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Abstract. Consider a matroid of rank # in which each element has a real-valued cost
{

and one of { > 1 colors. A class of matroid intersecton problems is studied in which
@ FE AR

one of the marroids is a partition matroid that specifies that a base have qj elements of
; !

\
)

colory, for j = 1,2, --, d. Relationships are characterized among the solutions to the
C T ‘ » e }

family of problems generated when the vector (my.zn .-, qg)is allowed 10 range over
all values that sulm tol;lz. A fast algorithm is given for solving such matroid intersection
problems when 4 is small. A characterization is presented for how the solution changes
when one element changes in cost. Data structures are given for updaung the soludon
on-line each time the cost of an arbitrary matroid element is modified. Efficient update
algorithms are given for maintaining a color-constrained minimum spanning tree in

either a general or a planar graph. An application of the techniques to finding a

minimum spanning tree with several degree-constrained vertices is described. .

Keywords. data smuctures, degree-constrained spanning tree, matroid intersecuon.

minimum spanning tree. on-line updating, partition matroid.
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“~_ L Introduction

— Matroids are discrete mathemarical structures that appear in a variety of applica-
dons. They are smuctures for which the greedy algorithm gives an optimal solution. and

when intersected characterize such problems as minimum weight maximum cardinality

1
7

bipartite matching {E+}. In this paper we study a class of combinatorial problems from a
I A & ST B .

—

matroid point of view. Consider a matroid in which each element has a real-valued cost.
and one of d colors, for some constant 4 > 1. Given positive integers §1.4s, = (g, We
seek a base of the matroid that is of smallest cost subject to the constraint that it contain
q; elements of color j, for j = 1.2, --- 4. For example, we can generalize the minimum
spanning tree problem to a problem in which the edges have colors, and we desire a span-
ning tree of minimum cost subject to conswaints on the number of edges of each color

that are in the tree.

A marroid M consists of a set £ of elements, and rules describing a property.
called independence. of certain subsets of £. The rules sausfv axioms which mav be
found in [L1, W]. A maximal independent subset of E is called a base. A marroid
optimization problem is the problem of finding a minimum cost base in a matroid in
which a cost is associated with each element. For example. finding a minimum spanning
tree of a connected graph is a matroid optimization problem. where the matroid consists
of the set of edges in the graph, and independence corresponds to acvclicity. As stated

above. matroid optimizaton problems can be solved by the greedy algorithm.

A matroid intersection involves two matroids defined on the same set £ of ele-
ments. but with different sets of rules determining the independence of subsets in each

matroid. A matrnid intersection probiem is an optimization crobiem whose soiuuon i< 2
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subset of £ of maximum cardinality that is independent in both marroids simuitaneousix.
and is of minimum cost among all such subsets of £. While there is an algorithm ‘or
solving any given mawoid intersection problem in polynomial dme [L1. L2], the polyno-
mial is large: at least O (n m*>), where m is the number of elements, and n is the cardi-
nality of the largest independent set. The special tvpe of matoid intersection problem
that we focus on in this paper is one in which each of the elements is labeled with one of
d colors, and one of the matroids (a parrition matroid) specifies that a certain number of
elements of each color must be in the solution. In the case of d = 2 colors, the problem
has been well studied. and more efficient solutions have been presented in [GT, G]. In
this paper we explore the structure of d-color probiems which allows for their efficient

solutdon when d > 2.

The soludon techniques of [GT, GJ rely on finding a minimum cost solution from
among only red ¢lements and a minimum cost solution from among only green elements.
and then pairing these red elements and green elements. However. for d > 2 colors. the
anaiogue of such a pairing does not seem to exist. We overcome this difficulty by gen-
eralizing other characterization results in [GT, G]. We charactenize the relationships
among the soludons to a family of problems generated when the vector (g, - -. g, is
allowed to vary over all combinations which sum to n. The key relationship 1s the pro-
perty of dominance. which allows us to search efficiently within the set of these
®(n?d! ) solutions. Dominance means that if one constrained minimum cost base dom-
inates another with respect to the color constraints, then all elements of a certain color in

the second base are in the first.

The dominance property makes possible a divide-and-conquer approach tor
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dnding a constrained minimum cost base that is efficient for small values of 4. The algo- W,
e
rithm runs in dme in time Otd Tgm, n) + (d=-D' d! T(n.2)), where Tym, n) is the
XX
o
time to solve an uncolored version of the problem. and T (n, 2) is the ume to solve the c.::1
t
“(
. . . . . . . . W
2-color version given solutons for each color. For graphic matroids, it was shown in :::c:
[FT, GGST] that Ty(m, n) is slightly larger than proportional to m, and in [GT] it was 3
1
N
. . Cy . 1Y
shown that T (n, 2) is O (n log n). The algorithm handles any d-color mawoid intersec- )
N %
« . . . . . . . . J
tion problem. such as scheduling unit-time jobs with release umes and deadlines {GT], in
. . . T N oy
essentally the same time bound. While the algorithm is factorial in 4, it matches the .’h'.
o
bound in [GT] for d = 2 and is significanty more efficient than the previously known tl:::
4
algorithms when 4 is a small constant.
T
Y
P
. : , e
We also address the problem of updating a solution repeatedly, as the cost of ele- e
'l
ments change one at a time. This on-line updating problem is a generalization of the 2- 'y’
color update problem discussed in [FS]. We show how to use the dominance property o N
NG
T
generate and maintain efficientlv a sparse descripgon of the ©(n? d*) solutions 1o al ':::
L]
problems as the vector (¢, - - - .q;). We can update a d-color minimum spanning tree in
; . . 2 o=t T ond ogn ’Ht
0@*mV? - 4% an* nis log n) tume, and in 0(d*d")” (logd "™ 2 afv-logid g K
32 . . ﬁ:"
(log n)"'*) dme if the graph is planar. These match the update imes in [FS] for the case 1
whend = 2. v
. "
!.:\
Our d -color algorithm can be used 10 find a multiple-degree-constrained spanning "
&
4
] ree of a communications network. Suppose the degrees of a number d of the nodes are
"
. . \ . ~
prespecified, because of the number of ports that they have. When d = 1. the problem is )
:\-J.
a special case of the 2-color minimum spanning wee problem 'GT'. However. many W
| interesting problem instances may require J Jegree-consained nodes. wherz I A
S
| RS
| 2
| n
| s




small constant greater than one. We reduce this problem 0 a set of :d~1)-color prob-
lems. one of which yields the soludon. While the problem is NP-nard for general d [G].

p. 206], our algorithm is efficient for small d.

The remainder of the paper is organized as follows. In section 2 we introduce
some te;rminology and new concepts that facilitate the later discussion. In section 3 we
characterize the structure of d-color problem solutions, and establish the overall
minimum cost, convexity and dominance properties. In section 4 we apply these charac-
terizations to develop an efficient divide-and-conquer algorithm for the static d-color
problem, and illustrate its efficiency for graphic matroids. In sectons 5 and 6 we gen-
eralize the 2-color results of [FS] to d colors, and describe how to maintain a sparse
) description of certain arrangements of solutions to d-color problems to permit fast on-
line update. In secdon 7 we discuss applications of our methods to other matroids and

contexts.

2. Definitions

We idendfy some additional mawoid terminology: a more complete discussion
can be found in [L1. W]. The rank of a set E CE . denoted as rank (E”), is the cardinality
of a maximal independent subset of £. Let B be a base, and f an element in £E-B. The
circuit C(f , B) is the set consisting of every element that can be deleted from B(_){f }
to restore independence. Let e be an element in B. The cocircuit C(e. B) is the set con-
sisting of every element that restores rank to B -{e }. We will sometimes reter to an ele-
ment in C(f. B) as one rhat f can repilace in B.and an element in Cie.B)asone thar

can replace ¢ in B. Let M E’ denote the contraczed matroid obtained trom M dyv con-




Y ¥ X

(V]

wactdng the elememts £°cE. The elements of M/E” are £ — E°. If £’ is independent.
then the independent sets (bases) of M /E” are those sets X ©E — E” for which X(E’ is

independent (a base) in M. We note that rank (M/E”") = rank (M) - rank (E").

For our problems on graphs, read edge for element. spanning mree for base. cycle
for circuit, and forest for independent ser. The rank is the number of edges in a spanning
wee. Thus a minimum spanning tree is a minimum cost base of a graphic marroid. Simi-
larly, for our unit-ume job scheduling problem. read job for element. a ser of jobs with a

feasible schedule for an independent set, a maximal such set of jobs for a base, and a

“minimal infeasible set of jobs for a circuir. Thus a maximum-profit set of jobs with a

feasible schedule is a maximum-cost base of a job scheduling mawoid. Letm = [E | and

n = rank (M).
We associate a color j. je {l.---.d} with each element in set E. For any set
E’cE, let colors (E”) be a d-tuple (i, i, - -, iy) giving the count of elements of each

color in E’. Let cy(e) be the positive, real-valued cost of element e. and c4(E ") the :otai
cost of elements in a set £’. For a given cost function, we refer to a base B in such a
matroid as a constrained minimum cost base. or a minimum cost base for its vecicr
colors(B), if B is of minimum cost over all bases with the same colors vector. We
assume that £ has been augmented with elements of cost e as necessary so that a base of
each color 1, - - -, d exists. Thus a rmonochromatic minimum cost base is a constwrained

minimum cost base whose colors vector has exactly one nonzero component.

Following [GT], we find it advantageous to extend the cost function so that each
constrained minimum cost base B is unique for its vecior colors 1B . We maxe two dit-

ferent extensions. both similar to extensions given in ‘GT;. We assume that a unicue
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index is associated with each element. Let a = min({|cyE") —c(EN|: E'.E” are
sets of elements, [E'| = |E”], cgEV = cptEN} (U {cotere in E}). We detine
cle)=cqole)—a/ 3¢, where i is the index of e. Bv our choice of a, we note that for
any two disdnct bases B; and B, ¢ (B ;) # c(B-), and for any three distnct bases B ;, B~

and B3, 2c(B,) # c(B) + c(B3).

The second extension c; () of cyi-) is tased on lexicography. Let f_ =iy
fa0), . f4()) be a d-tuple of convex functons. and let T be any permutation on J-
tuples. Let £’ and E” be sets of edges. We assume that f (colors (ER) vields d-wple
(F1G ), -+, falig)). Letindices (E”) be a sorted ordering of the indices of the eiements
in E’. Then we say that ¢; (E") < ¢, (E”) if and only if one of the following holds. in
which tuples are compared by lexicography.

1. cglEN < cglE™

2. CEN = colE” and ::(f_(calors(E’))) < T (colors (E™)))

ColEN = coE™, mf_(colors(E'))) = x(fwo[ors (E")), and

LI

indices(E"Y < indices(E".

Note that for any two bases B, and B, ¢; (By) = ¢, (B~ implies that B- = B-. It
is clear that for any two bases B; and B, with identical colors vectors. and any 7 and =
c(B) < c(B») if and only if ¢; (B4) < ¢, (B,). Thus a constrained minimum cost base
under ¢ (-) is a constrained minimum cost base under ¢; (-). We find ¢ () more convenient
in proving several kev properties about d-color matroids. and ¢; (-) more appropriate (0
use when designing algorithms for J-color marroids. When the cost function easures
that there is 4 unigue base of minimum cost over all bases with colors vecior [Lowe ol

this base B-.
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We next define the noton of a uniform cost adjustment with respec: 0 each of e g
z

extended cost functons. The noton of a uniform cost adjustment comes from [Gj, where
5
it was applied in handling 2-color marroids. A uniform cost adjustment with respect 10 ;
3

c(-) consists of adding a constant d; to the cost of everv element of color ; in the
matroid. for j = 1, 2,---, d, and is specified bv the d-tple 3. A uniform cost adjust- “
ment with respect to ¢; () consists of adjustung costs according to a d-tuple  and intro- y
”
ducing a new d-tuple f of functons, along with permutation . Since only differences in -
)

cost between elements of a parucular color are significant in determining any consained

minimum cost base B-. the base By remains of minimum cost over the vector | after a

tfff"‘

uniform cost adjustment. Note that onlv differences in cost between various colors are

b
h
significant in determining the relative costs of bases with different colors veciors. Furth- y
N
ermore, we can always assume without loss of generality that a uniform cost adjustment ‘5
in a d-color matroid has at most d—1 nonzero components. The purpose of a uniform ;
cost adjustment is 1o make some constrained minimum cost base B; of overail minimum .
-y
cost.
b 4
. ol . . LT . : . N
We sav that a vector i’ is a (j., j~r-neighbor of | =i i~ i i N
A
L,pr =i —i.i,pr=i_=1.and i =1 forall other j. Let the ; ,-neganve neignpors A
LT . o ST .. o .
ot . be the setof all ty. . y-)-neighbors of { with j~ # ;,. Let the j,-positive neighbors N,
N
LT . . S .= . . Y
of 1 be the se: ot all ;.. -)-neighbors of ;: with ;- = .. When there s a unique ]
. - . L . "
minimum cost base tor each vector (. we extend the notion ot neighbor from vectors o
the bases that thev index in the natural wayv. Leti and :” be the colors vectors of two )

mases. Suppose there s i uwnigue color v for which i, > i Then we sav that: o

inqres | owith respec: o color oot that o - domunates
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' Given a base B. a swap s = (e, f) available in B is an ordered pair of ziements.
where e€B. fe B.e and s are of different colors. and C (f, B) contains ¢. Element

can be swapped in to replace element e, resulting in a base B-{e h_j{f } (denoted by

e e e -

B +5s orB —e + f). Given a base B, we say that a sequence S of swaps 5, ....s, is
available in Bif B +s,,..., B +s;+ -+ +5, are bases. Consider any cost function
on E. Suppose swap sequence S is available in a constrained minimum cost base B. Let
s; = (e, f)yfori=1,...,r. We say that the sequence § is oprimal if bases B + s,
,..., B +sy+ -+ +5, are all constrained minimum cost bases. The sequence S is
X color-conserving if colors(f;) = colors(e;,,) for i =1 ....,r=1. The sequence § is
acyclic if colors (e;) # colors (ej) fori,j e {1,...,d}and i # j. Finally, the sequence
S is regular if it 1s opumal, acvclic, and color-conserving. Note that any subsequence of
a regular swap sequence is regular. We refer to a regular swap sequence § with

colors(e) = j, and colors(e,) = j~ as a regular (j,, j-) Sequence .

Let D be a set of bases with distinct colors vectors. The set D is righr if. for
every pair of bases B. and B, in D, B, and B, are neighbors. A tght set D with
|ID| =k > 1 is negarive if colors j;, ...,/ can be uniquelv assigned to bases in D
such that for any base B in D, if base B is assigned color j, then every base in D — {B}
is a j-negatve neighbor of B. A posinive tight set is defined analogously, using /-
postive neighbors instead of /j-negauve neighbors. If |D | = 1. then we arbitrarily assign
the single base in D the color 1, and call D negative. We say that hAue(B) is the color
assigned to B, and for any subset D" of D . hue (D ") = g p- hue (B). Let D be a nega-

tive tight set. B a base in D with colors(BY=i.andr = I.. Lethspan(D) be

:/ehuwD

Tor

the set of bases with colors vectors !’ such that © ‘. =r.and {’

-—tCAue Dt
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je hue(D). A tdght set D is complete if |D| =d. We denote the unigue complete.
negatve. tght set associated with a base B and color ; bv D(B. ). Note that if

B,B’eD(B, j)and B is B’s (j /) neighbor, then D(B, j) = D(B’. ]).

Let D be a negative, tght set of bases. The swap graph G associated with D
has vertex set D and contains an edge (B ,,B-) if and only if bases B, and B . are reiated
by a single swap. If everv constrained minimum cost base is unique for its colors vector.
then there is a close relationship between negauve tight sets of minimum cost bases and
regular swap sequences. If D is a negative tight set of minimum cost bases and Gr is its

swap graph, then every simple path in Gp corresponds to a regular swap sequence.

3. Characterization resuits

We first give several properties of 2-color matroids idendfied in [GT. G]. We
then establish several important properues regarding constrained minimum cOSt Dases
and their neighbors. which hold for modified cost function ¢ (). First. there is a uniform
cost adjustment that makes each constrained minimum cost base the overall tuncon-
strained) minimum cost base. Second. every pair of adjacent constrained minimum cost
bases is related by a regular swap sequence of at most -1 swaps. Third. if the colors
vector of one minimum cost base dominates that of another with respect to a certain
color, then all elements or that color in the dominated base are contained in the dominat-
ing base. Finally. we characterize how a constrained minimum cost base changes when

the cost of one element changes.

Lemma 1 [GT. Thm. 3.1]. Consider a mawoid with elements of two coiors. red and

‘ \-‘\l \n \rkv ~v *,
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green. Consider any positve. real-valued cost function. Let B; be a constained
minimum cost base with / red elements. Executing a lowest cost red-green swap avail-
able in B; wansforms B; into a constrained minimum cost base B;_; with /=] red ele-

ments.

Lemma 2 [GT, Cor. 3.3]. Consider a matroid with elements of two colors, red and
green. Consider any positve, real-valued cost functdon ¢”«-). Let B;_,. B: and B._. be
constrained minimum cost bases with i—=1, ! and {+1 red elements, respeciaveiv. Then
¢’(B;)=c"(B;_;) £c"(Bj,) = ¢ (B;). =

i-i
The following resuit is implicitly stated in [G]. We supply an explicit proof.

using Lemma 2.

Lemma 3. Consider 2 matroid with elements of two colors. red and green. Consider anv
positive. real-valued cost functon ¢’ (-). Let B; be a constrained minimum cost base with
i red elements. There exists a uniform cost adjustment for red elements that makes the

cost of B; less than or equal to the cost of every other cost base.

Proof. Let [ be the smallest .ndex such that B, exists. and « the largest index
such that B, exists. It is observed in {GT] that B; exists for each i. [ €i € u. Assume
as boundary condidons that ¢ (B,_;; =2(B;)-c"B,) and (¢ (B,_;)

=2¢"(B,) - ¢"(B;). Take 8.,; = ¢’ (B,_;) — ¢'(B;). It tollows tfrom Lemma 2 by induc-

tion that ¢tB 2 ¢’ (B,_)=c¢" B, )< c¢"iBymtorl <i"<iandi <i"Su. C

The following lemma. which is a variadon of a lemma in [FS], establishes a fun-

damental property of bases in mawmoids.
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Lemma 4. Let B be a base and ¢-, e, /. F~ be distnct matroid elements. Suppose ;

- W e
P )
-

B —-e,+f,andB —¢-.-+ - are bases. butB —¢. —¢-+ 7.~ F.isnota base. Then :

) ¢
. bothB —e,~+ f-and B — e~ + f; are bases. N
e
t. ,
. . - - ¥
" Proof : The proof is similar to that of Lemma 3 of [FS]. T ‘
N N
’ We next present some lemmas that will be useful in the proof of the overall j
: A
I\ minimum cost and dominance theorems for matroids with elements of d > 2 colors.
) N
3 Lemma 35 establishes that if an overall minimum cost property holds for constrained X
" \
;: minimum cost bases. then the convexitv propertv holds. Lemma 6 shows that if an :
) t
[ .. . . .. :‘
W, overall minimum cost property holds for a certain subset of constrained minimum cost s
, PpeTTY
" . - - . . s
" bases centered on a negatve rght set. then a stronger version of an overall minimum cost .
) = s s N
L
t - . .. !
o property holds. Lemma 7 uses Lemma 6 to establish how the overall minimum cost pro- X
]
.! {]

perty for a negadve. ught set of consmrained minimum cost bases impacts the connected-

» ness of the comresponding swap graph. Finallv, Lemma 8 uses the connectedness of the ‘
N
y .
‘. swap graph to establish the exact relatonship between two neighboring consmained .
5 minimum cost bases for which the overall minimum cost property holds.
) .
) .
X
g :
o Lemma 3. Consider a matroid with elements of d > 2 colors. Let B, B~ and B be con- "
D 0N
Mg
+ strained minimum cost bases with respect to cost function ¢ ('), such that B, is B,’s
! (1, /o) neighbor and B4 is B~'s (j;, j~) neighbor, for some j,, j». Suppose each of B,. y
: _
"«- B, and B can be made an overall minimum cost base through some uniform cost adjust- :
"™ , , . g
' ment. Then c(B,)—c(B;) < c(By)—c(B-). Y
X 4
e . : - \ - g
! Proof : Suppose in contradiction that ¢ (B~) — ¢(B,) 2 ¢(B3) — c(B1). Since B .,
1
B- and B, are distinct. this inequality must be strict. by definition of the modified cost .
()
(Y
1,
(Y
\
(Y
~
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functon. Without loss ot generality, suppose that B, is an overall minimum cost base.
Let § be any cost adjustment vector that makes B, an overall minimum cost base. By
our initial assumption. § exists). Make all the adjustments of 5 except those for colors j,
and j,. Note that the new costs ¢"(B), ¢’ (B4), and ¢’ (B 5, have the same reladve values
as ¢(B}), c(B»), and c(B3). Now make the adjustments for colors /, and /., vielding
costs ¢’ (B ), ¢” (B,), and c¢”(B5). Since B~ becomes an overall minimum cost base. we
must have c¢(By) - c(Ry) <3, —8;. We also get ¢”(By ~ c"(By)= c¢'(By -
¢’(By) = (§; = §,), which by the preceding argument is less than ¢ (B.j - ¢"(B.) -
(8;, = §;,), which is at most &; —&;, — (§; - 9;) =0. Thus ¢"(B3) < ¢”(B), which

contradicts our assumption that a suitable d exists. [J

Note that Lemma 5 will hold for any cost functdon ¢’(-) derived from c(-) by a

uniform cost adjustment.

Lemma 6. Consider a matroid with elements of 4 > 2 colors. Let D be a negative, tight
set of constrained minimum cost bases for cost funcadon ¢ (-). Suppose for each base B in
hspan (D), there is a uniform cost adjustment that makes B an overall minimum cost
base. Then there is a uniform cost adjustment that simultaneously makes everv base in
D of overall minimum cost. and every base in Aspan (D) — D not of overall minimum

cost.

Proof : The proof is by induction on p = |D |. The basis case for p =1 follows
from our assumpton that every base in ispan(D), and therefore every base in D, can
individuallv be made of overall minimum cost through a uniform cost adjustment. For

the inductive step. assume p > 1. First perform a uniform cost adjustment to make some
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base B. in D . with hue ., or overail minimum cost. Let B be a second base in D . with
hue j,. Consider the negauve, tght set of bases D =D — {B-}, which is of size p-1.
Since aspan(D+) € hspan(D), by the induction hypothesis we can perform a uniform
cost adjustment such that every base in D, but no other base in Aspan (D ,), is of overall
minimum cost. We next adjust the cost of color Jp sothat the B and B are of the same
cost. This does not affect which bases in Aspan(D ) are of munimum cost among those
in Aspan (D .), since all bases in Aspan (D ;) have the same number of elements of color
Jp- Since any two bases in D are of the same cost. by Lemma 5 the bases in D are the
only bases in Aspan (D) of minimum cost within Aspan(D ). Now make all coiors in
hue (D ) ted. and the rest green. Note that one of the constrained minimum cost bases B
in this new problem is one of the bases of minimum cost in Aspan(D). Bv Lemma 3.
there is a uniform cost adjustment that makes B; of overall minimum cost. This last
adjustment will not alter the relative costs of any bases in Aspan (D ), so that the bases in

D will all be of the same cost, which will be an overall minimum. O

Lemma 7. Consider a matroid with ¢elements of d > 2 colors. Let D be a complete
negative tight set of constrained minimum cost bases with respect to ¢(:). Let D, be a
negatve tight subset of D such that everyv base in Aspan (D) can be made of overall
minimum cost through a uniform cost adjustment. and every base in D — D cannot be

made of overall minimum cost by a uniform cost adjustment. Then the swap graph Gp.
is connected.
Proof . The proof is bv induction on |D .| = p. The basis case. in which p = 1.

is seen to hold mvially. For the inductive hvpothesis. assume that the lemma hoids :or

anv matroid with a compiete negagve tgnt set. and a negatve tight sudset of size @y
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than p. For the inducuve step. consider a mawoid and sers D and D., with

|ID} =p > 1. Consider a connected component D, & D; of G, .

We first argue that |[D.| > 1. Suppose |D.] = 1. Let B.€D -, and without loss
of generality assume that hue (B ;) = green. By Lemma 6. we can adjust costs uniformiy
so that B is a base of overall minimum cost. Temporarily change every color other than
green to red, so that the resuiting matroid has only red and green elements. Note that B -
is the minimum cost base for its colors vector. By Lemma 1, B. is related by 2 swap 10
some constrained minimum cost base B, with one fewer green element than B.. If we
restore the original element colors, it is apparent that 8, is in D — {B.}, since these are
the only green-negative munimum cost neighbors of B,. Bv the definition of swap

graphs, D - should then include B, a contradiction. Thus [D.| > 1.

By Lemma 6, we can perform a uniform cost adjustment such that everv base in
D, is of overall minimum cost, and no other base in Aspan (D ) is of overall minimum

cost. We then change to green all colors in hue (D.). One of these bases. sav B .. will

represent the component D, as a constrained minimum cost base in a matroid with

d - |D-] =1 < d colors. Clearly, D5y=D - D, {B:} is a complete negative tight

RO

set of bases in this new matroid.and D, =D, = D. \y {B,} is a negative tight subset of

- Y
Cd
.4
D 5. Moreover. since hspan(D j)Chspan(D -), every base in hspan(D ;) can be made ot ';{:
\1::
overall minimum cost through some uniform cost adjustment, and since W

Dy-Dy=D -D;, nobase in D; — D, can be made of overall minimum cost. Note
that two bases in the same connected component of Gp, will be in the same connected
component of Gp.. By the inductive hypothesis. Gp, is connected. Since the bases :n

D .-D~_{B .} are in the same connected component of Gp . and the hases of D~ are .n

mﬁ:\\[tt‘c‘t-t-t:t-:\'-tpc-titm
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the same connected component of G , Gp is connected. Z

Lemma 8. Consider a matroid with elements of 4 > 2 colors. Let B, and B be any two
constrained minimum cost bases with respect to ¢ () such that B~ is B,’s j-negative
neighbor, for some ;. Let B.eD; C D(By, j). Suppose any base in aspan(D .y can
individually be made of overall minimum cost through a uniform cost adjustment. and
every base in D(B,, j) — D cannot be made of of overall minimum cost bv a uniform
cost adjusmment. Then B, and B, are connected by a regular swap sequence of length at

most d-1.

Proof : Since D 2 D (B, j), the swap graph Gp, has at most d veruces. By
Lemma 7, Gp. is connected. Thus there is a simpie path p of length at most d—1 between
B, and B, in Gp.. Let S be the corresponding swap sequence relating B, and B.. Since
p is acyclic and of length at most d—1. so is §. Since D, is tight and negative. S s
color-conserving. Finally. since all bases in D, are constrained minimum cost bases. S is

optimal. OJ

We now establish the overall minimum cost and dominance properties.

Theorem 1. (Overall Minimum Cost) Let M be a matroid with elements of d colors.
d > 1. Let B be a constrained minimum cost base with respect (o cost function ¢ ().

There exists a uniform cost adjustment that makes B of overall minimum cost.

Proof : The proof is bv double induction, with the outer induction on d. The
basis case, in which 4 = 2. follows from Lemma 3. For the inductive hvpothesis. assume
that the theorem is true for all matroids that have eiements ot at most & -1 colors. For the

inductive step. consider a4 marroid of J > 2 colors. We prove the inducave stiep Oy
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inducton on &, the number of elements of color 1. We will refer 1o color 1 as green.

For the basis, in which & = 0. we consider the originai matroid with all green ele-
ments deleted. The basis case for k£ then follows from the inductive hypothesis for 4.
For the inner inductive hvpothesis. assume that the theorem is true for all constrained
muumum cost bases with at most £ —1 green elements. For the inductive step. suppose

k > 0.

Suppose the overall minimum cost property did not hold for some base B- with «
green elements. We proceed to establish a contradicton. Consider the complete. nega-
tive, tight set D(B,1) and the negatve, tght set D, =D (B,1) = {B,}. Every base in
D, has k-1 green elements. By the inner inductive hvpothesis. every base in Aspan (D -)
can be made of overall minimum cost. Thus by Lemma 6. we can adjust costs uniformiv
such that every base in D is of identical, overall muinimum cost in .M . and no other base
in Aspan(D.) is of overall minimum cost. By temporarily changing every coior other
than green to red and applving Lemma 1. we conclude that for everv base B in D . there
is a base mate (B ) with k green elements such that B and mate (B) are related by a swap.
Bv Lemma 3. the cost of green elements can be uniformly adiusted. without disturbing
the overall minimum cost property of anv base in D.. such that every base in
D, ={mate(B)[BeD-} is also of overall minimum cost. We have thus succeeded in

uniformly adjusting costs such that every base in Dy _D- is of identical. overall

minimum cost.

Now consider any base B in D,. Suppose B, is B,'s (green.red) neighbor. and
mate (B~ is B~'s (blue .zreen i neighbor. (Since. by our assumption. B . cannot be made

of overall minimurn cost and mate B~ can. B. = mute B 11 and therefore nare 5 -
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cannot be a (red.green; neighbor of B-... Let 5. -e the 'biue .jreen  swap that
rransforms B~ to mare(B-,. Since B- and mare B -; are of idenucai cost bv our eariier

cost adjustment. c(s,) = 0.

We claim that swap s is available in any base in D .. In parucuiar. 5. is avail-
able in B ,’s green ,blue ) neighbor tand B-'s (red .blue ) neighbor) B ;. This provides the
desired contradicton: B - 5. has the same color combinaton as B. and :he same cost
as B, which is of overall minimum cost. Thus ¢(B.) £ c(B:). i.e.. B: can be made or

overall minimum cost through a uniform cost adjustment.

To prove the claim. we consider the regular (red blue ) swap sequence S that. by
Lemma 8. ransforms B~ into B.. Let |S;] = p. Note that every base in the sequence of
bases induced by B, and S, is in D ;, and therefore every swap in S is of zero cost. We
establish by induction on p that 5. remains availabie in a base B8 that is obtained :rom B -

as a result of performing a sequence of p zero-cost swaps {rom a regular swap sequence.

The basis case for p=0 is trivial. For the inducave step. let S. = §.s5-. where 5-
is a regular (red .purpie ) swap sequence of length p—1 consisting of zero-cost swaps. and
5.~ is a (purple .biue) zero-cost swap. By the inductive hypothesis. 5. is available in
By=B,~ 5. whichisin D.. Now suppose s- is not available in B; = B, -~ 5-. Then.
bv Lemma 4. a (blue .biue ) swap s,” and a (purple .green) swap s-" are available in B ..
Since BieD,, it is of overall minimum cost. Therefore c(s;) 20. Since
cts;N+ctshY=ciso=ctss =0.ct5.0 0. Since B, - 55" has the same color com-

: bination as B, it follows that c(B,) < ctB,;~s.) <c(By, which is of overall
minimum cost. By our assumption about B -, this is impossibie. Thus s. 1s available in

B:.
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) This completes the inducave step for & and the proot. — N
1) Y.
) ¢
. Theorem 2. i Dominance) Let M be a matroid with elements of 4 colors. 4 > 1. Let B- :
) ) !
' . L . . - . (
! and B~ be constrained minimum cost bases with respect to ¢ (-), such that [ /-dominates h
: - i
i’. Then every j-colored element in B7is in B~
)
4 Proof: If d = 2. then the theorem follows from Lemma 1 and the fact that each A
i ¢
ol * A
constrained minimum cost base with respect to ¢ (-} Is unique for its colors index. [f
N d > 2. we can construct a sequence of k =i, —i;'+]1 consmained minimum cost bases ;‘g‘
§ . .
: . . . .
5 B-, - - . Bz such that each base in the sequence is a j-negauve neighbor of its predeces- A
: "
. sor. Consider any two bases B | and B . that are consecutive in this sequence, with B~ the '
!
J-neganve neighbor of B-. By Theorem 1, every constrained minimum cost base can be 4
3
\ - . . r
§ made of overall minimum cost by a uniform cost adjustment. By Lemma 7. 8, and B- ;

T

‘ are connected bv a regular swap sequence S. Since S is regular. it is acvclic. which

AL

implies that every element of color j in B, is in B,. The theorem then follows by induc-

)
D anl g g

dgononk. _

LB’
. . - . . . Y.
p To illustrate the properties of Theorems 1 and 2. we give an example of a graphic \
I
matroid. The edges of the graph will be of three different colors. Figure 1 gives the N
i
graph in terms of the three subgraphs of each color. red (solid lines), blue (dotted lines}, 7
D : “
Y and green tdashed lines). Each edge is labelled with its cost. In Figure 2 we list the solu- ::"
’ S
§ . . . . . *
: tions to all possible subproblems. each labeled with its cost. For example. the solution "
1
with one red. one blue. and two green edges is the third solution in the fourth row, and is ¢
' A
, . . . ’
: labeied with the cost 16. We illustrate the overall minimum cost property bv making o
_ *,
Hase B- be :he unconstrained minimum-cost base over all bases, where : is for exanmipie '
N
W
! )
¥ k 'c
]
) et
L) .’
"

t
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1. 1. 2% This can be done if we xdd © t0 the Cost of everv biue eiement. iand < 0 the
cost of every red c¢lement. To ilusmate dominance. consider the solutions ‘or
i =10. 1. 3) and i”=1(1.2.1). (We assume that red is color 1, blue is color 2. and green
1s color 3.) Here j. = 3.1i.e.. there are fewer green elements in B~ than in B, and at least
as many elements of every other color. Thus the one green edge (of cost 4) in B~ is in

Bj.

We nex: examine the impact of changing the cost of a single matroid element on
a consmained minimum cost base. We begin as before with an earlier 2-color result. and

proceed to generalize the result to 4 > 2 colors using the characterizations just

Iy
2yt

developed.

A

LR

PN RN

2 2

Lemma 9 [FS, Thm. 2]. Let M be a matroid of red and green clements, with costs

o

t:

extended lexicographically to break tes. Let B;_;, B; and B:_, be the constrained

N

minimum cost bases with i—1.{ and i+1 red elements. respectiveiv. If one element in M

I:.-l- y

changes cost. then B;’. the new minimum cost base with i red elements. will result from

either B.

i

_;» B; or B,_;, with at most one element replaced in the appropriate base.

Specifically. if a red element r, increases in cost. then B:’ is the minimum cost base

among the following three bases:

PN PR EX R
% N % -

0. (or 3). B..

. -
P
PR

/7

1. B;—r.+r,. where r, is the smallest cost red element that can replace r, in B..

2. B,.-r,—3,. where g, is the smallest cost green element that can replace r, in

B

=1

If 1 red clement r. Jecreases in cost. then B~ is the minimum cost base among he

s,



following three bases:

0. {or 3) B

1. B;—r,=r,, where r, is the greatest cost red element that r, can replace in B..

\J

B;_,—-g,+r,;, where g, is the greatest cost green element that r, can replace in
B._,.

The cases for a green eiement changing in cost are analogous. C

We now give the generalization of the above result trom 2 colors to d colors.

Theorem 3. Let M be a matroid with elements of d colors, d > 1. Let B- be a con-
strained minimum cost base with respect to cost function c-:. If one eiement in M
changes cost, then the new minimum-cost base B;” will result from either B- or one of its
neighbors. with at most one element replaced in the appropriate base. Specificallv. if a
basic (nonbasic) element e (f) of color j, increases (decreases) in cost. then one ot the

following cases holds:
0. The new base B = B:.

l. B =B-—e +f . where e.f both have color j; and f t(e) is the least

(greatest) cost element of color j, that can replace e (be replaced by f)in B- .

2. There is a color j; such that By = B~ —¢ + f . where i"isa (j,. j-)-neighbor

of i and f (e) is the least (greatest) cost element of color ;- that can replace ¢ (be

replaced by /) in B~

Proof. We tirst consider the case where a basic element ¢ of color /- inCreases in Cosi.
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By Theorem | we can make B- the unconstrained minimum-cost base, and therefore also

et

the minimum-cost base over all bases with exacdy /, elements of color /,, by uniformiy

L ]

P

adjusting the costs of all elements of colors j # j,. Temporarilv change the color of all

o5

PN

.
P

j.-colored elements 10 red and all other elements 1o green, so that B+ corresponds to red-

green base B; . We can then apply Lemma 9 with e in the role of r,. If case 0 or 1 of

Lemma 9 helds. then the corresponding case of our theorem holds. If case 2 of Lemma © o
N
. . . - - ® |
holds. then there is a red-green base B; _; that differs from B; ’ by one element g,. Let ¢ D
. - l\
be the clement corresponding to g, in the onginal mawoid, and let j, = color (f 1. Since
g, 1s the least cost replacement element over all green elements, f is certainly the least '; ‘
N
cost replacement element of color /. s
Id..‘
Ky

g
v,

“'&:

The symmetric case of a nonbasic element f decreasing in cost is handled simi-

.,-
a2

larlyv. T

s

4 ‘-l"‘

Note that Theorems 1, 2 and 3 hold if cost function ¢; () replaces cost function

4

r

4,

¢ () 1n the statement of the theorem. The use of ¢; (-) has the advantage that arbitrarilv
many upcates can be performed. This is not true for ¢ (), since changing the cost of one

element can affect the value of a.. which will alter the cost of everv element.

4. Efficient solution of the static problem

We show how to find the constrained. lexicographically minimum cost base B

i
Aad

a 'I’,".'

¥ v

consisting of g, ¢lements of color j. for j =12, -, d. along with a uniform cost

ThYS

adjustment vector & that makes B> of overall, unconsmained minimum cost. For *
‘ »

o : ‘ o s . o
marroids in which the contraciion operation is reasonably etficient, the tme 10 do this Ny
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N
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will be O(d To(m, n) + (d-1)! d! T(n.2)), where Tyim.n) is the time to solve an
uncolored, or monochromatc, problem. and T (n,2) is the time to solve a 2-color prob-
lem, given the constrained minimum cost bases for each olor. Our algorithm first aug-
ments the set of elements with elements of large cost as necessary so that there is a base
of each color, and finds monochromatic minimum cost bases for each color. This step
accounts for the first term of the running time expression. The algorithm then calls a
recursive routine to find the desired base and associated vector 5. This step accounts tor

the second term in the running time =xpression.

Our presentation is organized as follows. We first review the 2-color algorithm of
[GT], and explain how 8 can be computed in this case. We then augment the 2-color
algorithm of [GT] with lexicographic cost comparisons to help handle calls from our -

color algorithm. We finally present our recursive routne to find a 4 -color base.

The 2-color algorithm in [GT] is designed to find a minimum cost base con-
strained to have exactly s red elements, for some s. The algorithm calls a recursive rou-
tine to identify what is called a restricred swap sequence, which transforms a conswmrained
minimum cost base of green elements to a constrained minimum cost base of red ele-
ments. The restricted swap sequence contains swaps in order of nondecreasing cost of
the red element in each swap. The algorithm then sorts the swaps in order of nondecreas-

ing cost of the swaps to vield an optimal swap sequence. The desired base is then tormed

by taking the first portion of the swap sequence and applying it to the green consTained

k)

minimum cost base. Since the cost of a minimum cost base with / red elements is a con-

- I.I"l-‘frr

vex function of /. the vector § can be readily derermined by comparing the cost of swaps
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adjacent 10 the desired base.

We augment the algorithm to enforce a lexicographic te-breaking scheme. In
addition to its color, let each element have a unique index. Assign a zag to each element
consisting of the pair (j, index), where j is the original color of the element. Ties in ele-
ment costs are broken lexicographically using element tags. Ties in the costs of swaps
are broken lexicographically as follows. Consider two swaps (e, f) and (e”, f ") of equal
cost. Swap (e. f) will be lexicographically less than (e”, f 7 if and only if either f ore’
has the lexicographically smallest tag from among e, f, e’, and f’. We can incorporate
this lexicographic tie-breaking scheme into the 2-color algorithm of [GT] at constant cost

for any comparison of two elements or two swaps.

We now describe our recursive routine to find a d-color base. The routine uses a
divide-and-conquer approach, recursing first on fewer colors, and then again on fewer
elements. The basis cases occur when eitherd =2 orn £ d(24--3). If d =2 we use the
augmented 2-color algorithm. We will discuss the other basis case later. If 4 > 2 and
n >d(2d-3), we do the following. Order the colors so that g; <g,.;. for
j=1,2,--,d-1. Find the constrained minimum cost base B where
i = qj-+L (qg+j-Did-1] for j =1,2,---,d-1, and iy =0. This is a problem in
d-1 colors, and is solved recursively by our routine. Note that [ is defined so that for
each color j # d. Br has at least | n/(d(d-1))] more elements of color ; than B;.

Along with determining B, the recursive call will supply the corresponding values LIRS

for j = 1. --.d-2 that make Br of minimum cost among bases with no elements ot

color d.
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Once B; and 3 have been determined. temporarilv add 8¢, ) 1o the cost of each ele-
ment of color / in By, for j =1, -+, d-2. Define f_ such that for any 4 -tuple i Ji
= |i;’=i;|, for j =1.---,d. For any choice of &, By will be the minimum cost base
among those with no elements of color d, with respect to the adjusted version of the cost

function ¢; (-), defined earlier.

Relabel the elements of base B with the color green, and label with the color red
the elements in the constrained minimum cost base of color d. Now use the 2-color aigo-
rithm of [GT], augmented to use tags lexicographically to break des in the costs of ele-
ments and swaps, to find the constrained minimum cost base B’ which has
 q4/(d-1)] -1 red elements and the rest green. Even though colors are reordered o
sausfy g; < g;.,, a permutation T can be chosen that undoes this reordering, and hence
makes the use of the tags enforce ¢; (). Thus any base generated bv the augmented 2-
color algorithm will be a constrained minimum cost base with respect to ¢; -}, and thus

also ¢ (*), in the oniginal d -color matroid.

If we switch the elements in B’ back to their original colors. we get a base B in
which k; =| g4/(d-1)] -landk, 2 g;+1 forj =1, 2. . d-1. Itis clear that the set
of color vectors consisting of ¢ and its immediate neighbors dominate & with respect to
color d. By our dominance theorem. every element of color d in B is in Bq-. and also
in every constrained minimum cost base that is an immediate neighbor of B;. Contrac:
the mawoid on these clements ot color 4. and decrease g, accordingly. Since

44 2

whichisatleast 1ifn > d(2d-3. Ford > 2and n > J'2d-3" note that the new vaiue

nid | . the number of clements is reduced by at least  nd (d=11, — ..
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of g, will be greater than 0. Solve the resulting smaller 4 -color probiem recursiveiy. anc

union its solution elements with the ¢lements of coior 4 already identfied o give the

recursive call. This completes the procedure.

i

complete set of solution elements. Take as the 8(;) values the values returned by this ]
We justify the contracdon and union steps in the previous paragraph as follows.

Let D be the set of clements conmracted. and M.D the contracted mawoid. Note that :

DCBi, and BE_D is a base in M:D. Let B be a base in M 'D with the same index vec- ’

tor as BE—D but not equal 10 BE_D' Now c(B) > cr.'B;—D ), since otherwise B (_D

would be a base of M with index vector g but of smaller cost than B, a contradiction to

the definition of BJ-.

We now discuss the other basis case. when n < d(2d-3). Here we use the
weighted matroid intersection algorithm [L1, L2] to find Bi directdly. We also need 0
determine the 8(;) values. This can be done bv considering each of the elements not in
BE‘ For each such element /. find the best swap in 347 for each color j = color(f ). We
infer the values of 8(;) from the thresholds of these swaps as follows. Each best swap
(e, f) vields a constraint 8(colore)) ~ dtcolor (f)) < c(f ) = cte). Choosing the d(/1's
then reduces to the following shortest path problem. Consider a graph with 4 vertces

labeled from 1 to d. For each constraint 8(j,) - 8(j,) < ¢, , there is an edge from /- to

e

Jyofcoste, , In the case of muitiple edges. only the shortest edge is retained. Then

o
2

5 choosing &(/) to be the shortest distance trom vertex 4 to vertex j, for all /. will give a
]

t. consistent set of deitas. The shorest distances can be determined in O (d™) time using

E the Beilman-Ford algorithm in [L1]. This completes our presentation of the J-color

()

4

N S T e N T S L TN N TN



-~ el -

TYTE XY

. mn e

algorithm.

We claim that the above algorithm solves any 4 -color problem. Since the
number of elements contracted is at least 1 for n > d(2d-3), the algorithm terminates.

We next analvze the running tme.

Theorem 4. Let M be a matroid of rank n with m elements of d > 2 colors. Let
To(m. n) be the time to solve the uncolored (monochromatic: problem. in M. Let
T(n,?2) the tume to solve the 2-color problem in M with elements recolored to just 2
colors. If independence testing in M is polynomial, and the tme to contract O (dn) ¢le-
ments in M is O(d T(n.2)), then the ume to solve a d-color preblem in M is

OdTom.n)+(d-1d' T(n,2)).

Proof. Let T (n, d) be the time to solve a d-color problem in a mawoid of rank n. given
that the monochromatic bases are provided. The intersection algorithm in [L1. L2] uses
O (n"m(m~+I(m))) time. where [ (m) is the time to test independeace. By assumption.
I(m)=m"* for some k. Since m = nd. this takes O(d’(d*+d°*)) time. Finding the
swaps to identify 8(/) values involves examining O(d”) elements f . at O (d") time per
T3k

element /. or O (d>) tme altogether. Thus we have T(n.d) < ¢ g0y . for

n <£d(d-3). Forn > d(2d-3), we have the recurrence
T(n,d) < cand +Tn. 2+ T(n,d=1)+ Cln.d)+ T([ n(l =1Add=))]. d)

where the ¢, s are constants. and C (n. d) is the time required to contract a matroid con-
sisting of the union of ./ monochromatic minimum cost bases of rank n. recovenng 2

monochromatic minimum cost base of each color in :he contacted mawmoid. Since
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T(n,2Y2n.ford =2 we have _

A

Tin.d) € cx@dd=-D!=d) T(n. D ~d! (d=-D! =dn | 5

o

. o

for an appropriately chosen constant ¢3. T :{:

I‘_ ]
We discuss the motivation for assuming the bound of 4 T (n, 2) on the ame 10 :

conmract O (dn) 2lements in 1 mamroid. By assigning color 4 + 1 to each element to be ',»"{\
contracted and solving 4 2-color problems involving color d+1 and each original color. .

. . . . .« 1 .'l

we can determine the elements in each monochromatc base in the contracted matroid. ot

o

The correctess of this reduction follows from the definidon of matroid contraction. It is » .':’
[y

also necessary to determine the new atmributes of each element (e.g.. endpoints of an

edge in the case of a graphic matroid) in the contracted matroid. For all the matroids dis-

2220

cussed in [GT], this can be done for each new base within time proportional to T (n.2).

Even though the running tme involves factorials in terms of 4. it is better than

the running time for the weighted marroid intersection algorithm of [L1. L2] whenever J

i1s 0 ((log n Y/(loglog n ).

X e

e
«

We suggest a modificaton to the algorithm that may vield a faster algorithm in i
s
. . . . . . s
practice. The 2-color algorithm in [GT] generates in succinct form the sequence ot con-
o
strained minimum cost bases between the base of all one color and all the other color. ':f"{
. . . - . . ’ .’u\,
Instead of specifving the number of elements of color d that we want in 8", we take the s
swap sequence generated. switch back to original colors and find the furthest base By s
-
; 3
represented in the swap sequence such that &k, 2 ¢,+1. for j = 1.+~ . d-1. Atleastas o
’ >
. , NS
many elements will be contracied as betore. »
N
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Finally. as an illustration, we apply the above algorithm to graphic matoids.
Here Ty(m.n) is O (m log B(m.n)) by the algorithm of [GGST], where B(-, -} is a certain
slowly growing function (FT]. T(n,2) is O(n log n) by the algorithm of [GT].
Independence is equivalent to acyclicity, and thus independence can be tested in O (m)
tme. Contract'mg O (dn) elements can be implemented in O(dn) time. We therefore
have the tdme to find a constrained minimum cost spanning tree being

O(dm log B(m.n) +d-1'd!n log n).

5. Basic on-line update strategy

In this section we give a basic description of our data structures for on-line updat-
ing of a constrained minimum cost base in a d-color matroid. This work is an extension
of the updatng approach in [FS] which handled 2-color problems. Let B;"” represent the
minimum cost base for colors vector i after & element cost updates have been per-

formed. We first discuss data structures that allow us to find quickly base Bf"‘” given

=

Bﬁ"” and all of its neighbors after 4 updates. This operation. which relies on Theorem 2.
is crucial to our on-line update technique. However. to compute B;"‘"‘ by this method.
th=1)

we need to have B:

and its neighboring bases atter 4 -1 updates, which in worst case
means we must have B;“”. its neighbors after 4 updates. and also the neighbors’ neigh-
bors after & updates. We therefore discuss how to maintain larger groups of neighboring
bases. and inroduce the notion of an arrangement of bases, generalizing the sequences

emploved in the 2-color algorithm. Since updating large groups of bases directly would

he quite inefficient. we then discuss maintaining arrangements In an IMPiicit form. whion
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ailows for efficient updating. Finaily, we illustrate the technique with the example of a

-
‘-

graphic maroid. Although our presentaton of the d-color update technique is

o

sufficiently detailed to be self-contained, familiarity with the 2-color update technique of

T o Y
» e

[FS] will greatly help in understanding the details.

R
g
K- We recall from [FS] the definition of an update structure for a base in a marroid
¢
p « ~ - .
’ with uncolored eiements. An update structure for a base B 1s a data structure which sup-
i ports the following operatons:
4
" . . . R
N maxcirc (f B): finds the maximum cost element in the circuit C(f'. B).
».
mincocirc (e ,B): finds the minimum cost element in the cocircuit C(e. B).
.
’ . -
& swapte f .B): converts the update structure for B into an update structure for
B - ¢ + f (assuming that fe B and ee C (f . B)).
- Let U tm.n) represent the maximum of the execution times of these three operations for a
-
- pardcular marroid. Thus a minimum cost base in a matoid with uncolored elements can
pe updated in time at most 2U (m.n) when the cost of a single matroid element is
o
Y modified. Let S(m .n) be the space required by the update strucrure.
€
Y
od
In the case of a mamroid with elements of d colors, the update structure is general-
ized o0 allow the color of the appropriate element to be specified. Thus for
[
B
’ 7 =1.2. - .d.the operation maxcirc (j f B) finds the maximum cost element of color
j in Ctf. B, and mincocirctj.e B) finds the minimum cost element of color ; in
[ 4
/ g -
- C e¢. B). The operation swap (e ;B is as before. The generalized update stucture tor
¢ D v =
4
» - . ~ . )
. d-colored mawmoids can be derived trom the corresponding structure tor uncolored
' matroids ‘n a smaightforward manner. For each field relating to costs in the uncoiored
v
D
lI
)
\
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update structure, maintain d fields in the new structure. with the ;-th feld accessed for
operations on color j. The values in the tields should be such that the cost of an element
not of color j should be weated as —e in handling a maxcirc(j,-,), and * in handling a

mincocirc (j ...

Using Theorem 3, a generalized update swucture can be used to find an updated

base Bi""” from Bql’” and its neighbors arter 4 updates. For instance, if a basic element

th+1)

¢ increased in cost. then Bq

would be the least cost base in the set consisting of Bq-"1 '

and B3

7' — e + mincocirc(j.e .Bf"' )), where either the color of ¢ is not /., and B-is a

neighbor of B; containing one fewer element of color /, or j is the color of ¢, and B; is
Bq"' If a cobasic element f decreased in cost. then BJ”'+n would be the least cost base in
the set consisting of Bql'” and B#*) — maxcirc (j f B#*)) + f . where either the color of f
is not j, and By is a neighbor ot Bq- containing one more element of color /. or j is the

colorot 7, and Bris Bi' The update is concluded by performing the appropriate swap .

As stated at the beginning of the section, maintaining just Bql’” and its neighbors
after /4 updates is not enough, since there is not sufficient information to compute
efficienty all neighbors of Bi"“’” after 4+1 updates. For / > 0. let R, be the set of
bases {B;—.Iz‘]' < i/+l—1‘j =1,2,---,d}. We shall represent groups of bases in sets
such as Ry, which we call arrangements. We say that arrangement Ry is centered on [
and has radius [. Our update p-ocedure is periodic with period =. By this we mean that
for the h-th element cost change the update procedure handles data in the same form
(e.2.. radius of arrangement) as the data during the th+z)-th element cost change. for anv

n > (). Here. z is a parameter that will be specified later. when we discuss the running

- L1 - - - - - - LJ - - - ~ - - - -~ - = - .
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31 )
dme. Our update procedure consists of three parts. For clarity, we will uncover the parts
one by one. ®
Consider 2 10 be an integer in the range from 0 to z. Suppose after the h-th ¢

update we keep an arrangement Aé’” = Rq."”_,l The superscript on R and on 44 indi-

cates how many element cost changes have been supplied. and will be omitted unless the

context demands it. As long as & <z, there is sufficient informaton to generate

R th+1)

g.:-n-

, - o matter what rype of element cost change occurs. Thus z-1 element cost
changes can be successfully handled, but when the z-th update occurs, B; is lost. This
follows. since A¢’™" is an arrangement consisting of one base B*™!. so there is
insufficient informaton remaining in order to compute Ba‘: ', We say that Ag decays dur-
ing this sequence of = updates. Of course. for large z, explicitly maintaining and updat-
ing the arrangement A requires considerable time per cost change. In due course. we

will show how to circumvent this problem by introducing an implicit representaton for

Ao,

When 4, has completely decaved. we need to replace it by an arrangement con-
taining many bases. But this means that certain work must be done in advance. We
therefore discuss the second part of our solution. We thus now consider unresmicted
values of 7. Whenever 4, is initialized. i.e., & mod z = 0, we initiate a computaton to
solve a number of d-color problems on the current matroid. in order to generate a new
arrangement of bases. given the minimum cost base after 4 updates containing only ele-

-

ments of voior o, for ;= 1.2, --.Jd. Note that any constrained base after # updates

contains only eiements rom the union of these monochromatic bases. Let P(n.d) bhe the
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" dme required to determine for a given d-color problem an arrangement of bases in an
appropriate form. Assume that copies of the d monochromatic bases are maintained

from one update to the next. Since just one of these monochromatic bases changes. a

-
- - -

cost of U (m .n) is charged to the update. Each stauc d-color problem will be solved dur-

e

ing the dme in which A j decays, by performing O (P (n .d)/z) work over each of = update

steps.

However. when all static d-color problems are completed, after 4 = kz updates.

) we cannot just reconsttute 4 with the appropriate bases. This is because each such base

- A

¢ will be out-of-date by : element cost changes, since the element costs used in solving the
:: static problems were extracted after (k—1)z updates. and : further element cost updates
2’
\)
3

have been applied to the matroid in the meantme. Thus we introduce the third part of

our update stategv. We use a second arrangement A 4, centered at 8- and iniuallv with
p > £ 1 3 b

! = 3z, which is extracted from the out-of-date solution to the static d-color problems.

Thus when A, is created after & = k- updates have occurred, we have A (h) = =R; h e 2

i‘

kz)

Since the bases in A }¥’ will initally be out-of-date with respect to A§<' by -

M element cost changes. we need to bring them up-to-date over the next = update steps of

R AN

Q2 Ay, using the - element cost changes that have not vet been applied to A . These previ-

L~

=

ous element cost changes can be saved in a queue as the static d-color problems are

.-.‘.
Pt ult S8 S BN B I}

A

kz)

being solved. Thus. when A’ is created. the queue will contain element cost changes

‘ numbered (k-1)z + 1. tk-1iz +2... .. kz. Consider the h-th update step. that

ranstorms A A7 10 A8, Let b = kz+r. where O<r<:. We first add the /-th element

[P P T e i Tie T4

™ cost change 0 the rear of the queue. We then delete the two element cost changes -

-y w p_ -

e - - v
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{namely, those numbered A—z+r—1 and A—z-r) from the front of the queue and apply
them both to A", obtaining A{*’. Thus A;*) will be the arrangement RA7Z7" 4,
will then become up-to-date with respect to A, and also be of the correct radius, pre-

cisely when A, has completely decaved. We then replace A by the current arrangement

Al

We can view our three-part update technique as three concurrent processes going
on at once. Times at which £ > 0 and # mod - = 0 are regarded as renewal points for
Ag. At arenewal point, A has completely decayed. 4 has caught up with A and can
replace it. the static d-color problems have completed from which a new A, can be con-

stiruted, and new static problems can be ininated.

We now discuss how to avoid the expense of repeatedly updating each base in the
arrangements Ay and A,. We do this by maintaining an implicit representaton of each
arrangement. An exremal base of color j of arrangement Ry, is a base B where
Ij=q; —(d-D(I-1and i; = q;- + [-] for j"# j. We denote this base as Bs,,- We
also use the base B—Z -1 and call this a near-extremal base of color j. Forg =0. 1 and
h)

0<r<:z.leta=gtz-r), and b =:--r+g(2:-r). For each arrangement A, with

h =kz+r,0<r <:zand g =0. 1. except for when g =0 and r = z~1, we maintain for

(h—a)
g.6-1y

(th-a)

and its j-negative neigh-
q.bg & S

each color j, B and its j-positive neighbors, and B
bors. For d = 3, this amounts to four bases near (and including) each of three extremal
bases. for a total of twelve bases. Ford > 3. there will be 2d bases near (and including)
each of d extremal bases. for a total of 2d~ bases. We call the set of these bases the

extreme bases. For each extreme base we maintain its update smucture. Using ihe
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algorithm from the previous section, each of the 24" bases can be Sourd in Tin.d) time.
and thus P(n.d)i1s O (d*T (n .d)). One can actually find the set of bases faster. as we dis-
cuss in the proof of Theorem 5. All solutons to a 3-color problem with n = 24 are
shown svmbolically in Figure 3. An arrangement centered at ¢ = (9, §, 7) with radius

[ = 4 is shown in bold, with the extreme bases shown as the boldest.

We also maintain the set of all elements that are in some but not all bases of the
arrangement. and call this set the svmmerric difference. We bound the size of this set as
follows. Consider some color j. By Theorem 2. ail g, — (d—1)(I-1) elements of color ;
in Bi.z_j will be in every base in the arrangement. Consider a base Br which has
i;=q; + (d=1)*(I-1) elements of color j and i,»=q, = (d-1)(I-1) elements of svery
color j”# j. Also bv Theorem 2. any element ot color j in some base in the arrange-
ment will be in base B-. Subwactung, we infer that there will be at most d(d -1/ -1 ele-

ments of color j in the svmmerric difference, or at most d“id —1)({ 1) elements overall.

There are certain matroids (for instance. graphic matroids) for which update
structures for bases in a contracted matroid can be maintained efficiently when elements
are inserted and deleted. In such cases. we can save both space and time if we construc:
a contracted marroid for each arrangement. For each color ;. we contract every element
of color j that is guaranteed to be common to all bases in the arrangement. Thus ‘or

j =1,...,d we contract all the j-colored elements in the exremal base of color j in the

d
arrangement. The total number of elements contracted will be ¥ iq, —d-Dt/~In

=t
=n - dd-l-1). Since the contracted clements are independent in the ongmai

matroid. the resulting contracted maroid will have rank J (¢ =1t/=1). We also note that

PIC I TSI e

.
-
.
-
-
-
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since the original maroid has a monochromauc base of each coior. so will the conmacied
marroid. In whar follows we will assume that. whenever appropriate. update soucrures

are maintained for these smaller monochromatic bases in the contracted matroid.

To summarize. each update step /2. where & = kz+r and 0 < r < -. involves the

following operations. The monochromatc minimum cost base is updated for the color of

the element whose cost has changed. The arrangement A4~ is ransformed w0 A"’ by

applving the s-th element cost change to it as rollows. Depending on the rvpe of element
cost change. the new version of one of the bases near the exmemal base of each color is
computed. For each color /. either the exmemal base BE""_’_, j and 1ts j-positve neigh-

(' and its j-negative neighbors are used. If the

bors. or the near-exwemal base B Famr—i,

cost of a basic element of color ;’ increases, then the new bases are generated using

Lk

42"

extremal bases and their j-posiave neighbors. In this case the new bases will be B

4

hi

2=r

and the (', j)-neighbor of BE( for all j = j°. We have previously discussed how

Bq-”'_’_ ,,- may be obtained from Bi‘hf_‘,)j- and its j'-positive neighbors. When ; = ;. let

B denote B;._, .. and B’ denote B's (j ‘. j)-neighbor. Since the complete. positive.
A -/

tight set consisting of B’ and its j'-positve neighbors is identcal to the complete. posi-

uve, tight set consisting of B and its j -positive neighbors. the sparse representation of the

arrangement has sufficient informaton to generate the updated version of base 8",

If the cost of a nonbasic element of color j* decreases. then the near-extremal
bases and their j-negatve neighbors are used. In this case the new bases wiil be

B;"_,_. . and the 1. -neighbor of B tor all ;= i". The new svmmens
7.2 “o o -

1

differencz :s derermuned. as weil as the contracted mamord - if mauntaned..
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Let W(n.d.z) be the time to perform the last two operations. A total of 2d<+!}
static d -color problems of rank n’ = @(d*:) involving elements in the symmetric differ-

ence set are extracted in time Q (n,d,z) (which is zero if the contracted matroid is main-

tained). Solving the 2d %41 statc d-color problems each in tme T (d°z.d) then generates

By and the extreme bases for the new arrangement A ). The update structures for the

M S i . af o

extreme bases in A§"~! are modified via swaps to vield update swuctures for these new

bases, resp. We then have the implicit representation for Aé" ! after the update step.

Finally, A *~V is wansformed to A {*). The h-th element cost change is added 0

the rear of the queue of element cost changes that we maintain for A ;. Two element cost

(h=-1)

changes from the front of the queue are then deleted and each is applied to A . in the

Yy’ ¥ .N 5N

same manner as the cost changes were applied to A, obtaining A {'” .

Theorem 5. Let M be a matroid of rank n with m elements of d colors. Consider con-

Y W K

strained minimum cost bases with respect to cost function ¢; (-). The on-line update

problem for such bases can be solved in O(dzU(m,n) +Q(n,d,:)~:—de(d::.J\,

+Wnd:)+d T(nd)z +d*T(d* d)/z)time and O (S (m .n)) space.

Proof. For each of the O(d~) extreme bases of each arrangement. an update operation

will be performed. Then 4 new extreme bases in each arrangement are selected from

W T N W W W, . e W

these O (d?) updated bases. An updated arrangement A g“” is generated by solving O (d 4
static d -color problems. This can be done by first finding the exweme bases for each
color on a contracted matroid of rank n’ = O (d*:). Thus solving the static d-color prob-

lems will take time O(d-T(d-z.d)). Thus each update step in 4, or 4, wiil take

LAY AT LAY '-'-,.-. - -.'<...','..‘ .
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Od*Uimn)~Qtnd.z)+dT(d?*: d)+~Windz)) dme.

In addinon, O(dz) static d-color problems of rank n must be soived over :
updates. For each color j. compute the extremal bases of color j. Then contract the
matroid 1o one of rank n’ = O (d?:). The remaining extreme bases can be found in the
contracted matroid. The time spent per update step on solving these statc d -color prob-

lemsis O((d T(n.d)+d*T(d*: d))z). =

To illustrate the above technique, we describe the consmucdon of update struc-
tures for graphic mawroids and analyze their efficiency. The update structure for a
minimum spanning tree uses dvnamic tree data swuctures [ST] and two-dimensionai
topology mees [F]. The former allows us to perform the operatuons maxcirc and swap in
time O (log n). The latter allows us to perform the operatons mincocirc and swap in
time O (~m ). Thus for this update structure L' (m.n) = O (vm 1. The space used dv the

structures is O (m ).

A conmracted matroid is maintained in the form of a contracted graph. A topoiogy
ree [F] is used to maintain a heap of the edges incident on each vertex of the contracted
graph. Each such vertex corresponds to a tree-souctured connected componeat of con-
tracted edges trom the current constrained minimum spanning tree. Since topology Tees
of size d*: support insert. deleze. split and merge operations in O (log(d "= 1) ume. updat-
ing the contracted graph can be implemented efficientlv. The time to soive a static J-
color problem is Tin.d)=0(d' (d~1D)! nlog n). We theretore have the Joilowing

theorem.

Theorem 6. Lot (5 be 4 graph with 7 veruce,. and with m edges of & coiors. Consicer
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constrained minimum spanning trees with respect to cost funcuon ¢ (). The on-iine

time and O (m) space.

Proof. We have U(m.n)=C(vm ), T(n.d)=0(d' {(d-1)! n log n) and Q is equal 0
zero. W(n,d,z) will be O(d 2log(dzz )). Each update step in the arrangements will take
O (d?*vm +d3d"h* : log(d=z)) time. We must also replenish the second arrangement
bv solving a number of static probiems of rank n, which will cost O (((d')"n log n
+ dd N log(dlz))/:) time per update. We choose = = O(n-='d>*). The space bound

is evident from the data structures employed. O

6. A recursive representation of arrangements

We can achieve better update times by using a more complex representation or
arrangements. Consider the example in the last section involving graphic matroids. We
can use a two-level approach for representing Ay and A ;. Consider update step /1. where

h =kz+r and 0 <7 <z, Recall that AJ®Y = R .. where Ry, is the set of bases

-~

{Bzli;"<i;+l-1.j =1.2.---,d}. Arrangement A, was represented implicitly by the
extreme bases. their associated data stuctures. the svmmerric difference. and the con-
tracted matroid (if maintained). On an update step in 4,5, d new bases were determined.
the symmetric difference and the contracted mawoid were updated using them. and

2d-+1 static problems of rank n° = O (d~z) were solved to 1ind the new exweme bases.

In our modified method. a base at each extreme is computed as betore. However.

instead of solvinz 4 number of siatic problems with respect (0 4,y on each update step in

N
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Ag, we do the following. We maintain smaller arrangements Agj. ) = A T

.

centered near the exweme bases of A, and two smaller arrangements Ay and 4 5, cen-
tered at B 7 We call these smaller arrangements subarrangements. Only when the subar-
rangements Agj, j =2, 3, - -, d=1, decay 1o single bases are a number of static prob-

lems solved with respect o Ag. Agg and Ag, are maintained to be able to access B

PRI W IR W B SV S

meanwhile. :
Let [y be the radius of subarrangement Ag,, j =0,1.---,d-1. For
Jj =2, .d+l, Ag; will be centered on c;_,-, where g = g, ~(d-1)lg—{y;) for x = E
and q; = q,+{g—lg; for k = j. Lety be a parameter to be specified subsequently. Ata
renewal point for Ag,, lo; =» o j=0, lo; =3y if j=1, and [y, =2y if
J =2.3.---,d+1. Each subarrangement is represented implicidy by its 2d - exweme ;
bases, their associated dawa stuctures. the symmetric difference, and the conwracted
’ maroid (if any). If the contracted martroid is maintained, the extreme bases are of rank
e
g n’ = ©(d*:); otherwise the bases are of rank n. After the Agj ./ =2.- -, d+1 have ;
F:: decayed to radius I, 2d? statc problems with n’ = d(d-1)(/ —lg;) will be initiated to
%’é determine the extreme bases for the new A, j = 2., d-l.
E\j At a renewal point for Ag, Ag Will be up-to-date with respect 10 g Ay, .
%} J=1.2.---.d=+1. will be out-of-date with respect t0 A, (and therefore A ) by v ele- j
?L ment cost changes. Times at which h mod - > 0 and & mod v =0 are regarded as
"&:
@-} renewal points for for Ag;, j = 0. I. -~ d+1. Atarenewal point for A 4, A g9 has com-
5 pietely decaved. A, has caught up with 4, and can replace it. arrangements 4., . é
ZE i =2.---,d-1. have caught up with A 5 but have decayed 0 single bases. the 1d~1 24~
| j
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stadc problems have completed. which vield the extreme bases for the new arrangements
j -/ =1.-7-.d+l. and a new set of static problems can be initiated using the single
bases from the previous Ag; . j =2, -, d+1. As before, two update steps in an out-
of-date arrangement will be performed for every update step in Ay. We will assume that
z mod'_v =0,sothat Ag;, j =1, 2, ---,d+1, will catch up with A precisely when A g
reaches its next renewal point. Arrangement A, is represented in a similar fashion.
Subarrangements 4, . j =1, -, d+1, will inidally be out-of-date with respect t0 A -

bv v element cost changes. Since A, is itself out-of-date with respect to A, four update

steps will be performed in eachof A,; ,j =1, -, d+1, for every update step in A .

We discuss how to perform an update in A,. The update for A, is similar. For
each of the exmeme bases of A, an update operation is performed. Then d new extreme
bases are selected from those O (d?) updated bases. The set of all elements that are in
some but not all of these d bases are computed, as well as the contracted matroid. In
addidon. for all extreme bases of A, that are not extreme bases of A, an update opera-
ton is performed. For each group of 4 bases in this set. a new exwreme base is computed.
The sets of all elements that are in some but not all such bases of A,,;, for each
Jj=0.1.--+,d=1. are computed. as well as the corresponding contracted matroids. A
total of 2d*+1 static d-color problems of rank n’ = @(d>y) are solved for each of the
d+1 subarrangements of A, From the exmeme bases of the 4, that correspond to
extreme bases ot 4, swaps that ranstorm the old extreme bases of A into the the new
extreme bases can be inferred. The new svmmetric differences and contracted matroids

for A, and its subarrangements can then be determined.
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In addition. the foilowing static problems must be solved over a sequence of

updates. To generate the extreme bases for A ,, O (d*) static d-color problems of rank #

must be solved over - updates. To generate the extreme bases for A,.2=0.1and

j=1.2.-+.d<+1. O(d> statc d-color problems of rank n’ = ©(d*:) must be solved

over ¥ updates.

Theorem 7. Let G be a graph with » vertces, and with m edges of 4 colors. Consider
constrained minimum spanning trees with respect to cost function ¢; (-). The on-iine
update problem for such spanning wees can be solved in O (d=vm + d%°(d)* n* log n)

ame and O (m ) space.

Proof. For each of the O(d?) exmeme bases of arrangements Ap and 4,, an update
operation will be performed. Then 4 new extreme bases in each arangement are
selected from these O (d?) updated bases. The time required is O (d*U (m.n)). For each
of the O (d°) exeme bases of subarrangements Ag; and A;, an update operation will be
performed. Then d new extreme bases in each subarrangement are selected from its
0 (d*) updated bases. The total time required is O(d3U (d*:.n)). An updated arrange-
ment A, 1s generated by soiving O (d*) static d-color problems. This can be done bv
finding the extreme bases for each color on a contracted matroid of rank 1’ = O(d=v ).
Thus solving the static d-color problems will take time O(ds‘T(d:j.'. d)). Thus each
update  step in  the  arrangements and  subarrangements  will  take

0Wd*Uim.n) + Qind.:)+d'Ud*zn)+d? Tid™v.d) + Win.d.z)) tme.

In addition. O (d*) static d -color problems must be solved over = updates. As in

the proot of Theorem 3. this will take O (d Tin g =d*T(d"2.d ) 2 ume.

»
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Also, O (d7) stanc d-color problems must be solved over v updates. The time
spent per update step on solving these statuc d-coior problems will be

0 (d°T(d*: . d))iv).

The dme spent handling each element cost change is O(d*m < (d'¥
((n log n)z +d*:logz)iv + d*v logy)). Choosing : =O(n->d¥ and

v = O(n*3'd*?) vields the theorem. =

For fixed 4. the time for the above approach is limited by the O (vm ) time t0
update a minimum spanning base in an uncolored graph. If the graph is planar however.
then the update ume in an uncolored graph has been shown to be O (log n) in [GS], and
hence not a limitng factor. We thus extend recursively the implicit representation of
arrangements. The representadons will be of two types. centered and uncentered. Let
a(d) be a value depending on d. which we shall specify subsequently. An arrangement.
centered or uncentered, of radius at most a(d), is the set of exmeme bases. their associ-
ated data structures, the symmetric difference. and the contracted martroid. Let f(-) be a
function to be defined subsequendy. For an arrangement A ; of radius /, initally equal to

: > atd), a centered representation consists of the above items. plus:

1. a centered representation of a subarrangement A4 ;4, which is centered on the
same position as A;, with radius /[, initiaily equal to f (), and which is up-to-date with
respectto A ;.

2. a centered representation of a subarrangement A, which is centered on the

same position as A4 ;, with radius /; inidally equal to 3f(z), and which is out-ot-date

with respect 10 A by [, element cost changes.
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3. uncentered representations of subarrangements A;; , j =2, -, d+!, which
are positioned at the extremes of A, with radius /;; initally equal to 2f (), and which

are out-of-date with respect to A4 by /3, element cost changes.

4.24% st?tic problems which have just been initated. Of these, 2d will be of rank

n’ = ©(d?%2), and the remainder of rank O (d*f (2)).

An uncentered representation consists of all items in a centered representation

except items 1 and 2.

Let fO%)=x and fPx)=f (f “V(x)), for i > 0. Then we choose the func-
tion f (-) such thatf(i*l)(n) mod f(i)(n) =0 fori > 0. This can be done easily by forc-
ing f (-) to be a power of 2. This choice of f (-) ensures that each (i+1)-st level arrange-
ment will have caught up with the appropriate i-th level arrangement at an i-th level

renewal point

Let T¢(z) and Ty(z) be the update times for centered and uncentered arrange-

ments of radius z, respectively. The update times are described by the recurrences:

Ty(z) = cd®d! (d-1)! (z log 2)/f (z) + 2dT (2f (2))

Te(z) = cd’d! (d=-1)! (z log z)if (z) + 2dTy(2f (1))

+ ZTc(Bf(Z)) - Tckf(.'f))
where ¢ is a constant. The first term in each recurrence represents the ume spent per
update step on solving the statc problems of rank ©(d“:) and updaung the dati swuc-

tures. The remaining terms represent the time :or recursively updating subarrangements

of radius ©(f(z1). and reflect the fact that two update steps are reguired for out-nf-date
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subarrangements for each update step in the primary arrangement.

Theorem 8. Let G be a planar graph with n vertices, and edges of d colors. Consider
constrained minimum spanning trees with respect to cost funcdon ¢; (). The on-line
update problem for such spanning trees can be solved in O(d:(d!):(logd )'1":

2¥TTogd g 7 (10¢ 11)>2) time and O (n) space.

Proof. We have U(m.,n)=0(ogn), P(n)=0(n logn) and Q =0. If we choose

fx)=Ox2V sl ogxy and observe that vieg fix) =

Viogx —~2log2d) log x < Vlogx — v(log(2d))/2, then both Ty(n) and T (n ) are
O (d%d ") (logd y™V? 2V s 8 " 150 11132), provided a(d) is small enough, so that

the basis of the recurrences sausfies these bounds.

For the space, the recursive representation has (d+2)' subsequences each using
structures of size O(f'“)(n)) at level i. With d+2 < 2d < 2" TTog™Tog 7 the sizes of
these structures sum to O (n) over all levels. Solving for n in the above inequality sug-
gests the choice of a(d) =+ 2d; since arrangements of radius at most a(d) are
represented explicitly, the space bound is as claimed. If the general mawmoid intersection
déorithm is used for updating arrangements of radius at most a(d) in the centered and
uncentered representations. then the basis in the recurrences is polynomial in d. Thus the

basis satisfies the claimed bounds on Ty (n) and T (n). O

7. Applications

The techniques of section 4 can be used to solve the minimum spanning tree
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problem when 4 veruces have degree constmaints. Assume that the vertices with degree

constraints are indexed v,, v., - - -, Vv,;. Label each edge incident on two constrained
vertices with color 0. Label each edge incident on exactly one constrained vertex v; with

color i. Label each edge incident on two unconstrained vertices with color d-+1.

Since there are 4 constrained vertces, there are at most d(d—1) / 2 edges of color
0. In um we consider every subset of edges of color O that is a forest. such that the
degree of each v; in the forest does not exceed its degree requirement r;. We generate a
candidate solution for each such forest. The idea is to include all the forest edges in the
soludon and then choose remaining edges so as to satisfv the degree constraints in a
minimum cost fashion. The minimum cost solutdon over all such forests is then the

minimum spanning tree satisfying the degree constraints.

For each forest, we generate a reduced graph as follows. Make a copy of the
graph, and initalize r; to be r; for i=1,2,---.d. Delete from the graph all edges of
color 0 which are not in the forest. For each edge (v;, v;) in the forest. decrease by 1 the
degree requirements r; and rj’-. Then contract the remaining edges of color O in the graph.
To get the candidate solution corresponding to this forest soive a (d+1)-color static prob-
lem on the reduced graph. where r; edges of color i are desired, for i=1. 2. . d. and

the remaining edges are of color d+1.

Theorem 9. The time to solve a minimum spanning tree problem with degree con-
straints on d of the vertices is O (Tym. n) +d' (d+1)! (ed - 2)*7'T(n.2)).
Proof. The time to solve a minimum spanning tree problem on edges of color J-1 s

Tym. n .. The number of forests is less than
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p For each forest. a (d+1)-color problem is then solved. O
1
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Figure 1. Subgraphs of a weighted graph with edges of three colors:
a. subgraph of red edges (solid lines)

4
s b. subgraph of blue edges (dotted lines) o
! c. subgraph of green edges (dashed lines) "
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Figure 2. Solutions to all minimum spanning ree problems from Figure !
The ee with i red edges. j green edges. and 4—i — blue edges
is the (j+1)-st ree 1n the «/~j+1)-st row from the top.
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Figure 3. All solutons to a 3-color problem of 25 vertces.
Arrangement centered at g = (9, 8, 7) with radius / = 4 is in bold.
and the extreme bases are the boldest of the bases.
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