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Abstract

'S.

Over the past several years many contributions have been made to the problem of detect-".'.,

ing underwater acoustic signals and estimating signal parameters such as time-of-arrival,,, '

frequency-of-arrival, angle-of- arrival, etc. In the previous research effort, the spatial detec-

tion problem was re-examined from a decision-directed point of view, and a methodology

was presented to estimate the time-varving joint prior spatial distribution of the signal. In .%'

0the current research effort, attention is directed toward improving detection of temporal

'p %.,

signals according to the frequency content of the signal. The source environment char-

acterizes the presence or absence of the various sources (both signals as tiefas they 
evolve in frequency and time. It may not be assumed that this environment is stationary S

in either frequency content or time, hence it is necessary to characterize and track the ep.o

nonstationarybehavior of this environment. Knowledge of the source environment may be

used to effect on-line adaptation of the decision strategies used to detect hostile targets.

and has potential for modifying the collection procedures. The kev result of this report

is the development of a decision-directed empirical Baves decision rule which permits a -*

nonstationary prior marginal probability distribuiton to be estimated (i.e., tracked) based "
upon the time-varying frequency content of the signal.
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Chapter 1

Introduction

1.1 Problem Statement

The problem addressed by this investigation is a continuation of the issues addressed by ,.

[34], and represents a natural extension of that research. The practical problem which

motivates this study is that of detecting, localizing, and classifying foreign submarine ac-

tivity by means of acoustic surveillance sensors located at strategic positions, particularly

in locations where noise sources are present which emit significant energy in the frequency

bands of interest (e.g., ice noise). These noise sources often occur as narrowband "tonals"-

that are difficult to separate from legitimate targets. Consequently, the target detection

problem is greatly complicated by their presence, and an important problem is to develop

procedures for distinguishing real targets from pseudo targets. Due to the nature of the

signals involved, much harmonic information is generated which may allow the system
to identify source characteristics. For example, underwater sources radiate narrow- and

broad-band acoustic energy due to propulsion systems, auxiliary machinery, and hydro-

dynamic effects [1]. These effects comprise what is generally referred to as the source

3%gnature. Since these effects occur at different levels and frequencies depending on the

actual shape, size, and operating mode of the vessel, the observed signal components can

be compared with a set of known target characteristics for identification purposes. Hence.

it is very advantageous to estimate the spectrum of the various received signals for identifi-

cation purposes. For this research effort, we concentrate not on the usual spectral power or

energy estimation methods, but on the application of the above analysis for the estimation

1-1
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of the probability of spectral signal presence as a method for more robust identification

procedures.

The major thrust of this investigation is the development of adaptive methods for

estimating the signal environment as characterized by the prior probabilities of signal

content. These methods lead to the structuring of decision-directed detection procedures

that are capable of real-time adaptation to a changing environment (i.e., nonstationary (

priors).

Review of Previous Research

The investigation conducted under the previous contract (N00039-85-C-0223) [34,35,33]

provides encouraging results regarding adaptive classification of signals. That work con-

centrates primarily on the classification of the spatial frequency content of signals. and

yields a decision-directed empirical Bayes methodology to adaptively adjust the decision

rule to account for the current joint prior distribution of signals of interest. The result-

ing detector represents a potential alternative to classical Neyman-Pearson, minimax, and
I

Bayesian decision rules.

The algorithm central to the success of this adaptive decision rule is a recursive, non-
'i' l inear, ex act minimum mean square estimator propos ed by Se gall [29] and first appli ed to

decision-directed detection by Stirling [32]. This algorithm was extended to multivariate

detection in [34,33].

. The spatial detection problem is that of detecting threat signals from spatially separated

acoustic surveillance sensors. The signal is often embedded deeply in the noise background. ,

and standard decision criteria yield marginal results. In order to apply the Bayes formula.

one must know the a priori distribution of the signal with respect to the spatial coordinates

of the detection system. Unfortunately, this is rarely the case and, furthermore. even

if known, this distribution would likely be non-stationary (i.e.. it would evolve in time

and space), since the threat environment is subject to change. Errors in the a priori

distribution may seriously degrade performance of a Bayes detector in this environment.

Furthermore, in a weak signal-to-noise environment, a constant probability of false alarm

may result in the probability of a missed detection being excessively large, and decision

1-2i



rules based upon a specified constant false-alarm probability may be inadequate. Also,

minimax decision rules are unduly pessimistic in this environment, and may not lead to

ac-optable performance.

In view of these issues, the empirical Bayesian approach. is explored in [34]. and the

prior distribution is estimated from the data. Empirical Bayes procedures are well known.

[22], but traditionally deal almost exclusively with the stationary case, wherein the prior

distribution is constant. For this case there exist asymptotically sub-minimax decision

rules that approach the Bayes envelope. Our problem is somewhat more complex, how-

ever. since we must allow this distribution to be time-varying. Throughout the course

of a collection, the target environment is subject to change as sources move through the

collection region, enter and exit sensor beams. etc. One may not be able to wait until all

the data are received to make decisions. In fact, a real-time decision making capability is

necessary and, critically, it must be able to adaptively adjust the structure of the decision

rule to ensure that the decisions are being made as accurately as possible. These con-

straints on the empirical Bayes procedure are severe, and render classical "feed-forward"

decision processes inadequate to deal with the tracking capability. An alternative "feed-

back" approach is developed in this analysis. Such a decision-directed approach represents

a significant departure from classical empirical Bayes procedures. but fits well i- o the II
general class of adaptive detection procedures such as generalized likelihood ratio tests..

Emphasis of Current Research 1
The above discussion for spatial frequency has a direct analog for temporal frequency. where

the decision problem consists of determining temporal frequency structure rather than

spatial frequency structure. In this case also, the empirical Bayes approach is applicable.

and mav be used to estimate the prior distribution on the frequency content of the signal

environment.

An additional issue may be addressed in the temporal frequency context. Consider a
collection scenario in an environment where the signal is corrupted by "tonal" noise, such as

that, encountered in an environment where the movement of ice generates noise tonals that

are within the spectrum occupied by threat, emitters. In such situations, a key problem

13
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is that of classifying the signal as a threat or as benign (i.e., of natural origin). Thus.

5 the problem becomes one of not only detecting the signal, but of recognizing structural

characteristics that serve to separate threat and benign signals.

To address this problem, a robust method of spectral estimation is proposed and exam-

ined. This method employs a decision-directed empirical Bayes decision rule to estimateI'"

the time-varying prior probability of signal occurrence in a given FFT (fast Fourier trans- )

form) bin of a signal. The a priori probability of spectral content for each bin is modeled as

a finite-state Markov chain and the state of this chain is estimated by obtaining the Doob

decomposition of the discrete-time point process representing the decisions. A generalized ,

empirical Bayes likelihood ratio test is used as the detector which feeds decisions to the

state estimator.

The present research is focused upon the application of decision-directed empirical a,.

Bayes methods to estimate the probability of spectral energy independently for discrete

frequencies. This approach does not employ information about any harmonic dependencies

which a practical signal would reasonably be expected to possess. Therefore, potentially

more robust detection schemes would take advantage of the harmonic content of the sig-

nal to improve the detector performance. One approach which seems viable is to use

conditional factorization of the joint probability density function in a distributed-network

technique similar to that done by Stirling and Swindlehurst [34]. Another approach which 3

may achieve improved performance is to provide for feedback of post-detection classifica-

tion decision information to sensitize the harmonically related scalar detectors.

1.2 Summary of Technical Approach

Decision-Directed Analysis

The philosophy of decision-directed procedures is illustrated in Figure 1.1. In this figure.

the outputs of the signal processing (including detection) portion of this diagram may be

used to generate an estimate of the signal model (including both deterministic and prob-

abilistic aspects of the model) and feed it back into the spatio-temporal signal processing j

block to modify the structure of the collection/detection system. There are a number of

1-4
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possible feedback strategies that may be adopted, including the following:

I-1 -s.:
SPATIO-TEMPORAL PROC

L J.

"*t Dislay --*

I.. m!SSIGN AL MODELING "-

Figure 1.1: Signal Processing Flow-Feedback Among Subsystems

1. Empirical Bayes. The most obvious feedback strategy is to modify the decision rules

in the empirical Bayes sense. Such a strategy provides estimates of the prior distri-

bution, based upon the past decisions, which modify future behavior of the decision

rule. Key issues associated with this procedure are the stability and robustness of the

estimator and the ability to track time-varying priors. These issues will be elucidated

throughout this report and a multivariate empirical Bayes detection procedure will

be introduced. -. .,

2. Control. A second type of feedback is to use the detected signals and associated

estimated probabilities to actually control or modify the spatio-temporal structure of
A-

the sensor arrays. For example, array allocation strategies, beamsteering, computer

resource allocation, etc., are all possible control strategies which modify or tune the A.

system to improve performance. Technical possibilities will be explored but not fully

developed in this report.

3. Modeling. A third type of feedback is to use the detected and estimated signal ,

structure to modify the channel model to perform signal enhancement (e.g., channel

1-5
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equalization) to shape the received signal for more reliable detection and classifica-

tion. Such techniques are not being considered under this current effort.

The Empirical Bayes Approach

The espousal of the Bayesian approach implies that the unknown state of nature is de-

scribed by a prior probability distribution. The empirical Bayes decision problem is for-

mulated exactly the same way as a standard Bayes problem, except that prior is unknown

* and must be estimated from the available data. Suppose that a particular decision problem

occurs repeatedly and independently, with the same unknown prior distribution through-

out the experiment. (Such a situation obtains when we attempt to detect a weak or fading

p target in a noisy environment or in the presence of tonal noise). Un rder this supposition. it

is logical to perform analysis on the observation in an attempt to discover the prior distri-

but ion. We may define an empirical decision procedure to be a sequence of decision rules

-. which learn or adapt from previous experiments and "converge" in some sense to the true

prior. Robbins and related researchers [21,22,24,15] describe the theory of asymptotically

optimal decision procedures and demonstrate that such procedures converge to the Bayes

envelope function as the number of experiments increases. These results are based upon

the assumption that the prior distribution is constant throughout the experiment.

A key aspect of this study is that the prior distribution is not only unknown, it is subject

to change as well. This change in the assumptions about the prior constitutes a significant

difficulty, since the classical convergence results may no longer be valid. In the extreme

case where the changes are completely unpredictable, it is likely true that the empirical

* Bayes approach is doomed to failure, and some other decision criteria should be evoked.

* If the changes can be modeled, however, then there is hope that the prior distribution

may be "tracked" in a manner entirely analogous to the way a moving target is tracked

using, say, a Kalman filter. The key assumption, therefore, is the model that is used to

* describe the evolution of the distribution. In this study we develop such a model, cast in a

state-space environment (analogous to a differential system) and present a recursive state

estimator (analogous to a Kalman filter) to estimate the time-varying prior distribution.

To accomplish the goal of tracking the changing distribution, we evoke a particular type

1-6 1
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of empirical Bayes decision rule, which may be termed a feedback, or decision-directed rule.

Such a rule uses past decisions to estimate the prior, rather than past data directly. To

illustrate the difference between a feedback and a feed-forward rule, consider the following

simple decision problem: Suppose we observe a signal y(t), for t = 0.1.2..... and at each .7I'.

sample, the signal may be white noise with mean zero or with mean b # 0. The decision V.

problem may be formulated as a hypothesis testing problem of the form

H 0 : y(t) = n(t) . t,2, t = 0, 1, 2,. . .-.- •

H1  y(t) = b+ n(t)

where, say, n(t) is an white Gaussian noise sequence of known variance, and b is a known

constant. If the prior distribution is known, the problem admits the well-known Bayes

solution. If not, the empirical Bayes approach is to estimate this prior. Suppose we

consider a feed-forward approach. Let 7r(t) = P{H1 true at tim' t} If -r(t) is a constant.

they we may form an estimate at time t as

it1r tY()Z.

which will converge to the true value as t -- oc. If 7r(t) is not constant, however, such

simple procedures are inadequate. If we pursue the standard empirical Bayes approach.

we must postulate an equation of evolution for 7r(t), say ir(t + 1) = f[r(t), t] + w(t), a

stochastic difference equation. We are also required to ensure that 0 < -w(t) K_ 1 for all t.

Once this model is in place, an appropriate estimation rule must be developed, which will ...

in general be nonlinear.

Alternatively, we may pursue a feedback approach, and deal not with the past values

of y(t), but with past decisions. We may model the sequence of past decisions as a point

process, {N), where N(t) = 1 if the hypothesis H, is selected, and N(t) = 0 otherwise.

Dealing with {N} is much simpler than dealing with the original sequence {y}. As we shall 'a.

illustrate in this study, it is indeed possible to formulate physically meaningful procedures a.

to describe the evolution of the probability structure of N(t), which will lead to an estimate ,,

of the prior distribution. The point process approach has the great advantage that it leads

!• to a recursive estimator that is easily implemented and can be analyzed theoretically.

Decision-directed detection has been used in many contexts [20.28,17,8,14,10,16] which

1-7 ,-
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deal with the problem of simultaneously detecting a signal and --stimating its parame-

ters using decision-directed schemes. Other researchers [6,26,12,27,13] provide analyses

of decision-directed procedures for estimating the prior distribution, i.e., decision-directed

empirical Bayes procedures. In [30,32] nonstationary empirical Bayes procedures were first

introduced, and these were combined with signal parameter estimation in [30,31].

Control Strategies

* The signal processing information flow illustrated in Figure 1.1 provides the capability of

* feeding back signal structure information to the sensor arrays as well as to the detection

block. With the empirical Bayes approach, only the prior distribution of the target oc-

currences is adapted, but the statistical description of the signal itself or the noise is not

modified. Furthermore, the allocation of the sensors is not adjusted in any way to accom-

modate either the probability structure of the signal environment (i.e., the occurrences of

threat signals) or of the structure of the signal and noise. Thus, in addition to empirical

Bayes decision strategies, there arise-s the potential for spatio-temporal adaptive control of

the collectors and of the detector, including the following:

* Signal extraction from ice noise. In collection environments where the noise environ- '
ment contains impulsive noise, the probability distribution of the signal with respect

to its frequency content may be used to discriminate between threat sources and

benign (i.e., natural) sources.

* Mixture process modeling. Impulsive noise fields may be modeled as mixture pro-

cesses, wherein the noise process is distributed as a convex linear combination of.

say, Gaussian noise. Decision-directed procedures may be used for estimating the

mixture parameter.

e Resource allocation. Knowledge of the multivariate signal occurrence probability is

potentially valuable in making decisions concerning the use of available collection re-

sources. For example, it may be possible to perform adaptive beamsteering to cover

regions of high-threat probability more thoroughly. and thereby positively establish

_.x.



the threat status of the signal. Additionally, this knowledge may motivate a deci-

sion to employ additional collection resources that may be held in reserve (due. for "'-

example, to power limitations) for high-threat situations. .

•Feedback of classification decisions. Once sources have been classified as to their ,

frequency content or signature, this information can be supplied to the detectors to %:-

improve detection performance in the harmonically related bins represented in the

*.0~

classification decision. Tonal noise which is nonharmonic would be classified as such %-

and those classes without harmonic structure could be given a lower weighting in":

sensitizing the detectors.,.

.4-

1.3 Summary of Results and Conclusions

Technical Results

The results of this study include: '

1. The formulation of a decision-directed empirical Bayes detection strategy for adap-

tively tuning the decision-rule to match the observed characteristics of the signal ::

environment. This decision rule results in a generalized likelihood ratio test wherein .

the a priori distribution is modeled as a finite-state Markov chain that is estimated

or tracked as a function of past decisions.

The develpoment of a new algorithm to perform spectral probability estimation

via a bank of scalar decison-directed empirical Bayes detectors and estimators. This

algorithm has application in a signal acquisition and analsis scenario when the such

probability of signal presence at certain frequencies is a critical surveillance factor.".-.?

In many sonar applications, the spectral content of a signal is the prime characteristic

employed to discriminate between threat sources and friendly sources.

3. The Joint estimation of signal distribution parameters qzimultaneously wvith the eqtzman"..'.

tion of the prior distrbution. The empirical Bayes approach requires the estixnatiO •
of the prior distribution, but, classically, assumes that the conditional distributions

1-9AA
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are known. This analysis provides an algorithm for estimating the signal magnitude

and noise variance as well.

Conclusions

The conclusions of this study are

1. Decision-directed empirical Bayes procedures in spectral probability estimation have

been shown to be useful in establishing the probability of signal presence at given

discrete frequencies. Using simulated data, a number of test scenarios have been
a9

conducted and the detector performance has been evaluated. These simulations S

have shown that effective estimates of the signal probability spectrum are obtained

at various signal-to-noise ratios. These results have been presented as probability

surfaces plotted against time and frequency. The problem of runaway is demonstrated f

when signal parameters are also required to be estimated, but is negligible for the

case when the prior probability only is estimated. Averaged probability estimates

obtained through Monte Carlo analysis demonstrate high confidence in the resulting

probability information.

2. The decision-directed rule effectively tracks time-varying prior distributions. A num-

ber of time-varying prior distributions have been simulated and it has been shown

that these rates may be effectively tracked with a decision-directed approach. The

most obvious feature of these estimated rates is a time-lag which is a feature typical

of real-time processing. The estimator is causal and, consequently, a few samples

are required to lock on to the new rate. This lagging phenomenon cannot be elim-

inated with real-time processing; only noncausal processing involving a smoothing

algorithm is capable of removing such phenomena.

3. The performance of the decision-directed empirical Bayes detector is compared to the

standard Bayes case, where the prior is exactly known. It is shown that as the signal-

to-noise ratio increases, the performance as measured by the total probability of error

for the empirical Bayes approach approaches that of the :-tandard case. A strikingi,

aspect of the simulations studied is that the additional complication of estimating_
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the signal parameters (the signal strength in the cases studied) does not significantly

change the performance of the detector .
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Chapter 2

Technical Approach

2.1 Decision Theory Background

In order to estimate the a priori probabilities associated with the various frequency com-

ponents of a given signal, we assume the following model: Let y(t) be a received signal

composed of possibly harmonically related sinusoids contaminated with additive white

Gaussian noise. Thus we can represent y(t) as summation of sinusoids and noise as fol-

lows:
P

Y(t) = Za,(t)A(t) cos(,t + O,) + v(t). (2.1)

Where .', is the frequency of signal 1. 0i is the phase angle for signal i, uniformly distributed

froii 0 to 27r.. 4,(t) is the time-varying amplitude of signal i. and v(t) is additive Gaussian

white noise. The number of sinusoids present is denoted by P. where P has no upper

bound. The a,(t) are discrete-time point processes (DTPP's) describing the signal presence

at time t. In estimating the a priori probability of the signal presence, we are then actually

estimating the rate (i.e. the expected value) of the DTPP governing the signal presence

at a given frequency. This model is therefore comprehensive enough to admit all forms

()f compositions o)f si,,siodts at given frequencies when there is noise present. This modlel
could also) be used to investigate other phenomena such as frequency-hop spread-spectrum

("011,itIiltiCat ion lvs T is and iplexed communication channels.

More Vene'rally. WC caI d(escribe th,' state of nature as the set of hypotheses defined by:

H ,,. , S'11 , 5',11 S.. , I} ,1

where S, is te evelt t hat a igiial i, present at at frequency .The (I are binary-valed

%q.-- 2-1



indices representative of the logical operation denoting signal presence at defined as

follows: 5(
Sr if a,=1

Si = f (2.2)

where ST is the logical complement of Sj. Let the intersection of all the S"l be denoted a .I

superclass set and let it be written as

SalnS2 n n... S P =SaaP. (2.3)

Thus, the model given in Equation 2.1 yields observations drawn from the set of 2' mu-

tually exclusive superclass variables. Thus, the observations y(t) may belong to any of the

superclasses at a given time t, and furthermore, thre superclass assignment characterizing

the observations may vary with time.

The problem scenario may be viewed in the classical framework of detection theory.

We will assume that there are P sinusoids present and that there is little or no reliable a

priori information concerning the probability distribution of the signal classification. We

will not assume, however, that the signal classifications are independent.

In order to make subsequent discussion more lucid, at this point we introduce notational

conventions to be employed in the remainder of the report. Since the problem is concerned

with estimation of frequency content we use a discrete Fourier (DFT) transform to obtain

frequency content information about the time-domain observations y(t). Justification of

this approach is given later. Let us denote the transformed observations in a given DFT

bin as Yk(t,) where k is the bin index. Due to the fact that the DFT information is

given not only for discrete time t, but for block-quantized time, we use the e subscript to -

indicate the block index at which analysis is being performed. Therefore. we shall refer

to the observations from now on as Yk(tt) being the data from the kth DFT bin taken at

time ti. These observations can be expressed in vector form as Y(tf).

We proceed with an empirical Bayes approach, and estimate sequentially the a priori '".

distribiition of the signal for use in an M-ary decision problem. We follow the philosophy

Se'spoused by [221 that there exists an unknown a priori distribution on the signal structure.

and this distribution may be discovered by processing the observations, Y(tf), over time.

2-2
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I.

The decision function, D(Y), then, is adaptive, in the sense that D(.) will depend on past

observations, i.e.,

D[Y(tt)] = D[Y(s), s < te; ti, Y(tt)] (2.4) %

such that action D[Y(te)] is a function of all past observations, Y(s), s < tt. This approach %

may be altered somewhat by rendering the decision function as a function of past decisions

(which is a function of past observations) rather than as a function of past observations

directly. Such a decision-directed rule has the form

D[Y(t,)j = D{D[Y(s)], s < te; ti, Y(te)}. (2.5)

Decision rules of the form (2.4) may be termed "feed-forward" decision rules, with infor-

mation flow as depicted in Figure 2.1, since the past data are fed into a decision function

generator which in turn modifies the decision rule. Decision rules of the form (2.5) may be

SENSORS SIG PROC D(t)

Array Detection
Output Extraction

SIIG MODEL

-Distribution
Estimation

Figure 2.1: Feed-Forward Rules

termed "feedback" decision rules, with information flow as depicted in Figure 2.2, since the

past decisions are fed back into a decision function generator which modifies the decision

rule. Clearly, a more general decision rule may be formulated which employs both feedback %

and feed-forward information flows, which represents an obvious generalization of Figures %

2.1 and 2.2.

The following discussion is a general representation and uses the time-domain obser-

vations y(t), but similar constructions exist for transformed signals of any type. Adaptive

decision rules of the types described above may be used to improve performance over non-

adaptive procedures, since they may be used to estimate the a prior; distribution. To

2-3
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SENSORS SIG PROC :,.
D(tt)

Array Detection
Output Extraction SL I

FD(tt) '

SIG MODEL

SDistribution I - '
/Estimation I?'-

Figure 2.2: Feedback, or Decision-Directed, Rules

illustrate, consider the binary hypothesis problem

Ho: y(t) = n(t)
H,: y(t) = s(t) + n(t)qn

where s(t) is known and n(t) is of known distribution. If the a priori distribution of the

occurrence of s(t) were known, the optimal decision rule (in the sense of minimizing the

probability of error) would be of the form

f1 if 7rf (y(t)IHI) > ( - )f (y(t)IHo)D~y(t)] = 0 otherwise

where ,r is the a priori probability of signal occurrence and f(y(t)IHI) and f(y(t)IH) U
are the probability distributions of y(t) under hypotheses H1 and H0 . respectively. The .

problem we face is that r is not known. The danger in arbitrarily guessing the value of 7

is well known, but is illustrated here for completeness. Let R(D, 7) denote the Bayes risk

function under a distribution for r. The Bayes decision rule will be one that minimizes p

this function. Let D,(.) denote such a rule. The Bayes envelope function. r(r,) R(D,. 7)

represents the minimum risk envelope when the decision rule is specified with the correct

value of the a priori distribution. For the binary decision rule in this example, the Baye.

envelope function is displayed in Figure 2.3. Now it can be seen what happens when the

prior is in error. Suppose the true a priori distribution is -." and the assumed o pror?

distribution is 7r' : 7-. Clearly, D , can lead to excessively large risks. and it would perhaps

be prudent to employ a minimax rule (denoted by 7r.kj in the figure) which bounds the risk

for all values of 7r. Robbins [22] showed, in a classical result, that -mpirical Bayes rules

2-4
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can achieve asymptotically the Bayes envelope, and proposed feed-forward type decision

rules of the form
9

D~y~s) s < t;y =I 1 if ir(t)f(y(t)Hi) > (1 - ir(t))f(y(t)jHo)
Dys < t]= 0 otherwise

where fr(t) is an estimate of 7r given {y(s),s < t}.

R

|£

,

7r 7,1 ir1 7r 7r

Figure 2.3: BaN s Envelope Function

The use of feedback decision rules for estimation of the prior is perhaps first treated

analytically ' by Davisson and Schwartz [6], wherein decision feedback algorithms are pro-

" posed and rmawav (a divergence phenomenon which may occur if a sequence of detection

errors cause the estimate of the prior to converge to zero or unity, thereby causing the
S.

decision rule to go unstable) probabilities are bounded. The resulting decision rule is of

the form

D[D(s),s <t;1 if t{(t)f(y(t)lHI) > (1 - fr(t))f(y(t)IHo)
) 0 otherwise

where 7,(t) is an estimate of 7r given { D,,.s < t}.

Although a complete discussion of feedback and feed-forward decision rules will not be
attempted, it may be instructive to comment briefly on some of the differences. 0

1Earlier researchers [20,28,171 successfully used decision-directed detectors, but described performance
empirically.

2-5
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1. The feed-forward decision rules are asymptotically sub-minimax. It can be shownA

that, under appropriate technical conditions [24], the risk using an unbiased estimator

of -, will converge, asymptotically, to the Bayes envelope.

No such global results are available for the feedback decision rules. due to the positive

probability of runaway. It can be shown, however, that the probability of runaway

can be bounded, and these bounds are double exponentially tight [6]. Consequently.

barring runaway, the risk using an unbiased feedback estimator of 7r will converge to

the Bayes envelope.

2. Classical, or feed-forward empirical Bayes rules are quite complex, whereas decision-

directed rules are extremely simple. Consequently. they are more attractive for use

and are more easily implemented. ".

3. The feed-f-rward rules are based on the assumption that the a priori distribution

is stationary (time-invariant). Indeed, stationarity is the very basis of the classical

empirical Bayes approach. As noted by [61, many applications where the prior is
*

unknown are highly likely to be nonstationary, and it will be necessary to 'track..

the nonstationary prior. In such situations, the feed-forward rules may be intractable.

and the use of feedback rules may be the only viable approach.

The objective of this investigation is to estimate the multivariate probability distriho-

tion function of the signal classification. i.e.. the probability, at each time t. that the signal

is in any of the possible classification states. We will assume that the distribution func-

tion may be time-varying and, therefore. we are required to obtain equations of evolution

for this multivariate distribution. The observation5 that are available for estimating this

distribution are the outputs of the sensors. We shall employ a feedback approach. and

estimate the distribution based upon the past (ecisions. thereby developing a rule of t 1w

form expressed by (2.3). wherein the multivariate probability (list ribut ion function o fh,

d(etection events is estinated and uised to formulate the empirical Bayes decision rule.

I
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2.2 Frequency Distribution Estimation

Initially, in order to estimate the probability distribution of the frequencies present in the

signal y(t), we must transform the time-domain data to the frequency domain or do some

other form of spectral analysis to establish the energy content of the signal at a given

time. We wvill not attempt a complete exposition of spectral estimation methods in this

report, but for the sake of completeness, we illustrate the problem by giving the following

examples:%

Short-time Fourier analysis [11] is performed by computing a running average of dis- '

crete Fourier transforms of the input signal. This method is useful because of the

computational advantages involved in using the Fast Fourier Transform (FFT) algo-

*~ rithm to compute the transformed data and the simplicity of the averaging process.

An implicit assumption made when employing Fourier analysis is that the signal is

inherently stationary - an assumption which cannot be completely valid for any phys-

ically realizable situation, but is, in fact, approximately satisfied for many signals,

especially during short time intervals.

* * The Wigner distribution [5,4,3,9,19] has recently gained much popularity as a tool

in spectral analysis due to the fact that it includes the time parameter in it's for-

mulation. It involves the computation of signal energy at discrete frequencies and

* therefore is limited in resolution, but the frequency resolution is not limited to the

* number of time samples as is the case with the discrete Fourier methods. The FFT

algorithm can be used to speed up computation of the Wigner distribution, but the

computational burden is still greater than the short-time Fourier analysis methods.

e A plethora of so-called high-resolution estimation techniques exist which are not lim-

ited to the resolution of energy at discrete frequencies, but are able to resolve energy

in a continuous spectrum. Although many variations exist, these methods largely rely

* on an eigenvalue-eigenvector decomposition of the correlation or covariance matrix

generated from the signal data. Some of these methods are more computationally

* burdensome than others, but, as a class, they do involve a greater computational cost

2-71



'!

than either of the above two methods. Some of the more well known high-resolution

methods are the MUSIC algorithm [251, a variety of modifications of this approach

[2]. and ARMA (auto-regressive, moving average) statistical signal models [23].

For our purposes, we choose the discrete Fourier transform method as an appropriate

procedure to examine the spectral energy present during a given time interval which we

may designate as a block of data samples. During the time block then, we transform the

input time data sequence y(t) into a frequency data sequence designated as Yk(tf). We

can alternatively represent this sequence as a frequency data vector Y(t,) for the block at

time te.

Let Y E C p denote the signal space, where C is the complex plane. And let Y(tf) E ,LetYi
¢'d.

denote the observed frequency data at time block te, for tt = 0, 1.....Let S denote a %

classification set for the signal Y. and define a decision function

D~y { - 0, 1}

as a binary-valued function mapping the observed signal into a abstract classification space.

That is, ..a-

1 S occurs at time t-
D[Y(t+)] = 0 S does not occur at time t.

For the P classes S.,j = 1. P given above, we may define

1 S, occurs at time t,
D [Y(t4) ] = j0 does not occur at time te (2.6,

and consider the P-vector decision function

D(.) = D,() ... Dp(.)r :

We note that the classification sets S, need not be disjoint (i.e., Y(t.) may belong to any

or all of the classes). We will assume that Y(te) must be classified into at least one of the

S., Alternatively, using the superclass notation given above, the decision problem reduces

to selecting the one superclass possessing the proper attributes.

At each time, tf, we are confronted with an -1-arv decision )roblem involving the

hypotheses
H+,,.., S ' .... 11. a t, E {0, 1}P ",.

2-8 "*
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where S ' -'' P is defined in Equation 2.3.

The Bayesian approach to this problem is to choose the hypothesis H, for which the
-7 I

likelihood function
7rck, "" P(te)f (Y( tt)l 1  " .. P ), (2.7)J

is maximized, where f(Y(t,)S1 ""P) is the distribution of Y(te) under classification Sa'' aP

at time t, and

-r" ". a(tt) P{SO'-OP; te} (2.8)

is the a priori probability mass function for each of the events Sal ''' P at time te. The

decision-directed empirical Bayes approach is to estimate 7ra1*P(te) by means of the past

decisions. {D(s),s < tt}.

Ideally, we would wish to estimate 7ra' "P(t1) directly in order to exploit any infor-

mation contained in the harmonic relationships which are to be expected in the analysis

of complex waveforms. However, as an initial simplification of the problem, we address

the case where it is assumed that we can factor 7r"O'P(tt) into independent marginal P..

probabilities as follows:

7rO aP(tt) = 7r .rr2 . . 7r P

We later address methods which treat the more general case involving interdependence

between the various frequency components. Thus, these marginal probabilities for the

various signal classes are the probabilities to be estimated. This model gives rise to a set

of scalar estimators each of which provides estimates for a given marginal probability, and

is an attractive approach to the problem since the dimensionality of the problem remains

relatively low compared with the high dimensionality one would encounter when estimating

even a portion of the joint probability structure. The fact that the noise in each frequency"

bin is uncorrelated with other bins also lends support to this approach (see Appendix

B.3). However, a significant amount of information about inter-signal correlation, if there

is any. is automatically lost in this process. Alternatives to be explored in mitigating this

problem are a joint probability conditional factorization similar to that done by Stirling

and Swindlehurst [341, and a new method using classification decision feedback initiated

for this research, but not yet fully developed as a theoretically robust strategy.
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2.2.1 Probability Models

As a practical matter, even though the signal model admits P different sinusoids in the

received signal, when using the discrete Fourier transform (DFT) as our spectral analysis

tool, the frequency resolution is dependent on the number of time points taken in the

analysis window of y(t). Let the number of time points in the analysis window be denoted

by .1. Due to the periodicity assumption inherent in the frequency domain, only Lf + 1

unique frequencies are represented by the elements of Y(tj). Therefore, the dimensionality"

of the problem is reduced if a + 1 < P or increased if M + 1 > P. Since we admit that P

may, in fact, be a very large number the chance of dimensionality reduction is actually quite

small. In any case however, it is not guaranteed that the P different sinusoids are such that

they fall into distinct bins of the DFT. This problem can be alleviated by increasing the

size of the analysis window, but the sinusoids still cannot be ensured to be in completely

separate bins. Thus, we consider that energy present in a given DFT bin is due to a single

sinusoid at a frequency contained in the frequency range of that bin.

Now, define Nk(te) to be the DTPP generated by the decision process operating on the

kth component of the observation vector at time te. In other words, denote

M "

Nk(tt) = Dk[Yk(t1)], k = 0,..., - tt = M/2. e = 0. 1,... (2.9)
2

where the usage of L is explained above. With this understood, and for the sake of simpler2M

notation, we now designate L = "5- Let L5t, denote a c-field generated by all of the factors

that may affect the distribution of the process N(tt) at time te, and define the marginal

conditional probability mass function

P-Vk(t,)(a-1Bt,_ ) = P{N4 (t,) = CkBt,, .

That is, we say that p ,,)(ok 13it,-) is the conditional probability of signal energy being .

present in the kth DFT bin.

Now, we can represent the ab~ove a prmor7 probability as the rate of the DTPP .'(t,)

as follows: %I

Ak = P.' ti) I,} I L =30. L (2.10)

2-10
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At this point, it must be emphasized that the rates )k(tt) do not correspond directly with

the '' given above unless all sinusoids are assigned to separate DFT bins. Therefore.

we may not completely describe any a priori probability distribution due to the resolution

of the spectral analysis tools employed. Since we desire to estimate the probability struc- -'s

ture via these marginal probabilities or rates, we conclude that we must avail ourselves of

an estimator for Ak(tt).

To do this, we require a probabilistic model to characterize this rate and a model to

describe its evolution in time. A physically meaningful and. at the same time, mathemat-

ically tractable, model for Ak(tf) is to represent it as a finite-state Markov chain. Such a -

model may be contrasted with a continuous model for \(t) as follows:

1. The Markov structure permits the evolution of Ak(te) to be treated probabilisti-
cally via the state transition matrix. This representation may be contrasted with a -

stochastic differential or difference equation for Ak(tt) which may be difficult to treat

analytically. The introduction of a Marko v* model permits the application of an exact

MMSE estimator for A(t) with a recursive estimator.

2. The finite-state model permits limits on the range of Ak(tI) to be imposed. and

the rate may be restricted to the expected domain of the parameter space. Such

a limitation may, for example, be chosen to reduce or eliminate the probability of

runaway, which is a possibility in the decision-directed estimation context. -,

Under the Markov structure, we may represent Ak(tt) as a finite-state vector Markov chain

with states pi(te),.. , p,(tt) which can be expressed in vector form for each bin k as I

Pk,2(tt)

Pk(t,) =

Pkr( €te)

Define a Markov state vector for each bin as xk(tt) - [x(te) .... Xr(t)]T where

1 if Ak(t) = pk,,(t,)
xk 1.,t =( ) 0 otherwise . r. (2.11)

2-11
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Thus, we can represent Ak(tt) in inner product form as

PT(NAkr, t1X=t) (2.12)

The state, therefore, characterizes the probability distribution of the process Y'k(fj). In J

other words, knowledge Of Xk(te) specifies the probability mass function Px(a(~

The evolution of the state may be characterized by means of a state probability trani-

sition matrix

qij(tt) =PjXk,,(tt+1) 1 1?Xk,P(t) 1} t, j I...r 2. 13

Let Q(te) =[q 2j(te)] denote the state transition matrix. Then the state evolves as

Xk(tt+1) = te)Xk(te) + Uk(tl) (214.

where Uk(te) =Xk(tt+l) - Tt,)k(te). Define the family of a7-hells

8,,= Cr{NV(S), S < t,. Xk(.;), S < ,11

we observe that Uk(te) E Bk.t, and E(Uk(tt)I!3 kt, _) 0. ConsequentlIy. {Uk is a martingale .h

difference (MID) process with respect to the family of a-fields i Zk } (see Appendix A,.

Notationally, we say {Uk1 is a {~k}-MD.

Since Ak E [0, 1] we must have the elements of each Pk vector above. bounded by uiity.

i. e..

0 <_Pk. <1,k 0_. L.j=..r

2.2.2 Estimation Procedure

A useful characterization of the process {NVkl is to obtain its Doob dlecomposition with

respect to {~k}I. Recall (see Appendix A) that the Doob decomposition of a process A',)

with respect to a family of a-fields 15k } is the representation

.Vk(t,) =Ak(tl) + Wk(tf)

where Ak( ti) iS a {~k}-predictable process (i.e., Ak( t,) E L3k.t,__ for all t,) and wk (f, I
a j 13kl}-MD sequence (i.e.. Wk(t E) e b'&. and E( wk( t,) bk.t-I) 0). From the IIIo"-

dlevelopmentE(N1)Ikt
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and if we define

U'k( t, = k( tf)- E( -Nkitf)I&t~

then

Vk t,:) = Ak( tf) + U'k( t1) = Pk (t,)xk(tG) WO- ut,i 2.:i

is the (unique) Doob decomposition of {A-k}I with respect to 6k.}

Equations (2.14) and (2.13) represent a type of state-space miodel for tHie systeii under

study. The dynamics equation, (2.14) describes the evolution of the 1proces - x., t o

time, and is analogous to a linear difference equation Unv1-,en by iA noiseI PrOVV S. T11A

observation equation (2.15) provides the relationship of the observed process NO , to l'

state. and is analogous to the signal- in -add it ive- noise process familiar to linear estlinat ionI

problems. Although these equations are sinmilar to their counterparts in linear systeii

theory, thev' cannot be treated the same way, since the processes j uk. ) and j 11-k are not

additive white noise processes.

If Xk(tt) were known, the problem of predicting NXk t,) at any time t, would be solved.

regardless of the past history of XVk(*). Unfortunately. Xk(Gt) IS not directly observable-. 0

only Ak(te) is observed. We are thus faced with the problem of estimating Xk(t,.) in order

to render an acceptable prediction of Xk(tjl. To formulate this estimation problem more

clearlv. let us define the family of iT-fields Fkt as

KFk t' ' k 2.16~

andl compute the conditional expectation of xk te) given .Fkt,_, To do this. we draw

upon two fundamental results of martingale theory. namely, the Innovations theorem and Z
the representation theorem. These theorems are stated andl discussed iM Appendix A.

Application of these theorems results in a nonlinear estimation procedure to obtain the

Doob (leconiposition of { k I with respect to { .F } yielding

%Vher1e { k~ is aI { YF -MD process and X bttiff) is t he condi tional expect ation oi(f xk( t

(riven Y~~ 1

2-13
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The process Xk(te) modulates the rate of the discrete-time process Xk(t,) according to

euiuations (2.14) and (2.15). We wish to obtain equations of evolution of the process

Rk( teI 1 Itf) =Efxk( tf.~l)IFk~t,} = Ek te.Xk(ti )

the conditional expectation of x(ttj ) given the ai-field Fk,,, (in standard and an alternate

notation). We followv the results of 1291, and obtain an estimator of the form

:Z"%

xk(t+laIte) E r -+.1S)k(t)

wh~ere

Ekk(tle) ----Exk(t+l) -E"t'xk(t+l) (

and

~the conditional pctarionc of x( +') aivn vkthe,)e. T.i sadr and theatequantity,,,,

1%

k (te+ N re) - E- ' '- k x (t+) + (tf, p) t,(Y -).(t ,) (2.21

is the conditional variance of Vk( te ad

The conditional covariance (Ak, 1 01, is derived in Appendix A. and is the r x 1 matrix e.

Q( t,)[iag = E f ti )) - Wx ( it + ) (( tt.19 P f.

uk~te = N (t )[d a - Ek"-'-\ ,-( ) j (t f - I (t,, tf"-1)x (f' oo

2.23

Wilere (1iag } denotes a diagonal matrix whose diagonal elements are composedl of the

elements of the vector airgument.

_.,0 0
i The cn ditional ovariance 01, v(),,i alsn rvd A pend),A andIi the quiantit _

ik t f tt t f k 
t 

I - I
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Thus., the estimator becomes. using (2.23) and (2.24).

'I:i k(t1+iltf) = Q (t,)ixk(tttf_ ) + Eyk - fjlk(t, tV(t,)][E &k -'1/k(ti2] -  v ti). .) 6.

The resulting rate estimates are. therefore. .

k( tf+, ti = T t,+, )I x (t,+ I!t,.) 2.27 i'

2.2.3 Covariance of Estimation Error
S.

The recursive estimator given by (2.26) and the corresponding rate estimate given by (2.27

represent the minimum-mean square error prediction of xk(tt+i) and Ak(t,.I) given .F.-, .

the past and present data. We may obtain the conditional uncertainty on these estimates

by computing the conditional covariance matrix of the estimation error

:k(tf+, Ite) = Xk(tl+i) - ik(tf+ Iti) i 2.2S) %"

)kti+itf) = Ak(t,+l) - 22(tf+,lt)

The estimation error covariance on Xk(t++it,) may be computed as :%

Pr t,+,ltt) = EI.,,' (t,+ift, i))(tt ,+t)

-- E ",xk(zx(tt+)- i (e+ lek~ (te+l t) k

- E 'Cdiagxk(t,+1) - Rk(tf+i tk)xI(t,+it,) I.

= d. gxk(t+1Itt) - :k(te+lk, ) X(t,+Itf)

and. by (2.27), we have the covariance of the rate estimation error given by

Il(te+Itf)= Ey-kA(t+ilt -,)A(t,+I1t )

= pT(t,+i) [diag X:k(te+l It,) -x ( t, ,tt )ir( t,+, t )] P tf+ I

At this point, some comments with regard to the recursive estimator provided in Equation

(2.26) may be appropriate. Note that although this estimate is recursive and possesses

structure much like a Kalman filter, it is not a linear estimator since the gain nmatr.\:

is dependent upon the state and, hence. upon the data. Furthermore. the cov'ariance.

associated with this estimate is a conditional covarance. rathe" than an uincoititi'm. ."-

(ovariance as with the linear case. Note also that this covariance does not ohev a R i'; %

equation. but it is true that the (state-dependent) gain of the estliia tor is i)roi),rti,,inl"

to this covariance. as is the case with the Kalnian filter. Although the est iat i () er .

co,aria nce provi(led above is conditional. it may I)roi)erlY 1 )fb l15 s, iii 1T1 ;1ph

quality of the estimate for Xk(tt+l) or Ak)t+l )
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2.3 Decision-Directed Detection

The DTPP estimator defined in (2.26) provides an estimate of the vector Xk(ti), thus

yielding a probability vector i*k(tdtl,) with components ik,,(tIte_l) representing the con-

ditional probability that Ak(t,) = pk.i(t). The conditional expectation of Ak(te) given the .'-,

o-field ckt,,, 1 is

k ~ = ~(tlll kt):ik(teI ti- 1),

which yields the rate estimates for each bin of the DFT.

2.3.1 Detector Design

In each of the DFT bins, two quadrature values are present and designated as the real 1

and imaginary parts of the complex number Yk(te). When using DFT data, it is common

to employ detectors using either the energy present in a bin or the square-root of the

energy in a bin. The former approach gives rise to so-called envelope-squared detection

and the latter approach is called envelope detection. In both instances, the original time 4,

data sequences are corrupted by Gaussian noise which transforms to Gaussian noise in

each frequency bin because of the well-known property that sums of Gaussian processes

are Gaussian processes. Consequently, the individual bin contents also have the form of U
a signal plus additive white Gaussian noise as shown in Appendix B.3. For this signal

and noise description Whalen [36] gives envelope-squared and envelope detectors using " "?1

and Rician noise models respectively. In actual use, for the two-hypothesis case the form

of the detectors is identical for either approach, so only the envelope-squared approach is

illustrated here.

At a given time t,, then, for each bin in the DFT. define the two hypotheses:

Ho.k(t,) Zk(t,) = Pk t

Hik(t,) Zk(tf) = 3
-

where Zk( t, = j 1 'k( f) is the energy present in a given bin, jik is centrally \2 -distribiited'

noise present in bin k. and Ak is non-centrally , 2-distributed signal plus noise as given in

2- 16
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[36]. Thus, Hok(t) represents the noise-only case and Hl,k(t ) represents the case of signal

plus noise.

The likelihood ratio is expressed as a function of the a priori probability of each hy-

pothesis being correct as well as the hypothesis-conditional probabilities. The decisions

for the true Bayes case are then are given by the likelihood ratio test (LRT) as follows: I

1 if Ak(tt)p(Zk(t1)JH,k(tt)) (1 - \k(tt))p(Zk(te)Hok(te)) (2.29)

0 otherwise

where the conditional probabilities p(Zk(tt)IHO,(t))andp(Zk(te)IHI.k(te)) are represented

by central and non-central X2 distributions respectively. The empirical Bayes philosophy )

is to use estimates of the prior probabilities in place of the actual probabilities. If the

rate estimates, Ak(te) are used and estimates for the parameters present in the conditional

probabilities are employed, we say that this is a generalized likelihood ratio test (GLRT):

I if k(t)P(Zk(te)lHlk(tt)) >_ (1 - (te))NZk( Ho.(tf)) (2.30)
15[Zk(t)] 0 otherwise (1.30

The complete derivation of the likelihood ratio is presented in Appendix B. but the

result is that we can construct the log-likelihood function as a threshold 7 k for each bin as

k 1/2

7k = log Ak - "- + log(I0((qk,,1k) -10og(1 - ) (2.31)
2

where 10 is the modified Bessel function of the first kind, order 0. and -, is the noncentral A

parameter defined as Yk = 2(2 where (k is the signal envelope amplitude for bin k. The

quantity qk is the -2 distributed observation defined as:

= 
+  2

for f.k = Real Yk(t,) and f2.k = Imaginary Y (tf). Thus, -a

I ifr 1
0 otherwise 'a

Typically. in order to more efficiently compute the detection threshold, we would era-

ploy small- and large-argument approximations for the modified Bessel function and use

these values in the log-likelihood ratio test. Since even the approximations desired are

in exponential form. the 7k values arrived at are usually just summations. In a system,
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realization then, there is a bank of L = L + 1 scalar detectors of the form described above

which generate a vector of binary detector decisions which we may express as

no(te)-.

ni(te)

n(tn) --

flL~e)

This is illustrated in Figure 2.4.

2.3.2 Bias Correction p

Unfortunately. it is not generally true that the A (tl) is an unbiased estimate, and we must

investigate the effects of this bias on the performance of the detector and. if necessary. :%

explore methods of eliminating or reducing this bias. S

For any partitioning T. of the decision space. we may express ,\(t,) in terms of k (t,)

as
A,"(t,) = 7rc°(t,) ]f~,(Zk(t,,)H.,k(tt)) - f(Zk(ti)H,k(tf) dZk(t )

+W f ( Zk(t1 )1fH,,k,( tj))dZk( tt) J

JTak W

and, solving for ,r'T(te) yields

)ck(ti) - J f(Zk(te)Hy',,k(te))dZk(tt) +7-Y =~ ejrkkt) a(T"Y1,)A k(t,) + (T °o ,.

JT [f(Zk(t,)IH 'k(t,)) - f(Zk(t,)IH 'k(t ))] dZk(t,)

(2.32) %

where a(-) and b(.) are defined in an obvious way. Thus. the true rate ,r is expressed as

a linear function of the detected rate. A. In general, a() $ 1 and h(-) : 0. However. for

any given decision region T'k, the correction terms may be computed and applied. If we

estimate A'k(tf) using the above scheme, we may then express the estimate of 7 k(t, as
'..

k = a(T k>) c ' (tIt _.) + bT) %

This structure holds for all values of T k and. in particular. holds when the partitionI.

regions T ' k are specified by the previous best estimate of the prior, namely. 5( t .
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There are a number of issues to be considered concerning he removal of the bias. First. .

it is evident from the structure of (2.32) that a(.) > 1, and therefore the variance on the lop

estimation error for 7r1 k will be greater than the variance on the estimation error for \'-

thus bias may be removed only at the expense of increased uncertainty in the estimate

Second, the integrations indicated in (2.32) are extremely complex, since the integrations

are taken over m-dimensional space. For the Gaussian case. these integrals cannot be

evaluated in closed form, and the computational burden to numerically evaluate them is

considerable. Consequently, for the present analysis, we simply neglect the bias and luse

the simple estimator defined by (2.25). In Chapter 3, Monte Carlo results are provided to

provide partial justification for this simplifying procedure.

lip
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Chapter 3

Performance Evaluation by Monte
Carlo Analysis

A key analysis issue is to assess the performance of the proposed algorithm. The interaction

between detection and estimation, however, makes performance analysis of this decision-

directed procedure extremely complex using classical procedures. The difficulty is due

ily to the dependencies present in the adaptive detector that are introduced by the

two-way coupling between detection and estimation, which are virtually impossible to treat

since the multivariate distributions are not available in analytic form. An alternative to

a classical performance analysis is to conduct Monte Carlo analyses, and to evaluate the

performance of this algorithm on the basis of first and second sample moments of the trial

results. To this end, we present simulation results to demonstrate the operation of the

algorithms presented in Chapter 2. In addition to using estimates of the prior to specify

the decision rule, it is also necessary to estimate certain unknown signal parameters such

as signal strength. which results in a further generalization of the likelihood ratio test.

3.1 Signal Modeling Assumptions

The specification of the parameters of the controlled experiments to be conducted under

this study require that a signal model be supplied to generate the observations. This

signal model consists of a time history of the marginal probabilities for each frequency bin. ,.
-.

Furthermore. it is also necessary to specify the structure of the Markov chain model used

to estimate the prior, and to establish procedures for decision-directed estimation of the

3-1
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signal strength and the noise variance.

3.1.1 Observations Model

For all simulations done in order to arrive at Monte Carlo performance estimates, the size

of the analysis blocks is chosen to be 32 samples. This means that the size of the DFT

(FFT) is M = 32 bins wide, and that the frequency detection is performed on the bins .4
indexed 0 through 16. Any frequency data in bins 17 through 31 is redundant Larger

block sizes are possible to implement since the computational burden grows linearly with

relation to the transform size. It is easier to run Monte Carlo simulations. however, when

the size is relatively small. Energy detection is then done for each bin via the procedures

outlined in Chapter 2 and the DTPP describing the detector decisions drives the estimator ,e

for the a priori probability.

In general, we assume the signal model presented in Chapter 2. namely: Let y(t) be -

a received signal composed of possibly harmonically related sinusoids contaminated with

additive white Gaussian noise, expressed as .

P
y(t) = Zaj(t)A(t)cos(w;t + Oj) + v(t), (3.1)

where , is the frequency of signal j, € is the phase angle for signal j, uniformly distributed

from 0 to 2-, A,(t) is the time-varying amplitude of signal j. and v(t) is additive Gaussian

white noise. The a3(t) are discrete-time point processes (DTPP's) describing the signal

presence at time t.

As previously expressed in Chapter 2, it is to be expected that, since the resolution of

the FFT is not arbitrarily fine, the sinusoids given in Equation (3.1) will not necessarily
scenario to which we have committed is given as follows: !il
be separated into distinct bins. Thus, the model which more explicitly fits the analysis

Y(te) = nk(t1),(tt) cos(14tL + Ok) + V(tf) for L =(3.2)

k=O -'-

where k is the bin index of the FFT, uwk is the center frequency of bin k. Ok is the phase

angle associated with bin k. Ak(tf) is the time-varying amplitude of the signal for bin k.

and ,(t,) is overall additive white Gaussian noise. Since this model differs from that given

3-2
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in Equation (3.1). a different DTPP is defined in order to properly distinguish between

the two models. Thus, the new DTPP modeling the signal presence is defined as nk(t+).

As before.
1 if signal present in bin k at time te

flk(t,') { 0 otherwise

Also, let us define the detection DTPP, Nk(tj), as

1 if signal detected in bin k at time tt
Nk ( tt) = { 0 otherwise

In our processing model, we perform the analysis of the data in terms of blocks; hence, the

time indices for the various quantities are, of necessity, discrete and quantized. Therefore.

in order to avoid confusion with simple discrete time (the sampling instances), the subscript

e is added to the time variable to indicate the particular analysis block which is being

processed.

We also need to define the o-fields which influence the detector decisions. For a funda-

mental description of o-fields, see the explanation of martingale theory. Suppose that 3 t, %

is the q-field generated by all past decisions and all past detector rates. We can express

this as

o,(N(s),s < tt ,(s), s < tt+,), (3.3)

where A(s) is the true detection rate at time s, and N(s) is the vector of detector decisions

at time s.

In order to fix ideas concerning the probability structures in question, let us define the

probability structure governing the DTPP is Equation (3.1) in the following terms:

,r,(tt) = P(signal is present at frequency wj at time te). (3.4)

The probability structure for Equation (3.2) will be defined to be:

Ak(tt) = P(signal is present in FFT bin k at time te). (3.5)

And define the detection probability structure to be:

'I

Ak(te) = P(signal is detected in FFT bin k at time tIl,,). (3.6)

3-3
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The differences between these three probabilities are obvious, and yet the distinctions can

sometimes be lost in the mass of notation which often must be employed in attempting

to clarify the issues involved. In more succinct notation, and shifting to the point process

aspect of the problem, we can define the above three quantities in terms of the rates of the

point processes given in Equations (3.1) and (3.2) and the quantity Nk(te), the detections.

Let
r= P(a(tt) = 1),

Ak(t)= P(nk(tf) = 1), and (3.7)
=k(tt PG.kl,&) ( lIBt,).

It is important to note that the a-field St, is not observed since, even though we know -i

the detection process, we will not, in general, ever know Ak(te), the true rate of detections.

Thus, we let -Ft, be the a-field generated by the detections as

.....,
= a(N(s), s < te), (3.S)

where N(s) is the vector of detector decisions at time s. Since we do not have the true ,'

detection rates kfte), we let the estimated rate be M(tt). We then express the estimate

(tf) as

Ak(te) = P(Nk(t) = 1It1. (3.9)

This rate is the estimated a priori probability for use in the generalized likelihood ratio ..

test. Thus, the empirical Bayes description of the processing algorithms [30]. The results

in Equation 3.9 are based upon the foundation of the Doob decomposition as presented in

Section 2.2.2 and Appendix A. 0

In the simulations then, we consider the estimation of all parameters included in Equa-

tion (3.2) except Wk this parameter is implicitly estimated by the detection of the signal

in the kth bin. In the process of estimating the various parameters, it will be helpful to

define another set of parameters used exclusively in the estimation procedure, but which..

relate back to the parameters in the model given in Equation (3.2). Define these as follows:

9 A4k(tf) - an estimate of Ak(te).

* - an estimate of the variance of the noise v(t,).
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0 * (t - an estimate of the detection probability Akt).

In the Monte Carlo simulations, a time history for the probability structure on \k(t,

is defined for k = 0,... 16 and i = 0 .. 60. For each Monte Carlo run we process 960

time points. The probability structure is generally the form of a signal swept from low p

frequency to higher frequency with some harmonic content. As information needs to be

gathered for several signal-to-noise ratios, the simulations are set to run 10 Monte Carlo

trials at each SNR as the SNR is varied from about 12 dB to -12 dB in 16 steps. At each

SNR, the probability of error is computed and output. These data points constitute the

receiver-operating characteristics and are plotted to show the detector performance. Also.

the estimated rates for the various DTPP's are plotted as a probability surface. These plots

demonstrate the algorithm's ability to track the defined a priori probability structure.

It should be noted that the SNR is measured with respect to the time-domain signal and

therefore does not reflect any bandwidth measurement. Thus, the actual SNR in a given

bin is higher than the SNR in the time-domain by a factor proportional to the number

of points in the analysis window. We can explain this by the fact that the noise power is

evenly distributed into the various bins while the signals are positioned within only one

or two bins. Thus, comparisons with techniques reporting performance with respect to

SNR/Hz are not directly possible for this research.

3.1.2 Markov Chain Model

In our estimation procedure for the rates of the various DTPP's, we invoke a Markov model

to describe the time evolution of the rates as described in Chapter 2. Here we also assume

that all FFT bins will be governed by the identical Markov transition matrices Q and

states described as p. This simplifying assumption is not very restrictive since sufficient

dimension is allowed to estimate the state of the Markov chain for a given bin. It is vell to

note that the state estimators for the state vectors xk are all done independently so that I
there is no coupling among rate estimators. This is partially justified since in Appendix

B.3 we demonstrate that the noise is uncorrelated between FFT bins. ,

We now define the necessary quantities required to use Equations 2.12 and 2.14. For
.3
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the simulations we will set r = 7, and define the vector p and the matrix Q as

P' = [Pi P2 P3 P4 pS P6 P7]

= (.05 .20 .40 .60 .70 -80 .90,
and

.95 .02 .01 .01 .01 .00 .00 1

.02 .93 .02 .01 .01 .01 .001

.01 .02 92 .02 .01 .01 .01
QT .01 .01 .02 .92 .02 .01 .01.

01 .01 01 .02 .92 .02 .01
i00 .01 .01 .01 .02 .93 .02
.00 .00 .01 .01 .01 .02 .95 J

The values pj, j = 1,... , 7, are the states of the vector Markov chain, and represent the

states to which the rate Ak(te) may transit as time evolves. Since the states of the Markov

chain represent probabilities, the only real constraint on the states is that 0 < pj < 1. %41

Since, in general, the estimator employed to obtain kk will have non-zero values for all !

elements, the relatively small dimension of the states is not a severe restriction since the

rate estimate will actually lie on the convex closure of the states defined in the pk vector.

In other words, Ak(tt) is a convex linear combination of the states p,. ">

An element qij of QT represents the probability of transiting to state j of the Markov'.

chain at time tt+l given that the state was i at time tt i.e, ..

qij = P(xj(t1+i)1x 1,)).

As an illustration of this idea, note that the strong diagonal structure of QT indicates that

given the Markov chain is in state j at time te, it will likely remain there at tf+1 . Therefore.

the evolution of the Markov chain is described by the equation as given in Equation 2.14.

namely

Xk(tt+) = QTx () + Uk(t,).

This can also be modified to increase the off-diagonal elements in order to make the system

more responsive to rapid transitions if the operational scenario warrants this assumption.

3.1.3 Estimation of Signal Parameters

The signal strength for the detector structure we employ is also known as the envelop(-

magnitude. We may not assume that the measure of signal strength in bin k. Ak(t,).
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is known a priori, so it is important to investigate how one might generate an estimate

--Ak(te) of Ak(tt). Probably the most straight-forward method. and one that has previously

been used with success in [1,30], is to compute a decision-directed estimate .- t, ).as ,F

the empirical average of those samples Yk(t,) for which a detection in bin A" occurred i.e..

when Sk occurs). This estimator assumes the general form

Nk(tf) S.-k(t,) = .k(t,_,) + ,[11; (t,)l -.4k( t,_,)1. (3.10 ,1".

s= I "

where the p is a constant such that 0 < p K 1. This quantity represents a "'forgettirng

factor." which permits earlier estimates to be discounted in favor of more recent data.

Using such a model. smooth changes in Ak(tf) may be tracked.

In order to estimate the variance of the Gaussian noise. rOtf). we employ a sli1htlv r
different decision-directed approach. Since the variance we wish to estimate is contained

in the raw FFT bin data. the bins useful for estimating the noise variance are those in

which no signal is detected. Also, for our signal-plus-noise model, the noise variance should
be equal in all bins since we assume that the noise has a white spectrum. So we compute

an estimate noise variance for each eligible bin, then average across all eligible bins to

arrive at the global noise variance estimate &1(te). The estimator for each bin is similar

to Equation 13.10) and is given as:

= + , - 2 6(tf_ 3.11

Note that the recursions presented in Equations (3.10) and (3.11) must be initialized

with some a priori estimate for .4(0) and (2(O). Furthermore, the ratios

.Y t ) and [1 - . , ],

well-defined, and are equal to thle a priori values until observations are ()btaiied.
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3.2 Spectral Probability Estimation

Consider the problem of estimating the probability of signal presence in a given frequency

range when the received time-domain signal is obtained from either a beamformed array

output. or the output of a single transducer such as a sonobuoy. Consequently. the time-

domain received signal is given by Equation (3.1). and after the Al-point FFT has been

performed on the data for block i. we have the frequency-domain data given in vector form

as Y(t,) or
Yo( t,) :.

0Y' ( t,)Yri(tl) k

Y(te) =
.. 1% le

L Y'(t) J
where L Due to the nature of the scenario, the above observations, whether in

V
the time or frequency domain, are implicitly functions of spatial positioning. but for the

present we omit any reference to the spatial dependence of the problem.

Thus, for this proble: we directly apply the analysis presented in the preceding pages

to arrive at the estimatt for the marginal probabilities necessary for each frequency bin.

3.3 Monte Carlo Simulation Results

3.3.1 Time-varying Probability Tracking

Essentially two cases are examined in the Monte Carlo simulations. Case one. where the

only the rates are estimated for use in the GLRT and case two, where the rates and the ","

amplitudes are estimated for the GLRT. In all simulations for both cases, the same -rue-"i

time-varying a priori probability structure was used. This is shown as a three-dimensional

plot in Figure 3.1. In this figure . the blocked time index runs from the back to the front

of the probability surface, and the FFT bin index runs from left to right. Probability is

miasilred perpendicularly to the plane according to the scale in the left-hand corner of

the surface. Thus the figure illustrates a high probability of signal presence in the lower

freq incies during the first few time blocks. The high-probability frequencies then are

increased as time progresses. Ultimately. the bin with the highest probability is bin 6 at G-

3-8 -
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time block 60. The probability surface also illustrates harmonic structure in bins indexed

as integral multiples of the dominant frequency bin. Some alternate ways of explaining the

plot are to consider the representation of the data as either the collection of the marginals S

presented as slices as time evolves, or as a side-by-side collection of the time evolution of

each marginal. All of the subsequent three-dimensional plots are constructed in the same

manner with the requisite quantity plotted against time and frequency.

In Figure 3.2 we show the behavior of the rate estimator for the case where signal

amplitude and noise variance are assumed known. This clearly illustrates the tracking

performance of the algorithm when the probability structure is time-varying. This estimate

was performed at a signal-to-noise ratio of 12 dB.

Figure 3.3 is the average of the rate estimates done for various Monte Carlo simulations

and is much smoother than the single trial estimate shown in Figure 3.2. In this figure.

the true prior probability structure is more obvious due to the smoothing of the average.

Thus. it is evident that, in the mean, the algorithm is able to track time-varying probability

structures. The confidence in the estimate can be expressed by examining the variance

of the estimator as well as the mean-square error for the estimator. These quantities are

plotted in Figures 3.4 and 3.5 respectively. We see from Figure 3.4 that the variance

computed from the Monte Carlo procedure is never greater than 0.0487. and generally

is between 0.01 to 0.02. In Figure 3.5, we see that the mean-square error is somewhat

larger along the high-probability frequency track than in the low-probability regions of the

spectrum. That is. the large values range from 0.5 to 0.6, but there are only about five

points in the plot where these values are present. For most of the rest of the spectrum.

the mean-square error is less than 0.1. The reason that the errors are large in these high-

probability areas is because the estimator is adaptive. In other words, the estimates for

the various probabilities are causal estimates performed in real time- no smoothing is being

performed. Notice that the points at which the probabilities shift to the next bin are the

points at which the mean-square error is large. After the shift, the probability estimator

alapts and the rnean-'qitare error gradually decreases to a somewhat lower level. Both the

%'ariarice ard mnean-square error results were to be expected from similar results obtained

in [34.
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and used in the GLRT. As can be seen from the plots in Figures 3.10 and 3.11, thie est iil t,,r ,

is still performing quite well at a signal- to-noise-ratio of 12 dB. However. upon exaninlat'i,,l J

of the variance plot, we see that the estimator variance for this case actually lias a !,,:"

absolute maximum than the variance for case one. Nevertheless, t he overall varNiC O,',-m: '

.

to be about the same as in case one. The mean-square error for the case tw,,o ,sti"11;1 T -

slightly greater than that for case one. ..

When the signal-to noise-ratio is 6dB. Figures 3.14 and 3.15 show a sai,;:tt,- :

alarm rate in FFT bin 1. Since Figure 3.16 shows a high estimator varliace 1i 11)1:1 1.,'"

I,

is likely, that the false alarm condition shown in Figure 3.14 did not occurI ,)II ;ill11?,I, ,.-
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Carlo simulations. This high false alarm probability in bin 1 can be explained as a runaway I
condition probably due to the inaccurate estimation of the bin 1 signal amplitude. With the

exception of bin 1. however, the estimator variance shown in Figure 3.16 is only soomewhat

larger than the variance for the 12 dB SNR simulations. Even given the rather erroneous .

estimation of the probabilities, the mean-square error plot given in Figure 3.17 is not

dominated by the problems in bin 1. but rather shows the characteristic peaks alona the '"

high-probability trace.
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5,

3.3.2 Receiver Operating Characteristics

Whenever detection performance is evaluated, the common performance evaluation is done

using the error probabilities at various signal-to-noise ratios. Plots generated using such a

method are referred to as receiver operating characteristic (ROC) curves. In Figure 3.1S %

we give these curves for the case where only the a priori probabilities are estimated for

the various FFT bins. The line marked by dots is the ROC curve for the empirical Bayes ,

procedure. and the line marked by the crosses is the ROC curve for the true Bayes detection

procedure. An unexpected feature of these curves is that they cross at approximately the

6 dB point and are identical at the 12 dB point. The difference at the 6 dB point would be

approximately .02 percent, a very small advantage for the empirical Bayes procedure. From

Robbins work [22]. we do expect that the empirical Bayes and the true Bayes approaches

should1 converge at high signal-to-noise ratios. This is obviously the case here.

Siinilarly. the curves shown in Figure 3.19 are given for tHie ca-se where the signal am-
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plitudes is estimated as well as the a priori probabilities. In this plot, the error probability -

for the empirical Bayes procedure is slightly lower than the true Bayes only at the 12 dB

point. Again, this is a very slight difference and is possibly an anomaly in the data which

would be remedied if a larger number of Monte Carlo trials were conducted and averaged.

From these two graphs then, we see that when the signal bin amplitude must be computed-

no serious degradation of the algorithm performance occurs.
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Appendix A

Key Results from Martingale
Theory

-P

The most common applications of stochastic process theory in engineering deals with

linear estimation (e.g., Wiener and Kalman filters), which rely heavily on the notion

of uncorrelation and white noise. For the purposes of the analysis in this report.

however, the estimation problems are nonlinear, and these notions are replaced as

fundamental concepts by the martingale property. Consequently, it may be useful to 9

provide some background on martingale theory which will render the results of this

paper more understandable.

kg9'"

A.1 Background

Definition: A c-field is a collection of subsets, A, of an event space, 2, such that

(a) For every A E A, we have the complement. A E A.

(b) if Al, A2 , A,..., is a countable sequence of elements of A. then U, 1 .4,E A. .,

(c) 0 E A.

The elements of A are termed events: the set Q is the sure event, and event 0 is the

impossible event.
,'

Definition: A probability space is a triple, {Q. A, PI where Q is the event space,.

is a a-field, and P is a probability measure on A, i.e.. P satisfies

A-1
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(a) P{A} > 0, for all A E A.

(b) P{Q} = 1

(c) If {A,} is a countable collection of disjoint events, then P{U'=An} = A,) 1 P{A,, }

Definition: A random variable X is a real-valued function whose domain is Q and

which is A-measurable, i.e., for every real number x, the set {w E QIX(w) < x} C- A.

Definition: The a-field generated by the set of random variables {Xt, t E T} is the

smallest a-field with respect to which each element of {Xt, t E T} is measurable. ".

This a-field is denoted a{Xt, t E T}. The physical meaning of the a-field ST -"

a{Xt, t E T} is that ST represents all of the information contained in or derived

from the collection of random variables {Xt t E T}.

Definition: Let X be a random variable on {Q, A, P} with finite expectation. and a
let 5 be a sub a-field of A. The conditional expectation of X with respect to S.

denoted E 8 X or E(XIB) is a B-measurable random variable, uniquely determined

except over a B-measurable event of probability zero, which satisfies

lB = B
for all B E B. Although it will not be proven here, it is a standard result of mathe-

matical probability theory (a consequence of the Radon-Nikodym theorem) that the •

existence and uniqueness (up to B-measurable events of probability zero) of such a

function EBX is assured. In the sequel. conditions that hold except possible on a set

of probability zero will be said to hold almost surely, or a.s. Some basic properties

of conditional expectations may be summarized as

(a) E3X > 0 if X > 0 a.s.; E 8 X = 0 if? = 0 a.s.

(b) E(E 8 X) = E(X) a.s.; E1(1) = I a.s.

(c) EE(cX) cEBX if c E "R.

(d) EB(X, + X 2) = E 8 XY + E8 X, if both expectations exist.

(e) If X is B-measurable, then EX = X a.s. and. more generally. for every random

variable Y on {Q, B. P}, we have E 5 (XY) = X E'-.

A-2
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(f) If B E B2, then EB(EB2X) = E 2(EBIX).

If a random variable X is measurable with respect to a c-field B. this fact is denoted 0

by the notation X E B.

Definition: Let {Bt, t = 0, 1,...} be an increasing family of a-fields and let {X,, t

0, 1,... , } be a set of random variables such that Xt E Bt. Then {X} is said to be

adapted to {B}. The family of random variables {X} is called a martingale with

respect to {s} if

(a) Xt E St

(b) ELXt = X, for s < t.

A sub-martingale is defined as above with the exception that 2) is replaced by

E'Xt _ X..

A martingale difference, or MD, process {x} is formed from a martingale process

{X} by defining xt = Xt - Xt- 1 . Thus,

EB-1xt = E13- Xt - Xt- 1 = Xt- 1 - = 0.

It is useful to characterize the MD property as being intermediate between the proper- p
I,

ties of independence and uncorrelation, since every two independent random variables S.

have the MD property with respect to each other and, in turn. every two random

variables that have the MD property are uncorrelated.

Definition: For a process (possibly vector-valued) {X} adapted to {6}. the condi-

tional variance (X, X), sequence is

(X ,X )t= E L" X(t)XT(t). -,

For any two processes {X} and {Y} the conditional covariance (X. Y)t is

(XY)j = EB'X(t)YT(t). *1
Definition: The sequence {b} of random variables is said to be {L5}-predictable if

bh E BS- 1 for all t = 0, 1,.. If {b} is {B}-predictable and {'} is a .ID with respect II
A-3
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to {3}, we define the process {b. v} by bt v= btvt, the product. Then {b. v} is -i

a MD sequence with respect to {B}. This sequence is termed the MD transform of 4-

{v} by {b}. -6

Definition: For any sequence of random variables {yt, t = 0, 1 ... }, let 't =

ory,,s = 0. 1,... t}. Then the sequence vt = yt - E r-yt is the general innovations

of the process {y}.

The development of the discrete-time point process estimator used in this report
,--...

relies two basic properties that are central to nonlinear estimation theory. These

two properties are: 1) the innovations theorem, and 2) the representation theorem. 0

These results are stated without proof for the discrete-time case.

Innovations Theorem: The general innovations process is a martingale that is

equivalent to the observed process, i.e.,

.:7= y",S < t} = IV.,S < t}.

" W

Representation Theorem: Every MD sequence {w} with respect to the {F} can

be represented as a MD transform of the innovations {v}. i.e.,

Wt =btv.t".".

where {b} is an {)} predictable process. --

A.2 Discrete-Time Point Processes

A discrete-time point process (DTPP) {N(t), t = 0.1... .} is a binary {0. 1} sequence

describing the occurrences of some type of (possibly vector-valued) event. Thus.

N(t) = 1 means that the event occurs at time t, and N(t) = 0 means that there -

is no occurrence of the event at time t. The simplest example is when {.} is a

Bernoulli sequence. i.e., a sequence of independent random variables with P{N(t) =

11 = 1 - P{N(t) = 0} = A(t). The quantity A(t) is the rate of .(t), and may in

general be time-varying. In many applications the occurrences will not be mutually

A-4



independent, but the probability of occurrence at a given time will be affected b%,

previous occurrences and perhaps by some other related process, x(t). in which case

the rate of the process will be affected by the past history of {x} as well as by {_V}.

A.2.1 Doob Decomposition

We present a fundamental theorem due to Doob [7].

Doob Decomposition: For an arbitrary sequence {y} adapted to a family {B} of

a-fields. define

A4t) -Em'- y(t)

and

w(t) = y(t) - EB3-y(t).
-)

Then the following properties hold:

y(t) = A(t) + w(t)

(a) {A} is {5}-predictable and {w} is a MD sequence with respect to 1:

(b) the above decomposition is unique;

(c) if {y} is a {B}-submartingale difference (subMD) sequence. i.e.. if

EL"Y(t) >0,

then A(t) is positive for all t.

Proof: Properties 1) and 3) are trivial. To prove 2), suppose

y(t) = A\'(t) + w (t) -

where {A'} is {}-predictable and {w'} is a {3} MD sequence. Then a.

0- E6'-'u,'(t) ELt -,y(t)- A'(t) A(t) - A'(t) _0 l

which proves 2).

For point processes.

N(t) = A(t) + ,,,(t)

is the Doob decomposition of {N} with respect to {}..

A-5
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A.2.2 Estimation from Discrete-Time Point Processes 1

It is useful to outline the development of the discrete-time point process estima-

tor used in this analysis. This development follows [29]. Suppose the rate of the

DTPP {N} (A(t)) may be characterized as a finite-state Markov chain, with states I
p(t)..., p,(t). Define the vector x(t) with element

1 if \(t) = p0(t)
x(t) = ~0 otherwise

and the probability transition matrix Q(t) with elements

qi,(t) = P{xj(t + 1) 11xi(t) = 1}.

Define the c-field

s,= a{N(s),S < t, x(s),s < t+ I}.

The r-dimensional vector process x(t) trivially obeys the relation

x(t + 1) = E 8 '-'x(t + 1) + [x(t + 1) - E3'-1x(t + 1).

It -an easily be seen that the process Est'-x(t + 1) is {B5}-predictable, and that

u(t) x(t + 1) - Et'-x(t + 1)

is a {B}-MD sequence. Thus.

x(t + 1) -EBe-'x(t + 1) + u(t) (A.1)

is analogous to the classical signal-plus-noise model. It can be seen from construc-

tion. however, that this decomposition is fundamentally different from the classical I
situation. and that the process {u} is not an independent process.

We may evaluate E ' - x( t+ 1) for the Markov chain model as follows. Since x( t corn-

pletely characterizes the expected behavior of x(t + 1) (due to the ,larkov structilre)

we havf:-7

FL'-'x,(t + 1) = E[x,(t + 1)Ix(t)] = P{x,(t + 1) 1 jx(t)} q,,(t)x,(t)

A-6
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Thus, S

VU- x(t + 1) =qr(t)x(t), (A. 2),

and we have the representation .

Wemay ex(t +)=Q T (t)x(t) + u(t). CA.3,

We may define

w(t) = N(t) - A M) :

where A(t) = EB'-IN(t). The process {w} is a {B} MD process. Under the Markov

model. the components of x(t) are

I if A(t) = p,(t)XP)

x(t)= ~ 0 otherwise

Thus. we may write

N(t) = PT(t)x(t) + w(t) (A.4)

where 
"

p~t ---

or (t) - 'I

We are interested in the conditional expectation of x(t + 1) given Ft. To obtain this

representation, we first form the process

ti(t) = E":x(t + 1) - E -- E"'-x(t + 1), S.

and note that this quantity is a {.F}-MD. Since .)'7,- C t-s and using (A.2) we -%

obtain

Au(t) - E-'x(t +1)- QT(t)E-"- x(t). (A.5)

We also note that the process

v(t) = N(t) - Et-Ee'- N(t) = V(t) -PT(t)E'-' x(t)

A-7 I



is a {} Dwhere we have used (A.4) and the fact that {w} is a {B})-MD. The

representation theorem states that we can express {jis} in terms of {v) as

ti(t) = B(t)v(t) (A.6)

for some {.F} -predictable (matrix) sequence {B}. The matrix B(t) can be obtained

by computing the conditional covariance process with respect to {7-1, which implies

that

(IA,z v= B(t)(v, v)t

which yields

B( t) =(Lt, v)t[(v, v)t]-1. (A. 7)

Thus, from (A.5), (A.6), and (A.7) we obtain

E -,X ( t + 1) = Q(t) E-r.1x ( t) + (tp. v) t(v, v) t v)

or. using the notation '(tjs) =Ely(t), for any process y, we obtain

i[(t + 1lIt) =QT(t)(tlt -1) + (A, V)f[(V.V)t]- V(t).(AS

Calculation of Conditional Covariance

The covariance matrix (pi, v)t may be expressed as

E-7-1 jtt~vt= E-7'-1I{E' [x(t + Ilv(t) - E-F-1[x(t ± l)v(t)1}

and since EYtlx(t + 1) E -F- and v(t) is a {.F}-MD, the second term of this

expression on the right-hand side vanishes. Thus, we may write

EY- [j~t~~t) E- 1EYl[x(t + l)t'(t)] -QT(t)E-F-. [x(t)v(t)]

- Fe {[QT(t)X(t) + U(t)][XT(t)p(t) + Upt) iT(tlt -1 )P( t]

-- 1 lQT(f)X(t)XT(t)p(t) + QT(t)X(t)w(t) -QT(t)X(t)xT(ftt- 0

-u(t)xT(t)p(t) + U(t),w(t) - U(t)*T(tlt -)~t

where we have used (A.4). (2.20), and (2.15). Noting that~ x(t) E 8,_i tt1

and u(t) and wi(t) are {B}-MD processes. this expression simplifies to

E~~'p~t~~t) = Etl QT(t)[X(t)XT(t) -X(t)kT(tlt - lfp(t) + U(t)w1(t)}(9

A-8



Solving- for E't-1[u(t)w(t)] yields

Since .:t-l g 5,- we may write

E-"'- [~t~~t = E)-I Et-1 (X(t + 1).V(t) -X(t + 1).CT -j 1 )p(t)

_QT(t)X(t).y\,(t) + QT(t)X(t)iCT(tjt -1)P(t)}

where we have multiplied out the cross products. Substituting (A.3) and (A.4) yields

E'~ [~t~w~~j ~ ~t-1 x(i + 1)Ny(t) _ [QT(t)X(t) + U(t)]iCT(tlt- )p)

-Q
T (t)X(t)[XT (t)p(t) + W(t)] + QT (t)X(t)RT(tjt -1)P(t)}%

We note that since k(tjt - 1) E Bt-I and u(t) isa {B}-M),D. we have

E"'t' [U(t):T(t~t I )P(t)] 0.

Similarly, since x(t) E St-I and w(t) is a {B}-MvD. we also have

E'3'- [Q T (t)X(t)W(t)] 0.

Thus, after simplification, we have

E-)t-1[u(t)w(t)] =EFr'-IE'3t1 {X(t + )_V(t) -QT(t)X(t)XT(t)p(t)}

Substituting this expression into (A.9) yields. after straightforward manipulation.

Et[ji(t)v(t)] E- -[~ + )NtJ-Q t)(k-)XTtt-pt) (A.10,P

To complete the development we will assume that, given 13,. the values a-ssuined

by x(t + 1) and N(t) are independent and. consequently,

E"- x~t+ 1)N(t)] - ~x(t)EBIt .(t) =QT(t)X(t)XT(t)p(t). A.11)

EF- [x(t + I)N(t)j E--1 E"-' [x(f +- I )N(t)J.

therefore.

E~t~~~~) - ,1Q~ )XtxT(t)p( t)1 QT(t)( tt - - pt~

A-9
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but, since x(t) has one and only one non-zero component, we may write

x(t)xT(t) = diag {x(t)}

where diag {.} denotes a diagonal matrix whose diagonal elements are composed of

the elements of the vector argument. Thus,

EJ:-'[p(t)v(t)ljq t)diag Jif -1)}p(t) -qr(t)k(tjt- 1):T 1) (.A12)

Calculation of Conditional Variance
* S'

The conditional variance (v. t/)t consists of the quantity

where

-tt 1) pT(t)x(tlt - I)A.13

is the conditional expectati' of At) given .F"_. Thus, E -v 2(t) may be easily

evaluated as

E- t( 2N(-),\(tt - 1 + ,2(tjt - 1
t X tt - I) ti t€1 - I)"'

since 2 (t) = .X(t) and A(tlt - 1) ."_.

A- 10
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Appendix B

Envelope- squared Detection

9t

%

A random signal n(t) is said to be a narrowband noise process if the spectrum of

n(t) is zero except for a narrow region about w=0 or u;~ where -, is a carrier

frequency. Let us represent the process n(t) as a pair of quadrature components as

given in Whalen 361 as follows:

I'

n(t) =x(t) cos(w.',t) - y(t) sin(w~t) (B.1)

where x( t) an(' i(t) are also narrowband processes with power or variance 0-. We

then refer to the envelope of the process n(t) as

z(t) =[X2(t) + Y2(t)]~ (B.2) -*

Now, define the phase angle as .

y(t)
9(t) =arctan B3

r( t)(B3

The inverse operations are then De o

an thle Jacobian of the transformation is z(t). The joint probability density fuinctio

for :M and 9 is. suppressing the time arguments: pe

n0)) Z exp .. h 0h
1)7r(72  B4
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Since the phase angle is uniformly distributed in [0, 27r], we integrate Equation B.4

to get

p(Z) = 10p(z, O)dO = -exp -_ z '.(.)¢"''

This is the well-known Rayleigh density function. However. since we wish to employ

the square of the envelope in a detector, we now let u(t) = 2(t), and the density ,

function becomes

xp -(B.6)
9a2 eP

This is an exponential distribution, or the non-normalized y' distribution with two

degrees of freedom. If we define the normalized variables

x'(t) = (t) and y'(t)- x(t) tNO
01 a

then, for q = [x 2 + y'a], we then have the 2 distribution with two degrees of freedom:

p(q) = 2e-. (B.7)

with mean and variance E{q} 2 and V{q} = 4.

B.2 Envelope Squared of a Sinusoid plus Narrow-
band Noise

Consider the signal model now to be a sine wave with additive Gaussian noise. n(t).

so that

f(t) = A cos(w~t + €) + n(t), 1%

or, equivalently

f(t) = [Acos 6 + x(t)] cos( ,t) - [A sino + g(t)]sin(.,t). (B.S)

where 0 is uniformly distributed in [0. 2,7]. The envelope squared is then •

u(t) = [Acos o + x(t) ]2 + [.4 sin o + g13t)J> B.9'

The probability density function for i is tlus. supressing the time arguments.

1 fl) -B.t +1.4)] 11 (B2)

- '-. -Z
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Equation B.10 is the non-central X' distribution with two degrees of freedom. If we

now normalize the variables, as done above in Section B. 1, we have a new. normalized

non-central X 2 variable:
( x=+ (B.11)

012 + 
2

And the density for q is a modified form of Equation B.10 as follows:

p(q) = exp[-±"]I.((q-)) (.12)

where -Y = 2A 2/a 2 is defined as the non-central parameter for two degrees of freedom.

B.3 DFT Bin Noise Correlation

Theorem:

Given a white Gaussian noise sequence, n(t), such that E{n(t)} = a2 , and E{n(t)n'(s) I

a26t3 , where 1 for t= s.,

0 otherwise

is the Kronecker 6 function, then E{N(k)N*(I)} or2 6kj for the DFT sequence N(k)
defined as ''

77t=0

Proof: -")

The autocorrelation function for the DFT sequence N(k) is given by

E{N(k)=(1) I E{ c n(t) 1: e ., n(s)}. (B.13)
t=fl3=

or L
1 t Er(t) ' (B .-4)E{.V(kJ. .\"()} : - ,:0 .,:0u(t'-'..} ( .1

t=O 4=
where Ej m t) ( i} (T= a', herCa s,, thle process ri(t) is white. Then. Equiation B.14

is

E N .\'( . "--} V " (B. 13)

B-3
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This is in the form of a geometric series which we can alternatively express as

E{N(k)N'(1)} = - (B.16)
S N 1-

where b = k - 1. Reducing fractions,

o.2 1 - ej 27r b

E{N(k)N*() = N- (B.17)

The quantity b can only assume integer values 0, 1,... N - 1. Therefore, from the

form of Equation B.17 it is obvious that, since exp[-j2rb] = 1 for b = 1.2 ..... -1.,

the numerator is just 1 - 1 = 0 and the denominator is non-zero, so

E{N(k)N*(l)} =0 for k # 1.

However, since the denominator is also zero when k = 1, L'Hospital's rule must be

used to resolve the indeterminate form. This yields

2 j 2r b d..

E{N(k)N*(l)} = _,e b for b = 0 (or k = 1.)N j2. Z" I

N

The autocorrelation for the noise in different bins of the FFT is given then as:

a 2 fork=l
E{N(k)N(1)} = (B.18)

0 for k l.

B.4 Detector Structure

In the following discussion, we will supress all time arguments for the sake of brevity.

For the detector design, we will allow two hypotheses for each signal band. or. in our

case. each FFT bin. These will be defined for each FFT bin k. as

Hko:Fk =Nk

HkI:Fk=.Ak + -N.

where Fk is the kth bin of the transform of f(t), Ak is the signal magnitude in the kth

bin, and Nk is the noise process in the kth transform bin. Since n(t) is a Gaussian

process, the noise in the various FFT bins are uncorrelated as shown in Section B.3
Ile%

in Equation B.18. This allows the use of independent detectors in our application. .

B-4•S
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The detector then tests on the likelihood of the above two hypotheses and yields a

decision Dk(F) as follows:

Dk(F) = 1 if P(Hk,1)p(FkIHk,l) _ P(Hk,o)p(FkiHko) (B.19) to-
Dk(F) = 0 otherwise (.9

where P(Hk,i) is the a priori probability for the ith hypothesis in the kth FFT bin.

and p(FklHk,i) is the hypothesis-conditional probability density function the form of

which will be given presently. Equation B.19 can be given as a ratio of the form:

1 if P(HkI)p(FA:IHI,,) > 1
P(Hk,)p(FklHk )

Dk(F) = P(Hko)p(Fkjgko) > (B.20)
0 otherwise

or as a log-likelihood function
1 if log P(Hk,i) + logp(FkjHk,1) - logP(Hk,o) - logp(FklHk,o) 0 0

Dk(F) =
0 otherwise

(B.2 1)

The quantities given in Equations B.19 - B.21 will now be defined. The a priori

probabilities for the binary decision case are given as: L

P(Hk,i) = 1 A- (B.22)

Since the FFT results in a complex output for each bin k, we define some variables

which will expedite the application of the x'2 density functions. Let

Xi = Real[F]

X2,k = Imaginary[F].

and
2 2

X 1 ,k + 2k

And the hypothesis conditional densities are of the forms given in Equations B.7
and B.12. For Hk,o we assume that qk is drawn from a central X2 distribution with

probability density as follows:

p(qk) = (B.23)

'B-5
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And for HI we assume that qk is drawn from a non-central x2 distribution with

probability density as follows:

PO e ,xp + k o((qk-/k)'I/2) (B.24). ._

2B24

where 2A-

_ k 012 -m .

When the quantities given in Equations B.23 and B.24 are substituted into Equation

B.21, we arrive at the log-likelihood ratio test for this problem presented as

1 if log Ak - + log(Io[(qk-Yk) 112 ])- log(, - Ak) > 0Dk(F) = 2 (B.25)

0 otherwise

P %
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