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1.0 INTRODUCTION

AOne of the common problems in numerical simulations of nonlinear

response in an infinite domain is the artificial reflections that are

generated at the finite boundaries of the computational grid. These

artificial reflections are undesirable because they propagate throughout

the computational grid, causing errors in the computed response. The

arrival of the artificial reflections can be delayed by placing the grid

Sboundaries in a quiescent region that is far from the region of interest.

However, this approach is not economical because the computational region

becomes quite large.

The general objective of this effort is to develop a transmitting or

energy absorbing boundary for calculations of transient, nonlinear

response in an infinite domain. A transmitting or energy absorbing

boundary attempts to eliminate the artificial wave reflections from the

finite boundaries of the computational grid, allowing the computational

domain to be centered on the region of interest.

A number of nonreflecting boundaries have been proposed in the

literature. One particular method, called the Incremental Superposition

Boundary (ISB), appears to be very efficient and computationally robust

for transient calculations. The ISB method (Cundall, et al.) is based on

superposition of the solutions for a fixed boundary and for a free

boundary. Simple acoustic theory shows that the reflected waves from a

fixed and a free boundary are equal in amplitude but opposite in sign;

superposition of these two solutions will cancel the reflected waves,

leaving the incident pulse.

The specific objective of the present study is to evaluate the ISB

method as a transmitting or energy absorbing boundary for transient cal- ton For

culations. Preliminary one-dimensional computational tests showed that GRA&I

the ISB method did not eliminate a reflected wave completely; the ampli- ncR E

tude of the reflected wave after cancellation was on the order of 5-12% of otlo
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the amplitude of the incident wave. Detailed analyses of the reflection

and cancellation process were performed to determine the cause of the

errors.

One potential cause of the error in the cancellation process is the

finite displacement of points in the computational algorithms. That is,

the different displacements of a compression wave and an expansion wave

will shift the pulses, causing an error in the cancellation process. A

simple perturbation analysis shows that, for small strain elastic

response, the effect of finite displacement is negligible compared to the

observed cancellation error.

An analytic model was then used to identify the cause of the error in

the cancellation process of the ISB method. This model, which is based on

a unit step pulse propagating through a one-dimensional computational

grid, shows that the cancellation is perfect when the pulse first arrives

at the fixed and the free boundaries; but at the next and any subsequent

computational cycles, the cancellation has a substantial error if the

velocity at the free boundary is not reset properly.

The analytic model also shows that the appropriate velocity at the

free boundary has to be modified when the computational time step is less

than the maximum stable time step. First- and second-order corrections to

* the appropriate velocity boundary conditions have been developed for time

steps less than the maximum stable time step. Extension of the first- and

second-order corrections to two-dimensional problems has not yet been

developed.

The theory and the computer implementation for the basic ISB method

is discussed in Sections 2.1 and 2.2, respectively. The ISB was incor-
porated in the Lagrangian, explicit-in-time, finite-difference code

STEALTH (Hofmann, 1981), and tested by performing calculations with a

cosine pressure pulse propagating through a one-dimensional grid. These

calculations will be presented in Section 2.3. The effect of the finite

displacement of grid points on the cancellation errors is discussed in

Section 2.4.

2
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Section 3 presents the analytic model for identifying the cause of3 the cancellation error and the derivation of the first- and second-order

corrections for the ISB method. The first- and second-order corrections

for the modified ISB method are then verified by performing one-dimen-

sional test calculations with STEALTH. These test calculations are also

presented in Section 3.

Section 4 is the summary and conclusions from this research.
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2.0 DESCRIPTION OF THE ISB METHOD

2.1 THEORY OF THE ISB METHOD

The concept for the Incremental Superposition Boundary (ISB) method

is based on a non-reflecting boundary that was developed by Smith (1974)

for wave propagation problems. Smith's method calculates the dynamic

response of a system in an infinite domain by superimposing the complete

solutions for a fixed (Dirichlet) boundary problem and a free (Neumann)

boundary problem. The reflected waves from a fixed and a free boundary

are equal in amplitude but opposite in sign, so superposition will cancel

the reflected waves, leaving the incident wave.

This cancellation can be illustrated for one-dimensional acoustic

waves. The displacement, U, of the incident wave in an infinite domain

may be expressed as:

i W (x - ct)

U-Aec (2-1)

where A is the amplitude of the wave, w is the frequency, c is the sound

speed, x is the position, and t is the time. The displacements for the

waves reflected from a fixed and a free boundary are given by

ik (-x - ct)

Urfixed w - A e c and (2-2)

iW (-x - ct)

Urfree  = A e c , respectively (2-3)

The total displacements for a fixed and a free boundary problem are then

given by superposition as:

2 - -(-x -ct) (2-4)

Ufixed A e -A e

f (x - ct) -W(-x - ct) (2-5)
Ufree -A e + A e

.|4



The average of Equations (2-4) and (2-5) is then the incident wave, Equa-

tion (2-1). Similar arguments also apply to stresses and velocities (in a

*1 linear medium). Therefore, the solution for an infinite domain can be

obtained by superimposing and averaging the solutions for a fixed and a

free boundary problem.

5The disadvantage of Smith's method is economics: a number of complete

solutions must be computed for various combinations of boundary conditions

." and wave reflections, and is frequently simpler to just enlarge the com-

putational domain. The ISB method avoids the calculation of complete

multiple solutions through an incremental approach. This incremental

approach superimposes the fixed and free boundary solutions in two small

buffer regions near the boundary, eliminating the reflections from the

boundaries as they occur. The dual calculations are only required for the

small buffer regions with the ISB method.

2.2 COMPUTER IMPLEMENTATION OF THE ISB METHOD

Figure 2-1 presents a schematic diagram for the structure of the
buffer regions and the main grid for the ISB method. Two overlapping

buffer regions, A and B, each of three or four zones, are connected inde-

pendently to the main calculation grid. Region A has a fixed boundary,

and region B has a free boundary. For simplicity, a one-dimensional grid

is presented in the diagram; the ISB method can be applied to two-dimen-

sional problems.

A wave that propagates from the main grid enters the two buffer

regions simultaneously at point p. This wave will then reflect off the

fixed and free boundaries of regions A and B. These reflected waves are

V eliminated by replacing the existing variables in regions A and B with the

average values of variables in the two buffer regions. (Each variable of a

zone in region A and of the corresponding zone in region B are summed and

/ divided by two. The variables at the nodes connected to the main grid are

not averaged.)
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This averaging procedure does not have to be performed every cycle

because of the stability criterion for explicit-in-time calculations. The

ISB method is designed for transient nonlinear problems. These nonlinear

problems are usually computed with an explicit-in-time numerical integra-

tion scheme. The stability criterion for an explicit calculation requires

that the time step be smaller than the time for a wave to travel one zone

width. The averaging procedure is then performed once every three or four

cycles because the reflected waves cannot propagate into the main grid (or

to point p) in less than five cycles.

p fixed
/

Direction of Wave Propagation / Buffer Region A

A /

Main Grid

p free

Buffer Region B

Figure 2-1 A Schematic Diagram of the Buffer Region and the Main Grid
for the Incremental Superposition Boundary.
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2.3 ONE-DIMENSIONAL COMPUTATIONAL TEST PROBLEM FOR THE ISB METHOD

The ISB model has been incorporated in the Lagrangian, explicit-in-

time, finite-difference code, STEALTH (Hofmann, 1984). One-dimensional

calculations with a cosine pressure pulse that propagates through the grid

are performed to verify the ISB method. The lengths of the main grid and

the buffer regions for these test calculations are 42 cm and 4 cm, respec-

tively. All zones are one cm in length, so the main grid contains 42

zones and each buffer region contains 4 zones.

Linear elastic material properties are assumed for the test calculat-

ions. The equation of state can be expressed as:

P Po +K(P- -1)

where P pressure (Mbar),

> ~' Po - initial pressure (MBar).
K - bulk modulus (MBar),

po- reference density (gm/cc), and

p -density (gm/cc).

The initial pressure, the bulk modulus, and the reference density are

zero, 0.0022 Mbar, and 1.0 gm/cc, respectively. The pressure boundary

condition that generates the cosine pressure pulse is given by:

P - 5x10 6 (I - cos wt),

where t - time in js,
and w - 0.02 x ps"1.

2 mThree calculations were performed with time step safety factors of

0.95, 0.67 and 0.50. The time step safety factor is the ratio of the

computational time step to the maximum stable time step. Typical values

of the time step safety factor range from 0.5 to 0.95; the default value

* for STEALTH is 0.67.
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Figures 2-2(a), 2-3(a), and 2-4(a) present pressure time-history

plots at a point in the main grid, 3 cm from the inside edge of the buffer

region. The large pulse, centered at 300 usec, is the incident wave; the

smaller waves after 360 uisec are the reflected waves from the ISB. (If

the ISB were perfect, only the large pulse would appear in these figures.)

The three figures are for time step safety factors of 0.95, 0.67, and

-i 0.50, respectively.

Figures 2-2(b), 2-3(b), and 2-4(b) present pressure-distance plots at

500 usec, when the incident wave has propagated beyond the ISB, and the
raiflected wave is centered in the main grid. (If the ISB were perfect, no

reflected pulse would appear in the figures.) These plots show the ampli-

tude and time dependence of the reflected waves on the same scale as the

first set of figures. Figures 2-5 through 2-7 present the same pressure-

~ ..- distance plots in an enlarged scale.

These results show that the original ISB method does not eliminate

the reflected wave completely; the amplitude of the reflected wave after

cancellation is on the order of 5-12% of the amplitude of the incident

.K wave, and is a function of the magnitude of the time step (or the time
step safety factor).

2.4 EFFECT OF FINITE DISPLACEMENT OF THE COMPUTATIONAL GRID POINTS

N i..:Computational results from the previous section show that the ISB

method has a substantial error in the cancellation process. One potent-

ial cause of this cancellation error is the finite displacement of grid

points in the computational algorithms. That is, the different displace-

ments of a compression wave and an expansion wave will shift the pulses,

causing an error in the cancellation process.
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STEALTH ID
ORIGINAL ISB WITH FOUR BUFFER ZONES. F-0.95

I.OOE-06

5.OOE-07
I-I
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000 1.02 .0 3 .0 4 .0

Distance (cm)

Figure 2-5 Pressure-distance Plot at 500 ps for the Reflected Wave

for the Original ISB. Time Step Safety Factor is 0.95.

p

12

MAN 7" X) V ' l.% '



, 5

STEALTH M0

ORIGINAL ISB WITH FOUR BUFFER ZONES. F-0.67

1.OOE-06

5.OOE-07
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Figure 2-6 Pressure-distance Plot at 500 ps for the Reflected Wave

for the Original ISB. Time Step Safety Factor is 0.67.
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STEALTH ID

ORIGINAL ISB WITH FOUR BUFFER ZONES. F-0.50

I.OOE-06
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Lfl
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-i.OOE-06
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-p

Figure 2-7 Pressure-distance Plot at 500 Ps for the Reflected Wave

for the Original ISB. Time Step Safety Factor is 0.50.
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A simple perturbation analysis can estimate the magnitude of the error

due to the finite displacement of the computational grid. The velocities
of the reflected wave from the fixed and the free boundary can be

expressed as:

1W (-x - ct) (2-6)

rfixed

_ _ (-x - ct) (2-7)

Vr fre Ae

where Vr - velocity of the reflected wave (cm/ps),

A - amplitutde of the incident (or the reflected) wave

(cm/As),

x - position (cm)

0 - frequency (MHz),

c - sound speed (cm/ps), and

t - time (As).

The error, E, of the velocity of the reflected wave due to the finite

displacement of the grid points can be obtained by perturbing Equation

(2-7) with respect to ' and x. Then the error can be expressed as:

E a free dx + free dw (2-8)
WaVx

Substituting Equation (2-7) into Equation (2-8), the error, E, becomes
~~ ~ A -- l-x - ct)

'A el(x (wdx + (x + ct)dw

IA (ldx + (x + ct)dc) / c . (2-9)

The maximum displacement, dx, of a grid point for the test problem dis-
cussed in Section 2-3 is found by integration of the velocity for the
period of the incident wave. Acoustic theory (Currie, 1974) shows that

the velocity, v(t), of an acoustic wave is given by

v(t) - Pb(t) c / K, (2-10)

15



where Pb(t) is the pressure at the boundary, c is the sound speed, and K

Sis the bulk modulus. The maximum displacement is then:

dx = 0 c 5x10 6

Jo K (1 - cos wt) dt - 0.00337 cm.

where T - period of the wave - 100 us,

c - J(K/p) - 0.1483 cm/Us,

p - density - 1 gm/cc, and

K - bulk modulus - 0.022 Mbar.

The perturbation in w, dw, can be estimated as:

dei ="'e T + dx/c = 1"43x10 5 ps-,

where w - frequency = 0.021 MHz.

Substituting these values of dx and dw into Equation (2-9), the normalized

error, IE/AI, for the test problem in Section 2-3 is found to be 0.00286.

The same argument can be applied for pressure and displacement.

* The result from this perturbation analysis shows that the cancel-

lation error from the finite displacement is approximately 0.3%, well

below the observed error and below the level of numerical noise in the

calculation. (The value of 0.3% is valid for the specific pulse and mate-

rial properties that are used in the numerical calculations. The mag-

nitude of the error will vary with pulse amplitude, pulse shape, and bulk

modulus.)

I-
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3 3.0 ANALYSIS OF THE ISB METHOD

3.1 IDENTIFICATION OF THE CAUSE OF THE CANCELLATION ERROR

.q The cause of the cancellation error in the ISB method has been

identified by a simple analytic model with a step pulse propagating

through a computational grid. The pressure pulse is allowed to propagate

into two separate buffer grids with a fixed and a free boundary, and the

solutions of these two grids are averaged at the end of each computational

cycle. The initial pressure is po, and the step pulse is generated by a

constant pressure, Pl, at the upstream boundary. This model assumes one-

dimensional grids with two equal zones of length L and a linear elastic

medium.

The equation of state for a linear elastic material can be expressed

as:

p -p + .K(P -1) (3-1)Po

where p - pressure,

.Po -initial pressure,

K - bulk modulus,

po - reference density and,

p density.

For a small strain problem, the equations of state and motion at cycle n

,. can be expressed in finite-difference form as:

: Pi " I '

U+1/2 U n-1/2 + dt (pn-i n-1 (3-3)
= Pi+1),( -3)

n n-1 n+1/2 dt, (3-4) .-i Di i

9mou 17
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where pi - pressure at the center of the ith zone,

u + 1/ 2  - velocity of the ith grid point,

0 n - displacement of the ith grid point1

and dt - time step

The velocity and displacement of the free boundary before averaging are

Un+1/2 n-I 2 dt pfni (35)
k Uk L ~i
n n-i +/

and D. -D. + u.I/ 2 dt ,respectively. (3-6)

The following diagrams show the cycle-by-cycle cancellation process

, ~.of the ISB method as the pressure pulse propagates through the grid. In

these diagrams, D and u denote displacement and velocity of the grid

point, respectively, p denotes pressure at the center of the zone, and U

denotes the velocity behind the step pulse, (pl-po)/(pc). The values of

D, u, and p for each grid or zone are computed according to Equations (3- 1

A 2) through (3-6). The maximum stable time step (dt - L/c, c=sound speed)

is assumed for each cycle.

The cycle-by-cycle response of the grids is as follows:

At cycle 0, the grids are quiescent, except for the step change

in pressure and velocity on the left boundary.

At cycle 1, the pulse has propagated one zone width into the

grids. The response in both grids is identical because the

pulses have not arrived at the right boundaries. Averaging is

not shown because the states are unchanged.

* At cycle 2, the pulse has propagated two zone widths into the

grids. The response is still identical and averaging is not

shown.

18
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* . At cycle 3, the pulses first reflect off the fixed and free

boundaries. Averaging produces perfect cancellation, in the

sense that only the incident wave remains after averaging.

" At cycle 4, after the second reflection from the fixed and free

boundaries, the averaging produces pressures that are different

than the pressure, pl, in the incident pulse.

Initially at cycle 0:

D-0 D-0 D00
u=U u=0 u-0

Pl P Po P - Po fixed

NO0 D-0 D00
u-U u-0 u-0

Pi P Po P Po free (p po)

At cycle 1

D=Udt =O D=O
u=U u=O u=O

P1 P PI P PO fixed

D-Udt D-0 D-0

u-U u-0 u-0

P1 P Pi P Po free (p =po)

At cycle 2

D-2Udt D=Udt D-0
u-U u-U u-0

P1 P Pi P Pl fixed

19



D-2Udt D-Udt N=O
u-U u=U u=O

P1 Pi pPi free (p p0 )

At cycle 3 before averaging

D-3Udt D-2Udt D-0
u-U u-U U-0

p, p -pi p- 2p I fixed

D=3Udt D=2Udt D=2Udt
u-U u=U u=2U

P1 PP1 Pip-Po free (p p0 )

At cycle 3 after averaging

D-3Udt D-2Udt D=Udt
4u-U u-U U-0

P Pi P p p fixed

D-3Udt D-2Udt D-Udt
u-U u-U u-U 4

P1 P- Pi i free (p-p0 )

4'-' (note that the cancellation is perfect)

20



At cycle 4 before averaging %

D-4Udt O=3Udt D=O
u-U u=U u=O

Pi P Pi p 2pi fixed

D=4Udt D-3Udt D=4Udt
u-U u=U u=3U

Pi - Pi P= -P1 free (p po)

At cycle 4 after averaging

D=4Udt D-3Udt D=2.5Udt
u=U u=U u=O

P PPi P 0.5 p fixed

D=4Udt D=3Udt D=2.5Udt
u=U u-U u=1.5Udt

PI P -Pi p = 0.5Pi free (p = po) %F
The above analysis shows perfect cancellation when the wave first

arrives at the fixed and free boundaries at cycle 3. However, at the next

cycle, the cancellation error is substantial; the magnitude of the reflec-

ted wave is 50% of the amplitude of the incident wave. This error will

persist if more zones are used in this analysis. The reflected wave will

oscillate about zero stress, and the magnitude of the reflected wave can s
be up to 50% of the magnitude of the incident wave. This error will als3

occur with more complex pulse shapes because complex pulses can be genera-
ted from superposition of simple step pulses (for small strain problems

with linear elastic materials).

An analysis of the simple analytic model shows that the cancellation

error occurs because the velocity of the free boundary is not reset pro-

perly after the averaging process.

A .0
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3.2 VELOCITY CORRECTION FOR MAXIMUM STABLE TIME STEP

The analytic model discussed in Section 3.1 shows that the ISB method

can completely cancel the reflected wave at the fourth cycle if the velo-

city at the free boundary is reset to zero. The analytic model also

implies that only one boundary zone is required for cancelling the

reflected waves although the original ISB method averages three to four

zones adjacent to the boundaries.

A one-dimensional computational test was performed with STEALTH to

verify the ISB method with the velocity at the free boundary reset to zero

at the beginning of each cycle. The calculation is performed at the

maximum stable time step. The length of the computational grid is 42 cm,

excluding the one-zone buffer region that is 1 cm wide. The parameters .

for the linear elastic material and for the pressure boundary are identi- t

cal to the parameters for the previous calculations.%

Figure 3-1 presents the pressure-time history plot for a point near

the trnmtigboundary (39 cm from the pressure boundary or 3 cm from

the inner boundary of the buffer zone) and the pressure-distance plot for

tereflected wave. Figure 3-2 presents the pressure-distance plot of the

reflected wave in an enlarged scale at 500 us, when the reflected wave is

at the middle of the main grid. These results show that the amplitude of

the wave reflected from the transmitting boundary is 0.075 bar, which is

.1."0.75% of the amplitude of the incident wave. The amplitude of the

reflected wave is insignificant because the noise level of a wave C

tv reflected from a free boundary is on the order of 0.4% of the incident
4*'**wave.

-C,

3.3 FIRST-ORDER CORRECTION FOR LESS THAN MAXIMUM STABLE TIME STEP I

Computational tests showed that the cancellation error of the ISB4r

method is still substantial when the time step is less than the maximum

stable time step, even though the velocity at the free boundary is reset

'A 2



- ~ ~ o TIC ~ P A'

0 414)4

o

41 ) c

-40 
-4- 0

* 07) >I

0L 0 L

U0

.4j

U ~fl4J L-.4 0

0 a C ~ (1)o

+-0)

cu I- lA

4.3 co.

2 4

E. . -

41~ w

0 Lo

0 1 -

% %)
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VELOCITY CORRECTION FOR F , i.0
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Figure 3-2 Pressure-distance Plot at 500 ps for the Reflected Wave for the

ISB with the Velocity of the Free Boundary Reset to Zero at the

Beginning of Each Cycle. Time Step Safety Factr is one.
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to zero at the beginning of each cycle. Therefore, the velocity cor-

rection for the free boundary has to be modified for a time step less than

the maximum stable time step.

A first-order correction for the velocity at the free boundary has

been developed for a time step less than the maximum stable time step.

Identical expressions for this first-order correction can be derived from

two different approaches. The first approach is based on a comparison of

the numerical solutions for a computational qrid with ISB and for a compu-

tational grid with a boundary at infinity. The second approach is based

on an approximation to the stress at the boundary of the computational

grid.

First Approach

The first-order correction for the velocity at the free boundary can

be derived by considering a linear pressure (or velocity) ramp propagating

through a computational grid with ISB and through a computational grid

with the boundary at infinity. The computational grid assumes equal

zones. The initial n cycles are computed at the maximum stable (and

constant) time step until the leading edge of the ramp arrives at the ISB;

the subsequent cycles are computed at time steps less than the maximum

stable time step. Then the velocities (u) and stresses (a) at cycle n for

the infinite grid can be expressed as:

u =I (n - i)-_Ldt (!5ign)(3-7)1 pL max

and a (n + 1 - i) da, (1 !g i !g n) (3-8)

where da - stress increment per cycle at the boundary,

L - length of a zone,

and dtma m maximum stable time step.
J. .3max

At cycle n + 1, the velocity of the kth grid point of the infinite grid is

uk n -+/ n+1/2 + do f dt (3-9)
kuk p pL max
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where f dt/dtmax = the time step, safety factor, and dt is the time step

for cycle n + 1.

The velocities and stresses of the ISB grid are also given by Equations

(3-7) and (3-8), except that i is less than or equal to k, where k is the

total number of grid points in the main grid and buffer. If the velocity

at the free boundary is reset to un+l/2 at the beginning of the cycle n+1,

the velocity at the free boundary after averaging is given by:

un+1+1/ 2  1 [ [U+1/2 + d (n + 1 - k) f dtmax ] (3-10)

Note that the grid point at the free boundary has only half a zone width

between the stress at the center of the zone and the stress on the free

boundary. Since the velocity at the free boundary after cancellation

must be identical to the velocity of the kth grid, U fn+1/2 can be

evaluated by equating Equations (2-9) and (2-10). Then the first order

correction for the velocity of the free boundary, Un+1/2 , can bef

expressed as:

k U +1/2  . 2un+1/ 2 _2 do (n mk) f ax,f (n p L m

= 2(1 - f) un+ 1/2  (3-11)
k

If the initial n cycles are not computed at the maximum stable time

step and the velocity at the free boundary is reset at the beginning of

the cycle according to Equation (3-11), the velocity at the free boundary

at cycle n can be expressed as:

a un4-1/ 2  
-1 [( f) un-1/2 + _L n-Ifdtu kfree 2(1 k free p f dt max]

26
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un-i/2 I r d n-i
ukfree + fdtmax L k

- I f(i - f)J 0n-I-jj-1 (3-12)

Second Approach

The second approach to derive the first-order correction for the
velocity at the free boundary is based on an estimate of the stress in a
phantom zone at the boundary. This phantom zone has an identical zone

length as the boundary zone. The new stress of the phantom zone is

estimated by a linear interpolation of the stresses in the phantom

boundary zone and in the buffer zone.

A schematic diagram for this linear interpolation is presented in

Figure 3-3. For a linear elastic problem, the wave propagates a length of

cdt (cdt - fL) per computational cycle, where c is the sound speed, dt is

the computational time step, f is the time step safety factor, and L is

~' the zone length. If constant time steps are assumed for every cycle, the

stress at the phantom zone, an and the velocity at the free boundary,

un+1/ree can be expressed as:- kfree

ab f + (1 - f) Gb

f I (I - f)j an-j and (3-13)
a k

u n+1/2 un'l/ 2  + 1  f dt (on -i - on-I
kfree kfree pL mx k b

,un-/2 +9L f dtma x  -1v kfreema k

n-1 - f)j-1 n-i-j
2 f(1 f) I.

- j=1 .k (3-14)

W 
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Note that the boundary zone is treated as an interior zone which has a

full zone mass and width rather than half width values. This is

equivalent to adding the stress given by Equation (3-13) to the free

boundary and doubling the velocity at the free boundary at the beginning

of each cycle.

Since Equation (3-14) is identical to Equation (3-12), the velocity

corrections at the free boundary given by Equation (3-11) are identical

for both approaches. Note that for the maximum stable time step (f-1) the

velocity correction given by Equation (3-11) is equivalent to resetting

an-iOk

Ob
r I

I I ~n-1
I I ib

I I I

f 1 1+f

x k
Note x - -L

a - stress,

x - position,

xk - position of the center of the boundary zone,
L - one zone length, and

f -time step safety factor.

Figure 3-3 A Schematic Diagram for Determining the Stress of the
Phantom Zone by a Linear Interpolation.
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boundary velocity to zero. This is consistent with the velocity correct-

ion discussed in Section 3.2 for maximum stable time step. Similarly, the U

displacements and stresses can be shown to be identical for both

approaches.

A one-dimensional test calculation was performed with STEALTH. This

calculation is identical to that discussed in Section 3.2 except that the

time step was less than the maximum stable time step and the velocity at

the free boundary was reset at the beginning of each cycle according to

Equation (3-11).

Figures 3-4 through 3-6 present the pressure-time history plots of

the incident wave and the pressure-distance plots of the reflected wave

for a time-step safety factor of 0.95, 0.67, and 0.50, respectively.

Figures 3-7 through 3-9 present, in an enlarged scale, the pressure-
distance plots of the reflected wave for the same time-step safety fact-

* ors. The pressure-distance plot is taken at 500 ps, when the wave front

of the reflected wave is at the middle of the main grid. These results

show that the amplitudes of the reflected waves are 0.6, 1.8, and 2.9% of

the amplitude of the incident wave for a safety factor of 0.95, 0.67, and

0.50, respectively. Note that these errors are much lower than the

* errors for the original ISB method. The cancellation errors for the

original ISB method are on the order of 5 to 12% of the amplitude of the%
incident wave.%

The residual cancellation errors for the ISB method with velocity

correction appear to be caused by a second-order effect, related to the

rate of change of pressure. This effect probably occurs because a time

step less than the maximum stable time step causes nonlinear numerical
diffusion, while the velocity correction is based on a linear interpola-

tion for the stress at the phantom boundary zone.
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FIRST-ORDER CORRECTION. F -0.95
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Figure 3-7 Pressure-distance Plot at 500 ps for the Reflected Wave

ISfor the 158 with the First-order Correction. ''

Time Step Safety Factor is 0.95.
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STEALTH 10

FIRST-ORDER CORRECTION. F = 0.67
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Figure 3-8 Pressure-distance Plot at 500 Us for the Reflected Wave

2 .for the ISB with the First-order Correction.
S. Time Step Safety Factor is 0.67.
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-FIRST-ORDER CORRECTION. F = 0.50
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Figure 3-9 Pressure-distance Plot at 500 ps for the Reflected Wave

for the IS8 with the First-order Correction.

Time Step Safety Factor is 0.50.
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3.4 SECOND-ORDER CORRECTION FOR LESS THAN MAXIMUM STABLE TIME STEP

Even though the cancellation errors of the ISB method for a time step
less than the maximum stable time step can be reduced by a first-order

correction for the velocity at the free boundary, the level of the errors

is still on the order of 0.6% to 2.9% of the amplitude of the incident

.R wave. A second-order correction for the ISB method has been developed for

reducing the cancellation errors to the order of the computational noise

level, which is about 0.4% of the amplitude of the incident wave. The

derivation of this second-order correction is based on the extension of

the second approach discussed in Section 3.3; the stress at the phantomi

boundary zone is estimated by a quadratic fit rather than a linear inter-

polation.

Figure 3-10 presents a schematic diagram for estimating the phantom
boundary zone by a quadratic fit. Assuming the stress at the phantom

a n =ax 2+ bx+c,

nwhere a b =stress at the boundary phantom zone,

x =(x - x k) L
L =one zone length,

x =position of the center of the phantom boundary zone,

'Sxk position of the center of the zone adjacent to the boundary,

The coefficients a, b, and c are determined by the following '5

conditions:

at n _ 0,

ati-n n-2

ati=2f, a -2

nwhere akis the stress of the boundary zone at cycle n, and f is the time

step safety factor.
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a

n
0 k

n-1

n

I I n-2

f 1 2f 0

X k

Note x = L

a = stress,

x - position,

Xk - position of the center of the boundary zone,

L = one zone length, and

f - time step safety factor.

Figure 3-10 A Schematic Diagram for Determining the Stress of the

Phantom Zone by a Quadratic Fit.
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A

The stress in the phantom boundary zone, which is located at x = 1, is
given by:

n 2f2 -3f + I n + 2f-1 aen-1 + 1 -f a n-2 I315
2f2  kfk 2f2  k( - 5

Again, to calculate the velocity at the boundary, the boundary zone must

be treated as an interior zone which has a full zone width and mass. This
is equivalent to adding the stress given by Equation (3-15) to the free .
boundary and doubling the velocity at the free boundary at the beginning

of each cycle. Then the velocity at the free boundary after cancellation

can be expressed as:

k free k kfree +p - bn12L max k 1 b- 3-6

For a time-step safety factor of one, Equations (3-12), (3-14), and (3-16)

are identical and are equivalent to resetting the velocity of the free
boundary to zero at the beginning of each cycle. This is consistent withI
the velocity correction for the maximum stable time step (Section 3.2).

One-dimensional test calculations identical to those discussed in

Section 3.2 were performed with STEALTH, except that the time step wasI
less than the maximum stable time step, the velocity at the free boundary

was reset by doubling it at the beginning of each cycle, and the stress

given by Equation (3-14) was added to the free boundary.

Figures 3-11 through 3-13 present the pressure-time history plots ofU
the incident wave and the pressure-distance plots of the reflected wave

for a time-step safety factor of 0.95, 0.67, and 0.5, respectively.

Figures 3-14 through 3-16 present, in an enlarged scale, the pressure-I
distance plots of the reflected wave for the same time-step safety fact-

ors. These pressure-distance plots are taken at 500 jus when the wave

front of the reflected wave is at the middle of the main grid. The resu-

lts of the calculations show that the amplitude of the reflected waves is

less than 0.6% of the amplitude of the incident wave for all safety fact-

ors. This level of error is insignificant because the computational

noise level of a wave reflected from a free boundary is on the order of

0.4% of the incident wave.U
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STEALTH D

SECOND-ORDER CORRECTION. F -0.95
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Figure 3-14 Pressure-distance Plot at 500 ps for the Reflected Wave

for the ISB with the Second-order Correction.

Time Step Safety Factor is 0.95.
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SECOND-ORDER CORRECTION. F " 0.67
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Figure 3-15 Pressure-distance Plot at 500 ps for the Reflected Wave

for the ISB with the Second-order Correction.

Time Step Safety Factor is 0.67.
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Figure 3-16 Pressure-distance Plot at 500 ps for the Reflected Wave

for the ISB with the Second-order Correction.

Time Step Safety Factor is 0.50.
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4.0 CONCLUSIONS %

A transmitting or energy absorbing boundary for one-dimensional

calculations of nonlinear system response in an infinite domain has been

developed. These transmitting boundaries are based on the incremental

superposition boundary developed by Cundall et al. A first- or

second-order correction to the ISB greatly reduces the magnitude of the

reflected wave for all time step safety factors. In addition, only one

zone in the buffer region is required for ISB with the first- or the

second-order correction, whereas the original ISB requires a buffer region

of three to four zones.

Calculations with a cosine pressure pulse propagating through a

one-dimensional grid were performed for the original ISB and for the

modified ISB with the first- and second-order corrections. These calcula-

tions were performed with a Lagrangian, explicit-in-time, fin 4te-differ-

ence code STEALTH. The results of these calculations for the magnitude of

the reflected wave are summarized in Table 4-1. These results indicate

that the ISB with the first- or second-order corrections is more effective

in cancelling the reflected waves than the original ISB. In particular,

the second-order correction reduces the level of the cancellation error to

the order of the computational noise, which is about 0.4% of the amplitude

of the incident wave for a wave reflected from a free boundary.

Although the level of cancellation is good, the presence of the time

step safety factor, f, in the corrections is undesirable for multi-dimen-

sional calculations. In two-dimensional calculations, the effective

safety factor for shear and dilation waves is different because the sound

speed of both waves is different. The presence of the safety factor then

implies that a simple velocity correction factor will peroform equally

well for the two different wave types. It may be possible to cancel the S

waves by adjusting the shear stress on the boundary. In addition the

reflected waves may also be dispersed by the two-dimensional reflection

process. Further analysis is necessary to extend the modified ISB to two-

dimensional calculations. S
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Table 4-1 Comparison of the Magnitude of the Reflected Wave for

the Original and Modified ISBN

Ratio of the Magnitude of the Reflected
to the Incident Wave

Time Step Safety Factors

0.95 0.67 0.50

The Original ISB 5% 5% 12%

ISB with First-order 0.6% 1.8% 2.9%
Correction

ISB with Second-order 0.6% 0.5% 0.5%
Correction

d'1
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