|        |                  |                                        |                                    | -                                     |                                  |                           |                                 | _                          |                            |                                |                    | _         |   |
|--------|------------------|----------------------------------------|------------------------------------|---------------------------------------|----------------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|--------------------------------|--------------------|-----------|---|
| VIICLA | 91 425<br>SSIFIE | EFF<br>ON<br>AER<br>D SD-              | ECTS<br>CN CHI<br>OPHYSI<br>TR-88- | DF TRA<br>Emical<br>ICS La<br>-40 F0- | NSLATI<br>LAS<br>B H H<br>4701-9 | ONAL (<br>(U) AE<br>IRELS | NID RO<br>ROSPA<br>81 MAN<br>86 | TATION<br>CE COR<br>R 88 T | AL NON<br>P EL S<br>R-0006 | EQUIL<br>EQUID<br>A(206<br>F/G | D CR<br>)-1<br>)/3 | 5./<br>NL | 1 |
|        |                  | ······································ |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |
|        |                  |                                        |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |
|        |                  |                                        |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |
|        |                  |                                        |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |
|        |                  |                                        |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |
|        |                  |                                        |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |
|        |                  |                                        |                                    |                                       |                                  |                           |                                 |                            |                            |                                |                    |           |   |



## IN FILE COPY

いたいで

DTIC

APR 0 5 1988

H

4

88

4

121

## and Rotational

## ew Commical Laser Performance

B: MIDGLS Association Labor With Discourse Connection Tax Association Connection Connection Connection Connection Connection Connection

ะกับกัง เป็นไปที่เหลือข้อข้องไห้ เป็นจะไปที่ เหลือข้อที่สายไปที่สายไม่ที่สายไม่ได้เหลือ<mark>เหลือไปไม่ม</mark>ีเหล<mark>่เป็นส</mark>มันเหลือไป

AD-A191 425

ana: 2 22 € 2

1 March 1968

Depart for SPACE DIVISION ANE FORCE SYNCTIMS COMMAND Los America An Porce Date O Bio: Static Watdows Postal Center Los America CA 9009-2950

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract No. F04701-85-C-0086-P00016 with the Space Division, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by W. P. Thompson, Jr., Director, Aerophysics Laboratory. Lt Scott W. Levinson/CNW was the Air Force project officer.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

SCOTT W. LEVINSON, Lt., USAF Project Officer SD/CNW

RAYMOND M. CLEONG, Major, USAF Deputy Director, AFSTC West Coast Office AFSTC/WCO OL-AB

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REPORT DOCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MENIATION                                                                                                                                                                                                                                                                                                                               | PAGE                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. REPORT SECURITY CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16. RESTRICTIVE                                                                                                                                                                                                                                                                                                                         | MARKINGS                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                 |
| a. SECURITY CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3. DISTRIBUTION                                                                                                                                                                                                                                                                                                                         | AVAILABILIT                                                                                                                                                                                                                                                 | OF REPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                  |                                                                                                                                                                                 |
| - DECLASSIEICATION / DOWNGRADING SCHEDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approved for                                                                                                                                                                                                                                                                                                                            | public r                                                                                                                                                                                                                                                    | elease;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uistribution                                                                                                                                                                                                                                                                                                                            | unituite                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                 |
| PERFORMING ORGANIZATION REPORT NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 MONITORING                                                                                                                                                                                                                                                                                                                            | ORGANIZATIO                                                                                                                                                                                                                                                 | N REPORT N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UMBER(S                                                                                                                                            | )                                                                                                                                                                               |
| R-0086A(2060)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD-TR-88-40                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                 |
| a. NAME OF PERFORMING ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66. OFFICE SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7a. NAME OF M                                                                                                                                                                                                                                                                                                                           | ONITORING OF                                                                                                                                                                                                                                                | RGANIZATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N                                                                                                                                                  |                                                                                                                                                                                 |
| he Aerospace Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (It applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Space Divisi                                                                                                                                                                                                                                                                                                                            | .on                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                 |
| Aboratory Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7b ADDRESS (Cit                                                                                                                                                                                                                                                                                                                         | ty, State, and                                                                                                                                                                                                                                              | ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Los Angeles                                                                                                                                                                                                                                                                                                                             | Air Force                                                                                                                                                                                                                                                   | Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l                                                                                                                                                  |                                                                                                                                                                                 |
| 1 Segundo, CA 90245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Los Angeles,                                                                                                                                                                                                                                                                                                                            | , CA 90009                                                                                                                                                                                                                                                  | -2960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                 |
| a. NAME OF FUNDING / SPONSORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85. OFFICE SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9. PROCUREMEN                                                                                                                                                                                                                                                                                                                           | T INSTRUMEN                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    | MBER                                                                                                                                                                            |
| ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                         | 0086 0000                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                 |
| ADDRESS (City, Change and 710 Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104/01-85-C-                                                                                                                                                                                                                                                                                                                            | -0000-P000                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                 |
| k. AUURESS (LITY, STATE, and ZIP LODE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROGRAM                                                                                                                                                                                                                                                                                                                                 | PROJECT                                                                                                                                                                                                                                                     | TASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | WORK UNIT                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELEMENT NO.                                                                                                                                                                                                                                                                                                                             | NO.                                                                                                                                                                                                                                                         | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    | ACCESSION NO                                                                                                                                                                    |
| n cw Chemical Laser Performance<br>2. PERSONAL AUTHOR(S)<br>1. FINE CHARGE INFORMATION INFORMA                                                                                                                                                                                                                                        | OVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14. DATE OF REPO                                                                                                                                                                                                                                                                                                                        | DRT (Year, Mor                                                                                                                                                                                                                                              | nth, Day) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE                                                                                                                                             | COUNT                                                                                                                                                                           |
| Chemical Laser Performance     PERSONAL AUTHOR(S)     Mirels_Harold     Tab. TIME C     FROM     SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e<br>OVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14. DATE OF REPO<br>1988 Marc                                                                                                                                                                                                                                                                                                           | DRT (Year, Mor<br>h 1                                                                                                                                                                                                                                       | nth, Day) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE<br>49                                                                                                                                       | COUNT                                                                                                                                                                           |
| 2. PERSONAL AUTHOR(S)<br>Mirels_Harold<br>3a. TYPE OF REPORT<br>6. SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. DATE OF REPC<br>1988 Marc                                                                                                                                                                                                                                                                                                           | DRT (Year, Mor<br>h 1                                                                                                                                                                                                                                       | nth, Day) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE<br>49                                                                                                                                       | COUNT                                                                                                                                                                           |
| 2. PERSONAL AUTHOR(S)<br>Mirels_Harold<br>3a. TYPE OF REPORT<br>6. SUPPLEMENTARY NOTATION<br>7. COSATL CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. DATE OF REPO<br>1988 Marc                                                                                                                                                                                                                                                                                                           | DRT (Year, Mor<br>h 1                                                                                                                                                                                                                                       | and identifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 PAGE<br>49                                                                                                                                       |                                                                                                                                                                                 |
| 2. PERSONAL AUTHOR(S)         2. PERSONAL AUTHOR(S)         Mirels_Harold         3a. TYPE OF REPORT         13b. TIME C         FROM         6. SUPPLEMENTARY NOTATION         7       COSATI CODES         FIELD       GROUP         SUB-GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>OVERED<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14. DATE OF REPC<br>1988 Marc                                                                                                                                                                                                                                                                                                           | DRT (Year, Mor<br>h 1<br>e if necessary                                                                                                                                                                                                                     | and identif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE<br>49<br>y by bloc                                                                                                                          | COUNT<br>k number)                                                                                                                                                              |
| on cw Chemical Laser Performance         2. PERSONAL AUTHOR(S)         4irels_Harold         3a. TYPE OF REPORT         13b. TIME C         FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>OVERED<br>TO<br>18 SUBJECT TERMS<br>Chemical Laset<br>GW Chemical Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers (Contin                                                                                                                                                                                                                                                       | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave                                                                                                                                                                                                        | and identif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE<br>49<br>y by bloc<br>1 Lase                                                                                                                | COUNT<br>k number)<br>rs)                                                                                                                                                       |
| 2. PERSONAL AUTHOR(S)         2. PERSONAL AUTHOR(S)         Mirels_Harold         3a. TYPE OF REPORT         13b. TIME C         FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e<br>OVERED<br>TO<br>18 SUBJECT TERMS<br>Chemical Laser<br>GW Chemical List<br>and identify by block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)                                                                                                                                                                                                                                           | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave                                                                                                                                                                                                        | and identif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE<br>49<br>y by bloc<br>1 Lase                                                                                                                | COUNT<br>k number)<br>rs)                                                                                                                                                       |
| A previous model used to descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e<br>OVERED<br>TO<br>18 SUBJECT TERMS<br>Chemical Lasel<br>GM Chemical Lasel<br>Chemical Chemical Chemical Lasel<br>Chemical Chemical C                            | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem                                                                                                                                                                                                                          | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>hical lase                                                                                                                                                                                          | and identif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>mance                                                                                                      | COUNT<br>k number)<br>rs) <sup>(</sup><br>is                                                                                                                                    |
| ABSTRACT (Continue on reverse if necessary<br>A previous model used to descri<br>generalized to include rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>OVERED<br>TO<br>TO<br>18 SUBJECT TERMS<br>Chemical Lasen<br>Chemical Lasen<br>Chemical Lasen<br>Chemical Lasen<br>of Chemical Lasen<br>for Chemical Lasen<br>of Che | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational                                                                                                                                                                                                          | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>hical lase<br>nonequili                                                                                                                                                                             | and identif<br>Chemica<br>r perform<br>brium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>The rea                                                                                                    | COUNT<br>k number)<br>rs) <sup>(</sup><br>is<br>sultant                                                                                                                         |
| 2. PERSONAL AUTHOR(S)         Mirels_Harold         3a. TYPE OF REPORT         13b. TIME OF REPORT <td>e<br/>OVERED<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO</td> <td>(Continue on revers<br/>Model,<br/>asers; (Contin<br/>number)<br/>ave (cw) chem<br/>ranslational<br/>mption that t</td> <td>DRT (Year, Mor<br/>h 1<br/>e if necessary<br/>uous Wave<br/>hical lase<br/>nonequili<br/>ranslatio<br/>l pumping</td> <td>and identify<br/>Chemica<br/>r perform<br/>brium.<br/>nal and<br/>and co</td> <td>5 PAGE<br/>49<br/>y by bloc<br/>1 Lasen<br/>mance<br/>The re-<br/>rotatio<br/>1] isio</td> <td>COUNT<br/>k number)<br/>rs) <sup>(</sup><br/>is<br/>sultant<br/>onal<br/>nal</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Continue on revers<br>Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t                                                                                                                                                                                                                            | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>hical lase<br>nonequili<br>ranslatio<br>l pumping                                                                                                                                                   | and identify<br>Chemica<br>r perform<br>brium.<br>nal and<br>and co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>mance<br>The re-<br>rotatio<br>1] isio                                                                     | COUNT<br>k number)<br>rs) <sup>(</sup><br>is<br>sultant<br>onal<br>nal                                                                                                          |
| ABSTRACT (Continue on reverse if necessary<br>A previous model used to descri<br>generalized to include rotation<br>equations are simplified by the<br>relaxation rates are fast compa<br>deactivation rates. As a consec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot                                                                                                                                                       | DRT (Year, Mor<br>h 1<br>se if necessary<br>uous Wave<br>hical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r                                                                                                                                     | and identif<br>and identif<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>The rea<br>rotation<br>1 lision<br>n are                                                                   | COUNT<br>k number)<br>rs) <sup>(</sup><br>is<br>sultant<br>onal<br>nal<br>in equi-                                                                                              |
| 2. PERSONAL AUTHOR(S)         Mirels_Harold         3a. TYPE OF REPORT         13b. TIME OF REPORT <td>e<br/>OVERED<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO<br/>TO</td> <td>14. DATE OF REPC<br/>1988 Marc<br/>(Continue on revers<br/>r Model,<br/>asers; (Contin<br/>number)<br/>ave (cw) chem<br/>ranslational<br/>mption that t<br/>tion, chemica<br/>ional and rot<br/>implification</td> <td>DRT (Year, Mor<br/>h 1<br/>e if necessary<br/>uous Wave<br/>fical lase<br/>nonequili<br/>ranslatio<br/>l pumping<br/>ational r<br/>h is intro</td> <td>and identified<br/>and identified<br/>Chemica<br/>r perform<br/>brium.<br/>nal and<br/>, and co<br/>elaxatio<br/>duced by</td> <td>5 PAGE<br/>49<br/>y by bloc<br/>1 Lasen<br/>mance<br/>The re-<br/>rotation<br/>n are<br/>the a</td> <td>COUNT<br/>k number)<br/>rs) (<br/>is<br/>sultant<br/>onal<br/>nal<br/>in equi-<br/>ssumption</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPC<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification                                                                                                                                      | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>fical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>h is intro                                                                                                                        | and identified<br>and identified<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio<br>duced by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>mance<br>The re-<br>rotation<br>n are<br>the a                                                             | COUNT<br>k number)<br>rs) (<br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption                                                                                            |
| ABSTRACT (Continue on reverse if necessary<br>A previous model used to descri<br>generalized to include rotation<br>equations are simplified by the<br>relaxation rates. As a consec<br>librium with stimulated emission<br>$R_r/R_t - 1 (\Delta \nu_r/\Delta \nu_d) << 1$ , wher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Donnler wi                                                                                                    | DRT (Year, Mor<br>h 1<br>se if necessary<br>uous Wave<br>hical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>h is intro<br>tional to<br>dths STh                                                                                              | and identif<br>and identif<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio<br>duced by<br>transla<br>e result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s PAGE<br>49<br>y by bloc<br>l Lasen<br>The re-<br>rotation<br>llision<br>n are<br>the a<br>tional<br>ant sv                                       | COUNT<br>k number)<br>rs) '<br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of                                                                   |
| ABSTRACT (Continue on reverse if necessary<br>A previous model used to descri<br>generalized to include rotation<br>equations are simplified by the<br>relaxation rates are fast compa<br>deactivation rates. As a consec<br>librium with stimulated emission<br>$ R_r/R_t - 1 (\Delta v_r/\Delta v_d) << 1$ , wher<br>relaxations is independent of rot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPC<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Doppler wi<br>ion. An ampl                                                                                    | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>fical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>h is intro<br>tional to<br>dths. >Th<br>ifier sol                                                                                 | and identify<br>and identify<br>Chemica<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio<br>duced by<br>transla<br>e result<br>ution is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s PAGE<br>49<br>y by bloc<br>l Lasen<br>The rea<br>rotation<br>llision<br>n are<br>the a<br>tional<br>ant sy<br>prese                              | COUNT<br>k number)<br>rs) <sup>(</sup><br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of<br>nted that                                           |
| ABSTRACT (Continue on reverse if necessary<br>A previous model used to descri<br>generalized to include rotation<br>equations are simplified by the<br>relaxation rates are fast compa<br>deactivation rates. As a consec<br>$ R_r/R_t - 1 (\Delta v_h/\Delta v_d) << 1$ , wher<br>rates and $\Delta v_h/\Delta v_d$ is the ratio<br>equations is independent of rot<br>predicts saturation effects in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Doppler wi<br>ion. An ampl<br>eriments. Fa                                                                    | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>hical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>h is intro<br>tional to<br>dths. >Th<br>ifier sol<br>abry-Perot                                                                   | nth, Day)<br>and identif<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio<br>duced by<br>transla<br>e result<br>ution is<br>oscilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>The resonance<br>The resonance<br>the a<br>tional<br>ant sy<br>presenance<br>to so                         | COUNT<br>k number)<br>rs) '<br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of<br>nted that<br>lutions are                                       |
| on cw Chemical Laser Performance<br>2. PERSONAL AUTHOR(S)<br>Airels, Harold<br>3a. TYPE OF REPORT<br>6. SUPPLEMENTARY NOTATION<br>7. COSATI CODES<br>FIELD<br>6. SUPPLEMENTARY NOTATION<br>7. COSATI CODES<br>FIELD<br>6. SUPPLEMENTARY NOTATION<br>7. COSATI CODES<br>7. C | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPO<br>1988 Marc<br>(Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Doppler wi<br>ion. An ampl<br>eriments. Fa<br>and for a pa<br>fication of                                     | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>fical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>h is intro<br>tional to<br>dths. >Th<br>ifier sol<br>abry-Perot<br>artly satu                                                     | and identified<br>and identified<br>Chemica<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio<br>duced by<br>transla<br>e result<br>ution is<br>oscilla<br>rated si<br>codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s PAGE<br>49<br>y by bloc<br>l Lasen<br>The rea<br>rotation<br>llision<br>n are<br>the a<br>tional<br>ant sy<br>prese<br>tor so<br>ngle-1<br>It is | COUNT<br>k number)<br>rs) <sup>(</sup><br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of<br>nted that<br>lutions are<br>ine laser.<br>concluded |
| InterviewInterview2. PERSONAL AUTHOR(S)2. PERSONAL AUTHOR(S)3a. TYPE OF REPORT3a. TYPE OF REPORT13b. TIME OF REPORT6. SUPPLEMENTARY NOTATION77COSATI CODESFIELDGROUPSUB-GROUPABSTRACT (Continue on reverse if necessaryA previous model used to descrigeneralized to include rotationequations are simplified by therelaxation rates are fast compadeactivation rates. As a conseclibrium with stimulated emissic $ R_r/R_t - 1 (\Delta v_h / \Delta v_d) << 1$ , wherrates and $\Delta v_h / \Delta v_d$ is the ratioequations is independent of rotpredicts saturation effects inalso presented for a multilineThe present results provide a tthat a reasonable first estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Continue on revers<br>r Model,<br>asers; (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Doppler wi<br>ion. An ampl<br>eriments. Fa<br>and for a pa<br>fication of r<br>al laser perf                                                   | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>hical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>h is intro<br>tional to<br>dths. >Th<br>ifier sol<br>bry-Perot<br>artly satu<br>numerical<br>formance c                           | and identify<br>and identify<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxation<br>duced by<br>transla<br>e result<br>ution is<br>oscilla<br>rated si<br>codes.<br>an be ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 PAGE<br>49<br>y by bloc<br>1 Lasen<br>mance<br>The rea<br>rotational<br>ant sy<br>prese<br>tor so<br>ngle-1<br>It is<br>otained                  | COUNT<br>k number)<br>rs)<br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of<br>nted that<br>lutions are<br>ine laser.<br>concluded<br>by        |
| con cw Chemical Laser Performance<br>2. PERSONAL AUTHOR(S)<br>Mirels, Harold<br>3a. TYPE OF REPORT<br>6. SUPPLEMENTARY NOTATION<br>7. COSATI CODES<br>FIELD<br>GROUP<br>SUB-GROUP<br>ABSTRACT (Continue on reverse if necessary<br>A previous model used to descri<br>generalized to include rotation<br>equations are simplified by the<br>relaxation rates are fast compa<br>deactivation rates. As a consec<br>librium with stimulated emission<br>$ R_r/R_t - 1 (\Delta v_r / \Delta v_d) << 1$ , wher<br>rates and $\Delta v_r / \Delta v_d$ is the ratio<br>equations is independent of rot<br>predicts saturation effects in<br>also presented for a multiline<br>The present results provide a t<br>that a reasonable first estimate<br>equations potational equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. DATE OF REPO<br>1988 Marc<br>(Continue on reverse<br>r Model,<br>asers'(Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Doppler wi<br>ion. An ampl<br>eriments. Fa<br>and for a pa<br>fication of r<br>al laser perfinal<br>nonequili | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>dical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational r<br>is intro<br>tional to<br>dths. >Th<br>ifier sol<br>bry-Perot<br>artly satu<br>numerical<br>formance o                             | and identified<br>and identified<br>Chemica<br>r performing<br>r p | s PAGE<br>49<br>y by bloc<br>l Lasen<br>The rei<br>rotational<br>ant sy<br>prese<br>tor so<br>ngle-1<br>It is<br>ptained                           | COUNT<br>k number)<br>rs)<br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of<br>nted that<br>lutions are<br>ine laser.<br>concluded<br>by        |
| on cw Chemical Laser Performance         2. PERSONAL AUTHOR(S)         Mirels_Harold         3a. TYPE OF REPORT         13b. TIME OF REPORT         14b. TO DES         15b. TIME OF REPORT         16b. TIME OF REP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e<br>OVERED<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Continue on revers<br>r Model,<br>asers (Contin<br>number)<br>ave (cw) chem<br>ranslational<br>mption that t<br>tion, chemica<br>ional and rot<br>implification<br>ratio of rota<br>to Doppler wi<br>ion. An ampl<br>eriments. Fa<br>and for a pa<br>fication of r<br>al laser perf<br>nal nonequili                                   | DRT (Year, Mor<br>h 1<br>e if necessary<br>uous Wave<br>hical lase<br>nonequili<br>ranslatio<br>l pumping<br>ational ro<br>is intro<br>tional to<br>dths. Th<br>ifier sol<br>abry-Perot<br>artly satu<br>numerical<br>formance of<br>brium.<br>ECURITY CLAS | and identify<br>Chemica<br>Chemica<br>Chemica<br>r perform<br>brium.<br>nal and<br>, and co<br>elaxatio<br>duced by<br>transla<br>e result<br>ution is<br>oscilla<br>rated si<br>codes.<br>an be ob<br><u>ke (1) (</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s PAGE<br>49<br>y by bloc<br>l Lasen<br>The rea<br>rotational<br>ant sy<br>prese<br>tor so<br>ngle-1<br>It is<br>otained                           | COUNT<br>k number)<br>rs) '<br>is<br>sultant<br>onal<br>nal<br>in equi-<br>ssumption<br>relaxation<br>stem of<br>nted that<br>lutions are<br>ine laser.<br>concluded<br>by      |

1 4 1 4 4 4 YO AVA ALA ALA

PERSON SUCCESSION DECEMBER OF

2222220 2222224

5552233

| 04060606060406060606060606060 | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | and the second of the second of the |
|-------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------|

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

## 18. SUBJECT TERMS (Continued)

Inhomogeneous Broadening Effects Lasers Multiline Performance Rotational Nonequilibrium Translational Nonequilibrium

INCLASSIELED

SECURITY CLASSIFICATION OF THIS PAGE

## CONTENTS

| I.   | INTRODUCTION                      | 7  |
|------|-----------------------------------|----|
| 11.  | FORMULATION                       | 9  |
|      | A. Flow Model                     | 9  |
|      | B. Distribution Functions         | 9  |
|      | C. Laser Equations 1              | .2 |
| 111. | EQUILIBRIUM CASES 1               | .7 |
| IV.  | NONEQUILIBRIUM CASES 1            | .9 |
|      | A. Simplified Equations 1         | 9  |
|      | B. Amplifier 2                    | :6 |
|      | C. Oscillator                     | 15 |
| v.   | DISCUSSION 4                      | 1  |
| VI.  | CONCLUDING REMARKS 4              | 3  |
| APPE | NDIX A: PARTIAL LIST OF SYMBOLS 4 | 15 |
| APPE | NDIX B: PARAMETER EVALUATION 4    | 7  |
| REFE | RENCES                            | ;3 |



1

| Accession For   | ·                                     |
|-----------------|---------------------------------------|
| NTIS GRA&I      |                                       |
| DTIC TAB        |                                       |
| Juanno unced    |                                       |
| Justilicati r   | ·                                     |
|                 | · · · · · · · · · · · · · · · · · · · |
| 8v              |                                       |
| Stote (Platfou) | ,                                     |
| Av=11=1111++    | 0/0 <b>8</b>                          |
| fyster og       | ⊡ <b>ć</b> ∕⊂⊥                        |
| at Spr -        | 1                                     |
|                 |                                       |
|                 | 1                                     |
|                 |                                       |
|                 | r                                     |

10.223

122222000 - Constant

LUNDY XXXXX DUDDY XXXXX XXXXX

## FIGURES

. . . .

| 1. | Continuous Wave Chemical Laser (a) Flow Field and Fabry-<br>Perot Resonator and (b) Flame Sheet Model of Reaction Zone                                                                                                                        | 10            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2. | Variation of Inversion Number Density with Streamwise<br>Distance for Case of Uniformly Illuminated Amplifier<br>with Laminar Mixing                                                                                                          | 27            |
| 3. | Line Shape for Laser Medium with Single Transition at $X_j = 0.0$ or 0.4 and a Homogeneous Width $\Delta v_h / \Delta v_d = 0.024$ ; (a) Case $X_j = 0.0$ ; (b) Case $X_j = 0.4$                                                              | <b>29,3</b> 0 |
| 4. | Variation of Gain with Frequency at Streamwise Station $\zeta = 0.305$ in a Uniformly Illuminated Amplifier with a Single Transition at $X_j = 0.4$ ; (a) Case $\Delta v_h / \Delta v_d = 0.024$ ; (b) Case $\Delta v_h / \Delta v_d = 0.048$ | 31,32         |
| 5. | Effect of Input Intensity on Line Center ( $v = v$ ) Gain at Fixed<br>Streamwise Station for Uniformly Illuminated Amplifier                                                                                                                  | 34            |
| 6. | Performance of Saturated Multiline Fabry-Perot Oscillator in the<br>Limit $R_r = R_t >> 1$ , $\Delta v_h \ll \Delta \lambda_c$ , $Y_{J,j} \ll 1$ , $G_c \neq 0$ ,<br>and $S = O(1)$                                                           | 38            |
| 7. | Performance of Single Line Fabry-Perot Oscillator in Limit $R_r = R_t >> 1$ and $Y_{i,i} << 1$                                                                                                                                                | 40            |

## TABLES

8"+" 8"+" #L."+8."+8. "+1. "+8. "+1." \*\*\* 4+

| I.   | Numerical Values of Parameters for cw HF Laser                                          | 20-23      |
|------|-----------------------------------------------------------------------------------------|------------|
| 11.  | Maxima for Amplifier with Uniform Incident Radiation<br>and Laminar Diffusion           | 28         |
| 111. | Homogeneous Width and Gas Kinetic Collision Rate Data<br>for HF + $M_i$ + HF + $M_i$    | 48         |
| IV.  | Vibrational Deactivation Rates for Reaction HF $(v + 1) + - 1$                          |            |
|      | $M_i \overset{K_{cd}}{\rightarrow} HF(v) + M_i$                                         | <b>5</b> 0 |
| V.   | Maximum Value of $\overline{f}_{J}$ and Corresponding Value of J for fixed $\theta_{R}$ | 51         |

 $\sim 1$ 

Continuous wave (cw) chemical lasers generally operate at pressures of the order of 1 Torr in order to achieve good efficiency. At this pressure level, the gain medium is inhomogeneously broadened. In addition, the lasing process tends to modify the gain medium so that the lasing particles are neither in translational nor rotational equilibrium. Nonetheless, early analytic models of cw chemical laser performance assumed that the lasing medium was in translational and rotational equilibrium (e.g., Refs. 1 and 2). In these models, reasonable estimates were provided for net output power, but the spectral content was not predicted. The latter requires consideration of finite translational and rotational relaxation rates.

Subsequently, analytic models and numerical codes were developed that included either rotational nonequilibrium $^{3-5}$  or translational nonequilibrium. $^{6-8}$  A recent review of rotational nonequilibrium rate processes and models is given in Ref. 9.

The combined effect of translational and rotational nonequilibrium has received less attention. An analytic model for a low pressure  $CO_2$  laser is presented in Ref. 10, whereas a model for a generic molecular laser with applications to  $CO_2$  and cw chemical lasers is presented in Ref. 11. A numerical code that treats both translational and rotational nonequilibrium has been developed by D. Bullock and co-workers;<sup>12</sup> limited numerical results have been published.<sup>13</sup>

The present study generalizes a previous simple  $model^{6-8}$  in order to include rotational as well as translational nonequilibrium effects. The object is to provide analytic expressions for cw chemical laser amplifier and oscillator performance as well as to delineate the parameters that characterize nonequilibrium effects. The appropriate equations are first deduced. Equilibrium and nonequilibrium solutions are then obtained. Symbols are defined in Appendix A.

## II. FORMULATION

Equations are deduced that define effects of translational and rotational nonequilibrium on cw chemical laser performance.

## A. Flow model

A cw chemical laser is illustrated in Fig. la. The present simplified mixing model is illustrated in Fig. lb. The reactants are assumed to be premixed but do not react until a flame sheet,  $y_f(x)$ , is reached. The flame sheet shape is specified, a priori, from diffusion theory. The streamwise station where the flame sheet reaches the channel center line is denoted  $x_D$  and characterizes the diffusion rate. The width per semichannel and the number of semichannels are denoted w and  $n_{sc}$ , respectively. Laser radiation is in the  $\pm y$  direction.

## B. Distribution functions

Let  $n_v(J,v)dv$  denote the number of particles (moles/cm<sup>3</sup>) with vibrational energy level v and rotational energy quantum number J that are resonant with radiation of frequency v. The following notation is introduced

$$\int_{-\infty}^{\infty} n_{v}(J,v) dv \equiv n_{v}(J)$$
 (1a)

$$\sum_{J}^{n} n_{v}(J) \equiv n_{v}$$
(1b)

$$\sum_{\mathbf{v}} n_{\mathbf{v}} \equiv n_{\mathbf{T}}$$
(1c)

For radiation in the  $\pm y$  direction, the resonant frequency v is related to particle thermal velocity  $v_v$  by the Doppler relation

$$\frac{v}{v_0} - 1 = \pm \frac{v_y}{c}$$
(2)

where v is the resonant frequency for particles at rest. We neglect the dependence of  $v_{\rm c}$  on v,J.

For particles with a Maxwellian thermal velocity distribution

$$\overline{p} = \frac{n_v(J,v)}{n_v(J)} = \frac{\left[(4\epsilon n_2)/\pi\right]^{1/2}}{\Delta v_d} \exp\left[-(4\epsilon n_2)\left(\frac{v-v_0}{\Delta v_d}\right)^2\right]$$
(3)



X T P T S T A T K T S

Fig. 1. Continuous Wave Chemical Laser (a) Flow Field and Fabry-Perot Resonator and (b) Flame Sheet Model of Reaction Zone<sup>1,6-8</sup>

$$\bar{p}_{o} = [(4\ell n 2)/\pi]^{1/2} / \Delta v_{d}$$
(4)

We define  $p_v = \bar{p}/\bar{p}_o$  and note

$$\int_{\infty}^{\infty} p_{v} dv = \frac{1}{p_{o}}$$
(5)

We now consider the case of rotational equilibrium and neglect the effect of vibrational energy level on the characteristic rotational energy temperature  $T_R$ . The fraction of particles in rotational energy level J is denoted  $\overline{f}_J$  and is found from (Appendix B)

$$\bar{f}_{J} \equiv \frac{n_{v}(J)}{n_{v}} = \frac{(2J+1)\exp[-J(J+1)\theta_{R}]}{\sum (2J+1)\exp[-J(J+1)\theta_{R}]}$$
(6)

where the summation is from J = 0 to  $J = \infty$ . Let  $\overline{f}_r$  denote a reference value of  $\overline{f}_J$  and introduce  $f_J = f_J / \overline{f}_r$ . It follows that

 $\sum_{J} \overline{f}_{J} = 1 ; \quad \sum_{J} f_{J} = 1/\overline{f}_{r}$ (7)

Convenient values for  $\overline{f}_r$  are noted in Appendix B. Finally, we observe that the gain at frequency v for laser transition v,J can be expressed

$$g_{v,J}(v) = \overline{\sigma}_{v,J} \int_{-\infty}^{\infty} \left\{ \frac{2J_{\ell} + 1}{2J_{u} + 1} \left[ n_{v}(J,v') \right]_{u} - \left[ n_{v}(J,v') \right]_{\ell} \right\} L(v - v')dv' \quad (8a)$$

where subscript v,J refers to lower laser level values, subscripts u and  $\ell$  denote upper and lower laser level values, respectively, and

$$L(v - v') = \left[1 + 4\left(\frac{v - v'}{\Delta v_{h}}\right)^{2}\right]^{-1}$$
(8b)

where  $\Delta v_h$  is the homogeneous line width. The evaluation of  $\Delta v_h$  and the cross section  $\overline{\sigma}_{v,J}$  is discussed in Appendix B. Numerical estimates are provided in Table I.

C. Laser equations

In order to simplify the mathematical development, we assume a "Q" type laser transition

$$v + 1, J + v, J$$
 (9a)

rather than the "P" type laser transition

$$v + 1, J - 1 + v, J$$
 (9b)

TRACTED REPORT IN

222

appropriate for cw chemical lasers. This approximation is consistent with other simplifying assumptions used in the present model. In addition, we consider a two-vibrational energy level model and denote the upper and lower levels by subscripts 2 and 1, respectively.

The variation of upper level number density with streamwise distance, in the present model, is found from

$$\frac{u}{y_{f}} \frac{d[n_{2}(J,v)y_{f}]}{dx} = u \frac{\bar{p} \bar{f}_{J}}{y_{f}} \frac{d(n_{T}y_{f})}{dx} - k_{cd}n_{2}(J,v) + k_{tr}[\bar{p}n_{2}(J) - n_{2}(J,v)] + k_{rr}\bar{p}[\bar{f}_{J}n_{2} - n_{2}(J)]$$
(10a)

 $-\frac{\bar{\sigma}_{v,J}}{\varepsilon_{v,J}} [n_2(J,v) - n_1(J,v)] \sum_{j} L(v - v_{J,j}) \overline{I}_{J,j}$ 

where  $\varepsilon_{v,J}$  is the energy per mole of photons. The terms on the right-hand side of the equation represent the effects of chemical pumping, collisional deactivation, translational cross relaxation (assumed to be proportional to departure from translational equilibrium), rotational cross relaxation (assumed to be proportional to departure from rotational equilibrium), and stimulated emission and absorption. For the term involving  $k_{tr}$ , it is assumed that within a given rotational level J, the creation of  $n_2(J,v)$  is proportional to the departure from translational equilibrium. For the term involving  $k_{rr}$ , it is assumed that rotational relaxation into level J results in particles with a Maxwellian velocity distribution. Equation (10a) provides the proper limits  $n_2(J,v) + \bar{p}n_2(J)$  and  $n_2(J) + \bar{f}_J n_2$  as  $k_{tr} + \infty$  and  $k_{rr} + \infty$ , respectively. It is assumed that the chemical reaction creates only upper level particles and that these are in translational and rotational equilibrium. The notation  $\overline{I}_{J,j}$  and  $v_{J,j}$  refers to the j<sup>th</sup> resonator mode for the v + l, J + v,J transition. The corresponding expression for the lower laser level is

$$\frac{u}{v_{f}} \frac{d[n_{1}(J,v)y_{f}]}{dx} = k_{cd} \bar{p} \bar{f}_{J}n_{2} + k_{tr}[\bar{p}n_{1}(J) - n_{1}(J,v)]$$

$$+ k_{rr}\bar{p}[\bar{f}_{J}n_{1} - n_{1}(J)]$$

$$+ \frac{\bar{\sigma}_{v,J}}{\varepsilon_{v,J}} [n_{2}(J,v) - n_{1}(J,v)] \sum_{j} L(v - v_{J,j})\bar{I}_{J,j}$$
(10b)

The first term on the right-hand side follows from the assumption that collisional deactivation of  $n_2$  results in an equilibrium distribution of  $n_1(J,v)$ . The following nondimensional quantities are introduced

$$\zeta = \frac{k_{cd}x}{u} \qquad \qquad N_{2J} = \frac{n_2(J)y_f}{n_r \bar{f}_r w} \qquad (11a)$$

$$N_{2Jv} = \frac{n_2^{(J,v)y_f}}{n_r \bar{f}_r \bar{p}_0 w} \qquad N_2 = \frac{n_2^{y_f}}{n_r w}$$
(11b)

$$N_{J\nu}^{\pm} = N_{2J\nu} \pm N_{1J\nu}$$
  $N_{J}^{\pm} = N_{2J} \pm N_{1J}$  (11c)

$$N^{\pm} = N_2 \pm N_1 \qquad I_{J,j} = \overline{I}_{J,j} / \overline{I}_{S,L} \qquad (11d)$$

$$R_{t} = k_{tr}/k_{cd} \qquad R_{r} = k_{rr}/k_{cd} \qquad (11e)$$

$$G_{J}(v') = \frac{g_{J}(v')y_{f}}{n_{r}\bar{f}_{r}\bar{p}_{o}\Delta v_{h}\bar{\sigma}_{v,J}w} \qquad G_{J,j} = G_{J}(v_{j})$$
(11f)

$$= \int_{-\infty}^{\infty} N_{Jv} L(v - v') \frac{dv}{\Delta v_h} \qquad S = \pi \bar{p}_o \bar{f}_r \Delta v_h R_t \qquad (11g)$$

where  $n_r$  is a reference value of  $n_2$  and

$$\bar{I}_{S,L} = \varepsilon_{v,J} k_{tr} / (2\bar{\sigma}_{v,J})$$
(12)

is an intensity that characterizes line shape distortion resulting from saturation.

Substitution of normalized variables into the sum of Eqs. (10a) and (10b) and subsequent integration with respect to v and summation with respect to J indicates

$$\frac{dN'_{J\nu}}{d\zeta} = p_{\nu}f_{J}\frac{dN_{T}}{d\zeta} + p_{\nu}f_{J}N_{2} - N_{2J\nu} + R_{t}(p_{\nu}N_{J}^{+} - N_{J\nu}^{+})$$

$$+ R_{r}p_{\nu}(f_{J}N^{+} - N_{J}^{+})$$
(13a)

$$\frac{dN_{J}^{+}}{d\zeta} = f_{J} \frac{dN_{T}}{d\zeta} + (f_{J}N_{2} - N_{2J}) + R_{r}(f_{J}N^{+} - N_{J}^{+})$$
(13b)

$$N^{+} = N_{T}$$
(13c)

The difference between Eqs. (10a) and (10b) indicates

$$\frac{dN_{J_{\nu}}}{d\zeta} = p_{\nu}f_{J}\frac{dN_{T}}{d\zeta} - (p_{\nu}f_{J}N_{2} + N_{2J\nu}) + R_{t}(p_{\nu}N_{J} - N_{J\nu})$$
(14a)

$$+ R_{r} P_{v} (f_{J} N^{-} - N_{J}^{-}) - R_{t} N_{Jv} \sum_{j} L(v - v_{J,j}) I_{J,j}$$

$$\frac{dN_{J}^{-}}{d\zeta} = f_{J} \frac{dN_{T}}{d\zeta} - (f_{J} N_{2} + N_{2J}) + R_{r} (f_{J} N^{-} - N_{J}^{-})$$
(14b)

$$\frac{-P_{0}^{\Delta v}h^{R}t \sum_{j}^{G}J_{j}j^{I}J_{j}j}{d\zeta} = \frac{dN_{T}}{d\zeta} - (N_{T} + N^{-}) - \frac{S}{\pi}\sum_{j}^{G}G_{J,j}J_{j}J_{j}j$$
(14c)

Equations 13 and 14 can be solved for  $N_{J\nu}^{\pm}$ ,  $N_{J}^{\pm}$ , and  $N^{\pm}$ , if the chemical pumping rate  $dN_T/d\zeta$  is specified and if  $G_{J,j}$  (oscillator) or  $I_{J,j}$  (amplifier) is specified. For laminar mixing

$$N_{\rm T} = (z/z_{\rm D})^{1/2}$$
(15)

where  $\zeta_D = k_{cd} x_D/u$  is the normalized diffusion distance. For a Fabry-Perot resonator where each mirror has a reflectivity  $R_m$ ,  $g_{J,j}y_f n_{sc} = -2nR_m$ , and

$$\frac{\overline{\sigma}_{v,J}}{\overline{\sigma}_{r}}G_{J,j} = \frac{-\ln R_{m}}{n_{sc}n_{r}\overline{f}_{r}\overline{p}_{o}\Delta v_{h}\overline{\sigma}_{w}} = \text{constant}$$
(16)

The output power per semichannel, released up to station x, is denoted  $\overline{P}$  and is found from

$$P = \frac{P}{n_r w u \varepsilon_r} = \frac{S}{2\pi} \sum_{J j} (\varepsilon_{v,J} / \varepsilon_r) \int_{0}^{\zeta} G_{J,j} I_{J,j} d\zeta$$
(17a)

If we assume  $\varepsilon_{v,J} = \varepsilon_r$ , Eq. (14c) indicates

$$2P = N_{T} - N^{-} - \int_{0}^{\zeta} (N_{T} + N^{-}) d\zeta$$
 (17b)

The solution of these equations is discussed in the following sections.

## III. EQUILIBRIUM CASES

The assumption of translational and rotational equilibrium corresponds to taking the limits  $R_t \neq \infty$  and  $R_r \neq \infty$ , respectively, in Eqs. (13) and (14). The results are

$$\frac{N_{J_{v}}^{+}}{P_{v}f_{J}} = \frac{N_{J}^{+}}{f_{J}} = N^{+} = N_{T}$$
(18a)

$$\frac{\overline{N}_{J_{U}}}{\overline{p_{v}f_{J}}} = \frac{\overline{N}_{J}}{\overline{f}_{J}} = \overline{N}$$
(18b)

as expected and

$$\frac{dN^{-}}{d\zeta} = \frac{dN_{T}}{d\zeta} - (N_{T} + N^{-}) - \frac{S}{\pi} \sum_{J j} G_{J,j} I_{J,j}$$
(19a)

Also, from Eqs. (18b) and (11f), in the limit  $\Delta v_h \ll \Delta v_d$ ,

$$\frac{2}{\pi} \frac{G_{J,j}}{f_J^N} = \exp\left[-4\ell n 2\left(\frac{\nu_j - \nu_o}{\Delta \nu_d}\right)^2\right] \left[1 + 0\left(\frac{\Delta \nu_h}{\Delta \nu_d}\right)\right]$$
(19b)

In the case of an oscillator, threshold gain is specified  $(G_{J,j} = G_c)$ , and Eqs. (19a) and (19b) are solved for  $I_{J,j}$ . In the present two-vibrational level model, one lasing transition J,j occurs, namely the transition with highest gain. (In a multivibrational level model, there is one lasing transition for each upper vibrational level.) Amplifier solutions are obtained by specifying  $I_{J,j}$  in Eq. (19a). Equations (19a) and (19b) correspond to the equilibrium model presented in Ref. 1.

## IV. NONEQUILIBRIUM CASES

We now consider effects of translational and rotational nonequilibrium. The quantities  $R_r$  and  $R_t$  are large in cw chemical lasers (Table I and Ref. 9). Therefore, we consider the limit

$$R_r \gg 1, R_t \gg 1$$
 (20)

A similar approximation was introduced in Ref. 11. Simplified laser equations are deduced. Amplifier and oscillator solutions are then obtained.

A. Simplified equations

1. Limit  $R_r >> 1$ ,  $R_t >> 1$ 

Recall that number density variables in Eqs. (13) and (14) have been normalized to be of order 1. If terms of order  $R_r^{-1}$  and  $R_t^{-1}$  are neglected, Eqs. (13a)-(13c) indicate

$$\frac{N_{J\nu}^{+}}{f_{J}p_{\nu}} = \frac{N_{J}^{+}}{f_{J}} = N^{+} = N_{T}$$
(21)

Thus,  $N_{Jv}^+$  and  $N_J^+$  retain translational and rotational equilibrium distributions in the present approximation. Similarly, Eqs. (14a)-(14c) become

$$\frac{N_{Jv}}{P_{v}f_{J}N^{-}} = \frac{1 + (\frac{R_{r}}{R_{t}} - 1)(1 - \frac{N_{J}}{f_{J}N^{-}})}{1 + \sum_{j} L(v - v_{J,j})I_{J,j}}$$
(22a)

$$\frac{N_{J}}{f_{T}N} = 1 - 2 \left(\frac{\ell n2}{\pi}\right)^{1/2} \frac{\Delta v_{h}}{\Delta v_{d}} - \frac{R_{t}}{R_{r}} \sum_{j} \frac{G_{J,j}I_{J,j}}{f_{T}N}$$
(22b)

$$\frac{dN^{-}}{d\zeta} = \frac{dN_{T}}{d\zeta} - (N_{T} + N^{-}) - \frac{S}{\pi} \sum_{J} \sum_{i} G_{J,j} I_{J,j}$$
(22c)

Convection, chemical pumping, and collisional deactivation terms no longer appear in Eqs. (22a) and (22b). In the present limit, the rate of increase of  $N_{J\nu}$  (or  $N_{J}$ ) resulting from cross relaxation is just equal to the rate of loss of  $N_{J\nu}$  (or  $N_{J}$ ) resulting from stimulated emission. Thus the cross relaxation and stimulated emission processes are in equilibrium, and other rate processes

|                                  | v                                                            |                | 211.          | 113.         | 115.      | 141.      | 051.1     | 671.5     | 5. 369   | 3.615     | 11.504           | 53.290        | 51.648    | 36.147     |  |
|----------------------------------|--------------------------------------------------------------|----------------|---------------|--------------|-----------|-----------|-----------|-----------|----------|-----------|------------------|---------------|-----------|------------|--|
|                                  |                                                              |                | 29.696        | 41.996       | 51.434    | 161.65    | 2.970     | 4.200     | 5.143    | 666.5     | 167.             | .420          | .514      | 765.       |  |
| aser.                            |                                                              |                | ζ <b>θ</b> Ι. | 167.         | 1.466     | 1.137     | 761.      | 167.      | 4411     | 1.137     | 761.             | 167.          | 1.066     | 1.1.1      |  |
| cw HF 1<br>2<br>6 <sub>m</sub>   | - 12<br>- 12<br>- 12<br>- 12<br>- 12<br>- 12<br>- 12<br>- 12 |                | 411.          | 420.         | 126.      | RI0.      | 141.      | 157.      | .210     | 281.      | 1.634            | 2.569         | 2,098     | 1.417      |  |
| 0.39:0.0<br>07 × 10 <sup>-</sup> | 6-01 - 0-0<br>1/sec                                          |                | . m.          | 4 14         | .115.     | 514.      | . 307     | 4 14      | 215.     | . 114     | 101.             | 74 F.         | 215.      | .614       |  |
| λ = 2.7                          |                                                              |                | 1.720         | 1.H'R        | 4.327     | 1.641     | 1.720     | 1.454     | 4. 321   | 1.64]     | 1.720            | <b>З.</b> Я5М | 1.12/     | 1.643      |  |
| .J ≡ 6,                          | k <sub>1</sub> r × 10 <sup>7</sup><br>1/sec                  |                | 511.          | ны.          | 490.      | 150.      | 1.146     | 118.      | 244.     | 176.      | 11.462           | 8.105         | 4.414     | 117.5      |  |
| v = 0,                           | k <sub>ed</sub> = 10 <sup>-1</sup> -1<br>1/sec               |                | 1.44.         | 017.         | £51.      | .157      | 449.4     | 101.5     | 1.524    | 125.1     | h6. 6'X          | 20017         | 15.244    | 115.21     |  |
| (a)                              |                                                              | <b>B</b> = 1,0 | .1265+04      | 295F+02      | ,194F+02  | . 1201+02 | .1275+114 | . 3326+02 | .21ME+02 | , 340E+02 | 20+3281°         | + 12AF+03     | , R44E+02 | 100F_403   |  |
|                                  | 3                                                            | R = 1.5        | 20+3182°      | 10+3681.     | 00+35 l6* | 10+3651*  | 555£402   | 10+3716 * | 10+3507* | 10+3542.  | , 253E, 403      | , 247E+02     | 1636402   | . 184F +02 |  |
|                                  | -}                                                           |                | 580°          | 140.         | 870.      | 120.      | H.527     | £41.4     | 2.842    | 7.132     | <i>нъг</i> , 692 | 424, 346      | 284.231   | 11.113     |  |
|                                  | × 10                                                         |                | 1904.         | . 406)       | 006.      | 1.200     | 1004      | (N)4      | 006.     | 1.00      | 004.             |               | 9610      | 007.1      |  |
|                                  | p 10<br>4 a                                                  |                | 261.          | <i>2</i> 14. | .132      | 271.      | 1.316     | 1. 116    | 1.316    | 1. 115    | 13.150           | 13.150        | 13.160    | 13.160     |  |

الالكيكيكينات

PASSASSAS

(111) (111)

TABLF I. Numerical values of parameters for CW HF laser. HF: $H_2$ : $H_e$ : $0_2 = 0.12$ :0.47:0.39:0.02

# (b) v = 0, J = 9, $\lambda = 2.823 \times 10^{-6}$ m

| x<br>z                               | 100*         | .073      | .164       | . 165         | 4 LU.       | 121.               | ₩ ۲۰         | 424.1     | 71           | 1.275         | 14. 181                    | 14.488      |
|--------------------------------------|--------------|-----------|------------|---------------|-------------|--------------------|--------------|-----------|--------------|---------------|----------------------------|-------------|
| ر.ا . ا.<br>د.ا . ا.<br>دست / مام اه | 11.23        | 44.949    | 145.72     | 66.466        | 1.121       | 4.7095             | 452.5        | h.h4]     | 211.         | 4.70          | 474.                       |             |
| -<br>-<br>-                          | 700"         | 501°      | ÷11;•      | 141.          |             | <b>.</b> 194       | . 11 .       |           |              | <u></u> .     | . 11.                      | (65.        |
| к.<br>- сел.<br>                     |              | 5,111     | 1          | ×10.          | 1.41.       |                    |              |           | 1.41         | t             |                            | ואן.        |
|                                      | · •. ·       | .17       | I          | ***."         |             | <u>.</u>           |              |           | · ·          |               | <u>:</u>                   | , H4        |
| -                                    | 1. T         | *', * *   | , .', ·    | 1 1           | · · ·       | н, н.,             |              | 11        |              | л, н.,        |                            | 1, 6.1      |
|                                      | хц,          | Ĭ.        |            | 2 <b>5</b> ,1 | 441.1       |                    |              | ł., ·     | . 41. 11     | <b>-</b> -    | 4.4.X                      | 11.2.11     |
|                                      |              | • • • • • | . 1 . 1    | • • • •       |             | · · · · ·          | <b>6</b> . 1 | ۰.۰۱      | 81.11.114    | 1.00          | 11,141                     | 157.51      |
|                                      | 1            |           | 1-+16/17   | 1             | 2000 1002 1 | 2000 (ed. 1.       | 14-04-01     | 144.441.  | 2014 49,27 * | . 1644 + OK   | 1 · + 1 <sup>1</sup>   1 * | 114 111     |
|                                      | ··· • 1.11 · | ,         | li • milh" | 10+3204.      | A11+4581 .  | ું છે કે છે કે છે. | , 101e+17    | 15,6,4,01 | . 13 36 4/15 | { int don't " | 70+3685*                   | . 3646 +112 |
| n<br>Ser<br>Ser                      | 6.0          | 2110      | 100        | 8[0]          | 4016-7      | 1.6.1              | 2.2.17       | 1.477     | 240.619      | 965.410       | 243.540                    | 142.655     |
| -<br>-<br>- ×                        | 14.4         | · 64.44   |            |               | . we        |                    | (ниђ.        | 1.70      | 144.         | UN14.         | ш.р.                       | 0071        |
|                                      | 317          |           | . I 4.     |               | 1.115       | 1. 115             | 1. 814       | 1.415     | 14,140       | 13.1411       | 13.160                     | 13.150      |

TABLF. I. Numerical values of parameters for cw HF laser. HF: $H_2$ : $H_e$ : $0_2 = 0.12$ :0.47:0.39:0.02

# (c) v = 1, J = 5, $\lambda = 2.795 \times 10^{-6}$ m

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                             |               |             |                |                   |                |        | -     | Ŧ            |         |       | -                     | =                    |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------------|-------------------|----------------|--------|-------|--------------|---------|-------|-----------------------|----------------------|------|
| m $V$ <th>, <u>1</u>], 4</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>·<br/>·<br/>·</th> <th>c</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , <u>1</u> ], 4                                                                                                                                                                               |               |             |                | -                 |                |        |       |              |         |       | ·<br>·<br>·           | c                    |      |
| No. 1.1         No. 1.1 <t< th=""><th>E</th><th>2</th><th></th><th>3</th><th>F</th><th>-<br/>-</th><th>1 1</th><th></th><th>1 and</th><th>1 see</th><th></th><th>cm<sup>2</sup>/mote</th><th></th></t<> | E                                                                                                                                                                                             | 2             |             | 3              | F                 | -<br>-         | 1 1    |       | 1 and        | 1 see   |       | cm <sup>2</sup> /mote |                      |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |               |             | н.<br>1.7      | -<br>-<br>-       |                |        |       |              |         |       |                       |                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |               |             | 10 1 to 10     |                   | <b>X</b> *0.*1 |        |       | ····. ·      | 40.     | 5 H . | 41.154                | 1.00.                |      |
| (11) $(900)$ $(01)$ $(501)$ $(100)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(11)$ $(12)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(101)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(101)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$ $(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 11.                                                                                                                                                                                         | 11114         | P1-1-       | 1              | · · · • (• (• · • | 48. 1          | 1      | 14.4. | •11.*        | 4.      | h:::  | N5.2N4                | 120.                 |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ан <b>.</b>                                                                                                                                                                                   | 1116          | 1107        | 2000 HT RS *   | 1.00 AND 1.       | 124.           | NN1-"  | 664.  |              |         | . 510 | 142.921               | 570.                 |      |
| 1,116         1,910         1,870         1,014         1,116         1,910         1,910         1,914         1,915         1,914         1,915         1,914         1,915         1,914         1,915         1,914         1,915         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914         1,914 <th< td=""><td>A.F.</td><td>1.700</td><td>1.111.</td><td>čov this."</td><td>51-4 16777</td><td>1 110.</td><td>15.01</td><td>1.45.</td><td>125.</td><td>810.</td><td>1417</td><td>122.308</td><td>80.0</td></th<>                                | A.F.                                                                                                                                                                                          | 1.700         | 1.111.      | čov this."     | 51-4 16777        | 1 110.         | 15.01  | 1.45. | 125.         | 810.    | 1417  | 122.308               | 80.0                 |      |
| 1,116         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910         1,910 <th< td=""><td>1.46</td><td>, true</td><td>1.454.1</td><td>vir.+ 48 ris *</td><td>2004-00-02</td><td>141</td><td>1.146</td><td>1 **</td><td>чн. <b>.</b></td><td>141.</td><td>710.</td><td>4.115</td><td><b>{</b> 10<b>*</b></td></th<>         | 1.46                                                                                                                                                                                          | , true        | 1.454.1     | vir.+ 48 ris * | 2004-00-02        | 141            | 1.146  | 1 **  | чн. <b>.</b> | 141.    | 710.  | 4.115                 | <b>{</b> 10 <b>*</b> |      |
| 1, 116       1, 900       1, 341       500 + 1, 710 + 1, 710 + 1, 710 + 1, 710       1, 600       1, 345       1, 346       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341       1, 341 <th 1,<="" td=""><td>1.114</td><td>. NOW.</td><td>1.95</td><td>100 481 2</td><td></td><td>12,460</td><td>118.</td><td>14.27</td><td>• et.</td><td>157</td><td>672.</td><td>H.44R</td><td>.271</td></th>                                                                                              | <td>1.114</td> <td>. NOW.</td> <td>1.95</td> <td>100 481 2</td> <td></td> <td>12,460</td> <td>118.</td> <td>14.27</td> <td>• et.</td> <td>157</td> <td>672.</td> <td>H.44R</td> <td>.271</td> | 1.114         | . NOW.      | 1.95           | 100 481 2         |                | 12,460 | 118.  | 14.27        | • et.   | 157   | 672.                  | H.44R                | .271 |
| 1,116       1,200       .061       .600       0.12,314       .187       .570       12.234       .187       .187       .187       .181       .183         11,160       .100       187,011       .011000       .012       .101       .612       .131       .183         11,160       .100       187,011       .011000       .012       .612       .612       .131       .131         11,160       .600       192,011       .011000       .012000       .012       .612       .131         11,160       .600       192,011       .110000       .012100       .0120       .012       .612       .131         11,160       .600       128,021       .110000       .01210       .0120       .012       .612       .131         11,160       .600       128,021       .110000       .01210       .0120       .0120       .0129       .0120       .1050       .0120       .1050       .0120       .0120       .0120       .0150       .0160       .1100       .0120       .0120       .0120       .0150       .0100       .1253       .0160       .0120       .0123       .0129       .0120       .1.223       .0129         11,160       .100<                                                                                                                                                                                                                                                                                                                                                                                 | 1.1.1                                                                                                                                                                                         | City to       | 1.2.4       | 1.446.         | turalat.          | 675 <b>°</b> 0 | 1.111  | 664.  | 565.         | etc.    | . 510 | 10,542                | 446                  |      |
| 11.160         JOU         185,051         JOU         185,051         JOU         185,051         JOU         185,051         JOU         181,052         JOU         JOU </td <td>1.114</td> <td>1.00</td> <td>441</td> <td>(1)+ (cost)*</td> <td>1. <b>.</b></td> <td>4,8,0</td> <td>1.5.</td> <td>1 85.</td> <td>115.</td> <td>.187</td> <td>007.</td> <td>182.21</td> <td>181.</td>                                                                                            | 1.114                                                                                                                                                                                         | 1.00          | 441         | (1)+ (cost)*   | 1. <b>.</b>       | 4,8,0          | 1.5.   | 1 85. | 115.         | .187    | 007.  | 182.21                | 181.                 |      |
| 11.160         600         19.201         36.000         19.201         36.00         2.700         2.700         2.710           13.160         2000         2.803         2.1000         02.710         2.404         2.710         2.710           13.160         2.900         2.804         1.000         02.710         1.000         4.660           13.160         96.200         1.1000         08.264         5.710         1.223         3.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11,150                                                                                                                                                                                        | 1001          | 140.281     | 20143 + 014    | 2000 18 10 2      | 128,404        | 11.46. | 1 41. | ., 141       | 1. 4.14 | 210   | 14.                   | 1817                 |      |
| 14,160 .900 124,367 .120000.1141000 .05124 4.444 .4450 4.4560 4.4560<br>14,160 1.000 46,260 14,160 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,160                                                                                                                                                                                        | 10 <b>4</b> . | 1.5.101     | 16.4.4.41      |                   | 461.81         | 501°H  | .6.11 | 404.         | 1°, 364 | P21.  | . 445                 | 2.710                |      |
| 13.160 1.200 96,260 111101 1100 100 36,260 3.201 284 266 3.201 1.223 3.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141.11                                                                                                                                                                                        | unt.          | 1.24 . 14.7 | tor tof t      | 50-461 F.         | 447,244        | 4.4.4  | 664°  | . 6 .        | HOU'    | .510  | 1.054                 | 4.460                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.160                                                                                                                                                                                        | 1.111         | 96,260      | 1003111.       | 5174 ANT 1 *      | 48°°86         | 112.5  | 145.  | 124.*        | 1.417   | uu.   | 1.22.1                | 1.8.9                |      |

232222

3

22

TABLE I. Numerical values of parameters for cw HF laser. HF: $H_2$ : $H_e$ : $0_2 = 0.12$ :0.47:0.39:0.02

# (d) v = 1, J = 8, $\lambda = 2.911 \times 10^{-6}$ m

~~~

ł

|          | i<br>i<br>i       |           |                                       | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |              |                     |                                    |        |                          |                |
|----------|-------------------|-----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------|---------------------|------------------------------------|--------|--------------------------|----------------|
|          | i =<br>i =<br>i + |           |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-<br>-<br>- |          |              | е т Р <sub>СС</sub> | γ. <sup>101</sup> - <sup>μ</sup> γ | ۲۰     | ر. ۲۰۰۱ <sup>- ۱</sup> ۵ | -              |
| E        | ×                 | E S       | 3                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 1        |              | -                   | ا `دەد                             |        | رس <sup>2</sup> / ۱۳۵۱ ه | c              |
|          | I                 |           | ж                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |              |                     |                                    |        |                          |                |
|          |                   | 460.      | • • • • • • • • • • • • • • • • • • • | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.S.L.                |          | ŤŦ.          | нь                  | 41 (1)                             | . 42   | 191.790                  | ss0.           |
| <i>.</i> | . 600             | 1.01      | • A IN 77 - 170+ 4901 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.1                  | 1 ** .   | . 4. 50      | 127.                | 41.01                              | 254.1  | 76.071                   | <b>6</b> [ ] . |
| 2017     | 1006.             | \$10.     | + Dite " - Divergent"                 | * • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 44       | 444          | 515.                | 1267                               | 1.54 1 | 43.166                   | 611.           |
| au.      | 1.200             | 110.      | th the full of the t                  | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 80.                 | 1567     | 1 41         | ť. e., "            | * [                                | 1. 164 | 912.5701                 | . NAM          |
| 1.116    | . 100             | 4.559     | • 11 m. 1 11 • 3m1 1 *                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144                   | 4.1.1    | Г <b>н</b> . | Her.                | 1 . 1 .                            | 1.212  | 611.5                    | 144.           |
| 1. 116   | .604.             | 087.5     | • 1182° - 2000 1528°                  | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 114.     | 118.64.      | 1.4.                | 2577                               | 1.655  | 7.407                    | 1.140          |
| 1.116    | 0006.             | 025.1     | • का किंट्रे के स्थान के कि           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۲ <i>۲۵</i> .۴        | 1.44.    | 564.         | <u>сік.</u>         |                                    | 1.541  | 9.117                    | 201.1          |
| 1.116    | 1.700             | 1.140     | • Hout the grave deaters              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | л.н.р                 | 1257     | 1            | 5 to .              |                                    | 1.1.1  | 85°.01                   | . 484          |
| 041-11   | 1001              | 455.9.11  | . 1. 11                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154.51                |          | · · ·        | ×0.                 | 11                                 |        | ×.                       | 118 6 . 8      |
| 13,160   | .600              | (HP.111   | + 41 , 1 ° , 10+ 48355 °              | 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 405.44                | 5- I ° r |              | I. • •              | <b>1</b>                           |        | 14, 1                    | 11.302         |
| 1.41.11  | unp.              | 151.9.121 | • 1.11 (D+ 104V                       | e de la constante de la consta |                       | 414.4    | 664          |                     | H011.                              | 1.149  | . 10                     | 121.11         |
| 11.160   | 007.1             | 111.941   | • R. M Co+ 477 M.                     | -<br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M WA                  | ha N     | 1 n 1        | 1 B.S. 1            | , ואי                              | 1.1.1  | 4.01                     | 4.814          |

23

are too slow to affect this equilibrium. The convection, chemical pumping, and collisional deactivation terms are retained in Eq. (22c), which represents global conservation. Substitution of Eq. (22a) into Eq. (11f) indicates

$$\frac{2}{\pi} \frac{G_{J}(v')}{f_{J}N^{-}K_{J}(v')} = 1 + \left(\frac{R_{r}}{R_{t}} - 1\right)\left(1 - \frac{N_{J}}{f_{J}N^{-}}\right)$$
(23a)

where

$$K_{J}(v') = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{P_{v}L(v - v')}{1 + \Sigma L(v - v_{J,j})I_{J,j}} \frac{dv}{\Delta v_{h}}$$
(23b)

Equation (23) exhibits the variation of gain with frequency for a given transition v,J. The quantity  $K_J(v')$  is the normalized line shape and is seen to depend only on  $\Delta v_h$ ,  $\Delta v_d$ , and  $I_{J,j}$ . The coefficient of  $K_J(v')$  in Eq. (23a) is an amplitude function and requires a knowledge of the number densities N<sup>-</sup> and  $N_J^-$ .

Evaluation of the line shape can be simplified by introduction of the variables

$$X = 2 (ln2)^{1/2} (v - v_0) / \Delta v_d$$
 (24a)

$$X_{j} = 2(\ell n 2)^{1/2} (v_{j} - v_{o}) / \Delta v_{d}$$
 (24b)

$$Y_{J,j} = (\ell n 2)^{1/2} (\Delta v_h / \Delta v_d) \phi_{J,j}$$
(24c)

 $\phi_{J,j} = (1 + I_{J,j})^{1/2}$  (24d)

For cases where  $\Delta v_h \ll \Delta v_c$ , the value of  $K_J(v)$  at  $v_j$  is affected only by the laser intensity at  $v_j$  and is found from

$$K_{J}(v_{j}) \equiv K_{J,j} = \frac{(\ell n 2)^{1/2}}{\pi} \frac{\Delta v_{h}}{\Delta v_{d}} \int_{-\infty}^{\infty} \frac{\exp(-x^{2}) dx}{Y_{J,j}^{2} + (x_{j} - x)^{2}}$$
(25a)

$$= \frac{1}{\phi_{J,j}} \left\{ \exp(-X_j^2) - \frac{2Y_{J,j}}{\pi^{1/2}} \left[ 1 - 2 X_j D(X_j) \right] + O(Y_{J,j}^2) \right\}$$
(25b)

$$= \frac{1}{\phi_{J,j}} (\operatorname{erfc} Y_{J,j}) \exp(Y_{J,j}^{2}) [1 + O(X_{j}^{2})]$$
(25c)

where  $D(X_j)$  is the Dawson integral.<sup>14</sup> The quantity  $X_j$  can be replaced by X in Eqs. (25a) and (25b) when  $I_{J,j} = 0$ . In this case, Eqs. (25a)-(25c) provide expressions for the line shape  $K_J(v)$ .

2. Limit 
$$R_r >>1$$
,  $R_t >>1$ ,  $\left| \frac{R_r}{R_t} - 1 \right| \left( \frac{\Delta v_h}{\Delta v_d} \right) \ll 1$ 

Equations (22a)-(22c) can be further simplified if it is assumed that  $R_{r}$ >>1,  $R_{t}$ >>1 and

$$\left|\frac{\frac{R}{r}}{R_{t}}-1\right|\frac{\Delta v}{\Delta v}\frac{h}{d}\ll 1$$
(26)

Equations (22a), (22c), and (23a) become

$$N_{Jv} = p_{v} f_{J} N^{-} / [1 + \sum_{j} L(v - v_{J,j}) I_{J,j}]$$
(27a)

$$\frac{dN^{-}}{d\zeta} = \frac{dN_{T}}{d\zeta} - N_{T} - (1 + B)N^{-}$$
(27b)

$$\frac{2}{\pi} G_{J}(v) = f_{J} N^{T} K_{J}(v)$$
(27c)

where

$$B = \frac{S}{2} \sum_{J j} f_{J} K_{J} (v_{j}) I_{J,j}$$
(27d)

These equations can be evaluated without consideration of  $N_{\rm J}^{-}$ , which is found from

$$\frac{N_{J}}{f_{I}N} = 1 - \sqrt{\pi \ell n 2} \frac{\Delta v_{h}}{\Delta v_{d}} \frac{R_{t}}{R_{r}} \sum_{j} K_{J}(v_{j})I_{J,j}$$
(27e)

Note that  $N_J$  is reduced below its equilibrium value by an amount which, for  $K_J(v_j) = 1$ , is proportional to  $I_J \Delta v_h / \Delta v_d$ . Equations (27a)-(27c) are the same equations that result when rotational equilibrium is assumed.

Equations (20) and (26) are realistic for low pressure cw chemical lasers, because  $R_t \sim R_r \gg 1$  and  $\Delta v_h / \Delta v_d \sim 10^{-2} p(Torr) << 1$  in these lasers (Table I). With an increase in pressure, Eq. (26) remains valid if it is

assumed that  $R_r/R_t = 1$ . The assumption  $R_r/R_t = 1$  is consistent with estimates in the range  $0.5 \le R_r/R_t \le 10$  in Refs. 9 and 11 and with the simplified nature of the present model. The present results suggest that a first estimate for the performance of cw chemical lasers can be obtained by assuming translational nonequilibrium and rotational equilibrium [Eqs. (27a)-(27c)]. The quantity  $N_T$  is then found from Eq. (27e).

## B. Amplifier

We consider a multiline amplifier (Fig. 1b) in the limit given by Eqs. (20) and (26) and assume that the input intensity of each transition  $I_{J,j}$  is specified and is independent of  $\zeta$ . The quantity B in Eq. (27) is then a constant. For laminar mixing, integration of Eq. (27b), together with Eq. (27c), yield

$$\zeta_{\rm D}^{1/2} N^{-} = (2/\pi) \zeta_{\rm D}^{1/2} G_{\rm J}(v) / [f_{\rm J} K_{\rm J}(v)]$$

$$= \frac{2 + B}{(1 + B)^{3/2}} \left[ D[\sqrt{(1 + B)\zeta}] - \frac{[(1 + B)\zeta]^{1/2}}{2 + B} \right] .$$
(28)

where D( ) is again the Dawson integral. Equation (28) provides the variation of  $N^-$  with streamwise distance for various values of the parameter B. Numerical results are plotted in Fig. 2. The maximum points on these curves are denoted by subscript m and are included in Table II.

Equation (28) also provides the variation of gain with frequency, streamwise distance, and saturation. The line shape corresponding to a single laser transition at frequency  $X_j = 0$  and  $X_j = 0.40$  is shown in Figs. 3a and 3b, respectively. The ratio of homogeneous to inhomogeneous broadening is assumed to be  $\Delta v_h / \Delta v_d = 0.024$ , and the corresponding low saturation hole size,  $(\ln 2)^{1/2} \Delta v_h / \Delta v_d$ , is indicated. Hole size depends on  $Y_{J,j}$  [Eqs. (25a)-(25c)], and the significant increase of hole size with saturation is evident. The variation of local gain with frequency at  $\zeta = 0.305$ , for a single laser transition of  $X_j = 0.40$ , is shown in Figs. 4a and 4b for  $\Delta v_h / \Delta v_d = 0.024$  and 0.048, respectively. The station  $\zeta = 0.305$  corresponds to the streamwise location where the zero power gain is a maximum (Table II). Increased saturation is seen to depress the entire gain curve. This is a consequence of cross relaxation.



Fig. 2. Variation of Inversion Number Density with Streamwise Distance for Case of Uniformly Illuminated Amplifier with Laminar Mixing. Parameter B is a measure of saturation level.

|     | Pow                                                | er     | Feak Invers<br>Densi                              | ion Number<br>ty |
|-----|----------------------------------------------------|--------|---------------------------------------------------|------------------|
| В   | $\frac{2\zeta_{\rm D}^{1/2} P_{\rm e}}{2^{1/2}/3}$ | ۶e     | $\frac{\zeta_{\rm D}^{1/2}N_{\rm m}^{-}}{0.3528}$ | ζ <sub>m</sub>   |
| 0   | 0.0000                                             | 1.1301 | 1.0000                                            | 0.3051           |
| 1/9 | 0.0586                                             | 1.1050 | 0 <b>.9</b> 768                                   | 0.2926           |
| 1/4 | 0.1243                                             | 1.0763 | 0.9498                                            | 0.2788           |
| 3/7 | 0.1980                                             | 1.0427 | 0.9184                                            | 0.2629           |
| 2/3 | 0.2812                                             | 1.0036 | 0.8810                                            | 0.2438           |
| 1   | 0.3757                                             | 0.9566 | 0.8356                                            | 0.2222           |
| 1.5 | 0.4834                                             | 0.8992 | 0.7792                                            | 0.1958           |
| 7/3 | 0.6059                                             | 0.8273 | 0.7063                                            | 0.1635           |
| 4   | 0.7423                                             | 0.7341 | 0.6069                                            | 0.1237           |
| 7   | 0.6469                                             | 0.8491 | 0.5003                                            | 0.0860           |
| 9   | 0.8833                                             | 0.6149 | 0.4541                                            | 0.0714           |
| œ   | 1.000                                              | 0.5000 | 0.000                                             | 0                |

## TABLE II. Maxima for amplifier with uniform incident radiation and laminar diffusion.<sup>a</sup>

55.51

55555

<sup>a</sup>Eqs. (28)-(30).











Fig. 4. Variation of Gain with Frequency at Streamwise Station  $\zeta = 0.305$  in a Uniformly Illuminated Amplifier with a Single Transition at X<sub>1</sub> = 0.4. Laminar mixing and homogeneous widths  $\Delta v_h / \Delta v_d = 0.024$ , 0.048 are assumed [Eq. (23a)]; (a) Case  $\Delta v_h / \Delta v_d = 0.024$ .



Fig. 4. Variation of Gain with Frequency at Streamwise Station  $\zeta = 0.305$  in a Uniformly Illuminated Amplifier with a Single Transition at  $X_j = 0.4$ . Laminar mixing and homogeneous widths  $\Delta v_h / \Delta v_d = 0.024$ , 0.048 are assumed [Eq. (23a)]; (b) case  $\Delta v_h / \Delta v_d = 0.048$ .

Reference 15 reports experimental measurements of the decrease in line center gain at streamwise station x = 0.4 resulting from amplifier radiation at frequency  $X_j = 0.40$ . Figure 3a and Table Id can be used to provide theoretical estimates for line center gain variation with amplifier input intensity. The resultant estimates are included in Fig. 5 and indicate good agreement with experiment. [The authors of Ref. 15 interpreted the present line shape estimates (Fig. 3) as line center gain estimates (Fig. 4) and incorrectly concluded that the present model does not properly evaluate saturation effects.]

The downstream end of the positive gain region is denoted  $\zeta_e$  and is found by equating N<sup>-</sup> to zero. The result is

$$[(1 + B)\zeta_e]^{1/2} = (2 + B)D[\sqrt{(1 + B)\zeta_e}]$$
(29)

The net output power is

$$2\zeta_{D}^{1/2}P_{e} = [B/(1+B)]\zeta_{e}^{1/2}[1-(2/3)\zeta_{e}]$$
(30)

Corresponding values of B,  $\zeta_e$ , and P<sub>e</sub> are included in Table II. For a saturated (B +  $\infty$ ) amplifier

$$\zeta_e = 1/2 ; 2\zeta_D^{1/2} P_e = 2^{1/2}/3$$
 (31)

Equations (28)-(31) are identical in form to the corresponding results presented in Ref. 1. The parameter B in these equations replaces the parameter  $K_2$  in Ref. 1. The previous results neglect hole burning effects on  $K_{J_1}$ .

The single-line amplifier solution provides a convenient basis for investigating the saturation process in cw chemical lasers. The effect of saturation on normalized line shape is determined by the parameter  $I_{J,j}$ . For an inhomogeneous medium, the intensity  $I_{J,j} = 1$  results in a reduction of  $K_{J,j}$  by a factor of  $2^{-1/2}$  [Eqs. (24d) and (25b)]. The effect of saturation on power extraction is characterized by the parameter B, as indicated in Table II. In the limit  $B + \infty$ , all available power is extracted by a single line. For the case of a single lasing transition, a power extraction saturation intensity  $\overline{I}_{S,P}$  can be defined by Eq. (27d)



Fig. 5. Effect of Input Intensity on Line Center  $(v = v_0)$  Gain at Fixed Streamwise Station for Uniformly Illuminated Amplifier. Circles denote experimental data from Ref. 15 that were taken at x = 0.4 cm with a gain medium at p = 6 Torr and a laser transition corresponding to v, J = 1,8 and  $X_J = 0.4$ . The symbol  $\blacklozenge$  denotes present estimate for gain based on line center values from Fig. 4a and  $\overline{I}_{S,L} = 46 \text{ W/cm}^2$ . The estimate for  $I_{S,L}$  is obtained by interpolation from Table Ia by recalling  $\overline{I}_{S,L} \sim p^2$  and by assuming p = 6 Torr and T = 900 K. Note also, Table Id indicates  $\Delta v_h / \Delta v_d = 0.025$ , which is consistent with use of Fig. 4a.

$$\bar{I}_{S,P}/\bar{I}_{S,L} = [\beta^2 + (\beta^4 + 4\beta^2)^{1/2}]/2$$
(32)

where

$$\beta = 2B/(Sf_{J}\phi_{J,j}K_{J,j})$$

Values of  $\overline{I}_{S,P}$ , corresponding to B = 1.5 and B = 7.0, are included in Table I and are seen to be large when S is small. For cases with N strong laser transitions and  $\Delta v_h \ll \Delta v_c$ , the power extraction saturation intensity is approximated by Eq. (32) with  $\beta$  replaced by  $\beta/N$ .

## C. Oscillator

We now consider a Fabry-Perot oscillator in the limit given by Eqs. (20) and (26) and further assume that  $\Delta v_h \ll \Delta v_c$  and  $Y_{J,j} \ll 1$ . These assumptions simplify the line shape [Eq. 25b)]. We also assume that, within each v,J lasing band, one laser frequency corresponds to  $v_o$ ; the other laser frequencies are then symmetric about  $v_o$ , and the present summation with respect to j, rather than thermal velocity, needs no modification.<sup>6</sup> The intensity  $I_{J,j}$  then represents the sum of the intensities in the +y and -y directions. The case  $\Delta v_c \ll \Delta v_h$  is treated in Ref. 7.

The threshold gain is denoted  $G_c$  and is a constant. The gain for each lasing transition is then, assuming  $\overline{\sigma}_{r,I} = \overline{\sigma}_r$ 

$$G_{J,j} = (\pi/2) f_{J} K_{J,j} N = G_{c}$$
 (33)

Equations (25b) and (33) yield

$$I_{J,j} = \left[\frac{f_{J}e^{-X_{j}^{2}}N^{-}}{(2/\pi)G_{c}}\right]^{2} - 1$$
(34a)

2

where  $N^{-}$  is obtained from Eq. (22c), namely

$$\frac{dN^{-}}{d\zeta} = \frac{dN_{T}}{d\zeta} - N_{T} - N^{-} - \frac{SG_{c}}{\pi} \sum_{J \ j} \left\{ \left[ \frac{f_{J}e^{-X_{J}^{-}N^{-}}}{(2/\pi)G_{c}} \right]^{2} - 1 \right\}$$
(34b)

Equation (34a) provides the dependence of  $I_{J,j}$  on  $f_J$  and  $X_j$  at each streamwise station. The number of rotational levels and longitudinal modes that reach threshold at each streamwise station is found from the requirement that  $I_{J,j} > 0$  in Eq. (34a), namely

$$f_{\rm I} > (2/\pi)G_{\rm c}/N^{-1}$$
 (35a)

$$x_j^2 < \ln[N_f_J/(\frac{2}{\pi}G_c)]$$
(35b)

The number of lasing transitions increases as  $G_c/N^-$  decreases. Equation (34b) cannot, in general, be integrated in closed form. Two subcases are treated: a saturated multiline oscillator and a partially saturated single line oscillator.

## 1. Saturated multiline oscillator

Assume that  $G_c \ll 1$  and S = O(1). In this limit,  $N \ll 1$  and  $N / G_c^{1/2} = O(1)$ . The laser is saturated, and there is a large number of laser transitions. Equations (34a) and (34b) become

$$(N^{-})^{2} = \frac{4G_{c}}{\pi S} \frac{dN_{T}/d\zeta - N_{T}}{\sum_{J} f_{J}^{2} \sum_{j} e^{-2X_{J}^{2}} }$$
(36a)

$$I_{J,j} = \frac{\pi}{SG_{c}} \frac{(dN_{T}/d\zeta - N_{T})f_{J}^{2}e^{-2X_{j}^{2}}}{\sum_{J} f_{J}^{2} \sum_{j} e^{-2X_{j}^{2}}}$$
(36b)

Corresponding number densities are

$$\frac{N_{J_{\nu}}}{P_{\nu}f_{J}N^{-}} = \frac{1}{1 + L(\nu - \nu_{J,j})I_{J,j}}$$
(36c)

$$\frac{N_{J}}{f_{J}N} = 1 - \frac{dN_{T}/d\zeta - N_{T}}{\bar{f}_{r}R_{r}f_{J}N} \sum_{j} \frac{f_{J}^{2}}{f_{J}^{2}}$$
(36d)

For cases where the rotational energy levels and longitudinal mode frequencies are closely spaced, the summations in Eqs. (36a)-(36d) can be replaced by

$$\sum_{j} e^{-2X_{j}^{2}} = \frac{1}{2} \left(\frac{\pi}{2\ell n 2}\right)^{1/2} \frac{\Delta v_{d}}{\Delta v_{c}} \left[1 + 0\left(\frac{\Delta v}{\Delta v_{d}}\right)\right]$$
$$\sum_{j} f_{j}^{2} = \frac{1}{2(\overline{f}_{j})^{2}} \left(\frac{\pi \vartheta_{R}}{2}\right)^{1/2} \left[1 + 0(\vartheta_{R})\right]$$

Equations (36) and (26b) provide the net inversion N<sup>-</sup> and the lasing intensity  $I_{J_{-1}}$  at each streamwise station. The quantities

$$I_{J,j}/I_{J} = e^{-2X_{j}^{2}/\sum_{j}} e^{-2X_{j}^{2}}$$
 (37a)

$$I_{J}/I = f_{J}^{2}/\sum_{J} f_{J}^{2}$$
(37b)

are plotted in Figs. 6a and 6b for  $G_c + 0$ . Longitudinal mode intensity  $I_{J,J}$  is inversely proportional to  $\Delta v_d / \Delta v_c$ , which is a measure of the number of longitudinal modes with a significant amount of power. The dependence of  $I_J$  on  $\vartheta_R$  is indicated in Fig. 6b. The number of active lasing modes decreases as  $G_c$  increases. Equation (36c) indicates that  $N_{Jv}$  departs from the equilibrium value  $p_v f_J N^-$  only in the vicinity of each lasing frequency  $v_{J,j}$ . The departure from equilibrium is large because  $I_{J,j}$  is large. The departure of  $N_J^-$  from the equilibrium value  $f_I N^-$  is of order  $1/(R_N^-)$ .

Because the laser is saturated, the output power and mode length are  $2\zeta_D^{1/2}P_e = 2^{1/2}/3$  and  $\zeta_e = 1/2$ , respectively, for laminar mixing. Thus, for the saturated multiline oscillator, rotational and translational nonequil-ibrium impact spectral output but not output power.

## 2. Single line oscillator

The parameters S and  $G_c$  determine the degree of saturation. In order to investigate their influence, we consider a case where line selection results in a single laser transition. For convenience, consider laminar mixing,  $f_J = 1$ , and  $X_J = 0$ . Lasing is initiated at station  $\zeta_i$ , where the gain first reaches the threshold value. Integration of Eq. (34b) with  $I_{J,i} = 0$  indicates

$$\zeta_{D}^{1/2} N_{i}^{-} = (2/\pi) \zeta_{D}^{1/2} G_{c} = 2D(\zeta_{i}^{1/2}) - \zeta_{i}^{1/2}$$
(38)



Fig. 6. Performance of Saturated Multiline Fabry-Perot Oscillator in the Limit  $R_r = R_t >> 1$ ,  $\Delta \circ_h << \Delta \lambda_c$ ,  $Y_{J,j} << 1$ ,  $G_c + 0$ , and S = 0(1) [Eqs. (36) and (37)]. (a) Variation of longitudinal mode intensity  $I_{J,j}$  with frequency  $X_j$  and (b) variation of intensity  $I_J$  with rotational level J.

which agrees with Eq. (28) for B = 0. Equation (38) provides  $\zeta_i$  and  $\zeta_D^{1/2} N_i^{-1}$  for a given value of  $\zeta_D^{1/2} G_c$ . Downstream of  $\zeta_i$ 

$$\frac{d\zeta_{\rm D}^{1/2}N^{-}}{d\zeta} = \frac{1}{2\zeta^{1/2}} - \zeta_{\rm D}^{1/2} - \zeta_{\rm D}^{1/2} N^{-} - \frac{S}{2} \zeta_{\rm D}^{1/2} N_{\rm I}^{-} \left[ \left( \frac{N^{-}}{N_{\rm I}} \right)^{2} - 1 \right]$$
(39)

which is integrated with the initial condition  $N^- = N_i^-$  at  $\zeta = \zeta_i$ . Lasing terminates at the downstream station  $\zeta_e$ , where  $N^- = N_i^-$ . The net output power is

$$2\zeta_{\rm D}^{1/2} P_{\rm e} = \left[\zeta^{1/2} - (2/3)\zeta^{3/2}\right]_{\zeta_{\rm i}}^{\zeta_{\rm e}} - \int_{\zeta_{\rm i}}^{\zeta_{\rm e}} \zeta_{\rm D}^{1/2} N^{\rm -} d\zeta \qquad (40)$$

Equations (39) and (40) have been evaluated for several values of S and  $\zeta_D^{1/2}G_c$ . Output power is given in Fig. 7 and decreases as S and  $G_c$  are reduced.

Oscillator solutions where hole burning effects are neglected correspond to  $S \neq \infty$ ,  $I_{J,j} \neq 0$ , and  $SI_{J,j} = finite$ . The number density in the lasing region is a constant given by  $N^- = N_i^-$ , where  $N_i^-$  and  $\zeta_i$  are obtained from Eq. (38). The local lasing intensity for laminar mixing is

$$2\zeta_{\rm D}^{1/2} \frac{\rm dP}{\rm d\zeta} = \frac{1}{2\zeta^{1/2}} - \zeta^{1/2} - \zeta_{\rm D}^{1/2} N_{\rm i}^{-}$$
(41)

The end of the lasing region occurs when the intensity goes to zero, or

$$z_{e} = \{ \left[ \left( \zeta_{D}^{1/2} N_{i}^{-} \right)^{2} + 2 \right]^{1/2} - \zeta_{D}^{1/2} N_{i}^{-} \right]^{2} / 4$$
(42)

The net output power is found from Eq. (40) and is included in Fig. 7. Neglect of hole burning is seen to overestimate output power.



Fig. 7. Performance of Single Line Fabry-Perot Oscillator in Limit  $R_r = R_t >> 1$ and  $Y_{j,j} << 1$ .

V. DISCUSSION

The parameters that characterize laser performance are liscussed further, and numerical estimates are provided.

The parameters introduced in the present study may be expressed in the form

$$R_{t} \sim \frac{k_{tr}}{k_{cd}} \frac{n_{2}(J,v)}{n_{2}(J,v)} \sim \frac{Particle \ Collision \ Rate}{Particle \ Deactivation \ Rate}$$
(43a)

$$I_{J,j} \sim \frac{(\bar{\sigma}_{v,J}/\epsilon_{v,J})\bar{I}_{J,j}}{k_{tr}} \frac{n_2(J,v)}{n_2(J,v)} \sim \frac{Particle Stim. Emission Rate}{Particle Collision Rate}$$
(43b)

$$S \sim \frac{k_{tr}}{k_{cd}} \frac{\Delta v_h n_2(J,v)}{n_2} \sim \frac{\text{Resonant Particle Collision Rate}}{\text{Net Deactivation Rate}}$$
 (43c)

$$B \sim \frac{\sum_{j} \sum_{i=1}^{n} \frac{v_{j}J_{j}}{\varepsilon_{v,j}} \overline{I}_{J,j} \Delta v_{n} n_{2}(J,v)}{n_{2}} \sim \frac{\text{Net Stim. Emission Rate}}{\text{Net Deactivation Rate}}$$
(43d)

$$G_{c}S \sum_{J j} \sum_{J,j} \frac{\sum_{j} \frac{I_{J,j}}{\varepsilon_{J,j}}}{k_{cd}^{n_{2}}} \sim \frac{\frac{Net \ Stim. \ Emission \ Rate}{Net \ Deactivation \ Rate}}{Net \ Deactivation \ Rate}$$
(43e)

The parameter  $R_t$  may be viewed as the number of translational collisions an upper level particle undergoes before it is collisionally deactivated. The parameter  $I_{J,j}$  represents the ratio of particle stimulated emission rate to particle collisional deactivation rate. Similarly, S represents the ratio of the collisional deactivation rate of particles resonant with  $I_{J,j}$  to the net upper level particle collisional deactivation rate. Finally, B and  $G_c S \sum_{j=1}^{r} I_{J,j}$  apply to amplifiers and oscillators, respectively, and represent the ratio of net stimulated emission rate to net collisional deactivation rate. The latter ratio characterizes laser output power and efficiency.

Numerical estimates for parameters and rate coefficients are included in Table I for a fixed stoichiometry, 300 < T, K < 1200, 0.132 < p, atm < 13.2 (0.10 < p, Torr < 10.0), and v,J = 0, 6; 0, 9; 1,5, and 1, 8. The pressure dependence of quantities in Table I is given by

$$\frac{S}{p} \sim \frac{k_{cd}}{p} \sim \frac{k_{tr}}{p} \sim \frac{\Delta v}{p} \sim \frac{\overline{I}S, L}{p} \sim 1$$
(44)

and permits interpolation of data in Table I with regard to pressure. Values of the power saturation intensity  $\overline{I}_{S,P}$  are given for B = 1.5 and 7.0. These values of  $\overline{I}_{S,P}$  correspond, roughly, to achieving one-half saturated power output and one-half zero power inversion number density, respectively. Note that  $\overline{I}_{S,P}$  is relatively insensitive to pressure, in contrast to  $\overline{I}_{S,L}$ .

## VI. CONCLUDING REMARKS

In the present model we have assumed that convection, chemical pumping, and collisional deactivation rates are small compared with translational relaxation, rotational relaxation, and stimulated emission rates. Similar approximations are introduced in Ref. 11. It is expected that corresponding simplifications can be introduced into numerical codes in order to facilitate solutions.

The further assumption  $|R_r/R_t - 1| (\Delta v_h/\Delta v_d) \ll 1$  resulted in a system of equations for cw chemical laser performance that are independent of  $N_J$ . This result suggests that a reasonable first estimate for cw chemical laser performance (other than evaluation of  $N_J$ ) can be obtained by assuming rotational equilibrium and translational nonequilibrium, as was done in Refs. 6-8. The physical basis for the latter approximation is as follows. CW chemical lasers operate at pressures of the order of 1 Torr and are inhomogeneously broadened. The modification of line shape (i.e., hole burning), induced by lasing, is more important than lasing induced departures from rotational equilibrium.

The present results may be contrasted with those for a pulsed chemical laser. A pulsed chemical laser generally operates at pressures of the order of one atmosphere, in order to achieve high energy density and is homogeneously broadened. As a consequence, its performance is insensitive to translational nonequilibrium, and spectral output is determined from considerations of rotational nonequilibrium.

| AF             | PENDIX A. PA                        | RTIAL LIST OF SYMBOLS                                           |
|----------------|-------------------------------------|-----------------------------------------------------------------|
| В              |                                     | parameter defining amplifier saturation, Eq. (27)               |
| c              |                                     | speed of light in vacuum                                        |
| D(             | )                                   | Dawson integral, Ref. 14                                        |
| Ē              | , f <sub>j</sub>                    | fraction of particles in rotational energy level, Eq. (6)       |
| ເງ             | (v), G <sub>J,v</sub>               | normalized gain, Eq. (11)                                       |
| g              | .J <sup>(v)</sup>                   | gain, Eq. (8)                                                   |
| Ī              | .1                                  | intensity for longitudinal mode J,j                             |
| Ī              | ,I                                  | net intensities                                                 |
| Ī              | ,L' <sup>Ī</sup> S,P                | line shape and power saturation intensities, Eqs. (12) and (32) |
| IJ             | .1                                  | nondimensional intensity, Eq. (11d)                             |
| J              |                                     | rotational energy level                                         |
| j              |                                     | longitudinal mode number                                        |
| к <sub>ј</sub> | (v),K<br>J.i                        | line shape, Eqs. (23) and (25)                                  |
| k c            | d, <sup>k</sup> tr, <sup>k</sup> rr | deactivation, translational and rotational relaxation rates     |
| L(             | u - u')                             | Lorentzian distribution, Eq. (8)                                |
| NJ             | , N <sub>J</sub> ,N,N <sub>T</sub>  | normalized particle number densities, Eq. (11)                  |
| 'nv            | (J,v),n <sub>v</sub> (J),n          | particle number densities, Eq. (1)                              |
| n <sub>T</sub> |                                     | total number of lasing species, $n_1 + n_2$                     |
| Ρ              |                                     | normalized output power, Eq. (17)                               |
| P,             | Po,Pv                               | velocity distribution functions, Eqs. (3)-(5)                   |
| р              |                                     | pressure                                                        |
| ₽ <sub>t</sub> | , <sup>R</sup> r                    | collisional rate ratios, Eq. (lle)                              |
| S              |                                     | collisional deactivation rate parameter, Eq. (11h)              |
| Т              |                                     | temperature                                                     |
| u              |                                     | streamwise velocity                                             |
| vу             |                                     | thermal velocity in y direction                                 |
| Х,             | ×j                                  | normalized frequency, Eq. (24)                                  |
| x              |                                     | streamwise distance, Fig. 1                                     |
| ×D             |                                     | characteristic diffusion distance, Fig. l                       |
| ۲ <sub>J</sub> | đ                                   | homogeneous width parameter, Eq. (24)                           |
| У              |                                     | transverse distance, Fig. l                                     |
| εv             | J                                   | energy per mole of photons                                      |
| ζ              |                                     | normalized streamwise distance k <sub>cd</sub> x/u              |
|                |                                     | 45                                                              |

PERSONAL POSSESSION PERSONAL

CONTRACTOR DESCRIPTION DESCRIPTION

لتنتند

| ς <sub>D</sub>   | normalized diffusion distance, $k_{cd}x_D/u$             |
|------------------|----------------------------------------------------------|
| θ <sub>R</sub>   | characteristic rotational temperature parameter, Eq. (6) |
| λ                | wavelength                                               |
| ν                | frequency                                                |
| vo               | line center frequency                                    |
| Δνd              | Doppler width [full-width, half-maximum (FWHM)]          |
| Δνh              | homogeneous width (FWHM)                                 |
| ۵۷               | longitudinal mode separation, c/2L                       |
| σ <sub>v.J</sub> | cross section for stimulated emisssion, Eq. (B-8)        |
| <sup>ф</sup> Ј,ј | $(1 + I_{J,j})^{1/2}$                                    |

Ŋ

CESSESS 1333

- 1552222

1222253

5533733

## Subscripts

| e | end of lasing region                           |
|---|------------------------------------------------|
| i | start of lasing region                         |
| J | rotational level                               |
| j | longitudinal mode                              |
| m | maximum value                                  |
| r | reference value or rotational relaxation value |
| v | vibrational level                              |

## Superscripts

| + | sum of numbe | r densities, | Eq. (11)       |    |
|---|--------------|--------------|----------------|----|
| - | difference o | f number den | sities, Eq. (1 | 1) |

APPENDIX B. PARAMETER EVALUATION

B.1 Dopper width [full-width, half-maximum (FWHM)]  

$$\Delta v_{d} = 2 \left(\frac{2kT\ell n2}{Mc^{2}}\right)^{1/2} v_{o} \text{ sec}^{-1}$$

$$= (831.6/\lambda)(T/300)^{1/2}(20/M)^{1/2}$$
(B-1)

where  $\lambda$  is wavelength in meters and M is molecular weight.

B.2 Homogeneous width (FWHM)

$$\pi T^{1/2} \frac{\Delta v_h}{p} = \sum_i \frac{p_i}{p} \overline{\gamma}_i \qquad \frac{(K)^{1/2}}{atm-sec} \qquad (B-2)$$

Part 5155

アナイイングイン

للاعتلاط الملكات

where  $\bar{\gamma}_i$  is  $2\pi c T^{1/2} \gamma_i$  and  $\gamma_i$  is tabulated in Ref. 7. Values of  $\bar{\gamma}_i$  are given in Table III.

B.3 Gas kinetic collision rate (HF +  $M_i$  + HF +  $M_i$ )

$$T^{1/2} \frac{k_{gk}}{p} = \sum_{i} \frac{p_i}{p} a_i \qquad \frac{(K)^{1/2}}{atm-sec} \qquad (B-3)$$

where

いらくくらい

$$a_{i} = T^{1/2} \frac{(k_{gk})_{i}}{p_{i}} = \frac{N_{A}^{3/2}}{R_{o}} \left[ 8\pi k \left(\frac{1}{M_{HF}} + \frac{1}{M_{i}}\right) \right]^{1/2} \left[\frac{d_{HF} + d_{i}}{2}\right]^{2}$$

Values of  $a_i$  are included in Table III. For a billiard ball model,  $\overline{\gamma}_i = a_i$  and  $\pi \Delta v_h = k_{gk}$ .

|                | Gas kinetic rate                                  | Homogeneous widths    |                                                                     |  |
|----------------|---------------------------------------------------|-----------------------|---------------------------------------------------------------------|--|
| Mi             | $a_i \times 10^{-11}$ (K) <sup>1/2</sup> /atm-sec | Rotational<br>Level J | $\overline{\gamma}_{i} \times 10^{-11}$ (K) <sup>1/2</sup> /atm-sec |  |
| HF             | 0.77                                              | 6 + 10                | 9.1 + 3.3                                                           |  |
| DF             |                                                   | 6 + 10                | 5.7 + 3.0                                                           |  |
| н <sub>2</sub> | 1.95                                              | 5 + 9                 | l.i → 0.73                                                          |  |
| N <sub>2</sub> | 1.00                                              | 6 + 8                 | 1.2 + 0.87                                                          |  |
| Н <sub>е</sub> | 1.28                                              | A11                   | 0.16                                                                |  |
| Ar             | 0.86                                              | 6 + 8                 | 0.16 + 0.49                                                         |  |
| 0 <sub>2</sub> | 0.92                                              |                       |                                                                     |  |
| F <sub>2</sub> | 0.86                                              |                       |                                                                     |  |

TABLE III. Homogeneous width and gas kinetic collision rate data for HF +  $M_i$  + HF +  $M_i$ .<sup>a</sup>

**I E S** 

New York

VARIA VICTORIA

<sup>a</sup>Refs. 2 and 6.

## B.4 Vibrational deactivation rate

We consider vibrational deactivation of the form

$$HF(v + 1) + M_{1} \xrightarrow{\overline{c}d} HF(v) + M_{1} \qquad (B-4)$$

The net deactivation rate  $k_{cd}$  is then

$$\frac{k_{cd}}{p} \equiv -\frac{1}{p} \frac{dln \ HF(v+1)}{dt} = \sum_{i} \frac{p_i}{p} \frac{k_{cd}}{R_o T} \qquad \frac{1}{atm-sec} \qquad (B-5)$$

Values of  $\vec{k}_{cd}^{i}/(R_{o}^{T})$  are given in Table IV.

## B.5 Rotational equilibrium

For rotational equilibrium, the fraction of particles with rotational energy  $J(J + 1)kT_R$  is given by

$$\frac{n_{v}(J)}{n_{v}} \equiv \overline{f}_{J} = \frac{(2J+1)\exp[-J(J+1)\theta_{R}]}{\sum_{j} (2J+1)\exp[-J(J+1)\theta_{R}]}$$
(B-6a)

$$= \theta_{R} (2J + 1) \exp[-J(J + 1)\theta_{R}] [1 + O(\theta_{R})]$$
 (B-6b)

where the summation is from J = 0 to  $J = \infty$ ,  $\theta_R = T_R/T$ , and  $T_R = 30.16$  K for HF. The maximum value of  $\overline{f}_J$  and the corresponding value of J, associated with a fixed value of  $\theta_R$ , are denoted  $\overline{f}_{J,m}$  and  $J_m$ , respectively. Typical values are included in Table V. For a fixed value of  $\theta_R$ , the quantity  $\overline{f}_{J,m}$  provides a convenient value for the reference quantity  $\overline{f}_r$ . When  $\overline{f}_r = \overline{f}_{J,m}$ 

$$f_{J} \equiv \frac{\tilde{f}_{J}}{\tilde{f}_{r}} = \frac{(2J+1)\exp[-J(J+1)\theta_{R}]}{(2J_{m}+1)\exp[-J_{m}(J_{m}+1)\theta_{R}]}$$
(B-6c)

and  $f_J < 1$  for  $J \neq J_m$ .

B.6 Photon energy

Photon energy, per mole, is

TABLE IV. Vibrational deactivation rates for reaction

 $\frac{\kappa}{k} \frac{1}{\frac{cd}{d}} HF(v + 1) + M_{1} \xrightarrow{cd} HF(v) + M_{1} \cdot^{a}$ 

|             | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                 | d (utmisse)             |                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-------------------------|------------------------|
|             | ( m.).( m.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ж<br>(Ю)                | ALM K           | чин қ                   | 12001 K                |
| -           | $(a_1, a_2, b_1, b_2, b_2, b_1, b_2, b_2, b_2, b_1, b_2, b_2, b_2, b_2, b_2, b_2, b_2, b_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 + 7.5               | $1.15 + 10^{7}$ | 4.76 - Hi <sup>f</sup>  | 5.78 + 10 <sup>1</sup> |
|             | $(1)_{0,0,1}$ $(1)_{0,1}$ $(1)_{0,1}$ $(1)_{0,1}$ $(1)_{0,1}$ $(1)_{0,1}$ $(1)_{0,1}$ $(1)_{0,1}$ $(1)_{0,1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н. 1, - 1 <sup>пћ</sup> | $v_1 + 10^7$    | 5.64 + 10 <sup>7</sup>  | 1 . 27 . 4             |
|             | $(v + 1)^{2,2}$ $(v - 1)^{1-1} + 1^{2} + 1^{2} + 1^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 201 - 65.9      | 7.56 - 10 <sup>3</sup>  | 1 • 70-1               |
| -<br>-<br>- | (c + b) + c + b + c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.14 - 10'              | 101 + 67.1      | 5.11 . 101              | 1.45 - 1               |
|             | $(\zeta_{1}, \zeta_{2}, \zeta_{2}, \zeta_{3}, \zeta_{3},$ | 01 . 11 .               | 101 - 61 -      | 9,44, - 10 <sup>3</sup> | 1 . 07 . 1             |

"Reserves were the where Price State (in <sup>1</sup> stim)/(mode K)

MARCHINE STREET, MARCHINE MARCHINE MARCHINE MARCHINE

ESSENT CONTRACTOR DOUGHTS REPORTED

| θR    | J <sub>m</sub> | f <sub>J,m</sub> |
|-------|----------------|------------------|
| 1/10  | 2              | 0.2654           |
| 1/20  | 3              | 0.1889           |
| 1/40  | 4              | 0.1353           |
| 1/60  | 5              | 0.1106           |
| 1/80  | 6              | 0.0957           |
| 1/100 | 7              | 0.0854           |

TABLE V. Maximum value of  $\overline{f}_J$  and corresponding value of J for fixed  $\theta_R$ .

<u>к.</u>

$$\varepsilon_{v,J} = N hv = 0.1196/\lambda J/mole$$
 (B-7)

1.1.1.1.1.1.1.1

where  $\boldsymbol{\lambda}$  is in meters.

## B.7 Gain coefficient

The gain coefficient for a P-branch transition v + l, J - l + v, J can be expressed<sup>2</sup>

$$\frac{\pi}{2} \Delta v_{h} \frac{\overline{\sigma}_{v,J}}{\varepsilon_{v,J}} = \frac{B(v,J,-1)}{4\pi} \qquad \frac{cm^{2}}{J-sec} \qquad (B-8)$$

where B(v,J,-1) is the Einstein coefficient.<sup>2</sup> For HF, the latter can be approximated by

$$B(v, J, -1) = 3.79 \times 10^{13} \frac{2J(1 + v)}{2J + 1} (1 + 0.063J) (1 - \frac{0.01v^3}{1 + v})$$

which is believed to be correct to within about 10% for  $1 \leq J \leq 16$  and  $v \leq 6$ .

## REFERENCES

- H. Mirels, R. Hofland, and W. S. King, "Simplified Model of CW Diffusion Type Chemical Laser," AIAA J. 11 (12), 156-164 (February 1973).
- G. Emanuel, "Numerical Modeling of Chemical Lasers," <u>Handbook of Chemical Lasers</u>," edited by R. W. F. Gross and J. F. Bott (John Wiley and Sons, 1976), pp. 488-496.
- R. J. Hall, "Rotational Nonequilibrium and Line-Selected Operation in cw DF Chemical Lasers," IEEE J. of Quantum Electron. <u>QE-12</u>, 453-462 (August 1976).
- L. H. Sentman and W. Rushmore, "Computationally Efficient, Rotational Nonequilibrium cw Chemical Laser Model," AIAA J. <u>19</u> (10), 1323 (October 1981).
- 5. T. T. Yang, "Modeling of cw HF Chemical Laser with Rotational Nonequilibrium," J. de Phys. Colloque C9 <u>41</u> (11), C9-51 (November 1980).
- H. Mirels, "Inhomogeneous Broadening Effects in cw Chemical Lasers," AIAA J. <u>17</u> (5), 478-489 (May 1979).
- H. Mirels, "Inhomogeneous Broadening Effects in Multimode cw Chemical Lasers," Appl. Opt. 20 (2), 362-373 (15 January 1981).
- H. Mirels, "Multimode Low Pressure cw Chemical Laser Performance Including Source Flow Effects," Appl. Opt. 20 (14), 2379-2388 (15 July 1981).
- 9. N. Cohen, J. F. Bott, M. A. Kwok, and R. L. Wilkins, <u>The Status of Rota-tional Nonequilibrium in HF Chemical Lasers</u>, Report No. TR-0086(6603)-2 (The Aerospace Corporation, El Segundo, CA, May 1986).
- 10. T. Kan and G. J. Wolga, "Influence of Collisions on Radiative Saturation and Lamb Dip Formation in CO<sub>2</sub> Molecular Lasers," IEEE J. of Quantum Electron. QE-7 (4), 141-150 (April 1971).
- A. A. Stepanov and V. A. Shcheglov, "Dynamic Saturation of Optical Transitions in High Power Molecular Lasers," Soviet J. Quantum Electron. <u>12</u> (5), 619-624 (May 1982).
- D. L. Bullock, M. M. Valley, and R. S. Lipkis, <u>Advanced Chemical Laser</u> <u>Optics Study</u>, Final Report, Contract No. F29601-79-C-0011 (TRW, 15 July 1982).
- 13. D. L. Bullock, J. de Phys. C9 37 (1980).
- M. Abramowitz and I. A. Stegun, Handbook of Matnematical Functions, AMS 55 (National Bureau of Standards, June 1964), pp. 297-303.

15. R. W. F. Gross and J. C. Coffer, "Saturation Processes in Doppler-Broadened HF Vibrational Transition," in <u>Gas Flow and Chemical Lasers</u>, edited by M. Onorato (Plenum Press, 1984), pp. 127-139.

16. N. Cohen and J. F. Bott, <u>Review of Rate Data For Reactions of Interest in</u> <u>HF and DF Lasers</u>, Report No. TR-0083(3603)-02 (The Aerospace Corporation, El Segundo, CA, October 1982).

## LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security projects, specializing in advanced military space systems. Providing research support, the corporation's Laboratory Operations conducts experimental and theoretical investigations that focus on the application of scientific and technical advances to such systems. Vital to the success of these investigations is the technical staff's wide-ranging expertise and its ability to stay current with new developments. This expertise is enhanced by a research program aimed at dealing with the many problems associated with rapidly evolving space systems. Contributing their capabilities to the research effort are these individual laboratories:

<u>Aerophysics Laboratory</u>: Launch vehicle and reentry fluid mechanics, heat transfer and flight dynamics; chemical and electric propulsion, propellant chemistry, chemical dynamics, environmental chemistry, trace detection; spacecraft structural mechanics, contamination, thermal and structural control; high temperature thermomechanics, gas kinetics and radiation; cw and pulsed chemical and excimer laser development including chemical kinetics, spectroscopy, optical resonators, beam control, atmospheric propagation, laser effects and countermeasures.

<u>Chemistry and Physics Laboratory</u>: Atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical reactions and radiative signatures of missile plumes, sensor out-of-field-of-view rejection, applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell physics, battery electrochemistry, space vacuum and radiation effects on materials, lubrication and surface phenomena, thermionic emission, photosensitive materials and detectors, atomic frequency standards, and environmental chemistry.

<u>Computer Science Laboratory</u>: Program verification, program translation, performance-sensitive system design, distributed architectures for spaceborne computers, fault-tolerant computer systems, artificial intelligence, microelectronics applications, communication protocols, and computer security.

<u>Electronics Research Laboratory</u>: Microelectronics, solid-state device physics, compound semiconductors, radiation hardening; electro-optics, quantum electronics, solid-state lasers, optical propagation and communications; microwave semiconductor devices, microwave/millimeter wave measurements, diagnostics and radiometry, microwave/millimeter wave thermionic devices; atomic time and frequency standards; antennas, rf systems, electromagnetic propagation phenomena, space communication systems.

<u>Materials Sciences Laboratory</u>: Development of new materials: metals, alloys, ceramics, polymers and their composites, and new forms of carbon; nondestructive evaluation, component failure analysis and reliability; fracture mechanics and stress corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures as well as in space and enemy-induced environments.

<u>Space Sciences Laboratory</u>: Magnetospheric, auroral and cosmic ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric physics, density and composition of the upper atmosphere, remote sensing using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis; effects of solar activity, magnetic storms and nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate radiations on space systems; space instrumentation.

. . .

END DATE FILMED 5-88 DTIC