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and Dynamics Division (AFWAL/FIBRC), Air Force Wright
Aerconautical Laboratories, Wright-Patterson Air Force Base, Ohio.
The work was conducted under Program Element No. 61102F, Project
No. 2304, Task N1, and Work Unit 22.

The work was performed during the period of November 1986
through August 1987. Dr. Karl G. Guderley of the University of
Dayton Research Institute was Principal Investigator, Dr. Charles
L. Keller, AFWAL/FIBRC, (513) 255-7384, was Program Manager.
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excellent typing of Ms. Kathleen Reineke.
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SECTION I
INTRODUCTION

This report derives an integral equation for the linearized
steady supersonic potential flow over a wing. As in the case of a
subsonic flow a difficulty arises because of tne singularity of
the Kernel of the integra2l equation. The singularity makes it
necessary to express the upwash at the wing by a limiting process
in which one approaches the wing from the interior of the flow
field. Each integral equation formulation is based on the use of
a fundamental solution. The idea of using such fundamental
solutions for the representation of the flow field is quite old.
It appears for instance in so called "box methods". These methods
start immediately with a discretization of the problem and in this
manner reduce the dirficulties caused by the singularity of the
kernel. 1In contrast the present approach uses analytical means to
transform the initial formulation so that in the final formulation
one deals with tractable quantities and the limiting process in
which oﬁe approaches the planform no longer appears explicitly. A
discretization must, of course, again be carried out, but it
appears only after the analytical preparation has been carried
out. The author believes that this procedure gives greater
flexibility in taking the particularities of a specific problem
into account. Of course, one may then arrive at a numerical
procedure that is less automatic.

The fundamental solution for supersonic flows is identical
with that for subsonic flows, except that certain terms change
their signs. If (x,y,z) is a point of the flow field and (&,n) a
point of the planform then the fundamental solution is given by
1/r, where r = [(x—a)2 + (1—M2)(n—y)2 + (1—M2)z231/2. In the
present context, x is greater than E; the author has therefore

consistently written (x—E)2 instead of (E-x)z)

In subsonic flow the coefficient (1—M2) is positive, in
supersonic flow it is negative. This has a profound effect. 1In
subsonic flows all points of the wing and of the wake have an

1
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effect on the potential in the field, in supersonic flow only
points of the wing and wake have an influence that lie within the
forecone of the point (x,y,z), that is points (&,n) for which

{(x-5)2 - (M2-1)(n-y)2—(M2-1)z2] >0 and x-£ > 0

This is a significant simplification. A singularity is
encountered if this expression is zero. Roughly speaking one
expresses the potential by the integral over E and n of such
fundamental solutions multiplied by a weight function that depends
upon § and n. In a subsonic flow, if one evaluates the potential
(oi* rather its derivatives) at a point (x,y,z) thenr = 0 for
every point of the flow field for which z » 0. If the point
(x,y,2) lies on the planform (in the &n-plane, i.e., for z = 0),
one has a singularity of the fundamental solution at £ = X, n = y.
This makes the limiting process z + 0 necessary.

In supersonic flow the expression r vanishes along the
entire surface of the cone r > 0 with tip at point x,y,z. For
z # 0 the evaluation of the potential or its derivatives must take
into account the contribution of the fundamental solutions, with
values of £,n of the planform, for which r > 0. These values lie
within the hyperbola in the En-plane given by

(x-£)2- %-1) (n-1)% = M%-1)2%, x-¢ > 0.

At this hyperbola one has r = 0, the integrand of the integral
equation is singular along this curve, even for z # 0., The
singularity becomes more pronounced if one takes derivatives.

This is remedied by a single transformation, but then the image of
the leading edges under this transformation will be z-dependent.
The effect is minor because for the problem treated here the
weignt function for the fundamental solutions is zero at the
leading edge.

In Section II of this report, the approaches to the problem
by the velocity and by the acceleration potential are ccmpared
with each other. For supersonic flow, at least, the author favors




the velocity potential, because the pertinent fundamental solution
does not introduce a singularity at the wake of the points (&,n)
of the planform for which it is defined. Such singularities make
the upwash field less smooth, when one discretizes the integral
equation. This generates an uncertainty, if one imposes upwash
conditions ai\ individual control points. A main advantage of the
acceleration potential lies in the fact that it anticipates the
contribution of the wake. But in most supersonic flows the wake
has no influence on the pressure distribution over the air foil.

In Section III the basic equations are compiled. This
includes the introduction of the Lorentz transform which will
prove useful in the treatment of conical fields. Section IV
describes the problem in general terms. In Section V the analysis
of the general case is prepared by a two-dimensional example. The
general integral equation is derived in Section VI. This
discussion deals mainly with the leading concepts. Some detailed
investigations which, although desirable for mathematical
completeness, only confirm results that can be expected, are found
in Appendix A. Section VII applies the integral equation found in
Section VI to conical fields, they occur in the vicinity of the
tip of the airfoil. Here the Lorentz transformation is applied to
suppress an unpleasant numerical singularity. In Section VIII
some remarks about a possible discretization are made. The
treatment of contribution of points (£,n) at a distance from the
point (x,y) for whicn the upwash is evaluated is rather sketchy;
more details are given for the contributions of points (£,n) in
the immediate vicinity of the point (x,y).

Mathematical details which would have been too disruptive in
the presentations of the main ideas are found in a number of
appendices.




SECTION II
COMPARISON BETWEEN THE VELOCITY AND THE ACCELERATION POTENTIAL

As is well-known, the analytical formulations fov the
linearized flow over a wing in terms of the velocity potential and
in terms of the acceleration potential are based on Lhe same
simplifications and are, therefore, equivalent. Differences
arise, however, in the numerical realization. Here are the main
points.

1. The velocity potential arises from the acceleration .
potential by an integration along the stream lines (of the
undisturbed flow). A piecewise linear approximation for the
velocity potential, therefore, gives a piecewise constant
function for the acceleration potential and with it, at
least in steady flows, piecewise constant pressures. To
obtain approximations of the same quality one, therefore,
needs smoother approximating functions for the velocity
potential than for the acceleration potential.

2. The acceleration potential gives directly the pressures. If
one expresses the acceleration potential by a distribution
of dipoles over the wing, then the local intensity of the
dipoles gives the pressure difference between the upper and
lower sides. In the wake there is no pressure difference,
the unknown dipole distribution is applied only at the wing.
In contrast there is a jump in the velocity potential not
only at the wing but also between the upper and lower sides -
of the wake and one must allow for doublets over the surface
of the wake too. This is no insurmountable obstacle, but in
conjunction with the fact that the acceleration potentiaf
gives the desired pressure distribution directly it makes
the acceleration potential attractive in subsonic flows. 1In
a supersonic flow with a supersonic trailing edge the wake
has no influence on the pressure distribution over the wing;
but even with a subsonic traiiing edge only a small portion
of the wake has an influence. The advantage which one is
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ineclined to ascribe to the acceleration potential in a
subsonic flow is greatly reduced in a supersonic flow.

The integral equations for both the acceleration and the
velocity potential are obtained by representing the fiow
field by means of a dipole distribution, over the wing for
the acceleration potential and over the wing and wake
surface for the velocity potential. 1In discretizing the
problem, one frequently divides the surface into elements
and represents the dipole density in the individual elements
by simple expressions, for instance by polynomials. A% the
element boundaries there will be some discontinuity in the
first or higher derivatives. The upwash generated by such
distributions will reflect these discontinuities. For both
the acceleration and the velocity potential, discontinuities
will occur at the element boundaries, but for the
acceleration potential one has in addition discontinuities
along the boundaries of the wake pertaining to that element.
An upwash field arising in this manner is, therefore,
traversed by lines of discontinuity in the dirzsction of the
x axis. This causes an uncertainty if one uses control
points to match the upwash generated by the dipole
distribution and the upwash given by the boundary
conditions.




SECTION III

BASIC EQUATIONS FOR LINEARIZED STEADY SUPERSONIC FLOWS:
LORENTZ TRANSFORMATION

Let X,y,z be a Cartesian System of coordinates, in which x
has the free stream direction and the planform of the wing lies
in the §,§ plan. Let U be the stream velocity, M the supersonic
free stream Mach number, B = (M2—1)1/2, L a characteristic length
and ¢(x,y,z) the perturbation potential, which describes the
deviation of the velocity field from a parallel flow. This

potential is governed by the equation
2— Iy - ——-—
B ozx * ¢y * ¢zz 0

We .ntroduce dimensionless variables

x = xL x = x/L (1)
y =.yL y = y/L
2 = zL z = z/L
$(x,y,2) = UL¢(x,y,z) = UL$(x/L,y/L,z/L) (2)
One obtains
—824; + q) L = 0 (3)
XX Yy zZZ

Originally the author had introduced at this point a Prandtl
Glauert coordinate distortion by which the last equation is

normalized to the case where M = v2. 1In view of a later
extension to unsteady flows, where this distortion loses its
usefulness, this is not done here. (It will be used in

Appendix A, which deals with certain mathematical questions, but
has no bearing on numerical work.)
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At the planform the z component of the velocity is
determined. Let the shape of the wing, iucluding the effect of
an angle of attack, be given by

z = F(x,y)
Then one has the boundary conditions
52(§,§,5-0) = Ufi(i,i)
Hence in dimensionless form

¢Z(X,Y.Z=0) = W(pr) (4)
with

wix,y) = Fi(Lx,Ly) (5)

A fundamental solution corresponding to a source (whose
strength need not be defined) at a point x =g, y = n, 2z =0 is
given by

03(x,y,2) = [(x-8)2 - 82(n-y)? - 8%2%7171/2

provided that the point (x,y,z) lies in the aftercone of the
point (£, n, 0); outside the afteréone ¢S = 0. The interior of
the aftercone is given by

(x—E)2 - Bz(n-y)2 > 82z2 R X >E

The flow over a wing with supersonic leading and trailing
edges can be described by a distribution of such particular
solutions over the planform

03 (x,y,2) - h(g,n)dEdn (6)
A [(x-£)2-2(n-y)2-822271/2
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( For given (x,y,z) the area of integration is the portion of the
planform which lies within the forecone of the point x,y,z. Except
for the leading edge the boundary of the region is then given by the
curve of intersection of the forecone with the §,n-plane, i.e., by

(x--tE)2 - Bz(n-y)2 - 8222- 0

This is a hyperbola in the En-plane. The asymptotes are the
straight lines through the point £=x, n=y with the slopes

%% - + 871, The vertex of the hyperbola lies at

E = X -Bz2

For z=0 the hyperbola degenerates into its asymptotes.

One can include problems with a subsonic leading edge in a
procedure based on Eq. (6) (where the potential is expressed by a
distribution of sources) by introducing a source distribution on a
diaphragm extending from the leading edge to the Mach wave that
forms the boundary of the region of influence of the wing. In the
present report this possibility will not be explored. We shall use
instead a representation of the flow field by a superposition of
doublets.

In conjunction with the treatment of conical fields (Section
VII) it will be useful to carry out a Lorentz transformation¥*

*The idea to use a Lorentz transformation in the theory of
linearized supersonic flow is fairly old. The author regrets that he
is unable to give the reference in which it was first proposed.
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x = (1-¢2)"12¢ + ge(1-02)" 172 N
; = 3—10(1—02)_1/2x + (1-3)-1/2y
x = (1-62)"1/2¢ _ go(1-e2)" 13y (8)

1

y = -8 'e(1-¢2) -1/2

=12, (1-c ) y

Z = 2

R

¢(x,y,z)=¢(x,y,2)

The coordinates £ and n are transformed in the same manner.

Then

-B“¢

XX yy 2z xx T 0%y * %2z
The hyperbola

(x-£)2 -8%(n-y)2 -8%22 - 0
transforms into
2,~ - 2”2

(x-£)2 - 82(n-y)° 22 -0 (9)

and one obtains for the Jacobian of the transformation

alx,y) |
al(x,y)

After the Lorentz transformation one has




~ e

$(x,¥,2) = [[ h(E,n)dEdn

(10)

~ e e

with h(Etn) = h(E(Eyﬂ),n(E»n))

The functions E(E,n) and n(E,n) are given by expression analogous
to Equations (8). The boundary of the region of integration
formed by the hyperbola, appears in the same form as before,

i.e., one obtains Eq. (9). The boundary formed by the leading
edge must be expressed in terms of the coordinates £ and n.

If, for instance, the leading edge is given by
y - ¢, x =0, with c1>ﬁ-1

then one obtains in terms of ; and ;
;(1+Bcc1) - ;(c1 + 87 Te)

Setting

1
C="'§a—1-<1

one obtains as equation of the leading edge

-~

x =0

This is a significant simplification.

" e D . WS i
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SECTION IV
GENERAL REMARKS

For a wing of zero thickness and for boundary conditions
satisfied at the planform, the prescribed z component of the
velocity is symmetric with respect to the plane z = 0 (this is
the plane of the planform). The potential is then antisymmetric.
Outside the wing and the wake the potential is, therefore, zero;
within the wing and the wake a jump of the potential from some
value to the value with the opposite sign must be admitted. The
pressure distribution over the wing is influenced only by those
points of the wake for which part of the aftercone lies within
the wing surface; because the effect of the upwash at any point
of the flow field is felt only in its aftercone. For a
supersonic trailing edge the wake has no effect on the wing. A
potential which has the desired antisymmetry is obtained by a
discribution of doublets (oriented in tha z-direction) over the
wing and, if necessary over part of the wake. A doublet
potential is obtained by a differentiation of the source
potential with respect to z. In formulating the boundary
conditions at the wing one must express the z~component of the
velocity field. One thus encounters a first differentiation with
respect to z when one derives a doublet potential from the source
potential and a second differentiation when one formulates the
boundary conditions. The singularities which arise by these
differentiations are the main concern of the following
discussions. In the subsonic case these singularities occur only
for £ = x and n = y. 1In contrast they occur in the supersonic¢c
case also along the hyperbola which form the boundary of the
region of integration.

In the subsonic case one has the corresponding potential for
a source

6 =




r -[(x-E)2 + Bz(n-y)z + 8222]1/2 with 82 = 1«M2

Here r represents, in a suitable metric, the distance between the
point (x,y,z) and the point (£,n,0). This can be carried over to
the supersonic case if one introduces as distance definition

[(x—€)2 - Bz(y-n)2 - 22]1/2

The fundamental solutions are singular at all points where this
"hyperbolic" distance is zero and this includes the points of the
bounding hyperbola.

Incidentally, in a field with hyperbolic distance definition
the Lorentz transformation is the counterpart to a rotation in a
field with the elliptic distance definition.




SECTION V

THE TWO-DIMENSIONAL CASE

To familiarize ourselves with the mathematical technique we
first treat the two-dimensional case. If one introduces the
Lorentz transformation this includes the treatment of the
infinitely long swept wing with a supersonic leading edge. For
the two-dimensional case, the leading edge is always supersonic.
The function h does not depend upon y and the evaluation of the
potential can be carried out for y = 0. The upwash is needed for
2z = 0, One has

h(£)dEdn
¢(X,Z) = (11)
II[(x—§)2—82n2—8222]1/2

As was stated above the area of integration is bounded by the
leading edge (here taken as the line £ = 0) and the intersection
of the forecone of the point (x,y,z) with the £,n plane. Because
we carry out the integration for y = 0, the bcunding hyperbola is
given by

(x-£)2 - 8202 - 8%2 < 0
In the limit z = 0 the boundary is given by its asymptotes

X~ EFE +8n =0
The vertex of the hyperbola lies at

x - £ = Bz, n=20

With the limits specified, Eq. (11) appears in the form

x-8z nupper
dn
¢(X,O,Z) = I h(E)( ————— e “""‘"'"““_“)d€
o [(x-£)° - B?;? _ B2n2]1/2
T'lower*
where nlower = - [(x_g)2 - 8222]1/2/8

13
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-+ [(x-8)2 - 8222128

"upper

Setting

n = a8 ' [(x-£)%-8%2%7" /2

one obtains

[(x2-£)2 - 8%2° - 8%0%] = [(x%-0)2 - 8222711/2[1-7271/2

and for the inner integral

+1
-1 dn -1
S 2% v
_101-0%)

X-82
Hence ¢(x,z) = B—1WJ h(g)dEg
o

oy = 3-1ﬂ h(x-8z)
¢, = - th(x-8z)

This satisfies the differential equaticn for one-dimensional flow

8%, +¢__ =0

XX ZZ

14
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SECTION VI
THE UPWASH IN THE GENERAL CASE

The point of departure is again Eq. (6). Let the leading
edge be given by

n = g(g) (12)

We set, in analogy to the procedure of the two-dimensional
problems .

no=y +n8 q(x,£,2) (13)
n o= B(n-y)/q

where

]1/2

a(x-£,8) = [(x-£)2-8%s (14)

To emphasize that in the expression g the coordinate z occurs
only in the form of za, we have introduced 22-3

One has q(x-£,0) = (x-&)
%% - (x-£)/q (15)
%% = -Bzz/q

The portion of the boundary of the region of integration
formed by the hyperbola is transformed into

noe+

15




The portion of the boundary formed by the leading edge appears as

ﬁ - é(x.Y.E.S) (16)
where

- B(g(E)-y)

g(x,y,£,8) = GTE:ET§¥- (17

The expression for ¢ generated by a source distribution is then
given by

xX-BZ nupper
- -1
0% (x.y.2) = B"1I (I E%%L§%$$7§91 dn)dg (18)
£o = -n
M ower

Here Eo is the smallest value of £ in the region of integration.
If the wing has a tip, Eo is independent of z. 1In cases where
the foremost point of the region of integration is the
intersection of the hyperbola with the leading edge, Eo will

depend upon z. Furthermore,

M ower = 3! along the hyperbola (19)
upper

M owep = B(X¥,E,2) if the limit of n lies at the
upper

leading edge.

In Eq. (18) the 1imit z+0 can be formed immediately

X aupper
- =1
0 (x,y,200) = 71| ([nLEaL2NE, LXEDgTyqg (20)
Eo - (1-n%)
n
lower

16




This formulation is practical for supersonic leading and trailing
edges. At the planform the upwash is given by Eq. (4).
Accordingly, one must form in Eq. (18) the derivative
¢;Slx,y,z-0). Before we do this let us determine ¢§s)' which is
needed to express the pressures in cases where one represents the
flow field by a superposition of sources. If one is interested
in only the pressures of the planform, then one can set z=0
before one carries out the differentiation, i.e., one can
differentiate Eq. (20). The derivative with respect to the upper

limit of the outer integral gives

+1 _

B_1h(XDY)I““":g‘L‘T_/"2" = B—1Wh(x1Y)
_1(1"7] )

We denote by h(1) and h(Z) the partial derivatives of h with
respect to its first and second arguments. One then obtain

upper

a2, (yens™! (x-£))
(1_;‘2—;1 /2

lower

dn)dg (21)

Sl — )

X
$3(x,y,220) = 87 'n(x,y) + s‘zf (
Eo

The limits for ﬁ are determined for z=0. Hence from Egqs. (19)
and (13) and (14)

Mower = *!

upper

or

- L .8LE)-y
n1cwer B X-
upper

17




Next the derivatives of ¢(8) with respect to z are

evaluated. As we mentioned above, the first derivative is needed
in satisfying the upwash conditions, if one expresses the
potential by a source distribution. Besides, the expression ¢éS)
can be interpreted as the potential due to a doublet
distribution.

¢d(xoylz) - ¢:(x’yiz)

To formulate the upwash conditions for the potential ¢d one must
form .

¢2(X.Y.Z) - ¢:z(x,y,z)

Ultimately, all quantities will be evaluated for z=0.
Configurations of the region of integration are shown in Figures
1 and 2. The leading edge may contain subsonic or supersonic
parts. For supersonic or subsonic parts of the leading edge the
slope dn/dE = dg/dE is respectively greater or smaller than 8'1.
A leading edge which is entirely subsonic consists of two parts,
one with positive the other with negative slope. We divide the
region of integration into two parts I and II by a straight line
E-&, lying in the region where the upper and lower limits of B
are +1. The contributions to the potential from these regions
are denoted by ¢(S’I) and ¢(S’II) or ¢(d’1) and ¢(d'II), (if they
are generated respectively by sources or doublets), Figure 3.

Consider
X-8z +1
- _1 - -
g __1 (1"ﬂ )
1
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Then by differentiation with respect to z

+1
- =1 -
’ d
¢;s’1)(x.y,z) -- {h(g y*“g 13% -
-1 (1—’1) E'X'BZ
R AE BN ) —emlay G -
[ (E,y+nB__q) n(dg/3z)dn)dg (22)
-1 -n°)
Because q{x-£,z)] =0
E = x-Bz
the first term gives immediately
+1
-h(x-8z,y) )1,2 - wh(x-8z,y)
-1

Substituting g% from Eq. (15) one obtains for the second term

g *} n{? (g, (y+ng”"'q))ndn 1
( (1- 2)1/2 ]QG'gsydg

-1

The factor q tends to zero as § approaches its upper limit
and for z=0 (s=0) one obtains a non-convergent integral of the

form %%E. One observes, however, that

ey ALLERNS

n'? (e,
(1-n%) 172

e

because of the antisymmetry of the integrand with respent to n.
The inner integral can, therefore, be replaced by

19




in'?) (£, (y+ns ‘q)) - (@) (¢,v) Ind5

(1-n )

—lh-ﬂ

Let

h(z)(ﬁ.yﬂ;)— h(a)(E.y)
z

- ¢1(59Y9C)

The function exists even for £=0. There

v,(6,y,0) = 022 g,y

(where h(2'2) denotes the second partial derivative with respect

to the second argument of h.)

Then

n{2 (g,y+n87 ) - 0@ (g,y) = 787 aw, (6,378 )

(s,I)

and the expression ¢ assumes the form

X-8z +1 -1
u, (¢, y+nB Q)ﬂ dn)
¢és,1)_ -‘ﬂ'h(X"stY)—zB [ (] 2 1/2 )dg
&

The inner integral is bounded. 1In the 1limit z=0 the seconcd term
vanishes and one obtains

¢(d’1)(x,y,z-0) = ¢§3’I)(x,y,z=o) = ~th(x,y) (23)
The contribution of the region I to the second derivative of
¢(S) With respect to z is

20




¢§d’1)(X.y.z) - ﬂBh(1)(x-BZ.y)

B

g

1
[
d

X-8z +1
-2

-z8

x-—-
1

+

ik

2w (E,y, e 14))72dn)

3173 )dg
-n°)

g

¥, (E,y,78” '0))7%dR)
(1-72)1/2

1 E=x-82

{ ¢§3)(E,§.38—1Q)33(3q/8z)

dn)dg

€1 (1_52)1/2

Here w(3) denotes the partial derivative of w1 with respect to

its third argument. The second term on the right has already

The third
The

Thus,

been evaluated, it gives a non-vanishing contribution.
term vanishes in the limit z=0, because of the factor z.
fourth term has actually a factor z2, because %% = -Bzz/q.
it will vanish in the 1limit z+0 provided that the remaining
expression remains finite. One has after substitution of 3q/3z

+

(

X-

2 w(3’(£ y,ng~ q))n3dn

dg
(1-72) 172

q

B 1
{ (Il
J J
51 -
Again one is concerned about the factor q in the denominator
which vanishes at the upper 1imit E=x-8z. Here the procedure

shown above is applied again. One observes that

(

¢1

3)(€,Y,0)ﬁ3dn
(1-7)172
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because of the antisymmetry of the integrand with respect to
;]'00

One introduces

v ey, 003,00
4

WZ(E,YyE) bl

If w$3) is sufficiently smooth, as it is except for possible
singular lines, the function exists for z=0.

Therefore,

1 +1

’Y:(EB— Q)ﬁ3dn 8_1 rwz(i,Y.(ﬁ§1Q)ﬁdn
(1-72)172 _{ (1-72) 172

(3)
N E

+1 ¢
1
q )

-1
and this expression exists.

One then obtains

e N R Rk
J

(J - )dg
-1 (1-nH 172

¢§d’1)(x,y,z-0) = th(1)(x.y)—B' g
1

Substituting w1, one obtains for the second term

X +1 o _
- j ( I nh(Z)(E,y+n8 1(x-E))dn
S (1-7%) " "2 (x-¢)

}dg (24)

As & approaches the upper limit x the integrand seems to tend to
infinity but by the above argument one obtains a finite
expression for the inner integral provided that the integrations
are carried out in the sequence shown in Eq. (24). To allow for
a change in the sequence of integrations we write
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+1_ o -
(f nh(Z)(E. y+ng 1(x—e))dn

2 }dg
(1-7%) 2 (x-8)

-1
Now it is permissible to change the sequence of integrations
+ €

1 b &
( [, (2) P P
[ . - lim { n (é h™ "' (g,(y+nB (x-£))dEg

5 - - Jdan  (25)
e+0 (1_n2)1/2 X-£

1

According to this formulation one first excludes the neighborhood
of the point (E,n) = (x,y) by a straight line E=x-e¢ (e>0), and
after the integrations forms the 1imit e¢+0. Then

680D (x,y,220) = 1an{Vx,y) 4+ 1 (26)

where I is evaluated either in the form of Eq. (24) or of
Eq. (25). The regions of integrations for z=0 and z#0 are shown
in Figure 4.

In the region II, x-g£>0 therefore, q-[(x—£)2-8222]1/2>0,

even for z=0. A denominator q is no longer detrimental. But
here part of the boundary of the region depends, after the
transformation to ﬁ, upon s=zz. (The transformation to 3 is
desirable because of those portions of the boundary formed by the
hyperbola.) We interchange the sequence of integrations in

Eq. (18):

(s,II)(x 1

1
¢ ¥ez) = 8" f n(g,y+n8" TQ)dE)dR  (27)
7

(x,y,n,s)

Here f(x,y,n,s) denotes the inverse of the function g(x,y,£,s),
Eq. (17), at fixed x,y and s. Then
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¢§S'II)(x

'Y 2) “‘““‘f7§{ 2z h(E,y+n8 "o {147

(1-n%)

1
-+
b Sy, o

E*f’(X,y.ﬁ,S) (28)

+

- 1,.(2) - -1
n ? h " (g,y+nB qQ)dEy .=
—=2172 ) q Jan

(1-n%) < _
f(x,y,n,s)

1
-2 {

-1
In the first expression h is evaluated, for the particular value
of n under consideration, at the lower limit of the region of
integration over §. This is a point of the leading edge and
there h=0. For z=0 both terms on the right of the last equation
vanish

¢(SQII)(X

z ,Y,2=0) =0

We combine this result with Eq. (23) and obtain

$2(x,y,2=0") = 0%(x,y,220)= -wh(x,y) (29)
We now turn to the second derivatives of ¢(S) with respect to z.
At the leading edge the potential and with it h is zero and
continuous. The first term on the right of Eq. (28) is,
therefore, zero, even for z40. Differentiating the second term
Wwith respect to z, one obtains an expression which will not
vanish for z=0, namely

+

1
[ (& y+ng_ q(x £,0) 4
- _{ (1-7

(f
y172 ) a(x-£,0)
f(x,y,n,0)

; )
3 £)dn (30)

Further terms arise by differentiations of s with respect to z;
they introduce other factors z. One will surmise, that these
terms vanish for z=0. This, however, is not self-evident. At a
subsonic leading edge h behaves as u1/2, where u is the distance

from the leading edge. The differentiation with respect to z
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generates some terms which are infinite as £ approaches the

(2) itself.) Actually, they
will cancel. A detailed discussion is carried cut in Appendix A.
Eq (30) is indeed the only contribution to ¢éd’11)(x,y,z=0).
Anticipating these results, we compile here the formulae needed

for a numerical approach.

leading edge. {(One of these is h

¢d(x.y,0+) = -th(x,y)

n{2) (e(yens N (x-£)))
(1-72) 12 (x-£)

¢g(X.y.o) = nsh(1)(x,y)-}{ 1 dEdn (31)
A'

where A' is the area of the planform within the fore-cone of the
point (x,y,z=0), but with the point (£,n)={(x,y) excluded by a
line E=x-€, €>0. Subsequently, one forms the 1limit €+0. The
same expression is written in the original coordinates. Equating
the resulting expression with the given downwash w(x,y), one
obtains the integral equation from which the doublet density
h(x,y) can be determined. The limiting process z+0 no longce
appears in this equation.

(n-y)n ?) (¢, m)aedn

2{[
U282 2172 (x-6)2

w(X.y)-¢:(x,y,0)=th(1)(x.y)—B (32)

If the integration with respect to n is carried out first, then
the exclusion of the point (g£,n) = (x,y) is not necessary. But
if the integrations are carried out in a different sequence then
in scme intermediate steps one obtains contributions which are
large if & approaches x and the precautionary step of introducing
A', which initially excludes the critical vicinity of the point
(x,y), is necessary.

Eq. (31) expresses the upwasn in terms of h(1) = h at the
point (x,y) and of an integral which is due to the deviation from
a two-dimensional flow. (One notices that the integrand contains
a factor h(e) = hn') Because of the denominator
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[ox-6)2 - 82(r-v)21"72. pot oo

£) B (r~y)<1 °7, points in the vicinity of the Mach waves
through the point (x,y¥) 2nter with greater weight. A good
approximation for the vicinity of these lines ias, therefore,
desirable.

Some thoughts about the application of Eg. (32) in a
numerical procedure are found in Section VIII.

All transformation carried out in this Section could have
been performed in Eq. (10). Therefore, one obtains
alternatively

«

~ oy ~ e
~ A~

~q, % = ~_ == 2([(n-y) (3(n(E,n)/dn)dEdn
wix,y) = ¢_(x,y,0) = #n8h’ (x,y)- B"|
z * Hlz-0%82(a-121 2 (z-0)°

~ e we

h{(x,y) has been defined in conjunction with Eq. (10).

Moreover
wix,y) = wix(x,y),y{x.¥)).

26
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SECTION VII

CONICAL FIELDS

Frequently, the planform has a tip at which two straight
subsonic leading edges meet. In the vicinity of this tip one
obtains a conical field. The original concept of conical fields
is applicable if the angle of attack is constant. The wing is
then regarded as a degenerate cone generated by straight lines
through the tip lying in a plane. 1In this case the velocity
vector is constant along each straight line through the tip.
Basically, one deals with a similarity solution, which reduces
the number of dimensicns of the problem from three to two.

In linearized flow the concept of a conical field is
applicable also if the upwash behaves like a power of the
distance from the tip. Separately for each such powWwer, one makes
a similarity hypothesis. If the velocities are constant along
straight lines through the tip one can apply a further
transformation to the resulting partial differential equations in
two dimensions (for the individual velocity components) which
yields the Laplace equation. 1In this case the theory of analytic
functions can be applied. Unfortunately, one is led, at least in
the present problem, to the evaluation of elliptic integrals.
Moreover, if the veloclty is not constant but follows a general
power law, then the theory of analytic functions is not
applicable. We show here, how such conical fields can be treated
(numerically) by means of the present integral equation
formulation.

The procedure is first described in general terms. Let the
leading edges be given by

y/x = a, and y/x = “a, 3y >0, a, >0

The planform is nearly always symmetric with respect to the x
axis. Then a, = a,. For subsonic edges a, < 8_1, a, < 8—1.
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The present approachh assumes that the upwash is given by a
linear combination of expressions

wix,y) = x™ @™ (y/x) (33)

In practice one usually has

~

wix,y) = x"yd

-~

Then m = m+j
R(y/x) = (y/x)9 (34)

Tge computations are carried out separately for each choice of m
and J.

(m)

For a constant angle of attack m = 0 and w is constant.

In most practical applications m = 0, 1 or 2 will be sufficient.

The unknown function h is now written in the form

h(x,y) = L bnhmn(y/x) (35)
n
where
LU xm+1hn(y/x)

The functions hn(y/x) are known. Probably, one will use the same
functicns h” for all values of m. The coefficients bn are to be
determined. Substituting Eq. (35) into the integral equation,

BEg. (32), one obtains

xmﬁ(m)(y/x) = Eanmn(y/x) (36)
n

where an(y/x) is the upwash generated by a function
hmnaxmhn(y/x). This substitution gives

an(y,x) - an1 . anz
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with
Q™' . g (on™(x,y)/9x)
mn
Qmn2 _Bfo(n—y)(zh 2(£.n)/gnzggdn - (37)
[(x-g)"=B"(n-y )71 ""(x-£)

In discretizing the problem one uses only a finite number of
functlons hn(y/x). To determine the coefficients b, a
collocation method is probably sufficient. We set for this
purpose y/x = ) and admits as many values of ¢, as one uses
values of n. Then one obtains the following system of equations

N

ma{(m) mn .
X R (ck) = ? an (ck, , k =1,..N (38)

The main task is the determination of the matrix elements
Qm"(ck).

Regarding the cnoice of the functions h™ we make the
following observation. If the angle at the tip is small, and
a,=a,=3, then one obtains from slender body theory, that the
potential, and with it, h is given by

172

2x2 - yz) ;7 ¥y < ax,

const {a

This suggests that in a more general situation h can be
represented by

h=2:b h™M(y/x) =1 bnxm*1n“

n (y/x) (39)

with
n 172 n
h (y/x) = [(a1-(y/x)(a2+(y/x))] (y/x) (40)

Since for a slender tip the first term is already sufficient
it can be expected that the number of terms necessary to obtain a
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reasonable accuracy is fairly small. Moreover, if a, = a, and
the upwash is either symmetric or antisymmetric with respect to
the x axis, then only the values of n which respectively are even
or odd will occur.

The leading edges are given by

y/x = a; ; 0 <a; < g™

and

-1

y/Xx = -a 0 < a, < B

2 H
The further development is suggested by the following
observation. The expression an1 defined in Eq. (37), form = O

and for

n = (a2x2 _ y2)1/2

contains an essential term

dh/3x = a2(a2 - (y/x)z)—”2

This expression and, therefore, an1 tends to infinity as y/x
tends to ... But one expects from slender body thecry that the
upwash caused by this expression is finite over the entire width
of the airfoil. The expression an2 will, therefore, contain
some term which gives an equally large contribution but with the
opposite sign, so that this infinity is cancelled. This
complication can be avoided if one first carries out a Lorentz
transformation (separately for each of the chosen~v§1ues y/x) so

that the chosen value of y/x is transformed into y/x = O,

The Lorentz transformaticn is first carried out without this
specializatinn in order to provide a clear picture of the
individual steps. We repeat the transformation formulae
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» SRR BE

(1-e2)"V2 ( « Bey) (41a)

X = x -

y = (1-¢2)~172 (-8 'ex + )

x = (1-¢)" V2 ( x  + gey) (41b)
y = (1= (g7lex + )

The variables £ and n are transformed in the same manner.
By the Lorentz transformation the left hand side of Eq. (38)
assumes the form

~ ~ -1 -z
(1~02)-m/2(x—80y)mﬁm(—8 c+£y£x))
1-Be(y/x)

The constant ¢ will be chosen in such a manner, that, y = 0 for
y/x = c. From the second of Eq. (41b) one then obtains

c = -Bc, (42)
With this choice one obtains for the left hand side of Eq. (38)
(1-c%)"™/2 3™% (e, ) (43)

To transform the right hand side of Eq. (38) one must first
carry out the transformation to § and n in

V20000 5 ()

R (x,y) = x™ [ (a,-(y/x)) (ap* (y/x))]
n™(g,n) is obtained by substituting x = x(x,;) and y = y(;.;).

Let B;/E =p (45)

Then, from Eq. (U1a)

p-¢
n/E = gTTTepY (46)

31




Moreover

£ = (1—02)—1/25(1~cp) (47)
The leading edges are originally given by

n/’g = a, and n/g = =8,

One finds from Eq. (41)

-~ ~ -1
B c+(y/x)

The leading edges, therefore, transform into

p=a, and p = -a, (49)
with
~ Ba1+c - Baz-c
ay = T+cpa, ' ap = T+cBa, (50)
In the expression h" Eq. (40), a factor
[(a1—n/E)(a2+n/€)]1/2
occurs. One finds with Eq. (45)
1+Ba,c -
(a1-n/€) = 50iTep) (a1*P) (51)
1-Ba20 -
(a2—n/E) = 8(T=opy (az+p) (52)

n

Now the transformation of w" ,» Eq. (44), can be carried out

R (g, n) = (1-¢2)"1/2 a3 g gm+] F"(p) (53)
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with

1/2

ag = (1-¢®)71"2[(1+4pa 0) (1-gay0)] (54)

172

F%(p) = [(a;-p) (ap+p) 1 /2(1-cp)™ P (p-c)"” (55)

-~

where p is expressed in terms of n/E by Eq. (45). We note

aF™ /ap = [(a,-p)(ay+p) 1 2 £ (p) (56)
where
a,~a -
f"7(p) = (-pr——2) (1-cp)™ M(p-c)® (57)

+(;1—p)(gz-p)[(—c)(m-n)(1~0p)m'"‘1(p-c)n
+ n(1-cp)m_n(p~c)n—1]

The second term in the last bracket vanishes for n=0, therefore
no difficulty arises, even for p=c.

One has in particular
f'mn(O)-(a1-~a2)(—c)n + a, az[(m-n)(-c)n+1+n(~c)n°1] (58)
Mcreover

(at™/dp)| = -(-e)™ + (3/2)(a,~a,) [(m-n) (-&)" Ten(-e)"7 ]
p=0

~ o~

+a1a2[(m-n—1)(m—n)(-c)n+2+2(m-n)n(—c)n

+n (n-1)(-¢)?"?] (59)
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One thus obtains for general ¢, by substituting Eq. (53)

"(x,y) = (122 2y {87 o™ E ™ (y/x))/0%)

_ gt ([ (0 y)(a(am ! m“(sn/a))/an)dggn}

~ T e

[(x-£)%-82(n-y)21" %(x-£)?

~

To make the dependence upon E, n and ;, ; obvious we have here
substituted the expression for p. W{th the special choice made
2bove, namely ¢ = -Bck, one obtains y = 0 for y/x = Cp+ Then the
expression simplifies to

Q™(x,0) = (1-¢2)B/2gmqmn (60a)
with
amn . amn1 R amnz (60b)
where
qunt a3s"“§“ma(;m*’pm“(0))/a; (61)
amnz . _a38—n+1 -m ffna(& (B;/E))/aaldéd; (62)

[.x- z)' - 82421172 (x-¢)2

Substituting Egqs. (43) and (60) into Eq. (38) one obtains

~ N .
Wiey) = 1 b,Q"" (e, ) (63)

In an1, Eq. (61), F™(0) from Eq. (55) is substituted and the
differentiation with respect to £ is carried out.

Then

~ .~

B_n(m+1)(a

an1 - a

3 BREICHL (64)
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AL - . =1

2, Eq. (62), p defined in Eq. (45), is

introduced as variable of integration instead of B. Then

In the expression an

dn - 8" '€dp (65)
In addition, we set
E/x = E. (66)

The region of integration is a quadrangle. Two sides are formed
by the leading edges. The lines p = const are straight lines
through the tip of the airfoil. The limits for p are then
according to Egqs. (49) p = —52 and p = 51.

The other two sides are given by the asymptotes of the
original hyperbolic boundary, into which this boundary deforms as
z+0. They are the intersection of the characteristic cone
through the point X 1Y with the planform. The Lorentz
transformation leaves the equations for the hyperbola, and
therefore, also for its asymptotes unchanged; one therefore has
for the other boundaries

Bn + £ = X for n >0

fn - £ = x for n < 0,

One, therefore, obtains in either case

or
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Now Ehe expression anz, Eq. (62) can be rewritten. We express

dp/dn by Eq. (65) and aF™/dp by Eq. (56). Carrying out the
integration with respect to p last, one obtains

a

™2, wags™™ [TpL(a;-p)(ay+p) 17 2™ (p) I (p)ap (67)
. oy
with
Qelpp™
m+
() - | £ d¢ (68)

I > ™ >
S(1-8)20(1-5)%-p7g211 /2

One notices that the integral Im(p) does not depend upon n. The
integrand has only two second order branch points; Im(p) can
therefore be evaluated analytically. The integration neaded in
Eq. (67) is best carried out numerically.

It was mentioned above the values of m are determined by the
character of the upwash, m=0, 1, 2 will probably be sufficient
for all practicai purposes. The evaluation of the integrals
(68) is shown in Appendix B. Here we give the results of m=0, 1
and 2.

Let g(o)(pz) = (1-p2)_”2

(1)

gV p% = (1-pH732

(3-2p°) (69)

3(2)(p2) = (1—p2)'5/2((6-(15/2)p2+3pu)
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and
é(O) -0

=(1)

g = --(1--1)2)—1

22 L ((172) + 2pD)(1-pP) 72

Let 1™(p) = 15(p) + Ip(p) + IT(P) (70)
(p) = p72 + g™ (p?) (0g(1+(1-p2) " 72) + g™
1%p) = -n Htp7 (71)

1%(p) = -g"(p*)108]p|

The distinction between 12, Ig, 12, has been made, because they
must be treated separately in the integration with respect to p.
This is obvious from the terms p 2, |p|"1 and log|p| in I;O)’

(0) (0)
Iy

, and Ic , respectively. Accordingly, we write for the

expression (67)

“mn2 mn2 mn2 1n2
Q =Q, ¢ Q, + Qc (72)

where the right hand sides arise by replacing Im(p) by the
respective expression Ig(p). Ig(p) and Ig(p). One has

specifically

mn2

Q2.
?1

~a38™" | Ly mp) (2p) 172007 pg M r0g (100197 )00 M 12 ()0
3

2

The term p"1 in the second bracket introduces a singularity at p=0.
Further singularities are encountered at the upper and lower limit

37

R o Y T AW P A RO LN VR U UGN U U TN UL LN UM NP U LY W WO U T ST L T re T LW LT M 1 Y P A Y AL P TR PR AT T AT AT



because of the first bracket. The occurrence of the singularity at
p=0 is to be expected according to the discussions carried out in
Section VI in conjunction with Eq. (25). One expects that at this
point one must take the Cauchy principal value. This is

demonstrated in Appendix B. Practically, one can proceed in the
following manner.

It is shown in Appendix C that

-—

[(a,~p)(a,*p) 1" /2p"Tdp=0

0
N e

n

where P expresses that one has to take the Cauchy principal value.
Accordingly, one has

a
- 1 -~ ~ -
Q§“2- -a,8 n { [(a;-p)(a,+p)] 1/ZJ',':(p)dp (73)
-a,
with
mn mn
£ (p)-£7(0) -
J"(p) - . o2 ™ (p2)10g(1+(1-p2) V2 +pg ™ (p2)  (78)

fmn(p)_fmn(o)

The expression b is regular at p=0; £™%(p), £™(0) and
the limiting value for p=0 of this expression (if it should be
needed) are found jin Egs. (57), (58) and (59). The expression
J™(p) is regular throughout the region of integration -;2<p<a1.

Because of the square roots in the bracket of Eq. (73) we set .

~ a “5 5 +5
1 72 1 72
p =P 2 * 2 (75)

One then obt.ins
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Q2. -a7" }(1-52>“’2 ™ (pydp (76)

In Jmn(p). one must express p in terms of p.

Finally, we set

p = sin u (77
Then
~/2
QI"? - cagg™ [ S™M(p)au (78)
-n/2

Here p must be regarded as a function of u. The integrand is a
periodic function of u. In this case the trapezoidal rule (with
equal intervals in u) gives very good results.

In Ig(p), one must take the occurrence of the absolute value
of p into account.

mn2

a
_ 1 - .
Qb = 333 nn((m+1)/2)J[ sign p [(31‘p)(32+p)] 1/men

(p)dp

-a,8 M ((me1)/2) (- [ [(a,-p) (a,rp) 17 /2£™ (p)ap

=0

2
a

1
0P (aep) 17 /26™ () ap
o

To remove the singularities for p = a;, and p = -a, one might apply

the transformation used in anz again. But because the reglons
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-52 < p<O0, and 0 < pK«< 51 are treated separately, it is probably
convenient to make separate transformations in the two reglons.

Accordingly, we set for the region —52 <p<o
ﬁ = p + 52 s p =p - 5-2 (79)
and subsequently p = u? (80)

and for the region 0 < p < a,

p=~& -p , p=8-7D (81)
and
p - u (82)
Then one obtains
5;/2
Q§n2= —a38—nw((m+1)/2)[—{ (51+52-u2)_1/men(uz—;z)du
o
2 i
: f (a,+ay,mud) 122" (2, -u?) du] (83)
o

Within the regions of integration the integrands are regular
functions of u.

The expression
24

mn?2

mn2 _aBB-n }[(a1—p)(;2+p)]_1/2p g(m)(pz)fmn

Q (p)log|p|dp

requires special treatment because of the factor log|p|, although
this factor is not detrimental to the convergence of the integral.
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A small region -b < p < +b around p=0 is, therefore, treated
separately.

We write

a(p) = [(a,;-p)(a,+p) 17 2p ™ (pH)e™(p)  (8W)

Then
_b +b %1
mn2, -aBB""[} q(p)log;p|dp+}q(p)1og|p|ap+1 a(p)log|p|dp]l  (85)
_; <b b
2

In the region -b < p < b, the function q(p) is developed with
respect to p. Because of the factor p contained in q Eq. (84),
there is no constant term in the development:

2
q(p) = b1p + bzp + b3 p3 teoo

Consider the integral

+b +b
}q(p)log!p]dp - } (b1p+b2p2+b3p3+...)log|p|dp
-b -b

The terms with odd powers of p vanish because of the antisymmetry
of the integrand. Taking b small enough, one can restrict oneself

to terms up to p3; then only the coefficient b2 is needed. One
finds s

~ ~ 1/2.d¢™ 1,1 1 ..mn
b, = g"(0)[a,a,] [ t5(~— - —=)F"(0)] (86)
2 172 dp p=0 2 51 52
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The expressions f"1(0) and 5"
p=0

are found in Eqs. (58) and
(59). Then

+b +b

}q(p)log]p]dp - b, f pzloglpldp - (2b2/3)b3[(108 b)-(1/3)1 (87)

-b -b

To remove the singularity at p = ~a, in the integral for the region
—a2 < p < b we set as above

p + ;2 - u? , P = wl - ;2 (88)
Then
N (8,012
f a(p)log|p|dp = 2 f (ay+aymu?) ™1 /2eM pyg ™) (p2)p 10g (a,-u?)au
- o
K (89)

Here p is regarded as a function of u. The integrand is regular
within the region of integration. One may be concerned of the
fact, that b is small and that in the v1cin1ty of the upper limit
u = (a2 b)1/2, the argument of lcg (a2—u ) is small, and that,
therefore, |log(a2—u )| increases rapidly. This would make small
steps in the numerical integration necessary. A smoother procedure
is obtained by a further transformation ;

S 1/2

log(a2 - u) = -V -

u = ;21/2 - exp(-v) (90)

du = exp (-v)du
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2). The limit of .

The 1imit of integration u=0 becomes v = -108(5
1/2]. Then

integration u = (52--13)1/2 becomes v = ~log{4, /5*(52 b)

the integral Eq. (89) is transformed into

—103(5 1/2_ (52 b)1/2
2 ] (51+a2—u )fmn(p)g(m)(p )p [103(51/2+u]¢v]exp(~v)dv (91)
1/2
—103(5 )

Here p and u are regarded as functions of v. The region of
integration would tend to infinity if one allows b to tend to zero
The introduction of v makes it possible to earry out the
integration with a uniform interval.

The same procedure is applied to the region b < p < 51. One
sets

& - p - u® » P =& - u? (92)
(8,-v)'/2
This gives 2{ (a1+§2—u ) ~1/2 £ (p) S(m)(p )p log(a -u )du

(o]

The further transformation

2

log (51/ “u) = -v , u =& - exp(-v) (93)

leads to

—10% (511/2-b)
(5 +a2_u2)1/2 mn
)1/2

(P)S(m)(p )p[log(a1/2+u]—v]exp(—v)dv (9u)
-log (4

Again u and p are regarded as functions of v,

The numerical work proceeds as follows: the shape of the
airfoil enters the problem through the value of a, and as and
through the given upwash i.e., through the value of m and the
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function w(y/x), which usually has the form (Eq. 34). Moreover,
the Mach number M and with it B = (b42—1)1/2 are known.

It is assumed that the function routinesj have been written for
£™(p) Eq. (57),
£™0) Eq. (58)
(dfmn]dp)é, Eq. (59)

(m) (m)

g , and g Eq. (69)

Of course, the latter expressions need to be programmed only
for the values of m in which one is interested.

In a collocation method one chooses a number of values of Cpe
The number must at least be equal to the number of values n.
Initially, one will probably cover the whole range of possible
values of Cpr ~35 < Ch < aq, in order to demonstrate how well the
upwash condition can be satisfied by the use of a restricted number
of values n.

For these values of ¢, one evaluates wm(ck). These are the
inhomogereous terms in the system of equations obtained from
Eq. (63).

On the right side a finite number of values of n is admitted.
In their choice one will take the symmetry properties of the
airfoil into account; for a symmetric planform and a symmetric
upwash one will have even values of n.

The further description refers to a specific value of e For

this value one determines ¢, Eq. (66), d, and &,, Eq. (50), and as,

Eq. (54). On this basis one finds an1, Eq. (64). The quantity

anz is defined in Eq. (74). For the pivotal values of u needed
for the numerical integration one finds p, Eq. (77), p Eq.

(75) and T"(p), Eq. (74). The quantity QU™ ic defined in Eq.

(83). With f™ available as a function rout.ne the integrands can

by



be evaluated immediately. It is likely that one will use different
pivotal points for evaluating the two integrals.

anz is expressed in Eq. (85) as the sum of three integrals.

The second integral is evaluated analytically for some choice of b.
With b, defined in Eq. (86), the result is given by Eq. (87). The
two other integrals are defined in Egqs. (91) and (94). One chooses
pivotal values of v and evaluates in the first case u from Eq. (90)
and p from Eq. (88). 1In the second case u is defined in terms of v
by Eq. (93) and p by Eq. (92).

One then has Eq. (72}

“mn2 mn mn mn
Q = Qa + Qb + Q
and QTS ) - anl . anz.
k

The an(ck) are the matrix elements in the system arising from
Eq. (63), n and k are respectively the row and column indices.

After the coefficients bn are found from this system of
equations one can determine h(x,y) from Eqs. (39) and (40).
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SECTION VIII
IMPLEMENTATION

In many cases the planform has a tip in which two subsonic
edges meet. Then part of the flow can be computed as a c(onjical
field, for instance by the procedure suown in Section VII. One
determines the coefficients bn' Then Eq. (35) gives an
analytical approximation for the flow field. From these
expressions one can compute a pointwise representation of h.

Beyond the region for which the evaluation as a conical
field is possible one uses Eq. (32) to determine h at prechosen
points of the planform, which will be called control points. We
assume that these points lie on lines £ = const. Since the
boundaries of the regions of integrations are Mach lines, it
seems reasonable to impose the further condition that the points
lie on preselect:d Mach lines. One thus obtains an arrangement
similar to Mach boxes, but without the assumption that within a
Mach box the potential is approximated by a constant. The author
rather thinks in terms of a pointwise representation of the flow
fizld. The function h at a certain point (x,y) is determined
only by data at the planform within its forecone. The
computation can therefore be carriecd out by marching in the x
direction. 1In evaluating the integrals in Eq. (32) it is assumed
that the integrations with respect to n are carried out first.
Because the computation marches in the x-direction, the
integrands in the integration with respect to n are known, except
for the immediate vicinity of the point (x,y) under
consideration. From the values of h at the control points one
can derive an approximation for intermediate points. One right
consider an approximation that is piecewise linear in n, but it
is probably preferable to use a higher order interpolation
because of the denominator
[(X—E)Z—Ba(y~n)2]1/2 which Lecomes zero for (x-£) = + B(n-y).

One has the choice of using information for h that comes only
from within the region of integration, or one may involve also
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points from outside if one can count on the smoothness of h. The
first possibility may be simpler.

We have seen, that in the vicinity of the point (x,y) the
integral over n does not vanish, although at the point (x,y) the
upper and lower limit of the integral coincide. A limiting value
hnn - n(22) 4 encountered for n » y. But at the station (x,y)
and the station upstream of it this limiting value is not
available (unless one admits information from outside the region
of influence). Here the following procedure is suggested. We
assume that in the entire triangle shown in Figure 5, h is given

by one analytical expression.

The starting point is Eq. (31). Developing the integrand
with respect to n one obtains

+1
1020 %2 (¢ vyaedn | -1, 22 [
n -1

- 8! (n/2) fh‘zz)(a.y)da

Along the line 2,0,1 one has

h1+hgf2ho

h =
nn An2

where An is the interval in n. In the evaluation of the flow
field one obtains in an intermediate step h&' Therefore, hE is
available at points 2,0,1 and one has also

+h -2h £
n - 1& 28 " 0~

nng Ané

For the extrapolation one therefore can use

h,+h,-2ho h, +h,.-2h
hoo(y,6) = -~—Bgpe 4 (g-g ) —1o--85, OF

An An
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Carrying out the integration from £ = £  to £ = £5 = £, + BAn one
then obtains for the contribution of the triangular region to the
integral

n/2 [(hy+h,-2n }/An) + (B/2)(h1g+h2€—2hog)]

where An is the interval in n.

Furthermore

L. PertheaMe
nng An2

This is used for an extrapolation

~ h +h "2h h -
n(22(g) - 120, ¢ 1 €270

The interval of integration extends from £=0 (at points 0,12) to
E = BAn at point 5.

The contribution of the entire triangle is therefore given
by

nf

8 -
m/2 5= [hy+h,-2n  + An(h1€+h2€-2hog]]
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APPENDIX A

DISCUSSION OF DERIVATIVES OF ¢(s) WITH RESPECT TO z WITHIN AREA II

The area II 1s defined in the main text. It is bounded by
the leading edge, by the straight line § = 51 (where €4 is chosen
so that this line intersects the hyperbola (1-6)2-(n-y)2 - z2 =0
twice within the planform) and by two portions of this hyperbola.
One notices that the variable z with respect to which the
differentiations are carried out enters the expression ¢SI
in the form of the parameter s = z2.

I only

We write

63T (x,y,25 = 6(x,y.8)

Then

¢(dII)(x,y,Z) = 2z;s(x,y,s)

¢(dII)(x

z ¥e2) = 2¢,(x,y,8) + M22¢ss(x,y.3)

In the limit z = 0 one obtains

' 1D (x,y,2) - 0

¢§d’II)(x,y,z) = ¢4(x,7,s)

provided that ¢ss exists. Whether ¢ss exists in the limit z = O
is not immediately obvious, this is the reason for the
discussions carried out in this Appendix. But after the
existence of ¢ss has been established, it is no longer necessary

to evaluate it in detail, because we are only interested in the
limit z » O,

The leading edge is given by the equation

n = g(£) (A.1)
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The inverse of g is denoted by f

£ = f(n) (A.2)

Wre have introduced

y + 5 [(x-£)2-51"72

=
n

(n-y)[(x-g)2-s1" 172 .

=3
#

In the gﬁ—plane the leading edge is then given by

?'l =é(£!s!x!y) (A'3)

with

8(E,5,%,y) = (g(E)-y)[(x-£)2-51"1/2

(A.4)

In the present context the arguments x and y are kept
constant, In many cases, they will therefore not be listed as
arguments in the functions in question. The inverse of the
function g at constant s, x, and y is denoted by f(n,s,x,y).
Accordingly, we have as alternative to Eq. (A.3) for the equation
of the leading edge in the &ﬁ—system

£ = f(n,s,x,y) (A.5)
For subsonic leading edges one has |dg/dg| < 8—1. For
simplicity, the present discussions will be carried out for
M™ = 2., Then B = 1. Depending upon the orientation of the
portion of the leading edge under consideration the function g is
either monotonically increasing or decreasing. For é, however,
this is not necessarily correct. In Figure 6, the curve AB is a
leading edge along which n decreases monotonically with £; yet it
is tangent to a straight line through the point (x,y). Such a
straight line is the limit of some curve n = const as z » 0. The

¢
¢
'
E
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variable n therefore first increases then decreases as one
travels from A to B along the leading edge. 1If this should occur
the area is denoted by IIb; in the E-directive it extends from
E=5, to £=£).

Let us first consider the problem with subsonic leading
edges. Figure T shows such a configuration in the E&n - and in
the Eﬁ-planes. At the leading edge the potential and with it h
have a square root singularity. The detailed discussions carried
out here, are made necessary because the leading edge moves in
the En system as s varies. We denote by ¥ the local sweep angle
and introduce a local Cartesian coordinate system uv, where the
u-direction is perpendicular to the leading edge. Let 61, n1 be
the coordinates of the point at the leading edge under
consideration. Then (Fig. 8)

g—g‘ = Uu cosY + v sinY u = (£—£1)cosY - (n—n1) sinY

n—n1 = -u 8inY + v cosY v = (E—&‘)sinY + (n~n1) cosY
Because of the square root singularity one has locaily
1/2

h = const u1/2 = const[(E-E1)cosY - (n—n1)sinY]

Therefore for n n1 = const

h = const(cosY)1/2(£'€1)1/2
used for £ = 61 = const
h = const (sin\()”2 (n1-n)1/2

- The flow field in the vicinity of the intersection of the
two subsonic leading edges is rather complicated. The basic
structure is that of a conical field, but higher order

corr~ctions occur if the leading edges are not straight or if the
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upwash is not constant. This vicinity is best considered in the
original En-system. This is the region IIa in Figure 9. In
order to avoid dealing at the same time with two boundaries that
depend upon s, the remainder of the region is subdivided by a
line n = 0. One thus obtains the regions IIc and IId. 1In the
vicinity of the point where a line n = const is tangent to the

leading edge, if such a point should occur, we introduce for this
vicinity a separate region IIb.

In the tip region Ila, ithe boundaries do not depend upon s.

One has

¢(s,IIa)(X [ ( h(g,n)dedn

'¥12)
[(x-£)%-(n-y)2-51""2
(d,IIa) ([ h(g,n)d&dn
¢ (X,y,Z) = 2 -
JJ[(x—a;?-(n-y)z—s]3/2

The denominator is always different from zero. Hence

¢(d,IIa)(X

Y, 0) 0

(d,I1a) ([ h(g,n)dEdn
¢ (x,y,0) = =
H-8)% (n-y) 21372

(A.6)

To bring the expression into a form which will be encountered in
cther regions, we introduce ﬁ. Specializing immediately to

s = z° - 0 one has n =y + n(x-£).

Then

(d,1Ia) [[n(g,y+n(x-£))dEdn
¢ (st9O) = - .
z } ()(—5)2(1—n2)3/2

Now

-

5) & s
y772 (1-72,372

¥

d_ (-
dn (1-7
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In the last equation we carry out the integration with respect to
ﬁ first, and transform the inner integral by an integration by
parts. At the upper and lower limits (the intersections of a
line £ = const with the leading edges) h vanishes and one obtains

(2) T(x~E))Rd T
6{8T18) (¢ v o) - - }xlg ([h (Ezz+ﬂé?1§;)“d”)dg (A.7)
-n

(2) -1/2

behaves at the limits as Aﬁ ; the inner
integral converges. The denominator does not vanish since

n< 1. Returning to the original coordinates one obtains an
integrand familiar from Eq. (32)

The function h

e

—n (2
W (T (4 v 0y - - }f (n-y)h " (£,n) s-75dédn  (A.8)

A G P8 2 (1) 2

One remembers that in this Appendix B2= 1. In a region IIb

(if it should occur) the integration with respect to n is carried
out first. We write

P
¢(S) =‘}’ F(EyS)dg (A.9)
&2
where
?‘gé(gys) .
oo - | e o
0o U-n )
1/2

a(E,x,8) = ((x-£)°-s)

At the upper limit (which is a point of the leading edge) h has a
square root singularity
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h ~ const (g(E)—n)1/2

This expression is rewritten in terms of 5 and é, Egqs. (13) and
(7

h - const [g(£)-y-n-q]'’?

h ~ const q [g(g)-n)1'"2 :

The factor q(£,s) has no singularity in the whole of the
2

2 .
region II. The discussions of Appendix E show, that 8 F /3s 1is
bounded. One therefore finds

€5
¢;:.be) - ¢§d,IIb) -5 { (3F/35) |
£ s=0
2
Here
- 2 - -
3F/38| = - (1/2)} nh (5»(1:Déx;%%)dn
=0 o (x-€))1-n%)

Returning to the original coordinates E,n, one obtains the
integrand occurring in Eq. (32)

The regions IIc (or IId) are subdivided into regions Ilcl .
and IIc2 by the line ﬁ=§(£2,s), Figure 11, This boundary moves
as 8 changes. Consider

¢(IIO1)(X

W ¥,2) = 5775 (A.10)
S

where
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&
F(;’],S) = j[ h(Ev(Y"ﬁQ(E’xvs))dE (A-11)
f(n,s)

As before f(n,s) denotes the inverse of the function n=g(g,x,y,s)
at constant x,y,s. The lower limit in F lies at a point of the
leading edge. There the function h has a square root
singularity. We write

1/2 1/72;

n(g,y+ng) ¢ = [g-F(n,8)]"/%h(g,n,8)

(The dependence upon x and y does not appear in the arguments
because they are kept constant.) Here h is free of
singularities. Now the discussions of Appendix E are again
applicable. The first and second derivative of F with respect to
s are bounded, and as the second derivative wit™ respect to z is
needed for z = 0. Only, there is no need to eva.uate Fss‘ FS is
obtained from Eq. (A.11). At the lower limit the function h
vanishes., The discussions of Appendix E show, that (for the
first derivative) the square root singularity encountered at this

point does not matter.

r
1

- (2) +... -
Fy - -(1/2) { nh <’ (g,y gq(a,x,S))dn (A.12)

f(n,s)

- Then, by differentiating Eq. (A.10) with respect to s and
substituting Eq. (A.12).
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F(g(£,,0),0)

¢(S,IID) - - (3é/33)|

3(x,y,0) eles1-8(6,, 05
s=0
1 } n ?1n‘2’<s +n(x-£))dEy =
- ?T':§>1 (J 'i_g }dn (A.13)
7172 -

Going back to the original coordinates & and n, one obtains again
an expression with the integrand of Eq. (32), except for the
first term on the right, which arises because of the

s-dependence of the lower limit in Eq. (A.10)

In the region IIc one has

ﬁ=é(€2,§)
( F(n,s)dn
,y,z) = “"_"""—: Wil (A.14)
i (1-72y172

¢(s,IIc)(x

with

£
1
E(ﬁ.s) = f h(g,(y+nq(&,x,s))dE (A.15)
P
&
SIS Y
&o

120 (e, 7, 8)48

A comparison of Eq. (A.15) and (A.11) shows, that
F(E(,,8),8) = F((E,,3),8) (A.16)

The 1imits in the function F do not depend upor s, A
complication arises, however, because for n=g(£,,s) the integrand
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has a point in common with the leadinyg edge. One will surmise
that this i{s unessential, but some discussion is desirable. One
obtains from Eq. (A.15)

&
Fo(n,s)=] (-1/2)[F?) (5,8) (6-F(nu8)) 7 /2nce,7,)

€2
+(e-F(m,80 120 3 (¢,7,8) 10k (A.17)

The first term in the integrand tends to infinity for the lower
limit £=E, if n=g(§,,s), that is at the upper limit in Eq. (A.13)
but the integral converges. In addition, one must show, that Fs
is bounded (see Appendix E). One has

S

~

:
Fag(ms) = [1[-1/8) (F® (n,8))2(g-F(n,s))73/2

2

A e ey, MY

(172822 (e-3(5,3))" "2 In(e, 7, 5)
SRS JCR NG AL R T J O ST EE NPT
After the integration has been carried out the term with the

factor (g—f(ﬁs))_3/2 gives a result which tends :co infinity as n
approaches é(&z,s). This contribution is

0(€,-£(n,8)) 172
Let ﬁ=§(52,s)—e (A.18)
Then ?(-‘:los) = ?(é(EZ’S)—EsS)

But f is the inverse of g, therefore

£(g(E,,8),8) = ¢,
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and f(g,,8)-¢,8) = £, - 0(¢)

The critical term

(£2~?(ﬁ,s)“1/2 is therefore 0fe” /2y,
g )
If one forms ¢§;’II°‘ from Eq. (A.13) one obtains in the vicinity
Of ;]=é(§2,8).
fo(e“’z)de - 0(e'?)
With ¢ defined by Eq. (A.18) the contribution of Fqg tO 954 18
therefore bounded. It suffices, therefore, if one evaluates only
S .
2 {210 L (3z/38) | (1-8(£,,02) 7 2F(5(g,,0),0)
E-gz
8=0

n,0)dn (A.19)

Because of Eq. (A.16) the first term on the right in this
expression cancels the first term on the right in Eq. (A.13). In
the second term in Eq. (A.19), 5(2) = gs is substituted from Eq.
(A.17), furthermore, h (instead of H) 1is reintroduced.
Returning to the coordinates § and n one arrives again at the

integrand in Eq. (37).

If the leading edge is partially subsonic and partially
supersonic one can distinguish on the wing surface between the
regions A and B (Fig. 12). They are separated by the Mach wave
emanating from the corner between the subsonic and supersonic
leading portions of the leading edge. The boundary of the region
of integration for a given point (x,y,z) always consists of the
hyperbola and part of the leading edge. If the point (x,y) lies
in the region A, then the part formed by the leading edge is
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entirely supersconic. At the leacing edge the potential and with
it h are zero, as always, and h increases linearly with the
distance from the leading edge. The precautions which we took
because of the square root singularity at a subsonic leading edge
and because of the conical field at a tip formed by two subsonic
leading edges are not needed, and one arrives without the
detailed discussions shown for such cases in this appendix at

Eq. (32). 1If no points other than those of region A were
considered, it would be preferable to represent the flow field by
a source distribution. Tne function h is then directly
determined by the given upwash Eq. (23) and the potential is
found by integrations, for instance from Eq. (18). The flow
field ir the region A is not affected by the conical field which
arises at the juncture of the supersonic and subsonic leading
edges,

The cases where the point (x,y) lies within the region B
differs from those with two subsonic edges by the treatment of
the viecinity of the juncture of the two edges, Figure 13. We
distinguish between the subregion CDE, lying downstream of the
Mach wave CD (Region IIal), and the subregion CDFG, downstream of
the supersonic part of the leading edge, but upstream of the Mach
wave CD (Region IIla?).

The character of the flow field in the region IIatl is
similar to that of the region formerly denoted by IIa. The
contribution of the region IIal to the upwash at the point (x,y)
is again evaluated in the original En~system, and one obtains as
an intermediate result Eq. (A.6). In a further step performed to
bring this result into the form which arises in other regions, we
introduced ﬁ instead of n and carried out an integration by parts
Eq. (A.7). Subsequently, we returned to the original En system
Eq. (A.8). This procedure is applied again. But here the lower
limit for n is not a leading edge where h is zero, but the Mach
wave CD, where the potential is different from zero.
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One obtains

¢(dIIa)‘_?? h(g,n)(n-y) Jlae - [Iq h(Z)(a,n)(n—y)dadg ,
2 (-0 L0 % e BT W -0 x-0) % -y 277

n=n-(g£-¢,) ( |
A20

The first term on the right is the contribution of the Mach wave
CD. The second term has the form familiar from previous
discussions. 1In the first term we introduce n instead of { as
variable of integration

.n= ﬂC - (E_Ec)

One remembers, that for Mach waves dg/dn=+1, because here f=1.
Then the integral assumes the form

n I

[ ( h(g,n)(n-y) ]
(x-£) °[(x-£) %~ (n-y) 21" /2

C E=EC‘(H‘HC)

dn (A.21)

We shall show that this term will be cancelled, provided that one
expresses the solution in the region IIa2 by a doublet
distribution, and evaluates the upwash at the point (x,y)
accordingly. It is true, the determination of the solution in
region A is simpler if one applies a source distribution, the use
of the doublets has the advantage that one obtains in all case
the same expressions in the integral equation.

Because part of the boundary of the region IIa2 is formed by
the hyperbola we introduce again n and perform the integration
Wwith respect to £ first. Then
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n
C
p(8,1122) J ~E(n.s) g5 (A.22)

4 (1=07)
n=-1

with

gupper(n)
F(n,s) = f h(g,y+nq)dé

f(n,s)
Here, since the discussions are carried out for B=1

]1/2

q = [(x-&)z—s , s-zz.

For ﬁ-ﬁc the two limits of the last integral coincide.
Therefore,

F(EC'S) = O
The func.ion E=f(n,s) is the equation of the (supersonic) leading

edge in the En systen.

The upper limit gupper is partially given by the line DF,
and partially by the line CD.

Differentiating Eq. (A.22) with respect to z, one obtains

2),- =
(d,1Ia2) [ F n,s)dg
Cbz = 2 J -*-:—_—2—'1—/— (A.23)
- 1-n%)
n=-1
Now
(2),- dgup er -
Fr<(n,s) = ———ag—— h(g,y+nq) (A.20)
&= upper
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(n)
upper’ - -
a0 (2 (¢,y+7q)dE

-(1/2) q

i e M1

(n,s)

The last term, evaluated for s=0 and substituted into Eq. (A.23)
gives a contribution

In terms of the original coordinates &n it assumes the form
familiar from Eq. (32).

In the first term of Eq. (A.24) dg /ds=0 along DF.

upper
Since the slope of CD for B=1 is -1, one has in the En plane

Supper " B¢ * NNg = 0
or since sc = xc, N, = Yo
- (X—Eupper) + (x-x,) + (n-y,) =0 (A.25)

Here n is expressed by n
n:y *'aq

Then Eq. (A.25) for ¢ becomes, after substitution of q

upper
- 2 1/2
-(X-Eupper) + (x-g ) + (y-y,) + n[(x—iupper) -s) "“=0 (A.26)
We note that one obtains for s=0
"(X*aupper)(1—n) + (x—xc) + (y-yc) =0 (A.27)

To obtain dgupper/ds we differentiate Eq. (A.26) at constant n

with respect to s
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. —(x-¢g
dg, .+ 7 ugper
PP [(x—&upper

)dﬁupper“(1/2)ds

1297172

and after epecialization to s=0

4, pper’®s - 1 n _ (A.28)
(X-Eupper)(1—n)

This is now substituted into the first term of Eq. (A.24) and
subsequently into Eq. (A.23).

Then one obtains

(n),y+ ng))ndn
(M) -n)

upper
(x-¢

upper

To compare this expression it with Eq. (A.21), one must replace
the variable n by n. One has from Eq. (A.14.3)

diupper(1—n) + (x—Eupper)dn=O
Along CD, dgupper = -dn. Therefore
an _ _(1-7)
n X-
upper

Thus the above expression assumes the form

¢
[ h(g,n)(n-y) dn
L -0 (e A7
D g=g,~(n-n,)

Because the limits of integration are interchanged, this is,
indeed, the negative of the expression (A.21). In the combined
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contributions of the regions IIal and IIa2, the integrals along
the line CD cancel.
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APPENDIX B
EVALUATION OF CERTAIN INTEGRALS
The integral Im(p) is introduced in Egq. (68)

-1
(1+|p|) NN
Ip) = |—== Em:235 75 (B.1)
(1-8)°0(1-£)"-p“E]

o]

The radicand is rewritten
(1-8% - %2 = (1-pD) ' L(e(1-pP)-1)2p?]
We introduce
£(1-p2)-1 = -q (B.2)

Then

1-p
~ —p2
1 - ¢ = 9__§
1-p
dE = —dq
1—p2

- The lower limit of Im(p) transforms into q=1, the upper limit
into q = |p|. Then one obtains

(1—q)m+2dq

m 2.-m-(1/2
I"(p) = (1-p%)
fq-pz)z[qz-p2]1/2

bt o QLR Y
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One has

(1-0)™2 =« [(1-p%)

2,m+2

-(1-p) ("2

In particular for m=2

Y(1-p™)

_ (q_p2)1m+2

2.m+1

A WL WL W RACETUNIURIER SN SNIRED R

(a-p2) + (M2)(1-p?)™ 2(q-p?)?

(1-q)2 - (1—p2)2 - 2(1-p2) . 1,
(q*DZ)2 (q-pz)2 (q-pz)
for m=1
3 , 2+ 3 2,2
(1-9) (1-p7) 3(1-p ), (3-2p2) -
= - P°) -q
(q-pz)2 (q-ﬁz)zi (q-pz)
for m=2
y 2.4 2.3
(1-q) (1-p7) 4(1-p )~ , (6-8 2. .4 2 2
- - -8p~+3p ") + (-b4+2p7)q + q
(q-p2)2  (g-p2)° (a-p%)

These values of m are probably sufficient for practical purposes;
expression for greater values of m are easily derived when

needed, We introduce the following integrals

1

f ) dq
h 2,2, 2 2
lp| (q-p")"(q"-p y1/2
1
I, dq
B 2., 2 2.1/2
Ip| (q-p7)(q"-p")
3 1
I =1 = I 499
0 o) 2.1/2
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1
i.[_é_ﬂi.g__
n 2)1/2

|p|(q -p

Then

L}

20) = (132 1, - 201-pAHV2 1 e (172 (B.3)

r'p) = (1-pH32 1, - 301-pH12 1+ (1-pH)32(3-2p9)1,

-1

- (1—p2)_3/2T1

12(p) = (=32 1, « 41-p®)12 I+ (10173 2(6-8p%+3p ") 1,

2)-5/2 ) 5/2

+ (1-p (-4+2p2)i1 + (1-p

I

The integrals in (in their indefinite form) are connected by the
recurrence relation

n " (1/n)[qn—1(q2 p‘g)”2 + (n-1)p21n_23 no>2

This is shown as follows

= . [__d%a___{a"qaq
n J(q p2)1/2 J(qz_p2)1/2
. qn—1(q2_p2)1/2_(n_1)§q (q2-p2)"24q
2 2.1/2 [ 2f q“'zdg
(q°-p°)' "“=(n-1) | ——52 +(n-1)p?
Iq%- §)T7“ V(q®-p2)172

The two integrals on the right are respectively in and in-z'
This leads to the above recurrence relation. One verifies by
differentiation
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1 1

= [ dqg 2 2.1/2 1+(1-p2) 172
I, = JT7 3077 log [q + (q™-p") ] | = log Tp]
[ o
1d
} 1
- d 2 2,172 2,172
s =S - @D |- e
it P
p

Then, according to the above recurrence relation

2,172

I, - (172) (1-p)12 4 p¥r2)1,

The integrals I, and I_4 can be found in tables. The author has
used Ref. 1, Formulg 234.3a for I_2 and, with some modification,

formula 234.3b for I_,. One has
2
[ dq 2 2,-1/2 a“-a
J(q-a)(qz—a2)1/2 (a“=a”) arc cos HQ-J;IT
( dq ) (az_mz)—w(q""—az)‘/2 . ol dq
(a0 2(q%-a2) 77 a-a Jg-a)(q%-2>) 172

At present as=p, a=p2, then a’-a° = p2(1—p2)

Therefore

1

P asp|
. o 21 (Bep2)y172 L, - )
I,=p “(1-p%)" " AP e p% 1, (B.4)
q-p q=|p|
I 1
I, = [1+]p|n/2]
2 " Z(1.p5)372

Substituting these expressions into Eq. (B.3), one obtains
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1°(p)=—
P

1 1
I (p)=—§
P

Iz(p)-—%

P

1 =
™ 2
1

m'ﬂ'

1 3w

S TeT2

v (1-p2)"172 1/2

[log(1+(1-p ) "“)-log|p]]

2,1/2

+ (1-p%)7372(3-2p%) [10g (1+(1-p%) ' /2)-10g |p | 1-(1-p2) ]

¢ (1-p2)"2(-(7/2) +2p?) +

+(1-p2)~572 2y1/2

(6-(15/2)p2+3pu)[log(1+(1~p )-log|p| ]
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APPENDIX C
TREATMENT OF A CERTAIN INTEGRAL

The integral

i
1

- f (1/p)[(&-p) (8,#p) )7/ 26™ (p) ap
&
2

has a singular integrand at p=0, In the main text it is stated
that one should form the Cauchy principal value. Here we shall
Justify this procedure. The term arises in the evaluation of
62“ , Eq. (67); specifically it is due to the function I™(p),
defined in Eqs. (68) (70) and (71). The above expression arises
from the first term on the right in Eq. (70).

According to the observations made in conjunction with
Eq. (32), the occurrence of such a singularity must be expected.
One deals with the evaluation of a certain double integral, aad
such a singularity will arise, unless one carries out the
integrations in a certain sequence. In the present approach a
different sequence has been applied. 7o give meaning to the
double integral in such a case, one first excludes the point
(x,y), by a line E£=x (1-¢) or £=1-e>0. In the present context
yO=O. )

The factor 1/p in the integrand arises from i, Eq. (B4).
Before the limits of integration are substituted the term which
causes this factor reads

2 2.1/2
p~2(1-p%~1 La-p ) (C1)

q-p

The variablie of integration q is expressed by £ in Eq. (B2). The
lower limit in E in Eq. (Bt), transforms into g=1. This appears
here as the upper limit, The upper limit is q = |p| for values
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of p, for which that the integration over £ ends at one of the
straight lines AB or CB in Figure 1&. Along the straight line
BC, the upper limit is given by by E=1-¢. Then one obtains

1-(1-€)-(1-p2)

o]
1}

€ + p2 - spz.

0
[]

By the transition from £ to q the upper and lower limits are
interchanged.

€ i3 assumed to be small, and obviously p=0(e) along
BC. The last term on the right can, therefore, be neglected.
The values of p for which this limit must de applied are found
from the requirement, that at the transition value the limits
from the adjacent regions are the same

Ip| = € +p°

For € small p2<<e.

The transition points, therefore, lie at

Ip| = e.

Substituting these limits into the expression (C1) one obtains

2)—3/2

p—2(1—p for p > €

2 2,1/2
2, 2.- -
and p (1-p7) 1 [ ;)1/2 - e p2) ] for p<e

(1-p €e-p

In the bracket we have used the fact that p and ¢ are small.
Notice, however, that p/e is not necessarily small. One has
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]

1 i (82—p2)1/2

2)1/? €~p2 (1-p
- _1_ [62a25p2+p2—52+P2] .

€ 2,172 p

1

[e-p2-(e2-
T2 o8

2_ 2 1/2]
(1-p

2

1
o(—)
e-pzz(ez—p e

The critical integral then appears in the forms

-€ +e

| 1 1Gp) 01728 M )ap + | po(L)ep
€
~€

~

-1
/me,n(p)dp

+ | 3l(a=p)ayen)]

?1
]
€
The first and third term combined are the integral
interpreted as its Cauchy principal value. The integrand of the

second term can be split into its symmetric and antisymmetric
parts. The lowest order term of the symmetric part is

+E 2
const } B—%E = 0(¢e)

This establishes the (expected) result.
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APPENDIX D
EVALUATION OF AN INTEGRAL

The expression to be evaluated is

4

I-P { [(a;-p)(a *p)]
a

2

—1/2p-1dp » @420, ay>0

where P expresses that the Cauchy principal value is to be taken.

By setting
a,-a ~ a,+a
1 72 1 72
pa-—-.2__+p-——2—-—

a,+a

one obtains I = ( 12 2)"1 I
where
+1 -
T ( dp
I =
11 (1-52) "2 (p-a)
a,-a
1 "2
and a = -
31*8,
Because a1>0, a2>0 one has
) la] < 1.
-yl
Setting P =3
u-+1
dp Hgdu
(u=+1)
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hy
u- +1

(1-p2) =

One obtains

[ ] [ J +o
el | 2du 1 [ 2du 1 [ _du
I = = = = . (D1)

é ;2(1—3)—(1+a) 1-a g u?-p2 ! a_i u2-p?
where b2 - 1:: > 0, since |a|<1. :

I is rewritten
+ @

: 1 [ O
L GEV ) J (u—b u+b)du

-

Eg. (D1) shows that the path of integration
infinity, in the upper half of the complex

The singular points u = + b are excluded by
integral over this closed path gives zero.

The contributi
circles must be subtracted, if one forms th
the integral. The sum of these contributio

two singular points are +1.

the residues have opposite sign. Therefore

4
[ -1
J
a

]]-1/2p

P

[(a;-p)(a,+p dp = 0.

2

T4

PSR TI Y I EE B LI 1O LRl I Al B TR X IR TR b T A W A R W A M AT W V- AFWE B M=

can be c¢losed at
u-plane Figure 15.
small circles. The
The residue at the
ons of the small
e principal value of
ns is zero, because
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APPENDIX E

LEIBNITZ* RULE FOR CERTAIN INTEGRALS WITH SINGULARITIES IN
THE INTEGRAND

Consider an integral

xz(z)

I1(z) = }

x1(Z)

f(x,z)dx

where the function f(x,z) and the limits x1(z) and x2(z) are
differentiable with respect to z. Then one obtains according to
Leibnitz' rule

dl/dz = f(xz(z),z)(dxz/dz) - f(xi(z),z)(dx1/dz)

x2(z)
+ { (3f(x,z2)/9z)dx (E1)
(

X, z)

To derive this equation one introduces

X = g{u,z)

where the function g(u,z) is chosen in such a manner that for the
values of z under consideration

x1(Z) = g(u,,2)
xz(z) - g(uz,z)

where Uy and u, are independent of z.

We denote by f(1) and f(z) or 3(1) and g the derivative

of f and g with respect to either the first, or second argument.
For higher derivatives a correspondi..g notation is used, for

(2)
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instance f(1'1) for the second derivative of f with respect to

the first argument.

Then
up
I(z) = j f(s(u.Z)g(l)(u,z)du
Y4
and )
: -
di/dz = j{f(1)(S(U.Z).Z)g(z)(u,z)g(1)(u,z)+f2(g(u,z),z)g(1)(uz)
u
1

+ f(g(u,z)g(1'2)(u,z)}du

One obtains the result Eq. (E!1) by observing that in a more
conventional rotation

f(l)g(1) = (af/ax)(ag/au)=(df/du)!

Z = const

Carrying out an integration by parts in the first term of the
integrand one obtains

U U,
d1/dz = £(g(u,2),2) g 2 (u,z)| + f{-f(g<u(z),z)g("2)(u.z) .
u u

1 1
+f(2)(8(u.z),2)8(1)(uz) + f(g(u,z)g(1’2)(u,z)}du

The first and the third term of the integrand cancel.

We return to the original variable x
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£(g(u,z),2)
u=u,

- f(x1,z)

8(2)(U.Z) I = dx1/dz
u=u,

and analogously for u,. One then obtains Eq. (E1).

This approach is useful, if the function f has a singularity
at one of the limits, aad if one has to form higher derivatives.
Consider a simple example:

Z

I(z) = f (z—x)1/2dx (E2)

0
The result is obvious
z
1(z) = -(2/3)(z~x)3"2 | = (2/3)237? (E3)
X=0
.22 5 Prrad? - (172272 (E4), (ES)

Let us forego the direct integration, and carry out the
differentiation in Eq. (E2) with respect to z according to
Leibnitz' rule. The integrand in Eq. (E2) vanishes at the upper
limit z.

Accordingly,

Z

-1/24, 172 |, 1/2

= ﬁ(Z—x)

%% = (1/2) (z-x)

O ~———N

Althougr the integrand in Eq. (E2) has a square root singularity
at the upper 1imit. one obtains the correct result, Eq. (EHW).
The procedure fails for the second derivative
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2
9——]2: = (1/2) (z-x)
dz

1/2 -(1/4) (z-x)-3/2dx

[0/

O ——N

At the upper limit the first term becomes infinite. It is true
the integral becomes infinite, too, and the two "infinities" will
carcel, but this observation still does not give a result.

Proceeding in the manner shown above we introduce
(x=2) = u

Then

/244

I(z) = | u

O ——N

Because the integrand has no singularity at the upper 1limit,
Leibnitz' rule can be applied

Z

di/dz = u”2 z”2

The second derivative is then trivial.

In the context of this report, the problem appears in a more
complicated form.
i
2
1(z%) - | (x-a(z%))

pl
a(z")

1/2f‘(x.22)dx

where the derivatives of f and a with respect to the two
variables exist. We set
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Then

1/2

b
I(s) = 5 (x-a(s)) f(x,s)dx
(

a(s)

The integrand vanishes at the lower limit. Application of
Leibnitz' rule gives the correct result.

b
dI/ds = f [-(1/2) (x-a(8))" 22" (s)r (x,8)+(x-(a(s))' /2£(?) (x ,5)]ax
S

a(s)
(E5)

The procedure fails for the second derivative. Therefore, one
sets

X - a(s) = u

Then

u=b-a(s)
I(s) = 5 u1/2f(a(s)+u,s)du
u=0

The integrand is regular at the upper (s-dependent) limit.
Therefore Leibnitz' rule can be applied

(d1/ds) = —u1/2f(a(s)+u,s)a'(s) (E6)
w=b~a(s)
b-a(s)
+ } u1/2[f(1)(a(s)+u.5)a'(s) + f(Z)(a(s)+u.s]du
u=0

To obtain Eq. (ES) an integration by parts must be carried out.
Notice that

e as)rru,8)au = tats)vu,s)
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An integration by parts of the first term in the integrand gives
outside of the integral a term which cancels the first term on
the right in Eq. (E6). Therefore

b-a(s)
s " | [(1/2)u'1/2f(a(s)+u,s)a'(s) + u1/2f(2)(a(s)+a,s)]du
u=0

Eq. (E5) is obtained after one reintroduces x. The second
derivative (dzl/dsz) from Eq. (E6) can be found without
encountering an infinity.

In this report, one needs derivatives with respect to z but
only for z=0., One has

(d1/dz) = 2z(dI/du)
(a%1/dz?) - 2(dI/du) + 422(a°1/qu?)
Hence

dI/dz‘ =0 (E7)
2=0

421 /dz° l = 2(dI/du)

z=0
b
. } ~(x-a(z2) "% (dasdz®) 1 (x, (z) %) +2(x-a (£ %) 2:(2) (5, 22)ax
b
= 2 { (dz) [(x*(a(zz)1/2f(x,zz)]dx (E8)
a(22)(1 z z =0

The results Eqs. (E7) and (E8) could have been anticipated
on intuitive grounds.

80




REFERENCE

W. Grobner, M. Hofreiter, N. Hofreiter, J. Laub, and E. ]
Peschl. "Integraltafel, Unbestimmle Integrale, Zentrale fur
wissenschaftliches Berichtswesen der Luftfahrtforschung."
Berlin-Adlershof 1944 (has also appeared in book form).

81

. —— — ————— . & P P S Y T T T T % LA Tt .



Figure 1.
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Figure 5. Evaluation of the Double Integral in Eq. (32) in the
Vicinity of a Control Point.
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Figure 8. Local Coordinates at a Point of the lLeading Edge.
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Figure 14,

Truncation of the Area of Integration by the Straight
Line BC (£ = x - ¢)
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