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LEAVE-K-OUT DIAGNOSTICS FOR TIME SERIES
Andrew G. Bruce
R. Douglas Martin

Department of Statistics, GN-22
University of Washington
Seattle, WA 98195

ABSTRACT

We propose diagnostics for ARIMA model fitting for time series formed
by deleting observations from the data and measuring the change in the
estimates of the parameters. The use of leave-one-out diagnostics is a well
established tool in regression analysis. We demonstrate .the efficacy of
observation deletion based diagnostics for ARIMA models, addressing issues
special to the time diagnostics based on the innovations variance. It is shown
that the dependency aspect of time series data gives rise to a ‘*smearing’’
effect, which confounds the diagnostics for the coefficients. It is also shown
that the diagnostics based on the innovations variance are much clearer and
more sensitive than those for the coefficients. A ‘‘leave-k-out’’ diagnostics
approach is proposed to deal with patches of outliers, and problems caused
by ‘‘masking’’ are handled by use of iterative deletion. An overall strategy
for ARIMA model fitting is given, and applied to two data sets.

Research supported by NASC Contract N0O0014-86-K-0819, APL Contract N00O14-84-K-
0599, and ONR Contract N0O0014-84-C-0169.
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1. Introduction

Regression diagnostics are becoming a well-accepted tool in the practice of statistics.
This is evidenced not only by books devoted to the subject (e.g., Belsley, Kuh and Welsch,
1980; Cook and Weisberg, 1982; Atkinson, 1985), but also by the penetration of the concepts
into standard texts on regression (e.g., Weisberg, 1980) and the increasingly widespread
availability of software for computing the diagnostics. One also sees the basic leave-one-out
diagnostic idea for linear regression begin carried over to somewhat more complicated
settings such as logistic regression (Pregibon, 1981) and Cox regression (Storer and Crowley,
1985).

However, the literature appears to be relatively devoid of analogous results in the time-
series setting, in spite of a rather obvious way to obtain leave-one-out diagnostics in the
context of ARIMA model fitting for time series, at least in principle: One deletes a single
observation at a time, and for each deletion computes a Gaussian maximum likelihood
estimate for missing data (see, for example, Jones, 1980; Harvey and Pierse, 1984; Kohn and
Ansley, 1986). It should be noted that use of Gaussian MLE’s for missing data entails
intuitively appealing use of predictions in place of missing data. A diagnostic display is
obtained by comparing the leave-one-out MLE’s with the Gaussian MLE's for the full data
set versus time, on an appropriate comparison scale. This idea was articulated some time
ago by Brillinger (1966), but only the advent of powerful computers and algorithms for
fitting ARMA and ARIMA models with missing data has placed actual use of the procedure

within reach.

In this paper we demonstrate the efficacy of observation deletion diagnostics for time
series, addressing in the process some issues which are special to the time series setting. In
particular, we consider not only diagnostics based on ARIMA model coefficients, but also
diagnostics based on the innovations variance. We show that the time series problem gives

rise to a ‘‘smearing’’ effect which is not encountered in the usual independent-observation

setting. For diagnostics based on coefficients, this smearing can result in considerable
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) ambiguity concerning the numbers and locations of outliers. By both examples and by
. theoretical calculations, we show that diagnostics based on the innovations variance is far
superior to coefficient-based diagnostics in this regard.

Furthermore outliers frequently occur in patches in the time series setting. Thus we

proposed a ‘‘leave-k-out’’ diagnostic approach which is both effective and within computa-

tional reach.

The paper is organized as follows. Gaussian maximum likelihood estimation of

ARIMA models with missing data is reviewed in Section 2. Section 3 presents the basic

2 QRSO

‘‘leave-k -out’’ diagnostic, based on the coefficients and innovations variance, including a
proposal for scaling. Some artificial examples are given which illustrate that the innovations

variance is a better diagnostic tool. Analytical results on ‘*smearing’’ effects associated with

:f;.—."
‘e

leave-k-out diagnostics are presented in Section 4. The problem of outlier type identification
is discussed briefly in Section 5. Section 6 presents an iterative deletion procedure to over-
come problems caused by masking. Techniques are also discussed for handling other types

of disturbances, such as level shifts and variance changes. Finally, we give an overall stra-

tegy for ARIMA model identification and fitting using the leave-k-out diagnostics. This stra-
tegy is applied in Section 7 to two real data sets. Finally, possible extensions, computational

aspects, scaling issues, and a connection with robust filtering are briefly mentioned in Sec-

tion 8.
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2. Estimation of ARIMA Models with Missing Data

Exact maximum likelihood estimates with missing data can be obtained using the state
space representation of an ARIMA model. Various formulations have been given by Jones
(1980), Harvey and Pierse (1984) and Kohn and Ansley (1986). The Harvey and Pierse
approach is used here. The Kohn and Ansley approach has an attractive feature which we

comment on in Secton 8.

2.1 The Model
Consider a nonstationary process x;, t=1,...,n, which can be represented by an
ARIMA (p,d,q)x(P,D,Q) model

O(B*)$(B)VEVPx, = y+O(B*)0(B)¢, (2.1)

where the g, are the innovations. These are assumed to be independent normal random
variables with zero mean and variance 2. B is the backshift operator, and the regular and
seasonal difference operators are V =(1-8), V,=(1-B*), respectively. The intercept

term is 7Y, the ordinary autoregressive and moving average operators are

&B) = 1—¢18—"'—¢po, 0(B) = 1-918----—648‘7 2.2)
and the corresponding *‘‘seasonal’’ operators are
O(Bf) = 1-®;B*-- - -0pB*", O(BF) = 1-©,B°-----0,8¢ . (2.2)
Let a denote the rx1 vector of parameters,
= &1, 0, P, 0, D,,8), - ,0,,0, "',94)' (2.3)

where r=p + P + g + Q, Assume that the polynomials in (2.2)—(2.2’) have their roots out-

side the unit circle, so that the process w, =V ¢ VP x, is stationary and invertible.
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2.2 Kalman Filter Representation of the Likelihood Function
The state space formulation of (2.1) is based on the vector Markov state transition equa-
tion
x, = Tx,_+rg (2.4)
where x; is an mx1 state vector, T isan mxm transition matrix, risan mx1 vector,
the & are asin (2.1),and m =max(p +sP +d +sD,q +sQ +1). The values of the pro-
cess x, are related to the state vector X, via the noise-free observations equation
x, = 7'x, (2.5)
where zT=(1,0, ---,0) .

Let X, denote the optimal linear (Kalman) filter estimate of x, (i.e., X, minimizes the
mean-squared error and depends on the data x,, - *,x;), and let O’ZP, be the covariance
matrix of filtering error X,-x,. Also, let %,,,_, =TX,_; be the optimal one-step-ahead
predictor of x,, and let o? Py, denote the corresponding prediction error covariance
matrix. The Kalman filter provides a well-known method for recursively evaluating X,,

X1, P;,and Pr|:-1 :

X = im-l +f:-lpt|:-l z°¢
P,y = TP, T +rr'c? (2.6)
P, = le:—l —ft-lpxlr—lzz’Pm—l

where e, is the observation-prediction residual

e, = x,-—E [X‘ le, ... px‘—l] = X‘—z’i”‘_l

and f, is the associated observation-prediction error variance

-----

= 2 - _ .
f! = E[e( |x1V"'1x'_l] - z’p‘“_lz - (Pfll-l)ll . (-. J
o R AR, R PR A -‘._-P OO AN .\.,_. L S _.¢ ‘o " -
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The choice of initial condition is discussed shortly.

The log-likelihood is conveniently expressed in terms of e, and f, (see, for example,

Harvey (1981)):

log L ( 2y - 4 - 2_1yg 1 e 2
gL(Xx,,®qc") = log 2% logo Y logf, e fi (28)
2 2 2::1 20 =1

where x, = (x|, ~'-,x,,)T. Note that f, =f,(a) and ¢, = ¢, ().

Concentrating out 6? in (2.8), the maximum likelihood estimate & is given by

& = argmin{ 3 logf, (@ +log( 5 e Xa)/f, (@)} . (2.9)
t=1

t=]

If observation ¢, is missing, then the corresponding term in (2.9) is dropped, no update is
performed in the Kalman filter, and X, =X, ;,-1-

When a nonstationary ARIMA process is differenced to produce stationarity, the log-
likelihood is given by (2.8) applied to the differenced series w, = V¢ V,D x,.

2.3 The Special Case of Stationarity

Consider the special stationary ARMA process case of (2.1). Ignoring seasonal com-

ponents, we use the state space formulation preferred by Harvey and Phillips (1979), among
others, and choose T and r to be

2.1
o= (1,-6,...,-6,_D7

where m =max(p,q+1), ¢;=0 for i >p and 0;=0 for i >¢g +1. Under stationann

.................
...........

. . - . .t '-'l"“..'«'\"-‘ ."‘..'~ i'-‘“nt . -‘ aaaaaaaa "-'.v'-' h
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the initial conditions for (2.6) are X,0=0 and P, , which satisfies
Pl]O = TP1|0T'+rr’ (211)
For numerical solution of (2.11), see Gardner, Harvey and Phillips (1980).

To ensure stationarity, the optimization of (2.9) over ¢, - - ,¢P must be constrained
so that the roots of the polynomial equation ¢(B)=0 lie outside the unit circle. This is
easily done by first reparameterizing in terms of the partial autoregressive coefficients,
b;,i=1,...,p, and carrying out an unconstrained minimization over the transformed par-

tial autogression coefficients u;, i =1,..., p, where

_ 1-e™™
; —.
l+e™

(2.12)

The parameters ‘f)l, °-',43p are obtained by the Levinson (1947)-Durbin (1960) recur-
sions. See Jones (1980) who also pointed out that invertibility of the estimated model can be

assured by using partial moving average coefficients.

2.4 Nonstationary Models

Now consider the general ARIMA model without seasonal terms. One possible
approach is to apply the state space model (2.10) to the differenced series w,. However,
with missing observations, this procedure is undesirable since the series w, will have
(d+1)(D+1) times as many missing values as x, . An alternative method due to Harvey and

Pierse (1984) avoids this difficulty by utilizing a levels formulation of the state space model.

The levels formulation is based on separating the stationary and nonstationary parts of

x, in the state vector x,. Let dg=d+sD , m™)'=max(p,q+1),and m=m™)+d,. The

w )

state vector is X, = (X, ,x,o_l’) where x,(“') is a m™)x1 state vector for w, ani

x,0_1’=(x,_1,...,x,_d_sD) is a dgx1 vector of past observations. Lot




§ .,:\:

N 7

--\-

o

il 8 =(8;,...,84,), where -3, arc the coefficients of the polynomial V¢V? | so that
-:t'.; do )

O vévP =1- Y §;B/. Then the new transition equation is given by (2.4) with

- j=1

:--‘A r 1

\ |

K ™ Opie, 4,

|

: T = Zw) | &

- l

. 0fp-t,mr | Lgpy 04,-1

{ |

- 2.13)
r = (r(w)/, odo’)

o; where Z™V=(1,0,6_;), T® and r™) are the same as in (2.10). The new
measurement equation, given by (2.5) with 2, =(Z™”, &), is essentially an
undifferencing operator.

.__ The Kalman filter is initialized at time rq=do with &5 .} 4,=(0,', x'go) and

w)

- Pijer1dy = 0 0 (2.14)

' (w) .

F where Pjo is the solution to (2.11) with T and R replaced by T®) and R™)
respectively. With no missing data, the likelihood computed from the observations x, is

' identical to that computed from the differenced observations w,. The likelihood is

maximized as before, using partial autoregressive and moving average coefficients to ensure

- stationarity and invertibility of w; .

‘ Note that this approach requires d consecutive observations at the beginning of the
._ series. If a missing value occurs in the beginning, then the likelihood can be computed by
1 reversing the series (i.e., ordering the data by x,,x,_;, ***,x,) and applying the Kalman
‘ . filter to the reversed series. If there are missing values at both ends of the series, this
" -

approach will not work. In this case, the formulation proposed by Kohn and Ansley (19861
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can be applied: see Section 8 for further discussion.

2.5 Seasonal Models

The extension to the general seasonal ARIMA model given by (2.1) follows from ex-
pansion of the autoregressive and moving average ordinary and seasonal operators.

In the stationary case, the state vector X, has length m = max (p+sP,g+sQ+1),
and the parameters ¢, ---,¢, and 6, '--,6, are replaced by the appropriate
coefficients of ¢(B)DP(B) and 6(B)O(B). Stationarity and invertibility are assured by
transforming each of the ordinary and seasonal parts.

The nonstationary case is extended to seasonal models in the same fashion.
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3. Leave-k-Out Diagnostics for ARIMA Models

In this section, we describe our basic leave-k-out diagnostics for both ARIMA model
coefficient estimates, and the innovations variance estimate. As we shall see by example in
. several simulated series, the diagnostics based on the innovations variance yield much

sharper results than those for the coefficients.

3.1 The Basic Leave-k-out Diagnostics
Diagnostics for Coefficients

Denote the maximum likelihood estimatt (MLE) of @ by & Let
A={t,,t5,..., 5 } be an arbitrary subset of {1,2,..., n}, and let &A denote the
MLE with observations y;, - ',y, treated as missing. If some of the observations in A
have an undue influence on the estimate @, , then this will often reveal itself in the form of
a substantial difference between @ and «,. We define the empirical influence on the

coefficients of the subset A by
EIA) = -n(a,-a). (3.1)

Standardizing by the factor n leads to a non-degenerate asymptotic form for (3.1) (see
Appendix B).

In the case of independent observations, one almost always deletes a single observation
at a2 time and computes various diagnostic statistics. However, the time series situaton
differs from the case of independent observations in at least two important ways:
(a) structure is imposed by time ordering, and (b) influential observations often come in the
form of an "outlier patch™ or other local "structural” change extending over several observa-

tions. Leave-one-out diagnostics can fail to give clear evidence of influence in the case

b patchy disturbances such as outliers (an example of this is provided below). Such beha: -
S
t{; might be regarded as a form of "masking” since the effect of any single outher in v..
o
¥
®
t__'.
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patch can be overwhelmed by the effect of the other outliers. Fortunately, this kind of situa-
tion is easily dealt with in ttme series (unlike as in unstructured independent observation

problems) by leaving out k consecutive observations; that is, by taking A = A, , to consist
of the k time points centered at ¢: (¢ —[—k;—l], R | %]) , where [x ] denotes the

largest integer less that or equal to x . To simplify notation, denote EI(A, ,) by El(k,r)

and &A“ by ag ..

For patches at the ends of the series, where ¢ <[ _1] or ¢ >n—[%], El(k, )

k
2
is computed with the patch truncated in the obvious manner. For nonstationary models, the

series will be reversed to obtain EI(k,r) for ¢ =1, ---,d0+[—k2_—1] where d is the
order of the differencing (see the comments under nonstationary models in Section 2).

A strategy for determining the largest & that needs to be considered for a given data

set will emerge, based on the empirical examples of Section 3.2.

Standardizing EI

The empirical influence EI(k, ¢) is an r-dimensional vector, and as such is difficult to
interpret. Further, the empirical influence is relative, and comparable only within a data set.
Hence it is useful, as in the ordinary regression context, to consider a quadratic form diag-

nostic measure of influence for coefficients

DC(k,t)=El'(k,t) MEI(k,t) (3.2)
where M is an appropriate positive semi-definite rxr matrix. As in the regression setung,
it is natural to choose M to be the inverse of covariance matrix of a.

Although the exact covariance matrix for a is not known, it can be approximated by
the asymptotic information matrix I(a). It is well known that a is asymptotically normal

under regularity conditions (see, for example, Fuller, 1976):

‘
-

Vn (@-a) = N.(0,I(a)!). (
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If i(ax) is a consistent estimator of I(ax), then the Mann-Wald theorem implies that

na-a) laa~a) - x? (3.4)
where %2 denotes a chi-square random variable with r degrees of freedom. Thus, it is
natural to choose M to be n~'i(a).

One estimator of I(a) is I(&) , the expected information evaluated at the maximum
likelihood estimate. Although not commonly available in the literature, a closed form
expression for I(a) in terms of & exists (this expression is derived in Appendix A). Using

this expression, we take as our leave-k-out diagnostic for coefficients

DC(k,t)

-’17 EI'(k, ) (QEI(k, t) 3.5)

n@-a, )l a-a,,).

Although the distribution of DC (k,z) is not known, the use of the x% distribution i
allows one to view DC (k,r) on a familiar scale. This corresponds to using the F distri-
bution as a reference for Cook’s Distance (Cook and Weisberg, 1982) and DFFITS (Belsley

et. al.,, 1980). The %2 distribution is used in the time series case, rather than an F distri-

bution, since I(a) does not involve the nuisance parameter o2,

Following previous applications of leave-k-out diagnostics, we recommend judging a

rraal

2
f
x. ‘\ ‘! ‘] v ‘l =

>

point or patch of points to be influential if the "p-value" of DC (k,7) based on the 2

-

N'@®

reference distribution is smaller than .S. Empirical evidence shows this guideline is quite

useful, except near the region of noninvertibility or nonstationarity.
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! § Diagnostics for the Innovations Variance
The influence of a subset A can also be measured by evaluating the effect of its removal
on the MLE of the innovations variance estimate G2. The innovations variance is a
J nuisance parameter, and at first thought it might therefore appear to have less intuitive appeal
as a basis for leave-k-out diagnostics than the coefficient estimates a&. However, it turns out
- that a diagnostic based on the innovations variance leads to a more effective tool than DC
{ for identifying outliers. The diagnostic is formed in the same manner as above: A
standardized version of — (G2, -G?) is computed, where G2, is the MLE of 62 with
observations at times ¢ € A, ; treated as missing.
. Again, the standardization is based on asymptotic theory. Under regularity conditions,
- 62 is asymptotically independent of a,and
g Vn (62-02) = N(0,20%) . (3.6)
< If 62 is a consistent estimate of 62, then by the Mann-Wald theorem
- (g, 2
‘N n|o 2
= |==-1] - .
‘32 2 [6’2 Xi
Thus, we propose to use as leave-k-out diagnostic for innovations variance
G2 2
A DV(k,t) = L ‘T—l (37)
® 2 Okt
with the reference distribution being a chi-squared with one degree of freedom (7).
Again, one suspects an observation y, to be influential if the p -value for DV (k,t) is less
o
. than .5 usinga x7.
o
®
N :f;:.':.r;'f:.-;‘_‘r".r_".( "
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Relationship Between DV and Fox Tests for AO
n The difference n[&z-éf 1] is asymptotically equivalent to the squared interpolated
residual (x, &2 where ¥ = E(x,|x;,t = 1,...,n,l#1). The interpolated residual was
used by Fox (1972) as a basis for testing the presence of a (parametric) AO type outlier at a
fixed ime ¢. At first glance this equivalence may seem surprising since (62—631) is based
on the prediction residuals e, = x, — %, and not on the interpolation residuals x, - X;. But, by
using the smoothing form of the likelihood (Schweppe, 1973), it is easy to show the claimed
asymptotic equivalence.

It is important to note that in spite of the asymptotic equivalence, the finite sample

differences can be significant, e.g., - é,‘z.r can be negative, whereas (x, -2£M?2 cannot.
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3.2 Outlier Models and Examples

'@ -
:.f,_.- -
'

i-" .V' .
e

Outlier Models

In the following examples, we focus on influential points caused by ousliers. Influential
observations may also be the result of structural changes, such as level shifts or variance
changes. We shall discuss application of leave-k-out diagnostics to such problems in

Sections 7 and 8.

We examine the performance of DC and DV under two types of contamination
commonly used in other studies (see, for example, Fox, 1972; Denby and Martin, 1979;
Martin and Yohai, 1986; Tsay, 1986): the additive outliers (AO) model and the innovations
outliers (IO) model. The primary focus will be on AO models.

Let x, be a Gaussian ARIMA process specified by (2.1). Then y, behaves according
to a constant magnitude AO model if

Yo =x+8z (3.8)

where { is constant and z, is a fixed 0—1 process. The magnitude of the outliers is {;
isolated outliers and patches are created by appropriate choice of 0's and 1’s for z,.

A constant magnitude 10 model is formed through contamination in the innovations

process €,. Let € be a contaminated white noise process, with

& = ¥ + &z 3.9

where v, are independent Gaussian random variables with zero mean and variance 6?2, and
G, 2z, are as above. Then y, follows an ARIMA IO model if it is generated by (2.1) with
the €, given by (3.9).

The models (3.8) and (3.9) are actually somewhat special AO and IO forms. More
general AO and IO (and other) outlier models for time series are possible (see Martin and

Yohai, 1986, for a very flexible “general replacement” model).
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Example 3.1: AR(I1), ¢ = .4,0° =1, AO model with | isolated outlier

Staring with a simple case, we examine a simulated AR(1) series of 100 points from
Gaussian white noise with ¢ = .4 and a single additive outlier of +4 at point 28. The MLE
fit of an AR(1) model with the entire series yielded $=0.17 and 6°=1.09. The data s
plotted in Figure la and the outlier is marked by "o". The leave-1-out diagnostics, DC (1, )
and DV (1,"), for ¢ and c? are displayed in Figures 1b and Ic. The p -values correspond-
ing to a xlz distribution are displayed on the right axis. The p-values for DC(l,r) at
r =27,28,29 are all smaller than .5, while the p -value for DC (1,¢) is considerably greater
tha .5 for all other imes. Thus y 37, 23, and y 59 are judged to be influential. By contrast,
only DV (1,28) is significant and has the much smaller p -value of about .02. This example
is indicative of a general pattern which we establish analytically in Section 4: an outlier is

smeared across several values of DC(1,-), but is identified exactly by DV (1,-). In partic-

ular, the smearing for DC(1,-) extends by one time unit in each direction from ¢ = 28.

Example 3.2: AR(1), ¢ = .4, 062 =1, 10 model with | isolated outlier

This is the same series as in Example 3.1, except that the outlier at point 28 is of the IO
type. The MLE’s of the parameters are: ¢=.27 and G%=1.06. Figures 2a, 2b, and 2c
display the data and leave-1-out diagnostics DC(1,-) and DV(l,:). The problem of
smearing for DC is considerably worse than in Example 1. The diagnostic is significant
only at time ¢=27, while the p -value of about .7 at r=28 is quite insignificant. However.
there is no smearing with DV (1,-): DV (1,28) is several magnitudes larger than DV (1.1
for any other r, and hence DV identifies the outlier. Again, this is a general behavior, esta-
blished in Section 4: DC is large at time points just prior to the occurrence of an isolated
IO type outlier, but is small at the time of occurrence of the outlier, while DV s large on»

at the time of occurrence of the outlier.




At A R A Bl A Al e AV s oid ol ahe SF el SR oAk b o0 oL ol obd ot oS aial oSl Ao * = et P ol i

lo
@y
o eshmated D w017
-« estmaled sigma = 1.09
- o~ P
T
© o _/\
0 10 30 40 50 60 70 80 90 100
a) Plot of Data
S 0.16
i 4 022
0 ]
O S - -« 0232 <
= >
a
st 4 ous
g ) .t eq | l-.ll FER ‘g "'l"l""l"""‘L""'l"'l"“""'l' 100
0 10 20 30 40 $0 80 70 80 90 100
b) Scaled Leave-1-Out Diagnostics: phi
"} 0.01
]
LU o -+ 0.03
. r -4 0.05
b/
> =
o F 4 oo8
a >
Q.
~N -4 016
-} - 032
o S ORI Vg - \ | R R R RE RS LRI =0
o] 10 20 30 40 50 80 70 80 90 100
c) Scaled Leave-1-Out Diagnostics: Innovations Variance
Example 3.1: Simulated AR(.4) With 1 Isolated Additive Outlier
Figure 1
Y ,‘:_ e 'x»_'; T e -_‘.»_'.,::.:-.‘ AR AR e T VA A
‘.’ ;:;:-;’;:.’-;\ :.\u.% ;.\. \..\. M\M-L.‘.i& S ‘h \n JL'LH.{I.ML'{A— .l A,{L.A L{L.f. (L“:" .:n".\ﬂ !fu f. l‘.ﬁ(':\(}n‘.' '.J-Af\ﬁ} )L\f}f. :‘J‘}n‘:. '}"‘}

TN T TN TN T T T NN TR T YT NIy




b Salk 4l Gl 0 LA A A" a0 oAt Al bl olia et ol Bt Al Bl Aol Saod = SN A b A e Aten Ala Yl M R Nl RS

v
':! 17
: - estimaisd phi = 0 27
.« estMated :gma = 1.06
g ~N
2]
© o
[+] 10 20 30 40 50 80 70 80 90 100
a) Plot of Data
:4 4 027
2r 4 032
s r 4 o037
S
S st {ou g
. &
o I -1 053
g’ ~ < 065
g .‘..l.-.l.]..ll.....l..ll..Tl ....... bogoonnian IlL-.-.Ilo..L..u-ll.|ll....II..J ......... l.uln ..... 1.00
[} 10 2 30 40 50 80 70 [ ) 20 100
b) Scaled Leave-1-Out Diagnostics: phi
w 0.03
- L' ? - 005
- L <4 o008 G:J
,.,:-‘ > —
".':: Q L g
i o~ <4 016
Y a
| Pl
[\
[, - r <4 0
[P
P_'..: T
::::." ) ! by o e N T TR P L 100
9 0 10 20 30 40 50 60 70 80 % 100
E,;C c) Scaled Leave-1-Out Diagnostics: Innovations Variance
S Example 3.2: Simulated AR(.4) With 1 Isolated Innovations Outlier

.. Figure 2




A A R A P S A AP AL AT S % 4 N N M N PN e R e R i e e ) TN WY ey Ml Sl el ot v - -y~
- - ‘. ~ s TR T N e - SRR At e Alataiie Mie Ahas e A4 AN

13

In all examples to follow, plots of DC are omitted for simplicity. However, in Sec-

tion 5, we discuss the use of DC as a tool to determine whether an outlier is AO or IO,

Example 3.3: MA(l), 0 ==.5,0% =1, AO model with | patch and 1 isolated outlier

This example is a simulated MA(1) series with 8 = —.5 and both a patch of three
outliers of size +4 at points 60—62 and an isolated outlier of size -4 at time 15. The outliers
are all of the AO type. Figure 3a shows the data; the MLE’s are 6 =—.36 and 6% = 1.86.
Leave-1-out through leave-4-out diagnostics for DV are displayed in Figures 3b-3e.

Recall that for k 22, DV (k,t) represents the influence of a patch of k observations
centered at ¢+. Foreven k, ¢ is the closest point to the left of the "center” of the patch. For
example, with k=2, DV (k,t) corresponds to the diagnostic computed when y, and
¥ +1 are leftout

Although, leave-1-out diagnostics clearly identify the isolated outlier, there is just
barely an indication (use the p-value of .5 as a guideline) of something going on at ¢ =60

and 62. Leave-l-out is not adequate for detecting the patch of outliers. Leaving a single

point out in the patch is insufficient because the remaining outliers in the patch comprise the
bulk of the influence of the patch. Leave-2-out and leave-3-out provide progressively
stronger evidence of the patch of outliers. The value DV (3,61), is over five times larger

than other neighbon g diagnostic values.

3.3 Patch Length Determination Strategy

Note that the isolated outlier in Figure 3 is smeared in the leave-k-out diagnosucs for
k=2,3,4. For k=2, both DV(2,14) and DV (2,15) are highly significant, and have
nearly the same value as DV (1, 15). Similar behavior is observed for k =3 and k =4 The
general pattern is as follows: k-1 values of DV (k ,-) surrounding the location of an isolated

outlier at ¢ are significant, and have nearly the save value as DV (& ,to) ! This corresponis
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to what one might intuidvely expect for an isolated outlier: deletion of a pawch which

includes an isolated outlier has nearly the same affect as deleting only the isolated outlier
Similar behavior occurs for a patch of outliers. For example, DV (4, ) yields values
at =60 and r =61 which are nearly equal to DV (3, 61). In general, for a patch of kg,

outliers centered at 7, the following property holds:

. For k 2 kg, there are k —ky+ 1 subsets A, , which completely overlap the patch,
and for deletion of these subsets, the magnitude of DV (k,¢ ) is roughly the same

and significant (i.e., the associated p-value is less than .5).

Thus, we judge an influential patch to be of length k521 centered at r if DV (kq,74) is
significant, and the above property holds. If DV (kg,¢tq) is significant and the above pro-
perty fails to hold, then this is an indication that a broader patch of outliers is present.

This provides us with an initial strategy for identifying patches of influential points:
Compute leave-k-out diagnostics for increasing & =1,2,..., until the magnitude of
DV (k,t) does not "significantly” increase for any ¢. The length of a patch will be
estimated as one less than the first value of k for which nearly uniform smearing is in evi-

dence. We shall improve this strategy by incorporating iterative deletion in Section 6.

We close this section with a caveat: Diagnostics in MA models often exhibit different
characteristics than in AR models. In particular, the smearing for DC is slightly worse than
the AR(1) case. Also, MA models are susceptible to ‘‘start-up’’ effects: outliers at the ends

of a series are subject to more smearing. These features correspond to the fact that MA

models have infinite autoregressive representations.




4. Smearing and the Expected Diagnostic

The examples of Section 3 have revealed a major difference between leave-k-out
coefficients diagnostics for time series (including k =1) and the usual regression
coefficients diagnostics for independent data. Namely, there is a smearing of the effect of an
isolated outlier to adjacent points. A given point may be judged influential because of an
outlier at an adjacent point. Hence, interpretation of leave-k-out diagnostics for coefficients
is not so clear as in the usual regression case. On the other hand, diagnostics for the

innovations variance in Section 3 displayed much smaller, and often negligible, smearing

: effects. In this section, we use an asymptotic approximation to establish an analytical
P - -
L'. rationale for these different smearing effects. Although the approach will work for any

ARIMA model, the computations are quite tedious for all but low order models (where they

Pilan an o 4

are also tedious). Thus, after introducing the general expressions for the limiting forms of

the diagnostics in Sections 4.1 and 4.2, we concentrate on obtaining explicit calculations for

.. EE
‘ oLttt
. R Coe

the AR(1) case in Sections 4.3 and 4 4.
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4.1 Expected Asymptotic Diagnostic for Coefficients

In order to understand the smearing behavior of the diagnostic (3.2) for coefficients, it is

- helpful to use an asymptotic representation of DC (A) for general subset deletions A . For

subsets A, , of fixed size k one usually has &-&k', = (X Tl‘-), and correspondingly we are

interested in the asymptotic behavior of n + DC(A). Since the asymptotic distribution of

; this quantity is quite complicated, we work with the expected asymprotic diagnostic for the
| coefficients

EDC(A) = E[lim nDC(4)] S

E[lim n*(a-a,) (@) (a-a,)] .

n —3oe
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Explicit computations of (4.1) are based on one-step approximations to &A by a.

Denote the (efficient) score function ¥,(a) and denote its derivative ‘i’,, () :

3% log L (a; y,)
dada

dloglL (a:y,)
da

¥, (@) = ¥, (@) =

where the log-likelihood L(a;y,) is given by (2.8) with x, replaced by y, and g
suppressed. Let log L™ (a;y,) be the log-likelihood with subset A removed, and let
¥ (@) and ¥)(a) denote the corresponding score function and its derivative. Under

suitable regularity conditions, a Taylor series expansion of ¥4)(a,,) about & yields
0 = ¥A@ + (@ - (¥@ +0,(n) . 4.2)

One difference between (4.2) and the usual log-likelihood expansion is that scaling &(A)—&

by n (rather than Va ) leads to a non-degenerate asymptotic form.

Since &—)P a, —-’ll-‘i’,(,“(a) =, I(a) and ‘I’,,(&)=0, we may rearrange (4.2) to
obtain
EI(A) = —-n(@,-@)

= (=l1@ ! + 0,(N) PP (@)
= 1@ ' (PP (@) - ¥, (@) + 0,())
= 1@ ' (PHa) - P (@) + 0,(1) . (4.3)

Combining (4.3) and (3.5) gives the asymptotic form of n DC(A) for general subset
deletions A :
nDCA) = A(A,a)’l(a)"A(A,a) + op(l) (4.4
where
A(A,a) = YA (@)=Y, (a) . (43

Hence, the expected asymptotic diagnostic for coefficients is given by

M 'A‘\‘-T




EDC(A) = E[ lim A(A, )/ (a) 'A(A, )] . (4.6)

n —>es

Our problem is now reduced to computing the difference A(A, @) between the score func-

tion with and without subset A included, and evaluating the expectation in (4.6).

4.2 Expected Asymptotic Diagnostic for Innovations Variance

In the same spirit as in (4.1), we shall use the expecred asymptotic diagnostic for the

innovations variance

EDV(A) = E[lim n DV(A)].

Denote the score function for 62 and its derivative by ¥,(62) and ‘i‘,, c?), respectively,

and denote these functions with subset A removed by ‘i’,(.“)(cz) and ‘i’,f")(&z) . Then

-1
- - I d - -
n(6i-6%) = {-;\y,ﬁ"(oz)] Y62 +0,(1) @.7)
. -1
where [i‘i’,ﬁ"(éz)] = 264 +0,(1) = 26%+0,(1). From this and the definition
n

(3.7), applied to general subset deletions A , we have

[ }4 ]nz(éz_&Az )2
20,

265 [¥A (D] + 0,(1)

nDVA)

26 )(¥A(62)-¥,(6D))? + 0,(1) .
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Then with
| AA;c?) = \?,‘{”(cz)‘— ¥,(c?%) (4.8)

we have
EDV(A) = ZG‘E(nli_:.n.Az(A;cz)), (4.9)

and our problem is reduced to computation of A(A; 6?), and evaluating the expectation in

(4.9).

4.3 AO Models: AR(1) Case

Expressions for EDC49 (¢)
We now compute EDC(t) = EDC(A)|A=, and EDV () = EDV(A)| 4=, for the
AR(1) model with AO type outliers. Let x, denote an outlier free Gaussian process.

Straightforward algebra (see Appendix B) shows that for the outlier free process, the differ-

ence in the score functions for ¢ with and without x, is given by

A(t;0) = - If? - ;2 [—¢x,2+x,(x,_1+x,+1)

- (1+¢2)2 (% +xr+l)2] . (4.10)

A pleasant feature of (4.10) is that A(r; ¢), and hence EDC(t), depends only on
X,_1,X;»X;41. More generally, for AR(p) models, A(f,x)=Y¥ (@)-'¥, (),
depends onlyon X, _,,x,_,,y,-.., X, . Replacing x, by y, in (4.10), we can derive
the difference in the score functions for various outlier models.

First consider the case where y, is observed with a single AO type outlierat 7 .1.¢.

behaves according to (3.8) with z, =1 only at t =¢4:
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X: t # fo
A (4.11)
The difference in the score function A(zj; ¢) when we leave y, , out, for example, is given

by (4.10) with x, replaced by x,°+§. Similarly, for leaving y, .| out we evaluate

A(tq+1,9) by setting t=¢o+1 in (4.10) and again replacing x,, with x, +{. The

expected asymptotic diagnostics are then computed by substituting the appropriate expres-

sions in (4.6) and taking expectations.

We begin by computing EDC (¢) at the location ¢ =t of the additive outlier. Using
the notation A(‘g;o, ) 9) in place of A(r;¢) when A(¢;¢) is computed under an AO

model with an outlier of size { attime ¢, we have

A1) (10: 0) = = (1f¢2) - 612 [ =000+ 0% + (O 1+ 310 )  (412)

T (1+¢%)? (e 1+ %140 1)°]

For the AR(1) model, I(¢) = (1-6?)"!. Substituting this and (4.12) into (4.6), along with
some tedious algebra (see Appendix B), yields

4 2 2
EDCY,,) (to) = [-g} o (1~¢) + -g-} 201-6) + L0223 (4.13)

where the notation EDC ‘(‘;?, o) (¢) parallels that for A(‘C?,o) (£;9).

To examine the effects of smearing, we now compute EDC&?,O)(I) for t#eq. Itis
shown in Appendix B that, as one might expect, EDC?;?,O)(:) is given by the right-hand
side of (4.13) with {=0 for t#¢¢—1,19,20+ 1, which is the expected diagnostic for the
noise free process. Thus it suffices to compute the expected diagnostics for r=r5—1 and
t =ty+ 1. Furthermore, by inspection of (4.10), it is evident that the effect of an outlier at

to is symmeric: EDC{P, ) (¢g=1)= EDC{2, ) (tg+1) . Hence, we need only concern
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ourselves with EDC &?,o) (19 + 1), and computations similar to those above yield

442 2 2 4
EDCA49 b= [a|ea-ey (P o ),

+ ———12(1—02 )
(1+¢?)?

Expressions for EDVA? @)

To obtain EDV’(‘QO;,O) (¢) under the AO model we compute the difference in the score
functions A(r; 02) for o2 given by (4.8) with A =¢ and apply (4.9). Using the same
notation as in (4.12) we have for ¢t =t (see Appendix C)

AO 2 1 1
- (f ;G = —_———
(810 (F07 %) 262 20

< [—(1+¢2)(x,,+§>2 (4.15)

+20 (X, +8) (xpy -1+ X4 1)

2
Ry and (again with tedious algebra)
S.'\ _Q 4 1+ 62 2 _G. 2
2 EDVD,, (1) = - -(-i)—z + |2 8(1+¢2) + 1. (4.16)
"'
:: As with EDC'(‘g,o)(t), for t#rg-1, tg, tg+1, EDV’&?,O) (t) is simply the
-,
E“j right-hand side of (4.16) with {=0. Also, the same symmetry relations hold for
-
L EDV{2,,(¢), so that EDV{Z, \(tq-1) = EDV{Z, , (tq+1), where straightforward
P-.'.‘..
::;;' computations give
o
[
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- 2
] : EDV?CO,,O) (I0+l) = —g' ‘¢—,’2 + S' _@_2__ + 1. 4.17)
’ C ) 21+0¢%) G j (1+09)
4 Comparisons of EDC4° (¢) and EDVA? (1)
\
Although the dominant terms in (4.13), (4.14), (4.16), and (4.17) are proportional
8. 4
'~ [—g- , the coefficients for this term are uniformly smaller for (4.17) than for (4.14) relative
._ to (4.16) and (4.13). However, the difference between the behavior of EDC A0 () and
- EDVA9 (1) is best seen graphically.
"':f Figure 4a plots EDC??‘;,O)(:)/ 100 curve (i.e., the expected asymptotic diagnostic
<
2 assuming an outlier of size 4 at time ty) for ¢t =r9-3, tg-2, -, tg+3 with
6=.3, .6, .9. Figure 4b gives the corresponding plot for EDVZ,., ,(¢)/100. The scal-
ing factor of 1/100 approximates the expected value of the diagnostics for a sample size of
100. The asymptotic approximations verify what was observed in Example 1 for AO
- models: the smearing is worse for DC , and DV tends to be more sensitive.
Due to sampling fluctuation, the patterns of diagnostics observed in Example 1 differ
- from the expected diagnostics in two regards: the magnitude of DC and DV is larger than
N EDC and EDV , and the pattern over time for DC is not the same in that the largest diag-
e nostic is for the time point after the outlier (¢ =28).
In Figure 5a, we compare the amount of smearing graphically for DC and DV as a
< . _ EDC{iin (o= EDV o1 (o= 1)
<. function of ¢ . The ratios ) (solid line) and 20
] EDC (1 4;1,) (P0) EDV (3410 (o)
,. (dashed line) represent the proportional amount of smearing for an outlier of size 4 at ¢,
I These ratios are always less than unity. However, the expected asymptotic smearing for DV’
e is small in absolute terms for all ¢, and also substantially smaller than that of DC for ail
L
::: but quite large values of ¢. The smearing for DC is greater than .5 for a large range of 0
N
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values, and this suggests that in such situations, smearing may lead to some confusion when
cxaminiﬁg DC .

The potential for confusion in fact becomes unquestionably serious in situations where
there is more than one outlier present. We demonstrate this in the very simplest context.
Suppose y, is observed with two isolated AO type outliers of size { at times t5—1 and
tg+1. Note that for r #¢,, the expected asymptotic diagnostics EDC?;O;,O_L,O“) (r)
and EDVE, _, .1 (¢) are given by (4.13), (4.14), (4.16), and (4.17) above (since only
Ye-1»Y:»and y, ., enterin (4.10) and (4.15)). Also, it is easy to show that as a conse-
quence of the symmetry in the expected asymptotic diagnostics for AO models,
EDC {1 -1,10+1(t0) = EDCHZ,. _1)(t0) and EDVE, _1.10+1) (o)
= EDV'&%,O_I) (tg). That is, the smearing effect of an AO type outlier is additive:

outliers of size § at 75—1 and ry+1 are equivalent to an outlier of size 2§ at £5—1.

To see just how serious smearing can be in this situation, consider the case where

there are  outliers of size+4 at r9-1 and rp+1. Figure Sb exhibits
o

EDC(Z4;1-1,15+1)(f0) . EDV{Z4;10-1,15+1)(F0)
D (solid line) and 0

EDC{y4;t0-1.10+1) (f0—1) EDV {34 te-1,00+1){f0—1)

(dashed line) as a function of ¢. The expected asymptotic value of DC(fg) with outliers
at ro—1 and ry+1 is larger than the expected asymptotic diagnostic at either outlier posi-
ton for all ¢, and has a maximum value almost six times larger! Thus, DC will be totallv
ineffective in revealing such a configuration of outliers. By contrast, the ratio for EDV
stays below one for all ¢, and is substantially smaller than one except for values of !¢ near

one. One therefore expects DV to be far superior to DC in revealing such outlier

configurations.
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4.4 10 Models: AR(1) Case

Thc analysis of smearing for IO models parallels that for AO models. However, since
the outlier occurs in the innovations of the process, the difference in the score functions for
¢ i. not symmetric, as was the case for AO models. Suppose y, is observed with an IO
type outlier of magnitude § at rq, i.e, € is given by (3.9) with z, =0 exceptat r =1,
where z, =1. If x, represents the series withour the innovations outlier, then it is easy to

check that

x |, t<iyp

- 4.1
x +{0 T, t21q . (4.18)

S
|

Details concerning the calculation of the expressions to follow are provided in Appendices B
and C.

Expression for EDC Io )

From (4.10) we get the difference in the score functions for ¢ with and without y, :

+(xr°+§)(xro—l+(xr°+l+¢§))

C(1+69)? (Xrg-1+ (xige1+00))°] .

The notation A(’g,o)(t; ¢ ) is used to indicate that we have a single IO type outlier of size

C attime rq. Itis now straightforward to show that
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1% o6 2
_ 10 _ | & ef(1-0%)
EDC Gy (t0) [0, (Lol ) (4.20)
’_9 i 8 2(1-0%)
+ 2-¢0% |1+ = .
f’] [ ? (1+¢2)3” SE

Although the dominant term is still proportional to

4
—g-] , it is of order o (¢°) as

o] =0.
For t <tg—1, EDC,, (t) is given by (4.20) with {=0. EDC@, ) (tg-1) is
identical to the counterpart (4.14) for AO models (recall that (4.14) is also the value for

t=tg-1). For t=tq+i, i=12,-"-,

2 2i-1 2,3 2
EDCIO, \(1o+i) = |&| @2 70=¢%" | 2(1-¢%) 4.21

2
Note that the dominant term in (4.21) is proportional to ( -g—) rather than ( —g— )4.

Hence, the effect of innovations outliers on EDC for >t is ‘‘smaller’’ than that at

t=ty-1 and ¢ =t, and furthermore the effect dies out exponentially fast in ¢.

Expressions for EDVIO (1)

Substituting y, in (4.18) for x, in (4.15) gives the difference in the score functions for
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10 . _ 1 1 :
AR,y (tg;6%) = - + e [-(1+¢%) (x,,+¢)
+2¢(xr°+§)(“ro—l+(xr°+l+¢§))
2
=T i+ (g + 007 @22)
1+¢
Use of (4.9) yields
[ 2
EDVIQ = —_— — 41 4.23
Gro 10 [0] 201+¢% ) [“] (1+6%) )

For r#ty-1 or 1y, EDV{&,O) (¢) is given by (4.23) with {=0, and
EDV{E’; to) (to—1) is given by (4.17), the corresponding expected diagnostic under the AO
model. Unlike the AO case, EDV(Z,, ) (tq+1) does not depend on §.

Comparisons of EDC'© (t) and EDV'O (r)

With IO models, the behavior of the smearing effects of an outlier at ¢, differ even
more dramatically for EDC and EDV . For EDC , the effect of smearing is not restricted
to points immediately adjacent to the time of occurrence ¢, of an outlier. Specifically, an
outlier affects EDC fg 1) () forall 1 2¢9—1 (i.e., leaving out the previous point or any
future point). By way of contrast, the effects of an outlier at ¢, are seenonly at -1 and

ty for EDV!

Figuresdc and 4d display EDC{0,,,(:)/100 and EDV Q.. (¢)/100 for
t=t9-3,19~2, ', tg+3 with ¢=.3, .6,and .9. The severe smearing of DC at
t=tg—-1 is reflected in Figuredc, where EDC{QMO)(rO—l) dominates
EDC{4.)(to). This is also demonstrated by Figure5c, which shows

EDC{Q4:1,)(t0=1) EDV(24;04)(t0=1)

(solid line) and 7 (dashed line). The ratio
EDV(‘_«‘O)(I())

EDC{24;1,) (1o)
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for EDC'C is greater than one for most values of ¢, while the ratio for EDV/®  stays well

below un.ity,cxccpt for {¢| closeto 1.

These results extend to AR(p) models: dominant values of EDC’C can occur at the p
consecutive times preceeding an isolated outlier. The use of EDV (r) is obviously preferred

for IO (as well as AO) situations.
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5. Diagnosing IO Versus AO

Notice that Figures 1c and 2¢ appear to be very much alike, in spite of the fact that the
outlier at ¢ =28 is an AO in Figure 1b and an IO in Figure 2b. DV identifies the outlier in
both cases, but provides no additional information as to the outlier type. On the other hand,
the distinctively different behavior of DC for the two cases allows one to use the auxiliary
information contained in DC to help decide whether an outlier is IO or AO: If DC is
smeared to both sides of the time of occurrence of the outlier as identified by DV, then the
outlier is probably AO. If DC is large prior to the outlier time identified by DV, but small

at the outlier time, then the outlier is probably 10.

A more formal way of determining whether an outlier identified by DV is IO or AO is
to use a robustified version of Fox’s test (1972), as described in Martin and Zeh (1977). See
also the non-robust use of Fox type tests in an outlier identification and model fitting scheme

proposed in Hillmer, Bell and Tiao (1983).

A less formal way of determining whether an outlier is IO or AO is to examine a lag-1|
scatter plot of the residuals. As was pointed out by Martin and Zeh (1977), IO’s tend to fall
near the abscissa and ordinate of such a plot, whereas AQ’s tend to appear away from the
abscissa and ordinate, assuming that robust parameter estimates have been used to form the
residuals. In the present context, we recommend using the parameter estimates obtained

with the outliers identified by DV deleted.

Figures 6a and 6b display the lag-1 residuals plot for the data of Figures 1a and 2a
respectively. The circled points are (€.7,€,3) and (e,g, €59), Wwhere e, is the one-step
ahead prediction residual for time . As expected, the (e,5,€39) point for AO falls
further from the abscissa than in the IO case. In particular, for the IO case, the ordinate
value is well within the bulk of the data, while in the AO case, it is near the extreme lower

range of the data (it is the third smallest value).
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Combining the DC diagnostics with the lag-1 scatterplots, we obtain a convincing
graphicai display identifying the type of an isolated outlier. However, when a patch of

outliers is present, these techniques do not directly apply, and determination of the outlier

type is a more subtle problem.
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b) Example 3.2 (10): Lag 1 Scatterplot of Residuals

Examples 3.1 and 3.2 (continued): Identifying AO vs 10

Figure 6
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. 6. Overall Strategy
;- In this section we present an overall srategy for ARIMA model fitting using leave-k-

out diagnostics. In Section 6.1, to handle problems caused by “masking”, we imbed the
approach of Section 3 for determining the length of a patch of outliers in an iterative deletion
procedure. We discuss more flexible subset deletion techniques in Section 6.2 to handle
cases where the iterative deletion procedure fails. Finally, an overall strategy for model

identification and fitting is given in Section 6.3.

6.1 An Iterative Deletion Strategy

The masking of influential points (e.g., outliers) by other influential points is a problem
encountered in all types of diagnostics. As we have already seen, masking caused by a sin-
gle patch of outliers can be handled adequately by leave-k-out diagnostics. However, some-
times the presence of a gross outlier will have sufficient influence so that deletion of aberrant
values elsewhere in the series has little effect on the estimate. More subtle types of masking
occur when moderate outliers occur in close proximity to one another. These types of mask-
ing can often be effectively uncovered by an iterative deletion process which consists of

removing suspected outliers from the data, and recomputing the diagnostics.

To deal with problems caused by masking, we build upon the initial patch length deter-
mination strategy of Section 3 as follows:
Step 1
Run leave-k-out diagnostics on the data, for k=1,2, ..., untl either: (a) the
length of the most influential (significant) patch is determined using the guidelires
of Section 3, or (b) k =K, , where K .. is determined by the user. Iri principle.
K nax is the length of the longest patch of outliers thought to be present in

data. However, computational costs require that K ,, is reasonably small (sez =

run time results in Section 8.2; for ‘‘short’’ time series, i.e., n <250, sz
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K nax=5 will often reveal most if not all problems with the data). Case b can
 result from two possibilities: either no influential observations were detected, or
the length of an influential patch is ill-determined (according to the guidelines of
Section 3). In the latter case, which may be due to the presence of a patch of
length greater than K ,,,, we determine the ‘‘most influential’’ patch as that

cormresponding to the most significant diagnostic.

Step 2
If no influential points are found, then conclude the analysis. If influential points
are found, then delete the most influential points as identified in step 1, and go
back to step 1. The new leave-k-out coefficients should be scaled according to the
MLE computed with the outliers removed, so as to gauge additional influence of
the remaining points!

The next two artificial examples illustrate the efficacy of the iterative deletion pro-

cedure in handling problems caused by masking.

Example 3.3 (continued):

With the above modified guidelines, we would identify y s as an outlier after running
leave-1-out and leave-2-out diagnostics (see Figures 3b and 3c). Performing iterative dele-
tion, we ‘‘remove’’ y ¢ from the data (i.e., treat y ;s as missing) and recompute leave-k-out
diagnostics for k£ = 1, 2, 3. These are displayed for DV in Figures 7a~7¢c, and give convinc-
ing evidence of a further patch of 3 outliers centered at ¢ = 61. Note that the pattern of diag-
nostics after iterative deletion is nearly identical (except for values associated with ys) to
the original set of diagnostics (cf. Figures 3b—3d). However, the magnitude of the diagnos-
tics is much larger after iterative deletion! This is quite typical: a non-adjacent outlier(s)
will mask other outliers by decreasing the magnitude of the diagnostics, but not altering the

pattern.
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Example 6.1: Simulated MA(1), 8 =-.5, AO Model with | Paich and | Adjacent [solared

Outlier

The data is the same as that used in Example 3.3, except that the isolated outlier is
moved from point 15 to point 58, adjacent to the patch of outliers at points 60—62. The data
is plotted in Figure 8a. Leave-1-out, leave-2-out, leave-3-out and leave-4-out diagnostics for

DV are given in Figures 8b—8e.

The masking is much more severe than in Example 3.3: the isolated outlier is now
completely masked for the leave-1-out case (cf. Example 3.3), though the patch still shows
up prominently in the leave-3-out diagnostics. However, leave-4-out diagnostics are only
slightly more significant than leave-3-out, and the pattern of smearing is consistent with a
patch of 3 outliers. So following our strategy, we delete points 60—62 and recompute the
diagnostics. The isolated outlier is now easily identified by the recomputed leave-1-out diag-

nostics of Figure 8f: removal of the patch eliminates the masking problem.

6.2 Local Stuctural Changes and Flexible Subset Deletion Techniques

Until now, we have concentrated on influential points in the form of outliers. However,
influential points may also be due to other types of disturbances, such as level shifts or vari-
ance changes. The iterative deletion procedure of Section 6.1 is often effective for uncover-
ing these types of problems. However, the procedure will sometimes fail in the presence of
an influential patch longer than K ,, ; an example of this is provided in Section 7. Masking
may prevent a long patch, or any points in the patch, from being detected. Even when the
patch is detected, if the disturbance spans a time period considerably greater than K .., . the
iterative deletion may require an intolerable number of iteratons. To handle these failures,

we adopt a data oriented "free and easy” approach to flexible subset deletion.

We consider deviating from the iterative deletion procedure and using the flex:>'-

approach primarily in two kinds of situations. First, when examuning the data ard
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residuals, the analyst may suspect a structural change in the data. Second, the leave-k-out
diagnostics may indicate at a local disturbance of duration greater than K _,,, (e.g., as when
the patch length is ill-determined; see step 1 of Section 6.1). In either case, flexible subset

deletion techniques can help identify the structure more precisely.

An attractive way of carrying out flexible subset deletions is through the use of interac-
tive graphics on a computer workstation. Candidate subsets are identified on computer
graphics plots of the data and/or the residuals, and DV is computed for such subsets. For
example, if the analyst believes a local level shift is present somewhere between the times ¢
and ¢, then he/she would compute DV for a judicious selection of patches between r4and ¢,
in order to clarify the jump points. This procedure may easily be carried out with the aid of

a mouse and appropriate software (see Section 8.2).

A non-interactive and computationally expensive approach is to run leave-k-out diag-
nostics on the data for selected values of k between K ., and n/2. A ‘‘top down’’ approach
for selecting k is touse k ={n/2),{n/4), ..., [n/2") where r is the largest integer such
that n/2” >K gax - An alternative ‘‘bottom up’’ approach is to choose k =2¢,2°*!, . 2’

where s is the smallest integer such that 2*2K ,, and ¢ is the largest integer such that

2 < n/2. From these diagnostics, the disturbances can often be clarified.

Another application of the ‘‘bottom up’’ or ‘‘top down’’ diagnostics is as a final check

on the model: see Section 6.3.

6.3 Model Identification and Overall Strategy

The foregoing analysis presumed that the degree of differencing and the order for the
model was known. In practice, this is rarely the case, and the model must be determuned by
some criteria such as the Box Jenkins identification procedure. However, outliers may ciau~e
improper model specification. To handle order selection in the presence of outliers ..

structural changes, we embed the iterative deletion strategy in an iterative procedure 5:™
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to that used by Tsay (1986).

Overall Strategy

Step 0: Tentative Identification
Using the Box Jenkins methodology, determine a tentative model. This involves speci-
fving the degree of differencing and selecting the order of the ordinary and seasonal
ARMA components.

Step I: Iterative Deletion
Perform leave-k-out diagnostics using the iterative deletion strategy of Section 6.1
until: no additional influential points are detected, or a model change is suspected.
Recall that the second situation may be triggered in two ways, as described in Sec-
tion 6.2. In the first case, go to step II, while in the second case, go to step IV.

Step II: Confirming Model Order
With the observations identified as influential removed, i.e., treated as missing data,
determine the order of the model once again. If the same model is selected, then go to
step [II. Otherwise, remove the influential observations and go back to step I.

Step III: Final Check
To ensure a longer patch is not missed, perform the ‘‘bottom up’’ or ‘‘top down”’
approach as described in Section 6.2. If nothing is revealed, then conclude the analysis
in the usual way. On the other hand, if a structural change is detected, then go to

step [V.

Step IV: Handling Structural Changes
Split the data according to the conjectured model change point(s). Analyze separately
those parts which are sufficiently long. That is, go to step 0, treating each sufficientiy
long section of data as different series, and ignoring any segments which are longer

than K .,;,. but not long enough to warrant model fitting.

.................
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Analysis of Residuals and Influential Points

In the presence of outliers and structural changes, the usual prediction residuals are
often misleading for identifying the influential observations. Instead, we recommend exa-
mining the residuals based on the predictions formed when the observations identfied as
influential are treated as missing. Since the predictions are not distorted by influential obser-

vations, this procedure reveals outliers and structural changes more clearly.

After selecting the ‘‘final’’ model, a careful analysis of the influental data points
should be carried out. Of particular interest is the determination of any physical causes or
events related to such points. Also, one may be able to categorize influential points as iso-
lated or patches of outliers, or perhaps associate them with a level shift or variance change.
Points diagnosed as an outliers can be further classified by type (AO versus 10) using the

techniques described in Section 5.

Use of Intervention Analysis

A variety of structural changes, such as outlier patches, level shifts, and even variance
shifts, which may be detected by the leave-k-out strategy, can be handled by intervention
analysis, as in Box and Tiao (1975). The prediction residuals for local structural changes
provide information which may suggest a small palette of intervention "shapes". We note
that the diagnostics may suggest intervention analysis which might be otherwise overlooked

because the investigator was unaware of any particular "cause"” (e.g., policy change).
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7. Applications to Real Data
In this section, we analyze two economic time series using the strategy aruculated :n
Section 6. The first series is relatively well behaved, except for several patches of outliers.

The second 1s more difficult to model, since it contains several local nonstationarities and

disturbances, including level shifts and a variance change. For brevity, we omit the details of

model selection in the examples to follow, and concentrate instead on the diagnostics.

Example 7.1: Exports to Latin American Republics: 1966—1983

3

&

; In this example, we study monthly unadjusted data on exports from the United States to

L:.‘: Latin American Republics. This series was examined by Burman (1985), who focused on
|

:: outliers and forecasting in U.S. Census Bureau data. A plot of the logarithm of the data is

Ty
Y

given in Figure 9a; the circled values represent points eventually deleted from the series.

:

Following Burman, we fit a-. IMA (0, 1, 2) to this series, and the residuals from the MLE fit

are plotted in Figure 9b.

hDEATS A

Leave-k-out diagnostics for k =1,2,3 are displayed in Figures 9d-9f for DV.

Y
e Duk i
w Yy Yy
AN

Again, for clarity, plots for DC are omitted in this example. Leaving out longer patches

reveals nothing new, since the series is dominated by the outliers at 1/69 and 2/69 (i.e., Jan.
1969 and Feb. 1969). The effect on the innovations variance of leaving these two points out
1s dramatic (p -value < .0001): see Figure 9¢. It is unlikely that a broader patch of outliers is
present in this time period, since leave-3-out diagnostics yield no increased significance, and
the smearing is consistent with a patch of two outliers. Note that the plots also hint at

outliers in the last quarter of 1971. In fact, DV (-,2) is clearly significant for other points

(e.g., 10/71) and is "masked” since the scale of the diagnostc at 1/69 and 2/69 is so large.

Following the strategy of Section 6, we remove the points at 1/69 and 2/69 ard

recomoute the diagnostics for k =1,2,3,4. The results of the first round of iterauve de'c

4

uon are displayed in Figures 9g-9j. Using the guidelines of Section 3, DV denuties e

.......
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patch 9/71, 10/71, and 11/71 as outliers, with a p-value <.01. Evidence for including
..‘ 9/71 as part of the patch 1s weaker than for 10/71 and 11/71: the increase of DV (3 ¢ ) over
' DV (2, ) fort=10/71is relatively small. However, the pattern of smearing in Figures 9h-9;
Is more consistent with a patch of three outliers than with a patch of two. Hence, these
points are removed, and the diagnostics are recomputed.

Leave-k-out diagnostics for k = 1,2,3,4 for the second round of iterative deletion are
displayed in Figures 9k—9n. These plots are noisier, but an influential patch at 12/76, 1/77 .
and 2/77 is clearly identified. The values for DV warrant deletion of these points (p -value
< .30), though the *‘significance’’ is much smaller than in previous rounds.

A third round of iterative deletion was performed. The resulting leave-k-out diagnos-
tics for k =1,2,3 are displayed in Figures 90-9q. Again, following the guidelines of Sec-

tion 3, a patch of outliers at 1/78-2/78 is identified, though just barely (p-value =.45). Note

that leave-1-out diagnostics do not pick up the patch: we need leave-2-out to identify these

points as influential.

Other potential outliers are indicated by Figure 90 (10/68 and 10/70), but are associated

with fairly high p-values. These points correspond to moderately large residuals (see

Figures 9b and 9c¢), but evidently do not significantly influence the estimates of the parame-
ters. Running another round of iterative deletion (not shown) yields little change in the

significance of these points or any others.

In the final analysis, four groups of outliers were identified and removed using thres

rounds of iterative deletion. The points which were deleted at each stage, and the

L guatn g g

corresponding MLE’s, are given in Table |. Removal of the influential points results in 2

“

- drop in the estimated innovations variance by an impressive factor of two. The first tw.
b -
:';':i groups of outliers (1/69-2/69 and 9/71-11/71) correspond to dock strikes and foresta..n
o
t’;-:. vielding large negative and positive outliers respectively. The other groups (12/76-2 77 .- ¢
®
[
-
o
=
.
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1/78-2/78) have no known cause, and exert considerably less influence on the estimated
parameters. Burman (198S) identified the first two groups as outliers, along with 10/68 and

10/70, using the model based methodology of Hillmer, Bell, and Tiao (1983). Note that the
latter two points show up in the leave-k-out diagnostics (see Figure 90), but not so prom-

inently as the other patches at 12/76-2/77 and 1/78-2/78, which were not identified by Bur-

man. Once again, we see the importance of searching for influential patches as well as iso-

lated outliers.
Table 1:
Parameters Fit to Export Data
e e @ e

0 367 .160 .0114 —

1 460 003 .0083 1/69, 2/69

2 448 -.041 0066 9/71,10/71,11/71
3 431 -.058 .0060 12/76,1/77,2/77
4 43 -.08 .0056 1/78,2/78

The residuals based on one-step predictions computed from the data with the outliers
removed (i.e., treated as missing data) are given in Figure 9¢c. To obtain the predicted values,

the MLE estimated with the outliers removed was used. The general pattern is similar to the

original set of residuals (see Figure 9b), but with an important difference: the large residuals
in Figure 9c correspond to the points identified as outliers in the above analysis.
Specifically, that last outlier in each patch, masked in Figure 9b, shows up prominently in the
residual plot of Figure 9c. Correspondingly, the residuals following the patch of outhers.

which are large in Figure 9b, reveal nothing unusual in Figure 9c. Thus, the plot of residuals

........
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1) DV: Leave-2-Out after Two Rounds of Iterative Deletion
Example 7.1: Log of Exports to Latin America
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with the influential data points treated as missing provides a useful graphical display to be

compared with the raw residual plot.

Example 7.2: Value of Unfilled Orders, Radio and TV (UNFTV))

Figure 10a displays the monthly value (in millions of dollars) of unfilled orders for
radios and televisions (UNFTV) from 1958 to 1981. This series was previously studied by
Martin, Samarov, and Vandaele (1983), who used a robust ACM Filter to fit an
ARIMA(0,1,1)x(0,1,1);2. The series was also analyzed by Engle and Kraft (1983), who fit
an ARCH model the data. Our initial fit is an ARIMA(0,1,1)x(0,1,1);5; the MLE's are given
in Table 2 and the residuals from the MLE fit are given in Figure 10b.

Leave-k-out diagnostics for £ = 1,3,5 are displayed in Figures 10c-10e. The diagnos-
tics reveal a gross outlier at 9/78 (see Figure 10c), which apparently masks the influence of
the other neighboring points: Figures 10d and 10e clearly indicate the presence of other
influence observations at the end of the series. Following the iterative deletion strategy, we
would remove the outlier at 9/78 and recompute the diagnostics. However, examination of
Figure 10b shows that the end of series has many more large residuals than the rest of the
series. It seems quite likely that a variance change may have occurred towards the end of the

series. So instead of following the usual procedure, we adopt the flexible approach and look

for the possibility of a variance shift.

Using the "bottom up” (and computationally expensive) approach described in Sec-
tion 6, we perform leave-k-out diagnostics for k = 16,32 ,64. The diagnostics for k = 64 are
displayed in Figure 10f, and dramatically support the conjecture of non-homogeneity of vari-
ance present in the series: the maximum value for DV is over 250 (note that this plot has a
different scale from Figures 10c-10e). The diagnostics for k£ =16 and & =32 (not shown)
display a similar pattern, although achieving a smaller maximum value. It is clear that the

behavior of this series is fundamentally different towards the end of the data. Thus, following




step 3 of Section 7, the data is split into two series, and each part is analyzed separately. We

chose 1/;76 as the change point, based on the residuals plot and on computation of DV for a
few judiciously selected subsets. Specifically, patches of increasing size were truncated from
end the data, and the data was split (approximately) according to patch of maximum
influence.

Checking the model order for the first part of the series again yielded an
ARIMA(0,1,1)x(0,1,1);; model. The MLE’s for this model are given in Table 2. The resi-
duals to this fit are given in Figure 10g. Note the reduction in the estimated innovations vari-
ance from 3123 to 1303. Leave-k-out diagnostics for k = 2,4, 8, displayed in Figures 10h-
10j, reveal several patches of influence. Two patches are espcially prominent: one during
1968 and another in 1972. The patch in 1972, which shows up only in the leave-8-out diag-
nostics, is associated with an obvious level shift spanning from 5/72-10/74 (see Figure 10a).
The patch in 1968 corresponds to a large residual at 6/68, and has a less well defined struc-
ture. A local level shift is present during 11/67-5/68 or during 6/68-10/69, or both. In any
case, the diagnostics help us identify problem areas in the data, and show that the large resi-
dual is associated with a patch of influential points rather than an isolated outlier.

A different model was selected for the latter section of the series:
ARIMA(0,1,1)x(0,0,2)¢ was fit, and the MLE’s displayed in Table 2. The residuals are plot-
ted in Figure 10k (with the abscissa rescaled appropriately); the circled points are eventually
deleted from the series. The leave-1-out diagnostics, displayed in Figure 10/, reveal the iso-
lated outlier at 9/78 that showed up prominently in the original set of diagnostics (see
Figure 10c). However, a surprising feature pops up in the leave-k-out diagnostics for
k =2,3,4, given in Figures 10m-100. A highly influential patch at 2/78-5/78 is discovered.

leave-k-out for k£ =5 (not shown) reveals no further significance. It is important to note that

this patch does not correspond to any unusually large residuals (see Figure 10k).
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Following the iterative deletion strategy, we remove the patch 2/78-5/78 and recompute
the Ml.E.’s, which are given in Table 2. The csdmatca innovations variance drops from 8960
to 5340, and the estimated coefficients change dramatically, having a root on the unit circle.
Recomputing the diagnostics (not shown) reveals the influential point at 9/78. Note that
9/78 was significant in the previous round, and the smearing was consistent with an isolated
outlier (see Figures 11/-110). Removal of 9/78 further reduces the estimated innovations
variance, but has a relatively small effect on the estimated coefficients (see Table 2). No

more influential points are uncovered with a second round of iterative deletion.

Table 2:
Parameters Fit to UNFTV Data
Time R R Points
Model Step 6, 6 6?2

Period P M 18 Deleted
1958-80  (0,1,1)x(0,1,1);5 — 41 .75 —_ 3123 _
1958-75  (0,1,1)x(0,1,1);, —~ .18 92 — 1303 —

(0,1,1)%(0,0,2) 0 36 -25 -51 8960 —_
1976-80 (0,1,1)%(0,0,2)6 1 49 -46 -1.00 5340 2/78-5/78

(0,1,1)x(0,0,2)4 2 36 -46 -1.00 4173 9/78

In summary, the UNFTV series clearly reveals the importance of leave-k-out diagnos-
tics embedded in 2 good overall strategy! This approach effectively detects the major
modeling difficulties present in the data. A single ARIMA model is inadequate to represent
the entire series: the latter part of the data appears to behave according to a different moce!
Also, the first part of the series is subject to several local disturbances, which could e
modeled as level shifts using intervention analysis. Finally, several very influential obser 2

tions are present in the latter part of the data, affecting the estimated coefficie--.




dramatically. Obviously, any forecasts made will depend highly on how these points are

treated.

With regard to dealing with the variance shift in the last part of the series, the ARCH

modeling approach of Engle and Kraft (1983) appears to be a viable alternative.
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8. Discussion

8.1 Extensions: Other Measures of Influence

We have introduced two measures of empirical influence in this paper, based on the
estimated coefficients and on the estimated innovations variance. While the former is more
well established in the ordinary regression context, the latter was found to be more effective
at identifying outliers and other types of influential observations. Other notions of influence

may also be useful; several possibilities are discussed below.

Diagnostics Based on a Robust Scaie Measure

One attractive extension, suggested by V. Yohai, consists of computing a robust scale
measure of the residuals computed from the leave-k-out fit. To see why that would be use-
ful, recall that an outlier will cause a large value of DV for two reasons: first, the outlier
inflates the variance because of an associated large residual, and second, it inflates the vari-
ance by distorting the parameter estimates, and hence the fit. A robust measure of the scale
of the residuals is resistant to outliers, and hence would reflect only the second feature.
Thus, we obtain measure of how the fit alone is influenced by a patch of observations by

computing the change in the robust scale for the leave-k-out residuals.

Diagnosrics for Forcasting

An important area for application of subset deletion based diagnostics is in forecasting.
One possibility is to measure the influence of a set of observations on the forecast distribu-
tion by computing the change in the location and spread of the forecast confidence intervals
when subsets of points are deleted. It is expected that the most influential points for forecast-
ing will occur near the end of the series. Interactive graphical displays of the change in the

confidence intervals will be particularly useful for determining the extent to which such




influence exists.

Another possible measure of influence is to determine the change in forecast mean-

square-error when points are deleted.

Diagnostics Based on Additive Noise Variance

We have demonstrated that the influence of an outlier in an ARIMA model is better
measured by a diagnostic based on estimates of the innovations variance rather than a
diagnostic based on the estimated coefficients. This raises the question whether or not a
useful diagnostic might be based on estimates of hypothesized additive noise variance. The
state space formulation of Section 2 easily generalizes to include additive noise in the
measurement equation (see Jones, 1980). Let {, be a sequence of normally distributed
independent random variables with mean O and variance h 2. Then the measurement

equation for an ARIMA process observed with additive noise is

X =2%+§ (9.1)

The prediction and update equations remain the same, except that the observation-prediction

residual variance is given by

fi =7Py,yz2+h. 9.2)

The maximum likelihood estimate of & is obtained by inclusion of a parameter for 4 in

the non-linear optimization of (2.10).

It is possible that inclusion of additive noise in the model will yield an even sharper
diagnostic for outliers, and may be helpful in identifying certain model changes (e.g., level
shifts). However, there is one caveat: Estimation of an additive noise variance h o? when in

fact h 0° =0 can lead to seriously inflated variances for the other parameter estimates (see

Section V of Martin, 1980).
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as severe as it might appear, since the opti,nizations can be run with good starting values and
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8.2 Computational Considerations
i Software for computation of maximum likelihood estimates for ARIMA models with
" missing data is now widely available. Implementation of leave-k-out diagnostics involves a
simple extension of existing programs or statisucal packages. The complexity of leave-k-out
ﬁ diagnostics is 7 x j non-linear optimizanons, where n is the sample size and ; is the
,:- number of different k& used for leave-k-out diagnostics. However, the computations are not
.
.

an estimate of the hessian obtained from the fit with all the data.

The computational burden can be considerably reduced by iterating only one or two

times in the optimization procedure (see Storer and Crowley, 1985). We have found this

gives virtually identical results in many cases: See Figure 11 which reproduces the initial (
leave-one-out diagnostics for Example 7.1 (Figure 9d), and superimposes the diagnostics ‘

obtained when just one iteration is allowed. i

Some run times in minutes for Examples 3.1 and 7.1 are given in Table S. These com-
putations were carried out on a 68020 based Masscomp MCS5600 at the University of Wash-
ington. Restricting the optimizer to just one iteration reduces the computations by factors of
roughly two and three in the two examples. Further improvements in speed are possible by

computing analytical first and second derivatives.

The use of interactive graphics to mark subsets for deletion was mentioned as a tool for
use when the iterative deletion procedure breaks down (see Section 6.2). Interactive subset

deletions can also provide computational savings for those situations in which as much infor-

mation can be gleaned from the data computing DV for a few select subsets as for the entire
data set. Furthermore, implementation of such a procedure is relatively straightforward
using current technology. We are developing implementions for UNIX f workstations

t UNIX is a rademark of AT&T Bell Laboratories.
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running the interactive statstical language and system S (Becker and Chanbers, 1984), and

for Symbolics $ workstations.

Table §
No. of CPU Time
Leave-k-out Iterations in
Allowed munutes: seconds
Example 3.1 k=1 1 0:12
n =100 full 0:23
AR(1)

k=1 1 3:50

Example 7.1 full 10:01
n=216

ARIMA(0,1,2) k=5 1 3:50

full 10:06

8.3 Scaling of Diagnostics

The diagnostic proposed in (3.5) for DC is not very satisfactory when the estimated
coefficients are near the boundaries of nonstationarity or noninvertibility. This is because
I(a), the expected information matrix, becomes singular in this case, and inflates DC. The
resulting diagnostic is no iorger comparable to a x2 distribution, and is too heavily
weighted by the coefficients responsible for the singularity. One solution to this problem is
to scale by ‘i’(&)/n, the observed information, which hopefully gives a better estimate of
the covariance matrix for a (Efron and Hinckley, 1978, prefer observed information in the
case with independent observations). Computation of ¥ (a)/n is more difficult, though it
can be done explicitly. Kohn and Ansley (1986) give a state space formulation of the

$ Symbolics is a rademark of Symbolics, Inc.
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ARIMA model which includes a computation of the first and second denivatives.

We have not yet addressed the issue of “internal” versus "external” scaling of the diag-
nostics (see Cook and Weisberg, 1982). Internal scaling uses the same norm for all observa-
o tions, while external scaling uses a different norm for each observation, with each norm
based on the data excluding the observation. For simplicity, we have chosen to use an inter-
nal norm in (3.5) for DC . However, we could easily compute the externally scaled diagnos-
tic

n(@-a, )L (@) (a-a,) (8.3)

where ik, (@) is the estimated information matrix for &k,, . Two possible estimates are
".‘ I, (@)=1(a,) or I, (@)= ¥, (@ ,)/(n—k). Asin the case of ordinary regres-

" sion analysis, internal scaling tends to obscure influential points, since an outlier will often
A inflate the variance of @ , and hence will decrease I( a ). Thus, external scaling is preferable
d for DC, and should be used if possible.

For scaling the diagnostic DV based on the innovations (or observational) variance, it
only makes sense to use an external norm. This is because an outlier virtually always
increases the estimated variance, so that the ratio 6,,2', 162 is usually less than one for outly-
ing observations. Thus, if in (3.7) we scaled by the internal norm 6!, instead of the external

norm 6,: ;»then DV (k,-) is often not significant when evaluated for an outlier.

8.4 Diagnostics for the Beginning of the Series

In this paper, we have dealt with the beginning of the series by reversing the series so
_. that the beginning becomes the end. The need for this arises because the Harvey and Pierse
: (1984) algorithm for missing data, which we have used, does not handle missing data at the

beginning of the series. On the other hand, the method of Kohn and Ansley (1986) does
o allow missing values in the beginning of the series, and thus with their method, a complete

set of (leave-k-out) diagnostics can be computed with one pass over the data. We hope ‘o
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implement the Kohn and Ansley method in the near future.

8.5 Diagnostics Versus Robust Filter and Smoother Cleaners

The results produced by the leave-k-out diagnostics are similar to the prediction resi-
dual diagnostics obtained from robust model fitting based on robust filter-cleaners or robust
smoother-cleaners (see Martin, 1979, 1981; Martin and Thompson, 1982; Martin, Samarov
and Van Daele, 1983). The robust model fitting diagnostics consist of looking for large
values of the observation prediction residuals e, =y, —y; -, where y;,_; denotes the one-

step ahead robust prediction based on filter or smoother cleaned data.

There is in fact a close connection between the the prediction residuals produced by
leave-k-out diagnostics and those produced by a hard rejection type filtercleaner. Using the
notation of Section 2, the hard rejection filter is defined by replacing the recursions for X,

and P, in (2.6) by

-1 .
X -1+ S Pyaizov, if || Sc

X, = . 4
Xe i,“-l if |e|>c 8.4)

F{:‘j.
R
- .-
o

-1 .
Pye-1 = 1: Pm-lurpm—l if | e | sSc

Pe = 1P, ifle|>c B

Ve et
T '.' . or " LA ')

@ - LT
. . PR
Ve [T T,

where ¢ is some threshold value (for hard rejection filtering, ¢ = 2.6 works well; see Marun

and Su, 1985). One way of looking at (8.4) is that a data value y, corresponding to predic-

.y

ryryrrywevy
BN LA
ale
s

tion residual larger in absolute value than ¢ produces the same result as the Kalman filter
with y, treated as missing. Thus, if the iterative deletion procedure of Section 6.1 identifies
the same points as those which are rejected by the filter of (8.4), then the prediction residua.s

of the two procedures will be identical if the model parameter values are the same. The

latter will be approximately true at the completion of the overall strategy. Hernce, u
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diagnostcs obtained from the leave-k-out procedure will closely match those resulting from

a robust .proccdurc based on the hard rejection filter.

8.6 Related Work

Other approaches to the problems of outliers and structural disturbances in time series
have been explored in the literature. An approach proposed by Chang and Tiao (1982), Hill-
mer, Bell and Tiao (1983), and Tsay (1986) is based on iterative fitting of ARIMA models,
utilizing Fox (1972) tests to decide whether an individual observation is an IO, AO, or not

and outlier. The approach is easily extended to cover shifts in level and shifts in variance.

Another important direction for dealing with model changes of various types has been
pursued by Harrison and Stevens (1976) and Smith and West (1983), who use a Bayesian
approach. A mixture of normals is used to automatically adapt the model to outliers and
other local structures. West (1986) and West, Harrison, and Migon (1986) propose a some-

what different method based on Bayes factors, in which a nominal model is compared to a

‘‘neutral’’ alternative.
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: APPENDIX A: Computation of Asymptotic Information Matrix

This section dernives an analytical expression for the asymptotic information matnix of a station

ary and invertible ARMA (p,q) process $(B)x,=0(B)g,. The formulas are easily extended to

nonstationary and seasonal models. Let g, ***,g, and A, - -, h, be the roots of the polyno-
mials ¢(B) and O(B), so that

¢B)=(1-g1B)(1-g,B) - (1-g,B)
0B)=(1-hB)(1-hyB) - (1-k B) (A
Assume that the roots are distinct: g;#g; and hi# h; for i) .

Let ¢; and d; be the coefficients in the expansion of (B )~ ! and O(B )~! respectively; i.c.,

¢7'B)=3Y ¢,B’, 07!(8)= Y d;B’ (A2)
i=0 i=0
The asymptotic information matrix I(a) is given by
I",j = Z Cka_U-_" if 1<i Sj <p
k=0
Il'.p‘*j = Z dkck+j_" if ISISP, 15] <q, lSj
k=0
- (A.3)
Ii,p+j = Z dek+j—l if ISKSP, ISqu, jSl
k=0
Lvipsj = X ddpyj1 if 1505 <q
k=0
The coefficients can be computed recursively from the relaton
1=6(8)(B)'=0(B)0B)™", or
¢B)c, =0 06B)d, =0 r=1,2, - (A4)
:;:': Initial conditons for the recursions are cg=1,c_,, =" =c_;=0 and
:jj_::: do-1,d_,, =" =d_;=0. Hence, (A3) provides and explicit expression for I(a).
e
S
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By expressing (A.3) in terms of the roots ¢(B) and 6(B), the formulae can be reduced to0 a
summation of a finite number of terms. For £ =1,2, - - -, asolution to (A.4) is given by (see Box

Jenkins [1976])

comkigit g

(A.S)
dt=llh'l+ +Iqh;

where &, - - ,kp and [y, - - ,lq are (possibly complex valued) constants. Since ¢, and d,

can be evaluated recursively, (A.S) defines a system of linear equations which can be solved for

ki, .k, and Iy, -l . Substituting (A.S)into (A.3), Fubini's theorem yields
il p - ?
Ii,j = ( kmgfnﬂ ‘)( angfu)
t=0 m=l n=l
p P i o .
=Y 3 (knka 82" T (8m8a)')
m=ln=l =0
& & ji IN e e
=3 3 (knka8h' (1-gmga)') ifisg) (A.62)
m=ln=1
Similarly,
& & j=i -1 e : .
Lo =33 (knlngh(1-guhy)™") if i<y (A.6b)
m=ln=]
g & =i -1 i s o
Ii.p+j = Z Z (km lnh,{, (l-gmhn) ) if J St (A.6¢)
m=ln=1
P2 j=i -1 PN
IP*'i.p+j= Z Z (km Inhm (1-hy, hn) ) if i € (A.6d)
m=ln=1
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APPENDIX B: Computation of EDC

The expected asymptotic diagnostics for coefficients, EDC , are computed for the leave-one-out
diagnostc in the AR(1) model. First, we compute A (7¢; ¢), the difference between score function
for the entire data and the score function for the data with ¢, treated as missing for a perfectly
observed Gaussian process. Then, for the AO and 10 contamination models studied in Section 4,
(4.6) is evaluated by breaking up the computations into two parts, one corresponding to the outlier

free process, and the other corresponding to the contamination.

Let x, be a perfectly observed Gaussian process. For the AR(1) process, the score function for

o is

N . N .
¥©0) = -+ T filfo - =5 T 266 fi - e filf ) (B.1)
2 t=1 20 t=1

/ I
W
5

LR A
e
' . Fe o
RN
oy S
- . . .o ..

:' where e, is the prediction residual, ol f: is the variance of the prediction residual, e = —8—49—
[ ¥, |
and f, = _BT With no missing data, we have €, = x, —¢x,_y and f, =1 forz> 1. If X

ey

is missing, the score function is similar to (B.1), except that we drop the ¢ term in the summations

. 4 v
'," Al

and adjust the tq+ 1 prediction and residual. Define e,‘o =0 and f ,‘o =1, and denote the predic-

tion residuals and variances for when x; is missing by e,' and czf,' . If tg> 1, then

et.o+1 = Xt°+1'¢2xto-1 fl.o+l = (1+¢?) (B.2)

and e,' =e, f,' =f, for t#ty,tg+1. The score function ‘l’('°)(¢), with X, —missing, 1s

SRS

- given by (B.1) with e,* and f,* substituted for e, and f,.

L Hence for 4> 1

SR

‘@

o A(10i®) = F(0) =W, (0)
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8 o 1 [ 2@, =0x o) (=2ax, ) (x,. =%, ) (20)
‘ S 1+0? 20 1+0¢? (1+0°) J

[(xro_cbxro-l)xro—1+(xro+1 “erO)X;OJ

o 1 20°-26(1+0%)
T T lee? o [x'°(x'°'l+x'°“)+x'°'1x'°” [ (1+97)? }

3 2 S 242
px? [ 207(1+07)=¢" =(1+07)70 x| —O
xto 1 [ (1+¢2)2 mto to+1 (1-{-0")"

1
= - 1f¢2 "0__2 {_@‘r% +x,o(x,o_1+x,°4_1)-(1—+%2—)2—-(x%_1+x,0+1)2} (B.3)

which yields (4.10).
We are now set to compute EDC for the AR(1) model. Let y, be contaminated according to
an AO or IO outlier model. It is convenient to break up the computation of EDC into two parts,
that corresponding to x, and that corresponding to the contamination. Define Cy=E Az(ro; 0)
where A(tq; ¢) is the difference in the score functions for x, , and is given by (4.10). Denote, for
now, the difference in the score functions for y, by Ay (f;9), and let 5_v, (£:0) |
=4, (£;0)—A(z;9). Then |

EA,(£;0)2 = Co+ E8y(1;0)? (B.4) |

since the cross product terms vanish. From (B.4), we can compute EDC by equation (4.6).
-
The tedious part of (B.4) is computing C 4, which is shown below to be equal to (1—-7)7 .
+07)”
Calculating E 8,‘(1; ¢)2 is easier, but must be done case by case. These are computed below for

several outlier configurations.
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Consider first y, which obeys the model givenin (4.11): a single AO type outlier of size { at

to. Paralleling the notation of Section 4, denote &) (fg;9) by 83%,(20;9). We obtain

8394(0; ®) by subtracting (4.10) from (4.12), which leads to

E (6('4;(;):0)( Lo, ¢)2) = ;l]—E [c(xlo—l+xlo+1_2¢xlo)_¢§2]2

s Y4 r A
1
= —g- ¢2+ -g- -'—2E[402x,3—4¢x,°(x,°_1+x,°+1)+(x,°_1+I,°+1)2]
~°J ~0J c
75-\4 r_g_az
= 2 2 2 2
ks ¢2(4¢ ~802+2(1+¢%)
( 4 2
= |2l |2
C ¢ + p 2 (B.5)

Upon adding C4 and scaling by (1 -92), we get EDC Q‘;’,o)(to; ¢), which is displayed in (4.13).

Under the same outlier model, except leaving rq+1 (or r5~1) out, we get

2
! 2
E (8('2?(0)(!0+1;¢)2) = o—‘E|'—§2 ﬁ)—{+§(x’°_?l_;%(xlo—l+xlo+|)):l
s 4
- |2 gV [ de g, 4@ e
(% ) <1+¢2)‘+ o] 1-¢ (a+ety GO ¢“( (1+6%)
r Y4 2
S 1|, _8¢ b
o (1+¢2)4+ ol 1-¢2 (1+9%) (B.6)

which leads to (4.14).

For AO type outliers of size { atboth to—1 and tp+1,

2
_¢_ +(2§) Xlo‘2_¢ﬂ (xlo-l+xlo+l)
(1+6¢%)? (1+¢?%)

= E 840, (t0-1:0) (B~

- 1
F)’ 1.+ (o, Q) = - [‘(ZC)Z
0




s e
..

.,

v Y
Ty

Pught s i x4
e e Ty e

LY

v
(e ]

PETVTW TV W WL N

- s 2Ae add -otten = ol RS
e i Sall Al Sulieiu M -

which i1s given by (B.6) above. Hence 5(‘2;0,0_ Lie+1)(f0:0) = EDC('EOQ;,O) (tg=1)

10 Models:

Now suppose ¥, is observed with an IO type outlier of size { at r( and thus behaves accord-

ing to (4.18). We obtain an expression for 5(18 ,o)(to) by subtractng (4.10) from (4.18), so that

° c? (1+0%)?

(1+02)?

- |& __9__+ 5.2 1 o*-2¢ 1__.__2_92_ (26)
o] (1+¢5)* (0] 1-¢7 (1+¢%)?
2
20*
’ [1‘<1+¢2)2] [Z(M’Z)H

4 5 2
= [_Q_} @ +[—;-} - [@2 4¢2+——q’—-——+2(1+¢~

o (1+¢*)* |o

{x,o( 2®+¢)+(x,°_1+x,°+1)[ L}H

_ 8¢2 . 8&4
(1+6%)  (1+¢%)

|
FQ P‘c‘

)¢ 6 (v )2 i 2 2 2,2 :
) . L 1 2-¢? [1_81L1+9 )=8(1+0°)"+80

(1+¢%)* |0 1-¢7 (1+0%)
AL )2 r
- (& __Qi_._+ L9 I 2 ~¢? 1+ —B (BS.
4 2 2.3
o) (1+e®) 0] 1-¢* | (1+¢%)

From this follows the expression for EDC {8,0) (tg) . displayed in (4.20).

Evaluating the diagnostic at tg+1i, we obtain 5(/2,0)(r0+i) from (4.10) by replac:in:
. | . [ ‘—1 » i
X, -y with xto,.k-ro'”g, x,, with x, +0'§ and x, .| with Xe1 ¥ TS (400

This yields

w? 2. Jied 24 - o - |
j..[_O.A 1+o-. L+o..l U _ *(OA bew

| T2
o L (1+0°)




B 0 aad o Bt it it e it hatilie®oiut et et alat SAE LA A AR LA e A oAl N G s AWt A B I Al Ak Aad Al s gl Saloink *ale e Rl Ahas At dte ] l'u-vu'r'*ﬁ'rvv"ﬁ

80

+§ [x,°<—2¢‘*1+¢‘*‘ 0 T+ (xg o+ Xy e1) [Q"-

4
18 22 O (a2i1)?
L 01 |0 (0T D)

2
+ F;].Tlgz¢ﬁ-2[(1_¢2ﬁ-+2(1—¢2){¢—27397—}(2¢)

Y19
20 i+ L= -
—= (0T o
(1+0%)° )

¢ ) 1= +07)
+ [o-—22— 1 (201+¢Y)
(1+6%)
PRE , 2,1 _42\2 2 2,2
_ & 1 o2i=2 (1,¢2)2_4¢(1 0°)° | 20°(1-07)
2 2 2
G 1-¢ (1+97) (1+6¢%)

.o )
r ‘2 2
- L% ¢2i_2§i;$2;(1+¢2—4¢2+2¢2)

(B9

r 2
_ 1L o2i-2 (1-0%)?
o] (1+67)

This leads to (4.21).

Computation of C -

It remains only to compute C¢ = EA (60X )2. Since the vector (X, _1,X;,X; +1) hasa
multivariate normal distribution, we can easily compute the following useful expectations:

04

3 - -
E[x (I,_1+X;+1)] =60 (1_¢2)2

(B.10)

E [I‘Z (x¢~l+xt+l)2] = 2E [xrzxtc—l +x,_1x,2x”_l]

04

(1-0%)*

2(1+50%)

E [XI(X:-I*'XHH.)}] = 2E [xrxr3-1 +3x12—1xrxr+1]

04

(1-0%)*

2[30+30(1+2¢%)]
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04
= 12¢»(1+¢2)( —
-0°)

E [(X;-1+X;+1)4] =E [2("7:4—1 +4Xx3—lxr+1)+6112-1xr2+l] !

[2(3+1202)+6(1+206%)] _o'
(1-02)°

4
12(1+¢%)? —2——
(1+0%) (1-0)2

We are now set to evaluate the expectation of the second term (squared) in (4.10).

2
o
E —¢x2+x (X, +x,  )———(x, _+x 2
I: ' P\ -1 T el (1+¢2)2 t-1+ %4 1)
- 2,4 3 2¢?
=E l:‘b Xp =20x7 (X ¥ X4y F [(1+¢2)2+1]x,2(x,_1+x,+1)2

2
-2(—1—%&(&-1+x:+1)3+(—1_%2)—4(xz-1+x:+1)4}

2
[3@2—12¢2+2 [%H](HMZ)

1+0°)
.—24__92__(1+¢2)+ 12¢2(1+¢2)2 04
(1+¢?)? (1+02)* | (1-¢%)?
4
= {(3&-12¢2+2+1o¢2)+——1-?3(4¢2-24¢2+1z¢2+2o¢“-24¢4) —°
(1+¢°) (1-9¢°)
4
= [(2+01) (1402 ~802 -4¢*] ——>——
(1+6%)3(1-¢%)?
2 2 6 04
RN TPeEI T e
Since E A, (tg; 9) =0,
, 2
E | -0x" +x,(x,_1+x,+l)———dl,—(x,_;+x“_l)2 =--2 (Da (B 1
(1+¢%) (1+0°)
N - b e e T AT AT AT T N T R T g g N e TN S T T e N e R T N S T e T T T W e TN T N L L N N )
o N e B e G sy e R R AR AR
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Thus, squaring (4.10) and taking expectations, (B.11) and (B.12) yield

C, [ ) }ZH[ ) }{_ ) ]+ 2-306+0a°
(1+0%) (1+¢%) (1+0%) | (1-0%)%(1+06%)?

1
(1-02)%(1+0¢?%)?

(-0%(1-¢%)2 +2-307+¢5)

2
(1+02)°
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APPENDIX C: Computation of EDV

The computations for EDV parallel that for EDC (see Appendix C), though we must

compute the score function for 02. By (4.7), we need only compute

A3 vrnfr‘vf’\_"\‘i

A(tg; 62)=F(62)~ ¥, (6%), which is the difference between the score function for G >
with t considered as missing and the score function with all the data for a perfectly observed

Gaussian process.

The score function with no missing data is
n 1
¥(o?) = s 2 t;a X vl fy (C.1)

If x,, is missing, then the prediction errors and the variances are given by v,* and f,* in (B.3).

Hence, for the leave-one-out case

Atg; 62) = ——2;2 1»;14[v,;;11/f,g=+l OV ARERLI ) C.2)
2 2
1 1 | (xrge1= 9% -1)
= 202 + 264 { ‘ +(1+¢2‘) _((Xto"'l_Qxfo)2 +(xlo—¢xto-l)2)J
= e [+ 20m ayhg)
_—222_“‘: X+l t —1—-1 x,zﬂ
(1+¢%) 777 (1+¢?) 0
4
+ ___?L__¢2 x‘2__l
(1+6%) ’
N S 2y,2 42
= 257 + 2o —(1+0%)x +20x, (X, _1+X 41)
2
-?T%¢—2)-(x'o‘l+xfo+l)2}

which is the same as (4.15).

Assume X, is a perfectly observed Gaussian process, and y, behaves according t0 some

outlier model. Proceeding as 1n AppendixC, define Dcz=E(A(t0;02)2) and
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By, (10: %) = Ay, (10 07 )= A(r9: O7) where A, (rg; G°) is the difference in the score func-

tons for ¥, . Then

E(Ay,(fo;cz)z) =D°z+55y’(10:02)2 (C.3)

As shown below, D .= . 1 7 and E(Syl(ro; 0'2)2) is evaluated case by case below. From
[e)

£

(C.3) we can compute EDV via (4.9).

AO Models:
We first consider an AO type outlier of size § at fo. We can compute Oy (¢o; 62)% in the
same fashion as Appendix B: replace x, by x,o+§ in (C.2) and subtract off A(tg; 0’2). Using

the same notation as before,

2
E8(C, (1902 = L E[§2(—(1+¢2))+ C(—2(1+¢2)x,°+2¢(x,o_l+x,°+1)):l
_ e 2+ K L (4(1+0%)2-160(1+0%)+86%(1+0%)
0] 40 () 40 (1-¢%) | |
r 4 ( 2
- & 2, 18| Ly 4e2
> )+L° T (1+6) (C.4)

Adding D2 to (C.4) and scaling by 2G* gives (4.16).

The calculations for when £g—1 (or £+ 1) we left out proceed as follows:

2 A
[ (1+¢2 } C{‘:‘xto‘z——-——(lioz) (Xggo1+ X0

= {5—}41 o [—Q] 1 l [44)2-16 o g o
(o]

(1+07%) (1+o:)‘

4 2
v 4 2

_ |8 14 oﬁ+ 14 ) 2 s
] 47 (1+0v)- G o” (1+6%)

This leads to (4.17).

E 842, (to+1;0%)7? =

..... .. . S M S A e e e AN T Tt A e S T N L T e e ““'\
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For outliers of size { at rg—1 and fg+1, it is easy to see (as in (C.4)) that

o AO e
E 5&;10_1',”1)(:0;02) = FE S(ZQ;IO)(IO—I;Gz),whxchls given by (C.5).

10 Models:

Proceeding in the usual way, (4.22) is derived from

4
E 82, (tg:0%) = —4;85 [cz [—(1+¢2)+2¢2————° }

1+02
3 ) 12
+§ |(-2(1+¢%)+20%) x, + 2¢——“L2 (Xp,—1 +Xr,01)
(1+07%) | °
14 2 2 r -
_lg 1 2 1y 0? Slel e 1 4 16¢° g O
{GJ e (1+¢%) G 40 (1-¢%) | 1+62 | 1402

_{%7"1 1 +[5}2_1__1__

40 (1+62)? | 0] o* (1+¢%)

Also, EDV{g,o) (t; 0‘2) = 20’4001 for t >ty since

E8( i (to+iso?) = ———4;3 E [cz(-(1+¢2)¢2"+2<1+¢2)¢2"—<1+¢2)¢2")

-~

+ C(-2(1+¢2)¢i+2(l+¢2)¢i)x,°+(2¢i+1—2¢i+1)(x,0_1+x,o,1)}

=0

Computation of D .
Straightforward algebra, using the expectations given in (B.10), shows that

02
2 ( t -1 ‘+1)

E [—(l+oz)x,2+2¢x,(x,-l+x“1)— T+oh)

= E |(1+02)°x* -40(1+0H)x> (x,_ +X,.1)
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T

2.2 2
+60°x, (x,_l+x,+ll)

A
P‘..'_:.

4‘33 4
_(—1—T¢2_)X'(x"l+x'”)3 +(—1%¢2—)2‘(X:-1+I:+1)4

[3(1+¢2)2—24¢2( 1+¢2)+12¢%(1+5¢%)

48 ¢* 12¢4] o

— + e ————

* (1-0%)?
4

= [3-6¢%*+3 —_—

X, ;’,l Ty Xy
BN,
|

‘-'l"J. }-

= 3o

Since E Ay (t; 02)= 0, then

2
E |-(1+¢%)x2 +2¢I,(x,~1+x,+1)-(l%q?)-(x,_l-hx”_ly = -¢

Hence,
2
1 1 1 1 4
Dg: = +2 - + 3o
o 4c? 262 261 204 ( )
- 1
204
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