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. SUMMARY

\This is a study of vibration control for large space structures. Advantage is
taken of the limiting performance characteristics of dynamic systems. This approach
permits large problems with constraints to be analyzed. A modal formulation for the
limiting performance was developed in order to enhance the applicability of limiting
performance to large structural systems. One effort to develop an optimal control
system is based on the limiting performance approach in combination with
classical /optimal control theory. A limiting—performance/minimum—time solution was
formulated to achieve the goal of rapid suppression of disturbances. Classical/optimal
control studies show that a position loop might be useful in taking care of constraint
controllers, such as proof—mass dampers. Finally, to derive feedback control law
based on the limiting performance characteristics, parameter identification technique has

been under investigation,
.




IT1. RESEARCH OBJECTIVES

1. Modal Limiting Performance Forimulation

Instead of evaluating Duhamel integrals to implement a linear
programming formulation of the limiting performance problem, a modal
approach was to be studied. The focus of the study was to develop a
procedure for systemizing the coupling of vibration controllers to an
existing (modal) structural model. A study of vibration control of
structural systems was to be performed.

2. Limiting Performance Control of large Space Structures

The limiting performance formulation was to be enhanced and
expanded to treat control problems of large space structures (LSS) with
proof-mass actuators. To take the characteristics of the LSS problem
into consideration., a minimum-time solution ., which was intended to
dissipate the undesired vibration rapidly, was considered. Methods to
incorporate a minimum time solution into the limiting performance
formulation were of major concern.

3. Inertia Dampers

In addition to the limiting performance approach, inertia damper
design problem was to be treated using the classical or optimal control
laws. It was expected that the success of the control laws could be
measured by the limiting performance control law. If the resulting
control laws give characteristics which are close to those of the
limiting performance., the control systems may be considered to be
optimal. Since the inertia dampers were subject to constraints, a major
consideration was related to the methodology for incorporating these

constraints into the classical or optimal control laws.




4. Identification of Control laws

In a preliminary study, identification of control laws based on the
limiting performance characteristics was to be studied. This technique
can handle the problem efficiently because once the limiting preformance
characteristics are known, the identification process can be separated

from the system dynamics.




ITI. RESEARCH PROGRESS AND STATUS

1. Backeround Information

Formulation of the Linear Programming Problem

A linear vibrating system with n degrees of freedom subjected to
arbitrary excitation f(t) and control force u(t) is described by the

equations

Mx + Cx + Kx + Vu = £(1) (1)

where x is the displacement vector, M, C, K are the n x n mass, damping,
and stiffness matrices, respectively: the n x j coefficient matrix V,

associated with the j control forces u uj, places these

10 Upeeeoen

forces in the apppropriate rows in FEq. (1). In general, the measure of
performance may be a linear combination of displacements, velocities,

accelerations, control force components, and external forces. To define

such a performance index, let

h =P x+ Pyx + P3§ + qu + P5£ (2)

1 2

where the Pk are prescribed coefficient matrices. It is clear that h
may be considered to be explicitly dependent on time t and the control

forces u.

h = h(t.u) (3)




The performance index ¢ is then written in terms of h as

¥ = max max |h (t.u)] (4)
i t i
where i varies over the rows of h and t over the time interval of
concern. With these definitions, the optimization problem becomes
minimization of Y with respect to the control forces Upe Ugeooon uj.

For any system governed by Eq. (1), the system responses are linear
functions of u. It is convenient at this point to discretize u in the
time domain. Thus, if the time interval of interest is O < t £ Tf and
this interval is represented by N discrete instances of time, then u

takes on N-1 discrete values. This piecewise constant discretized

functionr is denoted §. Then, the discretized form of Eq. (2) becomes

h = Wu + g(t) (5)

where g is an explicit, known function of time and W is obtained by
solving Eq. (1) for the response variables in terms of u, discretizing
the results, and replacing the first four terms of Eq. (2) with these

results.

To put the optimization procedure in standard linear programming

form, define

o




u(1)

(6)

1=
[t}

[ u(N-1) |

where u(k) means the vector u{t) evaluated at the k-th subinterval of
time. Thus, if the time discretization is uniform with each subinterval

h seconds long, u(k) = u{(k-1)h). Next, let

v
z = (7)
u
and
ch=[10. .. 9] (s)

Then the linear programming problem is to minimize

subject to the constraints
Hz < b (10)

The constraints (10) always include the conditions




v I (] (11)

Thus, minimizing ¢ over the u such that conditions (11) hold makes 4 the
least upper bound of the set {lhi(t. g)l} over time t and control forces
u. In addition to the constraints (11), Eq. (10) may also contain

bounding constraints on response variables or control force magnitudes.

2. Modal Formulation [1]

A modal formulation of the limiting performance problem has been
proposced as one of the tasks. Instead of evaluating Duhamel intergrals
to accomplish the linear programming formulation., an alternative
approach, a modal approach was explored. This approach is
computationally convenient because it simplifies the steps necessary
before linear programming optimization can be initiated. Also, modal
trunctation can be incorporated easily to handle large finite element
models such as large space structure control problems. Furthermore. the
practicality of determining limiting performance characteristics is
enhanced because modal properties may be experimentally available. This
modal formulation was applied to find the limiting performance
characteristic of large structures, perhaps formed of substructures
subject to transient distrubances. Modal formulations were delevoped
for both systems with imbedded control forces and systems with generic

control force connections between substructures.

Undamped Systems

For an undamped system, mode shapes and mode frequencies o, mn
y i v

k




be found from the eigenvalue problem

D
(—miMH{) ?k =0 (12)

If mode shapes are dimensionalized such that

aTMe = 1 (13)
Tiw _ 02 _ qiam( 2 2 :
¢ Ke = 07 = d1ab(m1, Wor woe o mn) (14)
where
ety 2] (15)
then the solution to Eq. (1) is given by
n T T sinw, t T
{ = s 3 M Y s N .\ \
x(t) K] Coswpt Qk?kj x(0) e — K ?k?ki %(0)
k
n t T
+.35 ¢ 1 [ o [f(r)- Vu(7)] sine (t-T)dr (16)
k=1 *k = “k - - k
W 0

No conditions have been placed on the control forces which replace the
design elements: they may be linear or nonlinear. In the case where
control forces have replaced passive clements such as springs or
dashpots, it shauld be clear that the mode shapes and frequencies in Iq.
(16) are those for a system without these elements included.  The

contributions to the displacement coordinate solution (16) from the




replaced elements are contained in the control forces which have
replaced them.

The advantage of using a modal formulation for the response
variables is especially apparent when dealing with systems with control
force connections between components. Mode frequencies W in Eq. (16)
are identically those of the components and mode shapes ?k are readily

available from

(17)

where ?i is a matrix whose vectors are the modeshapes for the i-th
component. Modal properties for each component may be obtained
experimentally or determined computationally with general purpose (FE)
computer programs.

If control forces are discretized in some fashion then the

discretized response at time t=mT is obtained from Eq. (16)

x(nT) = r(nT) (18)
noy T m-1
-3 =2¢, ¢V u(iT) (cos (m-i-1)u, T - cos{m-i)w, T]
k-1 “% k-k 20 k k

and r{mT) represents contributions from the disturbance forces f and
initial conditions. Fquation {(1G) may be differentinted and discretized

to obtain velocity and acceleration expressions




QIR

x(ml) = r(nT) (19)
oo T, ™
- 2 248V T u(iT) [sin(m-i)o, T - sin(m-i-1)o,T]
k=1 “k i=0
. . n T
x(nT) = r(nT) - 3 ¢ & Vu(nT)
k=1
n T m-1
-2 ¢ ¢V > U(iT) [Cos(m—i)m T - COS(m—i—l)(.) T] (20)
e k k

In matrix notation., Egs. (18) to (20) have the form

x(mT) = r(nT) + Qu (21)
%(mT) = i(mT) + Ru (22)
x(ml) = r(mT) + Su (23)

where Q. R, and S are dependent upon modal properties, V, and the
discrete time interval chosen. With the use of these relations, the
vector h as a function of control forces and time is given by

h = (PIS + P2R + P3Q + P4 } u+ PSE

+P1£(mT) + P2j(mT) + P3£(mT) (24)
Once response variables and h are expressed as functions of Q. the

performance index and all constraints may be written in terms of the

vector z for cach discrete instance in time.

10




Damped Systems

A similar analysis may be obtained for damped systems. When
viscous damping is present, mode shapes gk and eigenvalues Ak may be

found from the eigenvalue problem

2
(Ak M+ AkC + K)\_,l_zk =0 1< k < 2n (25)
If mode shapes are dimensionalized such that
ol (oM + C)y, =1 (26)
~k k ~k
then the solution to Eq. (1) is given by
2s At ot =At
x(t) =r(t) - = wk e k [ e k wT Vu(r)dr
i - L _k -
k=1 0
n+s t Ak(c—T) T
-2 3 [ Re(e ¥ b ) Vu(r)dr (27)
k=2s+1 O
where it is assumed that the first 2s eigenvalues are real and An+s+1'
, A2n are the complex conjugates of A2$+1. cee An+s. r(t) denotes

the part of the response independent of the control forces.
If control forces are discretized in the same fashion as for the
undamped case, the discretized response at time t=mT is obtained from

Eq. (27)

11




2s Nt m-1 S ()T A ST

x(nl) = r(nT) + 3° ¢V 3 u(iT) [e e X
k=1 A i=0
k
n+s 1 T m-1 Ak(m—(i+1))T Ak(m—i)T
+2 3 Re{x Yh V 2 u(iT) [e - e 1} (28)
k=2s+1 k i=0

Velocity and acceleration expressions may be found by differentiating
Eq. (27) and discretizing the result. The remaining steps necessary to
define the linear programming problem are not presented since they are

identical to those followed for the undamped case.

Application
A three DOF system was treated to demonstrate the concepts

presented in modal formulation.

3. Limiting-Performance/Minimum-Time Formulation [3]

A minimum time solution has been superimposed on the conventional
limiting performance response to achieve the rapid suppression of the
disturbances in the minimum time. Since the min-max norm of the
limiting performance gives a unique solution only until the peak value
of the performance index is achieved, an additional measure of
performance is desired to obtain a unique solution after the peak value.
Two different approaches were studied to accomplish the
limiting-performance/minimum-time solution. One approach uses
additional constraints and the other is based on the performance index.
The two methods were applied to the control of a simple model of a

contilever beam with a proof-mass damper and the two methods led to the

12




identical minimum time solutions.

Problem Statement

A linear vibrating system with n degrees of freedom subject to
arbitrary external excitations f(t) and control forces u(t) is expressed

in the first order system of differential equations

s(t) = As(t) + Bu(t) + CE(t) (29)

where s(t) is an n-dimensional state vector, A, B, and C are n x n, n x
nu and n X nf constant coefficient matrices. The quantities nu and nf

are the number of control forces and excitations, respectively.

Constraints are imposed on the dynamic system under study. The

format of the constraints is

y; £Qps + Qu + Qf < yy for t <t <t (30)
where 73 and y; are nc-dimensional lower and upper constraint vectors,
Ql' Q2 and Q3 are nc x n, nc x nu and nc x nf constant coefficient

matrices, and to and t,. are given initial and final time.

f
The problem is to find an optimal control u(t) which will transfer
an initial state §(to) = s to a desired final s'tate §(tf) = S¢ in the

o

minimum time while extremizing a given performance index of the form

max

Lo T T T
Minimize J = (to <t Xl te IE1§ + pou + 93£|) (31)

13




where 21. 92 and py are given n, nu and nf constant coefficient vectors.

Formulation Using Constraints

In addition to the constraints in Eq. (30). an additional
constraint set, referred to as steady-state constraints, is imposed on

the time from the assumed minimum time (tt) to the final time (tf).

Yo £ Qg 8+ Qyq u + Qyg f < ygy for t <t <ty (32)

where XSL and Yo are ncs—-dimensional coefficient vectors representing
lower and upper bounds of steady-state constraints; le. st. and QBS
are ncs x n, ncs x nu, and ncs x nf coefficient matrices. The

steady—-state constraints represent the desired final states of the

system.

To place the optimization procedure into the standard linear
programming form, the system in Eq. (29) is discretized using uniform

time intervals to obtain a set of state difference equations

s(k+1) = Gs(k) + H[Bu(k) + CE(k)] (33)

where

s(k) = state vector at time t = ty

u(k), f(k) = control and external excitation vcetor at t

1}
ad

assumed to be constant over the interval "% <t [ tk+1

14




Ah
e

= gD ATy,
o
h = time interval = tk+l - tk

k=1,2, ..., N-1

The state vector, at any time t = tk' can be expressed as a

function of the initial state s(1), the control history u(l). u(2),

u(N-1) and the external excitation f(1), f(2). ..., f(N-1).
y k=l |
s(k+l) = G s(1) + = G H[Bu(j) + CE(J)]
j=1

(34)

+ H[Bu(k) + Cf(k)]

The constraints in Eq. (30) and {32) are discretized similarly
XL(k) < ng(k) + ng(k) + Q3£(k) < yU(k) for k = 1,2,... ,N-1 (35)

v (k) € Qugs(k) + Quau(k) +Qu f(k) < v (k) (36)

for k = NT,NT+1,..., N-1
where NT is discretized assumed minimum time.
The objective function of Eq. (31), which reflects the min-max

norm, is discretized and converted into a constraint set. Since J is

the maximum value of IDTi + Q;Q + Qgﬁl




T T T
lpys(k) + pgu(k) + paf(k)| < J

or
~J + [pis(k) + pu(k) + pyf(K)] € O
~J = [R]s(k) + pou(k) + pyf(k)] < O
Define
zZ = [J]
ST
where
o= [u(l). uw(2), .ou - DY
and
oo 0]

Then the linear programming problem is to minimize

subject to the constraints

where H and b represent constraints of Fags.

16

(35).

(36).

and (38).

(37)

(38)

(39)

(-10)

(41)

(42)

(43)




While extremizing the given performance index, the iinear
programming routine will check the feasibility of the solutic.a with the
given initial states, external forces, and the two sets of constraints.
The minimum time is the smallest time which will make the solution
feasible with the given conditions. If the response bechaves
monotonically, i.e., increases or decreases without fluctuation, tf =t
can be used. lowever, if the response varies sinusoidally a very
careful selection of te is required. For the sinusoidal response, te
t, must be at least a half period of the response. The search for the
smallest feasible time. t_. ., can be done efficiently vsing the

min

bisection method.

Formilation Usins Performance Index

To achieve alternative limiting-performance/minimum-time solution,
the performance index is given in Eq. {31) is modified. Two sets of
performince indices are considered. One set of them, referred to as the
transient performance index, is given by

max

T T T
Yot NEGR IR lpys + pyu + pyfl (41)

where tt is the time limit for the transient period. The other set,

referred to as the steady-state performance index is defined as
T T T -
J . ¢ If_)l'_’ + L)Zl,! + L’_;E ’ (‘1" )

Now, the "global™ performaince index is defined by




J=1J +1 (16)

Note that the vectors P+ Py and py are not changed in Eqs. (.) and

(45).

Consider now the linear programming formulation. The objective
functions of Eqs. (44) and (45) which reflect the min-max norm can be

converted into a constant set as follows:

N
[

ITG+ Tu+ Tf|
P35 * By TP 2 Jy

and (47)

~
—

T T T
lpys + pyu + pafl

To place this optimization problem into a standard linear programming

form, define

Jt
z'= Jq (18)
2
where u = [u(1) u(2) ... u(N- D] (19)
and
Vo[l 1 0....0] (50)

18




subject to the constraints

H'z' < b (52)

where H'and b'represent constraints of Eags. (30) and (47).

The minimum time (tmin) is the smallest time which will make the
global performance index of Eq. (46) stay within a desired value. Since
the performance index can be computed for each iteration. an
interpolation method such as the secant method can be employed to find

t . efficientiy.
min

4. Suboptimal Feedback Control for the Proof-Mass Actuntor Using

a Position-loop [2, 3]

In addition to the various limiting performance approaches, the
problem of the optimal design of the proot-mass dampers in a large
structural system using the linear contrel laws and the optimal control
theory was studied. Initially. linear control laws to control the
proof-mass dampers were investigated. The results showed that, due to
the constraints of the proof-mass dampers, althouch adequate damping
could be achieved at high frequencies, very little damping could be
obtained at frequencies of one Hz or less. While maintaining the
adequate damping at higher frequencies. to improve QQmping at lower
frequencies. both the limiting performance technique and optimal control
technique were investigated and compared. The limiting-

performance/minimum-time solutions were obtained for the control of a




proof-mass damper attached to the end of a clamped-free beam which
represented a small scale preliminary model of large flexible space
structures and used as a measure of the success of the optimal control
law. The system was composed of a proof-mass actuator, a
servo-accelerometer attached to the free end of the beam and a
proximeter to measure the position of the proof-mass along its track.
Using the optimal control theory and the full state feedback. a control
law which was simple but stable both in the linear and nonlinear region
was obtained. To take the constraints into consideration, a position
loop was added to the system and the constraints of rattlespace and
control force of a proof-mass actuator were able to be treated by only
limiting the desired relative position of the proof-mass. The resulting
suboptimal control law showed adequately damped response at low
frequencies which was very closce to that of limiting-performance/

minimum—-time control.

A Mathematical Model

A perfect model is rarely obtained for any physical process. One
of the most prominent sources of modeling error in large flexible space
structures is the deletion of modes in the formation of the design
model. The low-frequency modes, which are more accurately known, are
retained and the high-frequency modes are deleted. Assume a perfect
actuator and consider only the first mode of the beam to be perfectly
known, identified, and observed. The residual unknd@n modes are
represented by the second mode. This mode usually has eigenfrequency
that is not far from the closed-loop bandwidth and must be considered in

the control system design. Modern control theory is used to obtain

20




optimil first mode performance and a stable second mode. It is nseumed
that hicher residual modes have eigenfrequncies above the miin control
system bandwidth. They can be damped by passive dampers and do not
Interfere with the low-frequency control law. Assume that the plant s
variations in time are much slower than its characteristic time
constant, so it can be treated as n time invariant system. A simplificd
model for the first two modes of the beam’s free end is treated. The
system is subjected to the following control force (u) and rattlespace

{d) constraints
max = M Yo (53)
! < o d -
N - - max (51)

Sethontieal Control Considering Canstraints

AR a

[t is apparent from the results of the minimum time solution that

the proof-mass relative motion alony its finite lensth track is rather

imple. This kind of motion can be implenented by usins a direct
position control. The system is expanded by considering a position loop
added to the plant. The input to the system is the desired relative

position of the proof-mass dc' where d is its actual relative position.
Introduction of a position loop into the plant and the proper choice of

its gains make it possible to reduce the problem to a constrained input

problem.

For the pertormance index




the optimy) control can be treated through the calculus of variations

ard thunmilton’s principle.  The Hamiltonian is defined by

where N 16 the costate vector.

In the case of constrained input, it was shown by Pontryagin et al.
that “the Hamiltonian must be minimized over all admissible control for
optimal values of the state and costate”. In the case under

consideration, the Hamiltonian is a quadratic function of the control

dv. Ihere will be only one location which satisfies
g U e
) _ 0 (57)
ad -
C
This point will be denocted as EC d derived from the solution of the
Riccati equation . For constrained input, Pontryagin's Minimum

Principle leads to the following solution

d for d > d
mx c - omax
d = |d for |§ | < d (58) n
C c c RN
-d for d < -d_
L max ¢ - Tmax

Interest is in the steady stiate behavior of the process where the




optimi]l feedback cain matrix is obtained from the solution of the
Algebraic Riccati Fquation to minimize the following quadratic

performance index

2
Qs +R dC] dt (59)
The resulting linear position command is represented by

EC = —(K_xy + K, x, + K, d+ K d) (60)

d

5. System Identification of Suboptimal Feedback Control Parameters

Based on the Limiting Performance Characteristics

Since the limiting performance gives the best possible or
"limiting” response of a system, it would appear to be reasonable to
base a control system on the limiting performance characteristics.
However., due to uncertainties in control problems, open loop control
such as the limiting performance control may not be applicable in
practice, unless real-time computit., power for the limiting performance
is available. To overcome this difficulty, parameter identification to
find suboptimal feedback control laws based on the limiting performance
characteristics is under study.

Consider a linear, time invariant dynamic sysrém represented by a

set of difference equations

s(k + 1) = Gs(k) + HBu(k) (61)

23




From the limiting performance characteristics, the optimal time

» »*
responses s (k) and u (k) are obrained.

Consider a linear controller.

u(k) = Ks(k) (62)

where K is an m x n feedback gain matrix.

Since m controllers are considered and optimal control forces are
available for each controller, it is possible to proceed controller by
controller. Also. the system is assumed to be subject to the
constraints. For controller i, a suboptimal linear control law to be

determined is described by

[ Umuxi for Ust(k) > L'm;l,xi
Us (k) = Us’i‘(k) for [Us’i‘(k)l < Umax (63)
L Umini for Us?(k) < Umini
where
Usi(k) = suboptimil control force for controller i
Usi(k) = ks (k) (G1)
Ei = ith row of K matrix
4




It was assumed that controller i had constraint
Umin, < U (k) < Umax, (65)
Define
re (k) = U’i‘(k) - Us (K) (66)

*
where Ui(k) is an optimal control force for controller i.

Then a constant feedback gain matrix K in Eq.(62) is selected to

minimize
9
RE. = = [rei(k)]“ (67)

Once the optimal limiting performance characteristics are known, it
is not necessary to perform a complete structural analysis for this
identification procedure. Thus, this identification method handles
problems efficiently.

It is expected that this pramether identification technique will
give a stable feedback control law for a large structural system. To
ensure stability the Routh-Hurwitz criterion is considered to be
incorporated as constraints when a least squares fit is performed. An

efficient computational scheme to achicve a stable feedback control

based on the limiting performance characteristics is under study.
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