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1.0 INTRODUCTION v

PR

One of the common problems in numerical simulations of nonlinear
response in an infinite domain is the artificial reflections that are
generated at the finite boundaries of the computational grid. These
artificial reflections are undesirable because they propagate throughout
the computational grid, causing errors in the computed response. The
arrival of the artificial reflections can be delayed by placing the grid
boundaries in a quiescent region that is far from the region of interest. ,
However, this approach is not economical because the computational region
becomes quite large.
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The general objective of this effort is to develop a transmitting or 3
energy absorbing boundary for calculations of transient, nonlinear
response in an infinite domain. A transmitting or energy absorbing

x2S

- boundary attempts to eliminate the artificial wave reflections from the ;
& finite boundaries of the computational grid, allowing the computational o,
domain to be centered on the region of interest. %,

A number of nonreflecting boundaries have been proposed in the
literature. One particular method, called the Incremental Superposition
Boundary (ISB), appears to be very efficient and computationally robust !

.-.
1'% ¥ %

: for transient calculations. The ISB method (Cundall, et al.) is based on :
!E superposition of the solutions for a fixed boundary and for a free \
- boundary. Simple acoustic theory shows that the reflected waves from a :
¥E fixed and a free boundary are equal in amplitude but opposite in sign; N
superposition of these two solutions will cancel the reflected waves, 2
ig leaving the incident pulse. :
» g
»
g i} The specific objective of the present study is to evaluate the ISB A
L method as a transmitting or energy absorbing boundary for transient cal- !om For
3 culations. Preliminary one-dimensional computational tests showed that fg‘*r " 3
$ the ISB method did not eliminate a reflected wave completely; the ampli- .ced [E]] '
) . tude of the reflected wave after cancellation was on the order of 5-12% of<iff‘°' h
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the amplitude of the incident wave. Detailed analyses of the reflection
and cancellation process were performed to determine the cause of the
errors.

One potential cause of the error in the cancellation process is the
finite displacement of points in the computational algorithms. That is,
the different displacements of a compression wave and an expansion wave
will shift the pulses, causing an error in the cancellation process. A
simple perturbation analysis shows that, for small strain elastic
response, the effect of finite displacement is negligible compared to the
observed cancellation error.

An analytic model was then used to identify the cause of the error in
the cancellation process of the ISB method. This model, which is based on
a unit step pulse propagating through a one-dimensional computational
grid, shows that the cancellation is perfect when the pulse first arrives
at the fixed and the free boundaries; but at the next and any subsequent
computational cycles, the cancellation has a substantial error if the
velocity at the free boundary is not reset properly.

The analytic model also shows that the appropriate velocity at the
free boundary has to be modified when the computational time step is less
than the maximum stable time step. First- and second-order corrections to
the appropriate velocity boundary conditions have been developed for time
steps less than the maximum stable time step. Extension of the first- and
second-order corrections to two-dimensional problems has not yet been
developed.

The theory and the computer implementation for the basic ISB method
is discussed in Sections 2.1 and 2.2, respectively. The ISB was incor-
porated in the Lagrangian, explicit-in-time, finite-difference code
STEALTH (Hofmann, 1981), and tested by performing calculations with a
cosine pressure pulse propagating through a one-dimensional grid. These
calculations will be presented in Section 2.3. The effect of the finite
displacement of grid points on the cancellation errors is discussed in
Section 2.4,
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Section 3 presents the analytic model for identifying the cause of
the cancellation error and the derivation of the first- and second-order
corrections for the ISB method. The first- and second-order corrections
for the modified ISB method are then verified by performing one-dimen-
sional test calculations with STEALTH. These test calculations are also
presented in Section 3.

Section 4 is the summary and conclusions from this research.

=x s5B o AR X

0= 53

5

AP

S A

-
L ]
5

Fus

N

o
.

Moy

L]
*

-a, b ) _'-?';l{'



A

I ENETEN K

R Sk A B B OB T

Br2

zre

%o Sl Vol Wl Faf O P P R D 6B R T Vel Yah Val A iR 0w N8 Tl Sl 0D L RN T KRN R AN N A SN AN PN YA NN

2.0 DESCRIPTION OF THE ISB METHOD
2.1 THEORY OF THE ISB METHOD

The concept for the Incremental Superposition Boundary (ISB) method
is based on a non-reflecting boundary that was developed by Smith (1974)
for wave propagation problems. Smith’s method calculates the dynamic
response of a system in an infinite domain by superimposing the complete
solutions for a fixed (Dirichlet) boundary problem and a free (Neumann)
boundary problem. The reflected waves from a fixed and a free boundary
are equal in amplitude but opposite in sign, so superposition will cancel
the reflected waves, leaving the incident wave.

This cancellation can be illustrated for one-dimensional acoustic
waves. The displacement, U, of the incident wave in an infinite domain
may be expressed as:

iy, .
¢ (x - ct)

U=Ae (2-1)

where A is the amplitude of the wave, w is the frequency, ¢ is the sound
speed, x is the position, and t is the time. The displacements for the
waves reflected from a fixed and a free boundary are given by :

l% (-x - ct)

Ur =-Ae and (2-2)
fixed

% (-x - ct)

U = Ae

r , respectively (2-3)
free

The total displacements for a fixed and a free boundary problem are then
given by superposition as:

1—“’ (x - ct) ‘—‘g (-x - ct) (2-4)
Ugixed =AE -he
"—‘g (x - ct) % (-x - ct) (2-5)
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The average of Equations (2-4) and (2-5) is then the incident wave, Equa-
tion (2-1). Similar arguments also apply to stresses and velocities (in a
linear medium). Therefore, the solution for an infinite domain can be
obtained by superimposing and averaging the solutions for a fixed and a
free boundary problem.

The disadvantage of Smith’s method is economics: a number of complete
solutions must be computed for various combinations of boundary conditions
and wave reflections, and is frequently simpler to just enlarge the com-
putational domain. The ISB method avoids the calculation of complete
multiple solutions through an incremental approach. This incremental
approach superimposes the fixed and free boundary solutions in two small
buffer regions near the boundary, eliminating the reflections from the
boundaries as they occur. The dual calculations are only required for the
small buffer regions with the ISB method.

2.2 COMPUTER IMPLEMENTATION OF THE ISB METHOD

Figure 2-1 presents a schematic diagram for t;e structure of the
buffer regions and the main grid for the ISB method. Two overlapping

buffer regions, A and B, each of three or four zones, are connected inde-

pendently to the main calculation grid. Region A has a fixed boundary,
and region B has a free boundary. For simplicity, a one-dimensional grid
is presented in the diagram; the ISB method can be applied to two-dimen-
sional problems.

A wave that propagates from the main grid enters the two buffer
regions simultaneously at point p. This wave will then reflect off the
fixed and free boundaries of regions A and B. These reflected waves are
eliminated by replacing the existing variables in regions A and B with the
average values of variables in the two buffer regions. (Each variable of a
zone in region A and of the corresponding zone in region B are summed and
divided by two. The variables at the nodes connected to the main grid are
not averaged.)
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This averaging procedure does not have to be performed every cycle
because of the stability criterion for explicit-in-time calculations. The
ISB method is designed for transient nonlinear problems. These nonlinear
problems are usually computed with an explicit-in-time numerical integra-
tion scheme. The stability criterion for an explicit calculation requires
that the time step be smaller than the time for a wave to travel one zone
width. The averaging procedure is then performed once every three or four
cycles because the reflected waves cannot propagate into the main grid (or
to point p) in less than five cycles.

P A ¢ ) ¢ fixed
/
Direction of Wave Propagation / Buffer Region A
> /
/
) p
Main Grid \\
\
\
P ® ¢ ¢ free

Buffer Region B

Figure 2-1 A Schematic Diagram of the Buffer Region and the Main Grid
for the Incremental Superposition Boundary.
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2.3 ONE-DIMENSIONAL COMPUTATIONAL TEST PROBLEM FOR THE ISB METHOD

The ISB model has been incorporated in the Lagrangian, explicit-in-
time, finite-difference code, STEALTH (Hofmann, 1984). One-dimensional
calculations with a cosine pressure pulse that propagates through the grid
are performed to verify the ISB method. The lengths of the main grid and
the buffer regions for these test calculations are 42 cm and 4 cm, respec-
tively. A1l zones are one cm in length, so the main grid contains 42
zones and each buffer region contains 4 zones.

Linear elastic material properties are assumed for the test calculat-
ions. The equation of state can be expressed as:

- e .
P Po + K (po 1)

where P = pressure (Mbar),
Po = initial pressure (MBar).
K = bulk modulus (MBar),
po = reference density (gm/cc), and
p = density (gm/cc).

The initial pressure, the bulk modulus, and the reference density are
zero, 0.0022 Mbar, and 1.0 gm/cc, respectively. The pressure boundary
condition that generates the cosine pressure pulse is given by:

P = 5x1076 (1 - cos wt),

where t = time in s,
and w =0.02nx us'l.

Three calculations were performed with time step safety factors of
0.95, 0.67 and 0.50. The time step safety factor is the ratio of the
computational time step to the maximum stable time step. Typical values
of the time step safety factor range from 0.5 to 0.95; the default value
for STEALTH is 0.67.
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Figures 2-2(a), 2-3(a), and 2-4(a) present pressure time-history
plots at a point in the main grid, 3 cm from the inside edge of the buffer
region. The large pulse, centered at 300 usec, is the incident wave; the
smaller waves after 360 usec are the reflected waves from the ISB. (If
the ISB were perfect, only the large pulse would appear in these figures.)
The three figures are for time step safety factors of 0.95, 0.67, and
0.50, respectively.

Figures 2-2(b), 2-3(b), and 2-4(b) present pressure-distance plots at
500 usec, when the incident wave has propagated beyond the ISB, and the
raflected wave is centered in the main grid. (If the ISB were perfect, no
reflected pulse would appear in the figures.) These plots show the ampli-
tude and time dependence of the reflected waves on the same scale as the
first set of figures. Figures 2-5 through 2-7 present the same pressure-
distance plots in an enlarged scale.

These results show that the original ISB method does not eliminate
the reflected wave completely; the amplitude of the reflected wave after
cancellation is on the order of 5-12% of the amplitude of the incident
wave, and is a function of the magnitude of the time step (or the time
step safety factor).

2.4 EFFECT OF FINITE DISPLACEMENT OF THE COMPUTATIONAL GRID POINTS

Computational results from the previous section show that the ISB
method has a substantial error in the cancellation process. One potent-
ial cause of this cancellation error is the finite displacement of grid
points in the computational algorithms. That is, the different displace-
ments of a compression wave and an expansion wave will shift the pulses,
causing an error in the cancellation process.
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Figure 2-5 Pressure-distance Plot at 500 us for the Reflected Wave
for the Original I[SB. Time Step Safety Factor is 0.95.
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Figure 2-6 Pressure-distance Plot at 500 us for the Reflected Wave
Time Step Safety Factor is 0.67.
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Time Step Safety Factor is 0.50.
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A simple perturbation analysis can estimate the magnitude of the error
due to the finite displacement of the computational grid. The velocities
of the reflected wave from the fixed and the free boundary can be
expressed as:

l%— (-x - ct) (2-6)

. \ i%— (-x - ct) (2-7)
= Ae

where V. = velocity of the reflected wave (cm/us),
A = amplitutde of the incident (or the reflected) wave
(cm/us),
= position (cm)
frequency (MHz),
= sound speed (cm/ps), and
= time (us).

+ O & Xx
]

The error, E, of the velocity of the reflected wave due to the finite
displacement of the grid points can be obtained by perturbing Equation
(2-7) with respect to w and x. Then the error can be expressed as:

d Vr d Vr
free free
E = T x dx + o I dw (2-8)

Substituting Equation (2-7) into Equation (2-8), the error, E, becomes

jw
: — (-x - ct)
jA e ©

c (wdx + (x + ct)dw

$ | A (wdx + (x + ct)dw) / c |. (2-9)

The maximum displacement, dx, of a grid point for the test problem dis-
cussed in Section 2-3 is found by integration of the velocity for the
period of the incident wave. Acoustic theory (Currie, 1974) shows that
the velocity, v(t), of an acoustic wave is given by :

v(t) = Pp(t) c / K, (2-10)
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where Pp(t) is the pressure at the boundary, ¢ is the sound speed, and K
is the bulk modulus. The maximum displacement is then:

-6
dx = r €50 (1 - cos wt) dt = 0.00337 cm.
0

where

period of the wave = 100 us,
J(K/p) = 0.1483 cm/us,
density = 1 gm/cc, and

bulk modulus = 0.022 Mbar.

X o o -
LI |

The perturbation in w, dw, can be estimated as:

. g - 2 -5 ,¢-1
dw (7] T+ dx/c - 1.43x1079 pus™*,

where o = frequency = 0.02x MHz.

Substituting these values of dx and dw into Equation (2-9), the normalized
error, |E/A|, for the test problem in Section 2-3 is found to be 0.00286.
The same argument can be applied for pressure and displacement.

The result from this perturbation analysis shows that the cancel-
lation error from the finite displacement is approximately 0.3%, well
below the observed error and below the level of numerical noise in the
calculation. (The value of 0.3% is valid for the specific pulse and mate-
rial properties that are used in the numerical calculations. The mag-
nitude of the error will vary with pulse amplitude, pulse shape, and bulk
modulus.)
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3.0 ANALYSIS OF THE ISB METHOD
3.1 [IDENTIFICATION OF THE CAUSE OF THE CANCELLATION ERROR

The cause of the cancellation ervor in the ISB method has been
identified by a simple analytic model with a step pulse propagating
through a computational grid. The pressure pulse is allowed to propagate
into two separate buffer grids with a fixed and a free boundary, and the
solutions of these two grids are averaged at the end of each computational
cycle. The initial pressure is py, and the step pulse is generated by a
constant pressure, py, at the upstream boundary. This model assumes one-
dimensional grids with two equal zones of length L and a linear elastic
medium,

The equation of state for a linear elastic material can be expressed
as:

P =pg +K(5 - 1) (3-1)
where p = pressure,

Po = initial pressure,

K = bulk modulus,

po = reference density and,

p = density.

For a small strain problem, the equations of state and motion at cycle n
can be expressed in finite-difference form as:

(3-2)

(3-3)

(3-4)
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where p? = pressure at the center of the ith zone,
u?+1/2 = velocity of the ith grid point,
D? = displacement of the jth grid point
and dt = time step

The velocity and displacement of the free boundary before averaging are

uz+l/2 - uE‘l + %—%L pn;l (3-5)
and D? = D?'l + u?+1/2 dt ,respectively. (3-6)

The following diagrams show the cycle-by-cycle cancellation process
of the ISB method as the pressure pulse propagates through the grid. In
these diagrams, D and u denote displacement and velocity of the grid
point, respectively, p denotes pressure at the center of the zone, and U
denotes the velocity behind the step pulse, (py-pg)/(pc). The values of
D, u, and p for each grid or zone are computed according to Equations (3-
2) through (3-6). The maximum stable time step (dt = L/c, c=sound speed)
is assumed for each cycle.

The cycle-by-cycle response of the grids is as follows:

. At cycle 0, the grids are quiescent, except for the step change
in pressure and velocity on the left boundary.

° At cycle 1, the pulse has propagated one zone width into the
grids. The response in both grids is identical because the
pulses have not arrived at the right boundaries. Averaging is
not shown because the states are unchanged.

. At cycle 2, the pulse has propagated two zone widths into the
grids. The response is still identical and averaging is not
shown,

- 4
L
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At cycle 3, the pulses first reflect off the fixed and free
boundaries. Averaging produces perfect cancellation, in the
sense that only the incident wave remains after averaging.

= e AL

. At cycle 4, after the second reflection from the fixed and free
boundaries, the averaging produces pressures that are different
than the pressure, pj, in the incident pulse.

<8

a
b

T
e
L)

L

Initially at cycle 0:

@ D=0 D=0 D=0
! u=U u=0 u=0
! ﬂf P1 P = Po P = Po fixed
>
.
) qj D=0 D=0 D‘o
. u=U u=0 u=0
| E P1 P =P P = Po free (p = po)
{ﬂ
el
he At cycle 1
D=Udt D=0 D=0
I u=U u=0 u=0
R P1 P=p P =Po fixed
¥
h B D’Udt D‘o Dao
e u=U u=0 u=0
¥ m| p-m P = Po free (p = Po)
V4
v At cycle 2
o D=2Udt 0=Udt D=0
" u=U u=U u=0
- | p-=m P =P fixed
2
<]
"uﬁ
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D=2Udt D=Udt D=0
u=y u=U u=0

TR PF TR

’rfi.f,)

P1 P=0P] P=0P] free (p = po)

=

At cycle 3 before averagqin

a D=3Udt D=2Udt D=0
L & u=U u=U u=0
-y
‘ ﬁ P1 P=0p p = 2p1 fixed
D=3Udt D=2Udt D=2Udt
; gg u=U u=U u=2U
: P1 P =Pl P = Po free (p = po)

>

At cycle 3 after averaging

]
>

; D=3udt D=2udt D=Udt
[ = u=U u=U u=0
o
\ P1 P=0pP P =P fixed

|

? D=3Udt D=2Udt D=Udt
u=U u=U u=U

A

P1 P=0p] P=0p] free (p = pg)

[ 1

(note that the cancellation is perfect)
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At cycle 4 before averagin

‘ D=4Udt D=3Udt D=0
‘ ! u=U u=U u=0
* P1 P =P p = 2p] fixed
4
i " D=4Udt D=3Udt D=4Udt
Y u=U u=U u=3U
- P1 p=p p=-p] free (p = po)
! :\:
‘ gg At cycle 4 after averaqing
: D=4Udt D=3Udt D=2.5Udt
~ u=U u=U u=0
(d
g .
P1 P = p] p = 0.5p] fixed
:';5
’ D=4Udt D=3Udt D=2.5uUdt
u=U u=U u=1.5Udt
t P P =P p=0.5p free (p = po)
e
"L
e
The above analysis shows perfect cancellation when the wave first
! arrives at the fixed and free boundaries at cycle 3. However, at the next
~ cycle, the cancellation error is substantial; the magnitude of the reflec-
' Q: ted wave is 50% of the amplitude of the incident wave. This error will
i ~ persist if more zones are used in this analysis. The reflected wave will
; 3’ oscillate about zero stress, and the magnitude of the reflected wave can
Py be up to 50% of the magnitude of the incident wave. This error will also

occur with more complex pulse shapes because complex pulses can be genera-
- ted from superposition of simple step pulses (for small strain problems
N with linear elastic materials).

N
- An analysis of the simple analytic model shows that the cancellation 3;;
iﬁ error occurs because the velocity of the free boundary is not reset pro- :2
perly after the averaging process. ;
Q¥
% R
o
. 4 o
g

X
o
S
RS
S

A AN N e i A S N L P AN S
h 4*‘*.‘*.&‘.‘..“.’.\.‘\**_.\;\;‘_-\"":n -J\



OO T T R R T O O O O T R R P Iy R IR oY Y O R “al vag 8@ 1 . R 0 A g Bl 4 4 R 0" v v,

LA

’
[ 4

[

[

- ._
-y

-~

3.2 VELOCITY CORRECTION FOR MAXIMUM STABLE TIME STEP

The analytic model discussed in Section 3.1 shows that the ISB method
can completely cancel the reflected wave at the fourth cycle if the velo-
city at the free boundary is reset to zero. The analytic model also
implies that only one boundary zone is required for cancelling the
reflected waves although the original ISB method averages three to four

1~ prtes o Al A R LK aad -

5 S PR W &%

zones adjacent to the boundaries. :‘
e
A one-dimensional computational test was performed with STEALTH to s
T verify the ISB method with the velocity at the free boundary reset to zero .
5& at the beginning of each cycle. The calculation is performed at the i~
maximum stable time step. The length of the computational grid is 42 cm, $
ﬁ% excluding the one-zone buffer region that is 1 c¢cm wide. The parameters 3}
for the linear elastic material and for the pressure boundary are identi- g_
§¥ cal to the parameters for the previous calculations. o
Figure 3-1 presents the pressure-time history plot for a point near Q::
i% the transmitting boundary (39 cm from the pressure boundary or 3 cm from i
" the inner boundary of the buffer zone) and the pressure-distance plot for ;:
g; the reflected wave. Figure 3-2 presents the pressure-distance plot of the i:
reflected wave in an enlarged scale at 500 us, when the reflected wave is {2
I! at the middle of the main grid. These results show that the amplitude of i‘
- the wave reflected from the transmitting boundary is 0.075 bar, which is ’
- 0.75% of the amplitude of the incident wave. The amplitude of the Ei
o reflected wave is insignificant because the noise level of a wave &f
g

reflected from a free boundary is on the order of 0.4% of the incident

bed
7 wave. A
e
, .
ti 3.3 FIRST-ORDER CORRECTION FOR LESS THAN MAXIMUM STABLE TIME STEP :f
A g
x Computational tests showed that the cancellation error of the ISB g
o method is still substantial when the time step is less than the maximum :E
" stable time step, even though the velocity at the free boundary is reset -
) R
' »
%
% :::-
h)
. 22 ,‘.E
. )
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VELOCITY CORRECTION FOR F = 4.0
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s Figure 3-2 Pressure-distance Plot at 500 us for the Reflected Wave for the

ISB with the Velocity of the Free Boundary Reset to Zero at the

;j Beginning of Each Cycle. Time Step Safety Factr is one.
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to zero at the beginning of each cycle. Therefore, the velocity cor-
rection for the free boundary has to be modified for a time step less than
the maximum stable time step.

- e

A first-order correction for the velocity at the free boundary has
been developed for a time step less than the maximum stable time step.
Identical expressions for this first-order correction can be derived from
two different approaches. The first approach is based on a comparison of
the numerical solutions for a computational grid with ISB and for a compu-
tational grid with a boundary at infinity. The second approach is based
on an approximation to the stress at the boundary of the computational
grid.

o2

First Approach

The first-order correction for the velocity at the free boundary can
be derived by considering a linear pressure (or velocity) ramp propagating
through a computational grid with ISB and through a computational grid
with the boundary at infinity. The computational grid assumes equal
zones. The initial n cycles are computed at the maximum stable (and
constant) time step until the leading edge of the ramp arrives at the ISB;
the subsequent cycles are computed at time steps less than the maximum
stable time step. Then the velocities (u) and stresses (o) at cycle n for
the infinite grid can be expressed as:

n+l/2 . _do
uj (n - 1) oL dtmax

(1 <1 <n) (3-7)

and a? (n+1- i) do, (1 <i<n) (3-8)

where do stress increment per cycle at the boundary,
L length of a zone,

and dtmax maximum stable time step.

At cycle n + 1, the velocity of the kth grid point of the infinite grid is

n+1+1/2 _ n+l/2+ do £

Uk Yk p L dt ax (3-9)
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where f = dt/dtpay = the time step, safety factor, and dt is the time step
for cycle n + 1.

The velocities and stresses of the ISB grid are also given by Equations
(3-7) and (3-8), except that i is less than or equal to k, where k is the
total number of grid points in the main grid and buffer. If the velocity
at the free boundary is reset to un+1/2 at the beginning of the cycle n+l,
the velocity at the free boundary after averaging is given by:

u":"'{l:l/z - 3 [uve “_—o.sd: = (n+1-k) fdt ] (3-10)
ree

Note that the grid point at the free boundary has only half a zone width
between the stress at the center of the zone and the stress on the free
boundary. Since the velocity at the free boundary after cancellation
must be identical to the velocity of the kth grid, Uf"“/2 can be

evaluated by equating Equations (2-9) and (2-10). Then the first order
n+l/2

correction for the velocity of the free boundary, Uf , can be
expressed as:
n+l/2 n+l/2 _ do )
Uf 2 uy 2 5L (n - k) f dtmax
- 21 - ) o2 (3-11)

If the initial n cycles are not computed at the maximum stable time
step and the velocity at the free boundary is reset at the beginning of
the cycle according to Equation (3-11), the velocity at the free boundary
at cycle n can be expressed as:

n+1/2 1 [ n-1/2 2 n-1
u = > |2(1 - f)u + ——0 f dt ]
kfree 2 k free pLK max

26
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n-1/2 1 [ n-1

u + —— f dt (14

s kfree pL max i k

R . -

1 n- i R

4 -z f(1 - Ittt

B J=1 § (3-12)

Second Approach

K% w5 Xax Rk

The second approach to derive the first-order correction for the
velocity at the free boundary is based on an estimate of the stress in a
phantom zone at the boundary. This phantom zone has an identical zone
length as the boundary zone. The new stress of the phantom zone is

==

N, estimated by a linear interpolation of the stresses in the phantom
v boundary zone and in the buffer zone.
oY
> A schematic diagram for this linear interpolation is presented in
- Figure 3-3. For a Tinear elastic problem, the wave propagates a length of
i' cdt (cdt = fL) per computational cycle, where ¢ is the sound speed, dt is
the computational time step, f is the time step safety factor, and L is
5} the zone length. If constant time steps are assumed for every cycle, the
o stress at the phantom zone, og , and the velocity at the free boundary,
- u"’“l/2 , can be expressed as:
% free
n n-1 n-1
Al
KLY
. i-1 n-j
- =f 2 (1 - f) o and (3-13)
§w j=1 k
Y
n+l/2 n-1/2 1 n-1 n-1
»e u = u + — f dt (o, "- 0, 7)
E; Keree Keree rlL max *7k b
n-1/2 1 [n-l
1 =4 + — f dt )
?1 kfree oL max| k
n-1 : .
% -z fa - il 02‘1‘3]
? j=1 (3-14)
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Note that the boundary zone is treated as an interior zone which has a
full zone mass and width rather than half width values. This is
equivalent to adding the stress given by Equation (3-13) to the free
boundary and doubling the velocity at the free boundary at the beginning
of each cycle.

W S W R s

Since Equation (3-14) is identical to Equation (3-12), the velocity
corrections at the free boundary given by Equation (3-11) are identical
for both approaches. Note that for the maximum stable time step (f=1) the
velocity correction given by Equation (3-11) is equivalent to resetting

sy

B3 2PA

M
=3

1
[

- —_—e,— . —_————

— e ———— —
Q
o

1+f

X - X
W Note —L—k

stress,
W X position,
position of the center of the boundary zone,

»
1
] L} [ ]

K
>
>
"

- L = one zone length, and
Sﬁ f = time step safety factor.
v

Figure 3-3 A Schematic Diagram for Determining the Stress of the
Phantom Zone by a Linear Interpolation.
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boundary velocity to zero. This is consistent with the velocity correct-
ion discussed in Section 3.2 for maximum stable time step. Similarly, the
displacements and stresses can be shown to be identical for both
approaches.

A one-dimensional test calculation was performed with STEALTH. This
calculation is identical to that discussed in Section 3.2 except that the
time step was less than the maximum stable time step and the velocity at
the free boundary was reset at the beginning of each cycle according to
Equation (3-11).

Figures 3-4 through 3-6 present the pressure-time history plots of
the incident wave and the pressure-distance plots of the reflected wave
for a time-step safety factor of 0.95, 0.67, and 0.50, respectively.
Figures 3-7 through 3-9 present, in an enlarged scale, the pressure-
distance plots of the reflected wave for the same time-step safety fact-
ors. The pressure-distance plot is taken at 500 us, when the wave front
of the reflected wave is at the middle of the main grid. These results
show that the amplitudes of the reflected waves are 0.6, 1.8, and 2.9% of
the amplitude of the incident wave for a safety factor of 0.95, 0.67, and
0.50, respectively. Note that these errors are much lower than the
errors for the original ISB method. The cancellation errors for the
original ISB method are on the order of 5 to 12% of the amplitude of the
incident wave.

The residual cancellation errors for the ISB method with velocity
correction appear to be caused by a second-order effect, related to the
rate of change of pressure. This effect probably occurs because a time
step less than the maximum stable time step causes nonlinear numerical
diffusion, while the velocity correction is based on a linear interpola-
tion for the stress at the phantom boundary zone.
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STEALTH 1D
FIRST-ORDER CORRECTION, F = 0.85
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Figure 3-7 Pressure-distance Plot at 500 us for the Reflected Wave
:Q for the ISB with the First-order Correction.
J .
* Time Step Safety Factor is 0.95.
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FIRST-ORDER CORRECTION, F = 0.67
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Figure 3-8 Pressure-distance Plot at 500 us for the Reflected Wave
for the ISB with the First-order Correction.
Time Step Safety Factor is 0.67.
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¢
Sﬁ 3.4 SECOND-ORDER CORRECTION FOR LESS THAN MAXIMUM STABLE TIME STEP y
4
!! Even though the cancellation errors of the ISB method for a time step P
less than the maximum stable time step can be reduced by a first-order Y
gﬁ correction for the velocity at the free boundary, the level of the errors '
is still on the order of 0.6% to 2.9% of the amplitude of the incident f
N wave. A second-order correction for the ISB method has been developed for L,
E T, reducing the cancellation errors to the order of the computational noise ;&\
o level, which is about 0.4% of the amplitude of the incident wave. The E:
b derivation of this second-order correction is based on the extension of N
the second approach discussed in Section 3.3; the stress at the phantom Y
: ;é boundary zone is estimated by a quadratic fit rather than a linear inter- o
2 polation. e
8 A
] ~ Figure 3-10 presents a schematic diagram for estimating the phantom :'
: . boundary zone by a quadratic fit. Assuming the stress at the phantom %f
[ ™ boundary zone satisfies the following quadratic equation: :;j
= :
i og=ai2+bi+c, '_
b n 3
: Ei where Op = stress at the boundary phantom zone, 3
' X o= (x-x) /L, 7
_. L = one zone length, !,
) " x = position of the center of the phantom boundary zone, E;
E :; Xk = position of the center of the zone adjacent to the boundary, E
| ' The coefficients a, b, and ¢ are determined by the following :f
N conditions: ;
e ) non o
E at x = 0, Op = 0y > :j
L E: at x = f, ag = aa'} and t:
.
B at x = 2f, og = 02'? ;t'
L n
, where 02 is the stress of the boundary zone at cycle n, and f is the time o
S %

step safety factor.
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The stress in the phantom boundary zone, which is located at x = 1, is
given by:

n 2f2 - 3f+1 n 2f -1 n-1.1-f n-2
o, = o, + —8— ¢ + — 0 . (3-15)
b 22 k 2k g2 K

Again, to calculate the velocity at the boundary, the boundary zone must

be treated as an interior zone which has a full zone width and mass. This
is equivalent to adding the stress given by Equation (3-15) to the free
boundary and doubling the velocity at the free boundary at the beginning
of each cycle. Then the velocity at the free boundary after cancellation
can be expressed as:

Pl A

@

n+l/2 _ n-1/2

1 n-1 n-1
u u + — f dt (o, -0, ) (3-16)
kfree kfree pL max ‘ k b

For a time-step safety factor of one, Equations (3-12), (3-14), and (3-16)
are identical and are equivalent to resetting the velocity of the free
boundary to zero at the beginning of each cycle. This is consistent with
the velocity correction for the maximum stable time step (Section 3.2).

One-dimensional test calculations identical to those discussed in
Section 3.2 were performed with STEALTH, except that the time step was
less than the maximum stable time step, the velocity at the free boundary
was reset by doubling it at the beginning of each cycle, and the stress
given by Equation (3-14) was added to the free boundary.

Figures 3-11 through 3-13 present the pressure-time history plots of
the incident wave and the pressure-distance plots of the reflected wave
for a time-step safety factor of 0.95, 0.67, and 0.5, respectively.
Figures 3-14 through 3-16 present, in an enlarged scale, the pressure-
distance plots of the reflected wave for the same time-step safety fact-
ors. These pressure-distance plots are taken at 500 us when the wave
front of the reflected wave is at the middle of the main grid. The resu-
1ts of the calculations show that the amplitude of the reflected waves is
Tess than 0.6% of the amplitude of the incident wave for all safety fact-
ors. This level of error is insignificant because the computational
noise level of a wave reflected from a free boundary is on the order of

0.4% of the incident wave.
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4.0 CONCLUSIONS

A transmitting or energy absorbing boundary for one-dimensional
calculations of nonlinear system response in an infinite domain has been
developed. These transmitting boundaries are based on the incremental
superposition boundary developed by Cundall et al. A first- or
second-order correction to the ISB greatly reduces the magnitude of the
reflected wave for all time step safety factors. In addition, only one
zone in the buffer region is required for ISB with the first- or the
second-order correction, whereas the original ISB requires a buffer region
of three to four zones.

Calculations with a cosine pressure pulse propagating through a
one-dimensional grid were performed for the original ISB and for the
modified ISB with the first- and second-order corrections. These calcula-
tions were performed with a Lagrangian, explicit-in-time, finite-differ-
ence code STEALTH. The results of these calculations for the magnitude of
the reflected wave are summarized in Table 4-1. These results indicate
that the ISB with the first- or second-order corrections is more effective
in cancelling the reflected waves than the original ISB. In particular,
the second-order correction reduces the level of the cancellation error to
the order of the computational noise, which is about 0.4% of the amplitude
of the incident wave for a wave reflected from a free boundary.

Although the level of cancellation is good, the presence of the time
step safety factor, f, in the corrections is undesirable for multi-dimen-
sional calculations. In two-dimensional calculations, the effective
safety factor for shear and dilation waves is different because the sound
speed of both waves is different. The presence of the safety factor then
implies that a simple velocity correction factor will peroform equally
well for the two different wave types. It may be possible to cancel the
waves by adjusting the shear stress on the boundary. In addition the
reflected waves may also be dispersed by the two-dimensional reflection
process. Further analysis is necessary to extend the modified ISB to two-
dimensional calculations.
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Table 4-1 Comparison of the Magnitude of the Reflected Wave for
the Original and Modified ISB

Ratio of the Magnitude of the Reflected
to the Incident Wave

Time Step Safety Factors

0.95 0.67 0.50
The Original ISB 5% 5% 12%
ISB with First-order 0.6% 1.8% 2.9%
Correction
ISB with Second-order 0.6% 0.5% 0.5%
Correction
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