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smearing effect, which confounds the diagnostics for the coefficients.

It is also shown that the diagnostics based on the innovations variance

are much clearer and more sensitive than those for the coefficients. A

"leave-k-out" diagnostics approach is proposed to deal with patches of

outliers, and problems caused bv "masking" are handled by use of iterative

deletion. An overall strategy for ARIMIA model fitting is given, and

applied to two data sets.
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LEAVE-K-OUT DIAGNOSTICS FOR TIME SERIES

Andrew G. Bruce
R. Douglas Martin

Department of Statistics, GN-22
University of Washington

Seattle, WA 98195

ABSTRACT

We propose diagnostics for ARIMA model fitting for time series formed

by deleting observations from the data and measuring the change in the

estimates of the parameters. The use of leave-one-out diagnostics is a well

established tool in regression analysis. We demonstrate. the efficacy of

observation deletion based diagnostics for ARIMA models, addressing issues

special to the time diagnostics based on the innovations variance. It is shown

that the dependency aspect of time series data gives rise to a "smearing"

effect, which confounds the diagnostics for the coefficients. It is also shown

that the diagnostics based on the innovations variance are much clearer and

more sensitive than those for the coefficients. A "leave-k-out" diagnostics

approach is proposed to deal with patches of outliers, and problems caused

by "masking" are handled by use of iterative deletion. An overall strategy

for ARIMA model fitting is given, and applied to two data sets.
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1. Introduction

Regression diagnostics are becoming a well-accepted tool in the practice of statistics.

This is evidenced not only by books devoted to the subject (e.g., Belsley, Kuh and Welsch,

1980; Cook and Weisberg, 1982; Atkinson, 1985), but also by the penetration of the concepts

into standard texts on regression (e.g., Weisberg, 1980) and the increasingly widespread

availability of software for computing the diagnostics. One also sees the basic leave-one-out

diagnostic idea for linear regression begin carried over to somewhat more complicated

settings such as logistic regression (Pregibon, 1981) and Cox regression (Storer and Crowley,

1985).

However, the literature appears to be relatively devoid of analogous results in the time-

series setting, in spite of a rather obvious way to obtain leave-one-out diagnostics in the

context of ARIMA model fitting for time series, at least in principle: One deletes a single

observation at a time, and for each deletion computes a Gaussian maximum likelihood

estimate for missing data (see, for example, Jones, 1980; Harvey and Pierse, 1984; Kohn and

Ansley, 1986). It should be noted that use of Gaussian MLE's for missing data entails

intuitively appealing use of predictions in place of missing data. A diagnostic display is

obtained by comparing the leave-one-out MIE's with the Gaussian M.E's for the full data

set versus time, on an appropriate comparison scale. This idea was articulated some time

ago by Brillinger (1966), but only the advent of powerful computers and algorithms for

fitting ARMA and ARIMA models with missing data has placed actual use of the procedure

within reach.

In this paper we demonstrate the efficacy of observation deletion diagnostics for time

series, addressing in the process some issues which are special to the time series setting. In

particular, we consider not only diagnostics based on ARIMA model coefficients, but also

diagnostics based on the innovations variance. We show that the time series problem give,

rise to a "smearing" effect which is not encountered in the usual independent-observatIo,-

setting. For diagnostics based on coefficients, this smearing can result in considera,"

+. o . . .. o o -.-. -A• -A ... ..- A r. . . °A. .F. .A. .. . . .
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ambiguity concerning the numbers and locations of outliers. By both examples and by

theoretical calculations, we show that diagnostics based on the innovations variance is far

superior to coefficient-based diagnostics in this regard.

Furthermore outliers frequently occur in patches in the time series setting. Thus we

proposed a "leave-k-out" diagnostic approach which is both effective and within computa-

tional reach.

The paper is organized as follows. Gaussian maximum likelihood estimation of

ARJMA models with missing data is reviewed in Section 2. Section 3 presents the basic

"leave-k -out" diagnostic, based on the coefficients and innovations variance, including a

proposal for scaling. Some artificial examples are given which illustrate that the innovations

variance is a better diagnostic tool. Analytical results on "smearing" effects associated with

leave-k-out diagnostics are presented in Section 4. The problem of outlier type identification

is discussed briefly in Section 5. Section 6 presents an iterative deletion procedure to over-

come problems caused by masking. Techniques are also discussed for handling other types

of disturbances, such as level shifts and variance changes. Finally, we give an overall stra-

tegy for ARIMA model identification and fitting using the leave-k-out diagnostics. This stra-

tegy is applied in Section 7 to two real data sets. Finally, possible extensions, computational

aspects, scaling issues, and a connection with robust filtering are briefly mentioned in Sec-

tion 8.

) ..
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2. Estimation of ARIMA Models with Missing Data

Exact maximum likelihood estimates with missing data can be obtained using the state

space representation of an ARIMA model. Various formulations have been given by Jones

(1980), Harvey and Pierse (1984) and Kohn and Ansley (1986). The Harvey and Pierse

approach is used here. The Kohn and Ansley approach has an attractive feature which we

comment on in Section 8.

2.1 The Model

Consider a nonstationary process x,, r= 1,..... n, which can be represented by an

ARIMA (p, d, q )x (P, D , Q) model

-"(Bs)(B)VdV x, = y+e(B )O(B)e, (2.1)

where the E., are the innovations. These are assumed to be independent normal random

variables with zero mean and variance (Y 2. B is the backshift operator, and the regular and

seasonal difference operators are V =(-), V =(l-Bs), respectively. The intercept

term is y, the ordinary autoregressive and moving average operators are

#(B) - 1-B -..... BP, 0(B) = 1-0B .. .OqB q  (2.2)

and the corresponding "seasonal" operators are

" (Bs) = 1-l 1B .... sp , O(Bs) = 1-e 1 B 3 -... eQB . (2.2')

Let a denote the r x 1 vector of parameters,

a' = (Y1, " , , 0q, ... ,q)' (2.3)

where r = p + P + q + Q, Assume that the polynomials in (2.2)-(2.2') have their roots out-
side the unit circle, so that the process w- V d VfD x, is stationary and invertible.

_I'.. .S

.o~ ~~9* ............ *.. . . ...-... •.°. -..--. , ..--....... . . . .
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2.2 Kalman Filter Representation of the Likelihood Function

The state space formulation of (2. 1) is based on the vector Markov state transition equa-

tion

x = Txt_j + re, (2.4)

where x, is an m x I state vector, T is an m x m transition matrix, r is an m x l vector,

the e, are as in (2.1), and m =max(p +sP +d+sD,q +sQ +1). The values of the pro-

cess x, are related to the state vector x, via the noise-free observations equation

X= z'xt (2.5)

where zT=(1,0, .•,0).

Let xt denote the optimal linear (Kalman) filter estimate of xt (i.e., it minimizes the

mean-squared error and depends on the data x 1, ,x ), and let a 2 Pg be the covariance

matrix of filtering error ,-xt. Also, let itIt-, =Ti t-I be the optimal one-step-ahead

predictor of xt , and let o 2 Ptlt- denote the corresponding prediction error covariance

matrix. The Kalman filter provides a well-known method for recursively evaluating *t,

t t-1 P,, and Ptlt1

it - itit-1 +ft-lPtlt-IZ'et

Ptt-i = TP-T'+rr'a 2  (2.6)

P, = Ptt-1 -ft-lP 1 t-1ZZ'Ptlt-1

where et is the observation-prediction residual

et 3- x1-E[xjx 1,...,x,_ 1] =xt-Z'itjt_

and ft is the associated observation-prediction error variance

ft E E[e x .... ] Ztlt- z (Ptt-l
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The choice of initial condition is discussed shortly.

The log-likelihood is conveniently expressed in terms of e, and ft (see, for example,

Harvey (1981)):

2 n1 _2P1 2 11 2'logL(x,,a ) -- 2nl2r-oo -- ' logf e (2.8)
2 2 2 1tjf

where x, = (x 1, ,x,, )T. Note that ft =ft (a) and e, = e, (a).

Concentrating out a 2 in (2.8), the maximum likelihood estimate a is given by

a = argmin { logf, (a) + log ( L et (a)lf, (c)) 1 (2.9)
t=1 t=1

If observation to is missing, then the corresponding term in (2.9) is dropped, no update is

*" " performed in the Kalman filter, and i, 0 - kg42t0_ I.

When a nonstationary ARIMA process is differenced to produce stationa.ity, the log-

likelihood is given by (2.8) applied to the differenced series w- V d Vsf x.

2.3 The Special Case of Stationarity

Consider the special stationary ARMA process case of (2.1). Ignoring seasonal com-

* ponents, we use the state space formulation preferred by Harvey and Phillips (1979), among

others, and choose T and r to be

". 1- 

I ,-

T =

(2.10)
r ' ( 1 ,-8 i, .6 m . .. i0 , _ ) T

where m=max(p,q+l), Oi=0 for i>p and ej=o for i>q+l. Under stationanr%

0
.

...

.. . . . . . . . .
- - .. -.*- .
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the initial conditions for (2.6) are i 1 0=0 and P 110 which satisfies

P110 = TP 1 1oT'+rr' (2.11)

For numerical solution of (2.11), see Gardner, Harvey and Phillips (1980).

To ensure stationarity, the optimization of (2.9) over €0, '." , % must be constrained

so that the roots of the polynomial equation 4(B )=0 lie outside the unit circle. This is

easily done by first reparameterizing in terms of the partial autoregressive coefficients.

bi , i=1 .... p , and carrying out an unconstrained minimization over the transformed par-

tial autogression coefficients ui , i = 1, ... p , where

b (2.12)• l1+e -'

The parameters * , " , are obtained by the Levinson (1947)-Durbin (1960) recur-

sions. See Jones (1980) who also pointed out that invertibility of the estimated model can be

assured by using partial moving average coefficient.

2.4 Nonstationary Models

Now consider the general ARIMA model without seasonal terms. One possible

approach is to apply the state space model (2.10) to the differenced series w,. However,

* with missing observations, this procedure is undesirable since the series w, will have

(d+l)(D+1) times as many missing values as x. An alternative method due to Harvey and

Pierse (1984) avoids this difficulty by utilizing a levels formulation of the state space mode.

• The levels formulation is based on separating the stationary and nonstationary parts o'

xt in the state vector x,. Let do=d+sD, m( ) = max(p,q+l),and m m()+do. The

state vector is x, (x,(w)',x ) where xw) is a m(-)x 1 state vector for a:'.

0'f x_'= (x... . Xr..dsD ) is a d 0 x I vector of past observations. l.t

:--.
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-1, . do), where -j are the coefficients of the polynomial V d V D , so that
do

V ' V = 1- 1 SjB J . Then the new transition equation is given by (2.4) with
j= 1

T(w) OM.do

T Z(-) 8"

Odo-IM() Ido-I Odo-1

(2.13)

r= (r(w)',Odo')

*where Z(')=11,0' 1 ) T(-) and r(w) are the same as in (2.10). The new

measurement equation, given by (2.5) with Z' Z(Zw)',,8'), is essentially an

undifferencing operator.

U WThe Kalman filter is initialized at time t0 = d o with l'do+1 Id0 = Ant, Xdo) and

Pdo+1I do = 0 0 (2.14)
_(w)

where P ( 0 is the solution to (2.11) with T and R replaced by T(-) and R(w)

respectively. With no missing data, the likelihood computed from the observations x, is

identical to that computed from the differenced observations w,. The likelihood is

maximized as before, using partial autoregressive and moving average coefficients to ensure

- stationarity and invertibility of w1 .

Note that this approach requires do consecutive observations at the beginning of the

series. If a missing value occurs in the beginning, then the likelihood can be computed by

reversing the series (i.e., ordering the data by x,,,x ',x ) and applying the Kalman

* filter to the reversed series. If there are missing values at both ends of the series, thi

. approach will not work. In this case, the formulation proposed by Kohn and Ansley (1986)

Si

k. ",-, .. . ...-I § .• . .i . , U , / '". - . , ."-. -.. ., ,, , ., . -, . . : ..-. ..,- ..- .- .- -..
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can be applied: see Section 8 for further discussion.

2.5 Seasonal Models

The extension to the general seasonal ARIMA model given by (2. 1) follows from ex-

pansion of the autoregressive and moving average ordinary and seasonal operators.

In the stationary case, the state vector x, has length m = max (p+sP,q+sQ+ I),

and the parameters 01, ,,P and 01, ... ,q are replaced by the appropriate

coefficients of *(B ) (D(B) and O(B ) 4(B). Stationarity and invertibility are assured by

transforming each of the ordinary and seasonal parts.

The nonstationary case is extended to seasonal models in the same fashion.

S?.

0-°o

'V.

0.
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3. Leave-k-Out Diagnostics for ARIMA Models

In this section, we describe our basic leave-k-out diagnostics for both ARIMA model

coefficient estimates, and the innovations variance estimate. As we shall see by example in

several simulated series, the diagnostics based on the innovations variance yield much

sharper results than those for the coefficients.

3.1 The Basic Leave-k-out Diagnostics

Diagnostics for Coefficients

Denote the maximum likelihood estimate (MILE) of a by a.Let

A ={It,r,...-rt} be an arbitrary subset of 11, 2 ,..., n1, and let A denote the

MLE with observations yt'..,,~ treated as missing. If some of the observations in A

have an undue influence on the estimate aA , then this will often reveal itself in the form of

a substantial difference between at and &A . We define the empirical influence on the

coefficients of the subset A by

EI(A) = f(LA CE). (3.1)

Standardizing by the factor n leads to a non-degenerate asymptotic form for (3. 1) (see

Appendix B).

0 In the case of independent observations, one almost always deletes a single observationK:at a time and computes various diagnostic statistics. However, the time series situation

differs from the case of independent observations in at least two important wa, s.

(a) structur is imposed by time ordering, and (b) influential observations often come in r-ne

I.m.

form of an 'outlier patch" or other local "structural" change extending over several observa-

tons. Leave-one-out diagnostics can fail to give clear evidence of influence in the case

patchy disturbances such as outliers (an example of this is provided below). Such beh'uc

I-'.

might bhre regarded tas ahs formo"asigsnc the effctofficients.utie i

i~ ~ ~~- 3.1 TeBsiLev--uDigotc



patch can be overwhelmed by the effect of the other outliers. Fortunately, this kind of situa-

tion is easily dealt with in time series (unlike as in unstructured independent observation

problems) by leaving out k consecutive observations; that is, by taking A = Ak:,t to consist

of the k time points centered at t : (t- , t + [2]),where [x] denotes the
2 2

largest integer less that or equal to x. To simplify notation, denote EI(Akt) by EI(k, t)

and aA,., by at.

For patches at the ends of the series, where t < ]5 or t > n -[--, EI(k,t)
2 2

is computed with the patch truncated in the obvious manner. For nonstationary models, the

series will be reversed to obtain EI(k,t) for t = 1, ,d 0 +[-1--] where d0 is the
2

order of the differencing (see the comments under nonstationary models in Section 2).

A strategy for determining the largest k that needs to be considered for a given data

set will emerge, based on the empirical examples of Section 3.2.

Standardizing El

The empirical influence EI( k, t) is an r-dimensional vector, and as such is difficult to

- interpret. Further, the empirical influence is relative, and comparable only within a data set.

Hence it is useful, as in the ordinary regression context, to consider a quadratic form diag-

nostic measure of influence for coefficients

DC(k, t) =EI'(k, t) M EI(k, t) (3.2)

where M is an appropriate positive semi-definite rxr matrix. As in the regression setting,

* it is natural to choose M to be the inverse of covariance matrix of a.

Although the exact covariance matrix for ax is not known, it can be approximated by

the asymptotic information matrix 1(a). It is well known that a is asymptotically normal

0 under regularity conditions (see, for example, Fuller, 1976):

"............... . N,(0, I(a)- .

P



If 1(a) is a consistent estimator of 1(a), then the Mann-Wald theorem implies that

n (c-a)' i(a)(&- a) - X (3.4)

where X , denotes a chi-square random variable with r degrees of freedom. Thus, it is

natural to choose M to be n i(a).

One estimator of 1(a) is 1(&), the expected information evaluated at the maximum

likelihood estimate. Although not commonly available in the literature, a closed form

expression for 1(a) in terms of a exists (this expression is derived in Appendix A). Using

this expression, we take as our leave-k-out diagnostic for coefficients

DC (k, t) = -- EI'(k, t) I()EI(k, t) (3.5)
* n

.

Although the distribution of DC (k, t) is not known, the use of the X 2 distribution

Ir

allows one to view DC (k, t) on a familiar scale. This corresponds to using the F distri-

bution as a reference for Cook's Distance (Cook and Weisberg, 1982) and DFFITS (Belsley

et. al., 1980). The X2 distribution is used in the tm series case, rather than an F distri-

bution, since 1(a) does not involve the nuisance parameter a 2.

Following previous applications of leave-k-out diagnostics, we recommend judging a

point or patch of points to be influential if the "p-value" of DC (k, t) based on the Xr

reference distribution is smaller than .5. Empirical evidence shows this guideline is quite

useful, except near the region of noninvertibility or nonstationarity.

F °.
6"*,

I".

ll
'
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Diagnostics for the Innovations Variance

The influence of a subset A can also be measured by evaluating the effect of its removal

on the MLE of the innovations variance estimate a 2 . The innovations variance is a

nuisance parameter, and at first thought it might therefore appear to have less intuitive appeal

as a basis for leave-k-out diagnostics than the coefficient estimates a. However, it turns out

that a diagnostic based on the innovations variance leads to a more effective tool than DC

for identifying outliers. The diagnostic is formed in the same manner as above: A

^ 2 ^2 .
standardized version of -(a, t-a ) is computed, where ao t is the NILE of a 2 with

observations at times t e At, k treated as missing.

Again, the standardization is based on asymptotic theory. Under regularity conditions,

2 is asymptotically independent of a, and

- n (62-2) -. N(0,2a 4 ) . (3.6)

If a 2 is a consistent estimate of a 2 , then by the Mann-Wald theorm

n2 2 -2_ ] --*,X

Thus, we propose to use as leave-k-out diagnostic for innovations variance

DV(k,t) = _ 1] (3.7)

with the reference distribution being a chi-squared with one degree of freedom (Xi2 ).

Again, one suspects an observation yt to be influential if the p -value for DV(k, t) is less

than .5 using a X .

,0-.

,0:.
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Relationship Between DV and Fox Tests for AO

The difference n[62-62 ] is asymptotically equivalent to the squared interpolated

residual (xt-x) 2 where x̂' = E (x xi,t 1 ..... tn ,1 t ). The interpolated residual was

used by Fox (1972) as a basis for testing the presence of a (parametric) AO type outlier at a

fixed time t. At first glance this equivalence may seem surprising since (a 2 -6,T) is based

on the prediction residuals e, = Xt -t and not on the interpolation residuals x, -Y,. But, by

using the smoothing form of the likelihood (Schweppe, 1973), it is easy to show the claimed

asymptotic equivalence.

It is important to note that in spite of the asymptotic equivalence, the finite sample

differences can be significant, e.g., , T can be negative, whereas (x, -Yt")2 cannot.

4

F

I,

,' -.
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3.2 Outlier Models and Examples

Outlier Models

In the following examples, we focus on influential points caused by outliers. Influential

observations may also be the result of structural changes, such as level shifts or variance

changes. We shall discuss application of leave-k-out diagnostics to such problems in

Sections 7 and 8.

We examine the performance of DC and DV under two types of contamination

commonly used in other studies (see, for example, Fox, 1972; Denby and Martin, 1979;

Martin and Yohai, 1986; Tsay, 1986): the additive outliers (AO) model and the innovations

. outliers (10) modeL The primary focus will be on AO models.

Let x, be a Gaussian ARIMA process specified by (2.1). Then y, behaves according

to a constant magnitude AO model if

Yt =xt + zt (3.8)

where { is constant and z, is a fixed 0-1 process. The magnitude of the outliers is ;

isolated outliers and patches are created by appropriate choice of O's and I's for z,.

A constant magniude 10 model is formed through contamination in the innovations

process e,. Let e. be a contaminated white noise process, with

t= Yt + ;zt (3.9)

where y, are independent Gaussian random variables with zero mean and variance a , and

zt are as above. Then Yt follows an ARIMA 10 model if it is generated by (2.1) with

the c, given by (3.9).

The models (3.8) and (3.9) are actually somewhat special AO and 10 forms. More

* .general AO and 10 (and other) outlier models for time series are possible (see Martin and

Yohai, 1986, for a very flexible "general replacement" model).
.%

0'%

, - ,_ , . . . , ._ , ... , ,. .. .. ... . ., ', . . . .. . ..V..
'p.' . , , _d, . , . ,' ' r -, - .,.- , - ' , . .,t , , 7 L . - . . . ., ,." .. . .. . . .".. . ..
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Example 3.1: AR(I), 0 = .4, a = 1, AO model with 1 isolated outlier

Starting with a simple case, we examine a simulated AR(l) series of 100 points from

Gaussian white noise with * = .4 and a single additive outlier of +4 at point 28. The MLE

fit of an AR(1) model with the entire series yielded p=0.17 and a2= 1.09. The data is

plotted in Figure la and the outlier is marked by "o". The leave-I-out diagnostics, DC(1,

and DV(1,), for 0 and 6 2 are displayed in Figures ib and Ic. The p -values correspond-

ing to a Xi distribution are displayed on the right axis. The p-values for DC (1, t) at

t = 27, 28, 29 are all smaller than .5, while the p -value for DC (1, t) is considerably greater

tha .5 for all other times. Thus y 27, Y 28, and Y 29 are judged to be influential. By contrast,

only DV (1, 28) is significant and has the much smaller p -value of about .02. This example6

is indicative of a general pattern which we establish analytically in Section 4: an outlier is

smeared across several values of DC(1,) but is identified exactly by DV(1,. In partic-

ular, the smearing for DC(1,) extends by one time unit in each direction from t =28.

Example 3.2: AR(1), 0 = .4, ay2  I, 10 model with 1 isolated outlier

This is the same series as in Example 3.1, except that the outlier at point 28 is of the 1O

type. The MLE's of the parameters are: *= .27 and 6 2 = 1.06. Figures 2a, 2b, and 2c

display the data and leave-l-out diagnostics DC(1,.) and DV(1,-). The problem of

smearing for DC is considerably worse than in Example 1. The diagnostic is significant

only at time t=27, while the p-value of about .7 at t=28 is quite insignificant. However.

there is no smearing with DV(1,)" DV( 1, 28) is several magnitudes larger than DV(1, )

for any other t , and hence DV identifies the outlier. Again, this is a general behavior, esta-

blished in Section 4: DC is large at time points just prior to the occurrence of an isolated

10 type outlier, but is small at the time of occurrence of the outlier, while DV is large cr-.,

at the time of occurrence of the outlier.

S+-
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In all examples to follow, plots of DC are omitted for simplicity. However, in Sec-

tion 5, we discuss the use of DC as a tool to determine whether an outlier is AO or 10.

Example 3.3.- MA(1), 0 = -. 5, a 2 = 1, AO model with 1 patch and I isolated outlier-J

This example is a simulated MA(1) series with 0 = -. 5 and both a patch of three

outliers of size +4 at points 60-62 and an isolated outlier of size -4 at time 15. The outliers

are all of the AO type. Figure 3a shows the data; the MLE's are =-.36 and a 2 =1.86.

Leave-1-out through leave-4-out diagnostics for DV are displayed in Figures 3b-3e.

" Recall that for k :> 2, DV(k, t) represents the influence of a patch of k observations

centered at t. For even k , t is the closest point to the left of the "center" of the patch. For

example, with k= 2, DV(k,t) corresponds to the diagnostic computed when y, and

Yt+ I are left out.

* Although, leave-l-out diagnostics clearly identify the isolated outlier, there is just

" barely an indication (use the p -value of .5 as a guideline) of something going on at t =60

and 62. Leave- 1-out is not adequate for detecting the patch of outliers. Leaving a single

point out in the patch is insufficient because the remaining outliers in the patch comprise the

bulk of the influence of the patch. Leave-2-out and leave-3-out provide progressively

,'- stronger evidence of the patch of outliers. The value DV(3, 61), is over five times larger

* than other neighbori g diagnostic values.

3.3 Patch Length Determination Strategy

Note that the isolated outlier in Figure 3 is smeared in the leave-k-out diagnostics for

k =2,3,4. For k=2, both DV(2, 14) and DV(2, 15) are highly significant, and have

nearly the same value as DV( 1, 15). Similar behavior is observed for k = 3 and k = 4 The

general pattern is as follows: k- values of DV(k ,) surrounding the location of an isolated

outlier at to are significant, and have nearly the save value as DV(k ,t 0 )! This corres:'.>JN

,,...-: :,. ,.,.,,,..-, .:,... . ,,,, . ,., . , -, . ..-... ... .... .- ,..... ..-... .... . .. ,.. . . .-.. .-.. . . .. . . . . . - V . . .. . . . . . . . . . . . . . . . ... .,. . . . . . . . .
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to what one might intuitively expect for an isolated outlier: deletion of a patch which

includes an isolated outlier has nearly the same affect as deleting only the isolated outlier

Similar behavior occurs for a patch of outliers. For example, DV(4, t) yields values

at t =60 and t =61 which are nearly equal to DV(3, 61). In general, for a patch of ko

outliers centered at to , the following property holds:

For k k k0 , there are k - k 0 + 1 subsets At,, which completely overlap the patc h,

and for deletion of these subsets, the magnitude of DV (k, t is roughly the same

and significant (i.e., the associated p -value is less than .5).

Thus, we judge an influential patch to be of length k0 2! 1 centered at to if DV(k 0 ,t0 ) is

* significant, and the above property holds. If DV(k 0 ,t0 ) is significant and the above pro-

perty fails to hold, then this is an indication that a broader patch of outliers is present.

This provides us with an initial strategy for identifying patches of influential points:

Compute leave-k-out diagnostics for increasing k =1, 2,., until the magnitude of

-. DV (k, t does not "significantly" increase for any t. The length of a patch will be

* estimated as one less than the first value of k for which nearly uniform smearing is in evi-

* dence. We shall improve this strategy by incorporating iterative deletion in Section 6.

We close this section with a caveat: Diagnostics in MA models often exhibit different

characteristics than in AR models. In particular, the smearing for DC is slightly worse than

the AR(l) case. Also, MA models are susceptible to "start-up" effects: outliers at the ends

of a series are subject to more smearing. These features correspond to the fact that MA

[0 models have infinite autoregressive representations.

L- '
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4. Smearing and the Expected Diagnostic

The examples of Section 3 have revealed a major difference between leave-k-out

coefficients diagnostics for time series (including k = 1) and the usual regression

coefficients diagnostics for independent data. Namely, there is a smearing of the effect of an

isolated outlier to adjacent points. A given point may be judged influential because of an
N

outlier at an adjacent point. Hence, interpretation of leave-k-out diagnostics for coefficients

is not so clear as in the usual regression case. On the other hand, diagnostics for the

.- innovations variance in Section 3 displayed much smaller, and often negligible, smearing

effects. In this section, we use an asymptotic approximation to establish an analytical

*'' rationale for these different smearing effects. Although the approach will work for any

ARIMA model, the computations are quite tedious for all but low order models (where they

are also tedious). Thus, after introducing the general expressions for the limiting forms of

the diagnostics in Sections 4.1 and 4.2, we concentrate on obtaining explicit calculations for

the AR(l) case in Sections 4.3 and 4.4.

4.1 Expected Asymptotic Diagnostic for Coefficients

In order to understand the smearing behavior of the diagnostic (3.2) for coefficients, it is

helpful to use an asymptotic representation of DC (A) for general subset deletions A For

A
subsets Ak,t of fixed size k one usually has ac -at,t =0(1), and correspondingly we are

n

- interested in the asymptotic behavior of n *DC (A). Since the asymptotic distribution of

* :this quantity is quite complicated, we work with the expected asymptotic diagnostic for the

coefficients

EDC(A) = E[lim nDC(A)]

= E [lim n (A-a)'I(() (-)a

.. . ---4, .':".',. -" ' ".----..'.- " " " . .. . ."' ' "- " ' " " - - -.
N * *
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Explicit computations of (4.1) are based on one-step approximations to &A by a.

Denote the (efficient) score function T*,,(a) and denote its derivative T,, (a)"

a log L (a; y,,) a2 log L (a; y,,)

" (CO = a 'T" (a) =

where the log-likelihood L (a; y,,) is given by (2.8) with x,, replaced by y, and a 2

suppressed. Let log L(A) (a; y,,) be the log-likelihood with subset A removed, and let

U(A)(a) and T (A )(a) denote the corresponding score function and its derivative. Under

suitable regularity conditions, a Taylor series expansion of n A)(a)) about & yields
0 = viIc&)A+ (CA-()'(i c&)+o,,(n)). (4.2)

One difference between (4.2) and the usual log-likelihood expansion is that scaling &(A )-

by n (rather than ) leads to a non-degenerate asymptotic form.

Since C-4P a, -l ¢ 1)(a)- I(a) and TI(,,(i)=0, we may rearrange (4.2) to
ft

obtain

EI(A) = -n(&a-a)

S(-tC& -1 + O

= - ft( - ('Ik(A(&) - %I"(&)) + o (1)

I (cx) - I (1(A)(CX) - P,,(C)) + oP(l) . (4.3)

Combining (4.3) and (3.5) gives the asymptotic form of n DC (A) for general subset

deletions A :

nDC(A) = A(A, a)'I (a)- A(A,a) + o.(1) (.4)

where

A(A,a) = UT1 (A)( a)-P,(a) . (45j

Hence, the expected asymptotic diagnostic for coefficients is given by
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EDC (A) = E[ lir A(A, a) I (c)-'A(A,)] . (4.6)

Our problem is now reduced to computing the difference A(A, a) between the score func-

- tion with and without subset A included, and evaluating the expectation in (4.6).

. 4.2 Expected Asymptotic Diagnostic for Innovations Variance

In the same spirit as in (4.1), we shall use the expected asymptotic diagnostic for the

innovations variance

EDV(A) E [lim n DV(A)].

- Denote the score function for a 2 and its derivative by F,, (a 2) and ',, (a' 2), respectively,

and denote these functions with subset A removed by IFJA(a2) and T, )((2a Then

(4.7

r~]-1
(A(6k @()(42 4 p( )+p1 47

where [1 )( ) - 2a +op(l) - 20 +op(l). From this and the definition

(3.7), applied to general subset deletions A , we have

-- a 2 (62 -l2 )2

n DV(A) 4 ] n2 (i 6A.2 )

= 2A [,p(A)(2)]2 + op(l)

= (2a 4 )(,p(A)(<y2)_T (02))2 + op(1)

[" -- N- . .. . . . . . V
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Then with

A(A; a 2 ) p g.(A )(a2) FIJ (a2) (4.8)

we have

EDV(A) = 2 4 E( lim A2 (A;a 2 )), (4.9)

" and our problem is reduced to computation of A(A ; 02), and evaluating the expectation in
~(4.9).

4.3 AO Models: AR(1) Case
0

Expressions for EDC AO (t)

We now compute EDC(t) = EDC(A)1A, and EDV(t) = EDV(A)IAI for the

AR(1) model with AO type outliers. Let x, denote an outlier free Gaussian process.

Staightforward algebra (see Appendix B) shows that for the outlier free process, the differ-

ence in the score functions for € with and without xt is given by

"1, 2 2 ,2 2 + -,X t +X (t I_+Xt+ )

*-- -(x +x .)2 (4.10)
(1+012)2

A pleasant feature of (4.10) is that A(t;0), and hence EDC(t), depends only on

x t xx +1. More generally, for AR(p) models, A(t,a)= ()- T,,(a),

depends only on x, _P, xt -p +1 ,... Xt +P . Replacing x, by y, in (4.10), we can derive

the difference in the score functions for various outlier models.

First consider the case where Ye is observed with a single AO type outlier at to i.e.
O-..

behaves according to (3.8) with z, = I only at t = to:

0,

.'""- : • ."""" - - -,e .'" '-"--.' ' -,N .-. . -""' """ -. - , ,''"".''",",..-'.". ,.'.-',-,'. ---- ,. -'%
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X t  t ;e t o

Y= Xt + t to (4.11)

The difference in the score function O(t0 ; () when we leave y,, out, for example, is given

by (4.10) with xto replaced by x1 0+ . Similarly, for leaving Yro+ out we evaluate

A(to+l,0) by setting t=t 0 +I in (4. 10) and again replacing xc, with xto+ {. The

expected asymptotic diagnostics are then computed by substituting the appropriate expres-

sions in (4.6) and taking expectations.

We begin by computing EDC(t) at the location t -to of the additive outlier. Using

the notation A ;)(t; 0) in place of A(t; 0) when A(t;) is computed under an AO

0model with an outlier of size { at time to, we have

A-([) -*(xt*+) 2 +((xto;)(xt*.-+ 1t*) (4.12)

,.-.. 1 1X o +122

For the AR(1) model, I() ( 1- 2 )-. Substituting this and (4.12) into (4.6), along with

* some tedious algebra (see Appendix B), yields

:. EDCAO 02 1 _02 1-2 ) (.3
(;;tot) (o) 2(102) + + + (4.13)L". ( 1 +02)2

where the notation EDC A;t) (t) parallels that for N; (t ";).

To examine the effects of smearing, we now compute EDCX.tO)(t) for r * to . It is

shown in Appendix B that, as one might expect, EDCA.,t)(r) is given by the right-hand

- side of (4.13) with =0 for t to - 1, tot+ I, which is the expected diagnostic for the

noise free process. Thus it suffices to compute the expected diagnostics for t = t- 1 and

= to + 1 . Furthermore, by inspection of (4.10), it is evident that the effect of an outlier at

to is symmetric: EDC (APO, (to- 1) EDCAo (to+ 1) . Hence, we need only concefr

0--t ssmerc D t)(t - 1 D(;o
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ourselves with EDC(;;t) (to + 1), and computations similar to those above yield

ii EDC .to)(to+l) = (-]4 1  ) + [ 1-j~8 (1~ )3 1 (4.14)

+

D:-: (;')( o l 1 + 02 )4 ( 1 + 02 )

• . % [ + 2( 1-_4 2 )

• :w( 1+,02 )1

Expressions for ED VA O (t)

To obtain ED VAOI) (t) under the AO model we compute the difference in the score
2 2

functions A(t; a2) for a2 given by (4.8) with A =t and apply (4.9). Using the same

notation as in (4.12) we have for t = t0 (see Appendix C)

A A 2)++0)oX'+)
;to)(to = 2 + L -(+*2 )(xt,+ )2  (4.15)•-.2cy 2 204

21
(x4 +x 1)2-+2 (xo-i +1 I

2J

"- and (again with tedious algebra)

EDOv'Ot ('0) - [ + 8(I+02) + 1 (4.16)

As with EDCAOt,)(t) for t:to-1, to, to+l, EDVA4 , 0)(t) is simply the

right-hand side of (4.16) with =0. Also, the same symmetry relations hold for

) (t), so that ED o)(to -o1) tED o 1) where straightforward

computations give

.?

.. .. .. . . . . . . . .
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(D;to) (o+) []2(1+02)2 + +1. (4.17)

Comparisons of EDCAO (t) and EDVAO (t)

Although the dominant terms in (4.13), (4.14), (4.16), and (4.17) are proportional

[ ] , the coefficients for this term are uniformly smaller for (4.17) than for (4.14) relative

to (4.16) and (4.13). However, the difference between the behavior of EDCAO (t) and

ED VA O (t) is best seen graphically.

Figure 4a plots EDC °4;o)(t)/I00 curve (i.e., the expected asymptotic diagnostic

assuming an outlier of size 4 at time to) for t =to-3, t 0 -2, t0 +3 with

0 = •3, .6, .9. Figure 4b gives the corresponding plot for ED ( 4 ; to) (t)/l0. The scal-

ing factor of 1/100 approximates the expected value of the diagnostics for a sample size of

100. The asymptotic approximations verify what was observed in Example 1 for AO

models: the smearing is worse for DC, and DV tends to be more sensitive.

Due to sampling fluctuation, the patterns of diagnostics observed in Example 1 differ

from the expected diagnostics in two regards: the magnitude of DC and DV is larger than

EDC and EDV , and the pattern over time for DC is not the same in that the largest diag-

" nostic is for the time point after the outlier (t = 28).

In Figure 5a, we compare the amount of smearing graphically for DC and DV as a

"EDC( 4 ;,o) (t 0 - 1) ED(v'O4;to+ )(t o-1)
function of . The ratios CAO (solid line) and VAO

D (+4;to) (to) EDv (4;

(dashed line) represent the proportional amount of smearing for an outlier of size 4 at to

These ratios are always less than unity. However, the expected asymptotic smearing for DV

is small in absolute terms for all 0, and also substantially smaller than that of DC for a2,

but quite large values of 0. The smearing for DC is greater than .5 for a large range o 0

-I
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values, and this suggests that in such situations, smearing may lead to some confusion when

examining DC.

The potential for confusion in fact becomes unquestionably serious in situations where

there is more than one outlier present. We demonstrate this in the very simplest context.

Suppose y, is observed with two isolated AO type outliers of size at times ro - I and

to +1. Note that for r #t 0 , the expected asymptotic diagnostics EDC 1I, to+ 1 ) (t)

and ED to to+ 1, ) (t) are given by (4.13), (4.14), (4.16), and (4.17) above (since only

Yt-I, yt , and Yt+I enter in (4.10) and (4.15)). Also, it is easy to show that as a conse-

quence of the symmetry in the expected asymptotic diagnostics for AO models,
E~A DAO DO

EDC(? to_1 .. to+i) (t 0 ) = ED -C 1) (t o0) and EDV(;AOLt1+1 (to)
EDVAO(2 ;o_ (ro). That is, the smearing effect of an AO type outlier is additive:

outliers of size at to-1 and t 0 +I are equivalent to an outlier of size 2 at to-1.

4. To see just how serious smearing can be in this situation, consider the case where

there are outliers of size +4 at t o - 1 and t o + 1. Figure 5b exhibits

(+EDC (+4; to- 1. to+1) (t) solid line) and EDV(+4 ; to- it + 1)( to)
EDC(+Otl)o 1) oO

(4to to1)(o- ED(+4; to- I~to+ )( ro

(dashed Line) as a function of 0. The expected asymptotic value of DC(t o ) with outliers

at t0 - 1 and t 0 + I is larger than the expected asymptotic diagnostic at either outlier posi-

tion for all 0, and has a maximum value almost six times larger! Thus, DC will be totall\

ineffective in revealing such a configuration of outliers. By contrast, the ratio for ED.'

stays below one for all 0, and is substantially smaller than one except for values of 0 near

one. One therefore expects DV to be far superior to DC in revealing such out'J:er

configurations.

6

I.

= " ". . " .. ". '. _ . ". . . . . ' ; " , ', " ' " '. ' ,- ' ', , - .. . - t, , .. - . -.' . .. ,,'.' _ L ,- , .. ,, - .. .. .:.. . . .
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4.4 10 Models: AR(1) Case

The analysis of smearing for 10 models parallels that for AO models. However, since

the outlier occurs in the innovations of the process, the difference in the score functions for

0 i, not symmetric, as was the case for AO models. Suppose Yr is observed with an 10

type utlier of magnitude at to , i.e, e, is given by (3.9) with z, = 0 except at r = to

where zr = 1. If x represents the series without the innovations outlier, then it is easy to

check that

"Xr
Xt t < <to

SYr = { r ~ - 0 (4.18)
4 xt +,Ot-to t > to

Details concerning the calculation of the expressions to follow are provided in Appendices B

and C.

Expression for EDC 10 (t)

From (4.10) we get the difference in the score functions for with and without Yo:

0= - 1 [_(x ,+ )2 (4.19)0. _2 02

J'Y

.+(xr,+ ) (x 0 ,- +(x,, + i +

' * (Xto i+(Xto ++ ))2]
(1+02)

2

The notation N(tr0)(t; o) is used to indicate that we have a single 10 type outlier of size

, at time t0 . It is now straightforward to show that

iI

i- ..... = . - .. . ....p .. .... ... .. ... ... . . :. .- ..pp ..- -.. .-.........-....... .... .. ;
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E o (to) = (1_0) (4.20)

E[ 112 (1 + )4[2 _,02 [I+]
(1+02)3 1+02)2

Although the dominant term is still proportional to , it is of order o (05) as

I¢I -0.

For t <t 0 , EDC1, 0 )(t) is given by (4.20) with a0. EDC 1° 
0  -lI is

identical to the counterpart (4.14) for AO models (recall that (4.14) is also the value for

St=t 0 -l). For t=to+i, i=1,2,

'"2 to 2(i 2 1-) 2  (4.21)2
EDC;t,)(to+i) = I+2(1_02) 4.1))0) 0 (1 +02)2 (1 +0)2

* - Note that the dominant term in (4.21) is proportional to ( ) )2 rather than )4.

" Hence, the effect of innovations outliers on EDC for t > t o is "smaller" than that at

t to - 1 and t = to and furthermore the effect dies out exponentially fast in t.

Expressions for EDV !0 (t)

Substituting y, in (4.18) for x, in (4.15) gives the difference in the score functions for

2 .

[ ° "

[F.

[-0

[...'...........................................*~
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10 2 1',0A(C) (t 0 ;) = 2a 2  2r 4

+ 2 0 (x t0+ ) xt (X +( xo_+

( Xto 0+ (X°.++,)) ]  (4.22)
1+02

Use of (4.9) yields

tEDV(fo) (to) = [j2(,2)2 +[ (1,2) + 1 (4.23)

For tto-I or to , EDV,.(;;t)() is given by (4.23) with a O, and

EDV~'O0 ) (to - 1) is given by (4.17), the corresponding expected diagnostic under the AOto)V 0ot( 0d+ agnosteicnonddernthonAO

model. Unlike the AO case, EDV't 0) (r0 +1) does not depend on

Comparisons of EDC 10 (t) and EDV10 (t)

With 10 models, the behavior of the smearing effects of an outlier at to differ even

more dramatically for EDC and EDV. For EDC , the effect of smearing is not restricted

to points immediately adjacent to the time of occurrence to of an outlier. Specifically, an

outlier affects EDC( o) (t) for all t > to-1 (i.e., leaving out the previous point or any

future point). By way of contast, the effects of an outlier at to are seen only at to - 1 and

ro for EDV

Figures4c and 4d display EDC(+4;to)(t)/100 and EDV(0+4;t )

t =to-3, t 0 -2, ., to+3 with 0=.3, .6, and .9. The severe smearing of DC at

to 1(4 is reflected in Figure4c, where EDC 0  - 1 dominates

EDC(°4;,) (t 0 ). This is also demonstrated by Figure 5c, which shov s

SEDC( 4 ;,o)(to ) oi a EDV( 4 ; to) (to(- l The ratio(solid line) and (dashed line).Thrao
IEDC O' ,o (to) EDV( 04; to) (to)

(+4 1.
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for EDC' 0 is greater than one for most values of O, while the ratio for EDV 10 stays well

below unity, except for I I close to I.

These results extend to AR(p) models: dominant values of EDC10 can occur at the p

consecutive times preceeding an isolated outlier. The use of EDV(r) is obviously preferred

for 10 (as well as AO) situations.

:a
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5. Diagnosing 10 Versus AO

Notice that Figures Ic and 2c appear to be very much alke, in spite of the fact that the

outlier at r = 28 is an AO in Figure l b and an 10 in Figure 2b. DV identifies the outlier in

both cases, but provides no additional information as to the outlier type. On the other hand,

the distinctively different behavior of DC for the two cases allows one to use the auxiliary

information contained in DC to help decide whether an outlier is 10 or AO: If DC is

smeared to both sides of the time of occurrence of the outlier as identified by DV, then the

outlier is probably AO. If DC is large prior to the outlier time identified by DV, but small

* at the outlier time, then the outlier is probably 10.

* *A more formal way of determining whether an outlier identified by DV is 10 or AO is

to use a robustified version of Fox's test (1972), as described in Martin and Zeh (1977). See

also the non-robust use of Fox type tests in an outlier identification and model fitting scheme

proposed in ffillzner, Bell and Tiao (1983).

A less formal way of determining whether an outlier is 10 or AO is to examine a lag- I

scatter plot of the residuals. As was pointed out by Martin and Zeh (1977), 10's tend to fall

near the abscissa and ordinate of such a plot, whereas AO's tend to appear away from the

abscissa and ordinate, assuming that robust parameter estimates have been used to form the

residuals. In the present context, we recommend using the parameter estimates obtained

with the outliers identified by DV deleted.

respectively. The circled points are ( eN7 , e 28 ) and ( e2 8 , e 29 ), where e, is the one-step

ahead prediction residual for time t As expected, the (e 28 , e 29 ) point for AO falls

* further from the abscissa than in the 10 case. In particular, for the 10 case, the ordinate

value is well within the bulk of the data, while in the AO case, it is near the extreme lower

range of the data (it is the third smallest value).

0
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Combining the DC diagnostics with the lag-i scatterplots, we obtain a convincing

graphical display identifying the type of an isolated outlier. However, when a patch of'

outliers is present, these techniques do not directly apply, and determination of the outlier

type is a more subtle problem.

0%
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6. Overall Strategy

In this section we present an overall strategy for ARIMA model fitting using leave-k-

out diagnostics. In Section 6.1, to handle problems caused by "masking", we imbed the

approach of Section 3 for determining the length of a patch of outliers in an iterative deletion

procedure. We discuss more flexible subset deletion techniques in Section 6.2 to handle

cases where the iterative deletion procedure fails. Finally, an overall strategy for model

identification and fitting is given in Section 6.3.

6.1 An Iterative Deletion Strategy

- The masking of influential points (e.g., outliers) by other influential points is a problem

[ • encountered in all types of diagnostics. As we have already seen, masking caused by a sin-

gle patch of outliers can be handled adequately by leave-k-out diagnostics. However, some-

times the presence of a gross outlier will have sufficient influence so that deletion of aberrant

values elsewhere in the series has little effect on the estimate. More subtle types of masking

occur when moderate outliers occur in close proximity to one another. These types of mask-

ing can often be effectively uncovered by an iterative deletion process which consists of

removing suspected outliers from the data, and recomputing the diagnostics.

To deal with problems caused by masking, we build upon the initial patch length deter-

mination strategy of Section 3 as follows:

[ Run leave-k-out diagnostics on the data, for k = 1, 2, .... until either: (a, "-c

length of the most influential (significant) patch is determined using the guidelmnes

of Section 3, or (b) k = max , where K . X is determined by the user. In princ:pc

K M&X is the length of the longest patch of outliers thought to be present in:

data. However, computational costs require that Kmax is reasonably small e"

run time results in Section 8.2: for "short" time series, i.e.. n < 250.

0z.,

%p, .
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K __ 5 will often reveal most if not all problems with the data). Case b can

result from two possibilities: either no influential observations were detected, or

the length of an influential patch is ill-determined (according to the guidelines of

Section 3). In the latter case, which may be due to the presence of a patch of

length greater than K ., we determine the "most influential" patch as that

corresponding to the most significant diagnostic.

Step 2

If no influential points are found, then conclude the analysis. If influential points

are found, then delete the most influential points as identified in step 1, and go

back to step 1. The new leave-k-out coefficients should be scaled according to the

IVILE computed with the outliers removed, so as to gauge additional influence of

the remaining points!

- - The next two artificial examples illustrate the efficacy of the iterative deletion pro-

*cedure in handling problems caused by masking.

Example 3.3 (continued):

With the above modified guidelines, we would identify y 15 as an outlier after running

leave-l-out and leave-2-out diagnostics (see Figures 3b and 3c). Performing iterative dele-

tion, we "remove" y,5 from the data (i.e., treat y 15 as missing) and recompute leave-k-out

* diagnostics for k = 1, 2, 3. These are displayed for DV in Figures 7a-7c, and give convinc-

ing evidence of a further patch of 3 outliers centered at t: 61. Note that the pattern of diag -

nostics after iterative deletion is nearly identical (except for values associated with y 15) to

S. the original set of diagnostics (cf. Figures 3b-3d). However, the magnitude of the diagnos-
7.

tics is much larger after iterative deletion! This is quite typical: a non-adjacent outlierns

will mask other outliers by decreasing the magnitude of the diagnostics, but not altering the

pattern.

A" *

'.;
"" . . . . - . ..j" ","," . , .J-" " - . . -""''." ."
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-. Example 6.1: Simulated MA(1), E) -. 5, AO Model with 1 Patch and I Adjacent Isolated

Outlier

The data is the same as that used in Example 3.3, except that the isolated outlier is

moved from point 15 to point 58, adjacent to the patch of outliers at points 60-62. The data

is plotted in Figure 8a. Leave-l-out, leave-2-out, leave-3-out and leave-4-out diagnostics for

DV are given in Figures 8b-8e.

The masking is much more severe than in Example 3.3: the isolated outlier is now

completely masked for the leave-l-out case (cf. Example 3.3), though the patch still shows

up prominently in the leave-3-out diagnostics. However, leave-4-out diagnostics are only

slightly more significant than leave-3-out, and the pattern of smearing is consistent with a

6 patch of 3 outliers. So following our strategy, we delete points 60-62 and recompute the

diagnostics. The isolated outlier is now easily identified by the recomputed leave-i-out diag-

-2 nostics of Figure 8f: removal of the patch eliminates the masking problem.

6.2 Local Stuctural Changes and Flexible Subset Deletion Techniques

Until now, we have concentrated on influential points in the form of outliers. However,

influential points may also be due to other types of disturbances, such as level shifts or van-

ance changes. The iterative deletion procedure of Section 6.1 is often effective for uncover-

ing these types of problems. However, the procedure will sometimes fail in the presence of

an influential patch longer than Km,.; an example of this is provided in Section 7. Masking

may prevent a long patch, or any points in the patch, from being detected. Even when te

patch is detected, if the disturbance spans a time period considerably greater than K mx. the

iterative deletion may require an intolerable number of iterations. To handle these failures.

we adopt a data oriented "free and easy" approach to flexible subset deletion.

We consider deviating from the iterative deletion procedure and using the eyevh[.1' approach primarily in two kinds of situations. First, when exarruning the data ar -

L
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residuals, the analyst may suspect a structural change in the data. Second, the leave-k-out

diagnostics may indicate at a local disturbance of duration greater than K max, (e.g., as when

the patch length is ill-determined; see step I of Section 6.1). In either case, flexible subset

deletion techniques can help identify the structure more precisely.

An attractive way of carrying out flexible subset deletions is through the use of interac-

tive graphics on a computer workstation. Candidate subsets are identified on computer

graphics plots of the data and/or the residuals, and DV is computed for such subsets. For

example, if the analyst believes a local level shift is present somewhere between the times to

and t 1, then he/she would compute DV for a judicious selection of patches between to and t I

in order to clarify the jump points. This procedure may easily be carried out with the aid of

a mouse and appropriate software (see Section 8.2).

A non-interactive and computationally expensive approach is to run leave-k-out diag-

nostics on the data for selected values of k between K M" and n /2. A "top down" approach

for selecting k is to use k =[nf/2 , [ n/43, .. ., [ n/2'] where r is the largest integer such

that n/2" >K mx• An alternative "bottom up" approach is to choose k = 2 , 2s+1, f

where s is the smallest integer such that 2>Kmax, and t is the largest integer such that

2 <_ r /2. From these diagnostics, the disturbances can often be clarified.

Another application of the "bottom up" or "top down" diagnostics is as a final check

on the model: see Section 6.3.

6.3 Model Identification and Overall Strategy

The foregoing analysis presumed that the degree of differencing and the order for -

model was known. In practice, this is rarely the case, and the model must be deterrmned t%

some criteria such as the Box Jenkins identification procedure. However, outliers may ,

improper model specification. To handle order selection in the presence of outlier .:

structural changes, we embed the iterative deletion strategy in an iterative procedure s:-.

- % . . .
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to that used by Tsay (1986).

Overall Strategy

Step 0: Tentative Identification

Using the Box Jenkins methodology, determine a tentative model. This involves speci-

fying the degree of differencing and selecting the order of the ordinary and seasonal

ARMA components.

Step I: Iterative Deletion

Perform leave-k-out diagnostics using the iterative deletion strategy of Section 6.1

until: no additional influential points are detected, or a model change is suspected.

• Recall that the second situation may be triggered in two ways, as described in Sec-

tion 6.2. In the first case, go to step II, while in the second case, go to step IV.

Step I: Confirming Model Order

With the observations identified as influential removed, i.e., treated as missing data,

determine the order of the model once again. If the same model is selected, then go to

step II. Otherwise, remove the influential observations and go back to step I.

Step III: Final Check

To ensure a longer patch is not missed, perform the "bottom up" or "top down"

approach as described in Section 6.2. If nothing is revealed, then conclude the analysis

in the usual way. On the other hand, if a structural change is detected, then go to

step IV.

'- Step IV: Handling Structural Changes6

Split the data according to the conjectured model change point(s). Analyze separately

those parts which are sufficiently long. That is, go to step 0, treating each sufficiently

long section of data as different series, and ignoring any segments which are lon g

than K max, but not long enough to warrant model fitting.

6 t .

t.2aA'iJt~~ &..a. t . - ~ - A -.-... ~.i' -- ~-- . .
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Analysis of Residuals and Influential Points

In the presence of outliers and structural changes, the usual prediction residuals are

often misleading for identifying the influential observations. Instead, we recommend exa-

mining the residuals based on the predictions formed when the observations identified as

influential are treated as missing. Since the predictions are not distorted by influential obser-

vations, this procedure reveals outliers and structural changes more clearly.

After selecting the "final" model, a careful analysis of the influential data points

should be carried out. Of particular interest is the determination of any physical causes or

events related to such points. Also, one may be able to categorize influential points as iso-

lated or patches of outliers, or perhaps associate them with a level shift or variance change.

Points diagnosed as an outliers can be further classified by type (AO versus 10) using the

techniques described in Section 5.

Use of Intervention Analysis

A variety of structural changes, such as outlier patches, level shifts, and even variance

shifts, which may be detected by the leave-k-out strategy, can be handled by interventior

analysis, as in Box and Tiao (1975). T7he prediction residuals for local structural changes

provide information which may suggest a small palette of intervention "shapes". We note

that the diagnostics may suggest intervention analysis which might be otherwise overlooked

because the investigator was unaware of any particular 'cause" (e.g., policy change).
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7. Applications to Real Data

In this section, we analyze two economic time series using the strategy articulated 1r.

Section 6. The first series is relatively well behaved, except for several patches of outliers.

The second is more difficult to model, since it contains several local nonstationarities and

disturbances, including level shifts and a variance change. For brevity, we omit the details of

model selection in the examples to follow, and concentrate instead on the diagnostics.

Example 7.1. Exports to Latin American Republics: 1966-1983

In this example, we study monthly unadjusted data on exports from the United States to

Latin American Republics. This series was examined by Burman (1985), who focused onI

outliers and forecasting in U.S. Census Bureau data. A plot of the logarithm of the data is

given in Figure 9a; the circled values represent points eventually deleted from the series.

Following Burman, we fit . IMA (0, 1,2) to this series, and the residuals from the NMLE fit

are plotted in Figure 9b.

Leave-k-out diagnostics for k = 1, 2,3 are displayed in Figures 9d-9f for DV.

Again, for clarity, plots for DC are omitted in this example. Leaving out longer patches

reveals nothing new, since the series is dominated by the outliers at 1/69 and 2/69 (i.e., Jan.

1969 and Feb. 1969). The effect on the innovations variance of leaving these two points out

is dramatic (p -value < .0001): see Figure 9e. It is unlikely that a broader patch of outliers is4

present in this time period, since leave-3-out diagnostics yield no increased significance, and

-he smearing is consistent with a patch of two outliers. Note that the plots also hint at

outliers in the last quarter of 1971. In fact, DV( ,2) is clearly significant for other points

(e.g., 10/71 ) and is "masked" since the scale of the diagnostic at 1/69 and 2/69 is so large

Following the strategy of Section 6, we remove the points at 1,/69 and 2,'69 ar.d

4 recoroate the diagnostics for k = 1,2, 3, . The results of the first round of iterative dc

tion are displayed in Figures 9g-9j. Using the guidelines of Section 3. DV idea,.:::::

I

'-...... ,.,........... . ........................... . .......-.. .-......... .... ,.....



patch 9/71, 10/71, and 11/71 as outliers, with a p-value <.01. Evidence for including

9/71 as part of the patch is weaker than for 10/71 and 11/71 : the increase of DV( 3 r over

DV( 2,r ) for t = 10/71 is relatively small. However, the pattern of smearing in Figures 9h-9j

is more consistent with a patch of three outliers than with a patch of two. Hence, these

points are removed, and the diagnostics are recomputed.

Leave-k-out diagnostics for k = 1,2, 3,4 for the second round of iterative deletion are

displayed in Figures 9k-9n. These plots are noisier, but an influential patch at 12/76, 1/77,

and 2/77 is clearly identified. The values for DV warrant deletion of these points (p -value

< .30), though the "significance" is much smaller than in previous rounds.

A third round of iterative deletion was performed. The resulting leave-k-out diagnos-

O tics for k = 1, 2, 3 are displayed in Figures 9o-9q. Again, following the guidelines of Sec-

tion 3, a patch of outliers at 1/78-2/78 is identified, though just barely (p-value =.45). Note

that leave-l-out diagnostics do not pick up the patch: we need leave-2-out to identify these

* points as influential.

Other potential outliers are indicated by Figure 9o (10/68 and 10/70), but are associated

with fairly high p -values. These points correspond to moderately large residuals (see

Figures 9b and 9c), but evidently do not significantly influence the estimates of the parame-

ters. Running another round of iterative deletion (not shown) yields little change in the

significance of these points or any others.

S',- In the final analysis, four groups of outliers were identified and removed using threa

rounds of iterative deletion. The points which were deleted at each stage, and -.c

corresponding MLE's, are given in Table 1. Removal of the influential points results i: a

5 . drop in the estimated innovations variance by an impressive factor of two. The first t,.,:k
p.

groups of outliers (1/69-2,69 and 9/71-11/71) correspond to dock strikes and foresta'...,

yielding large negative and positive outliers respectively. The other groups (12/76-2

yiel . g. - .l.. . " . -. . .. .'. "-
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1/78-2/78) have no known cause, and exert considerably less influence on the estimated

parameters. Burman (1985) identified the first two groups as outliers, along with 10/68 and

10/70, using the model based methodology of Hillmer, Bell, and Tiao (1983). Note that the

latter two points show up in the leave-k-out diagnostics (see Figure 9o), but not so prom-

inently as the other patches at 12/76-2/77 and 1/78-2/78, which were not identified by Bur-

man. Once again, we see the importance of searching for influential patches as well as iso-

lated outliers.

Table 1:

Parameters Fit to Export Data

Iteration 6 2 2 Points

Step Deleted

0 .367 .160 .0114

" 1 .460 .003 .0083 1/69, 2/69

2 .448 -. 041 .0066 9/71, 10/71, 11/71

3 .431 -. 058 .0060 12/76, 1/77, 2/77

* 4 .43 -. 08 .0056 1/78, 2/78

The residuals based on one-step predictions computed from the data with the outliers

removed (i.e., treated as missing data) are given in Figure 9c. To obtain the predicted values,

the MLE estimated with the outliers removed was used. The general pattern is similar to the

original set of residuals (see Figure 9b), but with an important difference: the large residuals

in Figure 9c correspond to the points identified as outliers in the above analysis

Specifically, that last outlier in each patch, masked. in Figure 9b, shows up prominently in the

residual plot of Figure 9c. Correspondingly, the residuals following the patch of outliers.

which are large in Figure 9b, reveal nothing unusual in Figure 9c. Thus, the plot of residuals

.
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with the influential data points treated as missing provides a useful graphical display to be

compared with the raw residual plot.

Example 7.2: Value of Unfilled Orders, Radio and TV (UNFTV)

Figure 10a displays the monthly value (in millions of dollars) of unfilled orders for

radios and televisions (UNFTV) from 1958 to 1981. This series was previously studied by

Martin, Samarov, and Vandacle (1983), who used a robust ACM Filter to fit an

ARIMA(0,l,l)x(0,l,l) 1 2. The series was also analyzed by Engle and Kraft (1983), who fit

an ARCH model the data. Our initial fit is an ARIMA(0,1,1)x(0,1,1) 12 ; the MLE's are given

in Table 2 and the residuals from the MIE fit are given in Figure 10b.

Leave-k-out diagnostics for k = 1,3,5 are displayed in Figures 10c- 10e. The diagnos-
0

tics reveal a gross outlier at 9/78 (see Figure 10c), which apparently masks the influence of

the other neighboring points: Figures 10d and lOe clearly indicate the presence of other

influence observations at the end of the series. Following the iterative deletion strategy, we

would remove the outlier at 9/78 and recompute the diagnostics. However, examination of

Figure 10b shows that the end of series has many more large residuals than the rest of the

series. It seems quite likely that a variance change may have occurred towards the end of the

series. So instead of following the usual procedure, we adopt the flexible approach and look

for the possibility of a variance shift.

Using the "bottom up" (and computationally expensive) approach described in Sec-

tion 6, we perform leave-k-out diagnostics for k = 16,32,64. The diagnostics for k = 64 are

displayed in Figure lOf, and dramatically support the conjecture of non-homogeneity of vari-

ance present in the series: the maximum value for DV is over 250 (note that this plot has a

different scale from Figures l0c-I0e). The diagnostics for k = 16 and k = 32 (not shown)

display a similar pattern, although achieving a smaller maximum value. It is clear that the

behavior of this series is fundamentally different towards the end of the data. Thus, following

............... .-.. .............. ... :.....-'..... . . ... . . . -. -... ,. 4 - ,,
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step 3 of Section 7, the data is split into two series, and each part is analyzed separately. We

chose 1/76 as the change point, based on the residuals plot and on computation of DV for a

few judiciously selected subsets. Specifically, patches of increasing size were truncated from

end the data, and the data was split (approximately) according to patch of mnaximum

influence.

Checking the model order for the first part of the series again yielded an

ARIMA(O,1,1)x(01,1) 12 model. The MILE's for this model are given in Table 2. The resi-

duals to this fit are given in Figure 10g. Note the reduction in the estimated innovations vari-

ance from 3123 to 1303. Leave-k-out diagnostics for k =2,4,8, displayed in Figures lOh-

l0j, reveal several patches of influence. Two patches ame espcially prominent: one during

* 1968 and another in 1972. The patch in 1972, which shows up only in the leave-8-out diag-

nostics, is associated with an obvious level shift spanning from 5/72-10/74 (see Figure 10a).

The patch in 1968 corresponds to a large residual at 6/68, and has a less well defined struc-

ture. A local level shift is present during 11/67-5/68 or during 6/68-10/69, or both. In any

case, the diagnostics help us identify problem areas in the data, and show that the large resi-

dual is associated with a patch of influential points rather than an isolated outlier.

A different model was selected for the latter section of the series:

ARIMA(O,1,1l)x(0,0,2),6 was fit, and the NME's displayed in Table 2. The residuals are plot-

ted in Figure 10k (with the abscissa rescaled appropriately); the circled points are eventually

deleted from the series. The leave-I-out diagnostics, displayed in Figure 101, reveal the iso-

lated outlier at 9/78 that showed up prominently in the original set of diagnostics (see

Figure 10c). However, a surprising feature pops up in the leave-k-out diagnostics for

k = 2, 3,4, given in Figures 10m.-10o. A highly influential patch at 2/78-5/78 is discovered,

leave-k-out for k =5 (not shown) reveals no further significance. It is important to note that

this patch does not correspond to any unusually large residuals (see Figure 10k).

Sc
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Following the iterative deletion strategy, we remove the patch 2/78-5/78 and recompute

the MLE's, which are given in Table 2. The estimated innovations variance drops from 8960

- to 5340, and the estimated coefficients change dramatically, having a root on the unit circle.

-, Recomputing the diagnostics (not shown) reveals the influential point at 9/78. Note that

-- 9/78 was significant in the previous round, and the smearing was consistent with an isolated

- outlier (see Figures 111-11o). Removal of 9/78 further reduces the estimated innovations

variance, but has a relatively small effect on the estimated coefficients (see Table 2). No

more influential points are uncovered with a second round of iterative deletion.

Table 2:
Parameters Fit to UNFTV Data

Time Points
Model Step 61 1 62

Period Deleted

* 1958-80 (0,1,1)x(0,l,1) 12  - .41 .75 - 3123 -

1958-75 (0,1,l)x(0,1,i)12  - .18 .92 - 1303

(0,l,l)x(0,0,2)6  0 .36 -.25 -.51 8960

* -- 1976-80 (0,1,1)x(0,0,2)6  1 .49 -.46 -1.00 5340 2/78-5/78

(0,1, l)x(0,0,2)6  2 .36 -.46 -1.00 4173 9/78

In summary, the UNFTV series clearly reveals the importance of leave-k-out diagnos-

tics embedded in a good overall strategy! This approach effectively detects the major

modeling difficulties present in the data. A single ARIMA model is inadequate to represent

the entire series: the latter part of the data appears to behave according to a different mode!

Also, the first part of the series is subject to several local disturbances, which could be

modeled as level shifts using intervention analysis. Finally, several very influential obser, 2

tions are present in the latter part of the data, affecting the estimated coec-: '.

V,.. -
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dramatically. Obviously, any forecasts made will depend highly on how these points are

treated.

With regard to dealing with the variance shift in the last part of the series, the ARCH

modeling approach of Engle and Kraft (1983) appears to be a viable alternative.

0
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8. Discussion

8.1 Extensions: Other Measures of Influence

We have introduced two measures of empirical influence in this paper, based on the

estimated coefficients and on the estimated innovations variance. While the former is more

well established in the ordinary regression context, the latter was found to be more effective

at identifying outliers and other types of influential observations. Other notions of influence

may also be useful; several possibilities are discussed below.

Diagnostics Based on a Robust Scale Measure

One attractive extension, suggested by V. Yohai, consists of computing a robust scale

measure of the residuals computed from the leave-k-out fit. To see why that would be use-

ful, recall that an outlier will cause a large value of DV for two reasons: first, the outlier

4inflates the variance because of an associated large residual, and second, it inflates the vari-

ance by distorting the parameter ettimates, and hence the fit. A robust measure of the scale

of the residuals is resistant to outliers, and hence would reflect only the second feature.

Thus, we obtain measure of how the fit alone is influenced by a patch of observations by

computing the change in the robust scale for the leave-k-out residuals.

Diagnostics for Forcasting

An important area for application of subset deletion based diagnostics is in forecasting.

One possibility is to measure the influence of a set of observations on the forecast distribu-

tion by computing the change in the location and spread of the forecast confidence intervals

when subsets of points are deleted. It is expected that the most influential points for forecast-

ing will occur near the end of the series. Interactive graphical displays of the change in the

confidence intervals will be particularly useful for determining the extent to which suC."

K412
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1influence exists.

Another possible measure of influence is to determine the change in forecast mean-

square-error when points are deleted.

Diagnostics Based on Additive Noise Variance

We have demonstrated that the influence of an outlier in an ARIMA model is better

measured by a diagnostic based on estimates of the innovations variance rather than a

S..diagnostic based on the estimated coefficients. This raises the question whether or not a

useful diagnostic might be based on estimates of hypothesized additive noise variance. The

state space formulation of Section 2 easily generalizes to include additive noise in the

measurement equation (see Jones, 1980). Let be a sequence of normally distributed

independent random variables with mean 0 and variance h a Then the measurement

equation for an ARIMA process observed with additive noise is

; ".'"X, =  z'x' + t(9.1)

- The prediction and update equations remain the same, except that the observation-prediction

residual variance is given by

ft= z'Plt-1 z+h. (9.2)

The maximum likelihood estimate of h is obtained by inclusion of a parameter for h in

the non-linear optimization of (2.10).

It is possible that inclusion of additive noise in the model will yield an even sharper

0. diagnostic for outliers, and may be helpful in identifying certain model changes (e.g., level

shifts). However, there is one caveat: Estimation of an additive noise variance h a2 when in

fact h a2 = 0 can lead to seriously inflated variances for the other parameter estimates (see

• Section V of Martin, 1980).

• T J,*
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8.2 Computational Considerations

Software for computation of maximum likelihood estimates for ARLMA models with

missing data is now widely available. Implementation of leave-k-out diagnostics involves a

simple extension of existing programs or statistical packages. The complexity of leave-k-out

diagnostics is n x j non-linear optimizations, where n is the sample size and j is the

number of different k used for leave-k-out diagnostics. However, the computations are not

as severe as it might appear, since the opti.,nizations can be run with good starting values and

an estimate of the hessian obtained from the fit with all the data.

The computational burden can be considerably reduced by iterating only one or two

times in the optimization procedure (see Storer and Crowley, 1985). We have found this

gives virtually identical results in many cases: See Figure 11 which reproduces the initial

leave-one-out diagnostics for Example 7.1 (Figure 9d), and superimposes the diagnostics

obtained when just one iteration is allowed.

Some run times in minutes for Examples 3.1 and 7.1 are given in Table 5. These com-

putations were carried out on a 68020 based Masscomp MC5600 at the University of Wash-

ington. Restricting the optimizer to just one iteration reduces the computations by factors of

*roughly two and three in the two examples. Further improvements in speed are possible by

computing analytical first and second derivatives.

The use of interactive graphics to mark subsets for deletion was mentioned as a tool for

I use when the iterative deletion procedure breaks down (see Section 6.2). Interactive subset

deletions can also provide computational savings for those situations in which as much infor-

mation can be gleaned from the data computing DV for a few select subsets as for the entire

I data set. Furthermore, implementation of such a procedure is relatively straightforward

using current technology. We are developing implementions for UNIX t workstations

t LNIX is a trademark of AT&T Bell Laboratories.

I

t
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running the interactive statistical language and system S (Becker and Chanbers, 1984), and

for Symbolics t workstations.

Table 5

No. of CPU Time
Leave-k-out Iterations in

Allowed minutes: seconds

Example 3.1 k = 1 1 0:12
n = 100 full 0:23
AR(1)

Sk =1 1 3:50
1 Example 7.1 full 10:01

n = 216
ARIMA(O,1,2) k =5 1 3:50

full 10:06

I
.1

8.3 Scaling of Diagnostics

The diagnostic proposed in (3.5) for DC is not very satisfactory when the estimated

coefficients are near the boundaries of nonstationarity or noninvertibility. This is because

I ( a), the expected information matrix, becomes singular in this case, and inflates DC. The

,6g resulting diagnostic is no iorger comparable to a X2 distribution, and is too heavily

weighted by the coefficients responsible for the singularity. One solution to this problem is

. to scale by T (a)/ n, the observed information, which hopefully gives a better estimate of

the covariance matrix for & (Efron and Hinckley, 1978, prefer observed information in the6

case with independent observations). Computation of Y (&)/n is more difficult, though it

can be done explicitly. Kohn and Ansley (1986) give a state space formulation of the

-[ g Symbolics is a trademark of Symbolics, Inc.

w.
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ARIMA model which includes a computation of the first and second derivatives.

We have not yet addressed the issue of "internal" versus "external" scaling of the diag-

nostics (see Cook and Weisberg, 1982). Internal scaling uses the same norm for all observa-

tions, while external scaling uses a different norm for each observation, with each norm

based on the data excluding the observation. For simplicity, we have chosen to use an inter-

nal norm in (3.5) for DC. However, we could easily compute the externally scaled diagnos-

tic

(a-ak,, )'Ik,t(a)(a-ak,,) (8.3)

where ik g (a) is the estimated information matrix for ctk, •Two possible estimates are

i 'kj (a)= t(, ) or ik,t (a)= ' ,t ( &k, )l(n-k ). As in the case of ordinary regres-

sion analysis, internal scaling tends to obscure influential points, since an outlier will often

inflate the variance of a, and hence will decrease I( cz). Thus, external scaling is preferable

* for DC, and should be used if possible.

For scaling the diagnostic D.V based on the innovations (or observational) variance, it

only makes sense to use an external norm. This is because an outlier virtually always

increases the estimated variance, so that the ratio 2 is usually less than one for outly-

ing observations. Thus, if in (3.7) we scaled by the internal norm a4, instead of the external

norm 4,, then DV (k ,) is often not significant when evaluated for an outlier.

8.4 Diagnostics for the Beginning of the Series

In this paper, we have dealt with the beginning of the series by reversing the series so

* that the beginning becomes the end. The need for this arises because the Harvey and Pierse

(1984) algorithm for missing data, which we have used, does not handle missing data at the

beginning of the series. On the other hand, the method of Kohn and Ansley (1986) does

* allow missing values in the beginning of the series, and thus with their method, a complete

set of (leave-k-out) diagnostics can be computed with one pass over the data. We hope to

-- A *.
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implement the Kohn and Ansley method in the near future.

8.5 Diagnostics Versus Robust Filter and Smoother Cleaners

The results produced by the leave-k-out diagnostics are similar to the prediction resi-

dual diagnostics obtained from robust model fitting based on robust filter-cleaners or robust

smoother-cleaners (see Martin, 1979, 1981; Martin and Thompson, 1982; Martin, Samarov

and Van Daele, 1983). The robust model fitting diagnostics consist of looking for large

values of the observation prediction residuals e, = y, -Ytt 1, where Y- 1g denotes the one-

step ahead robust prediction based on filter or smoother cleaned data.

There is in fact a close connection between the the prediction residuals produced by

, leave-k-out diagnostics and those produced by a hard rejection type filter-cleaner. Using the

notation of Section 2, the hard rejection filter is defined by replacing the recursions for i t

and Pt in (2.6) byU
I t +ft' 1 1 1 1 Z'v if e, c

= ife~ I(8.4)
Xt -- if lel >c (.*

:7[.Ptlt-I - t-IPtlt-lzz'PtIt-I if letl <5c

= P Pt "- if Ie, I (8.5)
0Ptt-I

where c is some threshold value (for hard rejection filtering, c = 2.6 works well; see Marun

and Su, 1985). One way of looking at (8.4) is that a data value y, corresponding to predic-

tion residual larger in absolute value than c produces the same result as the Kalman filter

with y, treated as missing. Thus, if the iterative deletion procedure of Section 6.1 identifies

the same points as those which are rejected by the filter of (8.4), then the prediction resldua:,

of the two procedures will be identical if the model parameter values are the same. T.

latter will be approximately true at the completion of the overall strategy. Hence,

S-0
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diagnostics obtained from the leave-k-out procedure will closely match those resulting from

a robust procedure based on the hard rejection filter.

8.6 Related Work

Other approaches to the problems of outliers and structural disturbances in time series

have been explored in the literature. An approach proposed by Chang and Tiao (1982), Hill-

mer, Bell and Tiao (1983), and Tsay (1986) is based on iterative fitting of ARLMA models,

utilizing Fox (1972) tests to decide whether an individual observation is an 10, AO, or not

and outlier. The approach is easily extended to cover shifts in level and shifts in variance.

Another important direction for dealing with model changes of various types has been

pursued by Harrison and Stevens (1976) and Smith and West (1983), who use a Bayesian

approach. A mixture of normals is used to automatically adapt the model to outliers and

other local structures. West (1986) and West, Harrison, and Migon (1986) propose a some-

what different method based on Bayes factors, in which a nominal model is compared to a

6"neutral" alternative.

6
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APPENDIX A: Computation of Asymptotic Information Matrix

This section derives an analytical expression for the asymptotic information matrix of a station-

ary and invertible ARMA (p , q ) process o(B )x t = 0(B )et. The formulas are easily extended to

norstationary and seasonal models. Let g , g and h I, " " hq be the roots of the polyno-

mials *(B) and 0(B), so that

O(B) =(1-g I B )(1-g 2B 1... (1-gpB)
l-, -',"(A . 1)

-.- (B) G= (1h I B )(1-h 2 B) (1-h IB)

Assume that the roots are distinct: gi*gj and hi¢ hj for i#j .

Let ci and di be the coefficients in the expansion of O(B ) and 0(B )-1 respectively; i.e.,

- -(B)= 2 CiB', 0-1(B)= diB i  (A.2)
i=0 i=O

The asymptotic information matrix 1(a) is given by

SIi'j I C ck +j-i if 15i !5j <p
k=O

"-I= d if 1 .i <p, 1<j <q, i <j

k=O
""(A.3)

i,p+J = ckdk+j- if 15i 5p, 1<j 5q, j <i
k=O

Ip+i,p+j = dkdk+j if 15i <j <q
k=O

* The coefficients can be computed recursively from the relation

I O(B )O(B )- 1 =0(B)0(B )-, or

.(B)c,=O 0O(B)dt=0 t=1,2, (A.4)

Initial conditions for the recursions are co= 1 , cp + =c.= and

d 0 - , d_p., =• =d_1 =0. Hence, (A.3) provides and explicit expression for 1(a).

. - . .-. --.. ... • .. ,. -... . . . . . , , .. . . _ _ .-.. - . , - -.-. . .. , , "•- ." ". . .. ... ' ."% . .< -. ". '. . '- ', ., , .,: -_, 'a-- .: . ', - ,.. ,- ', "
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By expressing (A.3) in terms of the roots 4(B) and O(B), the formulae can be reduced to a

summation of a finite number of terms. For t = 1,2, , a solution to (A.4) is given by (see Box

Jenkins [1976])

d=Ith+ +1qhr (A5)

where k i, ", k, and 11, "",1 are (possibly complex valued) constants. Since c, and d.

can be evaluated recursively, (A.5) defines a system of linear equations which can be solved for

k j, ", k and 11, , l. Substiruting (A.5) into (A.3), Fubini's theorem yieldsI-."- P + -

= ( k.g,,+j)( k,,g

St=0 m=1 n=1

'/ =X E k,. kn 9' (gro.)'
-1 ( )

m=ln=l t=0

P P

= E (k.k.g-'(1-gmgn )- I if i Sj (A.6a)
im =I n=l

Similarly,

Ii, p = 1 (k.n9j( gm'hn) if i <j (A.6b)

,i = ( if j i (A.6c)
' "" m=l n=l

":' Ip~i~p+j = (kml, hJ-i (1-hrh~- y) if i :5 (A.6d)

P~~i~~p~j (k ,,hh

......



APPENDIX B: Computation of EDC

The expected asymptotic diagnostics for coefficients, EDC, are computed for the leave-one-out

S"...: diagnostic in the AR(1) model. First, we compute A (t 0 ; 0), the difference between score function

for the entire data and the score function for the data with t o treated as missing for a perfectly

observed Gaussian process. Then, for the AO and 10 contamination models studied in Section 4,

(4.6) is evaluated by breaking up the computations into two parts, one corresponding to the outlier

free process, and the other corresponding to the contamination.

Let x, be a perfectly observed Gaussian process. For the AR(1) process, the score function for

0 is

"N 1 N
* q: 'P(0) = - t l/ft tYl[2et/ft-et 2ft/ft 2 1  (B.1)

2 1 2e t I e

where e1 is the prediction residual, a 2ft is the variance of the prediction residual, e=

and With no missing data, we have et = X- Ox _ and ft = 1 for t > 1. If x,,

is missing, the score function is similai" to (B.I), except that we drop the t o term in the summations

and adjust the to + 1 prediction and residual. Define e= 0 and f = I , and denote the predic-

tion residuals and variances for when xt 0 is missing by e' and a 2f: If t o > 1, then

2e+l= (1+02) (B.2)

- and et =e , ft =ft for t *to, to+ 1. The score function 4P~O)(O), with xto missing, is

given by (B.1) with et* and f t * substituted for et and f, .

Hence for t 0 > 1

0

"" .:.".At,( to, 0) = F (0)(o) _ -t (0)

e'- *, fo It()+

+ --- [ e,,et, + e + 1 +I]

S.: y
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o 1 2( - xt-) (-20x,°- ) (xt. - OQxt-0 )-(20)

I+(02  2 2 1+P 2  (1+02) z

- 1 (C- X oO Xto + r 203-20(1+

6. -- , Xto + +I)+ Xto - IXto, + 1 '-2 +0

1+02 
-[ 

( 1+ 0 )

x2 F20( 1+02)-
5 -( 1+b2)20 2t2 Fl~oZ

ro-l ( 1 ]2)2
0  X 1 0

_ Xt0_ 1 +Xt0+ \1 (B30 _ 2 )2

S1+"2 _2 [N t Xto(_I \Xtt..+X1o+l (1 + 02)2 (xt 0 - I +x + (B3)

which yields (4.10).

We are now set to compute EDC for the AR(1) model. Let Yt be contaminated according to

an AO or 10 outlier model. It is convenient to break up the computation of EDC into two parts,

4that corresponding to xt and that corresponding to the contamination. Define C0 -- E Az t; 0)

where A( to; 0) is the difference in the score functions for x, , and is given by (4. 10). Denote, for

now, the difference in the score functions for y, by Ay,(t;o), and let 5, (t0)

-Ay,(t 0)-A(t; 0). Then

EAy,(t;) 2  = C0 + E 8y,(t;)2 (B.4)

since the cross product terms vanish. From (B.4), we can compute EDC by equation (4.6).

The tedious part of (B.4) is computing CO, which is shown below to be equal to 2

Calculating E 8y, ( t; 0)2 is easier, but must be done case by case. These are computed below for

several outlier configurations.

-- I.~~~~ ~ *%'* %**l~
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AO Models

Consider first y, which obeys the model given in (4.11): a single AO type outlier of size at

to. Paralleling the notation of Section4, denote Sy,(to;0) by 8(°)(to;0). We obtain

. o)(to 0) by subtracting (4.10) from (4.12), which leads to

142

02I 2 [0 -Ot~t-~ t~)(f
- 2+3 .. 1' )2

"-['02+ (402_802+2( 1 +02))

Io -o

,*• = (i] 0 2 + 2 (B.5)

Upon adding C* and scaling by (1 _02), we get EDC('° 0 ) (to; 0), which is displayed in (4.13).

Under the same outlier model, except leaving to + 1 (or to - I) out, we get

E E 1 2 _._0_+ (,_ 20
~~E(8 4 0 °(to+h 0) 2) 1 Z- (x,_+x°+))l

(to 1 - +02)2 (1 +02) 2

= 1 + -- 2 [ (20)+ 42 (2(1+02))
L-J(10I 1-o2 (1+02)2 (1+02)4

(I+2)4 J+  
_2 1 (10,41(B.6)

.- +2) 1 -2 ( 1+02)3

which leads to (4.14).

For AO type outliers of size at both t 0 - I and t 0 + ,

E 6 ,. 1 )(to; 0)2 = 1-- E -(2) 2  2 +(2 ) x10-2 .
0 4 [ (1+02)2 (1 +p2)2

SE5 (1, 0)( to 1 0)2 (B-
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wtichis givenby (B.6) above. Hence ( , 1O I'to1 (to'O) EDC AO to) (to_

10 Models:

Now suppose Y, is observed with an 10 type outier of size at to and thus behaves accord-

ing to (4.18). We obtain an expression for 810 (to) by subtracting (4.10) from (4.18), so that

E ___ _ (t- -_+€
E O o)(t0; 0) G "4  (1+ 2)2

+4 Xt(-2Q+2)+(Xt -+Xto+-) ( 2 2 2]

2F 2 ( 4 +02) 2

Li(1+02) 1J 1 1 )J

+ _[2(2 ]2 [(1+2
-(1+02) 2 +

2

6 [.[ I [ 2 W2- + 2 ( + 0 2 )

-" (1+02) 4 + 1 -o2 10-42 ( 1+02)2  (0

80 2 W- --
-' 4 + [: 12[_ 2[_8 2j(2- (+ 2+ 0

102)4 1- 2 0  2 (1+02)

-i .'-

" 6"__ + 2 ,02 -- 1 + (B 2

1J + 2 ) 4 1J i(
2  +()3 023

o, ( t ) di p a ed 42 
0)

From this follows the expression for EDC dld(2

Evaluating the diagnostic at to+i, we obtain 8('5 o)(to+i) from (4.10) by replac-:-

Xto_ with x , +0Z x, with xt,+0 and x,,. 1  with xt,+I + OP -  in (4,I

This yields

* D °  t -- = - E Q, 4 I ~ s + :2 A - ,0 ,

. . .*...'*, -.. .; .- . '.. -. .*.v .. -. -' -4-. :q ?
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€-2o

+ x t°(- 2  i+ l +Oi+l +0 i 1 )+(Xt°- +xt° 'l) ( +02 ( L"1 ,-' )

+ 2- ((1 + )2

-1 4)2i2 _ ))24)(i4)2) + 20~2

* ~ 2
:.-.""2+ 2(-02 (1 22 1 0 ) O- (-... 1+42 (11+ )2+4)2

[.:.] )  20 2 1+B9)
Tl+ (2( 1dt(

• 2

.2i-2 64 _2 )2 2(02)

2  2 +r'' 2i -2 ( b ) (B.9)

02 (1+02)

''r "This leads to (4.21).

' . _Computation of C 0 "

,..it remains only to compute C E A t,(¢ t )2. Since the vector (xt _1x, x, + t)has a

:':. multivariate normal distribution, we can easily compute the following seful expectaio0

r __ _

'--'E [x,' (x,_ +xt, ) 6, 0 2 (B. 10)

E [x2 (x t +x t t) ] = 2E [xt2x t I +xt-.xIxIt+4 ]

* a4

t-- = 2( 1+502 _2)

,-. :~ [x, (x,_ + xt+ ] : x ,3:+ X,:t xr+I]

=2[3o+30(l +2))] 1 ) 2

.. (1 S

.d* - .*d#*,.~* - '.
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(4

(1 - 2

E [(x 1 1 ,+x,+1 )4 ] =E [2(x,-, +4x 3 1i+6,iX+

=[2(3+120 2 )+6(1+~) 20

2 ~ 22Y

=12(1+0 )2
(1-012 )2

We are now set to evaluate the expectation of the second term (squared) in (4.10).

Oxt+x~x-,xt,)(X t,+)Zl

E- 4-2 X13 (Xt +X I)3+ 2 02 + xt i)4]t

U - 30P 1202+2 [202 +](1+502)

______1_0 1 2~ 2 1 ~ )

-24- b2 (1+012 12 I 0)

3 (F2 2 2+2+102+ 1 (402-242+ 122+20O04-244)1 G

*.-[(2+0')( 1+ 0 2 )2 - 80 2 -4 0
4 ]

(02 2 1 _02)2

* -(2-3(o4.u (B. 1)

Since E A10to; 0=,

E Ot +X ,X ( (X~ +xt + 1 2 -Y a2o (B 1-

(1 02
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Thus, squaring (4. 10) and taking expectations, (B.1 11) and (B.12) yield

0 ~ 2 1 2 )2 +2-3 2 +,06 ) _,221 0)

2
(1+02BA2

II

I

... pm ** '2

!-
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APPENDIX C: Computation of EDV

The computations for EDV parallel that for EDC (see Appendix C), though we must

compute the score function for O . By (4.7), we need only compute

A(t 0 ; 0 2 )=(to)(G 2 )-- (a2), which is the difference between the score function for o 2

with r0 considered as missing and the score function with all the data for a perfectly observed

Gaussian process.

The score function with no missing data is

I( 2 ) +, v 2/ f  (C. l)
2 2  04 t=

If xt0 is missing, then the prediction errors and the variances are given by vl* and ft* in (B.3).

Hence, for the leave-one-out case

2 1 1 12A(to; 0 2  + 2 2 [vtolf+ ( o*fotV'/t) C2

2o2 ~ ~ 2 (1+2I +1 [(x 1+ 1 -02 X1 0 1 ) )2+ (x -

22 204L
2a2 2a L (1+'01) -(~+-x 0

- 20 +0 2)X,2+ 2 0+xo(x,(.-x+xt,+ +)

(1+2)xt- lto[I(1+02) ~]~+

+ 4 02 X 12

(1 +02) 0

+ - [-( 1+x2)Xt2ox 
0X 1Xt o++)20y2 20F4

21
( 1+t2)o l l)2

which is the same as (4.15).

Assume x, is a perfectly observed Gaussian process, and y, behaves according to sorgy

outlier model. Proceeding as in Appendix C, define D02=E(A(t0;O

r€ -,  : ,. . .+, -, ,. .. -, -, -. , -, , ,, . .... . . . . . . .•.. . . .--. ,.. . . . . ... .... . . . . . . . . . . . . . . . .- ,. .... . . . . . .'-.. . . . . . . .". .-

ir ,t_,+ + , +" -- + ". ." " - 4 . , . . * .. C. _ . . .4' 2* . -. - . 2 .. .-,
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5y, (to; G)=Ay,(to; o-A(to; 02) where Ay(to; 2) is the difference in the score func-

dons for Y, . Then

AY,(to ;  )= Do 8 +E,(to ; au) (C.3)

As shown below, D. = 4 and E(5y,(to; a 2)2) is evaluated case by case below. From.20 4  E('(o case)2)

(C.3) we can compute EDV via (4.9).

AO Models:

We first consider an AO type outlier of size at to .We can compute 5.,(to; oY2)2 in the

same fashion as Appendix B: replace xto by xto+ in (C.2) and subtract off A(t0; 02). Using

. the same notation as before,

2 E(;O)(tE0 = +0)) + (-2(1+02) x,+20(x,, I+xto+i))]
VA 2)

_4 (1+2)2+ 4 _] (a _2) 4(1+02)2 1602(1+ 2)+802( 1+0-))

-- _ i (1+2)2+ ]2 + 2 ) (C.4)

Adding D. , to (C.4) and scaling by 2 a 4 gives (4.16).

The calculations for when to - 1 (or to + 1 ) we left out proceed as follows:

E 2AO 2 2 1 4,2  + 2 - 2
E"( 4)(:o+1;C 8 E + to2 02(X(oI+xr,I I (1 02 (1+02) °

•o (+2 (1"Q + F..i. 1 12 02)1 +0 )  
____+0

• +4 ,2 L 42- 1 + 8

a4o (1+0 2 +4 (1+02)

• Ths leads to (4.17).

4 1+.-)

+ 2

40

~~~ 2 ~** ~ **~'%.
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For outliers of size a at to-1 and t0+I, it is easy to see (as in (C.4)) that

(;;to -, to+')(to; a 2) = E 5 ;o )(t0-1:02), which is given by (C.5).

I0 ModeLs:

Proceeding in the usual way, (4.22) is derived from

E6( 0 51 0 ; 0)2 - E k2 [_j+02)+202_ 40(o Y 4cs138 1+(02

+ -2(1+0 2 )+20 2 )xto+ 20- (2+0 1 (xto.i+Xto 1)
1 ( 1+01)1 1J]

= 1 f2 1)_ 4 1 1 4- 16 2 +8
CY 4 y4  (1+0 2) 4.a4 (1- 2) 1+02 1+0 2

= 14  +_]2_1 1
0 44 (1+2)2 0 4 (1+02)

Also, EDV( t0 ) 0 )= 20 4 Da for t > to since

E~c'~t 0) ( 0 ; ) (Y L~- ~EO 8/t)t~"122 2 . [ 2(_ 1+0 2)02+2 1 +02) 02i--( 1 +02) 01-i

(;to 'O~~ 4a38E+2

+ (-2(1+0?2 )0! + 2( I+ )x t,+ (2 ,0
+ '- 2 0 + ')(xt  + x,)

=0

Computation of D.

Straightforward algebra, using the expectations given in (B.10), shows that

: 2 )2
i ~ ~ E-+02)X 2+2~(tlX~ ) (+2 (Xt~lX+

E2 x(,I X+) 2 ( _I..+X:+1)2]

-E [(1 +02):Xt 4 - 4 0 ( 1 +02)X 1 (Xt I +Xr +)

~4
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+ 6 02xI2 (xI +xt + 1

'"'"~ 43 o3 4)'

-"Xt (XI + X t + )3 + (xt 1 + x 4['i 
(1 +¢2)( 

1 +02)
2

" 3 (1+02) 2 -2402( 1+02)+ 12 0'( 1+5 02)

-48q4 + 1204] 0)

= [3-602+304 1

=-'

Since E Ay,(t; a 2 ) O, then

F 2"..'-" E-(l+2)Xt
2 +2x0 t l+tl -  (Xt~l~) = ( 2

,[..(1I +,2)

Hence,

D;41 +2 (3 U4

4 24 ]2[ + [ 2 4)

11

2 (y4

[ • 2N

rS.
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