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Abstract

Over the past several years many contributions have been made to the problem of detect-
ing underwater acoustic signals and estimating signal parameters such as time-of-arrival,
frequency-of-arrival, angle-of-arrival, etc. In the previous research effort, the spatial detec-
tion problem was re-examined from a decision-directed point of view, and a methodology
was presented to estimate the time-varying joint prior spatial distribution of the signal. In
the current research effort. attention is directed toward improving detection of temporal
signals according to the frequency content of the signal. The source environment char-
acterizes the presence or absence of the various sources (both signals and noise) as they
evolve in frequency and time. It may not be assumed that this environment is stationary
in either frequency content or time, hence it is necessary to characterize and track the
nonstationary behavior of this environment. I{nowledge of the source environment may be
used to effect on-line adaptation of the decision strategies used to detect hostile targets.
and has potential for modifying the collection procedures. The key result of this report
is the development of a decision-directed empirical Bayes decision rule which permits a
nonstationary prior marginal probability distribuiton to be estimated (i.e., tracked) based

upon the time-varying frequency content of the signal.
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Chapter 1

Introduction

1.1 Problem Statement

The problem addressed by this investigation is a continuation of the issues addressed by
[34], and represents a natural extension of that research. The practical problem which
motivates this study is that of detecting, localizing, and classifying foreign submarine ac-
tivity by means of acoustic surveillance sensors located at strategic positions, particularly
in locations where noise sources are present which emit significant energy in the frequency
bands of interest (e.g., ice noise). These noise sources often occur as narrowband “tonals”
that are difficult to separate from legitimate targets. Consequently, the target detection
problem is greatly complicated by their presence, and an important problem is to develop
procedures for distinguishing real targets from pseudo targets. Due to the nature of the
signals involved, much harmonic information is generated which may allow the system
to identify source characteristics. For example, underwater sources radiate narrow- and
broad-band acoustic energy due to propulsion systems, auxiliary machinery, and hydro-
dynamic effects [1]. These effects comprise what is generally referred to as the source
signature. Since these effects occur at different levels and frequencies depending on the
actual shape, size, and operating mode of the vessel, the observed signal components can
be compared with a set of known target characteristics for identification purposes. Hence.
it is very advantageous to estimate the spectrum of the various received signals for identifi-
cation purposes. For this research effort, we concentrate not on the usual spectral power or

energy estimation methods. but on the application of the above analysis for the estimation
1-1

DRI . YA NN A AR RN N N NS A AT A AT AT R AN Py .'-'-"I'-"-- e

-ﬁ-‘-q' “"..r.'r‘.l'
LR

vas

0,

? ﬂ'n(ﬁ

D
DL
o o

.I
ot

-

N

Lt

-

“.,'
WA,

A ¥ A

| ® ‘l:.‘n

1 4

Sy

2

"s;-.'x‘w.‘

w5

”

e
'- [}
oty

«
LT,

A

r o
.

L]
v

" "14'/ ‘
5\ 4'-

AN
'l

4

BT
V¥

{"'f [/

[
s

A

L N A E) -
S -._-‘4.

Pi
"\"

NESENY

IRRRARHNT A
Wh

i J

Y

-
>

[d

-~

a o @
AN )

o

P



priors).

‘

of the probability of spectral signal presence as a method for more robust identification
procedures. !
The major thrust of this investigation is the development of adaptive methods for ¢ ‘
estimating the signal environment as characterized by the prior probabilities of signal b
content. These methods lead to the structuring of decision-directed detection procedures ;
that are capable of real-time adaptation to a changing environment (i.e., nonstationary € i
]

Review of Previous Research

The investigation conducted under the previous contract (N00039-85-C-0223) [34,35.33)
provides encouraging results regarding adaptive classification of signals. That work con-
centrates primarily on the classification of the spatial frequency content of signals, and
vields a decision-directed empirical Bayes methodology to adaptively adjust the decision

rule to account for the current joint prior distribution of signals of interest. The result-

PRSP G — W W

ing detector represents a potential alternative to classical Neyman-Pearson, minimax. and

Bayesian decision rules.

The algorithm central to the success of this adaptive decision rule is a recursive. non-
linear, exact minimum mean square estimator proposed by Segall [29] and first applied to
decision-directed detection by Stirling [32]. This algorithm was extended to multivariate ¢

detection in [34,33].

The spatial detection problem is that of detecting threat signals from spatially separated

acoustic surveillance sensors. The signal is often embedded deeply in the noise background. e

ca K.a

and standard decision criteria yield marginal results. In order to apply the Bayes formula.

one must know the a priori distribution of the signal with respect to the spatial coordinates

of the detection system. Unfortunately, this is rarely the case and, furthermore. even

e
"
if known, this distribution would likely be non-stationary (i.e.. it would evolve in time N
A
and space), since the threat environment is subject to change. Errors in the a prior :
<«
distribution may seriously degrade performance of a Bayes detector in this environment. )
L
Furthermore, in a weak signal-to-noise environment, a constant probability of false alarm :
may result in the probability of a missed detection being excessively large. and decision ‘
1-2 !
e
\
N
4
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o~
I‘..
rules based upon a specified constant false-alarm probability may be inadequate. Also. :’:
minimax decision rules are unduly pessimistic in this environment. and may not lead to ;z-
ot acreptable performance. -
In view of these issues, the empirical Bayesian approach. is explored in [34]. and the .‘r'::.‘
prior distribution is estimated from the data. Empirical Bayes procedures are well known. '.‘;“-'
L
{ [22], but traditionally deal almost exclusively with the stationary case, wherein the prior i,
distribution 1s constant. For this case there exist asymptotically sub-minimax decision E
rules that approach the Bayes envelope. Our problem is somewhat more complex, how- ?
i. ever. since we must allow this distribution to be time-varying. Throughout the course .'
of a collection, the target environment is subject to change as sources move through the :""
| o
| collection region, enter and exit sensor beams. etc. One may not be able to wait until all ::
| the data are received to make decisions. In fact. a real-time decision making capability is i':
:( necessary and, critically, it must be able to adaptively adjust the structure of the decision 2: ‘
i rule to ensure that the decisions are being made as accurately as possible. These con- "
‘ straints on the empirical Bayes procedure are severe. and render classical “feed-forward”
L4 decision processes inadequate to deal with the tracking capability. An alternative “feed- %_
back” approach is developed in this analysis. Such a decision-directed approach represents :‘
o
a significant departure from classical empirical Bayes procedures. but fits well inio the :'_".
-
() general class of adaptive detection procedures such as generalized likelihood ratio tests. !'
i
Emphasis of Current Research :"
ST
s
€ The above discussion for spatial frequency has a direct analog for temporal frequency. where » .
the decision problem consists of determining temporal frequency structure rather than \
spatial frequency structure. In this case also, the empirical Bayes approach is applicable.
¢ and may be used to estimate the prior distribution on the frequency content of the signal L
envIToninent. :.::.
An additional issue may be addressed in the temporal frequency context. Consider a _
S
collection scenario in an environment where the signal is corrupted by “tonal” noise. such as e
¢ that encountered in an environment where the movement of ice generates noise tonals that ety
are within the spectrum occupied by threat emitters. In such situations. a keyv problem E:-
; v
1-3 i
e
e T e N e P e A e e e e e e i e e




e e a0 i i e "ol n S AR AL AR A el A A M

is that of classifying the signal as a threat or as benign (i.e., of natural origin). Thus.
the problem becomes one of not only detecting the signal, but of recognizing structural
characteristics that serve to separate threat and benign signals.

To address this problem, a robust method of spectral estimation is proposed and exam-
ined. This method employs a decision-directed empirical Bayes decision rule to estimate
the time-varying prior probability of signal occurrence in a given FFT (fast Fourier trans- »
form) bin of a signal. The a priori probability of spectral content for each bin is modeled as

a finite-state Markov chain and the state of this chain is estimated by obtaining the Doob

:

i

é

\

\

5

i

2]

N

‘

)

N

i

S

:

i decomposition of the discrete-time point process representing the decisions. A generalized ?
empirical Bayes likelihood ratio test is used as the detector which feeds decisions to the
state estimator.

The present research is focused upon the application of decision-directed empirical

Bayes methods to estimate the probability of spectral energy independently for discrete

frequencies. This approach does not employ information about any harmonic dependencies

which a practical signal would reasonably be expected to possess. Therefore, potentially

more robust detection schemes would take advantage of the harmonic content of the sig-

nal to improve the detector performance. One approach which seems viable is to use
conditional factorization of the joint probability density function in a distributed-network

technique similar to that done by Stirling and Swindlehurst [34]. Another approach which ]

may achieve improved performance is to provide for feedback of post-detection classifica-

N S L IR

tion decision information to sensitize the harmonically related scalar detectors.

oy

1.2 Summary of Technical Approach

Decision-Directed Analysis

YRR RARAL

-

The philosophy of decision-directed procedures is illustrated in Figure 1.1. In this figure.

R

the outputs of the signal processing (including detection) portion of this diagram may be

'-'I

ol

used to generate an estimate of the signal model (including both deterministic and prob-

¢
abilistic aspects of the model) and feed it back into the spatio-temporal signal processing ,{
block to modify the structure of the collection/detection system. There are a number of ?3
1-4 2
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possible feedback strategies that may be adopted, including the following: S
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1. Empirical Bayes. The most obvious feedback strategy is to modify the decision rules -(\
+ in the empirical Bayes sense. Such a strategy provides estimates of the prior distn- s :’
bution, based upon the past decisions, which modify future behavior of the decision ,.E:
AT
rule. Key issues associated with this procedure are the stability and robustness of the ,}.:::.
v
) estimator and the ability to track time-varying priors. These issues will be elucidated o
'.i\'- )
throughout this report and a multivariate empirical Bayes detection procedure will :':-::;
N,
be introduced. S
‘-J'.'-‘
-_'-_“
P 9. Control. A second type of feedback is to use the detected signals and associated o
oy
estimated probabilities to actually control or modify the spatio-temporal structure of :':,.:::
Vit
the sensor arrays. For example, array allocation strategies. beamsteering, computer :';-\'_’,
SAa
L resource allocation, etc., are all possible control strategies which modify or tune the 2
system to improve performance. Technical possibilities will be explored but not fully ::::':.‘:
A
developed in this report. ’_::':::'
l.‘.‘\.
LSRN
‘ 3. Modeling. A third type of feedback is to use the detected and estimated signal o
e 4
structure to modify the channel model to perform signal enhancement (e.g.. channel e
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equalization) to shape the received signal for more reliable detection and classifica-

tion. Such techniques are not being considered under this current effort.

The Empirical Bayes Approach

The espousal of the Bayesian approach implies that the unknown state of nature is de-
scribed by a prior probability distribution. The empirical Bayes decision problem is for-
mulated exactly the same way as a standard Bayes problem, except that prior is unknown
and must be estimated from the available data. Suppose that a particular decision problem
occurs repeatedly and independently, with the same unknown prior distribution through-
out the experiment. (Such a situation obtains when we attempt to detect a weak or fading
target in a noisy environment or in the presence of tonal noise). Under this supposition. it
is logical to perform analysis on the observation in an attempt to discover the prior distri-
bution. We may define an empirical decision procedure to be a sequence of decision rules
which learn or adapt from previous experiments and “converge” in some sense to the true
prior. Robbins and related researchers [21,22,24,15] describe the theory of asymptotically
optimal decision procedures and demonstrate that such procedures converge to the Bayes
envelope function as the number of experiments increases. These results are based upon
the assumption that the prior distribution is constant throughout the experiment.

A key aspect of this study is that the prior distribution is not only unknown. it is subject
to change as well. This change in the assumptions about the prior constitutes a significant
difficulty, since the classical convergence results may no longer be valid. In the extreme
case where the changes are completely unpredictable, it is likely true that the empirical
Bayes approach is doomed to failure, and some other decision criteria should be evoked.
If the changes can be modeled, however, then there is hope that the prior distribution
may be “tracked” in a manner entirely analogous to the way a moving target is tracked
using, say, a Kalman filter. The key assumption, therefore, is the model that is used to
describe the evolution of the distribution. In this study we develop such a model. cast in a
state-space environment (analogous to a differential system) and present a recursive state

estimator (analogous to a Kalman filter) to estimate the time-varying prior distribution.

To accomplish the goal of tracking the changing distribution, we evoke a particular type
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of empirical Bayes decision rule, which may be termed a feedback, or decision-directed rule.

Such a rule uses past decisions to estimate the prior, rather than past data directly. To
illustrate the difference between a feedback and a feed-forward rule, consider the following
simple decision problem: Suppose we observe a signal y(t). for ¢t = 0.1.2..... and at each
sample, the signal may be white noise with mean zero or with mean b # 0. The decision
problem may be formulated as a hypothesis testing problem of the form
Ho: y(t) = n(t)

H: y(t)=b4n(t)’ t=0,1.2,....

where, say, n(t) is an white Gaussian noise sequence of known variance. and b is a known
constant. If the prior distribution is known, the problem admits the well-known Bayes
solution. If not, the empirical Bayes approach is to estimate this prior. Suppose we
consider a rfeed-forward approach. Let 7(¢t) = P{H; true at time t} If x(t) is a constant.

they we may form an estimate at time ¢ as

t
Ty = %; y(z)
which will converge to the true value as t — oo. If 7(t) is not constant. however. such
simple procedures are inadequate. If we pursue the standard empirical Bayes approach.
we must postulate an equation of evolution for n(t), say m(t + 1) = f[x(t).t] + w(t). a
stochastic difference equation. We are also required to ensure that 0 < =(¢) < 1 for all ¢.
Once this model is in place, an appropriate estimation rule must be developed. which will
in general be nonlinear.

Alternatively, we may pursue a feedback approach, and deal not with the past values
of y(t), but with past decisions. We may model the sequence of past decisions as a point
process, {N}, where N(t) = 1 if the hypothesis H, is selected, and .V (¢) = 0 otherwise.
Dealing with {.V} is much simpler than dealing with the original sequence {y}. As we shall
illustrate in this study, it is indeed possible to formulate physically meaningful procedures
to describe the evolution of the probability structure of .V(t), which will lead to an estimate
of the prior distribution. The point process approach has the great advantage that it leads
to a recursive estimator that is easily implemented and can be analyzed theoretically.

Decision-directed detection has been used in many contexts [20.28.17,8,14.10,16] which
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deal with the problem of simultaneously detecting a signal and cstimating its parame-
ters using decision-directed schemes. Other researchers [6,26,12,27,13] provide analyses
of decision-directed procedures for estimating the prior distribution, i.e., decision-directed
empirical Bayes procedures. In [30,32] nonstationary empirical Bayes procedures were first

introduced, and these were combined with signal parameter estimation in [30,31].

Control Strategies

The signal processing information flow illustrated in Figure 1.1 provides the capability of
feeding back signal structure information to the sensor arrays as well as to the detection
block. With the empirical Bayes approach, only the prior distribution of the target oc-
currences is adapted, but the statistical description of the signal itself or the noise is not
modified. Furthermore, the allocation of the sensors is not adjusted in any way to accom-
modate either the probability structure of the signal environment (i.e., the occurrences of
threat signals) or of the structure of the signal and noise. Thus, in addition to empirical
Bayes decision strategies, there arisés the potential for spatio-temporal adaptive control of

the collectors and of the detector, including the following:

o Signal extraction from ice noise. In collection environments where the noise environ-
ment contains impulsive noise, the probability distribution of the signal with respect
to its frequency content may be used to discriminate between threat sources and

benign (i.e., natural) sources.

o Mizture process modeling. Impulsive noise fields may be modeled as mixture pro-
cesses, wherein the noise process is distributed as a convex linear combination of.
say, Gaussian noise. Decision-directed procedures may be used for estimating the

mixture parameter.

e Resource allocation. Knowledge of the multivariate signal occurrence probability is
potentially valuable in making decisions concerning the use of available collection re-
sources. For example, it may be possible to perform adaptive beamsteering to cover

regions of high-threat probability more thoroughly. and thereby positively establish
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the threat status of the signal. Additionally, this knowledge may motivate a deci-
sion to employ additional collection resources that may be held in reserve (due, for

example, to power limitations) for high-threat situations.

Feedback of classification decisions. Once sources have been classified as to their
frequency content or signature, this information can be supplied to the detectors to
improve detection performance in the harmonically related bins represented in the
classification decision. Tonal noise which is nonharmonic would be classified as such
and those classes without harmonic structure could be given a lower weighting in

sensitizing the detectors.

1.3 Summary of Results and Conclusions

Technical Results

The results of this study include:

The formulation of a decision-directed empirical Bayes detection strategy for adap-
tively tuning the decision-rule to match the observed characteristics of the signal
environment. This decision rule results in a generalized likelihood ratio test wherein
the a prior: distribution is modeled as a finite-state Markov chain that is estimated

or tracked as a function of past decisions.

The develpoment of a new algorithm to perform spectral probability estimation
via a bank of scalar decision-directed empirical Bayes detectors and estimators. This
algorithm has application in a signal acquisition and analysis scenario when the
probability of signal presence at certain frequencies is a critical surveillance factor.
In many sonar applications, the spectral content of a signal is the prime characteristic

employed to discriminate between threat sources and friendly sources.

The joint estimation of signal distribution parameters simultaneously with the estimna-
tion of the prior distribution. The empirical Bayes approach requires the estimation

of the prior distribution, but, classically, assumes that the conditional distributions
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are known. This analysis provides an algorithm for estimating the signal magnitude

and noise variance as well.

Conclusions
The conclusions of this study are

1. Decision-directed empirical Bayes procedures in spectral probability estimation have
been shown to be useful in establishing the probability of signal presence at given
discrete frequencies. Using simulated data, a number of test scenarios have been
conducted and the detector performance has been evaluated. These simulations
have shown that effective estimates of the signal probability spectrum are obtained
at various signal-to-noise ratios. These results have been presented as probability
surfaces plotted against time and frequency. The problem of runaway is demonstrated
when signal parameters are also required to be estimated, but is negligible for the
case when the prior probability only is estimated. Averaged probability estimates
obtained through Monte Carlo analysis demonstrate high confidence in the resulting

probability information.

19

The decision-directed rule effectively tracks time-varying prior distributions. A num-
ber of time-varying prior distributions have been simulated and it has been shown
that these rates may be effectively tracked with a decision-directed approach. The
most obvious feature of these estimated rates is a time-lag which is a feature typical
of real-time processing. The estimator is causal and, consequently, a few samples
are required to lock on to the new rate. This lagging phenomenon cannot be elim-
inated with real-time processing; only noncausal processing involving a smoothing

algorithm is capable of removing such phenomena.

3. The performance of the decision-directed empirical Bayes detector is compared to the
standard Bayes case, where the prior is exactly known. It is shown that as the signal-
to-noise ratio increases, the performance as measured by the total probability of error
for the empirical Bayes approach approaches that of the standard case. A striking

aspect of the simulations studied is that the additional complication of estimating
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E Chapter 2
: Technical Approach

2.1 Decision Theory Background

In order to estimate the a prior: probabilities associated with the various frequency com-

ponents of a given signal, we assume the following model: Let y(t) be a received signal »
composed of possibly harmonically related sinusoids contaminated with additive white
Gaussian noise. Thus we can represent y(t) as summation of sinusoids and noise as fol-

lows:

[\’]w:

a(t t) cos(w;it + &;) + v(t). (2.1)

=1

Where ., 1s the frequency of signal i. @, is the phase angle for signal i, uniformly distributed
from 0 to 27. 4,(¢) is the time-varying amplitude of signal . and v(t) is additive Gaussian
white noise. The number of sinusoids present is denoted by P. where P has no upper
bound. The a,(t) are discrete-time point processes (DTPP’s) describing the signal presence

at time ¢. In estimating the a prior: probability of the signal presence. we are then actually

estimating the rate {1.e. the expected value) of the DTPP governing the signal presence '»_“
at a given frequency. This model is therefore comprehensive enough to admit all forms
of compositions of sinmnsiods at given frequencies when there is noise present. This model =

b
could also be used tonvestigate other phenomena such as frequency-hop spread-spectrum o _

commumnication systems and frequency-multiplexed communication chiannels.

.
s o St
'm'a’a'a a

More generally. we can deseribe the state of nature as the set of hypotheses defined by

L

H

S ASHEAL L ASHE

LE S T

where S 1s the event that a signal 15 present at at frequency &, The a, are binary-valued

L ARAALDE!
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indices representative of the logical operation denoting signal presence at w, defined as

follows:
SJ' lf a; = 1
s =4 (
S; of a,=0

®
)

where S is the logical complement of S;. Let the intersection of all the S}’ be denoted a

superclass set and let it be written as
S NnSn..-NSEP = 8§ er, (2.3)

Thus, the model given in Equation 2.1 yields observations drawn from the set of 2 mu-
tually exclusive superclass variables. Thus, the observations y(¢) may belong to any of the
superclasses at a given time ¢, and furthermore, the superclass assignment characterizing
the observations may vary with time.

The problem scenario may be viewed in the classical framework of detection theory.
We will assume that there are P sinusoids present and that there is little or no reliable a
priort information concerning the probability distribution of the signal classification. We
will not assume, however, that the signal classifications are independent.

In order to make subsequent discussion more lucid, at this point we introduce notational
conventions to be employed in the remainder of the report. Since the problem is concerned
with estimation of frequency content we use a discrete Fourier (DFT) transform to obtain
frequency contenu information about the time-domain observations y(t). Justification of
this approach is given later. Let us denote the transformed observations in a given DFT
bin as Yi(#,) where k is the bin index. Due to the fact that the DFT information is
given not only for discrete time ¢. but for block-quantized time, we use the ¢ subscript to
indicate the block index at which analysis is being performed. Therefore. we shall refer
to the observations from now on as Yi(t,) being the data from the kth DFT bin taken at
time #,. These observations can be expressed in vector form as Y(t,).

We proceed with an empirical Bayes approach, and estimate sequentially the a prior
distribution of the signal for use in an M -ary decision problem. We follow the philosophy
espoused by [22] that there exists an unknown a prier: distribution on the signal structure.

and this distribution may be discovered by processing the observations. Y(#). over time.

o
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The decision function, D(Y), then, is adaptive, in the sense that D(-) will depend on past

-
Ay
i
b
'
.
»

observations. i.e.,

D[Y(te)] = D[Y(S), s <ty tg,Y(tg)] (24)

such that action D[Y(¢,)] is a function of all past observations, Y(s), s < t,. This approach
may be altered somewhat by rendering the decision function as a function of past decisions
(which is a function of past observations) rather than as a function of past observations

directly. Such a decision-directed rule has the form
D{Y(te)] = D{D[Y(s)],s < ts ts, Y(te)}. (2.5)

Decision rules of the form (2.4) may be termed “feed-forward” decision rules, with infor-
mation flow as depicted in Figure 2.1, since the past data are fed into a decision function

generator which in turn modifies the decision rule. Decision rules of the form (2.5) may be

SENSORS SIG PROC

D(t,)

Array Detection o

Output Extraction

b

Fp(y,)

SIG MODEL

Distribution
Estimation

Figure 2.1: Feed-Forward Rules

termed “feedback” decision rules, with information flow as depicted in Figure 2.2, since the

' b .
"-.
past decisions are fed back into a decision function generator which modifies the decision s:'i
A
.. . Y
rule. Clearly, a more general decision rule may be formulated which employs both feedback N
“
. . . N . . . “
and feed-forward information flows, which represents an obvious generalization of Figures '
S
2.1 and 2.2. o
‘h
.“
The following discussion is a general representation and uses the time-domain obser- »::
: - : . . : Re
vations y(t), but similar constructions exist for transformed signals of any tyvpe. Adaptive .
AN
decision rules of the types described above may be used to improve performance over non- X
Y
. . . . . . . od
adaptive procedures, since they may be used to estimate the a prior: distribution. To N
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SENSORS SIG PROC
D(t,)

Array Detection -

Output Extraction

b

FD(':)

SIG MODEL

Distribu@ion
Estimation

Figure 2.2: Feedback, or Decision-Directed, Rules

illustrate, consider the binary hypothesis problem

where s(t) is known and n(t) is of known distribution. If the a priori distribution of the
occurrence of s(t) were known, the optimal decision rule (in the sense of minimizing the

probability of error) would be of the form

Diy(t)] = { 1 if nf(y(t)|Hy) > (= 7)f(y(t)|Ho)

0 otherwise

where 7 is the a prior: probability of signal occurrence and f(y(t)|H,) and f(y(¢)|Hyj
are the probability distributions of y(t) under hypotheses H, and H,. respectively. The
problem we face is that 7 is not known. The danger in arbitrarily guessing the value of =
is well known. but is illustrated here for completeness. Let R(D, 7) denote the Baves risk
function under a distribution for 7. The Bayes decision rule will be one that minimizes
this function. Let D,(-) denote such a rule. The Bayes envelope function. r(z) = R(D-. 7
represents the minimum risk envelope when the decision rule is specified with the correct
value of the a prior: distribution. For the binary decision rule in this example, the Bayves
envelope function is displayed in Figure 2.3. Now it can be seen what happens when the
prior is in error. Suppose the true a prior: distribution is 7 and the assumed o priom
distribution is 7’ # 7*. Clearly, D, can lead to excessively large risks. and it would perhaps

be prudent to employ a minimax rule (denoted by my in the figure) which bounds the risk

for all values of 7. Robbins [22] showed, in a classical result. that empirical Bayes rules
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can achieve asymptotically the Bayes envelope, and proposed feed-forward type decision

rules of the form

Dly(s),s < t;y(t)] = { 1 af 7(t) f(y(t)|Hy) > (1= 7(2)) f(y(t)|Ho)

0 otherwise

where 7(t) is an estimate of 7 given {y(s),s < t}.

Figure 2.3: Bay s Envelope Function

The use of feedback decision rules for estimation of the prior is perhaps first treated
analytically ! by Davisson and Schwartz [6], wherein decision feedback algorithms are pro-

posed and runaway (a divergence phenomenon which may occur if a sequence of detection

“a_ 2 2 a &

errors cause the estimate of the prior to converge to zero or unity, thereby causing the

decision rule to go unstable) probabilities are bounded. The resulting decision rule is of y
the form j
9
1 af 7(¢) f(y(H)H) > (1 = 7)) f(y(t)|Ho) )
D[D(s), s cy(t)] = . !
[Dls)s < ty(?)] { 0 otherwise [ ]
where 7(t) is an estimate of 7 given {D,,s < t}.
Although a complete discussion of feedback and feed-forward decision rules will not be
attempted, it may be instructive to comment briefly on some of the differences. (]
'Earlier researchers (20.28,17] successfully used decision-directed detectors, but described performance 1|
empirically. 1
]
b
3
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1. The feed-forward decision rules are asymptotically sub-minimax. It can be shown
that, under appropriate technical conditions [24], the risk using an unbiased estimator
o of = will converge. asymptotically. to the Bayes envelope.
No such global results are available for the feedback decision rules. due to the positive
probability of runaway. It can be shown. however, that the probability of runaway
e can be bounded. and these bounds are double exponentially tight [6]. Consequently.
barring runaway, the risk using an unbiased feedback estimator of 7 will converge to
the Bayes envelope.
o
2. Classical. or feed-forward empirical Bayes rules are quite complex. whereas decision-
directed rules are extremely simple. Consequently. they are more attractive for use
and are more easily implemented. ::::
« )
3. The feed-frrward rules are based on the assumption that the e prior: distribution \’
is stationary (time-invariant). Indeed. stationarity is the very basis of the classical i:
empirical Bayes approach. As noted by [6], many applications where the prior is :
¢ unknown are highly likely to be nonstationary. and i1t will be necessary to “track” i.-:::
the nonstationary prior. In such situations. the feed-forward rules may be intractable. "
and the use of feedback rules may be the only viable approach. :;.
® 3
The objective of this investigation is to estimate the multivariate probability distribu- f,::
tion function of the signal classification. i.e.. the probability. at each time f. that the signal 2;
is in any of the possible classification states. We will assume that the distribution func- g‘
¢ tion may be time-varving and. therefore. we are required to obtain equations of evolution :::'_:
for this multivariate distribution. The observations that are available for estimating this '::-:“
distribution are the outputs of the sensors. We shall employ a feedback approach. and
¢ estimate the distribution based upon the past decisions. thereby developing a rule of the !
form expressed by (2.5). wheremn the multivanate probability distribution function of the ,
‘ detection events is estimated and used to formulate the empirical Baves decision rule.
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2.2 Frequency Distribution Estimation

Initially, in order to estimate the probability distribution of the frequencies present in the
signal y(t), we must transform the time-domain data to the frequency domain or do some
other form of spectral analysis to establish the energy content of the signal at a given
time. We will not attempt a complete exposition of spectral estimation methods in this
report, but for the sake of completeness, we illustrate the problem by giving the following

examples:

e Short-time Fourier analysis [11] is performed by computing a running average of dis-
crete Fourier transforms of the input signal. This method is useful because of the
computational advantages involve;i in using the Fast Fourier Transform (FFT) algo-
rithm to compute the transformed data and the simplicity of the averaging process.
An implicit assumption made when employing Fourier analysis is that the signal is
inherently stationary — an assumption which cannot be completely valid for any phys-
ically realizable situation, but is, in fact, approximately satisfied for many signals.

especially during short time intervals.

e The Wigner distribution [5,4,3,9,19] has recently gained much popularity as a tool
in spectral analysis due to the fact that it includes the time parameter in it’s for-
mulation. It involves the computation of signal energy at discrete frequencies and
therefore is limited in resolution, but the frequency resolution is not limited to the
number of time samples as is the case with the discrete Fourier methods. The FFT
algorithm can be used to speed up computation of the Wigner distribution, but the

computational burden is still greater than the short-time Fourier analysis methods.

o A plethora of so-called high-resolution estimation techniques exist which are not lim-
ited to the resolution of energy at discrete frequéncies. but are able to resolve energy
in a continuous spectrum. Although many variations exist. these methods largely rely
on an eigenvalue-eigenvector decomposition of the correlation or covariance matrix
generated from the signal data. Some of these methods are more computationally

burdensome than others. but. as a class. they do involve a greater computational cost
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than either of the above two methods. Some of the more well known high-resolution :'\
methods are the MUSIC algorithm [25], a variety of modifications of this approach Z:
® [2]. and ARMA (auto-regressive, moving average) statistical signal models [23].
For our purposes. we choose the discrete Fourier transform method as an appropriate
procedure to examine the spectral energy present during a given time interval which we
® may designate as a block of data samples. During the time block then. we transform the
input time data sequence y(t) into a frequency data sequence designated as Yi(t;). We
can alternatively represent this sequence as a frequency data vector Y(t,) for the block at
. time t,.

Let Y € CF denote the signal space, where C is the complex plane. And let Y(t;) € )

By

<
Ps

denote the observed frequency data at time block ¢,, for ¢, = 0,1,.... Let S denote a

- ‘e

classification set for the signal Y. and define a decision function

o

D:Yw~— {0. 1} o

-P\-"

. “a)

as a binary-valued function mapping the observed signal into a abstract classification space. &

l'“h

That 1s, RN
1 S occurs at time t o
D[Y( tl)] = ! . N
0 S does not occur at time t, NN
For the P classes S,.j = 1,.... P given above, we may define -
b 1 S, occurs at time t, {:-
D,[Y(t)] = ! : 2.6 *
Y] 0 S, does not occur at time t, (2:6) \:_'.:
ot
Y
and consider the P-vector decision function :jt
'(‘,‘
T s
® D() = [Dy(-) - Dp(-)] =,
We note that the classification sets S, need not be disjoint (i.e.. Y(¢;) may belong to any e
or all of the classes). We will assume that Y(¢;) must be classified into at least one of the vl
9
P S,. Alternatively. using the superclass notation given above. the decision problem reduces o
to selecting the one superclass possessing the proper attributes. :::‘:'
At each time, t,, we are confronted with an M -ary decision problem involving the _\;
P hypotheses ?"_}1
Hoyap : S ay-ap € {0. 1}F P
AN
2.8 AR
*
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where §°1""*P is defined in Equation 2.3.

The Bayesian approach to this problem is to choose the hypothesis H, for which the
likelihood function

RO () f(Y (1) ST ), (2.7)

is maximized, where f(Y(t,)|S% "*P)is the distribution of Y(¢,) under classification $*1*#
at time t,, and

Wal"'ap(tl) = P{Salmap; tg} (28)

is the a prior: probability mass function for each of the events $*1""*F at time ¢,, The
decision-directed empirical Bayes approach is to estimate 7P (¢,) by means of the past
decisions, {D(s),s < t,}.

Ideally, we would wish to estimate w*1""*P(¢,) directly in order to exploit any infor-
mation contained in the harmonic relationships which are to be expected in the analysis
of complex waveforms. However, as an initial simplification of the problem, we address
the case where it is assumed that we can factor 7*1""*P(¢,) into independent marginal
probabilities as follows:

.Kax-"ap(tl) = ¥ g2, pOoP

We later address methods which treat the more general case involving interdependence
between the various frequency components. Thus, these marginal probabilities for the
various signal classes are the probabilities to be estimated. This model gives rise to a set
of scalar estimators each of which provides estimates for a given marginal probability. and
is an attractive approach to the problem since the dimensionality of the problem remains
relatively low compared with the high dimensionality one would encounter when estimating
even a portion of the joint probability structure. The fact that the noise in each frequency
bin 1s uncorrelated with other bins also lends support to this approach (see Appendix
B.3). However, a significant amount of information about inter-signal correlation. if there
1s any, is automatically lost in this process. Alternatives to be explored in mitigating this
problem are a joint probability conditional factorization similar to that done by Stirling
and Swindlehurst {34}, and a new method using classification decision feedback initiated

for this research, but not yet fully developed as a theoretically robust strategy.
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2.2.1 Probability Models e

PO

' As a practical matter, even though the signal model admits P different sinusoids in the g
received signal, when using the discrete Fourier transform (DFT) as our spectral analysis :;:-}‘ )

tool, the frequency resolution is dependent on the number of time points taken in the 2',: N
analysis window of y(¢). Let the number of time points in the analysis window be denoted :" :.'
’ by M. Due to the periodicity assumption inherent in the frequency domain, only 321 +1 ]
unique frequencies are represented by the elements of Y(#,). Therefore, the dimensionality '::,‘

of the problem is reduced if & + 1 < P or increased if % + 1 > P. Since we admit that P _::"’_:
J may, in fact, be a very large number the chance of dimensionality reduction is actually quite 1:__‘ _
small. In any case however, it is not guaranteed that the P different sinusoids are such that ;'»:.;:

they fall into distinct bins of the DFT. This problem can be alleviated by increasing the E:E":;

) size of the analysis window, but the sinusoids still cannot be ensured to be in completely ’:::
separate bins. Thus, we consider that energy present in a given DFT bin is due to a single \ \ :
sinusoid at a frequency contained in the frequency range of that bin. _?}E:

' Now, define V() to be the DTPP generated by the decision process operating on the :‘:"
kth component of the observation vector at time t,. In other words, denote ft:‘.f::'
)

Nilt)) = DilYito)l, k=0, o t,= 6M/2, €=0.1,... (2.9) X

= A

' where the usage of —‘21 is explained above. With this understood, and for the sake of simnpler i_.
notation. we now designate L = 4. Let B,,_, denote a o-field generated by all of the factors E:'.

that may affect the distribution of the process N(t,) at time #,, and define the marginal

g
a1

) conditional probability mass function '-_,:g i
I “- ‘\
<<
| : o
Prito(ax|By,_ ) = P{N(t;) = ay|B,,_, }. BN
RS
That is, we say that pn,i,)(ak|B;,_,) is the conditional probability of signal energy being "-"-j
roald
. . AR
present in the Ath DFT bin. e
-‘-..'\ ‘
Now, we can represent the above a prior1 probability as the rate of the DTPP N(t,) R
KN
RS
' as follows: ®
. -: BN
,\k(f/):P{.\k(t/): 1,63’_‘}“:0 ..... L (210) -"u._:zj
h",:h
&
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At this point, it must be emphasized that the rates Ai(t,) do not correspond directly with N

the w1 *P given above unless all sinusoids are assigned to separate DFT bins. Therefore. >

we may not completely describe any a priori probability distribution due to the resolution .'__

.J.

‘ of the spectral analysis tools employed. Since we desire to estimate the probability struc- 2
I . -*
| ture via these marginal probabilities or rates, we conclude that we must avail ourselves of %
.. B

i an estimator for Ag(2.).

‘, To do this, we require a probabilistic model to characterize this rate and a model to :'-‘_'.
' describe its evolution in time. A physically meaningful and, at the same time, mathemat- =

ically tractable, model for Ai(#,) is to represent it as a finite-state Markov chain. Such a N
. . "}
model may be contrasted with a continuous model for Ai(t,) as follows: g

-
1. The Markov structure permits the evolution of Ai(f,) to be treated probabilisti-

cally via the state transition matrix. This representation may be contrasted with a ]

stochastic differential or difference equation for A(¢,) which may be difficult to treat x-

analytically. The introduction of a Markov model permits the application of an exact :f-

° >

MMSE estimator for Ak(¢,) with a recursive estimator.

o

The finite-state model permits limits on the range of Ak(t;) to be imposed. and

Tt . .
LR .l. 'A‘ (P‘ i

the rate may be restricted to the expected domain of the parameter space. Such .:‘_‘:
N

a limitation may, for example, be chosen to reduce or eliminate the probability of "
runaway, which is a possibility in the decision-directed estimation context. ._::'.
Under the Markov structure, we may represent A.(t,) as a finite-state vector Markov chain '.::
)

with states p1(t¢), ..., p-(t¢) which can be expressed in vector form for each bin k as "

[ pra(te) ] ‘
pr2(te) -

pi(te) = ' .

L /)k,r(tl) J

Define a Markov state vector for each bin as xx(t,) = [z1(%¢).... . (t/)]T where

1 lf /\k(f[) = Pk ,(t,) . "
t;)) = T = 2 .
Zi.i(te) { 0 otherwise a=1.....r (2.11) \.’
.
a
y
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Thus, we can represent Ai(t,) in inner product form as
Ae(te) = pT(te)xi(ts). (2.12)
@
The state. therefore. characterizes the probability distribution of the process N (#,). In
other words, knowledge of x,(t;) specifies the probability mass function pv, ().
o The evolution of the state may be characterized by means of a state probability tran-
sition matrix .
Gij(te) = P{ze,(teyr) = Uzpult) =1} g =1 r (2,131
® Let Q(t,) = {¢:;(t¢)] denote the state transition matrix. Then the state evolves as .
| I-
Xk(ter1) = QT (te)Xe(te) + ui(ty) (214 ::':_
kS
T
where ui(ty) = Xg(tepy) — Q7 (t,)xk(t,). Define the family of 7-fields :':
e )
Bii, = 0{Ni(s).s < to. Xils).s <t ) :::,.
N
l\}
we observe that ui(t,) € By, and E(uk(te)|Bk.,_,) = 0. Consequently. {u;} i1s a martingale E‘:
>
difference (MD) process with respect to the family of o-fields {B,} (see Appendix A . ;
A
Notationally, we say {ux} is a {Bx}-MD. i
I.-'.
Since A\, € [0, 1] we must have the elements of each p, vector above. bounded by unity. e
S
le.. Rl
»
r 0<pr, <1, k=0..... L j=1 r e
l.‘f
. . :..;
2.2.2 Estimation Procedure i
.':'I
e A useful characterization of the process {.V,} is to obtain its Doob decomposition with e.
o
respect to {Bx}. Recall (see Appendix A) that the Doob decomposition of a process { N} :)"
-
Cd
with respect to a family of o-fields {B} is the representation =
|\-.
* Nilte) = Aults) + (1) L.
where A\((t,) 1s a {B;}-predictable process (i.e.. A¢(t;,) € By, , for all ;) and wi(#,) is =
a {Bi}-MD sequence (l.e.. wi(t,) € Bi,, and E(wi(t/)|Br,-y) = 0). From the above
o
° development ':."-‘}
A
N
Ae(t) = E(N (1) Bk, )- NN
a
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and if we define

wi(te) = Nilte) - ECN(t)| Bie, )

then

Nielte) = Aelte) + welts) = pi(tnxilte) = welt,) v

R
—
Ot

is the (unique) Doob decomposition of {.N} with respect to { By}

Equations (2.14) and (2.15) represent a type of state-space model for the system under
study. The dynamics equation, (2.14) describes the evolution of the process X it, over
time. and is analogous to a linear difference equation driven by a nowse process. The
observation equation (2.13) provides the relationship of the observed process Ny, to the
state. and is analogous to the signal-in-additive-noise process familiar to linear estimation
problems. Although these equations are similar to their counterparts in linear system
theory. they cannot be treated the same way. since the processes {ui} and {iw} are not
additive white noise processes.

If x.(t,) were known, the problem of predicting .V,(¢,) at any time ¢, would be solved.
regardless of the past history of Ni(-). Unfortunately. x«(t;) is not directly observable:
only Vi(t¢) is observed. We are thus faced with the problem of estimating x.(t;) in order
to render an acceptable prediction of Ni(t,). To formulate this estimation problem more

clearly. let us define the family of o-flelds Fy ,, as

Fir, = o{Nel(s). s <t} (2.16)

and compute the conditional expectation of Xi(t,) given Fi,_,- To do this. we draw
| I
upon two fundamental results of martingale theory. namely. rhe innovations theorem and ‘:_:
-
(—
the representation theorem. These theorems are stated and discussed in Appendix A N
‘l
N
- . . . . . . ,l
Application of these theorems results in a nonlinear estimation procedure to obtain the TN
Doob decomposition of { N} with respect to {F.}. vielding . j
o
- i Ty g , - o
.\k(ty) = /\k(fflf"—l) + l/k(tf) = P,\.(f,')xk(f,:f,'-y I tel. i1 ':._':
X
where {v} is a {F,}-MD process and Xi(t/[t,-1) is the conditional expectation of xgit, :..q
siven Fo.
rd
LA
IR
"
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The process Xi(t;) modulates the rate of the discrete-time process Ni(t;) according to

equations (2.14) and {2.15). We wish to obtain equations of evolution of the process
Xi(tesrlte) = E{Xeltex )| Fire} = EP*texi(tesn)

the conditional expectation of x(ts4,) given the o-fleld F;,, (in standard and an alternate

notation). We follow the results of [29], and obtain an estimator of the form

Xe(togrlte) = EPvterx,(topr) + (B vr)e (Ve Vk)t.,le(tt’) (2.18)
where
. fk.c ]:k‘t - 9
fi(te) = E70texy(toyy) — E75 1 Xkl try) (2.19)
and
_ _rFua v o\ T Frt, ‘59
ve(te) = Ni(ty) = E7* =1 Ni(ty) = Nilts) = pi (8 E75 = X (8)). (2.201
the matrix
(B k), = E7H0 (0 valts) (221
1s the conditional covariance of u,(t,) and vi(t,). and the quantity
(vievi)e, = ET* v v(ty) (2.2

is the conditional variance of v (t;).

The conditional covariance (p,. vi )., is derived in Appendix A. and is the r x 1 matnx

Erk"l—l [ﬂk(f,)ljk( t,)] = Qr( f,)(hag {ik(t/'ti-l )}p( ti) - QI( ti))‘(k(fi“i—l )*[( ffitf_l )P< fi ‘
= Qr(t/)[(liag {)A(k(fl“/_] )} - *k(ffltl_l )XZ( f&'iff-l )}p(ff) .

(2.231
where diag { } denotes a diagonal matrix whose diagonal elements are composed of the
elements of the vector argument.

The conditional vanance (v.v),, is also derived in Appendix A. and 1s the quantity

E5 i [u2(t)] = N(tolte) = Nttty %

(v}
[ ]
—

with

;\k(fflff—l) = pzl(ff)*k(ff“f-l)A '
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Thus,. the estimator becomes. using (2.23) and (2.24).

R . -1 o
Xeltrolte) = QTUt ) Xi(toltiy) + ET =1l (4,101 8,)] [Ef" KSRV | t,~J2]J vity). 1226

The resulting rate estimates are. therefore.

;\k”fﬂm) = pi (trey )Xkl tigr[te). (2271
2.2.3 Covariance of Estimation Error

The recursive estimator given by (2.26) and the corresponding rate estimate given by (2.27)
represent the minimum-mean square error prediction of X.(t,.,) and Ag(t,,) given Fi .,.
the past and present data. We may obtain the conditional uncertainty on these estimates
by computing the conditional covariance matrix of the estimation error
Xi(tepr|ts) = Xeltepr) — Xilte|ty)
Meltrsdlts) = Meltenr) = Maltenlte)
The estimation error covariance on X(t,,;|t,) may be computed as
Pil(trpilte) = E7% ek (top |to)XE (trgr]te)
= E7 oxi(top)XE(tre1) = Xi(tosr [t)XT (teg|te)
= E sediag Xe(tesr) = Xl(tea [8)XL (s tr)
= di g Xe(toe1]te) — Rt |t (tesrlte)
and. by (2.27), we have the covariance of the rate estimation error given by

Ii(topilte) = ETecedi(top|te) A (g Ity)

= pl(tr1) [diag Reltes [tr) = ReltouritX Lt t)] Pl
At this point, some comments with regard to the recursive estimator provided in Equation
(2.26) may be appropriate. Note that although this estimate is recursive and possesses
structure much like a Kalman filter. it is not a linear estimator since the gain matrix
1s dependent upon the state and. hence. upon the data. Furthermore. the covariance
associated with this estimate is a conditional covariance. rathe- than an unconditional
covariance as with the linear case. Note also that this covariance does not obey a Ricear:
equation. but it is true that the (state-dependent) gain of the estimator is proportiona;
to this covariance. as 1s the case with the Kalman filter. Although the estimation error
covariance provided above is conditional. it may properly be nsed in practice to assess the

quality of the estimate for X, (tsp;) or Ae(trpy).

.

& o
LR}

~’
g

.{—s.{\{»{*.? T

-
’ -', ..' -.‘- -" -:-




.

’.'-':‘.'-'-" -_'.‘n
l‘_(;_._' TP ,

S S R

......

2.3 Decision-Directed Detection

The DTPP estimator defined in (2.26) provides an estimate of the vector x(¢,). thus
vielding a probability vector X, (t,|t,—) with components Z ,(¢,|t,_,) representing the con-
ditional probability that Ai(t/) = pk.i(t¢). The conditional expectation of Ai(¢,) given the

o-field Fi,,_, 1s

Me(teltesr) = pT(t)Re(telter),

which yields the rate estimates for each bin of the DFT.

2.3.1 Detector Design

In each of the DFT bins, two quadrature values are present and designated as the real
and imaginary parts of the complex number Yi(t;). When using DFT data. it is common
to employ detectors using either the energy present in a bin or the square-root of the
energy in a bin. The former approach gives rise to so-called envelope-squared detection
and the latter approach is called envelope detection. In both instances. the original time
data sequences are corrupted by Gaussian noise which transforms to Gaussian noise in
each frequency bin because of the well-known property that sums of Gaussian processes
are Gaussian processes. Consequently, the individual bin contents also have the form of
a signal plus additive white Gaussian noise as shown in Appendix B.3. For this signal
and noise description Whalen [36] gives envelope-squared and envelope detectors using \*

and Rician noise models respectively. In actual use. for the two-hypothesis case the form

1 J
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of the detectors is identical for either approach, so only the envelope-squared approach is .
XL
illustrated here. ::-
)
At a given time #, then. for each bin in the DFT. define the two hypotheses: t’,}i
N,
“n
Hox(te) : Zi(te) = «
-
Hik(te): Zi(ts) = 3k T
RN
where Zi(1,) = |Yi(#/)]" 1s the energy present in a given bin. g is centrally \ *-distributed '.'"
. . ) . . . . . . N
noise present i bin k. and 3, is non-centrally y2-distributed signal plus noise as given in : ::?
i)
-'\-'
n..--.
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[36]. Thus, Hy () represents the noise-only case and H, x(?,) represents the case of signal
plus noise.

The likelihood ratio is expressed as a function of the a prior: probability of each hy-
pothesis being correct as well as the hypothesis-conditional probabilities. The decisions

for the true Bayes case are then are given by the likelihood ratio test (LRT) as follows:

L i A(tOp(Zu(t0) Hua(t) > (1= Melte) Pl Zu(to) Hou(t0)) 'L

. 2.29
0 otherwise ( )

Diz) = {

where the conditional probabilities p( Zi(t;)|Hox(t¢))andp(Zi(te)|H; x(t;)) are represented
by central and non-central y? distributions respectively. The empirical Bayes philosophy )
is to use estimates of the prior probabilities in place of the actual probabilities. If the
rate estimates, ;\k(tg) are use;i and estimates for the parameters present in the conditional

probabilities are employed, we say that this is a generalized likelihood ratio test (GLRT):

Dk{zkm]:{ 1 if Mt Ze(t) | Hik(te)) 2 (1 = Me(to))P( Zi(te) | Hok(tr)) (2.30)

0 otherwise

The complete derivation of the likelihood ratio is presented in Appendix B. but the

result 1s that we can construct the log-likelihood function as a threshold 7, for each bin as

me = log Ax — = + log(o((gxx)'/?) = log(1 — Ax) (2.31)
~
where [y 1s the modified Bessel function of the first kind. order 0. and -4 1s the noncentral J.l
parameter defined as v, = 2(} where (; is the signal envelope amplitude for bin k. The A

quantity ¢ is the \? distributed observation defined as:

gk - =5 -
o2 a2

for fi« = Real Yi(t/) and f,; = Imaginary Y,(¢;). Thus.

_ 1 1f Tk Z 1 ,._
nilty) = { 0 otherwise - :

Typically. in order to more efficiently compute the detection threshold. we would em-

~
b RS
ploy small- and large-argument approximations for the modified Bessel function and use a
1]
these values in the log-likelihood ratio test. Since even the approximations desired are =
o,
. . . . . \
in exponential form. the r, values arrived at are usually just summations. In a system o
I'\
)
i d y ‘
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¢
realization then, there is a bank of L = %1 + 1 scalar detectors of the form described above
which generate a vector of binary detector decisions which we may express as
o - A
no(ts)
ni(te)
n(tg) = .
° .
L n(te) |
This is illustrated in Figure 2.4.
P 2.3.2 Bias Correction
Unfortunately. it is not generally true that the j\k(t[) is an unbiased estimate, and we must
investigate the effects of this bias on the performance of the detector and. if necessary.
[ 4 explore methods of eliminating or reducing this bias.
For any partitioning 7. of the decision space. we may express A®*(t,) in terms of 7%*(#,)
as
. Am(t) = 1Mt [ [ 240 Hayilt0) = £ Zu(Hayalte)] dZi(t0)
+ [ F2t0) Hay s(te)dZu(t)
and. solving for 7**(¢,) vields
. 7% ——Ok,k
A (t) = [ f(Ze(t)[H 7 (20))d Zi(t0)
T () = T — = a(T)A () + (T2
/I"’k [f(Zk(t/;)|Ha"‘ (t)) — f(Zu(t) H™™ (t,;))] dZ(ts)
(2.32)
4 where a(-) and () are defined in an obvious way. Thus. the true rate 7 is expressed as
a linear function of the detected rate. A. In general, a(') # 1 and b(-) # 0. However. for
any given decision region T2+, the correction terms may be computed and applied. If we
< estimate A“%(t,) using the above scheme. we may then express the estimate of =2%(#,} as
Fox(t,) = a(T)N*(45|tp_y) + BOT).
< This structure holds for all values of T?* and. in particular. holds when the partition
regions 77* are specified by the previous best estimate of the prior. namely. (¢,_,).
2-18
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There are a number of issues to be considered concerning .he removal of the bias. First.
it is evident from the structure of (2.32) that a(-) > 1. and therefore the variance on the
estimation error for #®* will be greater than the variance on the estimation error for \“*.
thus bias may be removed only at the expense of increased uncertainty in the estimate
Second, the integrations indicated in (2.32) are extremely complex. since the integrations

are taken over m-dimensional space. For the Gaussian case. these integrals cannot be

'-'-‘-‘-.-."

evaluated in closed form, and the computational burden to numerically evaluate them is

considerable. Consequently, for the present analysis, we simply neglect the bias and nse

the simple estimator defined by (2.25). In Chapter 3, Monte Carlo results are provided to N

provide partial justification for this simplifving procedure. o
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Chapter 3

Performance Evaluation by Monte
Carlo Analysis

A key analysis issue is to assess the performance of the proposed algorithm. The interaction
between detection and estimation. however, makes performance analysis of this decision-
directed procedure extremely complex using classical procedures. The difficulty is due
primarily to the dependencies present in the adaptive detector that are introduced by the
two-way coupling between detection and estimation. which are virtually impossible to treat
since the multivariate distributions are not available in analytic form. An alternative to
a classical performance analysis is to conduct Monte Carlo analyses, and to evaluate the
performance of this algorithm on the basis of first and second sample moments of the trial
results. To this end., we present simulation results to demonstrate the operation of the
algorithms presented in Chapter 2. In addition to using estimates of the prior to specify
the decision rule. it is also necessary to estimate certain unknown signal parameters such

as signal strength. which results in a further generalization of the likelihood ratio test.

3.1 Signal Modeling Assumptions

The specification of the parameters of the controlled experiments to be conducted under
this study require that a signal model be supplied to generate the observations. This
signal model consists of a time history of the marginal probabilities for each frequency bin.
Furthermore. it is also necessary to specify the structure of the Markov chain model used

to estimate the prior. and to establish procedures for decision-directed estimation of the
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signal strength and the noise variance.

3.1.1 Observations Model

For all simulations done in order to arrive at Monte Carlo performance estimates. the size
of the analysis blocks is chosen to be 32 samples. This means that the size of the DFT
(FFT) is M = 32 bins wide, and that the frequency detection is performed on the bins
indexed 0 through 16. Any frequency data in bins 17 through 31 is redundant Larger
block sizes are possible to implement since the computational burden grows linearly with
relation to the transform size. It is easier to run Monte Carlo simulations. however. when
the size is relatively small. Energy detection is then done for each bin via the procedures
outlined in Chapter 2 and the DTPP describing the detector decisions drives the estimator
for the a prior: probability.

In general. we assume the signal model presented in Chapter 2. namely: Let y(t) be
a received signal composed of possibly harmonically related sinusoids contaminated with
additive white Gaussian noise, expressed as

P
y(t) = Z a;(t)A;(t) cos(wjt + ¢;) + v(t), (3.1)
j=1

where «; is the frequency of signal j, ¢, is the phase angle for signal j. uniformly distributed
‘ from 0 to 27, A,(?) is the time-varying amplitude of signal j. and v(t) is additive Gaussian
white noise. The a,(t) are discrete-time point processes (DTPP's) describing the signal
presence at time t.
b As previously expressed in Chapter 2. it is to be expected that. since the resolution of
the FFT is not arbitrarily fine, the sinusoids given in Equation (3.1) will not necessarily

be separated into distinct bins. Thus, the model which more explicitly fits the analysis

‘ scenario to which we have committed is given as follows:
L - M
y(te) = D nilte)Ax(te) cos(wits + ¢4) + v(ts) for L = - (3.2)
k=0 =

where & is the bin index of the FFT. w is the center frequency of bin k. ¢, is the phase

P angle associated with bin k. Ac(t) is the time-varving amplitude of the signal for bin k.

and v(t,) is overall additive white Gaussian noise. Since this model differs from that given

"I"
? .
el

..
v 2

L
I
o Ty

A A I:l:

wa L e@N G e,
o . . )
P alee s '

[ 4
.

PRRRS,
S

s

,‘1
[
¥

AR,
B
."-.

DI T R ]
CeteTw n]]

. . e .

- P .

ptris
» .' ..- ‘ﬁ
LA

A
."- Ty
o
M B

‘,
P s
A,

s

AN
MAAAASAL

Y Y2y

> 3/
.




AR e i yin sim llh L0 A ghe JAG AR gha sitg al sl gt AR ghih ot h St AL At et e g e '\"\-~‘-.L-__'\..,,\.”\&_. ) g’

B

----------

AN N SN M NS T AN R I

in Equation (3.1). a different DTPP is defined in order to properly distinguish between
the two models. Thus. the new DTPP modeling the signal presence is defined as n,(t;).
As before.

1 if signal present in bin k at time ¢,
(te) = -
0 otherwise

Also, let us define the detection DTPP, Ni(t,), as

Vi(t) = 1 if signal detected in bin k at time ¢,
=1 0 otherwise

In our processing model, we perform the analysis of the data in terms of blocks; hence. the
time indices for the various quantities are, of necessity, discrete and quantized. Therefore.
in order to avoid confusion with simple discrete time (the sampling instances), the subscript

¢ is added to the time variable to indicate the particular analysis block which is being

processed.

We also need to define the o-fields which influence the detector decisions. For a funda-
mental description of o-fields, see the explanation of martingale theory. Suppose that B,

is the o-field generated by all past decisions and all past detector rates. We can express

this as

= o(N(s),s <t A(s), s < ten), (3.3)

where A(s) is the true detection rate at time s, and N(s) is the vector of detector decisions

at time s
In order to fix ideas concerning the probability structures in question. let us define the

probability structure governing the DTPP is Equation (3.1) in the following terms:
7,(t¢) = P(signal is present at frequency w; at time t,). (3.4)
The probability structure for Equation (3.2) will be defined to be:
Ak(ts) = P(signal is present in FFT bin k at time ¢,). (3.3)
And define the detection probability structure to be:

Ai(te) = P(signal is detected in FFT bin k at time t,|5,,). (3.6)
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The differences between these three probabilities are obvious, and yet the distinctions can
sometimes be lost in the mass of notation which often must be employed in attempting
to clarify the issues involved. In more succinct notation, and shifting to the point process
aspect of the problem, we can define the above three quantities in terms of the rates of the
point processes given in Equations (3.1) and (3.2) and the quantity N.(%;), the detections.
Let
7; = Plaj(ty) = 1),
Ak(te) = P(nk(t;) = 1), and (3.7)

/\k(tg) = P(.’Vk(tg) = 1|Bt()
It is important to note that the o-field B;, is not observed since, even though we know
the detection process, we will not, in general, ever know A.(t,), the true rate of detections.

Thus, we let F;, be the o-field generated by the detections as
Fi, = 0(N(s), s <te), (3.8)

where N(s) is the vector of detector decisions at time s. Since we do not have the true
detection rates S\k(tg), we let the estimated rate be S\k(tg). We then express the estimate
;\( t,) as

M(te) = P(Ni(t)) = 1|F,). (3.9)

This rate is the estimated a prior: probability for use in the generalized likelihood ratio
test. Thus, the empirical Bayes description of the processing algorithms [30]. The results

in Equation 3.9 are based upon the foundation of the Doob decomposition as presented in

In the simulations then, we consider the estimation of all parameters included in Equa-
tion (3.2) except wy - this parameter is implicitly estimated by the detection of the signal
in the kth bin. In the process of estimating the various parameters, it will be helpful to
define another set of parameters used exclusively in the estimation procedure. but whickh

relate back to the parameters in the model given in Equation (3.2). Define these as follows:

. ‘-ik(t;) - an estimate of /"ik(t().

e 0, - an estimate of the variance of the noise v(t;).

l"l.‘

R ARRAANS

S

TR,
A Y N
¥ e

.-
w P
r

1"
l‘l
.

gl

R P T I
f. o '.f'.n'

<

NN
4

Y

. .
l"
v

.
‘-

[]
.10



° ;\k(t,) - an estimate of the detection probability Xe(t0).

In the Monte Carlo simulations. a time history for the probability structure on Ai(?,) '

is defined for £ = 0..... 16 and : = 0,....60. For each Monte Carlo run we process 960

time points. The probability structure is generally the form of a signal swept from low
frequency to higher frequency with some harmonic content. As information needs to be
gathered for several signal-to-noise ratios, the simulations are set to run 10 Monte Carlo
3 trials at each SNR as the SNR is varied from about 12 dB to —12 dB in 16 steps. At each
SNR, the probability of error is computed and output. These data points constitute the
receiver-operating characteristics and are plotted to show the detector performance. Also.
the estimated rates for the various DTPP’s are plotted as a probability surface. These plots
demonstrate the algorithm’s ability to track the defined @ prior: probability structure.

It should be noted that the SNR is measured with respect to the time-domain signal and
{ therefore does not reflect any bandwidth measurement. Thus, the actual SNR in a given
bin is higher than the SNR in the time-domain by a factor proportional to the number
of points in the analysis window. We can explain this by the fact that the noise power is
evenly distributed into the various bins while the signals are positioned within only one
or two bins. Thus, comparisons with techniques reporting performance with respect to

SNR/Hz are not directly possible for this research.

3.1.2 Markov Chain Model

-
In our estimation procedure for the rates of the various DTPP’s, we invoke a Markov model :::
to describe the time evolution of the rates as described in Chapter 2. Here we also assume |'!_\
that all FFT bins will be governed by the identical Markov transition matrices Q and Z:_'.\
states described as p. This simplifying assumption is not very restrictive since sufficient '.
dimension is allowed to estimate the state of the Markov chain for a given bin. It is well to %
note that the state estimators for the state vectors x, are all done independently so that :;:‘
there is no coupling among rate estimators. This is partially justified since in Appendix ‘:
B.3 we demonstrate that the noise is uncorrelated between FFT bins. 'i
We now define the necessary quantities required to use Equations 2.12 and 2.14. For
WY
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the simulations we will set r = 7, and define the vector p and the matrix Q as o
&
pT = {p1 p2 P3 Pa Ps ps p7) :2
@ ~ ®
= (.05 .20 .40 .60 .70 .80 .90], 0
o
and _ L
95 .02 .01 .01 .01 .00 .00 | N
.02 .93 .02 .01 .01 .01 .00 32
) 01 .02 92 .02 .01 .01 .01 R
QY = .01 .01 .02 .92 02 .01 .01 )
01 .01 .01 .02 .92 .02 .01 =
00 .01 .01 .01 .02 .93 .02 ::: 1
| .00 .00 01 .01 .01 .02 .95 )
® The values p;, j = 1,...,7, are the states of the vector Markov chain, and represent the
states to which the rate ;\k(tl) may transit as time evolves. Since the states of the Markov o
-'."
chain represent probabilities, the only real constraint on the states is that 0 < p, < 1. o
'~
" ] Since. in general, the estimator employed to obtain X will have non-zero values for all .
.
elements, the relatively small dimension of the states is not a severe restriction since the _-’;::
l'-
rate estimate will actually lie on the convex closure of the states defined in the p, vector. f\"
S
® In other words, Ai(t,) is a convex linear combination of the states p,. ":
An element g;; of QT represents the probability of transiting to state j of the Markov A
. . . ‘ . . o0
chain at time t,,., given that the state was : at time ¢, i.e, o
N
® qi; = P(x,(t)|x.(t)). .‘
As an illustration of this idea, note that the strong diagonal structure of QT indicates that E'_::-
given the Markov chain is in state j at time ¢t,, it will likely remain there at t,.,. Therefore. :-;::
.
¢ the evolution of the Markov chain is described by the equation as given in Equation 2.14. :’
namely '_:’
T ;\'.
Xi(terr) = Q7 xi(te) + ui(ty). e
SR
< This can also be modified to increase the off-diagonal elements in order to make the system -
more responsive to rapid transitions if the operational scenario warrants this assumption. :-::.:
3.1.3 Estimation of Signal Parameters N
e The signal strength for the detector structure we employ is also known as the envelope ?
- Y
magnitude. We may not assume that the measure of signal strength in bin k. Ai(#:). N
A,
t:'.-.
3.6 v
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is known a priori, so it is important to investigate how one might generate an estimate

Au(ts) of Au(ty). Probably the most straight-forward method. and one that has previously
been used with success in [18.30], is to compute a decision-directed estimate A;(t,). as
the empirical average of those samples Y, (#,) for which a detection in bin & oceurred i.e..

when S; occurs). This estimator assumes the general form

~ - Nt
Ae(te) = Aw(te-r) + ,l—k(f)—
Z #t—a‘\rk(s)

=1

“)'k(tz)l - -"ik(t!—l)}- (3.101

where the 4 is a constant such that 0 < g4 < 1. This quantity represents a “forgetting
factor.” which permits earlier estimates to be discounted in favor of more recent data.
Using such a model. smooth changes in A,(t,) may be tracked.

In order to estimate the variance of the Gaussian noise. v(t;). we employ a slightly
different decision-directed approach. Since the variance we wish to estimate is contained
in the raw FFT bin data. the bins useful for estimating the noise variance are those in
which no signal is detected. Also, for our signal-plus-noise model. the noise variance should
be equal 1n all bins since we assume that the noise has a white spectrum. So we compute
an estimate noise variance for each eligible bin, then average across all eligible bins to
arrive at the global noise variance estimate &%(t;). The estimator for each bin is similar

to Equation (3.10) and is given as:
[1 = Nu(to)]

2T = Ni(s))

=1

Gilte) = ailte) + (1Ye(t)|® = 63(ts-1)) 13.11

Note that the recursions presented in Equations (3.10) and (3.11) must be initialized

with some a priori estimate for 44(0) and 5%(0). Furthermore. the ratios

t.\'k(m nd (L= Na(t)]

t
Z N, Z ;[t'_’[l = Nl s

s=1 =1

must be initialized to zero at t, = 0 to ensure that the estimates for A.(#,) and miit are

well-defined, and are equal to the a priori values until observations are obtained.
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3.2 Spectral Probability Estimation
) Consider the problem of estimating the probability of signal presence in a given frequency )
AV,
range when the received time-domain signal 1s obtained from either a beamformed array :::
o
. : e
output. or the output of a single transducer such as a sonobuoy. Consequently. the time- )
N
r A
domain received signal is given by Equation (3.1). and after the M-point FFT has been LA:E.-E‘
) , . : .
performed on the data for block i, we have the frequency-domain data given in vector form NS
It
Lt
as Y(i,;) or j:f_w
 Yalte) | e
Ya(t) )
) . ®
Y( t() = '-'\-(‘
o
iy’ d
. " .{;
e
e . ™~
L Yi(ts) | A
: . . oV
) where L = Y. Due to the nature of the scenario. the above observations, whether in “® f
2 N
the time or frequency domain. are implicitly functions of spatial positioning. but for the ;.\'";
S
present we omit any reference to the spatial dependence of the problem. 4l ¢
) Thus. for this proble: we directly apply the analysis presented in the preceding pages "’:
: : : L, . RS
to arrive at the estimatc . for the marginal probabilities necessary for each frequency bin. A
e
N
3.3 Monte Carlo Simulation Results ]
’ @
. . oy e (3 Py
3.3.1 Time-varying Probability Tracking }.-';.:i
-~ ‘]
Essentially two cases are examined in the Monte Carlo simulations. Case one. where the };::'.:
|
) only the rates are estimated for use in the GLRT and case two. where the rates and the “;‘
amplitudes are estimated for the GLRT. In all simulations for both cases. the same :rue :':-'.'_'
e
tiune-varying @ prior: probability structure was used. This is shown as a three-dimensional s
plot in Figure 3.1. In this figure . the blocked time index runs from the back to the front A
g g .
4 of rthe probability surface. and the FFT bin index runs from left to right. Probability 1x ‘ff
s‘ ....
: measured perpendicularly to the plane according to the scale in the left-hand corner of N
N
| the surface. Thus the figure illustrates a high probability of signal presence in the lower :ﬁ'\
& frequencies during the first few time blocks. The high-probability frequencies then are c_,..
1 I
)
}’ imcreased as time progresses. Ultimately, the bin with the highest probability is bin 6 at o
XA
| )
3"8 "'.\.\
2o
‘
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Figure 3.1: True Time-varving A Prior: Probability Structure.
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time block 60. The probability surface also illustrates harmonic structure in bins indexed
as integral multiples of the dominant frequency bin. Some alternate ways of explaining the
plot are to consider the representation of the data as either the collection of the marginals
presented as slices as time evolves, or as a side-by-side collection of the time evolution of
each marginal. All of the subsequent three-dimensional plots are constructed in the same
manner with the requisite quantity plotted against time and frequency.

In Figure 3.2 we show the behavior of the rate estimator for the case where signal
amplitude and noise variance are assumed known. This clearly illustrates the tracking
performance of the algorithm when the probability structure is time-varying. This estimate
was performed at a signal-to-noise ratio of 12 dB.

Figure 3.3 is the average of the rate estimates done for various Monte Carlo simulations
and is much smoother than the single trial estimate shown in Figure 3.2. In this figure.
the true prior probability structure is more obvious due to the smoothing of the average.
Thus. it is evident that, in the mean, the algorithm is able to track time-varying probability
structures. The confidence in the estimate can be expressed by examining the variance
of the estimator as well as the mean-square error for the estimator. These quantities are
plotted in Figures 3.4 and 3.5 respectively. We see from Figure 3.4 that the variance
computed from the Monte Carlo procedure is never greater than 0.0487. and generally
is between 0.01 to 0.02. In Figure 3.3, we see that the mean-square error is somewhat
larger along the high-probability frequency track than in the low-probability regions of the
spectrum. That is. the large values range from 0.5 to 0.6, but there are only about five
points in the plot where these values are present. For most of the rest of the spectrum.
the mean-square error is less than 0.1. The reason that the errors are large in these high-
probability areas is because the estimator is adaptive. In other words. the estimates for
the various probabilities are causal estimates performed in real time: no smoothing is being
performed. Notice that the points at which the probabilities shift to the next bin are the
points at which the mean-square error 1s large. After the shift, the probability estimator
adapts and the mean-square error gradually decreases to a somewhat lower level. Both the

variance and mean-square error results were to be expected from similar results obtained

in [34].
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Figure 3.2: Estimated Time-Varying A Prior: Probability Structure (SNR=12dB).
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Figure 3.6: Estimated A Prior: Probability Structure (SNR=6dB).
Next. we show results similar to Figures 3.2 - 3.3 for a signal-to-noise ratio of 6 dB.
These results are still for the case where only the rate is being estimated and are presented
in Figures 3.6 - 3.9. As is to be expected. the detection probability. while still quite
adequate, is a little less responsive to tracking the time-varyving probability in Figure 3.6:
and the Monte Carlo averages in Figure 3.7 are not quite as accurate a representation of the
true a prior: probabilities as was presented for the 12 dB SNR in Figure 3.3. The variance
i and mean-square error presented in Figures 3.8 and 3.9 respectively are also greater than
in the plots for the 12 dB simulations.
Now. we examine case two. where the rates and the bin signal amplitudes are estimated
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Figure 3.8: Monte Carlo Variance on the Estimated A Prior: Probability Structure
(SNR=6dB).
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Figure 3.10: Estimated 4 Priori Probability Structure (SNR=12dB.

and used in the GLRT. As can be seen from the plots in Figures 3.10 and 3.11. the estimator
1s still performing quite well at a signal-to-noise-ratio of 12 dB. However. upon examination
of the variance plot, we see that the estimator variance for this case actually has a lower
absolute maximum than the variance for case one. Nevertheless, the overall variance <een.s
to be about the same as in case one. The mean-square error for the case two estimiator i~
slightly greater than that for case one.
When the signal-to noise-ratio is 6dB. Figures 3.14 and 3.15 show a sienificanr foiw

alarm rate in FFT bin 1. Since Figure 3.16 shows a high estimator variance in hin 1.

1s likely that the false alarm condition shown in Figure 3.14 did not oceur on all Mo

...........



Figure 3.11: Monte Carlo Averages for the Estimated A Priori Probability Structure
(SNR=12dB).
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Figure 3.12: Monte Carlo Variance on the Estimated A Priort Probability Structure

(SNR=12dB).
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Figure 3.14: Estimated A Prior: Probability Structure (SNR=6dB). N

Carlo simulations. This high false alarm probability in bin 1 can be explained as a runaway o

~

condition probably due to the inaccurate estimation of the bin 1 signal amplitude. With the .

S
x

exception of bin 1. however, the estimator variance shown in Figure 3.16 is only somewhat
larger than the variance for the 12 dB SNR simulations. Even given the rather erroneous
estimation of the probabilities, the mean-square error plot given in Figure 3.17 is not
dominated by the problems in bin 1. but rather shows the characteristic peaks along the

high-probability trace.
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Figure 3.15: Monte Carlo Averages for the Estimated A Priors Probability Structure
(SNR=6dB).
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Figure 3.18: Receiver Operating Characteristics - Known Amplitude. Estimated 4 Prior:
Probabilities.
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3.3.2 Receiver Operating Characteristics

‘o -'. <

Whenever detection performance is evaluated, the common performance evaluation is done

o

using the error probabilities at various signal-to-noise ratios. Plots generated using such a

method are referred to as receiver operating characteristic (ROC) curves. In Figure 3.18
we give these curves for the case where only the a prior: probabilities are estimated for
the various FF'T bins. The line marked by dots is the ROC curve for the empirical Baves LI
procedure, and the line marked by the crosses is the ROC curve for the true Bayes detection

procedure. An unexpected feature of these curves is that they cross at approximately the

6 dB point and are identical at the 12 dB point. The difference at the 6 dB point would be “’
o
approximately .02 percent, a very small advantage for the empirical Bayes procedure. From 3
Robbins work [22]. we do expect that the empirical Bayes and the true Baves approaches "
‘_‘J
shonld converge at high signal-to-noise ratios. This is obviously the case here. -4
[}
Similarly. the curves shown in Figure 3.19 are given for the case where the signal am- D
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i Figure 3.19: Receiver Operating Characteristics - Estimated Amplitude and A Priom
b Probabilities.
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plitudes is estimated as well as the a prior: probabilities. In this plot. the error probabiliry
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for the empirical Bayes procedure is slightly lower than the true Bayes only at the 12 dB
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r point. Again, this is a very slight difference and is possibly an anomaly in the data which

would be remedied if a larger number of Monte Carlo trials were conducted and averaged.
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From these two graphs then. we see that when the signal bin amplitude must be computed
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no serious degradation of the algorithm performance occurs.
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Appendix A

Key Results from Martingale
Theory

‘.

The most common applications of stochastic process theory in engineering deals with
linear estimation (e.g., Wiener and Kalman filters), which rely heavily on the notion

of uncorrelation and white noise. For the purposes of the analysis in this report.

-
"J'['.-‘{’ .m,

however, the estimation problems are nonlinear, and these notions are replaced as "
>
fundamental concepts by the martingale property. Consequently, it may be useful to "

provide some background on martingale theory which will render the results of this :;'
paper more understandable. '.:'
L4

A.1 Background

e A
AR

»

Definition: A o-field is a collection of subsets, A, of an event space, Q. such that

(a) For every A € A, we have the complement. A € A.

(b) if Ay, A2,.... As, ..., is a countable sequence of elements of A, then U, 4, € A.

(c) D e A

N el AT ARIIY X

(Y]
.

The elements of A are termed events: the set Q is the sure event. and event @ is the

P
o1 a0,
. »

s

impossible event.

‘a
s
e v
*,

B

Definition: A probability space is a triple, {Q2, A, P} where Q is the event space. A

1s a o-field, and P is a probability measure on A, i.e.. P satisfies
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(a) P{A} >0, for all 4 € A.
(b)y P{Q} =1
® : . .
(c) If {4,} is a countable collection of disjoint events. then P{USL, A,} = 72, P{4.}
Definition: A random variable X is a real-valued function whose domain is 2 and
° which is .A-measurable, i.e., for every real number z, the set {w € Q|X(w) <z} € A.
Definition: The o-field generated by the set of random variables {X,,t € T} is the :__."-
o
smallest o-field with respect to which each element of {X,, t € T} is measurable. :::}
{. This o-field is denoted o{X,, t € T}. The physical meaning of the o-field Br = -."
| 0{X;, t € T} is that Br represents all of the information contained in or derived R
| h's
from the collection of random variables { X, t € T}. A
'
.y . . . . S
Definition: Let X be a random variable on {Q2, 4, P} with finite expectation. and ‘;-
let B be a sub o-field of A. The conditional ezpectation of X with respect to B. ':'_:
denoted E8X or E(X|B) is a B-measurable random variable, uniquely determined .E-f.
except over a B-measurable event of probability zero, which satisfies ::_f
N
o
J. xap = [ EPXaP o
B B .-.:
X
for all B € B. Although it will not be proven here, it is a standard result of mathe- ':::
o
b matical probability theory (a consequence of the Radon-Nikodym theorem) that the ®
\'.-"
existence and uniqueness (up to B-measurable events of probability zero) of such a E:::‘
function EBX is assured. In the sequel. conditions that hold except possible on a set E\
of probability zero will be said to hold almost surely, or a.s. Some basic properties ;'
P of conditional expectations may be summarized as :»;
3
(a) FBX>0if X>0as; EBX =0if X =0a.s. ::::Si
3 ‘
s (by E(EBX)=E(X) as.; EB(1) =1 a.s. .
RN
(¢c) EB(¢X)=cEBX ifce R. Z‘:-:'j
o
\ B _ By By : =]
(dy E5(X, + X)) = EXX,| + E°X, if both expectations exist. o
r (e) If X is B-measurable, then E®X = X a.s. and. more generally. for every random g,'q
-"”q
variable ¥ on {2, B, P}, we have E5(XY) = X - EfY’. Y
o
e
A-2 NI
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(f) If B, € B,, then E®(EBX) = EB X = EB(EB X)),
If a random variable X is measurable with respect to a o-field B. this fact is denoted
by the notation X € B.

Definition: Let {B,, t = 0.1,...} be an increasing family of s-fields and let { ', t =
0,1,...,} be a set of random variables such that X, € B,. Then {X} is said to be

adapted to {B}. The family of random variables {X} is called a martingale with
respect to {B} if

(a.) ‘Yt c Bt

(b) EBX,= X, for s < t.

A sub-martingale is defined as above with the exception that 2) is replaced by

EBX, > X,

A martingale difference, or MD, process {z} is formed from a martingale process

{X} by defining z, = X; — X,_;. Thus,
EB‘-]It = EBt_l‘Yt - ‘X—g_l = -Yt—l - -Yt—l = 0.

It 1s useful to characterize the MD property as being intermediate between the proper-
ties of independence and uncorrelation, since every two independent random variables
have the MD property with respect to each other and. in turn. every two random

variables that have the MD property are uncorrelated.

Definition: For a process (possibly vector-valued) {X} adapted to {B}. the condi-

tional variance (X. X), sequence is
(X,X)e = BB X()XT (1),
For any two processes {X} and {Y} the conditional covariance (X.Y), is
(X.Y), = EP='X(t)YT(¢).
Definition: The sequence {b} of random variables is said to be {B}-predictable if
hi € B forall t =0.1,.... If {b} is {B}-predictable and {r} is a MD with respect
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to {B}, we define the process {b- v} by b, v, = bv,, the product. Then {b- v} is
a MD sequence with respect to {B}. This sequence is termed the MD transform of
{0} by {8},

Definition: For any sequence of random variables {y, ¢t = 0,1,...}. let F, =

o{ys,s = 0.1,...t}. Then the sequence v, = y, — EF*-1y, is the general innovations

of the process {y}.

The development of the discrete-time point process estimator used in this report
relies two basic properties that are central to nonlinear estimation theory. These
two properties are: 1) the innovations theorem, and 2) the representation theorem.

These results are stated without proof for the discrete-time case.

Innovations Theorem: The general innovations process is a martingale that is

equivalent to the observed process, i.e.,

Fio=0{ys,s <t} =0{v,,s < t}.

Representation Theorem: Every MD sequence {w} with respect to the {F} can

be represented as a MD transform of the innovations {v}. i.e.,
w, = btyt

where {b} is an {F} predictable process.

A.2 Discrete-Time Point Processes

A discrete-time point process (DTPP) {.V(¢),¢t = 0.1....} is 2 binary {0. 1} sequence
describing the occurrences of some type of (possibly vector-valued) event. Thus.
XN(t) = 1 means that the event occurs at time t. and N(t) = 0 means that there
is no occurrence of the event at time t. The simplest example is when {\'} is a
Bernoulli sequence. i.e.. a sequence of independent random variables with P{\(¢) =
1} = 1 - P{N(¢) = 0} = A(t). The quantity A(t) is the rate of N(#). and may in

general be time-varying. In many applications the occurrences will not be mutually
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independent, but the probability of occurrence at a given time will be affected by
previous occurrences and perhaps by some other related process. x(t). in which case

the rate of the process will be affected by the past history of {x} as well as by {\'}.

A.2.1 Doob Decomposition

We present a fundamental theorem due to Doob [7].
Doob Decomposition: For an arbitrary sequence {y} adapted to a family {B} of
o-flelds. define
A(t) = EB=y(t)
and
w(t) = y(t) — E51y(t).
Then the following properties hold:
y(t) = A?) + w(t)
(a) {A} is {B}-predictable and {w} is a MD sequence with respect to {B}:
(b) the above decomposition is unique;
(¢) if {v} is a {B}-submartingale difference (subMD) sequence. i.e.. if
E®-ty(t) > 0,

then A(t) is positive for all *.

Proof: Properties 1) and 3) are trivial. To prove 2). suppose
y(t) = N(t) + w'(1)
where {A'} is {B}-predictable and {w’} is a {B} MD sequence. Then
0 = EB-1w/(t) = EB-1y(t) — N(t) = A(t) — N(¢)
which proves 2).

For point processes,
N(t) = A(#) + w(t)

is the Doob decomposition of {.V} with respect to {B}.
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A.2.2 Estimation from Discrete-Time Point Processes

It is useful to outline the development of the discrete-time point process estima-
tor used in this analysis. This development follows [29]. Suppose the rate of the
DTPP {N} (A(t)) may be characterized as a finite-state Markov chain. with states

p1(t). ..., p-(t). Define the vector x(¢) with element

a1 A(t) = pi(t)
zilt) = { 0 otherwise

and the probability transition matrix Q(t) with elements
qi,(t) = P{z;(t + 1) = 1|z;(¢t) = 1}.

Define the o-field
Bt = O{AV(S)’S S tw X(S),S S t+ 1}

The r-dimensional vector process x(t) trivially obeys the relation
x(t+1) = EB1x(t + 1) + [x(t + 1) — EP='x(t + 1).
It zan easily be seen that the process E®-1x(t + 1) is {B}-predictable. and that
u(t) = x(t+ 1) — EB1x(t+1)
is a {B}-MD sequence. Thus.
x(t + 1) = EP='x(t + 1) + u(t) (A1)

is analogous to the classical signal-plus-noise model. It can be seen from construc-
tion. however, that this decomposition is fundamentally different from the classical

situation. and that the process {u} is not an independent process.

We may evaluate EB-1x(t+1) for the Markov chain model as follows. Since x(t) com-
pletely characterizes the expected behavior of x(#+1) (due to the Markov structure)

we have

EPeiz(t+ 1) = Elz(t+ DIx(t)] = P{zi(t + 1) = 1[x(+)} = 3 _ q,(t)a,(t).
=1
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Thus,

EB-1x(t + 1) = QT(t)x(¢), (A.2)

and we have the representation
x(t+1) = QT (¢)x(t) + u(z). (A.3)

We may define

w(t) = N(t) = A(t)

where \(t) = E®-1N(t). The process {w} is a {B} MD process. Under the Markov

model. the components of x(¢) are

0 otherwise

i) z{ 1 if M#) = pi(t)

Thus. we may write

N(t) = pT(t)x(t) + w(t) (A.4)
where pi(t)
p(t) = '
p?kt)

We are interested in the conditional expectation of x(t + 1) given F;. To obtain this

representation, we first form the process
u(t) = EFex(t + 1) — EF 1 EB-1x(t + 1),

and note that this quantity is a {F}-MD. Since F,_y C B;_; and using (A.2) we

obtain
wu(t) = EFx(t + 1) — QT(t)EF =1 x(t). (A.5)

We also note that the process

v(t) = N(t) = EF EB=1 N(t) = N(#) ~ pT () EF = x(1)
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is a {F}-MD, where we have used (A.4) and the fact that {w} is a {B}-MD. The :.:;:
-A"'n“x
representation theorem states that we can express {f} in terms of {v} as :'E".'.'-
u(t) = B(t)u(t) (A6 e
5
for some {F}-predictable (matrix) sequence {B}. The matrix B(t) can be obtained N
\
by computing the conditional covariance process with respect to {F}, which implies 'ff
that =
(p.v),=B(t)(v.v), ;'_:f'
which yields ~.
B(t) = (g )e[(v, )] 7" (A7) N
iy
e
Thus, from (A.3), (A.6), and (A.7) we obtain -?:::‘-E )
L
EFx(t +1) = QTOET ' x(1) + (p.v)l(v.v)] " w(2), —
Aok
S
or, using the notation §(t|s) = E**y(t), for any process y, we obtain :::::::-
‘_-\~s
\'- <
X(t+10t) = QT(O)X(tt — 1) + (p,v)e[(v. 1)) (1) (A.8) *;*
Calculation of Conditional Covariance :
The covariance matrix (g, v); may be expressed as ".
NN
ET= [u(t)u(t)] = EF- {E"[x(t + Du(t) = EF= [x(t + 1u(n)]} R
R
and since EX-'x(t + 1) € F,_; and v(t) is a {F}-MD, the second term of this NN
e
expression on the right-hand side vanishes. Thus, we may write RN
EF-u(t)v(t)] = EF=1Ex(x(t + D(t)] — QT(t)EZ= [x(t)u(t))] _’.ijﬁ;{
= EF= {[QT(1)x(t) + u())[xT(1)p(1) + w(t) - X7 (¢t = 1ip(11]} ;;EI-_:T_I
= Efe {Q’r(f)x(f)xT(t)p(t) + QT (tH)x(Hw(t) — QT(Hx(t)xT(+t -1 pie o
-."-"
—u(t)xT()p(t) + u(t)ue(t) — u(x (|t — 1)p(t)} i
,'.:J‘"
where we have used (A.4). (2.20). and (2.13). Noting that x(t) € B,_,. x(t{t — 1}. )
and u(t) and w(t) are {B}-MD processes. this expression simplifies to _!\
EF=u(t)v(t) = E7= {QTO[x(O)xT(#) = x()x"(#]t = Dp() + u(the(t)} (A.9)
Y
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Y Solving for EFt=t[u(t)w(t)] yvields

b

] »

| EF={u(t)w(t)] = = {[x(t + 1) = Q) x(1)][V(2) - X7 ([t — 1)p(1)]} . ‘)

; Since F,_; C B,., we may write

| EF-i[u(t)w(t)] = EF-1 EB- { (t+1)N(t) — x(¢t + D)X (]t — 1)p(t) -

—QT()x(1)N(t) + QT () x()xT (¥t — 1;p(t)} 'k

where we have multiplied out the cross products. Substituting (A.3) and (A.4) vields =

! EZe-i{u(t)w(t)] = EFt-1 EB= {x(t+1)V(t)—[QT(t)x(t)+u(t % (¢t — 1p(t)

- QT(O)x()[xT()p(t) + w(t)] + QT(H)x(HXT(t|t — 1)p(t)} '
We note that since X(t|t — 1) € B,_; and u(?) is a {B}-MD. we have
EB=1[u(t)x7(t|t — 1)p(t)] = 0.
Similarly, since x(t) € B;-; and w(t) is a {B}-MD. we also have
EP-11QT(H)x(t)w(t)] =
Thus, after simplification, we have
ET = [u(tyw(t)] = EX= EB= {x(t + 1)N(t) - QT(t)x(x"(1)p() } .
Substituting this expression into (A.9) vields. after straightforward manipulation.

EF= [p(t)u(t)] = EF-i[x(t + 1)N(1)] = QT(Hx(t]t — 1)xT (11t — Dip(£).  (A.101 ]

To complete the development we will assume that. given B,_;. the values assumed

by x(¢ + 1) and .V(#) are independent and. consequently,

EB=[x(t + 1)N(1)] = EB-1x()EB= N(#) = QT(H)x(t)x (H)p(t). (A.11)
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P ]
s

EF-[x(t+ 1)N (1) = EF= EB=2 [x(1 + 1)N(1)].

therefore.

q

. s
STel

EZ=phw(h)] = EZ2 QT(0x(0)xT (H)p(1)] = QT(HIX(Ht — 11X (¢l = Tip(t)
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but. since X(t) has one and only one non-zero component. we may write

x()xT(t) = diag {x(1)}

B e
L "h".rs) e

A

where diag {-} denotes a diagonal matrix whose diagonal elements are composed of

P e
x,

|
T [ ¥
(e Lofh

the elements of the vector argument. Thus,

EF = pitv(t)) = QT (H)diag {x(t]t = 1)}p(t) = QT (H)k(tlt— 1)XT(t|t— 1)p(t). (A.12)
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Calculation of Conditional Variance

Pd

The conditional variance (v.v), consists of the quantity

. '
v 7

E}-'—l[l/(t)l/(f)l — {Ef;—l(.\'(t) — ,i(flt - 1))(.\'(” - 5\(”2‘ - 1))}

s

where

Attt = 1) = pT(H)%(Ht = 1) (A.13)

."-‘u‘*‘.'..’<

° is the conditional expectatic = of A(t) given F,_;. Thus, EF-'v*(¢) may be easily

B WA

evaluated as

EF= (1) = SR (N2 () = 2N (DAt = 1) + A3 (t]t — 1)
= Nt|t —1) = A3(¢t]t — 1) "

®
P since N2(t) = N(t) and A#|t - 1) € F,_,. "
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: Envelope-squared Detection :
t .
Y .:
i "
LY
E B.1 Envelope of a Narrowband Process N
3
; N
" A random signal n(t) is said to be a narrowband noise process if the spectrum of )";
! n(t) is zero except for a narrow region about w = 0 or w = «. where w, is a carrier
i frequency. Let us represent the process n(t) as a pair of quadrature components as ;:
) I\
{ given in Whalen 36] as follows: 2
‘ e
. n(t) = z(t) cos(wct) — y(t) sin(w,t) (B.1) NS
] \-
K where z(t) and y(t) are also narrowband processes with power or variance o?. We N
» =
! then refer to the envelope of the process n(t) as >
~ 2
- 2 2,113 . :::
) z(t) = [2%(t) + y*(1))3. (B.2) R
) ¥ Al
A v
i Now, define the phase angle as A
I
t T
8(t) = arctan y_(_l (B.3)
E 2(1)
. The inverse operations are then
¥ J
{
) ’

y(t) = z(t)sin 6.

and the Jacobian of the transformation is =(¢). The joint probability density function

for z(t) and f is. suppressing the time arguments:
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Since the phase angle is uniformly distributed in [0, 2], we integrate Equation B.4

to get
.2

2 - -
P(Z): A p(:.g)dg:a—zexp [_F

> 0. (B.3)

This is the well-known Rayleigh density function. However. since we wish to employ
the square of the envelope in a detector, we now let u(t) = z%(t), and the density

function becomes
1 u
This is an exponential distribution, or the non-normalized y? distribution with two

degrees of freedom. If we define the normalized variables
t t
'(t) = z(t) and y'(t) = =(t)
o o
then, for ¢ = [z + y"], we then have the y? distribution with two degrees of freedom:
1 _ g -
p(g) = €™ 2. (B.7)

with mean and variance E{q} = 2 and V{q} = 4.

B.2 Envelope Squared of a Sinusoid plus Narrow-
band Noise

Consider the signal model now to be a sine wave with additive Gaussian noise. n(t).

so that
f(t) = Acos(w:t + @) + n(t),

or. equivalently

f(t) =[Acos o+ z(t)]cos(w.t) = [Asino + y(t)]sin(w.t). (B.

(V4]

where ¢ is uniformly distributed in [0.27]. The envelope squared is then
w(t) = [Acoso+ r(1)) + [Asino + yit)] (B.o»

The probability density function for u is thus. supressing the time arguments,

1 ! Au'/?
plu) = ﬁexp —;0-7( w4+ ,-U)} Iy <T) . (B.10)
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Equation B.10 is the non-central x? distribution with two degrees of freedom. If we

now normalize the variables, as done above in Section B.1, we have a new. normalized

non-central x? variable:
_(A+2) EE: y)?

o2 P (B.11)
And the density for ¢q is a modified form of Equation B.10 as follows:
1 +
plq) = 5 €Xp [*%] Io((‘]"/)lﬂ) (B.12)

where v = 24?/0? is defined as the non-central parameter for two degrees of freedom.

B.3 DFT Bin Noise Correlation
Theorem:

Given a white Gaussian noise sequence, n(t), such that E{n(t)} = 0%, and E{n(t)n*(s)} =

1 fort=s
(Sts:

026,,, where

0 otherwise
is the Kronecker é function, then E{N(k)N*(1)} = #26;, for the DFT sequence V(k)
defined as

N-1
—Z2wkt
€

t=0

z|~

Proof:

The autocorrelation function for the DFT sequence V{k) is given by

1 Y-l — 2=kt ! 2mis ::
E{N(k)N"(1)} = E{< S eT o) Y e onv(s)). (B.13) >
- t=0 “~

or
- - k1 Iv{s t.
E{N(HN Z Z g '_""'E{nf)n(s‘)} (B.14) ‘1
t=0 s=( ~
where E{n(tin(s)} = o4, because the process n(t) is white. Then. Equation B.14
15

at oy —yimi k=it
E{NMIN (1) = e e (B.13)
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This is in the form of a geometric series which we can alternatively express as
o2 1 — e HFF
® E{N(k)N*(I)} = Fl___ef_%.__b (B.16)
where b = k — . Reducing fractions,
. E{N(K)N*(1)} = gg;; . (B.17)
The quantity b can only assume integer values 0,1,...,N — 1. Therefore, from the E.'_:
form of Equation B.17 it is obvious that, since exp[—j27b] = 1 for b= 1.2,..... V-1 ".,-;
° the numerator is just 1 — 1 = 0 and the denominator is non-zero, so f
o
E{N(k)N*()} =0 fork #1l. 7

’ 7
Xy

=

However, since the denominator is also zero when k = [, L'Hospital’s rule must be

4

LY

a
"o,

used to resolve the indeterminate form. This yields

-:\:

. o? j2orbe 1Tt s
E{N(k)N*(I)} = Vo T 0% forb=0(ork =1.) ;:

N s

L J The autocorrelation for the noise in different bins of the FFT is given then as: !‘_
.-.’\
o? fork =1 N

E{N(k)N™(])} = (B.18) R

0 fork#L ¥

s

N
2

o
| B.4 Detector Structure N
% E'_Zy
N
; In the following discussion, we will supress all time arguments for the sake of brevity. e
)
[} . . . . =9
| For the detector design, we will allow two hypotheses for each signal band. or. in our i
‘; case, each FFT bin. These will be defined for each FFT bin k. as e
oy
ch,05Fk:AVk :“':'l
L
e Hy Fi=Ar + Ny ~
. .,_'{
o
where F} is the kth bin of the transform of f(t), Ay is the signal magnitude in the Ath '_'j
: . : : : : : -
bin. and Ny is the noise process in the kth transform bin. Since n(t) 1s a Gaussian -".:1
. : . . : ®
k process, the noise in the various FFT bins are uncorrelated as shown in Section B.3 S
.
in Equation B.18. This allows the use of independent detectors in our application. :_',',:
uf\
b'.-
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The detector then tests on the likelihood of the above two hypotheses and yields a

decision D (F") as follows:

1 if P(Hy1)p(Fx|Hi1) 2> P(Hyo)p( FilHi o)

0 otherwise

Di(F) = { (B.19)

where P(H ;) is the a priori probability for the ith hypothesis in the kth FFT bin.
and p( Fy|Hg;) is the hypothesis-conditional probability density function the form of
which will be given presently. Equation B.19 can be given as a ratio of the form:

1 if P(Hy 1 )p(FxlHk 1)

PlHe o) P Bro) 2 1

D\(F) = (B.20)

0 otherwise

or as a log-likelihood function

Du(F) { 1 iflog P(Hg,) + log p(Fi|Hg1) — log P(H) — log p(Fi|Hi o) > 0
k =

0 otherwise

(B.21)
The quantities given in Equations B.19 - B.21 will now be defined. The a prior:
probabilities for the binary decision case are given as:

P(Hio) = 1— A4

P(Hy,) = A (B.22)

Since the FFT results in a complex output for each bin &, we define some variables
which will expedite the application of the x? density functions. Let

1k = Real[Fk]

I, = Imaginary[Fy].

and
2 2
% = Tik , Lok
o? o?

And the hypothesis conditional densities are of the forms given in Equations B.7
and B.12. For Hy o we assume that ¢, is drawn from a central \? distribution with

probability density as follows:

Plae) = e % {B.23)
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And for Hy, we assume that g, is drawn from a non-central y? distribution with

probability density as follows:

“ +
exp [——kTq—k] Io((qev)'"™®) (B.24)

<

o] —

plax) =

where

When the quantities given in Equations B.23 and B.24 are substituted into Equation
B.21, we arrive at the log-likelihood ratio test for this problem presented as
1 if log \e — % + log(Lol(gxvx)'"]) — log(1 — Ax) > 0
Di(F) = (B.25)

0 otherwise
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