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Summary

= Thin layer Navier-Stokes equations are solved numerically for simulating the flow-
fields of isolated wings and helicopter rotor blades with a particular emphasis on un-
derstanding the formation and roll-up of tip vortic.es in subsonic and transonic flows.
Several test cases consisting of wings and rotor blades of different planforms have been
considered to examine the influence of the tip-cap shape, the tip-planform, the free-
stream Mach number, and the effect of centrifugal forces of rotation. . Comparison of
the numerical results with the available experimental data show good agreement for the
surface pressures in the regions where the flow is attached or mildly separated. However,
discrepancies exist in regions of massive shock-induced separation in tr;Lnsonic flow and
in the immediate vicinity of the wing tip in subsonic flow. In generaf a fairly good
definition of the formation and roll-up of the tip vortex is demonstrated for all the cases
considered here; subject to the coarseness of the grid in the far field.” Finally, the cal-
culated lift, drag and pitching-moment coefficents agree well with the experimentally
determined values, where available. Alternate methods of simulating the hovering rotor
flowfields in blade-fixed mode that have the same circulation distribution as hovering

blade are explored. The results and discussion are presented. -~ « - R )

Interaction of the tip vortices with a rotating helicopter blade have also been stud-
ied in the two-dimensional limit using a prescribed vortex approach. The important
conclusions are that at the subcritical flow conditions, the time lag effects on the basic
rotor blade and the three-dimensional effects appear to be negligible. Therefore, the nu-
merical results are in good agreement with the experimental data. At the supercritical
flow condition, however, the flowfield appears to be dominated by the presence of the
shock waves, with strong indications of unsteady time lags in the shock wave motions
and strengths and of important three-dimensional effects even for basic rotor flows in
the absence of vortex interaction. The consequence of this is that the calculated results

over predict the experimental data.
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GENERAL

This report describes a Navier-Stokes simulation procedure and presents results of
flowfield and tip vortices for isolated wings and helicopter rotor blades and also the in-
teraction of a vortex with a rotating blade. The contents of this report is divided in
to three distinct parts. Each part describes in detail a separate but related physical
problem; the common feature for these being a concentrated tip vortex and its influence.
Part I describes a Navier-Stokes simulation of tip vortices for isolated wings and Part II
concentrates on a single helicopter rotor blade and Part III describes the unsteady inter-
action of a concentrated vortex with a helicopter rotor blade in the two-dimensional limit.

Each part is complete with introduction, solution procedure, results and discussion.
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;oﬂ: % Nomenclature
i
R

- !\ B = semi-span of the wing
A -
:'.‘:: c = root chord of the wing

“‘ " o}
.e:'.: % Cp = drag coeflicient
[N
- CL = lift coefficient
[}
:E:' §, Cym = quarter-chord pitching-moment coefficent
\ '
t‘.: Cp = pressure coefficient
l:c‘ & ~~ ~
R 0 E,F,G = flux vectors
il Moo = free-stream Mach number
1"' & -~
.E:: Q = flow-field vector
!

¢
:‘::'. o q = velocity vector
el

-

- Re = Reynolds number
o ~
"..'a w S = viscous flux vector
W .
:::‘ + Uoo = free-stream velocity

' ]

A, W . .
B j z,y,2,t = physical space coordinates
: h a = angle of attack, degrees
¥
f::u g, Ty = dimensionless strength of tip vortex, normalized by us and C
Rt N
:‘: &, ¢, T = generalized curvilinear coordinates
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Part I

TIP VORTICES OF WINGS IN SUBSONIC AND TRANSONIC FLOWS

Introduction

The process of formation of a tip vortex and its subsequent roll-up in the downstream
wake of a wing or helicopter rotor blade is a problem of fundamental importance in fluid
mechanics, but one with important practical applications. The tip vortex evolves from
a complex three-dimensional separated flow that is difficult to analyze. Despite a large
number of theoretical and experimental studies, the present understanding of such flows
remains essentially qualitative, especially regarding the detailed mechanics of vorticity

transport from the viscous layers near the surface into the trailing concentrated vortex.

The hazards of concentrated vortices in the wakes of large aircraft are well known.
Rotating blades, such as propellers and helicopter rotors, also generate complex vortical
wakes that interact with the following blades. Such an interaction is responsible for
the cause of unsteady aerodynamic loads which in turn affect performance, vibration
and aeroacoustic characteristics. A detailed study of the formation and initial roll-up
of such concentrated vortices and the dependence of these processes on the geometry
of the blades is an important step toward altering the structure of these vortices and

minimizing their adverse influence.

The recent numerical simulation of the viscous flow in the tip region of a transonic

! is a pioneering work, and Kaynak et al.? have extended this

swept wing by Mansour
research to explore the details of three-dimensional shock-induced separation using a
multi-block Euler/Navier-Stokes zonal method. The present study further extends the
numerical simulation of this class of problems at both subsonic and transonic conditions,
using this multi-block zonal method. Particular emphasis is placed on the flowfield in

the tip region and the vortex formation process. The surface and flowfield topologies

are presented for four different wing shapes, and the influence of the tip geometry and
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l'p .
! .
'::: 5& wing planform is discussed. The numerical results are compared with the available
U
]
e ! experimental data.
B
o Governing Equations and Numerical Scheme
R 5
i
vl The governing partial differential equations are the thin-layer Navier-Stokes and
D«
;." the Euler equations. The equations are transformed to the arbitrary curvilinear space
Y tg (¢, n, ¢, ) while retaining strong conservation law-form to capture shock waves. The
WY
transformed equations written in generalized curvilinear coordinates are given by3+
%
" ﬁ
W
o A s s o -
::':: ‘& 0:rQ+ O¢E+ 0, F +0,G = eRe"l(?(S (1)
: J, . where
>, :,v‘
X
‘s B - p pU
R pu | pulU + &:p
ol Q=J1'|pv|,E=J"" pvU + &,p
NG pw pwU + €.p
G e Ule+7)~ b -
k i pV pW
'|" . puV +n.p . puW + (zp
' F=J"1 poV+np |,G=J""1 poW + (,p
o 14 114
, \& pwV +7n.p pwW +(.p
% LV(e+p)—nep W(e+p) - Cip
Ul
ka2
:"‘ and ¢ = 0 for Euler equations, and ¢ = 1 for thin-layer Navier-Stokes equations. The i
(’l U
; :',,'.,“ primitive variables of Eq. (1), viz., p, pu, pv, pw and e, are normalized by the free-stream
o reference quantities. The characteristic length and velocity scales are given by the wing
ﬂ ! L ]
‘_:: '.;f root chord and the free stream sound speed, respectively. s‘
)
8 |
S The viscous flux vector S, written here in the limit of thin-layer approximation, is given
::: ’ by :
.l“ . d
e
‘.u". a 5
t
"
W 3‘

0T L L LA T o.n. Ot W) o.n e
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- 0 -
Klu( + K,
-1 Klv( + KZCV
J Kywe + Kal, (3)
Ky(Pr=Y(y = 1)} (a?)¢ + ((4*)/2)¢)
L +K2K; J

Ww)
I

where
Ky = p(¢2 + 2+ ¢2)

Kz = p(Cu¢ + Gyue + (owe)/3 @
K3 = u(; + v{y + w(;
¢ =u? +ov? +w?

The primitive variables of Eq. (1), viz., the density p, the mass fluxes pu, pv, pw
and the energy per unit volume e, are normalized by the free-stream reference quantities.
The reference length and velocity scales are the chord of the rotor blade and free stream
speed of sound respectively. Other nondimensional quantities appearing in the above
equations are the Reynolds number Re and the Prandtl number Pr; u is the dynamic
viscosity. The relations for the contravariant velocities U, V and W, the Jacobian of
transformation J, and the metrics of the transformation (£&¢,&z,&y,8€2)s (e, 0231y, 72)

and ({:) (2, ¢y, ;) can be found in Ref. 4.

The velocity components u,v,w and the pressure, p, are related to the total energy

per unit volume, e, through the equation of state for a perfect gas by

p=(r-1)(e—- L +v* +uv?)) (5)

The numerical code which solves these equations, called ARC3D,* was adapted by
Holst et al.’ and Flores® to develop the transonic Navier-Stokes (TNS) multi-block zonal
algorithm. This code retains all the important features of the ARC3D code and in addi-
tion has the advantage of dealing with multiple-blocks. The details of the development
of this 4-block version of the TNS wing code and improvements to enhance its efficiency

for multiple zones are described in the papers of Holst et al.® and of Flores®. In addition

6
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to the example solutions for isolated wings discussed in these two papers,

Kaynak et al.? have reported further refinements to this code to analyze the flow topol-

ogy of shock induced separated flows on wings in transonic flows. The current version of
this 4-block scheme is mainly used for computing the flow fields of isolated wings, with

or without wind-tunnel walls.

The five important features of the TNS code are: (1) the thin-layer Navier-Stokes
equations and the Euler equations are solved in strong conservation-law form to capture
shock waves; (2) the convergence procedure is significantly accelerated over the standard
ARC3D code for one-block,* because the present scheme solves the Euler equations
over a significant part of the flow domain; (3) there are two numerical options available
for solving the equations. One is based on the standard ADI algorithm of Beam and
Warming” which solves the block-tridiagonal matrices along each coordinate direction.
The other is based on the diagonalized algorithm of Pulliam and Chaussee® which solves a
set of five scalar pentadiagonal matrices along each coordinate direction; (4) the diagonal
algorithm has been implemented with two options of variable time-step philosophies to
accelerate the convergence rate of the numerical scheme,viz., one that scales the marching
time-step with the local Jacobian as suggested by Srinivasan et al.? and the other that
scales the time-step using a combination of the Jacobian and local solution variation;*:

(5) the code is vectorized for the Cray-XMP and Cray-2 supercomputers.

Both the numerical codes ( TNS and ARC3D ) use the standard second-order- ac-
curate central differencing to construct the appropriate spatial differencing scheme. The
diagonal version, which is used in the present study to calculate steady-state solutions,
uses fourth-order-accurate smoothing operators on the implicit and explicit sides of the
numerical algorithm for controlling nonlinear stability of the numerical scheme. In the
present calculations a turbulent boundary layer is assumed for the entire wing, and the
Baldwin and Lomax algebraic turbulence model ° is used to calculate the turbulent
eddy viscosity. Although this model has some limitations, it has been effectively applied

to a variety of two- and three-dimensional flow problems involving mild separation.
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Grid Generation and Data Management

The details of the grid-generation scheme and the data management system are :Q

described in Ref. 5. For the sake of completeness, the important steps that are necessary
to generate a working finite-difference grid are described here. First, a coarse grid ﬁ
encompassing the entire flow field is generated using the parabolic grid-generation scheme o~
of Edwards.!! This single-block grid has an H-grid topology in both the spanwise and ::"’
chordwise directions. The grid is further subdivided into four zones by means of the -
zoning algorithm in the TNS code. Thus the complete flow domain is divided into four £
blocks. Figure 1 shows a pictorial view of one such grid topology for a low aspect ratio )
wing. In this view, for clarity, only the grid at the symmetry plane of the wing is shown. Al
The coarse outer (inviscid) grid, marked as block (1), is shown in white, the finer inviscid &

grid, marked as block (2), is shown in red. The two yellow blocks adjacent to the wing
and on either side of it, marked as blocks (3) and (4), are the viscous zones that have @

fine clustering in the normal direction to resolve the boundary layer, in the stream-wise
direction at the leading-edge and trailing-edge regions, and in the span-wise direction at -
the wing tip region to resolve the tip vortex. The inviscid grids also have appropriate =
clustering like-wise. _E'S
Most of the calculations were done with a default grid consisting typically of over =
40,000 grid points in each of the four zones. For such a grid the wing tip was assumed b
to have a bevelled (or a triangular) tip-cap. Although the grid geometry for each wing R
discussed here depended on the aspect ratio of the individual wing geometry, the spanwise <
grid spacing in the wing tip region and the spacing in the normal direction to the wing s
surface were kept the same for all the wings, viz., 0.015C and 0.15C in the coarse grid. v
The viscous blocks ( of size 0.15C ) had 25 finely clustered grid points in the normal :'j
direction for all the wings with the spacing at the surface equal to 1 x 10~*C. -
)
To examine the effect of the tip-cap shape, a squared (flat) tip and a rounded (body >
of revolution) tip were also considered for the rectangular wing in subsonic flow. In order w
to get a good definition of these tip profiles, the spanwise clustering had to be increased -
s ;
&
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Fig. 1. Typical zon




near the tip region. These grids had nearly 90,000 grid points in each zone. The spacing
of the grid at the wall in the normal direction was the same as mentioned before, but at

the tip-cap it was reduced to 0.004 in the spanwise direction.

The data managemant strategy has been discussed by Holst et al.> and also by

Kaynak et al.? In brief, the base grid, which is usually generated outside the TNS code,

is “read in” first and this grid is further divided into appropriate zones by the “Zoner”
code. Once this is done, the flow solver is initiated. The iteration procedure starts in the
outer inviscid zone o+ block, and proceeds into the inner viscous blocks. The information
necessary to update the boundary conditions at the zonal interface is found from the
neighboring zones through a series of one-dimensional linear interpolations. Such a
scheme lends itself to a conservative treatment of the boundaries and thus captures

distortion-free-movement of discontinuities across the boundaries.

In the solution procedure, only the information necessary to solve each zone resides
at any one time in the main memory of the Cray-XMP computer. The information of
zones which are not being computed is temporarily stored on the Solid State Device
(SSD). The use of SSD frees the main memory of the space otherwise taken by the data
stored on the SSD, and enables the use of (allowable) maximum number of grid points

for the flow field. Also, the use of SSD reduces the I/O wait time significantly.®
Boundary Conditions

Since the TNS code is a multi-block zonal algorithm, there are two types of bound-
aries where conditions have to be specified; viz., (1) the physical boundaries, such as
inflow, outflow, and solid surfaces; and (2) the zonal boundaries across which all flow
quantities must be continuous. All the boundary and zonal interface conditions are

applied explicitly.

At the far-field boundaries, which are typically 6-10 chords away from the wing,
free-stream values are specified for all the flow quantities. At the outflow boundaries,

zeroth-order extrapolation is used from the grid interior. At the symmetry plane, a
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zeroth-order extrapolation is used for the density and a first-order extrapolation is used

for the x-component and the z-component of velocities while setting the spanwise velocity

R X

component to zero to force symmetry. A first-order extrapolation is also used for the

pressure and the energy is calculated from the equation of state. At the surface of

&

the wing, a no-slip condition is used for the velocity components and the pressure is

calculated by solving the normal momentum equation at the surface. In the spirit of

)

thin-layer approximation, the normal momentum equation reduces to dp/dn = 0, where

n is the local normal to the surface. Density is determined by assuming an adiabatic

FEE

wall condition. Given the pressure, p, and the density, p, at the wall, the total energy, e,
is determined from Eq. (5). The details of the zonal interface boundary conditions are

i described in Refs. 2 and 5.

A

=
2

. Results and Discussion

<
22

2

In this section, numerical results are presented at subsonic and transonic flow condi-

tions for four isolated wing configurations. These results are compared with the available

M.

experimental data. The different flow conditions and the wing geometries considered con-

sist of: (1) a rectangular wing with an aspect ratio (based on semi-span) of 2.5 without

o«

twist or taper, in a uniform flow of M = 0.17 at a@ = 5° and Re = 2x10%; (2) a typical

PH 2 F I AID
]

fighter aircraft wing with twist and taper and an aspect ratio of 0.83 in a uniform flow

=
o

of Moo = 0.9 at a = 5°, and Re = 6.8x10%; and (3) two wings with exotic tip shapes
typifying helicopter rotor blades, with aspect-ratios of 5.0, at Mo, = 0.85, a = 5° and

ool

Re = 8.5x10%. The planforms and the surface grids of these wing geometries are shown

)

Y in Fig. 2.
’ >
N
e o Rectangular Wing in Subsonic Flow
e J::: The rectangular wing configuration and the subsonic flow conditions considered here
o~
L~ corresponds to the experimental test case of Spivey and Moorhouse !?'1? with the above
S o, shown test conditions. The wing section is made up of an NACA-0015 airfoil and has
no twist or taper. Although in their experiments Spivey and Moorhouse chose a wing
W
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Fig. 2. Planforms and surface grids of the four test wings.
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with only a square (or flat) tip configuration, the present calculations consider three )

i different tip-cap configurations to examine the influence of the tip-cap on the tip vortex \
" g formation and its subsequent roll-up process. A cross-sectional view of these tip configu- Y
4

b rations is shown in Fig. 3 and consist of a) a squared (or flat) tip-cap, and b) a rounded )

i
3

[ S

(or body of revolution) tip-cap, and c) a bevelled (or triangular) tip-cap. The surface )

¢ % grids and the flow field grids were generated using a parabolic solver of Edwards ! as .
:' m mentiored before. An H-H grid topology was generated by this method for the three )
:a ;‘,‘:,: tip configurations, and Fig. 3 shows this H — H grid topology in the tip region for the
" square and triangular tip-caps. The hyperbolic grid generator of Steger and Chaussee!* .
ij :5‘\ was also used to construct spherically-warped O-O grid topologies for the round tip and

for a super-ellipse approximation to the square tip (ratio of major axis to minor axis
1 ha equal to 15); this O-O grid is sketched in Fig. 3 for the round tip. It should be noted
- that solutions were computed for both H-H and O-O grid topologies. While the H-H '

& grid was used with the TNS code, the O-O grid topology was used with one-block flow 4
;: solver of Ying et al.’® This flow solver, called SF3D, is also a derivative of the ARC3D
N ﬁ code* and has the same features of ARC3D code except it uses upwinding in one of the h
. coordinate directions and a partially flux-split algorithm. The flow field computations
3 E:, were performed on the Cray-2 supercomputer with this code. 3
( g A representative surface grid for this wing (with bevelled tip-cap) is shown in Fig. '
3 & 2a; it has 96 points (48 each on upper and lower surfaces) in the streamwise direction '
~ and 23 points along the span. This default grid has approximately 40,000 grid points in 4
1 each of the four zones. The round and square tip-cap configurations, in contrast, have a -
i&' o much better surface definition in the tip region with 57 points along the span but with ,
P ﬁ the same number of streamwise points. This translates into about 90,000 grid points for
¢ each of the four zones. Typical computational times for the steady state calculations, for
- o a four-order drop in residuals with the TNS code, was of the order of 5-12 hours on the .
1 Cray-XMP supercomputer depending on the grid size. The single-block grids for these k
: g configurations (used with SF3D code and Cray-2 supercomputer), on the other hand, :

had 155 points in the periodic (streamwise) direction, 66 points in the spanwise h
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Fig. 3. Schematic of tip planforms and tip-cap shapes for NACA 0015 rectangular wing.
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direction, and 66 points in the normal direction.

Typical results for this wing with different tip-cap options are shown in Figs. 4-7.
Figure 4 shows the computed surface pressure distributions at several spanwise sta-
tions compared with the experimental data.'?'3 The results shown here for the inboard
spanwise stations are essentially the same for all the tip-cap options and have a typi-
cal two-dimensional attached flow behavior and these are in very good agreement with
the experimental data. The leading-edge suction peak and local lift coefficient decrease
monotonically from root to tip, as expected due to the induced downwash of the tip vor-
tex and wake vortex sheet. Although the three different tip-caps produce very different
flow fields in the tip region, the good agreement of the surface pressure distributions for
about 90% of the span, as shown in Figs. 4a-c, suggests that the influence of the tip-caps
is restricted to the outer 5-10% of the span.

The flow field in the tip region appears very different for each of these tip-caps, as
mentioned above. For example, the chordwise surface pressure data for the square tip
wing of Refs. 12-13, shown in Fig. 5, show two suction peaks in the tip region, besides
the leading-edge suction peak. These are associated with the primary and secondary
tip vortices created slightly inboard of the sharp edge on the upper surface of the wing;
the primary peak occurs at near the midchord and the secondary peak is farther aft
(towards the trailing edge) and more inboard. The presence of two peaks in the tip
region has also been observed in the experiments of Triebstein !® for the square tip wing.
The interaction of the primary vortex with the surface boundary layer is responsible for
the creation of the counter-rotating secondary vortex similar to that observed on sharp

edged delta wings.!?

The calculated surface pressure distributionsin the tip region of the rectangular wing
with different tip-caps is compared to the experimental data of square tip wing.1?:!? As
seen here for the square tip configuration, the present calculations reproduce very well
the evolution and disappearance of the suction peak due to the primary vortex and the

results are in good qualitative agreement with experiments. The location of the
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(Refs. 12 - 13)

_ ~—— SQUARE }

Fig. 4. Calculated surface pressure distributions for the rectangular wing with different
tip-caps compared with experimenta] data. Mo, = 0.17, a = 11.8°, and Re = 2x108.
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Fig. 5. Surface pressure distributions in the tip region for the rectangular wing with

different tip-caps. Moo = 0.17, @ = 11.8°, and Re = 2x10°.
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é:: primary vortex is reasonably well predicted. The suction under both the primary and the =)
:f:! secondary vortex, on the other hand, appears weaker compared to the experimental value ¥
‘:;.; and in this part of the pressure distribution plots the comparison is only qualitatively A
:::'E! good as noted earlier. Also, the separation bubble on the face of the tip, as visualized in "'Q'
:?:' the water tunnel tests of Thompson,!® was not resolved. No dramatic improvement was ~
. observed in these results when the grid resolution was increased by 50% in the tip region E‘
‘; or even when the grid topology was changed from H-H to O-O type. Also, a laminar ™
: calculation for this case did not reproduce the suction peak due the secondary vortex. :j
:z: The possible reasons for this could be the assumption of thin layer equations, the use of ~
':':'::' a simple turbulence model, and inadequate grid resolution. ":-3
e Figure 5 also shows the surface pressure distribution for the round-tip wing. In _',‘.j
;“E- contrast to the observation of two suction peaks for the square tip-cap wing, the rounded .
" tip-cap produces only one suction peak, in agreement with the observation made by i::
':§ Triebstein.!® The location of this suction peak is outboard and further aft in comparison ..
- to the primary suction peak location of the square tip wing. This implies that the vortex 3
:3 formation is delayed toward the trailing edge for the rounded-tip wing unlike the wing .
‘;' with squared-tip, for which the process seems to have started almost from the leading (;l
‘.:‘ : edge region because of the larger extent of separated region. Also, because the extent of 2
;:? the suction peak is narrower in the spanwise direction, tae vortex appears to be more -~
" tightly wound (smaller core size) than the square tip case. :
; :
o In contrast, Fig. 5 shows no obvious suction peaks for the bevelled tip-cap config- o
’?’.:: uration. The flow in the tip region for the bevelled-tip wing thus appears to be very B
,' different from that of the square tip wing, although both these tip geometries have a o
';" tendency to separate the flow right at the leading edge. For the square tip case, the flow -
:2 going around the wing tip from the (high pressure) lower surface to the (low pressure) ";
:E upper surface seems to delay the onset of separation to slightly downstream of the lead- N
o ing edge region. For the bevelled tip wing, however, the separation point is fixed right ;
Y at the sharp point of the leading edge of the tip. Further examination of this tip-cap
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.:. E?f geometry has revealed that its shape degenerates into a zero-thickness sharp point at the ,
:' leading and trailing edges. The sharp corner at the wing tip leading edge is responsible .
' g for producing a larger separated region than the square tip wing would produce and N
E thus mask the suction peak that otherwise would exist due to the primary vortex. This ~
§ @ observation is in good qualitative agreement with the water tunnel flow visualization .E
, - studies of Thompson.’® As a consequence the pressure field for this tip-cap does not o
;- show any indication of the tip vortex presence from the surface pressure distributions. :
: o Otherwise these results are in overall agreement with the results of other tip-caps and of \
the experiment for the square tip at 97% span station as shown in Fig. 5 for the lower y
;- g surface and up to about the midchord on the upper surface. '::
g ‘

Figure 6 shows the details of the surface “oil flow” pattern in the tip region for these

-
5
&S]

-
%

three tip-caps. (Computationally the surface oil flow picture is generated by releasing

‘63 \ U
: ;?_: fictitious fluid particle tracers at one grid point above the surface and restricting the ,\(
paths of these particle tracers to lie in that plane.) An examination of these figures .‘
§ 'a reveal that the square tip, Fig. 6c, produces the most complex separated flow pattern b
. . of the three tip-caps considered here. The rounded tip-cap, Fig. 6b, produced the ‘
' Cj'; least separation and the bevelled tip-cap, Fig. 6d, produced the most. Comparison ~
5 of the experimental surface oil flow for the rounded-tip of Fig. 6a (reproduced from y
X iq‘ the ongoing experiments at the Army Aeroflightdynamics Directorate at NASA Ames
A - Research Center) with the computed flow of Fig 6b shows excellent agreement in this b
) ‘3-: region. The separation and reattachment lines observed in the experiment are well
. 7 predicted. However, for the bevelled tip-cap geometry the extent of separation region on R
S the wing is more pronounced than is apparent from the experimental pressure contour ]
: < plot of Chigier and Corsiglia!? for the square-tip wing, indicating that the bevelled tip- ]
e cap, first thought to mimic the experimental square tip, is really different and is neither
‘. a near-squared nor a near-rounded tip. '-:
i -3
! ) The close-up views of the formation and lift-off of the tip vortex for the round and -3
; . square tips are shown in Fig. 7. These are constructed by releasing unrestricted fluid :
s~ "
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Fig. 7. Formation and lift-off of the tip vortex for the rectangular wing with a) Round
tip and b) Square tip; My, = 0.17, a = 11.8°, and Re = 2x10°.
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particle tracers at several locations along the chord and span and at different heights s

from the surface of the wing on both upper and lower surfaces. It is seen from this that

the formation process of the tip vortex consists of the braiding of fluid particle tracers :.
released from both upper and lower surfaces of the wing. The fluid particles released on .
the lower surface (high pressure side) smoothly cross over the wing tip and mix with the .;&:
particles released on the upper surface and braid into each other. This tightly braided .
A bunch of fluid particles define a tip vortex that is distinct from the rest of the wake vortex :-'.:
: sheet While the braiding process is still in progress, the vortex lifts off the surface, and o
. as it rolls up it also starts rolling inboard of the wing tip. Further downstream of this, N

it continues to roll inboard and stays distinctly above the shed wake vortex sheet. The

-=-3]

formation process of the tip vortex for both the round tip and the square tip wing begins

well before the mid-chord position as shown in Fig. 7. Because of the small extent of

s

separation associated with the smooth curvature of the round tip-cap, the lift off of the

vortex from the surface is delayed well into the trailing edge region as apparent from g
V Fig. Ta. In contrast, the square tip-cap, for which the extent of separation is larger,

produces a tip vortex that lifts off from the surface around the mid-chord as shown in -

3 Fig. 7b. It appears that the round tip produces a tightly braided tip vortex compared -

to the square tip. Also the distinct separation of the tip vortex from the wake vortex Ei'

‘ sheet is clearly seen in these figures. For the square tip wing, the primary and secondary ‘

; vortices seem to merge into one distinct tip vortex in the downstream wake. "1’.'

The lift, drag, and quarter-chord pitching-moment coefficents calculated for the ig‘

: square tip wing are 0.762, 0.0886, and -0.004, respectively. This compares well with the :"

: measured data of 0.763, 0.0868, and -0.00843 for the lift, drag, and pitching-moment co- -

efficients, respectively (from the tabulated data of experiments of Spivey and Moorhouse "'."

K (Refs. 12-13) provided by U. S. Army Aeroflightdynamics Directorate). From the lift .

' coefficient, the approximate strength of tip vortex can be estimated using the definition =

: of lift-equivalent vortex strength as 0.38. (Note the vortex strength is nondimensionlized .

by the free-stream velocity and the chord of the wing.) -
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Consistency of the vortical model was checked by comparing the value of C /2 with
the line integral of the velocity vector q over a closed path s enclosing the tip vortex,

viz.,

I‘V=f.q-ds (6)

The result of such a line-integral over a path big enough to enclose the tip vortex at
several x-stations behind the wing gave a range of values from 0.37-0.41, depending on
the size of the integration path around the vortex. The larger value corresponds to the
case of the line-integral path exending all the way to the wing root in the y-direction
and extending to the limits of the grid in z-direction. The extent of this path is expected

to include the contribution from the wake vortex sheet also.

Swept Tapered Wing in Transonic Flow

Transonic calculations were performed on an advanced technology wing, called Wing
C, which has been extensively studied both computationally !'? and in wind-tunnel
experiments.?®?! Its planform and the surface grid are shown in Fig. 2b. It is a low
aspect-ratio (equal to 0.83 based on the root chord) wing which is made up of supercritical
wing sections, with a twist angle of 8.17 degrees, a taper ratio of 0.3 and a leading- edge

sweep of 45 degrees. As noted earlier, Mansour,’

in a pioneering but limited study,
attempted to simulate the flowfield in the tip region including tip vortex formation for
this wing in a free-stream Mach number of 0.82 and at 5 degrees angle of attack. Recently
Kaynak et al.? have presented extensive computational results for this wing for a range
of Mach numbers using the TNS code. Whereas the study of Ref. 2 concentrated on
analyzing the flow topology, the present study specializes in the flow in the vicinity of

the wing tip, and in particular concentrates on the tip vortex phenomenon.

The freestream conditions for the present computations are Mo, = 0.9, a = 5°, and
Re = 6.8 million based on the mean aerodynamic chord. As before, the computational

grid was generated first by a grid solver !! with sufficient grid resolution in the wing tip
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region so as to resolve the tip vortex. The interior grids were generated within the TNS
code by the Zoner program. The CPU time for a fully converged solution was about 5
hours for this case, which is highly transonic and has a shock-induced flow separation
on the upper surface of the wing. Typical results of surface pressures are shown in Fig.
8 compared with the experimental data of Keener.?? The agreement is very good over
parts of the wing which do not have massive shock-induced separation and the results are
in general agreement with those of Ref. 2. With additional numerical experiments with
the turbulence model and input from experiments for specifying the inflow and outflow
boundary conditions, Kaynak and Flores?? have recently demonstrated, with this code,
that it is possible to model more accurately the shock-induced separation region also.

However, such an exercise was not undertaken in the present investigation.

Tip vortex formation and subsequent roll-up was visualized as before by releasing
fluid particle tracers at different locations along the chord and span and at various heights
from the wing surface. Figure 9 shows some of the flow details for this wing, such as the
A-type shock wave and shock-induced separated flow, and a view of the tip vortex where
the initial formation and subsequent roll-up process are clearly seen. As before, the tip
vortex stays distinctly above the wake vortex sheet. Part of the separated flow from the
shock-induced separated region lifts up from the wing surface and merges in to the flow
in tip region. The fluid particle tracers from this region get braided into the particle
paths crossing over the tip from the high-pressure region of the wing lower surface, and
together they separate out into the tip vortex and stay distinctly apart from the rest of

the vortex sheet.

The view in Fig. 9 demonstrates clearly the way the vortex rolls inboard in the
downstream wake after leaving the surface of the wing. The shape ard strength of the
tip vortex are apparent from the vorticity contours shown here at several x-locations.
These contours are shown as slices taken across the tip vortex in the y-z plane. In these,
the vorticity magnitude increases in the order of blue-yellow-red color. As the tip vortex

is getting diffused in the far-field coarse grid,? the magnitudes of the vorticity contours
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decrease and the the cross-section of the tip vortex appears to have stretched according to
the grid-cell aspect ratio. But the line-integral of the velocity vector around a closed path
surrounding the tip vortex approximately remains constant as long as the integration
path is large enough to contain the tip vortex. For this wing, the calculated values of
the aerodynamic coefficients were Cr = 0.361, Cp = 0.0347, and Ca = -0.146. The
strength of the vortex determined from the line-integral method yielded a value between
0.17 and 0.185, depending on the size of the integration path around the tip vortex.
The smaller value includes the vortex sheet in the wake and therefore corresponds to the
larger path of the integral (usually extending to the symmetry plane in the y-direction

and to the boundaries in the z-direction).

ONERA Wing in Transonic Flow

This wing has an aspect-ratio of 5 and represents a typical helicopter rotor blade.??
The geometry for this wing has a combination of rectangular wing and swept-tip wing.
The wing is made up of three special airfoil sections ranging in thickness from 12 % to 6
% from root to tip. The wing has a constant chord up to about 70% of the span station
and tapers toward the tip. The surface grid for this wing has only 23 spanwise stations
(for the default grid size) in the fine Euler and the viscous zones and hence is very sparse
in this direction, as shown in Fig. 2¢. For this wing in a uniform free-stream of Mo, =
0.85, a = 5°, and Re = 8.5 million (based on the root chord), computations were carried

out to generate a steady-state solution.

Figure 10 shows the computed surface-pressure distibutions for several spanwise
stations along the wing. lixamination of these indicate the presence of a strong shock
wave on the upper surface which produces a complex large scale separation. The leading
edge spikes that are seen in the pressure distributions are due to the poor leading edge
definition of the wing. This was verified independently by making two-dimensional
calculations for several sections of the wing span with refined leading edge definition.
The surface flow pattern for this configuration shows important topological features of a

complex separated flow and an outward spiralling vortex emanates from this separated
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Figures 11-12 show two views of the tip vortex for this wing. The initial formation
process of the vortex and lifting off from the wing surface is shown in Fig. 11. The
cross flow, due to the swept-tip shape of the wing, enables the fluid particles released
in the vicinity of the tip to merge together and braid into a distinct tip vortex. Also,
the fluid particles released on the high-pressure side of the wing (lower surface) at the
tip cross over to the low-pressure side (upper side) by wrapping around the wing tip
and braid into the swirling tip vortex. For this tip geometry, the intricate braiding of
fluid particle tracers appears to produce a much tighter vortex than for any of the other
cases considered. Figure 12 shows the far-field view of this tip vortex. The lift off of the
tip vortex from the wing surface and then the roll-up in the downstream wake and the
inward migration are clearly evident from this photograph. Also shown here is the strong
transonic shock wave and associated massive shock induced separation and reattachment
(shown as dashed line parallel to the trailing edge). In addition, the vorticity contours
drawn in the y-z planes through the tip vortex at several x-locations behind the wing
suggest approximate vortex strengths and shapes at these locations. As observed before,
the vorticity levels of the contours decrease in the downstream coarse-grid region of Block
1, and the shapes of these contours (and hence the shape of the tip vortex) get stretched
in the pattern of the grid geometry.

The lift, drag, and the pitching-moment coefficients for this wing are respectively C
= 0.26, Cp = 0.061, and Casr = 0.002. It should be pointed out here that this particular
configuration is not designed to operate in a uniform free stream, but rather to operate
as a helicopter blade for which the speed increases from the root to the tip in a linear
fashion. Therefore it is not surprising to note a slightly positive (destabilizing) pitching-
moment for this wing. Based on the definition of lift-equivalent vortex strength, the
nondimensional tip vortex strength for this wing is 0.13. Also, the value of 'y determined
from the line-integral of the velocity vector around a closed path surrounding the vortex

and at several x-locations in the wake is in the range between 0.12 — 0.14 depending on
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the path of the integral. The larger value corresponds to the the smaller integral path ~

surrounding the tip vortex. The smaller value includes the eflect of wake vortex sheet.

N-

Effect of Tip Planform i
%

To study the influence of the tip geometry planform on the tip-vortex formation, the N

ONERA wing of Fig. 2c was modified to reshape the planform in the tip region, keeping

9

the rest of the geometry the same. The planform and the surface grid for this modified

)
]

wing is shown in Fig. 2d. This modified wing geometry has an unswept leading edge

-l

and looks more like a rectangular wing except the tip region retains the original ONERA

wing taper. The free stream flow conditions are identical to the preceeding case. From

S

the steady state results for this wing, the lift, drag, and the pitching-moment coeflicients

“
w

for this wing are Cp = 0.332, Cp = 0.0796, and Cp = -0.018. The significant changes I,
a

here are the larger force coefficients and the stabilizing pitching moment, in constrast to
the slightly destabilizing value for the ONERA wing. E";
For this case, the shock wave and the resulting shock-induced separation are stronger D:
than for the ONERA wing, and the flow topology is different. Another important dif- =

ference is the structure of tip vortex. Figure 13 shows a view of the tip vortex for this o

wing. The formation of a the tip vortex, which involves braiding of fluid particle paths,

is delayed toward the trailing edge and the near wake region as seen in Fig. 13; also, the :}
»x

vortex appears more diffuse with a larger core. The nondimensional tip vortex strength

determined from integrating the velocity vector around a closed path surrounding the ;\:

tip vortex yields a value of 0.17 when the path of integral includes the vortex sheet of
the wake and a value of 0.21 for the path excluding most of the wake vortex sheet. :
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Conclusions

A multi-block zonal algorithm is used for solving the Euler and the Navier-Stokes
equations to simulate numerically the formation and roll-up of tip vortices of wings in
subsonic and transonic flows. In all, four different wing geometries have been used as test
cases. The influence of the tip-planform, the tip-cap shape, and the free-stream Mach
number on the formation process has been studied. The numerical results presented
here required about 5 - 12 hours of CPU time on the Cray-XMP supercomputer for each

steady state solution, depending on the grid size used.

Comparison of the numerical results with the limited available experimental data for
both the subsonic and the transonic conditions showed good agreement for the surface
pressures, except in the immediate vicinity of the tip and in the shock-induced separated
region. The disagreement of surface pressures in the separated region is representative
of the current state of the art for predicting transonic shock-induced boundary-layer
separation. The subsonic calculations reproduce the qualitative behavior of the experi-
mental tip vortex formation, including the changes in the tip flow separation and in the
vortex lift-off due to rounded tip caps that have been observed experimentally. The use
of a bevelled tip-cap to mimic a square tip was found to be an inadequate choice. The
square-tip simulations do reproduce the correct locations of the suction peaks associated
with primary and secondary vortices, but they fail to produce the correct magnitudes
for the suction peaks under the vortex. Change of grid topology from H-H to O-O re-
produced the same solution without any improvements. These errors may be due to the
thin layer assumption, to the deficiencies of a simple turbulence model, and possibly to
inadequate grid resolution. Nevertheless, it has been demonstrated that it is possible
to calculate the initial development of the tip vortex with out ad hoc modeling. The
limited study of the tip-cap effect on the flow field near the tip region, presented here,
suggests that the tip shape is an important ingredient of the problem.

As expected, the formation of the tip vortex involves braiding of the fluid particle

paths in the tip region from both the upper and lower surfaces of the wing. For a lifting
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wing the particles from underneath the wing (high-pressure side) cross over the tip face
to the upper surface (low-pressure side) and modify the flow field in the tip region by
the three-dimensional tip-relief action. The tip vortex first lifts off the surface and then
rolls up and moves inboard of the tip, staying distinctly above the wake vortex sheet.
Both tip-cap modification and the tip-planform change influenced the gross lift of the
wing and hence of the tip vortex strength. The swept-tip planform had a weaker shock

TR I VIR ==

wave, but it also produced a more tightly wound (smaller core) vortex compared to the

unswept-tip.

In summary, the results presented here demonstrate that, although there is still
room for improvement, realistic and meaningful three-dimensional calculations of vis-

cous flows over wings and their associated tip vortex formation are now feasible. This

[ S

computational fluid dynamics capability provides a new tool for analyzing and improving

the aerodynamic characteristics of wings and rotor blades.
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CALCULATION OF HOVERING ROTOR FLOWFIELDS
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Part 11

CALCULATION OF HOVERING ROTOR FLOWFIELDS

Introduction

The need to accurately calculate the flowfield of a helicopter rotor in both hover and
forward flight is of great practical importance. Unlike the flowfield of a fixed wing, the
flowfield of a helicopter rotor is generally more complex to analyze because it provides
some of the most complex challenges to be found in the field of applied aerodynamics.
This complexity stems from several peculiar problems that are unique to the helicopter
rotor, viz., a radially increasing blade speed that is responsible for a high concentration of
bound circulation over the outer portion of the blade resulting in a strong trailed vortex,
a spiralling wake vortex sheet remaining initially close to the rotor causing strong blade-
vortex interactions, a high centrifugal force field in which the blades operate, a relatively
large steady state out-of-plane cdisplacement of the rotor blades and aeroelastic response
of the rotor itself, and finally, mutual interaction of flowfields of main rotor, tail rotor
and the fuselage. These flowfields are often characterized by transonic conditions and
associated shock waves which makes the flow more susceptible to three dimensionality

and unsteadiness.

The operating characteristics of such rotory wing vehicles are strongly influenced
by the the vortex wake. The interaction of this wake with the following blades is a

potential source of noise and vibration at low and moderate flight speeds. Accurate

prediction of the vortical wake is probably the most important, most studied and the

most difficult aspect of helicopter flowfield. Current methods of analysis of the wake
range in complexity from relatively simple momentum-theory applications to free wake
lifting surface methods. In between these extremes, there are a variety of so-called
prescribed-wake models, which generally rely on some degree of empiricism to determine
the position of the wake vortices; then the Biot-Savart law is used to calculate the induced

velocity field due to these vortices at the plane of the rotor blades. Although such models
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are widely used in current prediction techniques, they suffer from the limitation that the .E‘ E,,.
emipirical determination of the wake shape ignores some of the important details of the '.
flowfield such as the mutual interaction between various vortex elements. Further, they :; ,‘
are unreliable for unusual blade planforms and/or twist distributions which are often the . '_‘
case with modern helicopter blade shapes. ::» %
« Py
The current thrust in calculating the rotor flowfield more accurately, including the ) :E ]
wake effects, is pushing the use of state-of-art computational fluid dynamics (CFD) s e :.'
codes to shed more light on the understanding of this problem. Finite difference codes :: "

for nonlinear compressible potential equations?®~3% and the Euler equations3!~3% have

been used to calculate the rotor flowfields. Initially developed methods using the po-

i’
A

tential flow and the Euler formulations were primarily limited to calculating nonlifting ¥
by .S,

rotor flows because of the inherent limitation of not being able to model the vortex wake 4
]

with these equations, although the Euler formulation has in it the necessary physics to - .:E
. . . . T W
model vorticity transport correctly. These equations basically lack the physical mecha- ,_\
nism needed to generate the vortex wake. However, in conjunction with wake models, e :
e NSNS
such as CAMRAD?? and HOVER,*® both potential flow and Euler codes have been %
used extensively to calculate the lifting rotor flowfields. The standard experimental data < :::
that is used in validating most of these codes has been the two-bladed rotor data of N
Caradonna and Tung.*! An excellent review of some of the currently available invis- & E;,
[N, Y

cid finite-difference numerical methods has been recently presented by Caradonna and o
7‘\:. |:.'\-
Tung.4? NN
. LN

~ 2

(‘_\' \-’

As mentioned above, tip vortices are an important part of the helicopter rotor flow N
field. These vortices, which are generated at the tips of the rotating blades, along with the . ('j'_
LN
helical wake vortex sheet have tremendous influence on the operating characteristics of ~ .-'
the rotor. Some of the common practical problems caused by such concentrated trailing RN
N

vortices are the rotor vibration due to unsteady lift fluctuation, increased induced drag N \"_-
and the annoying ‘blade-slap’, an impulsive noise characteristic are a few to name. Many A
studies have been made to date to understand and reduce the influence of tip vortices -9 ;
2

I,
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by means of modifications to the tip geometry of the rotating blades. Various analytical
and numerical studies conducted are basically inviscid in nature and therefore preclude
the mechanics of the physics necessary to model correctly the formation of the tip vor-
tex which involves the the complex three-dimensional viscous flowfield in the tip region.
The thin layer Navier-Stokes simulations of tip-flows have been attempted only recently
after bigger and faster supercomputers became available. The studies of Mansour? and
Srinivasan et al.?4 show limited success in simulating the complex tip flows. Simulation
of the complete vortex wake now appears possible with proper Navier-Stokes algorithm
in conjunction with patched and/or zonal grid topology to discretize the flowfield. Un-
derstanding the mechanism of the formation process of the tip vortex and its subsequent
roll-up would provide a proper insight to modify these tip flows and alleviate some of the
problems caused by them. The ability to preserve the concentrated vortices in the finite
difference grid without numerical diffusion® has been the biggest set back until now for
much progress in this area. Even the most advanced computational techniques, that use
spatial central differencing, lack proper mechanism to preserve concentrated tip vortices
and convect them in the flowfield without numerical diffusion. However, the recently de-
veloped upwind schemes in conjunction with a proper grid choice appear very promising
to preserve and convect concentrated vortices. Alternatively, if the properly captured
tip vortex is analytically represented, then prescribed vortex methods*?~44 could be ap-
plied to calculate the vortex wake development for several rotations of the blade. These
methods have demonstrated the ability to preserve and convect concentrated vortices

even in very coarse grid regions without significant numerical diffusion.

The use of Navier-Stokes codes to model the rotor flowfields have been limited in
the past primarily because of the large computer memory and CPU time requirements.
In fact, these codes may not be very much more expensive to run than some of the Euler
codes, but to have a meaningful flow definition in the tip region and in the wake might
make such a procedure very expensive. Recently, Wake and Sankar*® have presented
some nonlifting and lifting calculations for a rotor in hover using a coarse grid with a

poor definition of the tip region. The results for surface pressure are in fair agreement
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with experimental data. The lifting calculations used a correction to the geometric angle

 n o > oy

of attack of the blade obtained from the lifting surface code of Ref. 40. In the present
study, using a good definition of the tip region, thin-layer Navier-Stokes equations are
‘ solved for the flowfield of a rectangular blade in hover with a view to capture the tip
vortex also. Both nonlifting and lifting cases have been calculated with subcritical and
supercritical tip Mach numbers. Surface pressure distributions and tip flow data are
presented and compared with experimental data. Alternate methods of calculating the

hover flowfield in a non-hover mode (like an isolated fixed blade), keeping the circulation

e

distribution the same as that of a hovering blade, are explored and the results for these
are compared with the hover results. Governing equations and numerical method are

presented in the next section followed by results and concluding remarks.
Governing Equations and Numerical Scheme

The governing partial differential equations are the unsteady,thin-layer Navier-

A Stokes equations given by Egs. (1-4). For generality, these equations are transformed
from the Cartesian reference frame to the arbitrary curvilinear space (§, 7, {, 7) while

retaining strong conservation law-form to capture shock waves. These equations along

with the equation of state for a perfect gas given by Eq. (5) describe the complete
s flowfield.

In these above equations, u,v, and w are the Cartesian components of the velocity
in the intertial coordinate system (z,y, z,t). In the present formulation Eqs. (1-5) are
solved in the inertial frame of reference. The intertial coordinates X = (z,y,z,t) are

related to the blade fixed coordinates X} = (%,9,%,1) through the relation given by

X(z,y,2) = R(H)Xs(2,§, 2)
(7)

o~y

t =
where R(t) is the rotational matrix!® given by

| cos —sinfdi 0
R(t)= |sinQf cosQf 0 (8)
0 0 1
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3
W Here Q is the reduced frequency of the rotor and Qt represents the azimuth sweep N
P
of the rotor blade. In view of this relation, Eq. 8, the metrics in inertial reference frame >3
: ! are related to those in the blade-fixed frame of reference through o
o
a
: "‘
. £z = Ezcos U — £5sin Qf ‘
b €, = €zsin Qf + E5cos OF -
P-: :"
o
£:=¢: : {
- - ¢ ]
N = nzcos (it — ngsin Nt )
'0 'qy = nisin Q{ + ﬂﬁCOS Qt- -':
> o
Nz = Tz Nt
» L (9) N
b ¢z = (zcos Qt — (ysin
Cy = (asin Qf + (ycos O o
s ;-.
4 ')'." Cz = Ci F.‘
- 8
G e = Qyé: — QZ¢; ;.
: me = Qyns — QZny ;
2 ; :
™ ¢ = Qs - Qg 2
]
R The equations set, Eq. 1, is solved using an implicit, approximately-factored numer- L
.
: ical scheme that uses spatial central differencing in the n and { directions and upwind 3
) ::-‘ differencing in the ¢ direction developed by Ying et al.4” The flux vector F has been split i
. ~ J
in to F'* and F~ according to its eigenvalues. Artificial dissipation terms (second- and LI
:E. fourth-order) have been added in the central differencing directions for stability reasons.? e
r~
The factored operators can be solved by sweeping in the ¢ direction and inverting tridi- -
‘;: agonal matrices with 5 x 5 blocks for the other two directions. Currently, significant ]
‘_‘- -
part of the computational time is taken to form the plus and minus Jacobian matrices -
"v —~ ':t'
e for the flux vector F with this numerical scheme. The numerical code is vectorized for
. the Cray-2 supercomputer. f‘l
* ‘. !
A body conforming finite-difference grid has been used for the rectangular blade R
- N
N 41 \
re \ 1
Ad

J' f' 'vl‘ o, o o -l‘\ ‘f_.\-'\ 4 ,\'f\-ﬁ\\\-‘\f‘;f

.!‘I... l'.l.. . |'.|l'. LA I‘-!‘. \ad - A ' u| ’ DY .‘.' cb‘o,l 'V' ¥ .“1."0 l - Nv o WA N,



- - -

-
-

o %

- -
u - -

L e

el -

e o

;“..l,.".o Y J.t Wy 'h ‘b"y( £ r(‘ r h -' . 'f"f O A r.r ll w " .‘-_‘- ~' 4”4 -\-V,v K' -n.'- " W AR .‘. N4

(e ML, a0, i)

having a rounded-tip cap and consists of warped spherical O-O grid topology. The
flowfield grid is numerically generated using the three-dimensional hyperbolic grid solver
of Steger and Chaussee*® with proper clustering in the leading and trailing edge regions
and in the tip region. The grid is nearly orthogonal at the surface and the spacing in the
normal direction at the surface is chosen to be 0.00006 of the chord. All the computations
were done with one grid topology having 155 points in the periodic direction around the
airfoil, and 66 points each in the spanwise and normal directions, for a total of about

700,000 grid points. The grid boundary is chosen to be at 10 chords in all directions.

The boundary conditions consist of surface boundary conditions and farfield bound-
ary conditions and are applied explicitly. For the nonrotating blade the noslip condition
is enforced at the wall by setting U, V and W to be zero and &, n: and (; are zero as
the grid is stationary. For the rotating blade, however, U, V and W are still set to zero
but &, 7, and (; are nonzero as the blade (and the grid attached to it) is moving in az-
imuth. Also, at the wall the density is determined by assuming adiabatic wall condition.
The pressure along the body surface is calculated from the normal momentum relation
(see for example Ref. 25). Having known the density and pressure, the total energy is

determined from the equation of state.

At the farfield boundary the flow quantities are either fixed or extrapolated from
the interior depending on whether the flow is subsonic or supersonic and if it is of inflow-
or outflow-type at the boundary. The characteristic velocities of the Euler equations
determine the number of flow properties to be specified to control the reflections of waves
from the boundaries. For subsonic-inflow boundary, four quantities must be specified.
Thus density is extrapolated while the velocities and the total energy are specified by the
free stream values. For supersonic-inflow, all flow quantities are specified. At subsonic-
outflow boundaries, only one quantity is specified, viz., pressure is fixed. For supersonic-
outflow condition all flow quantities are extrapolated from the interior. At the plane

containing the blade root 0Q/8y = 0 is imposed.

Results and Discussion
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Both time accurate and time asymptotic (steady state) calculations are performed
in this study for an aspect ratio 6 rectangular blade having no twist or taper. The blade,
which has a round tip-cap (body of revolution), is made up of NACA0012 airfoil section.
The rotating blade calculations presented here have been chosen to correspond to the
experimental test conditions of a two-bladed hovering rotor of Caradonna and Tung.4!
At the Reynolds number corresponding to the tip speeds in this test, the boundary layer
can be assumed to be turbulent over the entire blade and Baldwin and Lomax algebraic
turbulence model!? is used to calculate the turbulent eddy viscosity. A typical solution,
with vectorized code for Cray-2, required about 700-1000 marching steps (approximately
45-60 degrees of azimuth travel) to reach quasi-steady flow conditions with CPU time
per time step per grid point of 8.5 x 1075 sec. Time accurate calculations were run with
a maximum value for the time step of At = 0.01, whereas the fixed blade option used

varable time step option*? with At of 5 to calculate steady state flowfield.

Hovering Blade

As mentioned before, the rotating blade calculations presented here correspond to
the two-bladed hover test conditions of Caradonna and Tung.!” Hover calculations have
been done in a time accurate fashion. In practice, a hovering rotor flowfield is quasi-
steady in blade-fixed coordinates system. Since the governing equations are being solved
in the inertial reference frame in the present approach, the flowfield never reaches steady
state in this reference frame. This approach was preferred since it is easily extendable

to the forward flight case.

Figure 14 shows the chordwise surface pressure distributions at several radial sta-
tions for the nonlifting rotor with tip Mach number M;;;, = 0.52 and a corresponding
Reynolds number of 2.32 million. As seen, the calculated results are in excellent agree-
ment with experimental data at all radial stations. Accurate calculation of lifting rotor
flowfields is possible only if the induced effects of the wake are properly included in the
analysis. At present a number of methods are available to model the effects of the wake

of a hovering rotor. All these methods seem to give approximately the same kind of
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results when applied to a particular problem, not dominated by viscous effects, as is
shown in the review of Caradonna and Tung.*? With this observation, a uniform cor-
rection to the angle of attack of the blade has been made in this study based on the
estimates of induced downwash for the experimental test rotor configuration given by
Agarwal and Deese.® Figure 15, reproduced from Ref. 35, shows plots of sectional in-
duced velocity estimated from a free-wake analysis program for three speeds of rotor
and thrust coefficients of an experimental configuration. Over a section of the blade,
approximately from 0.4 to 0.9 radius in this figure, the induced downwash given by the
ratio of sectional induced velocity to the local blade speed is nearly constant equal to -3.8
degrees for the entire range of test conditions. In the present calculations this induced
downwash is chosen as a representative value and is assumed constant for the entire

blade.

The effective pitch of the hovering blade is then the difference of the geometric
angle of attack and the induced downwash estimated above. Using this estimate, lifting
calculations have been performed for hovering blades set at an effective pitch of 4.2
degrees and having tip Mach numbers of 0.44 and 0.877, respectively. Figures 16 and 17
show the computed results for these cases in the form of surface pressure distributions for
representative blade radial stations compared with the experimental data of Caradonna
and Tung.!! The comparison shows very good agreement, at least for the radial stations
between 0.6 to 0.95 of radius, for both subcritical and supercritical cases. The agreement
progressively deteriorates for radial stations less than 0.6R which probably is expected
from the data of Fig. 15. Agarwal and Deese®® have also calculated the same flow using
the finite volume Euler formulation and the same induced downwash correction. They
also get similar agreement with the experimental data for the subcritical case. However,

the shock locations are over estimated for supercritical case in their calculations.

Additional flowfield data for the tip region are presented in Figs. 18-24 for the two
lifting cases calculated here. It is well known that the formation of tip vortex involves

complex three-dimensional flow separation in the tip region as a necessary condition.
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Figure 18a shows a view of the surface particle flow traces in the tip region for the

.
S0E

subcritical lifting configuration corresponding to a tip Mach number of My, = 0.44. It

A el il

A

is generated by releasing fluid particle tracers at one grid point above the surface and

- -
Ty

0

confining the flow to stay in that plane. This view is supposed to mimic the surface
oil flow pattern often used in laboratory experiments. The separation and reattachment

lines of the flow are marked by the symbols § and R respectively in Fig. 18a. The

EL- |

2 extent of separation on the upper surface, inboard of tip, is much larger compared to .
: W the mild separation seen on the lower surface of the tip region. The braiding of flow ’;
: :; particle tracers, released from different locations on the upper and lower surfaces, in

’ & the tip region show the formation process of tip vortex in Fig. 19a. In contrast to a 3
:.: nonrotating blade,?4 the braiding of particle tracers from upper and lower surfaces is :::
‘ g delayed until after the vortex lifts-off from the surface. The initial braiding process is :'
. comprised of mostly the particles from the upper surface as is clearly seen in Fig. 19a.
" EE’ The strength of the vortex is determined, as before,?4 by the line integral of the velocity
;

:':! N vector over a closed path enclosing the vortex. Estimations done at several locations :
: i in the downstream wake by this method gave a value of 0.08 to 0.09 depending on the ¥
. size of the line integral path chosen for the vortex strength. The integrated lift from 2
,‘: N the blade pressure distributions was found to be 0.19. The vorticity contours shown in 4
:: Fig. 19a show the size and shape of the tip vortex. As expected, the coarse grid has v
y g smeared-off the tightly wound vortex as seen in this figure. i
:
" '_;t Similar results are presented for the lifting hovering rotor blade with M,;, = 0.877 ’ :
& in Figs. 20-23. The pressure contours of Fig. 20a show the extent of transonic flow and .
o steepening of the shock wave towards the tip region. The surface particle flow pattern :f
‘:: R of Fig. 21a clearly identify the regions of separation and reattachment. As before, the E
‘e separation seen on the lower surface in the tip region is milder compared to the extent

_ ::: seen inboard of the upper surface. The formation process of the tip vortex, seen in Fig. ;:
L 22a, shows the braiding of particle tracers initially consisting mostly from the upper };

X
-
v ]

M surface before lifting-off the upper surface inboard of the tip. Further braiding of this A
: ' from the particles from the lower surface occurs in the wake during the roll-up process. 7
: -
N -
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The view looking at the tip, seen in Fig. 22a, clearly shows the lifting-off of the tip vortex

from the separated region on the upper surface. A farfield view of this vortex is shown
in Fig. 23a. The vorticity contours shown in this figure at different x-locations in the
wake suggests approximate shape of the vortex. The strength of this vortex estimated
as before gave a value of 0.07-0.08. The integrated value of the lift coefficient for this

case 1s 0.17.

Fixed Blade

The results presented in the above section for the hovering blade were computed in
a time accurate manner as mentioned before and these are time consuming and expen-
sive. So this section explores alternate methods to compute the quasi-steady flowfield
of the hovering rotor, in particular, as flowfield of a fixed blade with the same circula-
tion distribution as that of the hovering rotor blade with the same tip Mach number.
Comparing the circulation distribution for these two modes (fixed and rotating blade),
one can immediately come up with two different ways of generating approximately the
same circulation distribution on a fixed blade as that of the hovering blade keeping the
planform of the blade same by @) having the flow Mach number distributed as a function
of the radial distance exactly like a hovering blade, keeping every thing else same, and
b) alternatively keeping the flow Mach number uniform for the entire blade equal to the
tip speed and then have a twist distribution along the blade which decreases from the
tip to the root of the blade. This means that the fixed blade will have variable twist
increasing towards the tip to a value equal to the value of effective pitch of the hovering
blade. A third option, that of increasing the chord linearly from the root to the tip, was

not explored in this investigation.

With the above reasoning, steady state flowfields were calculated like a fixed isolated
blade flowfield with the free stream conditions as discussed above. These calculations
used a variable time step option*? to accelerate the convergence rate of the numerical
procedure. Figures 24 and 25 show these results in the form of surface pressure distri-

butions compared with the hovering rotor results for both subcritical and supercritical
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Fig. 24. Comparison of surface pressure distributions for fixed and rotating blades;

My, = 0.44, Re = 1.92 million.
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cases. The subcritical results presented in Fig. 24 show surprisingly very good agreement
with the hover results for both the options of variable twist and variable Mach number.

Considering close agreement of the results even at the radial station near the tip of the

blade, the influence of the centrifugal forces present in rotating blade seem to have very
little influence in modifying the pressure field in the tip region. There are very small

differences in the surface particle flow patterns and the locations of vortex lift-off from

the surface for these cases compared to the hovering blade as shown in Figs. 19 and 20.

The fixed-blade configurations seem to produce tightly wound vortex even before leaving

A

the blade, but its strength appears to be within 5-10 percent of the hovering blade value.

2

The supercritical results, presented in Fig. 25, although dominated by the transonic

shocks in the tip region show very good agreement of the variable Mach number case

W

with the hover case. The variable twist option does not seem to perform as well in the

e
-

:2;'-' transonic regime. This is not surprising since high low Mach number (equal to tip Mach
A' number of rotor) exists all along the span for this non-rotating case. Figures 20b and
E 20c show the upper surface pressure contour plots for these cases and comparing these
with that of hovering blade in Fig. 20a demonstrates the closeness of the variable Mach

‘&: number fixed-blade case with the hovering case. The variable twist case produces too

' strong a shock wave along the entire blade with the consequece of producing a totally
~ different flowfield. The close agreement of the flowfield for the cases of Figs. 20a and
e 7b suggests that even at this supercritical flow condition, the influence of the centrifu-

: ::: gal forces appear to have minimal overall effect on the flowfield. However, the surface
! :;,:: particle flow pattern seen in Figs. 21a-21c shows differences in the flowfields in the tip
p 7 region for these cases. The rotating-blade case of Fig. 21a and the fixed-blade case of
- Fig. 21b although have similar surface pressure distributions, the flow in the tip region
] & near the surface appear different. The difference between the two cases should come

from the difference in there force fields, which means that the presence of centrifugal

E

force in the rotating-blade case may have produced a small-scale local separation on the

lower surface of the tip in addition to the separation seen on the upper surface of the

7

blade. This separation is clearly is seen in Fig. 21a. The flow in the tip region for the
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fixed-blade cases of Figs. 21b and 21c are largely similar even though the flowfield for o

the case of Fig. 21c is dominated by the strong shock wave and its associated effects. 3

:,:: However, the nearfield views of the tip vortices shown in Figs. 22a-22c¢ appear nearly v.
::::: identical, although the lift-off of the tip vortex for hovering blade occurs well inboard of s,
l{:‘é.: the tip on the upper surface in contrast to the fixed blade cases of Figs. 22b and 22¢ #

for which the lift-off appear to occur right in the tip region on the upper surface of the
f. N blade. The farfield views of the tip vortices for these cases is shown in Figs. 23a-23c

Wil along with vorticity contours insert showing the cross sections of the tip vortices and

x5 SO

approximate shapes at various distances from the blade. While the strength of the tip

.'.:'& vortex for the variable Mach number case is almost identical to that of the hovering §

‘.l‘.

;":l blade case, the variable twist case produced a vortex approximately 2.5 times that of the

et : . . . ¥,

K hovering case. The vortex shapes, determined by the vorticity contour inserts, appear to W
[_]

- be same for all cases. It should be emphasised again that these time accurate and steady

A X
;' state calculations were done on the same grid topology to remove the grid dependency b
" v,

,

':' ‘| from the comparisons.
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Conclusions

Unsteady, thin layer Navier-Stokes equations written in rotor coordinates are solved
using a flux-split approximately factored, implicit, numerical algorithm to calculate the
quasi-steady flowfie'd of a hovering rotor blade. The test cases chosen correspond to the
experimental model hover test conditions of Caradonna and Tung;*! The numerical re-
sults compare very well with the experimental data for both nonlifting and lifting cases.
The induced wake effects in the lifting calculations were accounted as a correction to
the geometric angle of attack (pitch). Alternate methods are explored to calculate the
hovering rotor flowfield as steady state flowfield on fixed isolated blade keeping the same
ciculation distribution as that of the hovering blade. Of the two options considered, the
variable free stream Mach number case gave almost identical results as that of a rotor
at both subcritical and supercritical flow conditions. The variable twist option, on the
other hand, gave similar results only under subcritical flow conditions; the supercritical
flow condition was dominated by strong transonic shocks. Under conditions where the
fixed blade flowfield closely agreed with that of hovering blade, the influence of the cen-
trifugal forces of the rotating blade appeared to have minimum influence on the overall
flowfield properties. While these conclusions are preliminary and primarily based on
the comparison of surface pressures and vortex strength estimates, further quantitative

comparison of the vortex structure is needed for a clear understanding of the similarities

and differences.
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whereas wmilar calculations for the wbcnticsl fow
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= Jensity

= disturbance potential

= azimuth angle (Fig. 2)

= angular velocity of the rotor blade

DE O

Introduction

NE important problem of helicopter aerodynamics that

has been the subject of many recent expenmental' * and
theoretical* ' studies 1s the mechamsm of blade-vortex inter-
action. This interaction mechamsm 1s a pnmary source of
impulsive notse generatuon. The transonic speeds of today's
helicopter blade tips add to the complexity of the problem
The blade ups, which tral the strong and concentrated tip
vortices 1n such a flowhield. trace out prolate cyclodal paths in
space. and. in the process, encounter a vanety of blade-vortex
:nteracuons. These interactions induce unsteadv blade loading
and acrodynamic noise, with compressibility plaving an 1m-
portant role in the problem.

The genenc problem of the blade-vortex interaction can be
viewed, 1n general, as unsteady and three-dimensional; how-
ever, in one hmit, when the intersection angle of the vortex
*ith the blade ( \) 15 very small or zero. the 1nteraction can be
approx:mated to be two-dimensional but unsteady, (see Fig.
1) Most of the recent numencal studies’'' that have ad-
Jressed this problem have been solved in this limit. Transonic
small-disturbance equauons.'”  full-potental equations,’!
Euler equations,” ' and thin-laver Nawvier-Stokes equations ™ *
4il have been olved for the problem of a convecting vortex
passang 4nd interacung with the dowfield of a4 statenary
arfoil in g uniform freestream

Some of the preceding methods place limitations on the
.ntensity of the interaction 1n terms of vortex strength. vortex
tadaton asth respect o the wrfoud, and on the freestream
Mach number. nevertheless. they all seem to aive wmular

n

PATH S TaE
WovNG LORTER

Fig 1 Schematic of parsilel blade-vortex interaction, in the limt of
A = 0, and definition of coordinste system.
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results. For flows domunated by the strong viscous interac-
tion and shock-wave boundary-laver interaction, the natural
choice of the equation set that describes such a low com-
pletely would be the Nawier-Stokes equations. Present-day
numerical algonthms for this set of equations are »ull very
expensive 10 terms of computing time, although much pro-
gress has been made toward reducing the time required.
However, the memory of the available computers 1s adequate
to address these types of problems in the two-dimensional
limit. This s particularly true with the present prescnbed-
vortex, or perturbauon. method which has been demonstrated
to resolve important flow features n a blade-vortex interac-
ton problem 1n both subsoruc and transomc flows, even in a
very spasse finite differenice mesh. ™

A problem more practical and numencally more com-
plicated than the one mentioned previously s that of a rotat-
ing blade of a helicopter rotor encountering a vortex gener-
ated upstream. Such an expenment was done recently in a
wind tunnel at the US. Army Acromechanics Laboratory
(presently called Aeroflightdvnamics Directorate, US Army
Aviation Research and Technology Activity — AVSCOM) at
NASA Ames Rescarch Center.! A schemauc of the expenment
1s shown 1n Fig. 2. A vortex generated at the tip of a straight
NACA-0015 wing interacts with the flowfield of a rotating,
two-bladed helicopter rotor blade under subsonic and tran-
sonic flow conditions. For such a rotaung blade. unlike the
stationary airfoils considered in previous studies,” ** the un-
steady ume-lag effects that are present even in the absence of
the interacting vortex are vers mportant.’> The effect of this
unsteady ume lag @5 to Jelay the process of low adiustment
corresponding to the appropnate azmuthdl blade position
This has 3 profound 'nfluence on the unsteads ~lade foads at
transomuc condittions  In additon, the resslts mav abso he
nluenced by the three-dmensional tupi ettects f the ohod-
wise reference staton consmdered v Jdoser 1o the hlade up
Another verv :mportant ingredient of the vortex interacuon
study oy the detarled knowledge of the structure of the inter-
acung vortex Although an analvuical representaton of the
vortex is often used. the point to bear in mind :~ that ~uch 2
representation should hase an accurate core structure cm-
hedded in it

In the present investization. (t was found that the rotor-hlade
reference station of Ref 1 vsecuon AA in Fig 2, that under-
goes parallel blade-vortex interacuon s inboard of the blade
up regaon. If the up influence 1s neglected at this station, the
flow can be approcumated as two-dimensional. but unsteads
One umportant diffierence of tus problem from the carher
formulauon * 1s that the blade 1» rotaung now After :mple-
menting this important feature, along with the necessary
changes in the houndary conditions, unsteadv, two-dimen-
stonal, thin-layer Navier-Stokes equauons tn strong consena-
uoo-law form are solved for the interacuon flowfield of the
rotaung blade using an approximately factored, mplicit, finite
difference numencal algonthm wntien 1n delta form *'' An
anaivtical representation of the measured vortex structure was
used 1n the computauons.

Although the 1mual fimte difference gnds were generated by
an algebraic method.’* an adapuve-gnd procedure' '* was
used throughout 0 resolve the imponant flow features, :nclud-
ing shock waves, vortex. shock-induced separaton of the
boundary layers, if anv, and the vortex structure :tself

In tus paper. the governing equauons and numencal for-
mulatons are discussed. and the numencal results and com-
pansons with expenmental data are presented

Governing Equations and Solution Procedure

The interacuon flowfield 15 solved by the prescnbed-vortex,
or perturbaton. method'” The essence of the method s that
cach of the dependent flow vanables is split 1nto 4 prescnbed
part, which 1s sumplv the vortical disturbance, and a remaining
part, which 15 obhtained from the solution of the governing
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Fig 3 Effectiveness of the prescribed-vortex method compared with
the nonperturbation method. Euler results for sirfoil-vortex interaction:
NACA 64A006 airfoil, M, = 0.8S, a= 0 deg, ['= 0.2, a, = 0.05, and
Yo=y, = —0.26.

equation set. Even though the governing equations are nonlin-
ear and independent solutions are not superposable, the de-
pendent variables can still be decomposed as

9=9,+(9-q0)

where
p P
- pu - pu
=),y | 04 q0=|,, (1)
4 € Jo

Here ¢ is the unknown flowfield vector, and the vector g,
represents the solution of Euler equations for the vortical
disturbance convecting in a uniform freestream. Previous
studies”® have demonstrated that the perturbation method
can, in fact, resolve the flows with concentrated vortices well,
even with a coarses grid when compared to a nonperturbation
method.'® For example, a representative plot of the variation
of lift coefficient as a function of the vortex position is
reproduced from Ref. 8 in Fig. 3. This calculation was done
using Euler equations for the case of a convecting vortex
encountering a nonlifting, stationary NACA-64A006 airfoil in
transonic flow, and using the same grid topology with both
perturbation and nopperturbation {or conventional) methods.
This figure clearly demonstrates that with the conventional
method the accuracy of the solution increases with the fine-
ness of the finite difference mesh, whereas the perturbation
method produces a much better solution even in a coarser
mesh.

The governing partial differential equations are the un-
steady, thin-layer Navier-Stokes equations.'® The equations
are written in nondimensional, strong conservation-law f{orm
for a perfect gas using the generalized independent coordinate
system of

E=8(x.y.0),  m=a(x.y.0), r=1(1) (2)
and in the perturbation form’*® as
30a-G0) +d(E-E) +a,(F-F)=~Re 3,5 (3)
where (7) denotes quanuties scaled by the Jacobian, e g..
3=t ¢ d=J 't (4)
and

J -eu,,v - evnl - 1/( xéyy - x,y‘)

is the transformation Jacobian. The flux vectors £, E,. £, F.
and § are described in detail in Refs. 7-9. The viscous flux
vector S is written in the context of a thin-layer modei'® and,
hence, is valid for high-Reynolds-number turbulent flows. The
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turbulent eddy viscosity is computed using a two-layer, alge-
braic eddy-viscosity model.?*

The generalized coordinate system of £, 3, 7 allows the
boundary surfaces in the physical plane to be mapped onto
rectangular surfaces in the computational plane. This feature
simplifies the procedure of grid-point clustering in the flow
regions that experience rapid change in the flowfield gradients.

The primitive variabies that make up the governing equa-
tions, Eq. (3), are denpsity p, the two mass fluxes pu and pv in
the two coordinate directions x and y (where x is the
streamwise direction and y is normal to it), and the total
energy per unit volume, e. All length scales are normalized by
the chord of the rotor blade at the reference station, and the
dependent variables p, p, e, u,and v by g, Yp,., poa%.and
a,, respectively.

The pressure, density, and velocity components are related
to the energy per unit volume by the equation of state, which
is written for a perfect gas as

' 2, ,2
e'v—lﬂ’(u;v) )

This equation of state, along with the mass aad momentum
equations given by Eq. (3), completes the equation set to be
solved.

In the present formulation, the difference between the prob-
lems of the stationary and moving blades shows up in the
metric terms involving time derivatives, namely, £, and 7,.
Following the formulation given by Ison?! and Caradonna
and Isom? for unsteady flow over helicopter rotor blades, the
effective local Mach number at the reference station can be
written as

M, =M (1 + p'sinQr) (6)

where M, is the rotational Mach number, u’ the local advance
ratio, and Q the angular velocity of the rotating blade. This
formulation enables the flowfield solution of a rotating blade
with an oncoming freestream to be solved in the two-dimen-
sional limit as a blade moving with an x velocity of
M.a_p'sinfls in a flow of Mach number M,. Note that both
¢, and n, are nonzero for this case, whereas, for a stationary
blade with a fixed grid, both §, and n, are zero.

The boundary conditions are applied explicitly. Since the
gnd extends 20 chord lengths in all direcuons from the surface
of the blade, {reestream conditions are specified at the outer
boundary and sumple extrapolation is used for p, pu, and pv
at the outflow boundary. For supersonic flow, the total energy
e is also extrapolated; but for subsonic flow, the pressure is
held coastant at the freestream value, and e is obtained from
Eq. (5). To ensure continuity across the wake cut, the flow
vanables are linearly extrapolated to obtain the values along
the cut.

Along the body surface n(x, v, 1) = 0, the no-slip condition
for viscous flow without suction or imjection is given by setting
U and V = 0. The pressure along the body surface is ohtained
by solving the normal momentum equation, and the density at
the surface is obtained by extrapolation {rom the grid interior
The total energy e is calculated from the known pressure and
density at the surface. The boundary conditions are of low
order and, hence, require that the grid be clustered and
normal at the body surface.

The interacting vortex is imtalized at an upstream location
of the airfoil, typically at or near the upstream grid boundary
as in Ref. 9. The vortex flow vector §, is determined as
follows. The cylindrical velocity is analytically prescribed
cither by a Lamb-like distribution or by fitting a smooth curve
through the experimental data, if available. For this vortex
convecting in a uniform freestream, the induced pressure and
density fields are determined numenically by solving the radial
momentum equation in copjunction with the energy equation
for constant enthalpy flow. With the velocity, density, and
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1572 SRINIVASAN, McCROSKEY, AND BAEDER

pressure fields known, the total energy e, is determined from
the energy equation.

Surface conforming grids are needed to simplify the appli-
cation of the body-boundary condition procedure. In this
study, an adaptive gridding procedure of Nakahashi and
Deiwert!*!¢ is used to resolve flow features and to improve
the accuracy of the numerical method. Briefly, the method
uses tension and torsion spring analogies. The tension spring,
which connects the adjacent grid points to each other, controls
grid spacings so that clustering is obtained in regions contain-
ing shock waves and shear layers. On the other hand, the
torsion spring, which is attached to each grid node, controls
inclinations (angles) of coordinate lines and prevents excessive
grid skewness. The mesh can be made nearly orthogonal at the
surface. A marching procedure is used that results in a simple
tridiagonal system of equations at each coordinate line to
determine the grid-point distribution. Multidirectional grid
adaptation is achieved by successive application in each direc-
tion. For the compressible flowfields considered in this study,
the density gradient was found to be the best choice to drive
the adaption in the x direction; the Mach number gradient
was the best choice of driver in the normal direction. In actual
practice, for a given baseline grid, the preceding procedure
will modify the grid at specified intervals to resolve the flow
satisfactorily. In the present study, the grid was adapted at
every two marching steps interval. This increased the compu-
tational time by approximately 50%. The baseline grid used
was a surface-conforming C-grid generated by an algebraic
method of Pulliam et al.'* and had 221 points around the
airfoil and 67 points in the normal direction. The grid
boundary was chosen to be at 20 chords in all directions.

An implicit, spatially factored numerical algorithm with
Euler-implicit time differencing'? is used to solve the per-
turbation form of Eq. (3). This algorithm is written in delta
form as

(1+n8A" - €0 'v,8.d)

x(I+h8,B"+h8,M" -, 'v,0,7)(35" - 33])

-—Al[&c(l:-?"—f(;')+8(f‘"—ﬁb")—Re"B,,S‘"]
e d (Ve + (v,8,)] I8 - (7)

where A, B, and A are the Jacobxan matrices detailed in Ref.
19, 7 the identity matrix, and 8, the spatial central
difference operators, and A ané v the forward and backward
difference operators, respectively. For convenience, A =1 =
An is assumed. The time index is denoted by h, and §
§"(ndr), 83" =3"*' - 3", and ¢, and ¢; are the implicit
and explicit smoothmg coefficients, respectively. Second-order
implicit and fourth-order explicit numerical dissipation terms
are added to the numerical scheme to improve the nonlinear
stability limits posed by the fine mesh.”* Even so, the nondi-
mensional time steps generally were restricted by the stability
constraints to the order of 0.05 deg of the azimuthal travel of
the blade motion or 0.005455 of the chord travel.

The numerical scheme is first-order accurate in time and
second-order accurate in space. Further, in writing Eq. (7), it
is assumed that A a4 and B,a B, where 4, =9E,/33,
and B, = aF,/33.

Central differencing is used throughout the solution do-
main, except in regions of supersonic flow before shock waves,
where upwind differencing is used. The transformation metrics
are not known analytically and are computed numerically by
central differencing (second order) at the interior points and
by three-point, one-sided differencing at the boundaries.

Results for s Stationary Rotor Airfoil

In this section, numerical results are presented for a moving
vortex encountering a fixed rotor blade under transonic condi-
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tions. All calculations are done for an NACA-0012 airfoil in a
uniform freestream of M_ = 0.8 at a = 0 deg, and assuming a
turbulent boundary layer. As mentioned previously, an adap-
tive gridding procedure is used in all of the results presented
here.

A Lamb-like vortex with a finite viscous core (g, = 0.05)
and a cylindrical velocity distribution given by ™

M (1-e74) (8)

was chosen to interact with the flowfield of a stationary,
nonlifting rotor airfoil in a uniform freestream of Mach
number M_ . The strength of the vortex and its location with
respect to the airfoil were chosentobe I' = 0.2 and ), = -0.26,
respectively. The interaction flowfield was, computed in the
same manner as outlined in earlier studies.” Figure 4 shows
plots of instantaneous surface-pressure distributions, the local
grid arrangement, and the Mach number contours for differ-
ent x locations of vortex positions as the vortex passes by the
airfoil. The passing vortex induces on the airfoil a continually
changing eflective angle of attack. Because of the sense of
rotation, it induces a downwash initially when it is upstream
of the leading edge, changing to upwash as it passes behind
the airfoil. This induces a continuous change in the blade-
loading pattern. It should be noted here that the initial lift on
the blade is zero and that any lift generated during the
mteracuon is induced solely by the vortex. As observed previ-
ously,” the maximum influence of the vortex on the airfail
flowfield seems to occur when the vortex is within one chord
of the airfoil.

Previous calculations done for the same airfoil under identi-
cal conditions?* used a fixed-grid topology. with 221 x 67 grid
points; in that study, the shocks were not well resolved. In the
present case, the adaptive-grid topology, shown in Fig. 4. also
uses 221 X 67 grid points, but 1s clearly able to resolve all
aspects of the flow. Since the gnd is adapted in both the x
and y directions, it clearly resolves shock waves, the inter-
acting vortex, and the viscous layer at the body surface
Large-scale vortex and shock-induced boundarv-laver sep-
aration was not observed, although the formation of a smail
separation bubble and sufficient thickening of the boundary
layer were seen behind the shock wave for conditions when
the vortex influence was maximum.

As the vortex passes the airfoil, it encounters the shock
wave sitting on the surface. The vortex actually splits the
shock wave into a triple shock wave, as is clearly seen from
the local grid structure and Mach contours of Fig. 4 for a
vortex position past the airfoil midchord. This feature was
confirmed by making an independent Euler calculauon of the
same flow, by using a fixed-grid topology. and by heawily
clustering the grid in the region of interest. This apparem
unsteady effect seems to fade away as the vortex passes several
chords dowastream of the airfoil trailing edge. Figure $ shows
a plot of instantaneous Lft and pitching-moment coefficients
as a function of the x-vortex position during the interaction
process. The lift coefficient is initially negative (because of the
sense of rotation of the vortex), reaches a negative maxuumum
for a vortex position slightly upstream of the leading edge of
the airfoil, increases to a near-zero value at x, 30 7C, and
stays near that value for the rest of the interaction penod
Pitching-moment changes are maxsmum when the vorex s
within 1C of the airfoil.

Results for a Rotating Biade

In this section, computational results are presented corre-
sponding to two experimental conditions of Caradonna et al!
One condition each of subcntical and supercnucal flows wth
and without vortex encounter will be discussed The corre-
sponding tip Mach number of the two cases 1s 06 and 08,
respecuvely, with an advance ratio of g = 0 2 for both
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Fig. 4 Instantancous surface-pressure distributions, adaptive grid, and Mach contours during airfoil-vortex interaction with a convecting vortex:
NACA 0012 sirfoll, M, =0.8, a=0deg. Re=6x10°, '=0.2, Yo =), = - 0.26. The instantaneous position of the vortex during the interaction is

shown on the sdaptive grid.

The schematic of the experimental arrangement is shown in
Fig. 2. The expenments were performed in a wind tunnel
where an NACA-0015 wing generated a tip vortex upstream
of a two-bladed, model helicopter rotor. The interacting vortex,
of core radius 25 mm, passed the reference rotor spanwise
station at r, = 0.893 and at a distance of v = -04C. The
chord of the rotor blade was 152.4 mm. and the diameter of
the rotor was 2.134 m.

Structure of the Experimental Vortex

Companson of the numerical resuits and the experimental
data will be meamingful only if the correct structure of the
expenmental vortex is considered. The strength of the expeni-
mental vortex quoted in Ref. 1 is [ = 0.31 with a core radius
of a,/C=0.1667. Use of these data in Eq. (8) yielded peak
velocities some 40% greater than those measured by Takahashi
and McAlister’® and Orloff and Grant? for the identical
wing under comparable flow conditions, although it had the
viscid vortex, (1/r), behavior well outside the viscous core.

Since the details of the blade-vortex interaction are sensitive
to the vortex structure and its peak-induced velocities, the
following alternative fit 10 the experimental data, given by

Y _ b osf r! 9
n—r—, “L,;-Zwr r’*a}, (9
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Fig. § Lift and pitching-moment variations with instantaneous vortex
position for the conditions of Fig. 4.

was used in the numerical calculations The factor 0.8 was
chosen to allow the best match of peak velocity in the avail-
able experimental data over the range of angles of attack.
Figure 6 shows the resultant agreement with the data’*? at
the wing incidence used by Caradonna et al.! as well as the
inviscid behavior.

Subcritical Case

This condition corresponds to M, =06 and u =02 For
the reference station at 89.3% of the rotor blade radius, these
conditions translate to M, = 0.536 and u’ = (01.223.
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Fig. 6 Tangential velocity distribution of the tip vortex generated by .
an NACA 0015 wing. . i i
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Fig. 8 Instantaneous surface-pressure distributions for the case of
o o. bisde-vortex interaction. ¥, = 0.6, u= 0.2, 7, = 0893, =031, | =
~-04.
L
LK vortex passes the airfoil Shown n this figure are data from
expenments of Caradonna ct al' The companson of numen-
T e s e cal results and expenmental data shows good agreement. both

Fig. 7 [Instantaneous pressure distributions at the reference biade
station for the rotor-alone case: M, =06, =02 r, = 0893

Results for Rotor 4lone

First, consider a nonlifung rotor in forward flight in the
absence of vortex .nteracion. The objective of such an ex-
ercise is to determune the importance of three-dimensional,
unsteady time-lag effects as the rotor sweeps 1n azimuth. sav.
from O to 180 deg. As the blade rotates from 0 to 180 deg. its
local Mach number increases in the first quadrant. reaching a
maximum at the ¥ = 90 deg position; 1t again decreases to the
average value at ¢ = 180 deg. In going through this change in
local Mach number, if the low on the rotor at ¥ = 90 + 3¢ 13
nearly the same as that at ¢ = 90 - Ay, then the rotaung
blade behaves as if it were quasisteady and quasi-two-dimen-
sional. If, on the other hand, the two Aows are different, then
the associated three-dimensional or ume-lag effects will be
expected to have an influence on the vortex-blade interaction
flowfield that develops in the viciuty of the ¢ = 180 deg
posiuon.

Figure 7 shows instantaneous surface-pressure results at
several azimuth positions of the blade. For this flow, the imitial
local Mach number for y = 0 deg 1s 0.536 and increases to a
maximum (based on the local advance rauo) at ¢ = 90 deg
and again decreases to 0.536 at § = 180 deg. Examinauon of
these pressure distnbutions indicates that for this subcnucal
flow condition the unsteady time-lag eflects are negligible

Vortex Encounter with a Rotating Blade

To compute the vortex interaction flowfield. as before. the
vortex was initialized at the ¢ = O position of the rotor blade
(the corresponding x, = -19.638) as in Refs. 7-9. It then
convects with the flow at the effective “freestream velocity,”
which 18 M,a (1 + w'siny) in this case. Typical instantaneous
surface-pressure distributions are shown in Fig. 8 correspond-
ing to several vortex positions as the vortex convects past the
rotor blade. Since the rotor is noalifting, the lift is initially
zero, and, as the vortex approaches the blade, it induces a
downwash and hence a negauve lift. This continuously in-
creases and reverses in sign, becoming positive lift as the

80

qualitauvely and quanutauvelv, although the peak pressures
on the side of the blade opposite the vortex seem 10 be
underpredicted It should be pointed out here that. in the
expenments, the rotor model had pressure taps on one surface
only  To get the pressure distnbution on both of the surfaces.
the model was sumply 1nverted. and a vecond. almost identical.
cxpenment was run. Nevertheless, i1t iy gratifving to sec uch
good agreement with expenments Thus far. three dimenyvional
effects have been neglected. whose influence at this flow
condition appears minimal

Supercntical Case
This condition corresponds to a tip Mach number of 6 &,
with an advance rato of U2 and the blade reference sation

ry = 0893, as before This translates to a reference Mach
number of () 714 and a local advance ratio g of 0223

Results for Rotor 4lone

We first present results for the rotor-alone case (1¢ . in the
absence of vortex interaction) Figure 9 shows plots of instan-
taneous surface-pressure distnbutions at four rotor blade
azimuthal posiuons. As before. the imual Lft on the rotor
blade (at ¢ = 0 deg) 1s zero and the flow 1s subcntucal. as the
blade rotates its local effecive Mach number increases.
reaching a maximum at ¢ = 90 deg and decreasing in the
second quadrant As scen in these pressure-distnbuuon plots,
the shock wave that develops as the blade rotates gets stronger
and moves toward the trailing edge of the airfol Even though
the cffecuve local Mach number reaches a maumum for
¥ = 90 deg, the shock wave continues to gct stronger and
move toward the trailing edge 1n the second quadrant before 1t
begins moving upstream toward the leading edge of the blade
This unsteady time lag in the growth and decey of the shock
wave persists even when the rotor blade has passed the 180
deg azimuthal position into the third quadrant.

Comparison of expenmental data’’ with numencal results
in Fig. 9 shows relatively good agreement concerming the
pressure levels for all blade azmuthal positons up to ¢
= 150 deg, but the location of the shock wave 15 100 far aft 1n
the second quadrant. In the expenments, the shock wave
seems to have collapsed between the azimuth positions of
¥ = 150 and 180 deg. But the numencal results show the
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Fig. 9 Instantaneous surface-pressure distributions for the rotor- alone
cave: M, =08 u=02 =089}

persistence of a strong shock wave even at the y = (80 deg
wimuth positon. see Fig 94 This strongly suggests the
presence of posybie three-dimensional eflects 1in addston 1o
the unsteady shock-wave lag cffects An attempt s made to
examine this arpect using transonic smail-disturbance ¢qua-
Loy as desonibed 1n the following paragraph

Some ad hoo nsights nte possbie three-dimensional in
Huences can be ohtained from the transomic small-disturbance
cquatien for g thin, lgd - aspect ratio rotating dade

@ -4 - s o]0 -no o

(1)

where D+ the perturbgtion potential, = the spanwise coords
nate. 4 H ¢ and € are constants that depend on M. and
the airfoil thickness ratio, and

D= 2Meaeonlil: « aanll) &
e 8

Fguation (10)) reveals by inspection that three-dimensional
effects nfluence the solutoa through the two terms, DO,
and £9®,, The cocflficient £ s independent of Mach anumber,
and the term £ @ 15 undoubtedly important i1n the immediate
vicimty of the up of the rotor blade On the other hand, the
coefficient D s clearty dependent upon Mach number. as well
as the hlade aspect ratio, the aumuth of the rotor bhlade, the
spanwise station along the hlade, and the local advance ratio,
p = U,/ Qry. of the rotor Therefore. it seems likely that this
term mught play the dominant three-dimensional role inboard
of the up, especially under transonic conditions

A qualitauve esumate of the influence of this cross-flow
term was deduced from two-dimensional calculations in which
D®,. was added as an inhomogencous “source” term to the
basic small-disturbance code ATRAN2 ' Namelv, separation
of vanables, ®(x, v,z 7)=F(z)e(x, v, 7). was assumed,
D®, , was evaluated by assigning arbitrary constants to the
rauo F'/F at afixed : = 7,, and d¢/d x was evaluated at the
previous time step. It was found that negative values of F'/F
tended to strengthen the shock wave for 0 deg < ¢ < 90 deg
and to weaken 1t for 90 deg < y < 180 deg, while positive
values of F’, F had the opposite eflect For example, Figs 9
and 9d show that the small-disturbance calculatons with
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Fig. 10 Instantaneous surface-pressure distnibutions for the casve of
blade-vortex interaction: M, =08 w=02 F'=031. and , = -04.

Frooy, Fooy= 02 approumatels muinue the expenimentaliy
vbserved weakening of the shock wave for 180 deg < 4 < 180
deg. whercas both two-dimensional results are senousiv in
error, by overpredicting the »flects, for this supercnucal case
On the other hand. results for the subontical case depicted 1in
Fig 7 were found to be completely insensitive to simular
rcorrections due this source term) estimates of D@,

It must be emphasized that this reasoning s only :ntended
w Huminate the relative importance ol cross-low effects in
wboand superentead fows and not o predict such etfects
accurately Howevero this deads us to suggest that the super-
cntical cases of Ref 1w th or asthout the sortex, e nather
quast-two-dimensiondl aor guasisteads  This stands in sharp
contrast to the presvious subentical cases. gy T ang v where
the two-dimensional calculations are .nexcellent agreement
with the madel rotor data. and for which the only siamihcant
unsteady effects are solels g result of the arfoil vorten interag
tion

Vorten Taterictiom oo R 0 B Gge S "
A previous attempt’ o compute the rlade soerten nferag
non Nowhield for the cuperor tagh Case a0th ur consdening the

unsteady time-lag effects produced unsatisfacton resuits in
terms of the agreement asth experiments Such g disagreement
s not surpnsing 1n view of the strong mce lags and three-
Jdimensional effects present at this superiniical condition
Figure 10 shows the results of the present calculations. .nclud-
ing the unsteady ume-lag cffects. for two v locations of the
vortex position dunng the :nteraction The numencal rosults
are calculated from both the two-dimenvional. thin-laver
Nawvier-Stokes and the moditied (with the three-dimensional
correcuon factor) transomc small-disturbance codes and are
vompared with the expenmental data of Caradonna et al ' Ay
before. the two-dimensional results overpredict the interacuon
cffects However, the ad-hoc three-dimenvional correction to
the transonic small-disturbance code (ATRAND) seems to
produce results that are in good qualitative agreement with
the expenment [t should be noted that. even for thus uper-
cnuceal flow condition, the low on the expenmental rotor
blade 1s subcntical (with zero Lift) 1n the absence of the vortex
interaction for the azimuth position v = 180 deg (sec Fig 9)
The interacting vortex modifies the lowtield to be wupercnti-
«a) with strong shock waves as the interaction effecis peak A
the vortex passes downstream of the blade. these supercnucal
vondiuons progressively change to subentical condiions Also,
due to the vortex interacuon, the blade develops hift which s
imtially negative ibecause of the sense of rotauon of the
vortex), becomung positive as the vortex passes downstream of
the blade In view of the strong viscous interaction nature of
this problem, it is not surpnsing to see less than perfect
agreement of the expenments with the approumate caku-
lations of the transonic small-disturbance (ode. as shown in
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Fig. 10. The purpose was only to demonstrate the existence of
three-dimensional influence 2t the supercritical flow condi-
tions.

Concluding Remarks

This paper presents a computational procedure to calculate
the interaction flowficld of a passing vortex with a helicopter
rotor blade in forward flight and numerical results for sub-
sonic and transonic flow conditions. The interaction of the
vortex considered here is one of the limiting cases of a more
complex interaction typically encountered on a helicopter
rotor blade and corresponds to the parallel blade-vortex inter-
action experimental conditions of Caradonna et al.' In this
limit, the interaction flowfield had been previously thought to
be two-dimensional and unsteady.

The present numerical scheme involves the solution of
unsteady, two-dimensional, thin-layer Navier-Stokes equa-
tions imphcitly using the perturbation or the prescribed-vortex
approach presented in Refs. 7-9. The computational proce-
dure is very general and accepts any arbitrary size and shape
of the interacting vortex, although the structure of the vortex
is assumed to remain unaltered by the interaction. From
comparison of the present numerical results with the expen-
ments, it was found that the details of the vortex structure
were important.

Two test cases. a subsonic and a transonic condition corre-
sponding to the expenmental data, were chosen for the calcu-
lations. The respective blade tip Mach numbers were 0.6 and
0 &, and the blade advance ratio was 02 A companson of the
numencal results for these two conditions showed a very
disunct difference in the flowfields, even in the absence of the
interacung vortex

The results show that. for the subcnucal case. the unsteadv
ume-lag effects are neghgible for the rotating blade in the
absence of the vortex. and that the unsteadv flowfield with the
vortex interaction is in very good qualitative and quantitative
agreement with experiments However. the supercritical case 1s
totally domunated bv strong (transomic) shock waves. the
consequence of which s the presence of strong unsteady
ume-lag effects even in the absence of the vortex interaction
In addition, there are strong indications of the influence of
three-dimensional effects  The expenmental data for the
rotor-alone case show the collapse of the shock wave between
azimuth positions of 150 and 180 deg The numencal results,
on the other hand. show the persistence of a strong shock
wave even at the 1R0 deg azmuth position and. thus. over-
predict the expenmental data.

Finally, the possibility of three-dimensional effects in the
expenment, which was onginally though: to be quasi-two-
dimensional, was cxamuned further using transomic small-
disturbance equations wmith an ad-hoc three-dimensional cor-
recion. The results suggest that the three-dimensional and
unstesdy ume-lag effects are of comparable importance, that
both are neghgible 1n purely subcntical flow. and that neither
can be ignored when shock waves are present
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