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Abstract

It is well known that in linear programming, the optimal values of the dual
variables can be interpreted as shadow prices (marginal values) of the
right-hand-side coefficients. However, this is true only under nondegeneracy

assumptions. Since real problems are often degenerate, the output from

conventional LP software regarding such marginal information can be misleading.
This paper surveys and generalizes known results in this topic and demonstrates
how true shadow prices can be computed with or without modification to existing

software.

Keywords: Linear Programming, Shadow Prices, Optimization Software.
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1. Introduction

In most elementary treatment of linear programming, such as typically

found in textbooks on Management Science and Operations Research, the dual

variables of an LP are interpreted as marginal values of the right-hand-side

coefficients. As the latter often represent resources of limited supply, such marginal

values have come to be known as shadow prices. They indicate how much additional

units of the corresponding resources are worth. However, this equivalence between

dual variables and shadow prices holds only under the assumption of

nondegeneracy. Their nonequivalence in general, while perhaps well known among

specialists, is almost never discussed in textbooks for students and would be

practitioners. (Exceptions are, e.g. Murty [11] and Shapiro [17].) Even commercial

software for LP fails to alert users of this caveat. As a result, misleading outputs of

LP models may have resulted in many inadvertent misuses of the approach. The

purpose of this article is to summarize known results on this topic that have

appeared in the literature, generalize them to handle any LP, examine how true

shadow prices can be computed with existing software, and show extensions to LP

software necessary for the automatic generation of such prices.

2. Previous Results

For conciseness, we summarize only theoretical results in the literature, well

known or otherwisc, that are essential to the computation of shadow prices. Related

topics such as uniqueness of solutions and degeneracy of LP's can be found in other

works in the list of refeences (Greenberg [7], Mangasarian [10], Pirold [13]).

Consider the following primal-dual pair of linear programs:

MaximMi cTx

(P) subjectto Ax : b

x 20;



Minimize bTy
(D) subject to ATy c

Y Z:O;

where A is mn x n, cc Rn, x e nb Rm, y eRm.

Definition I1 Denote the optimal objective value for (P), as a function of the
right-hand-side, by

v(b) = max (cTx I Ax 5 b; x O );

the set of feasible solutions and the set of optimal solutions to (P) by

X = Ix e Rn I Axb; x Z0),

X* = IXE XtI cTx =v(b) ) respectively; and

the set of feasible solutions and the set of optimal solutions to (D) by

Y =fIy E RMI ATy c,yz:O),

Y*= (y C YI bTy =v(b)).

£&Rosition I. ( See e.g. Murty [11], Rockafeller 114])

v(b) is a non-decreasing, piecewise linear concave function.

Dfiniion 2. The set of subgradients for a concave function f: Rm R is defined as

af(b)=(y e Rm I f(b4.u):5f(b) +uTy, for al UE Rm

2
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Ernpiti i.2. ( See e.g. Ch. 8 in Murty [11])

When v(b) is finite, av(b) = Y*.

elnition.a3. The directional derivative of a funtion f: Rm - R at b in the direction

of u is defined as

Duf(b) = lim f~ b + tu-tb1
t .,>0+  t

Pro~sition 3. (See e.g. Gauvin [6], Rockafeller[14], Shapiro [17])

Dv(b) = rin [ uTyI y e av(b)). p

"S.

Mliltio.n4. For (P), the buying (or positive) shadow price of constraint i is
defined as

+p
Pi + = De(i) v(b) and

the selling (or negative) shadow price of constraint i is defined as

pi =D-e(i) v(b) where e(i) is the ith unit vector.

In other words, the buying shadow price is the (instantaneous) rate of change in v(b) i

for an increase in bi and the selling shadow price is the negative of the

(instantaneous) rate of change in v(b) for a decrease in bi.

EwQition 4. (Gauvin [6])

p+ = min (yi IyEY*)

3
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pi =max y IYEY*).

Dfinitio. Denote the index set of the basic variables in an optimal tableau for (P)

by B, the index set of the nonbasic variables by N, the index set of slack variables by

S. Denote the row of reduced costs by d, the right-hand-side by B, the ith row and

the jth column of the tableau by Ii and Aj respectively. Let dS and A'S be d and Ai

restricted to S respectively. Let T = (i I 1i = 0) be the index set for the rows with

degeneracy and y* be the current dual optimal solution, i.e. y*=d S .

roosition 5. ( AkgUl [1], Best [3])

Y* is characterized by y e Y* <=> y y* + ][tk IkS I k T

for some t E Rrm such that

d+ {tkik I k ET ) > 0.

J:.

3. The General Case

The above definition of shadow prices found in the litcrature (e.g. Akgfil [1],

Gauvin [6], Murty [1 ]) assumes an LP in the canonical form (P) such that "prices"

are always nonnegative quantities. This way, v(b) tends to increase or decrease with

bi. To accommodate both maximization and minimization problems with any

combination of inequality as well as equality constraints we need a more general

definition that allows a consistent sign convention.

Definition 6a. For any LP, the incremental shadow price Pi+ of constraint i is

defined as the instantaneous rate of improvement in v(b) with an increase in bi; the

decremental shadow price (pi_) of constraint i is defined as the negative of the

instantaneous rate of improvement in v(b) with a decrease in bi.

* 4



In this sense, a negative incremental price or a positive decremental price is the rate

of deterioration of the objective value as the right-hand-side is changed. Note that

whether an increase or a decrease is actually involved depends on the direction of

optimization. The possible cases are listed in Table 1.

Minimization:

Type of constraint Increase in v(b) Decrease in v(b)
< P-i <0 Pi+ >0

i >Pi+ <0 Pi- >0

Pi+ < or Pi_ <0 Pi+ >0 or Pi- M>;

Maximization:

Type of constraint Increase in v(b) Decrease in v(b)

< Pi+ >0  Pi- <0

>Pi- >0 Pi+ <0
Pi+ >0 or Pi- >0 Pi+ Pi_ <0;

Table 1. Interpretation of Shadow Prices

Dfiniion 6b Suppose LP in general has the form

maximize cTx

(LP) subject to Lx < p

Gx >q

Ex = r

x 2:0.

5
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Let maximze cTX

(P') subject to Lx < p
-Gx <-q

Ex< r

-Ex _5 -r

x 0.
and

minimize pT YL" q YG +rT(yE+ -YE-)

(D') subject to LTyL - GTyG + ET (YE+ - YE-) > c

YL, YG, YE+, YE- : 0

be the expression of LP as (P) and (D) above. Finally let the equivalent problem to
(D')be

minimize PTyL- qTyG + rTYE+

(DLP) subject to LTyL- GTyG + ET YE+ C

YLO !

YG <0

YE unrestricted.

In the following proposition, Y and Y* for (LP) is defined using (DLP). This
convention is standard practice in LP implementation (see, e.g. [ 8], [10], [151).

Finally, let Y' and Y'* correspond to (D'). Note that YG in (DLP) is -YG in (D') and

YE in (DLP) is YE+ YEin ().

N
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For any LP: pi+ =min (yi I y C Y*)

Pi_ max (yiy8 Y*).

Proof.

First consider the case of maximization. For less-than-or-equal-to constraints,
the results follow from Proposition 4. A greater-than-or-equal-to constraints a'x >

bi can be written as - ax: <-b i as in (P'). Applying Proposition 4 to (P') and (D')

pi+ = instantaneous rate of improvement with increase of bi in (LP)

= instantaneous rate of improvement with decrease of -Li in (P')

= -max (yi I y Y'*)

= min {-yi Iy Y'*)

= min {yiIye Y*).

Expressing an equal-to constraint as two less-than-or-equal-to constraints as in (P'),

we have

pi+ = instantaneous rate of improvement with increase of bi in (LP)
= instantaneous rate of improvement with simultaneous increase of bi a d

decrease of -bi in (P')

=min[YiE+ Iye Y'* I-max (YiE- I Y E Y'*)

= mn E YiE lY y Y'*)

= min (YiEIYE Y*).

The proof for Pi- is similar.

For minimization, the objective min cTx can be written as -max(-cTx). Both

(D') and (DLP) are as before except -c replaces c. Since any rate of improvement in

7



max(-cTx) is the same as that in min(cTx), the results follow.

Since y*, the current dual optimal solution given by the optimal basis, belongs

to Y* some or all (e.g. when (P) is nondegenerate) of its components may already be

true shadow prices. Therefore, we need to identify such cases and then proceed to

find the remaining missing shadow prices. This can be done using right-hand-side

ranging in LP sensitivity analysis.

For constraint i, let ri+ and ri. be the allowable increase and allowable

decrease given by the right-hand-side range analysis.

If ri+ > 0, then Pi+ = Yi. If ri. > 0, then p- = Y'i"

Proof. It suffices to show for the case of (P). The general case follows with

appropriate sign manipulations.

If ri+ > 0, then for small enough abi>O, v(b+eiab i) = CBB -1 ( b+eiab i) where B

is the current optimal basis, cB are the objective coefficients of the basic variables,

and ei is the ith unit column vector. Therefore

pi+= lim[abi -> 0+] {v(b+eiab i) -v(b)) bi

- CBB-1

- Y*i.

The proof for pi_ is similar.

8
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4. Algorithms

For any shadow price pi+ or pi" that is not given by y*, two approaches can be

taken for its computation.

I. Direct Search using:

a) parametrization;
b) perturbation;

II. Constrained Dual using:

c) dual simplex; .i

d) implicit Y*.

a) Right-hand-side parametrization:
'A

By varying the right-hand-side bi parametrically, an adjacent basis (in the

sense of Murty[I 1I]) with a different objective value is sought. If found, the dual

variable yi for this new basis provides a rate of improvement leading into this basis, %

which will be the same as the rate of improvement leading out of our original

optimal basis. If the objective value will not change, the rate of improvement is

zero. In this case, either the direction of change is infeasible or any change in bi in

that direction will not affect the objective value.

b) Right-hand-side perturbation:

This is direct application of the definition of shadow prices. The right-hand-

side coefficient is altered by a suitably small amount, the LP reoptimized and the

rate of change computed. See Dantzig [5] for a more sophisticated version of this

approach. '.:

c) Constrained dual:

This follows from Proposition 6. Each missing shadow price requires the

solution of (DLP) with bTy= v(b) and yi optimized. With conventinal software, this

9 4
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method is too cumbersome to be practical. In enhanced software, the method below
is more efficient.

d) Implicit Y*:
In this method, any missing shadow price can be solved by a subproblem

implied by Propositions 5 and 6. For example, for pi+, we have I
Minimize [y*+I{tkfk IkET ei

(S+) subjectto 7( [tk Ak I k c T > -d.

where t E RM. For finding pi_, a subproblem (S_) is obtained from (S+) maximizing

the same objective. In Section 7, efficient implementation of this approach will be

discussed.

5. A Numerical Example B
Before duscussing the implementation of methods to compute true shadow

prices, it will help fix ideas by considering a numerical example. Consider the

following LP adapted from Ho [8, Ch 31.

Minimize 74A + 40B +50C +10D

Subject to 3A + B + 2C : 8

2A +2B + D L 11

4A + 3C > 10.667

A,B,C,D ! 0

Let SI, S2, S3 be the slack variables and X, Y, Z be the dual variables to the

first, second and third constraints respectively. The optimal solution to the LP is

10
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A = 2.667

B = 0.0

C = 0.0

D = 5.667
Sl =0.0

S2 = 0.0

S3 = 0.0

N

with an objective value of 254.00. However, Si is basic and the primal optimal

solution is degenerate. Indeed, there are two alternative optimal dual (basic)

solutions, namely,

X=0.0

Y = -10.0

Z = -13.5

and

X = -18.0

Y = -10.0
Z z= 0.0.

Note that the output of any commercially available LP software lists only one or the

other dual optimal solution which cannot be interpreted directly as marginal values.

The minimum anti maximum values for the optimal dual solutions are given in

Table 2.

mC r maU
First -18.0 0.0

Second -10.0 -10.0

Third -13.5 0.0

Table 2. Extreme Values in Y* for Example LP.

S......... ..11



The interpretation of these values as shadow prices are tabulated in Table 3.

rab i  v(b) Pi+ Pi-

First -0.1 0.0 0.0

+0.1 +1.8 -18.0

Second -0.1 -1.0 -10.0

+0.1 +1.0 -10.0

Third -0.1 0.0 0.0

+0.1 +1.35 -13.5

Table 3. Shadow Prices for the Example LP.

The cbi and dv(b) columns are obtained from actual perturbations of the LP. The

results verify Proposition 6.

6. Computing with Conventional LP Codes

Given that the outputs of conventional LP codes do not provide complete

information on all the true shadow prices it is of interest to see if one can still obtain

such answers using only the very same codes. For this purpose, we use two popular

packages: LINDO [15] on IBM PC's and MPSX/370 [9] on IBM mainframes.

Two different procedures are suggested for use with UNDO:

i) parametric right-hand-side;

ii) perturbation.

In the parametric approach, UNDO is used to solve the LP and do the Range

12



(Sensitivity) analysis. See Figure 1 for the screen output at this stage. For each

right-hand-side that has an allowable increase of zero, the following procedure is

performed. The PARA command is used with a new right-hand-side value that is

large enough to force a change in the objective value if possible.

Figure 2 shows the output from PARA for the first constraint in our example.

The dual variable (-18.00) corresponding to the first new objective value gives the

incremental shadow price (pi+) sought. In cases where the objective value does not

change, the last dual variable listed should be used.

Similarly, for each right-hand-side that has an allowable decrease of zero, the

PARA command is used with a decrement to the right-hand-side value to find the

decremental shadow price. Figure 3 shows the output from PARA for the third

constraint in the example.

Note that whenever the objective changes in one case of parametrization, the
LP needs to be resolved before proceeding with another case. This is necessary

because LINDO starts with the last available tableau to execute the PARA option.

Therefore, performing consecutive parametric analysis will not lead to desired

results. This is a definite drawback of this approach with LINDO as the LP may

have to be solved as many times as there are missing shadow prices.

The perturbation procedure involves using the ALTER command to change a

right-hand-side value, again by an appropriately small amount. Then the LP is

resolved and the output is examined to determine missing shadow prices using their

definitions directly. The results of this procedure for the example are listed in Table

3.
With LINDO, this approach is not as inefficient as it may seem because the last

tableau available is used to start an altered LP. However additional computation

must be performed to determine the rates of change. Also, the perturbations must be

made independently. This means the original problem must be retrieved at each

step, or another ALTER must be used to erase the previous case.

Using MPSX/370, two procedures are suggested. First, solve LP with the

RANGE option. Examine the ranges for row at limit levels for correct cases of

13



shadow prices. For all other cases, use the PARARHS option. In MPSX/370, this is

based on incrementing the original right-hand-side by successive multiples of a

change column until a maximum increment is reached. All three parameters: the 5
change column, the multiple, and the maximum increment must be specified in the

control program. The change column is the appropriate unit vector for finding an

incremental shadow price and the negative unit vector for finding a decremental a
shadow price. The parameters should be chosen to reduce extraneous computation
and output.

Note that in MPSX/370, each PARARHS command is based on the optimal
tableau of the LP and not on the tableau for the previous parametrization.
Therefore, no redundant resolution of the LP is necessary as is the case with

UNDO.

Since MPSX/370 is not interactive, the above procedure can become
cumbersome. For the same reason, the perturbation method is deemed impractical.

However, the parametric approach can be automated at the expense of extraneous

computation. This second procedure is carried out by setting up in a single control

program all the PARARHS runs, regardless of whether they eventually become

necessary or not.

7. Computing with Enhanced LP Codes

As we have seen above, although it is possible to reconstruct all true shadow

prices for an LP by repeated application of available features in conventional

software, it would be much more convenient to have such information generated

automatically. This will of course involve the modification of existing codes. To

gain insight into the complexities of such attempts we have extended an

experimental LP code to include the computation of true shadow prices using

method (d) described earlier.

Consider subproblem (S+) in Section 4. Each column in this LP is the

transpose of a degenerate row in the optimal tableau of (P). There are n+m

constraints, corresponding to the variables (including slacks) in (P). Note that a

14I
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basic variables in the optimal tableau implies either a null constraint in (S+) or a

nonnegativity constraint on a tk . Therefore, (S+) effectively has n constraints in

nonnegative variables tk , k E T. Computationally, it is more efficient to solve its

dual. Letting J be the index set of nonbasic variables in the optimal tableau of (P),

the dual to (S+) can be written as follows.

Maximize -dw

(DS+) subject to X W :kjwj Sksi , k E T;

wj >0, jEJ.

Each column in (DS+) is simply a column in the optimal tableau of (P)

restricted to the degenerate rows. Although the tableau would not be explicitly

available in an advanced implementation of the Revised Simplex Method, the data

for (DS+) can be reconstructed efficiently. Moreover, different cases involve only

changing of the right-hand-side. Therefore, shadow prices can be computed by an

appropriate sequence of (DS+) and (DS). Further details on the implementation of

this approach is reported in Smith [16]. Figure 4 shows the output from an

experimental code for our example.

8. Discussion

It is shown that conventional LP software does not provide complete shadow

prices in general. Although marginal values can indeed be found using repeated

applications of existing codes, it would be desirable to automate such computations

in commercial packages. This can be done without extensive modifications. In view

of the fact that dual variables are routinely interpreted (often incorrectly as we have

seen) as shadow prices by practitioners, it is important that only truly meaningful

information is generated.

15
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MIN 74A+40B+50C+10D
?ST
?3A+B+2C>8
?2A+2B+D> 1
?4A+3C>10. 666667
?END
:GO
LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION
1 ) 254.000000

VARIABLE VALUE REDUCED COST
A 2.666667 .000000
B .000000 20.000000
C .000000 9.500000
D 5.666667 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 .000000
3) .000000 -10.000000
4) .000000 -13.500000

NO. ITERATIONS - 2

DO RANGE(SENSITIVITY) ANALYSIS??Y

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
A 74.000000 12.666670 54.000000
B 40.000000 INFINITY 20.000000
C 50.000000 INFINITY 9.500000
D 10.000000 10.000000 6.333333

ROW CURRENT ALLOWABLE ALLOWABLE S
RHS INCREASE DECREASE

2 8.000000 .000000 .000000
3 11.000000 INFINITY 5.666667
4 10.666670 .000000 .000000

FIGURE 1. LINDO Output for Example LP
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:PARA
ROW:
2
NEW RHS VALUE =

8.001

VAR VAR PIVOT RHS DUAL OBJ
OUT IN ROW VAL VARIABLE VAL

ART SLK 4 2 8.00000 .000000 254 .000
D SLK 3 3 16.5000 -18.0000 407.000

FIGURE 2. LINDO PARA Output for First Constraint

PARA
ROW:
4
NEW RHS VALUE --
10.6

VAR VAR PIVOT RHS DUAL OBJ
OUT IN ROW VAL VARIABLE VAL

SLK 2 SLK 4 2 10.6667 -13.5000 254.000
ART ART 0 10.6667 .000000 254.000

FIGURE 3. LINDO PARA Output for Last Constraint

"
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VARIABLE VALUE REDUCED COST
1 2.666666667E+00 O.OOOOOOOOOE+00
2 0.000000000E+00 2.OOOOOOOOOE+00
3 0.000000000E+00 1.400000000E+00
4 5.666666667E+00 O.OOOOOOOOE+00

ROW LOGICAL DUAL VALUE
1 -2.540000000E+02 1.000000000E+00
2 0.000000000E+00 -1.800000000E+01
3 0.000000000E+00 -1.000000000E+01
4 6.357828776E-07 5.551115123E-17

SHADOW PRICES:
ROW INCREMENTAL DECREMENTAL

2 -1.800000000E+01 O.OOOOOOOOOE+00
3 -1.000000000E+01 -1.OOOOOOOOOE+01
4 -1.350000241E+01 O.OOOOOOOOOE+00

FIGURE 4. Output from Experimental LP Code
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