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: The Geomechanics Division of the Structures Laboratory (SL) at the US el
Army Engineer Waterways Experiment Station (WES) designed and constructed a '.;:;a
| U
fast triaxial shear device (FTRXD) and is currently evaluating it under the .:::'
sponsorship of the Office, Chief of Engineers, US Army, as a part of Project 'E:::Eg
U !
4A161102AT22, Task BO, Work Unit 005, "Constitutive Properties for Natural 0
Earth and Manmade Materials." Ry
- --K
The investigation was conducted under the general supervision of Mr. :"" :?’
Pt ¢
Bryant Mather, Chief, SL. Mr. John Q. Ehrgott, Geomechanics Division (GD), SL, »-.‘:;'f_:"
Fa )
was responsible for development and evaluation of the FTRXD under the general 4 .
direction of Dr. J. G. Jackson, Jr., Chief, GD, SL. Performance tests were i;:;;:«;;:q
K]
conducted by Mr. Toney K. Cummins, GD, SL. Numerical evaluation of the FTRXD 2:‘::::2!}:
f
was undertaken by Dr. William F. Carroll, Professor of Engineering at the '::::?,:::}
University of Central Florida (UCF) in Orlando, FL, under an Intergovernmental Ustetd
Personnel Act agreement with WES. This report, prepared by Dr. Carroll, docu- E:-:; _
ments the first phase of the evaluation of the FTRXD. !
Dr. David R. Jenkins is Chairman, Department of Civil Engineering and ;,:"\
Environmental Sciences at UCF, and Dr. Robert D. Kersten is Dean of the B
College of Engineering. v,
. ¢
COL Dwayne G. Lee, CE, 1s Commander and Director of WES, and Dr. Robert W '.,.
W)
W. Whalin 1s Technical Director. :ﬁ$
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non=-SI units of measurement used in this report can be converted to SI
(metric) units as follows:

Multiply By To Obtain

feet 0.3048 metres
inches 25.4 millimetres
inches per second 0.0254 metres per second
mils 0.0254 millimetres
pounds (force) b, 448222 newtons
pounds (force) per 0.006894757 megapascals

square inch
pounds (mass) 0.4535924 kilograms
pounds (mass) per cubic 16.01846 kilograms per cubic

foot metre
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FAST TRIAX]IAL SHEAR DEVICE EVALUATION

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

In 1981 the US Army Engineer Waterways Experiment Station
(WES) undertook the design and construction of a test apparatus
to provide a capability for conducting laboratory testing of
soils in times to failure of less than one millisecond. A test
apparatus patterned after the traditional triaxial shear device
was developed. The apparatus applies axial loads to a cylindrical
soil specimen 0.75 inches in diameter and 1.5-inches high. Load
is measured at the top and bottom of the specimen as a function
of time and the displacement of the top of the specimen is also
measured. The constant confining pressure on the specimen during
testing is controlled and recorded. The apparatus is the Fast
Triaxial Shear Device (FTRXD). The device and some soil specimens
tested to failure in it are shown on Figures 1.1 and 1.2.

The rapid loading of soils in a triaxial testing device was
done by WES earlier in the 1960°’s in conjuction with research on
the dynamic bearing capacity of scils. A dynamic triaxial test
apparatus was designed and constructed. The results from testing
with the apparatus aon highly plastic clay specimens,; 1.4 inches
in diameter by 3.0-inches long, were used to interpret dynamic
bearing tests of small plates resting on the clay. The apparatus,
the results obtained from it, and their uses are described in
Reference 1.

| R . p— e

1.2 PURPOSE AND SCOPE ) o g

The purpose of this report is to define the nature of the
problem posed in interpreting the results of testing soils with
the Fast Triaxial Device (FTRXD), to present the steps taken to
date in the evaluation of the device, and to ocutline those
planned for the future. To the extent necessary to understand its
operation and therefore the difficulties in understanding the
meaning of test results, pertinent characteristics of the FTRXD
are presented in Chapter 2. Moreover, a description of selected
properties of the soil used in the FTRXD that bear on its evalua-
tion are presented in Chapter 3. A complete description of the
FTRXD is contained in Reference 2. The extensive earlier testing
by WES of the scil used is reported in Reference 3.

1.3 EVALUATION OF THE FAST TRIAXIAL SHEAR DEVICE

The steps taken so far in the evaluation of the FTRXD
include a modest amount of testing of remolded soils taken from
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the CARES-Dry test site located at Luke Bombing and Gunnery Range
in Arizona and examination of the results of this testing. These
results are described in Chapter 4.

An analytical study of a model of the soil specimen as an
initial value-boundary value problem was undertaken to assess the
extent of inertial effects on stress at the top and bottom of the
model specimen. A purpose of this study was also to evaluate
"gross stress",; the stress that is realized when the displacement
of the top of the specimen divided by the specimen length is
entered as strain into the soil’s constitutive relationship. The
premise of this analysis is that the behavior of the specimen
during rapid testing could be described satisfactorily as
one-dimensional wave phenomena in a continuous medium exhibiting
realistic, nonlinear, uniaxial stress-strain characteristics. The
initial values and boundary conditions employed were analytical
representations of the measured conditions during testing. This
analysis is presented in Chapter 5.

Where inertial effects within the soil specimen are not
overriding, the FTRXD with a soil specimen in it has been modeled
as a two degree of freedom lumped mass system. A nonlinear spring
element and damper represent the soil specimen; linear springs,
dampers, and lumped masses represent the remainder of the device.
This modeling work is incomplete and will not be presented in
this report; it will be the subject of a later report.

Future plans call for modifications to the FTRXD for im-
proved control of the boundary conditions for the system and
improved measurement of them. Further testing on the CARES-Dry
remolded soil and other different soil types will be necessary to
refine and validate conclusions drawn from the analytical studies
of the FTRXD. Moreover, to more clearly define the very rapid end
of the testing spectrum, further analysis of the soil specimen as
an initial value-boundary value problem employing two-dimensional
axisymmetric wave phenomena with non-linear constitutive behavior
will be necessary.
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CHAPTER 2
THE FAST TRIAXIAL SHEAR DEVICE (FTRXD)
2.1 THE APPARATUS

The FTRXD is a triaxial soil testing device. It consists of
a loading assembly, a base, a specimen chamber, a pressurization
system, upper and lower load cells, a Kaman gage, and a data
recording system. Schematics of it are on Figures 2.1 and 2.2,
photographs are on Figures 1.1 and 2.3, and Reference 2 provides
more complete details.

2.2 THE LOADING ASSEMBLY

The loading a~sembly is a piston-cylinder arrangement. The
piston consists oy a 4.0-inch-diameter steel piston to which is
rigidly attached a 0.75-inch-diameter by 7.125-inch-long steel
ram. The piston-ram has a mass of 1100 grams; the mass of the ram
alone is about 403 grams. Initially the piston is positioned with
its ram in contact with the upper load cell which in turn is in
contact with the top of the soil specimen. The chamber in the
cylinder above the piston is pressurized to a pre-determined
level using compressed nitrogen. Faor the slower tests -~ those in
which failure occurs in 20 milliseconds or more - the chamber in
the cylinder below the piston is filled with oil and sealed until
the test is initiated. For faster tests, this chamber contains
air and is open to the atmosphere; and the piston and ram are
held in position by a tubular shear pin.

The loading assembly is activated for the slower tests by
the rapid uvpening of a solenoid valve in the lower chamber of the
cylinder which allows the oil to escape. The ability to control
the magnitude of the pressure in the upper chamber and the rapid
opening of the valve releasing the oil from the lower chamber,
provides a measure of control of the rate and magnitude of the
load pulse impressed on the soil specimen. The presence of the
0il in the lower chamber flowing from the chamber as the specimen
is loaded causes a characteristic shape in the load pulse and
damps undesirable vibrations in the system during testing.

The oil in the lower chamber does not permit the system 1n
its present configuration to bring a specimen to failure in less
than 20 milliseconds. For faster tests, therefore, there is no
0il in the lower chamber. The loading assembly is activated by
applying sufficient pressure in the upper chamber to shear the
tubular shear pin holding the piston and ram in place. The result
is a rapid application of load to the soil specimen. A variety of
tubular shear pins are available in both aluminum and plastic and
with several different wall thicknesses. The rate of loading is
increased by applying higher pressure in the upper chamber abaove
the piston and this is made possible by employing stronger
tubular shear pins.
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2.3 THE BASE
The base is a steel disk which serves to support the cham-
ber, the lower load cell, and eight studs which in turn support

the loading assembly.

2.4 THE SPECIMEN CHAMBER

The specimen chamber surrounds the soil specimen and con-
tains fluid subjected to the pressure which equals the confining
pressure for the test. There i1s a steel or plexiglas chamber for
tests with high or low confining pressures. When testing with the
plexiglas chamber, a wire mesh cylinder is placed around the
plexiglas to serve as a safety shield. The chamber is sealed to
the base and the loading assembly by O-rings and held in place by
the eight studs which also support the weight of the loading
assembly.

2.5 THE PRESSURIZATION SYSTEM

Caompressed nitrogen is the source of pressure used to drive
the piston and ram downward which loads the soil specimen during
testing. It is also used to apply the constant confining pressure
to the soil specimen. Two different arrangements are employed:
one for the slower tests (times to failure greater than 20
milliseconds) when oil is in the lower chamber of the cylinder
below the piston, and one for the faster tests with no oil in

this lower chamber. A schematic of the pressurization system
shown in Figure 2.2.

is

In both arrangements, the confining pressure is applied to
the specimen chamber as pressurized nitraogen over 0il and the
chamber is sealed until the test is completed. After the test,
this pressure and the system applying it are used to drain the
specimen chamber of the oil.

In
applied
chamber

the slow test arrangement, pressurized nitrogen is

to the oil in the accumulator forcing it into the lower
of the loading assembly cylinder. This provides an
ability to carefully control the positioning of the piston and
ram and to set it for testing by sealing the lower chamber of the
cylinder. Once this lower chamber is sealed, the pressure on the
oil 1n the accumulator is relieved. Pressure is then intrcoduced
into the upper chamber of the loading assembly above the piston.
The test is initiated by the rapid opening of the solenoid valve
to the lower chamber so the oil can return to the accumulator.

In the fast test arrangement, the lower chamber of the
cylinder is left open to the atmosphere. The piston and ram are
ad justed manually and set for testing by emplacing the tubular
shear pin. Pressure is introduced into the upper chamber above
the L.ston and the test is initiated when the tubular pin shears.
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2.6 THE LOAD CELLS

The load cells used in the FTRXD were designed and built at
WES. There are four matched pairs of load cells. Each pair
consists of two essentially identical load cells - one which is
placed above the soil specimen during testing (the upper load
cell: ULC) and the other below the soil specimen (the lower load
cell: LLC). The differences between the ULC and LLC are only in
the manner in which they attach to the loading assembly and base.
There are four pairs to permit testing with load ranges of 500,
1000, 2500, and 10000 pounds. A photograph of a specimen
installed between an upper and a lower load cell is shown on
Figure 2.3.

The load cells are stainless-steel cylinders loaded along
their axes. The central part of the load cells are hollow cylin-
ders about O.6-inches long with 0.6 inches for their outer
diameters (the S00-pound set has an outer diameter of 0.575
inches). The inner diameters of each set differ to permit in-
creasing wall tiicknesses for the increasing load ranges. The 500~
and 1000-pound sets have inner diameters of 9/16 inches, the 2500-
pound set’s is 1/2 inches, and the 10,000-pound set’s is 1/4
inches. Two pairs of strain gages are mounted on the outside
surface of each hollow cylindrical part. Each strain gage of the
pair is located at the midpecint of the cylindrical axis and
diametrically opposite of its mate. One pair is oriented along
the axis of the cylinder and the other at right angles to it. The
four strain gages are equally spaced around the circumference of
the load cell.
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A solid cylindrical piece of stainless steel is an integral
part of each lcad cell and is located between the hollow cylin-
drical part and the soil specimen. It is 0.73 inches in diameter
and about 0.5-inches long - a 35 to 40 gram mass. This solid
piece serves as a pedestal directly in contact with the soil
specimen. At the other end of the hollow part are stainless-steel
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pieces which permit the load cells to be engaged by the loading ;t

assembly (ULC) or attached to the base (LLC). i(

N

lN‘

The S00 and 1000-pound load cells have natural periods of KA
about 0.11 and 0.07 milliseconds respectively.
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2.7 THE KAMAN GAGE o
2

The displacement of the moving piston and ram with respect }ﬂ

to the fixed part of the loading assembly is measured with the

Kaman gage and its cantilever target. The Kaman gage is the o
KD2300 series displacement measuring system manufactured by Kaman 5:
Measuring Systems. It is a variable impedance transducer and is Ny
attached to the stationary underside of the loading assembly. Its &:
target i1s an aluminum bar 0.385-inches thick by 1.0-inches wide ﬁﬁ
rigidly attached to the moving ram as a cantilever. The - AL

cantilever extends 1.625 inches from the edge of the ram to a
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region directly under the Kaman gage. The target for the gage,
therefore, is an aluminum surface about 1.625 inches by 1.0
inches in plan and 0.385-inches thick. Eddy currents induced in
the moving target result in variations in the impedance in the
Kaman gage. Since the strength of the impedance variations
depends on the distance between Kaman gage and the target, the
displacement of the target, and therefore of the ram, is sensed
and measured. The linear range of the Kaman gage is 300 mils and
its static frequency response is S50KHz at -3dB. The manufacturer
also suggests its transient response is 0.01 milliseconds with no
overshoot.

The Kaman gage is designed to perform under static pressures
to 20,000 psi. Confining pressures in the FTRXD are not intended
to exceed 1000 psi. The gage’s ability to perform under high
pressures and to sense accurately displacements up to 0.1 inches
occurring well within the sub-millisecond range was reported in
Reference 4. Preliminary analysis of displacement data recorded
during testing with the FTRXD indicates that the Kaman gage can
measure displacement variations at least this fast, meaning its
response time is considerably less than 0.1 milliseconds. The
natural period in the fundamental mode of the cantilever target,
however, is from 0.20 to 0.30 milliseconds, depending on how the
rigidity of its attachment to the ram is viewed.

2.8 THE DATA RECORDING SYSTEM

An ADS09J amplifier was used to generate an excitation
circuit through the Kaman gage and the strain gages of the load
cells. The signals produced by these gages during testing were
thus amplified and could be recorded. The AD309J is a high-speed
amplifier exhibiting response times of less than 0.001
milliseconds.

A Rascal Stole 7DS tape recorder made a continuous record
of load and displacement data during testing. Magnetic tape
recording was employed to obtain high resolution load and
displacement data during the very rapid testing. At its top
recording speed of 60 inches/second, the recorder has a time base
error of less than 0.0015 milliseconds and an interchannel time
displacement error of less than 0.0007 milliseconds.
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Fig 2.1, FTRXD Schematic
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Fig 2.2, FTRXD Pressurization Schematic
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CHAPTER 3 N
oy
SELECTED PROPERTIES OF THE CARES-DRY SOIL -'::f
Nyt
3.1 DESCRIPTION ;f_
o~
The so0i! used was from the CARES-Dry test site located at N
Luke Bombing and Gunnery Range in Arizona. Soil was obtained from s&
near the surface of the ground and passed through a number 4 ,}
sieve (4.76-mm opening); only the portion finer than the number 4 =
sieve was used. It classifies as SC (clayey sand) in the Unified f
Soil Classification System with 33 percent fines, a Liquid Limit ?:'
of 36 percent, and a Plasticity Index of 1% percent. An average ﬁfﬂ
gradation curve is shown on Figure 3.1. Standard Proctor 331
compaction testing revealed a maximum dry density of 122 pounds :"
per cubic foot at an optimum water content of 11.6 percent. S
Modified Proctor testing showed a maximum dry density of 132 g.
pounds per cubic foot at an optimum water content of 7.9 percent. ;e;
This testing and the standard triaxial shear testing described pr
below are reported comprehensively in Reference 3. -’“
3.2 STANDARD TRIAXIAL SHEAR (STRX) TESTING h"
Remolded specimens tested 1in STRX were prepared at water &;
contents of about 5 percent and compacted to wet densities of },
118-120 pounds per cubic foot. This was done for eleven specimens *})
by rodding the soil in three lifts into a mold 2.0 inches in Eu
diameter by 3.0-inches highj there were also three specimens &
prepared in this mold using five lifts. In addition, four é&_
specimens were prepared in three lifts in a 3.0-inch-diameter by 4
6.0-inch-high mold and one in a 3.0-inch-diameter by 5.0-inch- Q}:
high mold. N
‘\', q
STRX testing was performed on specimens which thad been first Kl
sub jected to isotropic compression under an equal all-around ;L
confining pressure. With the confining pressure held constant on ﬂ?
the specimen, axial load was applied to the specimen and the ?c'
consequent changes in the specimen’s height and diameter were };;
measured. Pore pressures were not measured since the soil was gt
only 26~29 percent saturated. Stresses computed are total bali
stresses. The duration of these tests was five to ten minutes. ::\
-~
The reported STRX test results most comparable to the :&
initial FTRXD test results are those that relate principal stress 0
difference to axial strain in remolded specimens of the soil at ;ﬁn
comparable confining pressures. There are five such STRX test -
results: one at a confining pressure of 0.4 MPa (50 psi), three “y
at 0.7 MPa (100 psi), and one at !.4 MPa (200 psi). Linearized :,’
plots of principal stress difference versus axial strain for ‘i\
these five specimens are shown on Figqure 3.2. Pertinent test t;:
parameters for the five soil specimens are listed in Table 3.1. h:
~
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3.3 FAST TRIAXIAL SHEAR DEVICE (FTRXD) SLOW TESTING

The soil used initially in the FTRXD was remolded CARES-Dry
soil prepared as 0.75-inch-diameter by 1.5-inch-high specimens,
rodded into a suitably sized mold in three to five lifts.
Specimen wet densities were 112-119 pounds per cubic foot and
their water contents were 0.0-4.3 percent. Because these
specimens were smaller than the specimens used in the STRX
testing, only soil passing the number 8 sieve (2.38-mm opening)
was used.

Slow testing in the FTRXD was done in much the same manner
as for STRX testing. A constant confining pressure was applied,
the specimen was loaded axially, and measurement was made of
axial load and change in the height of the specimen (see Chap 2.
The confining pressures employed were 350, 100, and 200 pounds per
square i1nch and pore pressures were not measured. In the results
reported here for six specimens, test durations were 120 seconds
and 1.2 seconds. Plots of principal stress difference versus
axial strain for these six tests are shown on Figures 3.3 and
3.4. Pertinent test parameters for the six specimens are listed
in Table 3.2.

The stress—-strain curve for the specimen tested at a
confining pressure of 200 pounds per square inch with a test
duration of 1.2 seconds showed values of principal stress
difference of about one-half of what was expected. The shape of
the curve, however, was as expected. This curve 1s plotted with
its principal stress difference values doubled. All of the plots
on Figure 3.3 are pairs of principal stress difference curves
reflecting the readings from both the upper and lower load cells
in the FTRXD. The upper load cell readings consistently plot
above the lower lcad cell readings in each pair. Though the
difference is small (less than 1.0 percent), it appears to be
larger in the tests completed in 1.2 seconds than those completed
in 120 seconds.

oy

Y v

'y v "

(4

e

3.4 THE LINEAR-HYPERBOLIC STRESS-STRAIN CURVE

Examination of the "static" plots of principal stress
difference (PSD) versus axial strain for the CARES-Dry soil
(Figures 3.2 to 3.4) reveals a characteristic shape of the
curves. They are relatively linear for stress levels up to 20-60%
of the maximum principal stress difference (peak PSD). Thereafter
they exhibit a smooth, non-linear trace with decreasing slope.
Some of the curves achieve a peak PSD where their slopes are
zero, prior to reaching 15% axial strain. Some do not, however,
especially those at the higher confining pressures. Increasing
confining pressure appears to increase the values of PSD at
corresponding axial strains and to increase the slope of the
curves. It also seems to cause the peak PSD to occur at larger
axial strains, or not at all prior to reaching 15% axial strain.
These characteristics are not atypical for many soils which
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exhibit changes in stress—-strain behavior due to changes in ]
confining pressure. i
o
The stress-strain curves for the soil were not examined at 0
axial strains exceeding 15%. Axial strain 1s calculated as the hi
difference in axial displacement between the top and bottom of "
the soil specimen divided by the specimen length. The calculation
assumes a uniform strain throughout the specimen. At small sy
strains specimen deformation is quite uniform, especially in the a:\
central portion of the specimen. The calculated unifarm strain in H
this circumstance gives an acceptable indication of the actual W
strain distribution. As strains increase, however, specimen
deformation becomes increasingly nonuniform and the calculated NN
uniform strain becomes less representative of the actual strain b{ﬂ
1 distribution. At some point, there is little relationship between }?:
the calculated uniform strain and the actual strain distribution. {f.
This point 1s considered to occur at least by the time 13% axial Py
strain 1s reached.
N,
To accomplish dynamic analyses of the soil gpecimen as it is o

tested 1in the FTRXD, 1t is n-cessary to employ a stress-strain
relationship. Although the magnitudes of PSD, slopes of the

curves, and other properties must necessarily be the result of e

testing, the manner of variation of stress with strain is - o
required to employ a form of the wave equation to gain insights tix
into the inertial effects in the specimen during testing. To this g{:
end, a mathematical model of the specimen’s stress-strain curve, -gf
a constitutive relationship, must be specified. win

i

Y

Clearly any stress-strain relationship used should conform

to as many of the known facts about the soil as is possible. 3;:
However, the complexity of the relationship must be minimized or };~
the ensuing wave equation will at best be extremely difficult to RN

Ly

deal with, and may be unsolvable. At worst, it may not be
possible to even develop a wave equation. If the significant
bebhavior of the specimen is assumed to occur only in the axial
direction, then a one-~dimensional (axial) stress-strain

TR
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relationship might suffice and a one-dimensional wave equation N

] can be developed and solved. Since each test is performed at a B&\
Y constant confining pressure, the effects of the confining Q?:
L

pressure might be accounted for iIn part by assuming a unique
variation of principal stress difference (PSD) with axi1al strain

o

3 for each test - different for each test but related to the test’s :ﬁj
t caoanstant confining pressure. Other effects of confining pressure -3{
s will be reflected in the measured values of PSD and slopes of ;5;-
the PSD-axial strain curve for the tests. One-dimensional wave :3:
propagation through a cylindrical specimen twice as high as it is tata
wide 1s doubtless a reasonable characterization of specimen %
behavior for some portion of i1ts dynamiz spectrum. It was _i{
B employed in the initial analyses of the FTRXD and 1s reported 1in ?:;
y detail in Chapter 5. e
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The nature of the experimental PSD-axial strain curves for
the CARES-Dry soil suggests that to describe them in one-
dimensional (axial) loading, several parameters are required .
The initial linearity of the curves requires two. The subsequent
smooth nonlinear yielding of the curves with decreasing slopes
requires at least two more parameters. Accounting for the peak
PSD when it occurs would require still another. Of the many
mathematical functions possible, what was selected and used was a
simple straight line for the initial part of the curve from the
origin to a stress level designated the maximum linear stress
(MLS). The remainder of the curve was portrayed as a two
parameter hyperbola which smoothly connected to the initial
straight line portion with the initial slope of the hyperbola
equal to the slope of the straight line portion. The hyperbola
continues to rise with decreasing slopes approaching an upper
limiting stress as strain increases indefinitely. For
identification, the function is called linear-hyperbolic.

Only three parameters are required to define this functional
representation of stress versus strain. Since the slopes of the
linear part and the initial slope of the hyperbolic part are the
same one parameter is eliminated, and since a peak PSD is not
directly accounted for another is eliminated also. Of the several
sets of three parameters which could be used, the set chosen was:

- the maximum linear stress (MLS),
- the corresponding maximum linear strain (EL), and
- the upper limiting stress (MS).

These three parameters are relatively easy to determine
directly from an experimental plot of PSD versus axial strain and
provide a good measure of flexibility in fitting a broad range of
experimental curves. Moreover, the initial linear part lends
itself to an easy beginning for a wave propagation analysis.
Figures 3.3 and 3.6 illustrate the linear-hyperbolic
stress—-strain function. Shown are two sets of four different
curves. The first set (Figure 3.3) reflects a modest range of
stress levels (M5=400-800 psij; MLS=25, 50, 75, and 100% of MS).
The maximum linear strain was arbitrarily set at 2%. The four
resulting curves exhibit a broad range aof curve shapes from the
smoothly yielding lower curve (MLS=100 psi, EL=2%, MS=400 psi) to
the elasto-plastic upper curve (MLS=800 psi, EL=2%, MS=800 psi).
The second set (Figure 3.6) illustrates the magnitude of change
of curve shapes that can be effected by varying the parameter EL
alone. Comparing the two sets of curves to one another (Figures
3.5 and 3.6), the corresponding stresses in each set of curves
are the same while the maximum linear strains differ.

On Figure 3.7 is reproduced the experimental principal
stress difference versus axial strain curve obtained using the
upper load cell during FTRXD test RDCFS14 (see Figure 3.3 also).
Fitting of the linear-hyperbolic function to this experimental
curve is illustrated on Figure 3.8B. The fitting was accomplished
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by selecting values of the three parameters (MLS, EL, and MS)
from a visual examination of the experimental curve. These values
were then used to calculate linear-hyperbolic stress-strain
values and plot the results. Visual examination of Figure 3.8
suggests that the linear-hyperbolic stress-strain plot is an
acceptable representation of the experimental curve. The center
linear-hyperbolic plot seems to be the best fit of the three
shown.

A more refined curve fitting process is certainly possible.
However, first the on-going wave analyses of the test specimen or
the analyses of the test apparatus system should validate the
usefulness of the linear-hyperbolic function as representative of
s0il stress-strain behavior. One approach to the curve fitting
process 15 to define criteria for fitting the mathematical
functions to the experimental curves, and then automate the
process using system identification techniques.
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ABLE 3.1

Test Parameters for STRX Testing of Five CARES-DOry Specimens

Test
Number

RDX-TXC-10
RDX-TXC-11
RDX-TXC-12
RDX-TXC-13
RDX-TXC-01

Confining

Pressure

50
100
100
100
200

psi
pPSi
psi
PSi
psi

Test Parameters for

Test Confining
Number Pressure
RDCFS10 50 psi
RDCFS14 100 psi
RDCFS18 200 psi
RDCFS36 50 psi
RDCFS40 100 psi
RDCFS43 200 psi

*x batch value;

wet
Dens

119
119
119
119
119

wWater
ity Content
pcf 5.0%
pcf 4.9%
pcf 5.0%
pc¥f 4.9%
pcf 5.1%
TABLE 3.2

Number
of Lifts

wooonw

Moi g
Size

wrodNoNON

X X X X X

> OO0,

Test

Duration

5-10
min
ao
do
do

A r'd

FTRXD Stow Testing of Six CARES-Drv Specimens

wet
Den

113
113
113
119
118
119

sity

pct
pcf
pcf
pcf
pcf
pcf

water
Content

4.0%
3.8%
4.4%
xq4.0%
x4 0%
x4.0%
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Number
of Lifts

OO DOO

Mo

Id

Size

.75
.75
.75
.75
.75
.75

specimens contaminated by posttest

X x X X X X

leakaqe

- - o -
g0 non

Test
Durat

[Kaln}

sec
sec
sec
sec
sec
sec

T T W

\

"\‘\ O U 2 N ) )‘\**‘}"- -*. '*V'"J"'" .

PR N RS
)
”"hﬁ?

P4
Ry



g

- -
-

T e T

-

i

Ot Ao _-..:‘7

3 gEEt

* Pl s

fhes A EONrirA

a s

NAhN

TR A YS 5!

Y 8500 Rt B Bk
T AN U X

Fig 3.1, CARES-Dry Average Grain Size Distriburion
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Fig 3.2, STRESS-STRAIN TEST DATA
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Fig 3.3, STRESS-STRAIN TEST DATA

DURATION = 120 SEC : RDFCS 10, 14, 18
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CHAPTER 4

PRELIMINARY DYNAMIC TEST RESULTS FROM THE FTRXD

4.1 INTRODUCTION

Dynamic tests are those run rapidly enough to begin to cause
inertial effects to occur in the specimen, and consequently to
make wave analyses of the specimen of interest. For these
purposes, the dynamic tests were identified as those in which the
test duration was 30 milliseconds or less. The test duration was
considered over when an axial strain of 15% was reached in the
specimen. Seven such tests are described here to illustrate the
nature of the dynamic test results. Four of the tests were
completed in 28 milliseconds and three in 2 milliseconds.
Confining pressures of 50, 100, and 200 psi were imposed in both
the 28-millisecond and 2-millisecond duration tests.

4.2 LOAD-TIME DATA

Figures 4.1 through 4.4 show measured load versus time for
the four 28-millisecond duration tests with results from both the
upper and lower load cells. The confining pressure used is
indicated and is the only experimental quantity that differs
among the four tests; it is 30 psi for test RDCFS49 (Figure 4.1),
100 psi for test RDCFSS2 (Figure 4.2), and 200 psi for both tests
RDCFSS6 and 57 (Figures 4.3 and 4.4). For some reason, the
magnitudes of upper and lower load readings in these latter two
tests was recorded as abaout one-half of what was expected, just
as occurred in the slow test on the FTRXD at a confining pressure
of 200 psi (see Figure 3.4). Other testing of the CARES-Dry soil
at confining pressures of S0, 100, and 200 psi are the basis for
expecting the load values in these three tests at a confining
pressure of 200 psi to be much higher. The load recorded in all
four tests by the upper load cell was about 12 to 15 percent
higher than for the lower load cell., Recall that this phenomenon
was also evident, but less pronounced, in the slow tests with
durations of 120 and 1.2 seconds.

Figures 4.5 through 4.7 show measured locad versus time for
the three 2-millisecond duration tests. Confining pressures of
50, 100, and 200 psi were employed on these tests, RDCFS69, 72,
and 74 respectively (Figures 4.5, 4.6, and 4.7). The conduct of
these very rapid tests precluded the use of oil in the lower
chamber of the load cylinder to control and damp the motion of
the piston-ram assembly. In test RDCFS69 (Figure 4.5) where the
confining pressure was 50 psi, the resistance which the specimen
could offer to oppose the loosely controlled motion of the ram
seems to have been obscured by the motion of the ram. The
readings from the upper load cell (which moves with the ram)
reflect this strongly. The readings from the stationary lower
load cell are more predictable. The situation is similar, but
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less pronounced in test RDCFS72 (Figure 4.6) where the confining
pressure was 100 psi and the specimen stronger. In test RDCFS74
(Figure 4.7) where the confining pressure was 200 psi, the
readings from the upper load cell show a variation one might
anticipate in a very rapid test, while the stationary lower load
cell shows a smooth variation, similar to what was exhibited in
the slower tests. Note the magnitudes of the load cell readings
in this test are about what one might expect rather than half
that much. Alsc note the upper load cell readings,; at least in
test RDCFS74 (Figure 4.7), are an the order of 40 percent higher
than those for the lower load cell. The discrepancy between the
upper and lower load cell readings was consistent from the very
slow to the very rapid tests. The upper load cell always read
higher values. The discrepancy also increased significantly from
about 1 percent for the slow tests to 40 percent for the very
rapid tests.

4.3 DISPLACEMENT-TIME DATA

The measured variation with time of the displacement of the
top of the specimen during the seven dynamic tests is shown on
Figures 4.1 through 4.7 along with the load-time variation
discussed above. The displacement variation is not linear; it
curves upward with increasing slope - more severely the more
rapid the test. Displacement-time variation of the top of the
specimen is essential to the wave analysis of the specimen. It is
taken as the boundary condition at the top of the specimen so
that displacements, strain, stress, and load can be calculated
throughout the specimen. Moreover, the displacement versus time
data must permit the calculation of velocities and accelerations
with reasonable accuracy since acceleration and perhaps velocity
will appear in any form of the wave equation employed. One way to
achieve this calculation ability is to fit a mathematical
function to the displacement data, and then differentiate the
function to obtain velocities and acceleration. Measured velocity
and acceleration data along with measured displacement data would
be the best approach, but this was not possible at the time these
tests were run.

In tests RDCFS49, S2, S6, and 357 (Figures 4.1 through 4.4),
the variation of displacement with time is smooth with an
increasing slope throughout the duration of the test. The curves
approach a straight line during the latter part of each test.
This variation suggests a function whose slope or velocity begins
at an initial value of zero and then increases smoothly to a
limiting value. One might expect such a variation in the FTRXD
since these and all the slower tests were run with oil in the
lower chamber of the load cylinder. During the conduct of the
tests the piston-ram was initially at rest, the upper chamber of
the load cylinder was under pressure, and the oil in the lower
chamber was under pressure. The test was initiated by rapidly
opening a valve in the lower chamber connecting it to the
accumulator at atmospheric pressure, while maintaining the
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pressure in the upper chamber. Thus the o0il was forced out of the
lower chamber through the opened valve. The piston-ram moved
under the influence of the constant upper chamber pressure and
the lower chamber o0il flowing back to the accumulator. The ram
therefaore started from rest, its velocity increasing but
approaching a limit since the rate at which the oil could pass
through the opened valve was limited.

A simple mathematical function describing a smoothly
increasing velocity which approaches an upper limit is a two-
parameter hyperbola. Figure 4.8 shows a plot of the two-parameter
hyperbola (velocity), its integral (displacement), and its first
derivative (acceleration). The two parameters needed to define
the curve are its initial slope and its limiting value. The
initial slope (Ao) is the initial acceleration and its limiting
value (Vo) is the terminal velocity. Another useful calculated
parameter is the characteristic time (To), which is the ratio
Vo/Ao. The hyperbola can easily be fitted to the velocity
variation with time, if good velocity data is available and
varies as described. The fitting procedure is to plot the
reciprocal of velocity versus the reciprocal of time. The result
is a straight line for the hyperbolic function. The slope of this
line is the reciprocal of the initial acceleration (Ao); the
intercept of the line on the 1/V axis is the reciprocal of the
terminal velocity (Vo). If the experimental velocity data also
plots as a straight line on these reciprocal axes, the hyperbolic
fit is achieved by reading the slope and intercept of the
experimental line.

On Figure 4.9 is reproduced the plot of measured
displacement versus time of the top of the specimen in test
RDCFS34 (see also Figure 4.3). The data were reported at 0.3-
millisecond intervals. The displacement was differentiated
numerically with a 3-point central difference expression on a 0.6-
millisecond time increment to obtain velocities at intervals of
0.3 milliseconds. The result is also shown on Figure 4.9. The
oscillating nature of the calculated velocity is not easy to
interpret. It probably reflects the effects of dynamics in the
FTRXD system, innaccuracies in recording the displacement data,
and the details of the numerical process used in differentiation.
Higher order difference expressions and corresponding larger time
increments were tried. They smooth the peaks and valleys of the
oscillations some, but they also seem to change the overall shape
of the velocity-time curve. This overall shape of the velocity
curve is apparent on Figure 4.9, and could be represented
approximately by the two-parameter hyperbola.

Figure 4.10 repeats the motion data of Figure 4.9 and also
shows the comparable motion described by a two-parameter
hyperbola. The velocity data derived from the experimental
displacement data was not good enough to permit fitting the
hyperbola to it using a reciprocal axes plot. Consequently, the
limiting velocity, Vo, was estimated by examining the slope of
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the overall displacement plot in the latter part of the test
duration. The characteristic time, To, was obtained by trying
several values and selecting the one that produced the best
visual fit of both velocity and displacement. The result is shown
on Figure 4.10. As with fitting of the linear—-hyperbolic function
to stress—-strain data, a more refined fitting procedure for the
upper pedestal motion of the FTRXD could be developed. However it
should be justified by the motion data, the wave analyses of the
specimen, and the analyses of the FTRXD system. Moreover, the
addition of accelerometers or other motion measuring devices to
the upper pedestal may be necessary to validate both the
mathematical functions used and the procedures followed to fit
them to the motion data.

PP o g

S

Figure 4.11 repeats the data of Figure 4.10, but adds
acceleration data. Differentiating the measured displacement
twice to obtain acceleration data required smoothing the velocity
data first. The smoothing procedure was to average the eleven
velocity values nearest each time value (the velocity value at
the time value with the five velocity values immediately befaore
and after). These eleven values included about one period of
observed oscillation on each side of the time value. The smoothed
velocity-time variation was then differentiated to obtain
accelerations in the same manner that the displacement-time
variation was differentiated earlier to obtain velocities. The
acceleration data is less meaningful than the velocity data and
affected by the same unknown factors, even more strongly. The
overall variation of acceleration, however, does seem to fcllow
the fitted hyperbolic acceleration which is plotted through it.
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Figures 4.5 through 4.7 show the variation of the
displacement of the top of the specimen with time during the very
rapid tests RDCFS69, 72, AND 74. In these very rapid tests the
displacement curves turn up more sharply than in the slower
tests, especially during the latter part of each test. Recall
that to achieve test durations of two milliseconds, o0il could not
be used in the lower chamber of the load cylinder. Consequently
the motion of the ram in these tests is not restricted by the
flow of oil through a valve.
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Figures 4.12 and 4.13 show the results of an analysis of the
motion of the top of the specimen during the very rapid test
RDCFS74. As with the data from the slower test RDCFS556 (Figures
4.9 though 4.11), the displacement data and the results of
differentiating it to obtain velocities are shown. Oscillations
are again present, but the overall variation of velocity with
time is apparent. Clearly in these very rapid tests, a two-
parameter hyperbola canmnot be used to describe the motion. The
velocity was smoothed by averaging the thirteen values of
velocity nearest each time value. The data were reported at time
intervals of 0.02 milliseconds so that the six velocity values on
each side of the time value included approximately one period of
the observed oscillations. The smoothed velocity variation was
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then differentiated to obtain accelerations in the same manner as
was done earlier. Displacement, velocity, and acceleration data
are shown on Figure 4.13. It is worth noting that the calculated
accelerations are large. The initial spike at 0.05 milliseconds
is 2200 g’s. The calculated acceleration reaches values of 400
g’s several times during the test, and sustains them from about
0.9 to 1.4 milliseconds. At this stage in the project no attempt
was made to fit a mathematical function to the motion data of the
very rapid tests. The initial wave analyses used to model these
tests were based on an assumed constant acceleration of the upper
pedestal through out the test, which leads to an upward curving
parabolic displacement-time variation.

4.4 DYNAMIC STRESS-STRAIN DATA

The experimentally calculated values of stress versus strain
for the dynamic tests are shown on Figures 4.14 and 4.15. Since
the stress was calculated from the load cell readings, it
necessarily includes the effects of inertial forces in the
specimen and the dynamics of the FTRXD, if they are present. When
these effects are significant, they will mask the stress-strain
properties of the specimen on experimental plots such as these.

For the tests with a duration of 28 milliseconds (Figure
4.14), the relationships are very similar to all of the slower
tests. The differences in the upper and lower load cell readings
are noticeably larger than they were in the slower tests, and the
magnitudes of principal stress difference are larger also. These
curves can be represented by the linear-hyperbolic function
equally as well as the slower tests can be, though clearly the
magnitudes of the parameters MLS, EL, AND MS would differ. It
would appear that the 28-millisecond duration and slower tests on
0.75-inch-diameter by 1.5-inch-high specimens of the CARES-Dry
soil are not significantly affected by specimen inertia or the
dynamics of the FTRXD.

The tests of 2-millisecond duration (Figure 4.15) also show

a similar manner of variation of stress with strain - that is one
which can be reasonably represented by the linear-hyperbalic
function - when the effects of inertia and system dynamics can be

screened. Figure 4.15 shows the plots of stress and strain for
the very rapid tests using only the stationary lower load cell.
For test RDCFS74 at a confining pressure of 200 psi, the curve is
remarkably similar to stress-strain curves of slower tests.
Recall at this high confining pressure the specimen was strong
enough to not be dominated by the loosely controlled motion of
the piston and ram. The very rapid tests at lower confining
pressures are also shown on Figure 4.15. Stress and strain does
not track so well for these tests since the overpowering motion
of the piston and ram is evident. Attempting to calculate stress
directly from the upper load cell readings is not meaningful. The
moving upper load cell clearly registered significant inertial
effects of its motion as well as that of the rest of the FTRXD.
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LOAD-DISPLACEMENT TEST DATA

CONFINING PRESSURE = 200 psl, (RDCFS74)
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Fig 4.12, UPPER PEDESTAL VELOCITY
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Fig 4.14, STRESS-STRAIN TEST DATA

DURATION = 28 ms : RDCFS 49, 52, S8
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Fig 4.15, STRESS~STRAIN TEST DATA
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CHAPTER S .
ey
THE ONE-DIMENSIONAL FTRXD SPECIMEN MODEL ?”
®
S.1 BACKGROUND -4
g
The FTRXD soil specimen is a right circular cylinder whose 3;'
height is twice its diameter. For static or slow testing, it is 3t
assumed to be a differential element of s01]1 exhibiting load and W
deformation characteristics which can be measured and related
directly to its stress—-strain properties. Displacements, strain ~
and stress are assumed to be uniform throughout the specimen. The Q?
longer the cylinder is in proportion to its diameter, the less }J
are the effects of end restraint of the specimen by the test r:j
apparatus on the assumed uniform stress and strain distribution &3
within the specimen. On the other hand, the longer the specimen ®
is, the more likely is the occurrence of buckling. A height to s
diameter ratio of 2.0 is usually taken as the compromise that o
will lead to satisfactory static or slow test results. For ﬂ*f
dynamic testing an additional consideration is that the longer 3
the specimen is in relation to the product of its propagation Py

velocity and test duration, the more noticeable will be the
inertial or wave effects.

X, A

-
The cylindrical soil specimen is failed in shear by :i
compressing it axially. The specimen shape and testing action Qﬁ,
naturally lead to a one-dimensional view of phenomena occurring Y
during testing. Most triaxial tests are run at a constant lateral i
confining pressure so that the application of axial compressive N
loads causes one to presume the presence of a controlling Ao
uniaxial stress: the difference between the axial stress and the 3Q
lateral confining pressure or principal stress difference (PSD). g?

The relationship between PSD and axial strain is what static and
slow triaxial testing measures directly. This relationship was

discussed in Chapters 3 and 4 and its representation by the -:
linear—-hyperbnlic function described. When triaxial testing is -
dynamic, that is when inertial effects and wave phenomena are 3
evident, the specimen can no longer be considered a differential uj
element of the socil. The FTRXD attempts to measure the initial :f
values and boundary conditions of the specimen. Further analysis '
is necessary to ascertain any constitutive relationship between N
PSD and axial strain.
l
A
There are decades of experience in static or slow triaxial ﬁ“
testing of.soils in which this one-dimensional approach has been ¢Q?

employed with good success. There is considerable more recent
experience in which one-dimensional wave analyses of triaxial
specimens have been accomplished. These employ a resonant or
standing wave of stress and strain along the axis of the specimen
at very low levels of stress and strain. They are carried out
with either compressive or torsional loading and measure either
rod or shear wave velocities, depending on the loading. They also
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determine the sensitivity of the wave velocity to the confining
pressure and to rate effects. Rate effects can be observed by
changing the frequency or wave length of the specimen standing
wave. The wave length of the specimen standing wave may be
changed by using excitation frequencies at several successive
modes or by preparing specimens with identical properties but
different lengths. Reference 5 describes resonant column triaxial
testing.

The FTRXD is intended to obtain dynamic soil properties at a
wide range of stress and strain levels and loading rates. The
specimen shape and the compressive loading suggest that the
phenomena of interest may involve one-dimensional waves of
displacements, strain, and stress propagating back and forth
through the specimen along its axis. These waves occur as a
result of the monotonically increasing displacements imposed on
the top of the specimen by the FTRXD. Within the specimen, the
resulting displacements, strains, ard stresses also increase,
though neither uniformly or simultaneously. The motion of the top
of the specimen essentially precludes a decrease in the
magnitudes of stress or strain from occurring in the specimen
during the test. Thus the relationship between stress and strain
in the specimen need only reflect loading. Indeed unloading
cannot be measured. Figure 5.1 shows the physical model of the
one-dimensional FTRXD specimen and the end conditions imposed on
it.

5.2 THE ONE-DIMENSIONAL WAVE EQUATION

Shown also on Figure 5.1 is a cylindrical slice of the FTRXD
specimen whose diameter D is the same as the specimen’s but whose
height 1s the infinitesimal dx of the axial position coordinate
x. The top of the slice is shown displaced down from its initial
position by an amount,

u = ulx,t).
The bottom of the slice is displaced down an amount,
u + u dx.
X

The displacement u is of course a function of both the position x
of the slice in the specimen and the time t elapsed since loading
of the specimen began. The symbol, U is the first partial
derivative of u with respect to x3; for small strain theory

¢ € < 15% ), u_ equals the axial strain. Axial stress (g) and
strain (€) are’shown at the top and bottom of the slice, changed
by differential amounts. They too are functions of x and t. The
symbol o is the first partial derivative of stress with respect
to x and the symbol € ig the first partial derivative of strain
with respect to x. Thé differential changes in u, €, and ¢ are
negative since the specimen is being increasingly compressed.
Moving down the specimen from its top in the positive x direction
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and recalling that the top of the specimen is displaced downward
during loading while the bottom remains fixed, displacements
within the specimen decrease and stress and strain become
increasingly compressive or negative.

Applying Newton’s Second Law to the slice,

(a+axdx)(wD2/4) - g(nwb2/4) = (gAdx)utt or
o, = gutt. (5.1)
The symbol u is the second partial derivative of u with respect

to the time E? it is the acceleration of the slice. The symbol g

is the mass density of the slice and the specimen; it is taken as
constant.

The constitutive relationship is the functional relationship
between stress and strain,

g = f(€) so that (S.2)
o = (dfsd€)(€ ) = (f_)<(u ) or
X X € X X
o = E u where (5.3)
b X X

E (=df/d€ =do/d€) is the first derivative of f(€) with respect
to €; it is the slope of the stress-strain relationship, or the
tangent modulus, and is a function of €. The symbol U is the
second partial derivative of u with respect to x. )

Combining equations 5.1 and 5.3,

(E/7qg) U o = utt' (5.4)
Examining the kinematics of the specimen and slice,
du = (d€){dx) = (dv)(dt). (5.95)

The term du is the change in the displacement from the top to the
bottom of the slice (through dx) during the time period dt. The
symbol v is the velocity of the slice during displacement and
deformation; it is equal to the first partial derivative of u
with respect to the time t. The term dv is the change in the
velocity from the top of the slice to its bottom (through dx)
during the time dt while the term d€ is the change in the axial
strain through dx occurring during dt. Substituting the
appropriate derivatives and differentials into equation 5.5,

(€xdx)(dx) = (vtdt)(dt) or
(€x)(dx/dt)(dx/dt) = (Vt) or
2 =
(ux)x(dx/dt) (ut)t or
41
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C2 u (3.6)

xx  Ttt
The symbol C (=dx/dt) is used for the first derivative of the
position x of the slice (where the differential changes or
disturbances occur) with respect to time. It is the propagation
velocity of the disturbances in the specimen. Comparing equation
5.4 with equation 3.6,

cz = E/q. (5.7)

Equation 5.6 is the one-dimensional wave equation where C is
the rod wave velocity. When C is constant, E must be constant
also and the constitutve relationship is the linear one-
dimensional Hoocke’s Law ( ¢ = E€ ). When the linear-hyperbolic
constitutive relationship is in effect, E is a function of strain
once the maximum linear stress o, (MLS) and corresponding maximum
linear strain €, (EL) are reacheé. The propagation velocity in
the specimen, thRerefore, is a function of strain (equation 5.7)
also. Equation 5.6, then, becomes the ane-dimensianal
linear-hyperbolic wave equation.

5.3 THE ONE-DIMENSIONAL LINEAR-HYPERBOLIC WAVE EQUATION

Figure 5.2 illustrates the linear-hyperbolic stress-strain
function discussed in Chapter 3 and shown on Figures 3.5 and 3.6.
The curve plotted on Figure 5.2 is the lowest of the four plotted
on Figure 3.5. The equations defining it are,

g = EOC when € < €1 and (3.8a)

(€—€1)

(1/E )+(1/0 ) (€-€
o h

when € > €l (5.8b)

1)
where,
axial stress, € = axial strain,
maximum linear stress (MLS),
maximum stress (MS),
maximum hyperbolic stress (MS-MLS),

maximum linear strain (EL), and

slope of the linear part of the function and
initial slope of the hyperbolic part.

When €<€1,
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. Substituting into equations S.4 or 5.6, -
(C )2 = o
: o u T U - (5.9 N
- ]

Equation 5.9 is the linear one-dimensional wave equation.

T
oL

. When €>€1, by
, (l/ED) %
{ do/d€ = E = so that, ) '
C(1/E )+ (1/0_)(€E-€ )12
i o] t 1
¥ (g, /E )2 K
- E/E, = (5.10) i
. [(ad,/E )+(€~€ 112 , N
h "o 1 [
N2
Recalling equation 5.4, ®
; %
: (E/qg) U = Yt and k?
i 0
(1/E Y(E/Q) u = (1/E ) u . (5.11) ¢
o X X o tt Ny
\ Lo
: Substituting equation 5.10 into S.11, ®
| ?,.»
. (o, /E_)? 3*:
» u = (g/E_) u . (5.12)
! [(o_/E )+(€-€ )12  ** o tt ‘§‘
o h "o 1 W
iy
Rearranging and recalling that 2
o )
-Nb
} 2 = = Ny
‘ C0 EO/g and that ¢ u o ;:
' R . . . . >
] the linear-hyperbolic one-dimensional wave equation for €>€1 may yﬁ
" be written, &3
. !7
R u u \.,$
: aka = £t (5.13) v
Y + - 2 2 . c_'.-_
¥ [(ah/Eo) (ux €1)] ECoch/EOJ {1
> AN
& 5.4 THE FINITE DIFFERENCE GRID ;{}
¥ Equations 5.9 and S5.13, S
% Y
2 Ytt o
- for €<€1 U,y = —— (5.9 o
*. (C )2 s":\.
o o
e
-, u u
. for €€ aka = tt (5.13) A
", - 2 2 .
. [(crh/Eo)+(ux €1)J tCoah/EOJ . .:ﬁ-
o are a system of second order two-dimensional partial differential t:'
equations. They are linear for strains (ux) less than 61’ and ®
. & \
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nonlinear for strains greater than € . They can be solved
numerically for displacements, u(x,t}, by replacing the partial
derivatives of u(x,t) with respect to x and t with finite
difference expressions.

Central difference expressions are convenient, accurate, and
well-suited to the wave equation. Three-point formulas are the
simplest possible when second derivatives are present and they
provide suitable accuracy as long as the finite difference grid
is sufficiently fine. The grid is made up of points in the x-t
space which are equally spaced in each coordinate direction. The
difference between any two successive points in the x direction,
x and x y is the spatial increment dx. Similarly, the
difference between any two successive points in the time
direction, t_ and tn+ y is the time increment 48t. The index m
refers to position ané the index n to time. Thus,

Xm = (m—1)dx, m=1,233y.cc.c.

tn= (n-l)St, n=1,8,3......
The central difference expressions are '"centered" on the point
(x ,tn) in x-t space, and are identified and located by the
indices (myn). Three such expressions are required,

u - u
u = 2tln  wrlen (S.14a)
28 x
u -2 u + u
u, = m+i,n m, N m-1,n (S.14b)
&x2
u -2 u +u
Upy = m,n+1 m,n m,.i-1 (5.14¢)
St

The terms subscripted by the indices m and n are the values of
the displacements at the corresponding five points identified in
x—t space by the indices as,

(m—-l,n)

(myn=1) — (Mmyn) —— (Mmyn+])

X (m+l,n)
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The times of the initial arrivals of the incident and
reflected waves at a point in the specimen are determined by the
initial propagation velocity Co of the specimen and the distance
the waves have propagated through the specimen to reach the
point. These times of arrival plot as straight lines in x-t space

with slopes equal to C_ » or in dimensionless (x/h)—(COt/h) space
with slopes equal to one. The symbol h is the height o6f the
specimen. Figure 5.3 illustrates the dimensionless (x/h)-(C _t/h)

space in which &x has been set equal to C 8t and both are 98ua1
to 0.10. The horizontal lines of points d2fine position lines
within the specimen (x=xm) which begin at the initial times of
arrival of the incident wave. The vertical lines of points are
time lines (t=tn) which also plot only after the initial arrival
of the incident wave. The sloping lines are the plots of initial
times of arrival of the incident and reflected waves at points
throughout the specimen. Only three traverses of the initial
arrivals of waves are shown: the incident wave first propagating
down through the specimen; the first reflected wave propagating
back up through the specimen after reflecting off its bottom; and
the second reflected wave propagating back down through the
specimen after reflecting off its top. The tic marks shown locate
the points (x st ) which may be identified with their
corresponding indices (m,n). Figure 5.3 is referred to as the
finite difference grid.

5.5 THE FINITE DIFFERENCE ALGORITHM

Substituting the difference expressions (equations 5.14)
into the linear 1D wave equation (equation 5.9) results in,

um+1,n_eum,n*um—1 n um n+1_aum n+um n-1
C 2 » = 1 ’ b or
© &x? §t2
C &t
u ( Y2 (u -2u +u ) + 2u - u
myn+1 Sx m+1l,n myn m—1,n msn myn-—1

(5.15a)

Equation 5.15a can used to calculate the displacement at grid
point (m,n+1) provided that the displacements are known at grid
points (myn), (m+lyn)y (m-1,n), and (m,n-1). With respect to
point (myn+1), these four points each are located at it, above
and below it by an amount &x, and earlier than it by amounts &t
or 26t as illustrated below.
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t t t
[ n-;l n ntl t
X + (m-1,n)
m—1
Xm + (myn—=1) — (myn) — (myn+1)
Xm*l + (m+l,n)

The numerical stability of the equation 5.15a is greatest when
(Co6t/6x) is set equal to one (see Reference 6). In which case,

(5.15b)

u u + u - u
myn+1 m+1l,n m—1l,n myn-—-1

Similarly, substituting the difference expressions
(equations 5.14) into the linear-hyperbolic 1D wave equation
(equation 5.13) and setting (COJC/Sx) equal to one results in,

2 -
(Uh/Eo) (um+1,n eum,n T Ym-1,n
u = + 2u - u
myn+1 myn myn—1
ch um+1 n—um—l n
( + e > - €2
Eo 28 x (5.15c)

Although equation S5.15%c is more complex than equation 5.15b, both
are applied to the finite difference grid in exactly the same
way. When the axial strain is less than the maximum linear strain
(€.), equation S5.15b applies; when the axial strain is greater
than the maximum linear strain, equation 5.15c applies. Clearly
the values of displacement calculated using equation 5.15c will
depend on the values of the parameters (o,, €., and L ) which
determine the linear-hyperbolic stress-strain function. Note
that,

Eo = crl/€l

5.6 INITIAL VALUES AND BOUNDARY CONDITIONS

The application of the finite difference equations (5.15) to
the finite difference grid (Figure 35.3) requires that
displacements be known at the top and bottom of the grid and
along its sloping left edge. These grid borders represent
respectively the boundary conditions for the specimen and its
initial values. The finite difference algorithm is expressed in
terms of displacements, so the boundary conditions and initial
values must also be known as displacements.
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Since the specimen and FTRXD are at rest prior to the start
of testing, the initial values for the specimen are all zero.
That is at time t = 0, displacements are equal to zero. Moreover,
they are also equal to zero within the specimen after t = 0 and
until the initial arrival of the incident wave. Thus along the
sloping left edge of the finite difference grid the displacements
are known and are equal to zero.

For the one-dimensiaonal problem, there are two boundaries:
the top of the specimen and its bottom. The bottom is fixed so
that the boundary condition there is simply that displacements
remain zero throughout the test. It is stated mathematically as,

U ottom - u(h,t) =0 (S.16a)
The top of the specimen moves with the upper pedestal or
piston-ram of the FTRXD as described in Chapter 4 (Section 4.3).

For tests whose durations were 30 milliseconds or more, the
two—-parameter hyperbola was found to represent the velocity of
the piston-ram with reasonable accuracy and is illustrated on
Figure 4.8. Recall that,

vtop = v(0O,t)

v t/7(t_ + t),
a] a]

and its integral is,

u = u(O,t) = v t - v t In(l + t/t ), (5.16b)
top o oo o
where aa = initial acceleration
Yo = limiting velocity, and
t =v /a
o o o

Equation S5.16b is the boundary condition specified for the top of
the specimen when the test duration is 30 milliseconds or more so
that the two-parameter hyperbola is descriptive of the upper
pedestal velocity of the FTRXD.

For tests run with durations of about 2 milliseconds, the
two~-parameter hyperbola does not describe the velocity of the
piston-ram. The displacement and velocity as a function of time
for these tests are illustrated on Figures 4.12 and 4.13. The
displacement turns upward more sharply during that latter part of
the test than it does for the slower tests. For the purposes of
obtaining an initial analysis of the wave and inertial effects in
the specimen for these very fast tests with these complicated but
only roughly estimated boundary conditions at the specimen top,
the motion was approximated as one of constant acceleration.
Constant acceleration produces a parabolic displacement function,
whose curvature is a better fit for these tests than the integral
of the two-parameter hyperbola. The parabolic displacement is,
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u = u(0,t) = (a tz)/2 = (v t2)y/(2t ) (5.16c)
top 0 o o
where ao = constant acceleration,

Vo ° velocity of the specimen top at the time
the incident wave first reaches the
bottom of the specimen,

to = time at which vo is reached.

Equation 5.16c is the boundary condition specified for the top of
the specimen for the very short duration tests in which equation
S.16b is not satisfactory. Note the constants Vo and t_ are
useful constants which are descriptive of the upper pegestal
motion, but which have different interpretations for equation
3.16c than for equation S5.16b.

The upper pedestal motion of the FTRXD (boundary condition
of the top of the specimen) is an essential part of the analysis.
Different results are obtained if the upper pedestal motion
changes. In describing the results of analyses of the FTRXD
specimens later in this chapter, the corresponding upper pedestal
motions will be illustrated also.

at times t_ and t_, are known, the displacement at the grid point
at time tq can be calculated. The calculations would be started

;.i .; \.

5.7 FINITE DIFFERENCE DISPLACEMENTS Kj:
o

. Y

The finite difference algorithm (equations 5.15) may be ﬁi\
viewed as a pattern in the x-t space of the finite difference i?"
grid. When the displacements at the four grid points shown below ':

A
. Y
v

1 2 3 4 S n
1 + + (1,3) + + t
2 + (2y2) — (8!3) —_— (8,4) +
3 + (3[3) + +
4 + + +
o

by centering the pattern on grid point (2,3), which has space
time coordinates (éx,268t). The displacement at (1,3) is known
from the boundary condition at the top of the specimen; the

/

LS
* .":'_'r"% ‘:b
h ]

PP 4

displacements at (2,2) and (3,3) are known from the initial ;_;
values in the specimen. What is missing is the value of the t?uﬁ
displacement at grid point (2,3). Indeed, all the displacements
"':"—‘
A
oA
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along the sloping line parallel to the left border of the grid
and one time increment &t later are needed to use the finite
difference algorithm. The process is to mave the finite
difference pattern down the sloping lines of the grid which are
parallel to the left border. The process is begun at the top left
of the grid as shown. On each successive pass of the pattern down
such lines, displacements are calculated on the sloping line aone
time increment later. These newly calculated displacements are
then used in the next two passes to calculate corresponding later
displacements. In this way, a complete array of displacements,

u y is generated at the grid points in x-t space which satisfy
the"wave equations (5.9 and 5.13), the initial values, and the
boundary conditions (5.16).

Sy
A
-

‘-'5{5

o "

o

() -
”
of -

The constitutive relationship is initially linear so that
equation 5.15b is used until the strain exceeds the maximum
linear strain, 61. Equatian 5.15b does not require the value of
the displacement, u y 1t is centered on. Thus displacement
values on the slopigdnline one time increment later than the left

3
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border of the grid are not required for the first pass cf the \ﬂg
finite difference pattern down that line. However, these values %/

are required for the second pass which is down the sloping line ~ﬁ

two time increments from the left border. They would bhe required 5'
also for other algorithms, such as beginning the calculations .4
with equation 5.15c for a specimen with an entirely hyperbolic ;z'
constitutive relationship. For a linear specimen in which only %:
equation 5.15b is employed, the pattern could be moved dowr "
sloping lines only at odd numbers of time increments later than :f\

i

the left border. Thus the requirement to first obtain the
displacement values along the sloping line one time increment

»

-
later could be avoided. It cannot be avoided in a linear- 3:
hyperbolic specimen since equation 5.15c requires the value of :&:
the displacement it is centered on. '{S
Cd
o

The displacements on that sloping line one time increment
later than the left border of the grid, at grid points (n,n+l),
may be obtained by applying the finite difference patterns
(equations 5.15) along the left border, grid points (n,n).

b 4

r .'

v 4
-.
A

Recognizing that of all of the initial values are zero, E::
Pl Sy
St
u = O,

NynNn u - u -5

Nnyn+1 Nnyn-1 _ A
Vn n = O, = 0 ".’

’ 28t s
(~~-

“net,n un—l n j}

€. .5 = 0, ’ =0 .

’ 28 . W

Substituting these relationships into equations 5.135 shows that yQ
for either equation 5.15b (€<€1) or equation 35.15c (€>€1); {\‘
- N

r
»

(3.17)

u u
Nnyn+1 n-1,n
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Equatiaon 5.17 is the starting equation for the finite difference
algorithm. It states that the displacements along that sloping
line one time increment later than the left border of the grid
are each equal to the displacement of the top of the specimen one
time increment after it begins to move.

5.8 FINITE DIFFERENCE STRAINS AND STRESSES

The algorithm and starting equation, equations 5.15 and
5.17, are the basic tools required to obtain the solution to the
wave equation, the array of displacements, u y in the x-t space
of the finite difference grid. However, the %égnitude of the
strain at each step in the calculations must be monitored to
determine whether the linear or hyperbolic part of the specimen’s
stress-strain relationship is in effect. That is, strain € must
be calculated and compared to the maximum linear strain 61 and
equation 5.15b or 3.15c invoked as appropriate.

In general, strain may be calculated with the three-point
central difference expression (equation 5.14a) used to develop
the finite difference algorithm (equations 3.13), or

u - u
¢ = _mbn mrlwn (5.14b)

m>n 28 x

The displacements at (m+1,n) and (m-1,n) are known just prior to
employing the algorithm to calculate the displacement at (m,n+1).
The algorithm is center-based also, centered on (myn). Thus €
is calculated (equation 5.14b), compared to 61, and equation
5.13b or 5.15c used as appropriate.

The array of displacements, u y once generated, is needed
to calculate the strain at a pointmfﬁ the specimen as a function
of time. The stress at that point as a function of time then may
be calculated using the specimen’s stress-strain relationship
(equations 5.8). The stresses at the top and bottom of the
specimen are the ones most directly related to the force measured
by the upper and lower load cells of the FTRXD. Therefore the
strains at the top and bottom of the specimen must be calculated
from the displacement array to obtain these stresses.

At the very top and bottom of the specimen, central
difference expressions cannot be used for the strain calculation.
Instead, forward difference expressions, focussed on the grid
points at x = 0 (m=1), are neccessary for the strain at the top.
Backward difference expressions, focussed on the grid points at
x = h, are necessary for the strain at the bottom. Since central
difference expressions are more accurate than forward or backward
difference expressions, four-point forward and backward
expressions were employed in an effort to maintain the same level
of accuracy that the algorithm possesses.
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' Referring to the finite difference grid (Figure S5.3), the A
- strain finite difference expressions were not allowed to extend :
-t over the sloping lines which mark the initial arrivals of the p
b{ incident and reflected waves. The displacements and strains o~
immediately adjacent to either side of these lines can differ i

A significantly, especially if the specimen has been loaded with a K
_& pulse approaching the severity of a step pulse. Thus near the I
‘? grid points where the sloping lines intersect the top and bottom .
I, of the grid, the four point forward and backward difference -
F" expressions could not be used. At the first grid point on either $
- side of the intersections,; two-point formulas were used; at the e
.. second grid point on either side of the intersections, three- e
N point formulas were used. At the other points on the top and -
€¢t bottom of the grid, the four-point expressions were used. The <
’2: two, three, and four-point forward and backward difference }
N expressions employed were (Reference 6), ‘j
v

L *1 2 *3 4 =
1 ] '
:’ Sx UX(XI) -1 1 - - ot
o Sx u (x_) 1 -1 - - i
n.": X 2 : ,‘
F §x u (x) -3/2 2  -1/2 - F
NG Sx u_(xJ) 1/2 -2 3/2 - 1
195 3 N
Sx u (xl) -11/6 3 -3/2 173 ~

Y Sx u(x,) =-1/3 3/2 -3 11/6 . (5.18) o
Y x 4 Yy
h" 3.9 DIMENSIONLESS VARIABLES AND PARAMETERS E‘
AGN e

Given the three parameters required to define the linear-

ue
»
)

»
LA

hyperbolic constitutive relationship of the specimen (E_ , o s and

:2 €. ), the specimen length (h) to identify the geometric gize of -ff
“e t%e specimen, the mass density of the specimen (g) to guantify }
3 inertia in the specimen, and the two parameters (v_ and t ) to |
Al define the upper pedestal motion or boundary condi®ions of the b
‘ﬁﬁ specimen, direct calculation of displacements using equations :f
}: 5.13 will produce an entire array of displacements in x—t d
- space for each set of values of these seven parameters. If each )
éi parameter were to assume only four values, 16384 such arrays &
might be calculated. For finite difference grid points separated X
s spatially by one-tenth of a specimen length, each displacement s
o array might contain 4000 displacement values (10x10x40). The N
'j: result, of course, would be an enormous volume of displacement -9
:&: data. However, combining the seven parameters into dimensionless t
?2: groupings and setting the finite difference grid so that &x -
equals Co6t, reduces the number of parameters to three so that .
o the number of arrays will be reduced to a small fraction of the 3
it: number that would be required otherwise (64 vs 16384). That is, :;-
v only three dimensionless parameters would be required to *
S determine dimensionless displacements in dimensionless space and 3
o time. N
) ~ ]
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Dimensionless space z is taken as the ratio of the spatial

coordinate x to the specimen length h. Dimensionless time v is

taken as the ratio of elapsed time t to the time required for the
initial wave to propagate the length of the specimen. Thus,

z = x/h and (5.19)
T = Cot/h where (5.20)
Co = J(Eo/g) and
Eo = 01/61.

The upper pedestal displacement for a hyperbolic upper pedestal
velocity was seen earlier to be,

u =v t - v .t In(l + t/t ) (5.16b)
top o o o o
or, u =T —-7T_ 1In(l + 1/1T ) where (5.21a)
dt o o
Udt = (utop/h)(CO/vo),
T = C_t /b,
o oo
t = v /a
o o o
Vo © limiting upper pedestal velocity, and
ao = initial upper pedestal acceleration.

For constant upper pedestal acceleration,

u = (v _t2)/(2t ) (3.16¢c)
top o la]
or, Uge = T2/2 where again (S.21b)
udt = (utop/h)(co/vo)’ but
v = a h/C_, and
o o o
ao = constant upper pedestal acceleration.

Consistent with equations 5.21 dimensionless displacement is,

u, = (u/h)(C_/v_). (S5.2a)
o o

d

Dimensionless strain is determined as,

€d = (udE - udl)/(ze - 21) or
= (ue/h - ul/h)(Co/vo)/(xe/h - xi/h)
€d = G(CD/VD) (5.23)
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Dimensionless stress is determined by using the expression for
dimensionless strain (equation 5.23) on the stress-strain
relationships for the specimen (equations 5.8). The result is,

€d/€dh
for €<€_, o, = alo = where (5.24a)
1 d max € /€ + 1
dl "dh
€dh = €h(Co/Vo)
€h = characteristic hyperbolic strain,
= €D - €1 = Umax/Eo - €1.
(€ —€ .)/7(€_  +€ —€ ) + €, /€
For €., @, =gale = 23 9 dh_d d} dl’ dh (5 24t
1 d max € /€ . 1
dl’” “dh
edl = €1(C0/v°) .

The finite difference algarithm, equations 5.153, may be expressed

in terme af dimensianless displacrements by using the eupressian
for dimensionless displacement (equation 5.22) on equations 5.185.
The result is,

for €<€), Uimen+l =~ Ydm+i,n ¥ Ydm-1,n ~ Ydm,n-1 ° (5.23a)

For €>€1’
u - (udm+1.n - eudm.n + udm—l,n) + 24 -u
dmyn+1 dmyn dm,n-1

udM"'l . n_udm-l N

(e EGthZ B €d1/€dh)z (5.25b)
where Ydm,n+l um,n+1(co/vo)’
€dl = €1(C°/v°),
edh = €h(C0/vo), and
§z = &(x/h) = &t = J(Cot/h) .

Finally, the starting equation (equation 5.17) may also be
expressed in dimensionless terms as,

!.l‘:h_,"“‘.l = udn-l.n (5.26)

5.10 UPPER PEDESTAL VELOCITY LIMIT

Equation 5.7 showed that the propagation velocity of

displacement, strain, and stress disturbances in the specimen
was
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C = J(E/qQ) »

long as particle or slice velocities in the specimen are
controlled by Newton’s Second Law and the stress—-strain

must not exceed the propagation velocity in the specimen.

From equation 5.10,

(crh/Eo)2
E/Eo = or
- 2
[(g, /E_)+(€-€ )]
g /E
c/c, = h o and
o /E, * € - €
C €
C = o h ; € =g /E
€ + € - < h h (o]
h 1

For hyperbolic upper pedestal motion,

v t v_ T
o o)
A t + t T + 7
o o

long as»
T
1 dl

T + 7T .
(=)

do

€ smaller than about 30 (€ _ .<15) when the upper pedestal

the limit is not reached.

For constant upper pedestal acceleration,
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1 where E and thus C are functions of strain (€) and therefore are
functions of (x,t) or (z,7). Clearly as time elapses after the
onset of loading, the propagation velocity decreases since the
tangent modulus E of the specimen’s stress-strain relationship
decreases. Indeed, for large strain, the propagation velocity
approaches zero. On the other hand, the velocity of the upper
pedestal, in general, increases as time and strain increase. The
one-dimensional wave equation (equation 5.6) is valid only as

relationship specified. Thus the velocity of the upper pedestal

(5.10)

(5.27)

(5.28)

Comparing equation 5.27 to 5.28 reveals that the wave equation
calculations are valid for hyperbolic upper pedestal velocity as

€ = € C /v > (€ + € - €,) ——___ + € (5.29)
00 o h

At present it is difficult to achieve experimental values for

ve?ocity is hyperbolic. The ?érgest that € will ever be is 15% or
0.15, Eo will be from 0,05 to 0.10, and € from 0.01 to 0.05.

Thus the limit indicated in equation 5.29 will never be reached.
Even when using a theoretical value of €do as small as 5 (¢

d1<3)$
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v = aot = v T , (S5.30)

Comparing equation 5.27 to 5.30 reveals that the wave equation
calculations are valid for constant upper pedestal acceleration
as long as,

€dO = €oco/vo > (€ + €h - 61) T + €d1' (5.31)
To date, experimental values of € of about 20 have been
achieved with a constant upper peggstal acceleration. Smaller
values might also be possible. A theoretical value as small as 5
(with a constant acceleration of about 1000g and €d = 2.9) is
useful to illustrate the limitation imposed by equa%ion 5.31.
Taking the largest reasonable € (=0.13), €o (=0.10), and the
corresponding €, (=0.035), the wave equation calculations would be
valid until at }east a dimensionless time v of about 12. However
for these test conditions, that 154 failure strain will be
reached in a dimensionless time of about 7=8 so that again the
limit expressed in equation 5.31 will not be reached.

5.11 PROGRAM FTSP

The one-dimensional linear-hyperbolic wave equation was
solved in dimensionless terms employing equations 5.21, 5.25, and
S5.26. Dimensionless strain and stress at the top and bottom of
the specimen were calculated from the resulting dimensionless
displacements using equations 5.23 and 5.24.

To compare the calculated teop and bottom stress, which
accounts for one-dimensional inertial effects in the specimen,
with the stress usually derived from triaxial testing, a third
stress, termed gross stress was also calculated. Gross stress is
the stress obtained when the displacement of the top of the
specimen divided by the length of the specimen is entered as
strain into the specimen’s constitutuve relationship. The strain
so used is termed gross strain. Gross stress and strain were
obtained in dimensionless form using equations 5.21, 5.22, 5.23,
and 5.24.

The equations were coded for solution on a computer in
FORTRAN (F77) as Program FTSP. A complete listing of Program FTSP
is contained in Appendix A. The code runs interactively with a
minimum amount of input required from the keyboard. The boundary
conditions are established by providing a value for T,t One of
the three dimensionless parameters.

T
o

C t /h O, for a step velocity and linearly
oo . . -
increasing displacement of the

the upper pedestal,

T > O, for hyperbolic upper pedestal velocity, and

=
W

1000 for a constant upper pedestal acceleration.
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The finite difference grid is defined by specifying the fﬁ*.
number of increments which the specimen length is divided into ﬁf'
f and the duration over which the calculations will be made. iyi‘
| Specifying the number of increments allows the calculation of &z L
and §v. The duration is set by stating the maximum even integer :‘
value of 7. For slow tests {(duration = 28 milliseconds) in which ot
T (=C°t/h) was about 125 at €=15%, good numerical accuracy was %&”
achieved with §2=0.10. Rapid tests (duration = 2 milliseconds), N,.:
[ in which v was about 9 at €=15%4, required §2=0,.05 to achieve NP\
: satisfactory numerical results. Sy
! Finally, values for the remaining two dimensionless e
i parameters, € (= € C /v ) and o,/C (= MLDS), are entered. R
' The program tggn generadates an array g?xdimensionless displace- '?J
) -
: ments in dimensionless space and time, and calculates the A
dimensionless top, bottom, and gross stress and strain. A
e
Program FTSP was compiled with the Microsoft FORTRAN 1§
Compiler (version 3.3) both with and without a math coprocessor. AN
With the coprocessor, the compilied code requires 295 kilabytes .;»
of random access memory and takes 1-3 minutes for one data run on Jﬁki
an IBM PC/XT. Without the coprocessor, 302 kilobytes of random kﬂ?
access memory are required and a data run takes 7-15 minutes. The ’

| bulk of the random access memory requirement occurs because FTSP
; is written to accomodate up to 30 increments in a specimen length

",% ';‘:\.

(82=0.02) and up to 1000 dimensionless time steps (maxr=100082). utg=
-* Y

BV

A sample run from Program FTSP is contained in Appendix B. v
In this run, .9
’ T =Ct /h =5.0, TN

o oo e
DA d

oA o
— = v NN

6(:“_J €0C0/Vo 10.0, :::::
¢./0___ = MLDS = 0.25, N

1" “"max ®

SO
§z = &1 = 0.05, and PN
Py
Yy
max T = 40.0 . RN

5.12 SPECIMEN TOP, BOTTOM, AND GROSS STRESS o
-

Figures 5.4 through 5.20 are plots of the top, bottom, and ﬁxﬁi
gross stress data generated by Program FTSP and illustrations of A
the details of the upper pedestal motion used. The plots attempt :hyu
to portay a spectrum of specimen behavior as the values of the i:ﬂ\
dimensionless parameters change. Five values of T, were used to A
vary the upper pedestal boundary conditions. These were, CAA
B} | RN

To = 0.0 step velocity pulse, A

= 5.0 extremely rapid hyperbolic velocity, fﬁ;

= 10.0 very rapid hyperbolic velocity, T
= 20.0 rapid hyperbolic velocity, and R

= 1000 extremely rapid constant acceleration. ®
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, Six values of € o Were used to reflect a range of
constitutive behavior of the specimen from soft to stiff relative
to the rapidity with which the specimen is loaded. These were,

€

do 5.0

10.0
20.0
30.0
40.0
= 30.0

In general for a given test rate (Vo)' the stiffer speﬁimens have
higher values of edo (=€DCO/VO) than the softer specimens do.

Only one value of o./¢ (= MLDS = 0.25) was used. This
parameter essentially re}legeé the overall shape of the specimen
stress-strain curve which translates directly into the overall
shape of stress-time or stress—-gross strain plots.

Figures 5.4 to 5.7 show the stress-time and stress—-gross
strain behavior of a FTRXD specimen subjected to a step velocity
pulse of upper pedestal motion. The motion is simple; the top of
the specimen displaces linearly with time so that plots of stress
versus time are identical with plots of stress versus gross
strain. The step velocity pulse, however, is a very severe
loading of the specimen in the initial phases of the test. It
requires an enormous acceleration for a very short time at the
beginning of the test. Consequently, significant inertial
effects occur at the arrival of the incident wave and each
reflected wave at each point in the specimen. Though the step
velocity pulse cannot be achieved presently in the FTRXD, it is
included here because it illustrates clearly the differences in
the top, bottom, and gross stress due to inertial effects.

On Figures 5.5, S.6, and 5.7 the gross stress plots as a
smooth linear-hyperbolic stress-strain curve. The stress at the
top of the specimen jumps instantaneocusly to a value comensurate
with the step loading and a wave propagates into the specimen.
The disturbance propagated is a change in strain proportional to
the step velocity imposed on the specimen top. The change in
strain may be interpreted as a change in stress using the
specimen’s constitutive relationship.

The stress at the bottom must await the arrival of the
incident wave (at 1=1.0). Because it is reflected off the rigid
stationary lower pedestal, the stress at the bottom of the
specimen jumps instantaneously at 1=1.0 to a value equal to twice
the value of the stress change in the incident wave. A similar
event occurs at the top of the specimen when this first reflected
wave arrives there (at 7=2.0) and is reflected off the rigid
downward moving upper pedestal. The stress at the top then
increases instantaneously by an amount equal to twice the value
of the stress change in the incident wave so that stress
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at. the top now becomes equal to three times the value of the
stress change in the wave. The process repeats at each subsequent
initial arrival of the wave at the top and bottom of the
specimen, increasing the stress there each time by an amount
equal to twice the value of the stress disturbance in the wave.

In the early part of the test when stress varies linearly
with strain, the process 1s clear and simple and i1s illustrated
on Figures 5.5, 5.6, and 5.7. When stress and strain begin their
nonlinear relationship,s, the stress change 1n the wave as a
consequence of the strain change is progressively smaller, in
conformity with the nonlinear stress-strain relationship. The
smaller stress change means that less resistance can be offerred
to the inertial forces so that the severe step pulse on its
arrival causes an overshoot and minor oscillation as it reflects.
These phenomena are evident in the figures. The smaller stress
change also means that the stresses at the top and bottom
increase by progressively smaller amounts on each reflection.
This latter result causes the stress-time and stress-gross strain
to display a nonlinear shape characteristic of the specimen’s
stress—strain relationship.

Clearly in a test with a large enough step velocity pulse
imposed to cause failure (€=13%) to occur within just a few wave
traverses of the specimen (say 7v=10), the top, bottom, and gross
stress. would differ greatly. However if the top and bottom
stresses were carefully plotted, a curve drawn through the their
intersections would trace the specimen’s actual stress-strain
relationship quite reliably. Such plots could be made by plotting
upper and lower load cell readings divided by an appropriate area
against the gross strain (upper pedestal displacement divided by
the specimen length).

If the specimen were more slowly loaded so that failure did
not occur unrtil after many traverses of the wave, the differences
among top, bottom, and gross stress would be insignificant, and
perhaps not discernible. Then either the upper or lower load cell
readings divided by the specimen area and plotted against the
gross strain could be used directly as the specimen’s stress-
strain relationship.

The overshoot and minor oscillation observed with the step
velocity pulse on each reflection after the stress and strain
levels in the specimen became high enough to exhibit a nonlinear
relationship, technically invalidate the data displayed. The
finite difference algorithm and Program FTSP have no provision
for stress—strain unloading. This is because except for the step
pulse, unloading was not anticipated and never observed.
Maoreover, this unloading (the oscillations) with the step pulse
is thought to have little effect on the important aspects of the
analysis. An unloading routine could be incorporated into Program
FTSP, but it would enlarge the memory requirements for the code
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and increase its computation time. It does not appear to be
justified at this time.

Figures 5.8 through 5.15 show the top, bottom, and gross
stress in specimens sub jected to hyperbolic upper pedestal
velocities. The Figures 5.8 to 5.11 are for 1 =5.0, the fastest
hyperbolic loading of a specimen shown. A hypgrbolic upper
pedestal velocity with a characteristic time t =0.9 millisecond
imposed on a 1.5-inch-long specimen whose rod wave velocity is
700 ft/sec would have 17 _ =5.0. At t=0.9 milliseconds half its
limiting velocity would be reached; three-quarters of its
limiting velocity would be reached by t=2.7 milliseconds. Even
soy the top, bottom, and gross stress-time plots shown are much
less severe than they were for the step pulse. There is no
overshoot and the differences among the top, bottom, and gross
stress are much less.

Figure 5.10 shows the first quarter of Figure 5.9 expanded
for closer observation of the early part of the loading.
Differences among top, bottom, and gross stress are evident and
perhaps would need to be accounted for. To observe stress-gross
strain behavior, Figure 5.11 graphs the second highest curve of
Figure 5.10 (€ =10.0) as stress versus gross strain. Gross
stress plots asoa linear-hyperbolic function as expected while
top and bottom stress oscillate in a minor way above and below
it. Because the velocity of the upper pedestal and thus the
strain and stress changes in the propagating wave are nonlinear,
the top and bottom stress oscillations about the gross stress
line are not symmetric as they were for the step velocity pulse.
Nonetheless, a trace of the intersections of the top and bottom
stress still provide a good representation of the specimen’s
actual stress.

Figures 5.12 and 5.13 are for v _ =10. The curve for €_ =30 on
Figure 5.13 corresponds to the 28-miTlisecond duration teS¥s run
on the FTRXD and shown on Figures 4.1 to 4.4, 4.9 to 4.11, and
4.14. Clearly within the one-dimensional model of the specimen,
there is little difference in the values of top, bottom, or gross
stress. The differences evident on Figures 4.1 to 4.4 and 4.14 1in
upper and lower load cell readings are probably not attributable
to inertial or wave effects within the specimen. Instead, they
are more likely the result of the dynamic behavior of the FTRXD
as an assemblage of deformable components possessing mass and the
instrumentation employed during testing.

Figures 5.14 and 5.15 portray the behavior of a specimen
whose upper pedestal velocity has TO=80.O. From the point of view
of wave propagtion, these results are essentially static.

The truly dynamic tests were those run rapidly enough to
show significant inertial and wave effects. The fastest tests run
to date were those whose durations were about 2 milliseconds. The
results of these tests are shown on Figures 4.5 to 4.7, 4.12,
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4,13, and 4.15. The upper pedestal motion of these tests was
complex and could be only roughly estimated (Chapter 4, Figures
4.12 and 4.13). Consequently, constant acceleration of the upper
pedestal, a simple approximation of this motion, was used for the
analytical study of the inertial effects in the sample under very
rapid loading. Figures 5.16 through 5.20 show the results of this
study. Since only one parameter is needed to define the upper
pedestal boundary condition instead of two, only two
dimensionless parameters are required for the stress-time data
instead of three. These are o, /¢ x (= MLDS = 0.235) and €d (=

€ C /v, = 5» 10, 20, 30, 40, & SBFY Note that for con8fant
upper pedestal acceleration, v_ is the velocity of the upper
pedestal at the instant that the initial wave reaches the bottom
aof the specimen; it is not a limiting velocity as in the case of
hyperbolic upper pedestal velocity.

The curves for € O=EO are the closest approximation for the
2-millisecond duration tests run on 1.5-inch-long specimens of
the CARES-Dry so0il. These are replotted on Figures 5.18 and 5.19
to r=10, the dimensionless time at which € is approximately 15%
for constant upper pedestal accelerations of 300 to 400g (see
Figure 5.16). Examination of Figure 4.13 suggests that the
2-millisecond duration tests might be approximated using constant
upper pedestal accelerations of from 300 to 400g.

Gross stress plots as a smooth curve between top and bottom
stress as expected, and as the linear-hyperbolic function on the
stress-gross strain plots of Figure 5.19. There are clear
differences among the three stresses. Top stress plots entirely
above gross stress and bottom stress entirely below it. The only
exceptions appear to be at rv=2 and Tv=4 where all three stresses
come together.

Figure 5.20 shows the curves for €d =5 plotted to T=8. A
1.5-inch-long specimen whaose rod wave velocity is 700 ft/sec and
which is subjected to a 1200g constant acceleration of its top,
might possess €, =3. In addition, €=15% would be reached in about
1 millisecond of°7=8 and v _=83 in/sec. The differences among top,
bottom, and gross stress afe clearly much greater for this much
more rapidly loaded specimen. Nonetheless, gross stress plots
against gross strain as a linear—-hyperbolic function, the correct
constitutive relationship for the specimen. It is bounded by top
stress above it and bottom stress below it as it was in Figure
5.19. Though neither top or bottom stress by themselves represent
the specimen’s constitutive relationship well, some functional
combination of the two could be found which would. No attempt was
made to find such a functional relationship since it is not clear
vet whether constant acceleration for the upper pedestal is the
most reasonable representation of the upper pedestal boundary
conditions for the very rapid tests.

The clear differences between the upper and lower load cell
readings and the significant oscillations in the upper load cell
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readings as shown on Figure 4.7 for the 2-millisecond duration

test, RDCFS74, cannot be explained from the specimen’s dynamic

behavior alone. They presumably reflect the dynamic response of
the FTRXD itself and perhaps the instrumentation employed.
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FI6 3.1, FTRXD SPECIMEN
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PHYSICAL MODEL
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UPPER PEDESTAL MOTION
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Fig 5.6, TOP STRESS & GROSS STRESS
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Fig 5.14, UPPER PEDESTAL MOTION
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Fig 5.18, TOP, BOTTOM, & GROSS STRESS
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CHAPTER 6

SUMMARY, CONCLUSIONSs AND RECOMMENDATIONS

The FTRXD has demonstrated its ability to load a 1.5-inch-
long specimen to failure (€=15%) in 2 milliseconds. What is not
yet clear, however, is the meaning of the readings from the upper
and lower load cells and the Kaman displacement gage when
specimens are loaded at this rate. For slower tests, those with a
duration of 28 milliseconds or more, these readings can almost
certainly be converted directly to the specimen’s principal
stress difference (PSD)-axial strain relationship for the loading
conditions imposed. In these slower tests, the effects of loading
rate on the specimen constitutive behavior could then be
investigated by testing identical specimens at different loading
rates.

The lower load cell readings were always lower than those of
the upper load cell. The differences in magnitude between these
readings is not totally understood. It occurred in all of the
test results examined from the very slow to the very fast. The
faster the test, the larger the difference - from less than 1% in
the tests of 120-second duration to about 40%4 in the tests of 2-
millisecond duration. Some of the difference in the fast tests
can be accounted for by the wave and inertia effects in the.
specimen on the stress at the top and bottom of the specimen.
These effects are apparent on Figures 5.17 to 5.20. However, a
major part of the difference cannot be accounted for in this
manner. It must be attributed to the dynamics of the FTRXD itself
and perhaps to the instrumentation employed. Whatever the source,
it must be identified and either eliminated or quantified, if the
specimen’s constitutive behavior is to be obtained from the load
cell data. As suggested in Chapter 5, the stress-strain behavior
of the specimen might be deduced from these rapid tests, but only
if reliable data are available from the load cells. In the very
rapid tests, data from both load cells will be needed; in the
slower tests, data from one of the load cells will be necessary.

In the 2-millisecond duration tests, major oscillations
occurred in the upper load cell readings while only minor
oscillations were recorded by the lower load cell (see Figure
4.7). This phenomena cannot be explained from the wave and
inertia effects within the specimen. Instead, the dynamics of the
FTRXD must again be the source. The fact that the oscillations
were essentially only recorded by the upper load cell suggests
that the dynamics of the moving upper pedestal may have a major
effect on the upper load cell and little or no effect on the
lower load cell. Again, the stress-strain behavior of the
specimen might be deduced from these very rapid tests, but only
if reliable data from both the upper and lower load cells are
available.
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The S500-pound load cell, used in the tests of 28B-millisecond ?;

duration or longer, had a natural period of 0.11 milliseconds. ‘ﬁ?

The 1000-pound load cell, used in the 2-millisecond duration ﬂ.%

testsy, had a natural period of 0.07 milliseconds. Although the ?\2

response times of the load cells were not an important factor in g
the test results examined, they must have contributed to the

minor oscillations recorded in the load cell readings. The xri

response times could be an impaortant factor far tests in which ;ﬁf

failure occurs in less than 1 millisecond. v

..

The 2-millisecond duration tests on specimens with low s

confining pressures were chaotic (see Figure 4.5 and 4.6).

Perhaps the weaker specimens (lower confining pressures) were e

completely dominated by the dynamics of the upper pedestal. ﬁ?

!.:""’ )

Clearly the control and definition of the upper pedestal :?{

motion is vital to the successful operation of the FTRXD and the
analysis of the test results obtained. The displacement-time plot
of the upper pedestal provides the upper boundary condition for
the specimen which in turn has a dominant effect on the

LY
L4

2&'?

»
stress—-time and strain-time plots. It also forms the basis for : f
the abscissa (strain) in stress-strain plots. o)
."_-\(' ;
Differentiating the measured displacement-time data for the ’.
upper pedestal in the very rapid tests to obtain upper pedestal &f;
velocities, revealed oscillations in the calculated velocity 43‘
data. Although the source of these oscillations is not clearly :ﬁ.«
understood, measuring the acceleration of the upper pedestal in -§ |
addition to its displacement should help to clarify what is ;x:
happening. To measure the displacement of the upper pedestal, the ‘
Kaman gage uses a 1.625-inch-long by 0.383~inch-thick aluminum iv”
cantilever target rigidly attached to the moving pedestal. The Q{?
natural period of the cantilever is 20 to 30 milliseconds. More Hgﬂ
reliable displacement data would be obtained if its natural gﬁk
period were 10% or less of the test duration. R
@
The most controlled motion of the upper pedestal occurred },(
when there was o0il in the lower chamber of the load cylinder of ;{5
the FTRXD. This resulted in an upper pedestal velocity that was ?{g
reasonably represented as a two-parameter hyperbola. The :ﬂy.
simplicity of this motion facilitated the wave analysis of the ;Q:;
specimen, However, the design of the load cylinder, at present, Y
precludes bringing a specimen to failure in less| than about 20 'Ffu
milliseconds when 0il is in the lower chamber. Additional and ]
larger orifices for the o0il to leave the lower chamber during ek
loading would increase the speed with which testing can be vl

- ..
P

gl
1..:‘4._ S

accomplished in this way.

With no o0il in the chamber, the upper pedestal moved much

P,
faster, taking the specimen to failure in about @ milliseconds. j@i
It can doubtless run faster yet if stronger tubular shear pins ‘fgh
are employed in conjunction with higher pressure in the upper ;{
chamber. However, the motion will still be loosely controlled and e
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complex. It must be recorded definitively so that relevant :q}?
boundary conditions for a wave analysis of the specimen can be »bﬁ
employed. Clearly in faster tests, the dynamics of the FTRXD will j{«
be even more important and must be understood. DN

»

Several recommendations regarding the evaluation of the
FTRXD are in order:

£,

Pl ok o -
R

1. Install an accelerometer in the upper pedestal at the point of
the Kaman gage cantilever target so that both the displacement
and acceleration data of the upper pedestal may be obtained. The

Sap

accelerometer must be able to record accelerations accurately and NS
withstand very large acceleration "spikes." H}E
gy
2. Install a cantilever target for the Kaman gage with a natural ﬁ?ﬁ
period of 0.1 milliseconds or less. The shorter and the thicker CeTa
it is, the better. An aluminum cantilever of the same general L
shape as the present one but 1.23 inches thick should possess a Q\"
natural period of less than 0.1 milliseconds. A q
1} > .y
P
3. Modify the load cylinder so that oil in its lower chamber can ﬂﬂ‘

be expelled faster during testing. More and symmetrically

positioned orfices of larger diameter would be desirable. .2
Recognizing the need to open the orifices simultaneously and very :gxt
rapidly, more than one orifice may be impractical. As a minimum, SRS
the present orifice might be doubled in diameter. If simultaneity x:;z
of openings can be achieved, additional orfices will be a great {ﬁ&‘
improvement. Ay
.. 8
4. Conduct a detailed examination of the locad cells, their }.x,
calibration, their response times, and the manner of recording gx;w
data from them. The purpose of this study would be to either W]
verify that the difference in upper and lower load cell readings S }‘
is not caused by the load cells themselves, or i1f it is, to e
identify and remove the source or quantify its effects. The study _'i%i
could also assess the limitations of the load cells in terms of '}2f
their response times. o
o
5. Conduct a detailed dynamic analysis of the FTRXD as an fvﬂl
assemblage of deformable components possessing mass. Such an Bat
analysis has been begun by the author. The FTRXD was modeled as a .Q

two degree of freedom system with a linear—-hyperbolic massless
spring representing the soil specimen, and lumped masses and
linear springs representing the remainder of the system. The
model shows promise, but needs refinement. Better excitation data
(displacement-time or force—-time) might be employed, mass might
be added to the nonlinear spring, and the analysis might be

extended to more than two degrees of freedom. The purpose af the 7:5'
analysis would be to ascertain what the upper and lower load }{\
cells should read during the very fast tests, to provide insights 'Fy:
into when and how the dynamics of the upper pedestal can dominate 3&31
the effects of the soil element, and to suggest ways to improve D P
the FTRXD so that more usable test data may be obtained. _ e
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6. Conduct a series of rapid tests with the FTRXD on a well E
established soil, such as CARES-Dry soil, prepared in specimens ?”
whose lengths vary from 1.5 to 3 inches and whose diameters ;i
remain at 0.75 inches. The purpose of the testing would be to !
validate the modifications to the FTRXD suqggested above, o !
validate better the one-dimensional wave analysis of the specimen !
described in Chapter 35, to investigate the effect of specimen $§
strength (confining pressure) on the dynamic response of the o)
FTRXD, and to validate and complement the dynamic analysis of the 3
FTRXD as recommended above. b3
7. Conduct a two-dimensional axisymmetric wave analysis of the i}
specimen initially as a linear elastic material. The purpose of xm
this analysis would be to define the limits of the validity of N,
the one-dimensional wave analysis. As required, it would be g
extended to a specimen possessing a postulated nonlinear o
constitutive relationship which reflects the yielding and shear ®
> failure anticipated in the triaxial testing of soils. :?
N ) oy
2 8. Conduct a series of rapid tests with the FTRXD on a variety of ;:f
. soils prepared in specimen sizes from 1.5 to 4 inches. The FTRXD t

would first be modified to accomodate specimens with diameters of
1.0 inch. The purpose of the testing waould be to validate the
analyses of the FTRXD and to assess its utility in testing a
variety of soils for their engineering properties at very rapid
loading rates.
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APPENDIX A

PROGRAM FTSP (FORTRAN 77)

P AR IIET
h e T Jh e
PP A

REAL S L T b

L

o

P ]
L]
o M

22
’l

1' l. "
]

)
»_1

L
l'l

sy

< _'.'{‘.'/\,‘-;"-}' . ,‘n ?
AN MO
La .I

B




PROGRAM FTSP BY WF CARROLL, PROFESSOR, DEPT CEES, UCF

THIS CODE SOLVES A 1D NON-LINEAR WAVE EQUATION FOR NORMAL STRAIN
AND STRESS AT THE TOP AND BOTTOM OF A TRIAXIAL SPECIMEN WHEN ITS
UPPER PEDESTAL TRAVELS WITH A CONSTANT OR HYPERBOLIC VELOCITY OR
WITH CONSTANT ACCELERATION AND ITS STRESS-STRAIN RELATIONSHIP IS
INITIALLY LINEAR AND THEN HYPERBOLIC.

THE SOLUTION IS A FINITE DIFFERENCE ONE.

THE VARIABLES ARE DIMENSIONLESS:

CTH - DIMENSIONLESS TIME (TIME TIMES INITIAL PROPAGATION
VELOCITY (C) DIVIDED BY SPECIMEN LENGTH (H))
CTOH - DIMENSIONLESS CHARACTERISTIC UPPER PEDESTAL TIME;
CTOH=C*TO/H WHERE TO=V0/A0:
TO - CHARACTERISTIC U.P. TIME
vO - LIMITING U.P. VELQCITY
A0 - INITIAL U.P. ACCELERATION
CTOH = O YIELDS A CONSTANT U.P. VELOCITY
= 1000 YIELDS A CONSTANT U.P. ACCELERATION
1000>CTOH>0 YIELDS HYPERBOLIC U.P. VELOCITIES
Ccvo - C DIVIDED BY VO.
UHCVO - DISPLACEMENT DIVIDED BY H AND MULTIPLIED BY CVO.
ECVO - STRAIN MULTIPLIED BY CVO; IT ALSO INCLUDES STRESS
DIVIDED BY THE MAX STRESS (MAX LINEAR STRESS PLUS

) MAX HYPERBOLIC STRESS).

NSS -~ NUMBER OF INCREMENTS IN THE SPECIMEN LENGTH (H).
NCTH - MAX NUMBER OF TIMES THE WAVE TRAVERSES H.

AB - RATIO OF MAX HYPERBOLIC STRESS (1/B) TO INIT SLOPE (1/A)
FOR A HYPERBOLIC STRESS-STRAIN RELATIONSHIP, AB IS A
CHARACTERISTIC STRAIN FOR A PURELY HYPERBOLIC MEDIUM.

D - AB MULTIPLIED BY CVO.

SL - MAX LINEAR DIMENSIONLESS STRESS.

EL - MAX LINEAR STRAIN.

EO - SUM OF EL AND AB, A CHARACTERISTIC STRAIN FOR A
LINEAR-HYPERBOLIC MEDIUM.

DE - EO TIMES CvO.

rONDoO0O0000000000000000000000O000nO0O000000n

s
iy
S

L)

COMMON /CINIT/ NSS,NCTH,NTS1,DCTH,CTQH,DE,D,SL,EL,CF
CCOMMON /CU/ UHCVO(S2,1052),ECV0(7,1052)
OPEN(F,FILE="FTSP.PRN’,STATUS="NEW?*)
CALL O INIT
o L FDALG S
Tl STRAIN :
Gl L WRTOP

B R, TATUS="KEERP?)
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[ SUBROUTINE INIT R
L COMMON /CINIT/ NSS,NCTH,NTS1,DCTH,CTOH,DE,D,SL,EL,CF 03
B COMMON /CU/ UHCVO(S2,1052),ECVO(7,1052) 0
~ WRITE(%,100) B
" 100 FORMAT(//1X,’ENTER THE CTO/H FOR UPPER PEDESTAL MOTION’/ o
) ?BX,’0 FOR CONSTANT U.P. VELOCITY, OR’/ »
i ?8X,°>0 FOR HYPERBOLIC U.P.VELOCITY, OR’/ s
- 28X, ’1000 FOR CONSTANT U.P. ACCELERATION’//) 3
¢ READ (#,%) CTOH A
h WRITE(#,110) v
' 110 FORMAT(//1X,’ENTER: THE NR OF INCREMENTS PER SPECIMEN’, e
d1X,’LENGTH (NSI)’/ , _

. 215X, ’ (MAX IS SO0 AND MIN IS 4)’/ ]
[ ?8X, ’THE MAX EVEN INTEGER VALUE OF CT/H’/ by,
o @15X,’ (MAX 1S 1000/NSI)’/ 7
5 ?8X, ’THE SUM OF EL AND AB (=E0) MULTIPLIED BY CVO, AND’/ L
» @8X, *THE MAX LINEAR DIMENSIONLESS STRESS (MLDS)’//) o

READ (#,#) NSS,NCTH,DE,SL .

A ANSS=NSS <,
¥ DCTH=1./ANSS N
W NTS1=NSS#*NCTH+1 iy
b D=DE*(1-SL) N
) EL=SL*DE 7
3 CF=1./(1.+EL/D) o
g DO 120 N=1,NTS1 o

; DO 120 M=1,NSS+1 s

: UHCVO(M,N)=0. )
s 120  CONTINUE o
4 CTH=0. £ )

: DO 140 N=2,NTS1 -

. CTH=CTH+DCTH oY

IF(CTOH .LE. .00001) THEN gl

3 UHCVO(1,N)=CTH oS

k. GO TO 130 N
ENDIF ’
IF(CTOH .GT. 999.9 .AND. CTOH .LT. 1000.1) THEN é}.

; UHCVO (1 ,N)=.S*CTH#*#2 NG
L GO TO 130 o

) ENDIF e

UHCVO(1 4N)=CTH-CTOH*ALOG(1.+CTH/CTOH) e

W 130  ECVO(1,N)=CTH £

ECVO(4,N)=UHCVO(1,N) 2

’ IF(ECVO(4,N) .LE. EL) ECVO(7,N)=CF#ECVO(&4,N)/D 5;?
4 IF(ECVO(4,N) .GT. EL) THEN N,

y ECVO(7,N)=CF#((EL/D)+(ECVO(4,N)-EL)/(D+ECVO(4,N)-EL)) };

: ENDIF N

140 CONT INUE s’
RETURN ,-'?;;
END "\.’
o
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SUBROUTINE FDALG W,
COMMON /CINIT/ NSS,NCTH,NTS1,DCTH,CTOH,DE,D,SL,EL,CF N
COMMON /CU/ UHCVO(52,1052),ECV0(7,1052) Aot

DO 100 N=2,NSS il
UHCVO(N,N+1)=UHCVO(1,2) Pt

100  CONTINUE A

DO 110 N=3,NTS1

DO 110 M=2,NSS | E§ﬁ§

NN=M+N-2 ,
IF(NN .EQ. NTS1) GO TO 110 R
UHCVO (M, NN+1) =UHCVO (M+1 ,NN) ~UHCVO (M, NN=1) +UHCVG (M-1 ,NN) s
ET=(UHCVO(M,NN+1)-UHCVO(M+1,NN+1) ) /DCTH
IF(ET .GT. EL) THEN o
UA=UHCYO (M+1 ,NN) =2 .. #UHCYO (M, NN) +UHCVO (M—1 , NN) ult
UB=(1.+( (UHCVO(M=-1,NN)~UHCVO (M+1,NN) ) / (2. *D#DCTH) ) ~EL /D) %*2 o
UHCVO (M, NN+1)=UA/UB+2 . *UHCVO (M, NN) ~UHCVO (M, NN-1) N
ENDIF s,
110  CONTINUE
RETURN i
END I'::l::
..'-
SUBROUTINE STRAIN !
COMMON /CINIT/ NSS,NCTH,NTS1,DCTH,CTOH,DE,D,SL,EL,CF S 4.]
COMMON /CU/ UHCVO(S2,1052) ,ECV0(7,1052) ..
DO 110 I=1,NCTH/2 hR

INSS=8#(1-1)#NSS
) DO 110 N=2,2%#NSS+1

NT=N+INSS Raty
NB=NT+NSS 2T
IF(NB .GT. NTS1) NB=NTS1 -9
_ IF(N .EQ. 2 .OR. N .EQ. 2#NSS) THEN RO,
ECVO(2,NT)=-(—-UHCVO(1,NT)+UHCVO(2,NT))/DCTH NS
{ ECVO(3,NB)=-(~UHCVO(NSS,NB) ) /DCTH G
GO TO 100 iy
ENDIF @
IF(N .EQ. 3 .OR. N .EQ. 2#NSS-1) THEN 2
ECVO(2,NT)==(-1.5#UHCVO(1,NT)+2.#UHCVO(2,NT)-.S#UHCVO(3,NT))/ ~Tad
? DCTH PR
: ECVO(3,NB)=-( .S#UHCVO(NSS-1,NB)~2.%UHCVO(NSS,NB)) /DCTH R
GO TO 100 s
ENDIF K
ECVO(2,NT)=-(=(11./6.)#UHCVO(1,NT)+3 . #UHCVO(2,NT)-1.5#» .9
' @ UHCVO(3,NT)+(1./3.)#UHCVO(4,NT))/DCTH v
) ECVO(3,NB)=-(~-(1./3.)#UHCVO(NSS-2,NB)+1.5#UHCVO(NSS-1,NB) N
y @ -3.#UHCVO(NSS,NB))/DCTH e
100  IF(ECVO(2,NT) .LE. EL) ECVO(S,NT)=CF#ECVO(2,NT)/D At
IF(ECVO(2,NT) .GT. EL) THEN S
ECVO(S,NT)=CF®»((EL/D)+(ECVO(2,NT)-EL)/(D+ECVOB(2,NT)~EL))
ENDIF )
IF(ECYO(3,NB) .LE. EL) ECVO(6&,NB)=CF#ECVO(3,NB)/D AON
IF(ECVO(3,NB) .GT. EL) THEN IS
ECVO(&,NB)=CF#*((EL/D)+(ECVO(3,NB)-EL)/ (D+ECVO(3,NB)-EL)) it
ENDIF S
110  CONTINUE K.
y RE TURN o
END :.::a
i R
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% SUBROUTINE WRTOP \
T COMMON /CINIT/ NSS,NCTH,NTS1,DCTH,CTOH,DE,D,SL,EL,CF "
: COMMON /CU/ UHCVO(52,1052),ECV0(7,1052) B
G WRITE(#,100) -
0 100  FORMAT(//1X,’ENTER THE DATA OUTPUT INDEX:’/ J
@5X,’1 : FOR ALL OUTPUT’/
aen ?5X,’2 : FOR THE VALUES AT EVERY 2ND TIME INCREMENT’/ \
1o @5X,’3 : FOR THE VALUES AT EVERY 3RD TIME INCREMENT’/ W)
: 95X, *ETC*//) o
b READ (%,%) ND y
av WRITE(9,110) )y
110  FORMAT(//1X,’DIMENSIONLESS STRESS-STRAIN-TIME DATA FOR AN’,
i @1X, ELASTIC SPECIMEN WITH’/ A
Wy ?1X, ’STRESS-STRAIN BEHAVIOR THATS INITIALLY LINEAR AND’, Y,
B @1X,” THEN HYPERBOLIC”) 5
o IF(CTOH .LE. .00001) THEN -
S WRITE(9,120) 3
120  FORMAT(1X,’AND WITH CONSTANT UPPER PEDESTAL VELOCITY’/) '
e GO TO 150 o
X ENDIF N
W IF(CTOH .GT. 999.9 .AND. CTOH .LT. 1000.1) THEN ]
fl WRITE(9,130) o
s 130 FORMAT(1X,’AND WITH CONSTANT UPPER PEDESTAL ACCELERATION’/)
. GO TO 150
T ENDIF ]
Wl WRITE(9,140) e
nl 140 FORMAT(1X,’AND WITH HYPERBOLIC UPPER PEDESTAL VELOCITY’/) o
e 150  WRITE(9,160) DCTH o
" 160  FORMAT(1X,’FTSP FINITE DIFFERENCE SOLUTION: D(X/H) =’,F6.3//) oA
- WRITE(9,170) CTOH,DE,SL -
" 170  FORMAT(//2X,’CTO/H =’,FB.2,9X, E0*(C/V0) =’,F&.1,10X, o~
~. ?’MLDS =’,F8.4//) o)
e WRITE(9,180) -
-t 180  FORMAT(7X,2(7X,’TOP’,4X,’BOTTOM’ ,SX, 'GROSS’) / -3
: @3X, TIME’ ,3(4X,  STRAIN’),3(4X, STRESS”)) &
- WRITE(9,190) ((ECVO(I,N),I=1,7),N=1,NTS1,ND)
W 190  FORMAT(1X,F6.2,3F10.3,3F10.4) N
! RETURN Ay
% END =
N
%
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? SAMPLE DATA RUN FROM R
) m !‘
PROGRAM FTSP (FORTRAN 77) @
1: "..":
) d l‘
\ i
: Hyperbolic Upper Pedestal Motion, .“.
) ,
ot
P Coto/h = 5.0 ._9
- y.,-'_.'
: Linear-Hyperbolic Stress-Strain, »S;ﬁ
. &) ¥
, RN
! g,/ = MLDS = 0.25 OS¢
: 1" "max ®
y € C /v_ = 10.0 o
* [s BN =) o (\'.
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DIMENSIONLESS STRESS-STRAIN-TIME DATA FOR AN ELASTIC SPECIMEN WITH N
STRESS-STRAIN BEHAVIOR THATS INITIALLY LINEAR AND THEN HYPERBOLIC ey
AND WITH HYPERBOLIC UPPER PEDESTAL VELOCITY ng‘
sl
FTSP FINITE DIFFERENCE SOLUTION: D(X/H) = 0.050 n%h
@
o
N
CTO/H = 5.00 EQ*(C/VQ) = 10.0 MLDS = 0.2500 Qo
‘L
TOP BOTTOM GROSS TaP BOTTOM GROSS NN
TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS e
0.00 0.000 0.000 0.000 0.0000 0.0000 0.0000 T
0.20 0.038 0.000 0.004 0.0038 0.0000 0.0004 w7
0.40 0.074 0.000 0.015 0.0074 0.0000 0.0015 Sl
0.60 0.107 0.000 0.033 0.0107 0.0000 0.0033 °
0.80 0.138 0.000 0.058 0.0138 0.0000 0.0058 ad
1.00 0.167 0.000 0.088 0.0167 0.0000 0.0088 v
1.20 0.194 0.077 0.124 0.01%94 0.0077 0.0124 sﬁﬁ;
1.40 0.219 0.148 0.166 0.0219 0.0148 0.0166 ,&
1.60 0.242 0.214 0.212 0.0242 0.0214 0.0212 AR
1.80 0.265 0.276 0.263 0.0265 0.0276 0.0263 )
2.00 0.286 0.333 0.318 0.0286 0.0333 0.0318 T
2.20 0.382 0.387 0.377 0.0382 0.0387 0.0377 ]
2.40 0.472 0.437 0.440 0.0472 0.0437 0.0440 N
2.60 0.556 0.485 0.506 0.0556 0.0485 0.0506 Q!
2.80 0.635 0.529 0.577 0.0635 0.0529 0.0577 0SS
3.00 0.708 0.571 0.650 0.0708 0.0571 0.0650
'3.20 0.777 0.688 0.727 0.0777 0.0488 0.0727 W
3.40 0.842 0.797 0.806 0.0842 0.0797 0.0806 Qﬁni
3.60 0.903 0.898 0.888 0.0903 0.0898 0.0888 Qv
3.80 0.961 0.994 0.973 0.0941 0.0994 0.0973 g
4.00 1.016 1.083 1.061 0.1016 0.1083 0.1061 L\
4.20 1.145 1.168 1.151 0.1145 0.1168 0.1151
4.40 1.265 1.247 1.244 0.1265 0.1247 0.1244 N
4.60 1.378 1.322 1.338 0.1378 0.1322 0.1338 §Q;\
4 .80 1.484 1.393 1.435 0.1484 0.1393 0.1435 Y
5.00 1.583 1.460 1.534 0.1583 0.1460 0.1534 VQ~
5.20 1.677 1.601 1.635 0.1677 0.1601 0.1635 vy
5.40 1.766 1.733 1.738 0.1766 0.1733 0.1738 R
S.60 1.850 1.857 1.843 0.1850 0.1857 0.1843 e
5.80 1.930 1.973 1.949 0.1930 0.1973 0.1949 Y
6.00 2.006 2.083 2.058 0.2006 0.2083 0.2058 R
6.20 2.155 2.187 2.168 0.2155 0.2187 0.2168 S
6.40 2.294 2.285 2.279 0.2294 0.2285 0.2279 L
6.60 2.426 2.379 2.3%92 0.2426 0.2379 0.2392
6.80 2.550 2.467 2.507 0.2549 0.2467 0.2507 ol
7.00 2.667 2.551 2.623 0.2663 0.2551 0.2621 R
7.20 2.778 2.708 2.740 0.2768 0.2702 0.2733 N
7.40 2.884 2.854 2.859 0.2866 0.2838 0.2842 e
7.60 2.985 2.993 2.979 0.2956 0.2963 0.2950 e
°
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TOP BOTTOM GROSS TOP BOTTOM GROSS

TIME STRAIN STRAIN STRAIN STRESS STRESS STRESS

7.80 3.082 3.125 3.100 0.3040 0.3077 0.3056
8.00 3.175 3.250 3.222 0.3119 0.3182 0.3159

8.20 3.321 3.371 3.346 0.3240 0.3280 0.3260
8.40 3.474 3.486 3.471 0.3362 0.3371 0.3360

8.60 3.621 3.596 3.397 0.3475 0.3456 0.3457

8.80 3.762 3.702 3.724 0.3580 0.3536 0.3552

?.00 3.898 3.803 3.852 0.3678 0.3612 0.3645
?.20 4.028 3.909 3.981 0.3770 0.3686 0.3737

9.40 4.153 4.074 4.111 0.3855 0.3801 0.3826
?.60 4.274 4.230 4.242 0.3935 0.3%06 0.3914

2.80 4.391 4 .382 4.374 0.4010 0.4004 0.3999
10.00 4 .504 4,528 4,307 0.4082 0.4096 0.4083
10.20 4.614 4 .669 4,641 0.4149 0.4183 0.4165
10.40 4.723 4.806 4,775 0.4215 0.4254 0.4246
10.60 4.871 4,939 4.911 0.4301 0.4340 0.4324
10.80 5.042 S5.067 5.047 0.4398 0.4413 0.4401
11.00 5.203 S5.192 5.184 0.4487 0.4481 C.4477
11.20 S5.354 5.313 5.322 0.4567 0.4546 0.4551
11.40 5.503 5.431 5.461 0.4644 0.4607 0.4623
11.60 S5.630 5.546 5.600 0.4718 0.4b666 0.4693
11.80 S5.792 S5.665 5.740 0.4788 0.4726 0.4763
12.00 5.929 5.822 5.881 0.4853 0.4802 0.4831
12.20 6.062 &.002 6.023 0.4915 0.4887 0.4897
12.40 6.193 6.158 6.165 0.4974 0.4939 0.4962
12.60 6.321 6.321 6.308 0.5031 0.5032 0.5026
12.80 b.446 b.476 6.451 0.35085 0.5099 0.3088
13.00 &6.568 6.6295 6.3595 0.5137 0.5161 0.95149
13.20 6.689 b6.776 6.740 0.5188 0.5223 0.520°9
13.40 6.826 6.919 6.885 0.5244 0.5281 0.5267
13.60 7.002 7.0359 7.031 0.5313 0.5335 0.5325
13.80 7.182 7.199 7.178 0.5382 0.5389 0.3381
14.00 7.340 7.334 7.325 0.5441 0.5439 0.35436
14.20 7.509 7.46S 7.473 0.5503 0.5487 0.5490
14.40 7.662 7.396 7.621 0.953558 0.5534 0.5543
14.60 7.823 7.724 7.770 0.5613 0.5579 0.5595
14.80 7.972 7.850 7.919 0.5664 0.5623 0.95646
15.00 8.125 7.987 8.069 0.5714 0.5669 0.5696
15.20 8.270 8.152 8.219 0.5761 0.5723 0.5745
15.40 8.416 8.339 8.370 0.5807 0.5783 0.5793
15.60 8.557 8.513 8.521 0.5851 0.5837 0.5840
15.80 8.695 8.674 8.4672 0.5893 0.5886 0.5886
16.00 8.834 8.845 8.825 0.5934 0.5937 0.5931
16.20 B8.9&6 ?.004 8.977 0.5972 0.5983 0.5976
16.40 ?.101 9.164 9.130 0.46011 0.6029 0.6019
16.60 ?.232 9.322 9.284 0.6048 0.6073 0.6062
16.80 ?.374 9.475 9.438 0.6087 0.6114 0.6104
17.00 ?.534 ?.630 9.592 0.6130 0.6155 0.61495
17.20 9.718 9.775 9.747 0.6178 0.6193 0.6186
17.40 9.908 ?.927 ?.902 0.6227 0.6232 0.6225
17.60 10.074 10.048 10.057 0.6268 0.6267 0.6264
17.80 10.240 10.214 10.213 0.6309 0.6303 0.6303

iy
?**J\J“f‘f‘fff:r'a‘r'a'f‘r:e':‘ :f'f{f;f'f‘fg’sf:f ¥ AN AT YN AT T AT A AT A Al

-

3

AR W A

e e
&53&

Py
.‘J.ﬁ. fy

%



TIME

18.
18.
18.
18.
18.
19.
19.
19.
19.
19.
20.
20.
e0.
20.
20.
21.
el.
21.
21.
a1.
ce.
ae.
aa.
ac.
ea.
23.
23.
23.
e3.
a23.
24.
24.
24.
24,
24.
esS.
.20
25.
es.
25.
c6.
cé.
2b6.
26.
c6.

25

27

0]0)
20
40
60
80
00
20
40
60
80
00
20
40
&0
80
00
20
40
60
80
07¢)
20
40
60
80
00
€0
40
&0
80
00
eo
40
&0
80
00

40
60
80
00
20
40
60
80

.00
27.
c27.
c27.
27.
28.

20
40
&0
80
00

TOP
STRAIN
10.413
10.579
10.737
10.903
11.060
11.214
11.373
11.521
11.674
11.822
11.967
12.114
12.256
12.399
12.543
12.688
12.849
13.020
13.212
13.403
13.589
13.759
13.927
14,103
14,280
14.451
16.613
14.779
16.951
15.112
15.271
15.432
15.594
15.751
15.903
16.062
16.217
16.363
16.518
16.671
16.820
16.975
17.136
17.305
17.482
17.672
17.870
18.063
18.250
18.433
18.604

BOTTOM
STRAIN
10.352
10.493
10.629
10.769
10.912
11.073
11.251

11.444
11.627
11.797
11.962
12.139
12.310
12.471
12.633
12.802
12.961

13.116
13.280
13.431
13.585
13.739
13.889
14.035
14.187
14.332
14.478
14.631
14.784
14.931
15.133
15.322
15.518
15.707
15.882
16.035
16.227
16.403
16.585
16.758
16.922
17.090
17.261

17.430
17.597
17.75S
17.918
18.083
18.245
18.401

18.559

GROSS
STRAIN
10.370
10.526
10.684
10.841
10.999
11.157
11.315
11.474
11.633
11.793
11.953
12.113
12.273
12.434
12.595
12.757
12.918
13.080
13.243
13.405
13.568
13.731
13.894
14.058
14.222
14.386
14.551
14.713
14.880
15.045
15.211
15.376
15.542
15.708
15.8735
16.041
16.208
16.375
16.542
16.710
16.877
17.045
17.213
17.381
17.550
17.718
17.887
18.056
18.226
18.395
18.565
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TOP
STRESS
0.6351
0.6389
0.6426
0.6463
0.6497
0.6531
0.6364
0.6595
0.6627
0.6656
0.6685
0.6713
0.6740
0.6767
0.6794
0.6820
0.6849
0.6878
0.6911
0.6943
0.6974
0.7002
0.7028
0.7055
0.7082
0.7108
0.7132
0.7136
0.7181
0.7203
0.7225
0.7247
0.7269
0.7289
0.7309
0.732%9
0.7349
0.7367
0.7386
0.7404
0.7422
0.7440
0.7459
0.7478
0.7498
0.751%9
0.7540
0.7561
0.7581
0.7600
0.7617
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BOTTOM
STRESS
0.6336
0.6369
0.6401

0.6433
0.646465
0.6500
0.63539
0.6579
0.6617
0.6651
0.6684
0.6718
0.6750
0.6780
0.6810
0.6840
0.6868
0.6893
0.6923
0.6948
0.6973
0.6998
0.7022
0.7045
0.7068
0.70%90
0.7112
0.7135
0.7157
0.7181

0.7206
0.7232
0.7258
0.7284
0.7306
0.7328
0.7350
0.7372
0.73%94
0.7415
0.7434
0.7454
0.7473
0.7492
0.7511

0.7528
0.7546
0.7563
0.7580
0.75%
0.7612

GROSS
STRESS
0.6340
0.6377
0.6413
0.6449
0.6484
0.6519
0.6552
0.635386
0.6618
0.6650
0.6&682
0.6713
0.6744
0.6774
0.46803
0.6832
0.6861
0.688%
0.6917
0.6%44
0.6971
0.6997
0.7023
0.7048
0.7074
0.7098
0.7123
0.7147
0.7171
0.7194
0.7217
0.723%9
0.7262
0.7284
0.7305
0.7327
0.7348
0.7368
©.7389
. 7409
.7429
. 7448
. 7468
. 7487
. 7506
. 7524
. 7542
<7560
.7578
. 7396
0.7613

eNeoNoNoNoNoNsNoNoNoNe)

«u® -

.g f‘:{l'f‘( N
SR

o

i
“
]

)

[
[}

RN

P d

RS

R

-" .l' ? o
:-’5 x5 4‘{ o]

7 %

'b’“

XL

~
*

(4

24

% '-(§

£

<
P4

‘I(;{' ’4A@ %



I W)

-

12° 202" 00" 108" LV a" W2 % U . 29,

TIME
28.20
28.40
28.60
28.80
29.00
29.20
29.40
29.60
29.80
30.00
30.20
30.40
30.60
30.80
31.00
31.20
31.40
31.60
31.80
32.00
32.20
32.40
32.60
32.80
33.00
33.20
33.40
33.60
33.80
34.00
34.20
34.40
34.60
34.80
35.00
35.20
35.40
35.60
35.80
36.00
36.20
36.40
36.60
36.80
37.00
37.20
37.40
37.60
37.80
38.00
38.20
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TOP
STRAIN
18.775
18.957
19.137
19.316
19.492
19.659
19.826
19.998
20.174
20.346
20.505
20.4670
20.839
21.001
21.169
21.332
21.485
21.647
21.813
21.969
ea2.125
22.284
22.446
22.611
22.775
22.943
23.122
23.311
23.502
23.697
23.893
24.090
24.286
24 .472
24 .648
24 .825
25.005
25.186
25.366
25.549
25.735
25.919
26.096
26.266
26.435
26.609
26.788
2b.966
27.141
27.313
27.482

o J_'\o" -'\J'..-P_‘

BOTTOM
STRAIN
18.718
18.876
19.028
19.181
19.340
19.499
19.655
19.820
19.999
20.180
20.365
20.564
20.763
20.954
21.141
21.320
21.496
21.673
21.848
22.029
22.217
a2e.397
2a.569
2e.739
22.909
23.083
e23.258
23.431
£3.605
23.771
23.932
24.100
24.274
24.440
24.602
24.766
24 .928
25.089
25.254
25.419
25.581
25.740
25.902
26.071
26.248
26.423
26.596
26.780
26.978
27.177
27.372
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GROSS TOP
STRAIN STRESS
18.734 0.7634
18.904 0.7652
19.074 0.7670
19.245 0.7687
19.413 0.7703
19.586 0.7719
19.737 0.7734
19.928 0.7750
20.099 0.7766
20.270 0.7781
20.442 0.7795
20.613 0.7809
20.785 0.7823
20.957 0.7837
21.129 0.7851
a21.302 0.7864
21.474 0.7876
21.647 0.7889
£1.820 0.7902
21.992 0.7914
22,165 0.7926
22.339 0.7938
ez.s51e 0.7951
22,685 0.7963
22.859 0.7975
23.033 0.7987
23.207 0.8000
23.381 0.8013
23.555 0.8026
a23.7e9 0.8040
23.904 0.8053
24.078 0.8066
24.253 0.8079
24 .428 0.8091
24 .603 0.8103
24.778 0.8114
24.953 0.8125
25.128 0.8137
25.304 0.8148
25.479 0.8159
25.655 ©.8170
25.831 0.8181
26.006 0.8191
26.18¢2 0.8201
£6.359 0.8211
26.535 0.8e220
26.711 0.8230
26 .888 0.8240
27.064 0.8250
27.241 0.8259
27.418 0.8268

B6

P T

BOTTOM
STRESS
0.7628
0.7644
0.7659
0.7674
0.7689
0.7704
0.7719
0.7734
0.7750
0.7766
0.7782
0.7800
0.7817
0.7833
0.7848
0.7863
0.7877
0.7891
0.7905
0.7919
0.7933
0.7947
0.7960
0.7972
0.7985
0.7997
0.8009
0.8022
0.8034
0.8045
0.8056
0.806&7
0.8078
0.8089
0.8100
0.8110
0.8120
0.8131
0.8141
0.8151
0.8161
0.8170
0.8180
0.8190
0.8200
0.8210
0.8220
0.8230
0.8241
0.8252
0.8262

GROSS
STRESS
0.7630
0.7647
0.7663
0.7680
0.7696
0.7712
0.7728
0.7743
0.775%9
0.7774
0.7789
0.7804
0.781%9
0.7833
0.7847
0.7861
0.7873
0.7889
0.7903
0.791¢6
0.792%9
0.7%42
0.7955
0.7968

-0.7981
0.7993
0.8006
0.8018
0.8030
0.8042
0.8054
0.8066
0.8077
0.808%
0.8100
0.8111
0.8122
0.8133
0.8144
0.8154
0.8165
0.8176
0.8186
0.8196
0.8206
0.8216
0.B8ea2s
0.8236
0.8246
0.82535
0.8265
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TIME
38.40
38.60
38.80
39.00
39.20
39.40
39.60
39.80
40.00

DO

TOP
STRAIN
27.650
27.819
27.989
28.159
28.329
28.3500
£8. 664
28.823
28.986

OU RNCE T

BOTTOM
STRAIN
27.568
27.766
27.939
28.146
28.333
28.514
28.689
28.865
29.049
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GROSS
STRAIN
27.595
27.772
27.949
28.126
£8.303
28.481
28.658
28.836
29.014

B7

ToP
STRESS
0.8277
0.8286
0.8295
0.8304
0.8312
0.8321
0.8329
0.8337
0.8345
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BOTTOM
STRESS
0.8273
0.8283
0.8293
0.8303
0.8312
0.8322
0.8330
0.8339
0.8348

AT

o

I3

GROSS
STRESS
0.8274
0.8284
0.8293
0.8302
0.8311
0.8320
0.83e9
0.8338
0.8346
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