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I. SUMMARY

This is a study of vibration control for large space structures. Advantage is

taken of the limiting performance characteristics of dynamic systems. This approach

permits large problems with constraints to be analyzed. A modal formulation for the

limiting performance was developed in order to enhance the applicability of limiting

performance to large structural systems. One effort to develop an optimal control

system is based on the limiting performance approach in combination with

classical/optimal control theory. A limiting-performance/minimum-time solution was

formulated to achieve the goal of rapid suppression of disturbances. Classical/optimal

control studies show that a position loop might be useful in taking care of constraint

controllers, such as proof-mass dampers. Finally, to derive feedback control law

based on the limiting performance characteristics, parameter identification technique has

been under investigation.



II. RESEARCH OBJECTIVES

1. Modal Limiting Performance Formulation

Instead of evaluating Duhamel integrals to implement a linear

programming formulation of the limiting performance problem, a modal

approach was to be studied. The focus of the study was to develop a

procedure for systemizing the coupling of vibration controllers to an

existing (modal) structural model. A study of vibration control of

structural systems was to be performed.

2. Limiting Performaince Control of 1-irge Space Structures

The limiting performance formulation was to be enhanced and

expanded to treat control problems of large space structures (LSS) with

proof-mass actuators. To take the characteristics of the LSS problem

into consideration, a minimum-tine solution , which was intended to

dissipate the undesired vibration rapidly, was considered. Methods to

incorporate a minimum time solution into the limiting performance

formulation were of major concern.

3. Inertia Dampers

In addition to the limiting performance approach, inertia damper

design problem was to be treated using the classical or optimal control

laws. It was expected that the success of the control laws could be

measured by the limiting performance control law. If the resulting

control laws give characteristics which are close to those of the

limiting performance. the control systems may be considered to be

optimal. Since the inertia dampers were subject to constraints, a maijor

consideration was related to the methodology for incorporating these

constraints into the classical or optimal control laws.

I2____



-. Identification of Control Jaws

In a preliminary study, identification of control laws based on the

limiting performance characteristics was to be studied. This technique

can handle the problem efficiently because once the limiting preformance

characteristics are known, the identification process can be separated

from the system dynamics.

3



III. RESEARCH PROGRESS AND STATUS

1. Background Information

Formulation of the Linear Programming Problem

A linear vibrating system with n degrees of freedom subjected to

arbitrary excitation f(t) and control force u(t) is described by the

equations

Mx + Cx + Kx- + Vu = f(t) (1)

where x is the displacement vector, M. C, K are the n x n mass, damping,

and stiffness matrices, respectively; the n x j coefficient matrix V,

associated with the j control forces u1 . u2 ....... u., places these

forces in the apppropriate rows in Eq. (1). In general, the measure of

performince may be a linear combination of displacements, velocities,

accelerations, control force components, and external forces. To define

such a performance index, let

h = P1x + P2x + P3x + P4u + P5
f  

(2)

where the Pk are prescribed coefficient matrices. It is clear that h

may be considered to be explicitly dependent on time t and the control

forces u.

h = h( ,t . ) (3)

"=m~u ,, n •mu annnnn nlnn n mumn uua u4nl



The performance index P is then written in terms of h as

,P = max max jh (t.u)l (')
i t i

where i varies over the rows of h and t over the time interval of

concern. With these definitions, the optimization problem becomes

minimization of p with respect to the control forces u1, u2 . . .. .. u.

For any system governed by Eq. (1), the system responses are linear

functions of u. It is convenient at this point to discretize u in the

time domain. Thus, if the time interval of interest is 0 < t < Tf and

this interval is represented by N discrete instances of time, then u

takes on N-1 discrete values. This piecewise constant discretized

function is denoted u. Then, the discretized form of Eq. (2) becomes

h = Wu + g(t)

where g is an explicit, known function of time and W is obtained by

solving Eq. (1) for the response variables in terms of u, discretizing

the results, and replacing the first four terms of Eq. (2) with these

results.

To put the optimization procedure in standard linear programming

form, define



u(l)

u (2)

u= (G)

u(N-1)

where u(k) means the vector u(t) evaluated at the k-th subinterval of

time. Thus, if the time discretization is uniform with each subinterval

h seconds long, u(k) = u((k-l)h). Next, let

1P

= (7)

and

T
c [l 0 . . ] (S)

Then the linear programming problem is to minimize

k = C z (9)

subject to the constraints

FIz < b (10)

The constraints (10) always include the conditions



'P t -h~ tU) ( )

Thus, minimizing P over the u such that conditions (11) hold makes P the

least upper bound of the set {Ihi(t. u)I} over time t and control forces

u. In addition to the constraints (11). Eq. (10) may also contain

bounding- constraints on response variables or control force magnitudes.

2. Modal Formulation F11

A modal formulation of the limiting performance problem has been

proposed as one of the tasks. Instead of evaluating Duhamel intergrals

to accomplish the linear programming formulation, an alternative

approach, a modal approach was explored. This approach is

computationally convenient because it simplifies the steps necessary

before linear programming optimization can be initiated. Also, modal

trunctation can be incorporated easily to handle large finite element

models such as large space structure control problems. Furthermore, the

practicality of determining limiting4 performance characteristics is

enhanced because modal properties may be experimentally available. This

modal formulation was applied to find the limiting performance

characteristic of large structures, perhaps formed of substructures

subject to transient distrubances. Modal formulations were delevoped

for both systems with imbedded control forces and systems with gzeneric

control force connections between substructures.

_UTI:&mped Sys t ems

For an undamped system, mode shapes tld ;11d mode f requeniees ,k r Y



be found from the ei ienvalue problem

(-9 I+ K) -k = 0 (12)

If mode shapes are dimensionalized such that

DTb = I (13)

T. 2 2 2 2(D (2 d F U)1 '.......) (

where

.(15)

then the solltion to Eq. (1) is given by

n n sin .t -
x(t) k L c k k, +k I kk

n t T
+ k[l _ [f(r)- Vt](T)] sink(t-r)dr (16)

Wk 0

No conditions have been placed on the control forces which replace the

design elements: they may be linear or nonlinear. In the case where

control forces have replaced passive eements such i5 sprin s or

d(lshpots, it shou ld be clear hjt, tc rindh ' , pes, zind frequencies in Iq.

(16) are t hose for :i sy, tem w i !It i t Ilee I ( em Irit i I icI Iided. The

corrt r iblitiorl, to the di 'pl: emern t (oordi l te ',oll0 t ion ( 1(;) from the



replaced elements are contained in the control forces which have

replaced them.

The advantage of using a modal formulation for the response

variables is especially apparent when dealing with systems with control

force connections between components. Mode frequencies L)k in Eq. (16)

are identically those of the components and mode shapes k are readily

available from

-2

P (17)-$

where 4. is a matrix whose vectors are the modeshapes for the i-th
-- 1

component. Modal properties for each component may be obtained

experimentally or determined computationally with general purpose (FE)

computer programs.

If control forces are discretized in some fashion then the

discretized response at time t=mT is obtained from Eq. (16)

x(mT) = r(mT) (lS)

n T m-1
: -2kV 2 u(iT) [cos (m-i-l )kT - cos(m-i)(.ikT]

k=l k i=O

and r(mT) represents contributions from the disturbance forces f and

initial conditions. Equation (IG) nay be different iated and discretized

to obtain velocity and acceleration expressions



x(mT') = r(mT) (19)

n M-I1 TV
-k k O =OE u(iT) [sin(m-i)wkT - sin(m-i-l)wkT]

x(mT) = r(mT) - E k kV(mT)
k=l

n M-1
V E tu(iT) [cos(m-i), kT - cos(mi-l)wkT1 (20)

k=l i=O

In matrix notation. Eqs. (1S) to (20) have the form

x(mT) = r(mT) + Qu (21)

\(mT) = i(mT) + Ru (22)

x(mT) = r(mT) + Su (23)

where Q. R, and S are dependent upon modal properties, V, and the

discrete time interval chosen. With the use of these relations, the

vector h as a function of control forces and time is given by

S(P1S + P2R + P3 Q 
+ P4 ) U + P5

+P r(mT) + P2 (mT) + P3 r(mT) (24)

Once response variables and h are expressed as functions of tu. the

performance index and all constraints may be written in terms of the

vector z for each discrete instance in time.

1 0



Damped Systems

A similar analysis may be obtained for damped systems. When

viscous damping is present, mode shapes Pk and eigenvalues Xk may be

found from the eigenvalue problem

22
kN2M kC + K) 1 < k < 2n (25)

If mode shapes are dimensionalized such that

k (2XkM + C)Pk =1 (26)

then the solution to Eq. (1) is given by

2s Xkt t -Xkt T
x(t) = f(t) - - k e f e 'k VU(T)dT

k=1 0

n+s t Xk(t-T) T
-2 2 f Re(e \pklPk)Vu-(T)dT (27)

k=2s+l 0

where it is assumed that the first 2s eigenvalues are real and Xn+s+l'

X 2n are the complex conjugates of X2s+l ... 'n+s" r(t) denotes

the part of the response i.ndependent of the control forces.

If control forces are discretized in the same fashion as for the

undamped case, the discretized response at time t=mT is obtained from

Eq. (27)

I1



2s ekt T M-1 -Xk(i+l)T -XkiT

x(mr) = E(mT)k+ 2 - kkV 2 u(iT) [e - e
k=l Xk  i=O

n+s 1M1 r i X k(m-(i+l))T Nk(m-i)T
+2 2 Re{ 4 'k'k V u(iT) [e - e (28)

k=2s+l k i=O

Velocity and acceleration expressions may be found by differentiating

Eq. (27) and discretizing the result. The remaining steps necessary to

define the linear programming problem are not presented since they are

identical to those followed for the undamped case.

Application

A three DOF system was treated to demonstrate the concepts

presented in modal formulation.

3. Limiting-Perfornance/Minimum-Time Formulation F31

A minimum time solution has been superimposed on the conventional

limiting performance response to achieve the rapid suppression of the

disturbances in the minimum time. Since the min-max norm of the

limiting performance gives a unique solution only until the peak value

of the performance index is achieved, an additional measure of

performance is desired to obtain a unique solution after the peak value.

Two different approaches were studied to accomplish the

limiting-performance/minimum-time solution. One approach uses

additional constraints and the other is based on the performance index.

The two methods were applied to the control of a simple model of a

contilever beam with a proof-mass damper and the two methods led to the

12



identical minimum time solutions.

Prnblem Statement

A linear vibrating system with n degrees of freedom subject to

arbitrary external excitations f(t) and control forces u(t) is expressed

in the first order system of differential equations

s(t) = As(t) + Bu(t) + Cf(t) (29)

where s(t) is an n-dimensional state vector, A, B, and C are n x n, n x

nu and n x nf constant coefficient matrices. The quantities nu and nf

are the number of control forces and excitations, respectively.

Constraints are imposed on the dynamic system under study. The

format of the constraints is

YL < Q1a + Q21 + Q3f < YU for t < t < tf (30)

where yL and yU are nc-dimensional lower and upper constraint vectors,

Q1, Q2 and Q3 are nc x n, nc x nu and nc x nf constant coefficient

matrices, and t and t are given initial and final time.o tf

The problem is to find an optimal control u(t) which will transfer

an initial state s(t ) = so to a desired final state s(tf) = Sf in the

minimum time while extremizing a given performance index of the form

max IT+P
Minimize J = {t 0< t < t la P + P 3} (31)

13



where p 1 P2 and p 3 are given n, nu and nf constant coefficient vectors.

Formulation Using Constraints

In addition to the constraints in Eq. (30), an additional

constraint set, referred to as steady-state constraints, is imposed on

the time from the assumed minimum time (t t) to the final time (tf).

Y-SL - Q1S s + Q2S 1 + Q3S Y ! ZSU for tt < t < tf (32)

where YSL and YSU are ncs-dimensional coefficient vectors representing

lower and upper bounds of steady-state constraints; QIS' Q2S and Q3S

are ncs x n, ncs x nu, and ncs x nf coefficient matrices. The

steady-state constraints represent the desired final states of the

system.

To place the optimization procedure into the standard linear

programming form, the system in Eq. (29) is discretized using uniform

time intervals to obtain a set of state difference equations

zs(k+l) = Gs(k) + H[Bu(k) + Cf(k)] (33)

where

E(k) = state vector at time t = tk

u(k), f(k) = control and external excitation vcetor at t k '

assumed to be constant over the interval t ( t ( tk+ 1

I 1"-

i "h , 1--i



G Ah

H = fh eA(h-T)dTJ0 C

h = time interval = k+l - tk

k= 1, 2, ..... N-1

The state vector, at any time t = tk' can be expressed as a

function of the initial state s(1), the control history u(l), u(2),

u(N-l) and the external excitation f(l), f(2).....f(N-l).

k-i

s(k+) = C s(1) + : C I[BuI(j) + Cf(j)]
j=l

(341)

+ H[Bu(k) + Cf(k)]

k= 1. 2. .... N-1

The constraints in Eq. (30) and (32) are discretized similarly

YL(k) _ QlS(k) + Q2 1u(k) + Q3f(k) y U(k) for k = 1,2......N- (3)

YSL(k) -QiS(k) + Q2sU(k) +Q3sf(k) < ySU
(k ) (36)

for k = NT.NT+1 .... N-1

where NT is discretized assumed minimum time.

The objective function of Eq. (31). which reflects the min-mLx

norm, is discretized and converted into a constraint set. Since J is

the maXimuM value of T + T +

1 -5

.... . . . .... .... .... . _ __... .. . . . .._ _ I



1121 s (k) + P2u(k) + T f (3)

or
-j+[Tsk T Pu(k) + npT f(k)] < 0-J + [T- (k) + T- + 3 <

(3S)

-J- T +T T <
-J - [ps(k) + 2 u(k) + pl3f(k)] < 0

Define

~ H (39)

where

u= [u(1). Iu(2) ...... u(N - 1)1F ('10)

and

= [1 0 .... ( )

Then the linear programming problem is to minimize

T (42)

subject to the constraints

Hz ( b (43)

where 1t and b represent constr,-iints of Eqs. ([V6) ( G), and (3S).



%1ile ext remi i ng the giv en performnce index, the i near

programminZ routine will check the feasibility of the solut i. with the

given initial states, external forces, and the two sets of constraints.

The minimum time is the sti llest time which will make the solution

feasible with the given conditions. If the response behaves

monotonically, i.e., increases or decreases without fluctuation, tf = t t

can be used. However, if the response varies sinusoidally a very

careful selection of tf is required. For the sinusoidal response, t -

t t must be at least a half period of the response. The search for the

smallest feasible time. tMil , can be done efficiently using the

bisection method.

Fur'm, I t i On Us in.' Performance ITn(ex

To achieve alternative limiting-perfornimce/minimum-time solution,

the performance index is given in Vq. (31) is modified. Two sets of

performaice indices are considered. One set of them, referred to as the

transient performance index, is given by

maT T

Jt rt < t < t +P - + P7 f
0 -t

where t is the time limit for the transient period. The other set,t

referred to as the steady-state performance index is defined as

ITVtLX TT~T+[ fI(1
's t t < t < tf - -

t f

Now. the "'g Ioba " per fo r'rce i ndcx i 5 defined by

I "



J t + j

Note that the vectors pl, p2' and p3 are not changed in Eqs. ( .) and

('15).

Consider now the linear programming formulation. The objective

functions of Eqs. (4-4) and (-i2)) which reflect the min-max norm can be

converted into a constant set as follows:

T T +Tf(

and (-17)

1I Ts + 12T, + ]2T f < J_

To place this optimization problem into a standard linear programming

form, define

J t

z'= J (S)

where u = [ti(l) u(2) ... Ii(N - 1 )]T ('0)

and

CT [l 1 0 .... 0] (5)

Then the linear prorammingl probl em is to minimize

J J 1 5!

is



subject to the constraints

1'z' < b' (52)

where H'and b'represent constraints of Eqs. (30) and (17).

The minimum time (tmin) is the smallest time which will maake the

global performance index of Eq. ('t6) stay within a desired value. Since

the performance index can be computed for each iteration, an

interpolation method such as the secant method can be employed to find

tmin efficiently.

-. Suhoptimal Feedhack Control for the Proof -Ms,,s Actuator Usin,.

a Position-Loop F2, 31

In addition to the various limitin, perfornmnce approaches, the

problem of the optimal desigan of the proof-mass dampers in a large

structural system using the linear control laws and the optimal control

theory was studied. Initially, linear control laws to control the

proof-mass dampers were investigated. The results showed that, due to

the constraints of the proof-mass dampers, althourh adequate damping

could be achieved at high frequencies, very little damping could be

obtained at frequencies of one lz or less. While maintaining the

adequate damping at higher frequencies, to improve damping at lower

frequencies, both the limitin( performince technique and optimal control

technique were investigated and compired. The limit ing-

pcrformance/minimtim-time solutions were obtained for the control of a

It,0



proof-mass damper attached to the end of a clamped-free beam which

represented a small scale preliminary model of large flexible sxace

structures and used as a measure of the success of the optimal control

law. The system was composed of a proof-mass actuator, a

servo-accelerometer attached to the free end of the beam and a

proximeter to measure the position of the proof-mass along its track.

Using the optimal control theory and the full state feedback, a control

law which was simple but stable both in the linear and nonlinear region

was obtained. To take the constraints into consideration, a position

loop was added to the system and the constraints of rattlespace and

control force of a proof-mass actuator were able to be treated by only

limiting the desired relative position of the proof-mass. The resulting

suboptimal control law showed adequately damped response at low

frequencies which was very close to that of limiting-performance/

minimum-time control.

A Mathematical Model

A perfect model is rarely obtained for any physical process. One

of the most prominent sources of modeling error in large flexible space

structures is the deletion of modes in the formation of the design

model. The low-frequency modes, which are more accurately known, are

retained and the high-frequency modes are deleted. Assume a perfect

actuator and consider only the first mode of the beam to be perfectly

known, identified, and observed. The residual unknown modes are

represented by the second mode. This mode usually has eigenfrequency

that is not far from the closed-loop bandwidth and must be considered in

the control system desi gn. Modern control theorv is used to obtain

20



oi)t imil firs it mode performance annd a stablI e second mode. It i dil(.i

tht hi, hIe r re si d 1 modes Iive ei £erI f recquiIc ies above the t in cor t nI

ts em b,ndw idt h . They can be damped by paissive dampers iild do rot

int erfere with the low-frequency control law. Assume that the pLintS

var iat ions in time are much slower than its characteristic t ime

constant so it can be treated as a time invariant system. A simplified

model for the first two modes of the beam's free end is treated. The

system i s subjv- cted to the fol lowiin cont tol force (u) and rat t lespace

(d) const raint s

-II 1, II Tl- ,i - i - t nvix (53 )

d d d

et is Ii;i-e.it from t he re,,ults of the minimm time solut ion t hat

I'(' -ma 1 ekt i.-e mion aoII t14)1 its f in ite e t -trck is raither

si-pl e lhi, kinid of motion can be impleriernted by usir a direct

posi t ion control. HIhe system is expnded by cons ider i nt- a position loop

;idded to the plant. The input to the system is the desired relative

position of the proof-trss d , where d is its actual relative position.C

Introduction of a position loop into the plant and the proper choice of

its [,a/iTrs raike it possible to reduce the problem to a constrained input

prob 1 em.

V()r the )et'formiau(e in(JU\

21
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!he opt i. (()lit roI ml ca he t renited through the calculus of var fat ioils

:71m 11 1) priT Ipl [hFie IHamil1tonian is defined by

5ld e I\ 1S 0I ,, e eC t r.

Ili the csosev of, corsrt rzlired inpu1t , it was shown by Pontryaugin et a I.

tlhit tie(1wr I tonnarl Mos t be minimized over all admissible control for

pj~'i IA~ of thle state nnlCostate". In thle case under

(t.idcotLit inol, 11 he iIll i I 10T Ini nIn is a quadratic function of the control

dI . I re willI he onily onle locaItionl which sat isf ies

0 If

0 d 0

'his point will be denoted as Ic d derived from the solution of thle

Riccati equation .For constrained input. Pontryagin's Minimum

Principle leads to the following- solution

da fo >c d

d d for <~c -dI(S

ni mx C - M;Is

Interest is, in the steady stalte beha'vior of thle prowess, Where tile



Optim1 fUeedbhCk _,ain nit rix is obtained from the solut ion of the

Algebraic Riccat i Equat ion to minimize the fol lowin_ quadratic

perfornnmce index

0

0.5 [s T Q s + R2 d ] dt (5)
Jo-c

The resulting linear position command is represented by

C = -(K x1 + Kv x, + Kd d + Kw d) (G0)

5. System Identification of Suboptimal Feedback Control Parameters

Based on the ljmitin! Performnce Characteristics

Since the limiting performance gives the best possible or

"limiting" response of a system, it would appear to be reasonable to

base a control system on the limitin-, performance characteristics.

However, due to uncertainties in control problems, open loop control

such as the limiting performance control may not be applicable in

practice, unless real-time computi,.- power for the limiting performance

is available. To overcome this difficulty, parameter identification to

find suboptimal feedback control laws based on the limiting performance

characteristics is under study.

Consider a linear, time invariant dynamic system represented by a

set of difference equations

s(k + 1) = s(k) + IBu(k) (61)
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From the limitinL performance characteristics, the optimal time

responses s (k) and u (k) are obtained.

Consider a linear controller.

u(k) = Ks(k) (62)

where K is an m x n feedback tain matrix.

Since m controllers are considered and optimail control forces are

available for each controller, it is possible to proceed controller by

controller. Also, the system is assumed to be subject to the

constraints. For controller i, a suboptimal linear control law to be

determined is described by

Umax. for Us.(k) > ma-x.1 1 1

Us (k) Us. (k) for IUsi(k) < Um n-L. (63)
1 1 1

Umin. for Us. (k) < Umin.1 1 1

where

Usi(k) suboptima l control force for controller i

Usi(k) = k.s (k) (6)

• th

k. t row of K m; Irix-1



It was assumed that controller i had constraint

Umin. < U.(k) < Umax. (65)

Define

rei(k ) = UX(k) - Usi(k) (66)

where Ui(k) is an optimal control force for controller i.
=1

Then a constant feedback -ain matrix K in Eq.(62) is selected to

minimize

N-1
RE. = [rei(k)]- (67)

k=l

Once the optimal limiting performance characteristics are known, it

is not necessary to perform a complete structural analysis for this

identification procedure. Thus, this identification method handles

problems efficiently.

It is expected that this pramether identification technique will

give a stable feedback control law for a large structural system. To

ensure stability the Routh-Hlurwitz criterion is considered to be

incorpnrated as constraints when a least squares fit is performed. An

efficient computational scheme to achieve a stable feedback control

based on the limiting performance characteristics is under study.
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