by I t) element cost chan ges.
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3. uncentered representations of subarrangements A)4 ~ j = 2, d-1, which

are positioned at the extremes of A)L, with radius I .J initially equal to 2f and which

are out-of-date with respect to A;L by I X element cost changes.

4. 2d2 static problems which have just been initiated. Of these, 2d will be of rank

n'= E(d2z ), and the remainder of rank 0 (d2f (z)).

An uncentered representation consists of all items in a centered representation

except items I and 2.

Let f( 0 )(x) =x andf ()(x) =f (f(i-1)(x)), for i > 0. Then we choose the func-

tion f (-) such thatf(" L)(n) mod f(')(n) = 0 for i > 0. This can be done easily by forc-

ing f (-) to be a power of 2. This choice off (.) ensures that each (il)-st level arrange-

ment will have caught up with the appropriate i-th level arrangement at an i-th level

renewal point.

Let Tc(z) and Tu(z) be the update times for centered and uncentered arrange-

ments of radius z, respectively. The update times are described by the recurrences:

Tu (z) = cd 3d! (d-l)! (z log z)/f (z)-+2dT,(2f (z))

Tc(z) = cd3d! (d-l)! (z log z)f(z) + 2dTu(2f (z )

+ 2Tc(3fz)) - Tc (f(z))

where c is a constant. The first term in each recurrence represents the time spent per

update step on solving the static problems of rank 1(d z) and updating the data struc-

tures. The remaining terms represent the time tor recursively updating subarrangernents

of radius O(f(z j). and reflect the fact that two update steDs are reuuired for out-,-u,:e
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subarrangements for each update step in the primary arrangement.

Theorem 8. Let G be a planar graph with n vertices, and edges of d colors. Consider

constrained minimum spanning trees with respect to cost function cL (). The on-line

update problem for such spanning trees can be solved in 0(d2(d!)2(logd) - ''2

2 os() (lo, og n time and 0 (n) space.

Proof. We have U(n,n)=O(log n), P(n) = O(n log n) and Q = 0. If we choose

f (x) = E¢,x /2 2 log(II log X-) and observe that log f (x )=

, log x - -N 2 log(2d) log x < 4 log x - v('log(2d ))/2, then both TU (n) and Tc (n) are

0 (d2(d!)2(logd)-112 2 2 log(24) log n (log n )3f2), provided a (d) is small enough, so that

the basis of the recurrences satisfies these bounds.

For the space, the recursive representation has (d+2)' subsequences each using

structures of size e(f")(n)) at level i. With d+2 < 2d < 2 2 logk2d) log , , the sizes of

these structures sum to 0 (n) over all levels. Solving for n in the above inequalitV sug-

gests the choice of a (d)= 2F-T; since arrangements of radius at most a (d) are

represented explicitly, the space bound is as claimed. If the general matroid intersection

algorithm is used for updating arrangements of radius at most a (d) in the centered and

uncentered representations, then the basis in the recurrences is polynomial in d. Thus the

basis satisfies the claimed bounds on TU (n) and Tc (n). 3%

7. Applications

The techniques of section 4 can be used to solve the minimum spanning tree I
%
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problem when d vertices have degree const-aints. Assume that the vertices with degree

constraints are indexed vj, v,, vd. Label each edge incident on two constrained

vertices with color 0. Label each edge incident on exactly one constrained vertex vi with

color i. Label each edge incident on two unconstrained vertices with color d-l.

Since there are d constrained vertices, there are at most d (d-1) / 2 edges of color

0. In rn we consider every subset of edges of color 0 that is a forest, such that the

degree of each vi in the forest does not exceed its degree requirement r . We generate a

candidate solution for each such forest- The idea is to include all the forest edges in the

solution and then choose remaining edges so as to satisfy the degree constraints in a

minimum cost fashion. The minimum cost solution over all such forests is then the

minimum spanning tree satisfying the degree constraints.

For each forest, we generate a reduced graph as follows. Make a copy of the

graph, and initialize r' to be ri for i=l, 2,•- d. Delete from the graph all edges of

color 0 which are not in the forest. For each edge (vi, vj) in the forest, decrease bv 1 the

degree requirements r' and r'. Then contract the remaining edges of color 0 in the graph.

To get the candidate solution corresponding to this forest solve a (d-l)-color static prob-

lem on the reduced graph. where r' edges of color i are desired, for i=l, 2, • d, and

the remaining edges are of color d -l.

Theorem 9. The time to solve a minimum spanning tree problem with degree con-

straints on d of the vertices is O (To,(m. n) + d I (d+l)! (ed 2)X-1T(n ,2)).

Proof. The time to solve a minimum spanning tree problem on edges of color d-' :s

Tim,. The number of forests is less than
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d, (d -1). 2) "(d -1 ~ -  d -r d-1 j <  (- ,' =

For each forest, a (d+l)-color problem is then solved. E =_
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